xFLS: Validation Checks (FULL)

In [1]:
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))
plt.style.use('ggplot')

import numpy as np
from astropy.table import Table
import itertools

import time
In [2]:
t0 = time.time()

catname = "/data/help/master_catalogue_xfls_20171201.fits"
master_catalogue = Table.read(catname)

print('Elapsed time(secs): ', time.time() - t0)

print("Number of sources in master catalogue: ", len(master_catalogue))
Elapsed time(secs):  18.414119243621826
Number of sources in master catalogue:  977148
In [3]:
field = master_catalogue["field"][0]
field = field.rstrip()    # remove whitespaces at the end of the sting
print(field)
xFLS
In [4]:
%%javascript
IPython.OutputArea.auto_scroll_threshold = 9999;
In [5]:
u_bands = ["WFC u",]
g_bands = ["WFC g", "GPC1 g", "BASS g"]
r_bands = ["WFC r", "GPC1 r", "BASS r"]
i_bands = ["WFC i", "GPC1 i"]
z_bands = ["WFC z", "GPC1 z", "BASS z"]
y_bands = [         "GPC1 y"]
J_bands = [                            "WFCAM J"]
H_bands = []
K_bands = []

all_bands = [g_bands, r_bands, i_bands, z_bands]

irac_bands = ["IRAC i1", "IRAC i2", "IRAC i3", "IRAC i4"]

opt_mags = u_bands + g_bands + r_bands + i_bands + z_bands + y_bands
ir_mags = J_bands + H_bands + K_bands + irac_bands

other_bands = ["KPNO R"]

all_mags = opt_mags + ir_mags + other_bands

1/ Magnitude errors

In [6]:
def mag_vs_err(x, y, fig, ax, labels=("x", "y"), savefig=False):

    x_label, y_label = labels
    print(x_label)

    # Use only finite values
    mask = np.isfinite(x) & np.isfinite(y) & (x!=99.) & (y!=99.)
    x = np.copy(x[mask])
    y = np.copy(y[mask])
   
    if len(x) > 0:
        print("    Error max: {:.0f}".format(np.max(y)))
        err10 = y > 10
        if len(x[err10]) > 0:
            print("    magerr > 10: Number of objects = {:d}, min mag = {:.1f}".format(len(x[err10]), np.min(x[err10])))
        else:
            print("    magerr > 10: Number of objects = {:d}, min mag = {:.1f}".format(len(x[err10]), np.nan))
        err100 = y > 100
        if len(x[err100]) > 0:
            print("    magerr > 100: Number of objects = {:d}, min mag = {:.1f}".format(len(x[err100]), np.min(x[err100])))
        else:
            print("    magerr > 100: Number of objects = {:d}, min mag = {:.1f}".format(len(x[err100]), np.nan))
        err1000 = y > 1000
        if len(x[err1000]) > 0:
            print("    magerr > 1000: Number of objects = {:d}, min mag = {:.1f}".format(len(x[err1000]), np.min(x[err1000])))
        else:
            print("    magerr > 1000: Number of objects = {:d}, min mag = {:.1f}".format(len(x[err1000]), np.nan))
    else:
        print("    no data")
    print("")


    # Plot
    ax.set_yscale('log')    # to place before scatter to avoid issues
    ax.scatter(x, y, marker='.', alpha=0.1, s=50)
    ax.invert_xaxis()
    #ax.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
    #ax.get_xaxis().get_major_formatter().labelOnlyBase = False
    ax.set_xlabel(labels[0])
    ax.set_ylabel(labels[1])

    # Save ex. fig
    if savefig:
        survey_label = ((x_label.replace(" ", "_")).replace("(", "")).replace(")", "")
        figname = field + "_magVSmagerr_" + survey_label + ".png"
        plt.savefig("/data/help/plots/" + figname, bbox_inches='tight')
    #plt.show()
        
In [8]:
for mag in all_mags:
    fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(16, 6))
    
    basecol = mag.replace(" ", "_").lower()
    
    if basecol == "bass_g":
        savefig = True
    else:
        savefig=False
        
    col, ecol = "m_ap_{}".format(basecol), "merr_ap_{}".format(basecol)
    mag_vs_err(master_catalogue[col], master_catalogue[ecol], fig, ax1,
               labels=("{} mag (aperture)".format(mag), "{} magerr (aperture)".format(mag)), savefig=False)

    
    col, ecol = "m_{}".format(basecol), "merr_{}".format(basecol)
    mag_vs_err(master_catalogue[col], master_catalogue[ecol], fig, ax2,
               labels=("{} mag (total)".format(mag), "{} magerr (total)".format(mag)), savefig=savefig)
    
    display(fig)
    plt.close()
WFC u mag (aperture)
    Error max: 18
    magerr > 10: Number of objects = 2, min mag = 28.4
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC u mag (total)
    Error max: 6
    magerr > 10: Number of objects = 0, min mag = nan
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC g mag (aperture)
    Error max: 16
    magerr > 10: Number of objects = 1, min mag = 29.0
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC g mag (total)
    Error max: 277
    magerr > 10: Number of objects = 17, min mag = 27.6
    magerr > 100: Number of objects = 4, min mag = 31.0
    magerr > 1000: Number of objects = 0, min mag = nan

GPC1 g mag (aperture)
    Error max: 2040
    magerr > 10: Number of objects = 887, min mag = 20.9
    magerr > 100: Number of objects = 72, min mag = 26.7
    magerr > 1000: Number of objects = 6, min mag = 30.1

GPC1 g mag (total)
    Error max: 11446
    magerr > 10: Number of objects = 1040, min mag = 23.4
    magerr > 100: Number of objects = 101, min mag = 26.2
    magerr > 1000: Number of objects = 10, min mag = 28.9

BASS g mag (aperture)
    Error max: 3908
    magerr > 10: Number of objects = 217, min mag = 27.9
    magerr > 100: Number of objects = 15, min mag = 30.6
    magerr > 1000: Number of objects = 2, min mag = 33.6

BASS g mag (total)
    Error max: 3324
    magerr > 10: Number of objects = 328, min mag = 16.7
    magerr > 100: Number of objects = 42, min mag = 30.1
    magerr > 1000: Number of objects = 3, min mag = 33.3

WFC r mag (aperture)
    Error max: 16
    magerr > 10: Number of objects = 2, min mag = 28.4
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC r mag (total)
    Error max: 171
    magerr > 10: Number of objects = 33, min mag = 26.9
    magerr > 100: Number of objects = 1, min mag = 31.0
    magerr > 1000: Number of objects = 0, min mag = nan

GPC1 r mag (aperture)
    Error max: 2754
    magerr > 10: Number of objects = 288, min mag = 22.9
    magerr > 100: Number of objects = 16, min mag = 27.3
    magerr > 1000: Number of objects = 1, min mag = 31.7

GPC1 r mag (total)
    Error max: 4258
    magerr > 10: Number of objects = 318, min mag = 12.8
    magerr > 100: Number of objects = 31, min mag = 24.3
    magerr > 1000: Number of objects = 3, min mag = 30.8

BASS r mag (aperture)
    Error max: 1394
    magerr > 10: Number of objects = 141, min mag = 27.1
    magerr > 100: Number of objects = 9, min mag = 29.9
    magerr > 1000: Number of objects = 1, min mag = 32.5

BASS r mag (total)
    Error max: 862
    magerr > 10: Number of objects = 106, min mag = 21.8
    magerr > 100: Number of objects = 8, min mag = 23.4
    magerr > 1000: Number of objects = 0, min mag = nan

WFC i mag (aperture)
    Error max: 192
    magerr > 10: Number of objects = 24, min mag = 27.0
    magerr > 100: Number of objects = 2, min mag = 29.9
    magerr > 1000: Number of objects = 0, min mag = nan

WFC i mag (total)
    Error max: 9723
    magerr > 10: Number of objects = 106, min mag = 26.7
    magerr > 100: Number of objects = 35, min mag = 28.4
    magerr > 1000: Number of objects = 1, min mag = 34.5

GPC1 i mag (aperture)
    Error max: 14960
    magerr > 10: Number of objects = 140, min mag = 15.6
    magerr > 100: Number of objects = 17, min mag = 27.4
    magerr > 1000: Number of objects = 3, min mag = 31.6

GPC1 i mag (total)
    Error max: 1029
    magerr > 10: Number of objects = 149, min mag = 22.8
    magerr > 100: Number of objects = 11, min mag = 26.7
    magerr > 1000: Number of objects = 1, min mag = 30.0

WFC z mag (aperture)
    Error max: 855
    magerr > 10: Number of objects = 5, min mag = 26.1
    magerr > 100: Number of objects = 1, min mag = 30.7
    magerr > 1000: Number of objects = 0, min mag = nan

WFC z mag (total)
    Error max: 37
    magerr > 10: Number of objects = 6, min mag = 26.2
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

GPC1 z mag (aperture)
    Error max: 2737
    magerr > 10: Number of objects = 232, min mag = 23.4
    magerr > 100: Number of objects = 14, min mag = 26.7
    magerr > 1000: Number of objects = 2, min mag = 30.7

GPC1 z mag (total)
    Error max: 2128
    magerr > 10: Number of objects = 281, min mag = 22.5
    magerr > 100: Number of objects = 37, min mag = 25.2
    magerr > 1000: Number of objects = 3, min mag = 29.3

BASS z mag (aperture)
    Error max: 44757
    magerr > 10: Number of objects = 306, min mag = 25.9
    magerr > 100: Number of objects = 31, min mag = 28.5
    magerr > 1000: Number of objects = 3, min mag = 31.6

BASS z mag (total)
    Error max: 5293
    magerr > 10: Number of objects = 158, min mag = 5.4
    magerr > 100: Number of objects = 19, min mag = 20.7
    magerr > 1000: Number of objects = 2, min mag = 28.2

GPC1 y mag (aperture)
    Error max: 4171
    magerr > 10: Number of objects = 553, min mag = 16.9
    magerr > 100: Number of objects = 57, min mag = 25.4
    magerr > 1000: Number of objects = 8, min mag = 28.9

GPC1 y mag (total)
    Error max: 19473
    magerr > 10: Number of objects = 772, min mag = 10.0
    magerr > 100: Number of objects = 68, min mag = 24.2
    magerr > 1000: Number of objects = 7, min mag = 28.0

WFCAM J mag (aperture)
    Error max: 32
    magerr > 10: Number of objects = 1, min mag = 26.0
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFCAM J mag (total)
    Error max: 193
    magerr > 10: Number of objects = 7, min mag = 24.5
    magerr > 100: Number of objects = 1, min mag = 26.6
    magerr > 1000: Number of objects = 0, min mag = nan

IRAC i1 mag (aperture)
    Error max: 21
    magerr > 10: Number of objects = 1, min mag = 21.3
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

IRAC i1 mag (total)
    Error max: 4054
    magerr > 10: Number of objects = 76, min mag = 19.7
    magerr > 100: Number of objects = 9, min mag = 20.1
    magerr > 1000: Number of objects = 1, min mag = 31.6

IRAC i2 mag (aperture)
    Error max: 12
    magerr > 10: Number of objects = 1, min mag = 24.9
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

IRAC i2 mag (total)
    Error max: 2040
    magerr > 10: Number of objects = 145, min mag = 22.1
    magerr > 100: Number of objects = 17, min mag = 23.5
    magerr > 1000: Number of objects = 2, min mag = 29.0

IRAC i3 mag (aperture)
    Error max: 60
    magerr > 10: Number of objects = 1, min mag = 19.5
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

IRAC i3 mag (total)
    Error max: 3025
    magerr > 10: Number of objects = 29, min mag = 17.8
    magerr > 100: Number of objects = 5, min mag = 25.8
    magerr > 1000: Number of objects = 1, min mag = 29.7

IRAC i4 mag (aperture)
    Error max: 17
    magerr > 10: Number of objects = 1, min mag = 23.7
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

IRAC i4 mag (total)
    Error max: 1185
    magerr > 10: Number of objects = 27, min mag = 22.3
    magerr > 100: Number of objects = 4, min mag = 25.1
    magerr > 1000: Number of objects = 1, min mag = 28.8

KPNO R mag (aperture)
    Error max: 4
    magerr > 10: Number of objects = 0, min mag = nan
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

KPNO R mag (total)
    Error max: 0
    magerr > 10: Number of objects = 0, min mag = nan
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

2/ Magnitude and error issues

In [9]:
def flag_mag(mask, x1, y1, x2, y2, mask2=None, x3=None, y3=None, mask3=None,
             labels1=("x", "y"), labels2=("x", "y"), labels3=("x", "y"), nb=2,
             irac=False, savefig=False):

    if nb == 2 or (nb == 1 and irac):
        fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(16, 6))
    elif nb == 1:
        fig, (ax1) = plt.subplots(ncols=1, figsize=(6, 6))
    else:
        fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(16, 6))
    
    # mag vs magerr
    ax1.set_yscale('log')    # to place before scatter to avoid issues
    ax1.scatter(x1, y1, marker='.', alpha=0.1, s=50)
    ax1.plot(x1[mask], y1[mask], 'b.')
    if mask2 is not None and nb >= 2:
        ax1.plot(x1[mask2], y1[mask2], 'g.')
    ax1.invert_xaxis()
    ax1.set_xlabel(labels1[0])
    ax1.set_ylabel(labels1[1])
    
    if nb == 1 and irac:
        # IRAC mag
        ax2.set_yscale('log')    # to place before scatter to avoid issues
        ax2.scatter(x2, y2, marker='.', alpha=0.1, s=50)
        ax2.plot(x2[mask2], y2[mask2], 'b.')
        ax2.invert_xaxis()
        ax2.set_xlabel(labels2[0])
        ax2.set_ylabel(labels2[1])
        
    if nb == 1 and x3 is not None:
        # IRAC mag with i3
        ax3.set_yscale('log')    # to place before scatter to avoid issues
        ax3.scatter(x3, y3, marker='.', alpha=0.1, s=50)
        ax3.plot(x3[mask3], y2[mask3], 'b.')
        ax3.invert_xaxis()
        ax3.set_xlabel(labels3[0])
        ax3.set_ylabel(labels3[1])
    
    # Comparing magnitudes
    if nb >= 2:
        ax2.scatter(x2, y2, marker='.', alpha=0.1, s=50)
        ax2.plot(x2[mask], y2[mask], 'b.')
        if mask2 is not None:
            ax2.plot(x2[mask2], y2[mask2], 'g.')
        ax2.invert_xaxis()
        ax2.invert_yaxis()
        ax2.set_xlabel(labels2[0])
        ax2.set_ylabel(labels2[1])
    
    if nb >= 3:
        ax3.scatter(x3, y3, marker='.', alpha=0.1, s=50)
        ax3.plot(x3[mask], y3[mask], 'b.')
        if mask2 is not None:
            ax3.plot(x3[mask2], y3[mask2], 'g.')
        ax3.invert_xaxis()
        ax3.invert_yaxis()
        ax3.set_xlabel(labels3[0])
        ax3.set_ylabel(labels3[1])
    
    # Save ex. fig
    if savefig:
        survey_label = ((labels1[0].replace(" ", "_")).replace("(", "")).replace(")", "")
        if "GPC1 " in labels1[0]:
            figname = field + "_gpc1Issues_" + survey_label + ".png"
        elif "DECam" in labels1[0]:
            figname = field + "_decamIssues_" + survey_label + ".png"
        elif "IRAC" in labels1[0]:
            figname = field + "_iracIssues_i1_i2.png"
        plt.savefig("/data/help/plots/" + figname, bbox_inches='tight')
        
    display(fig)
    plt.close()

2.a Pan-STARRS Aperture and Total magnitudes

In [10]:
# PanSTARRS forced photometry catalogue
ps1_err = 0.0010860000038519502

bands = ['g', 'r', 'i', 'z', 'y']

for i, surveys in enumerate([g_bands, r_bands, i_bands, z_bands, y_bands]):
    surveys.insert(0, surveys.pop(surveys.index('GPC1 '+ bands[i])))
    print(surveys[0])
    
    if len(surveys) == 1:
        basecol1 = surveys[0].replace(" ", "_").lower()
        col1 = "m_ap_{}".format(basecol1)
        x2, labels2 = None, None
    else:
        basecol1, basecol2 = surveys[0].replace(" ", "_").lower(), surveys[1].replace(" ", "_").lower()
        col1, col2 = "m_ap_{}".format(basecol1), "m_ap_{}".format(basecol2)
        x2 = master_catalogue[col2]
        labels2 = ("{} (aperture)".format(surveys[1]), "{} (aperture)".format(surveys[0]))
    ecol1 = "merr_ap_{}".format(basecol1)
    
    if len(surveys) >= 3:
        basecol3 = surveys[2].replace(" ", "_").lower()
        col3 = "m_ap_{}".format(basecol3)
        x3, y3 = master_catalogue[col3], master_catalogue[col1]
        labels3 = ("{} (aperture)".format(surveys[2]), "{} (aperture)".format(surveys[0]))
    else:
        x3, y3, labels3 = None, None, None
        
    if basecol1 == 'gpc1_g':
        savefig = True
    else:
        savefig = False

        
    mask = np.where(master_catalogue[ecol1] == ps1_err)    
    print ('   Number of flagged objects:', len(master_catalogue[ecol1][mask]))

    flag_mag(mask, master_catalogue[col1], master_catalogue[ecol1],
                    x2, master_catalogue[col1], 
                    x3=x3, y3=y3,
                    labels1=("{} mag (aperture)".format(surveys[0]), "{} magerr (aperture)".format(surveys[0])),
                    labels2=labels2,
                    labels3=labels3, nb=len(surveys), savefig=savefig)
GPC1 g
   Number of flagged objects: 208
GPC1 r
   Number of flagged objects: 252
GPC1 i
   Number of flagged objects: 168
GPC1 z
   Number of flagged objects: 117
GPC1 y
   Number of flagged objects: 46

2.c IRAC Aperture magnitude

In [11]:
irac_mag = 3.9000000001085695

bands = ['IRAC i1', 'IRAC i2']
    
basecol1, basecol2 = bands[0].replace(" ", "_").lower(), bands[1].replace(" ", "_").lower()
col1, col2 = "m_ap_{}".format(basecol1), "m_ap_{}".format(basecol2)
ecol1, ecol2 = "merr_ap_{}".format(basecol1), "merr_ap_{}".format(basecol2)
    
mask1 = np.where(master_catalogue[col1] == irac_mag)[0]   
print ('IRAC i1: Number of flagged objects:', len(master_catalogue[col1][mask1]))

mask2 = np.where(master_catalogue[col2] == irac_mag)[0]  
print ('IRAC i2: Number of flagged objects:', len(master_catalogue[col2][mask2]))

flag_mag(mask1, master_catalogue[col1], master_catalogue[ecol1],
         master_catalogue[col2], master_catalogue[ecol2], mask2=mask2,
         labels1=("{} mag (aperture)".format(bands[0]), "{} magerr (aperture)".format(bands[0])),
         labels2=("{} mag (aperture)".format(bands[1]), "{} magerr (aperture)".format(bands[1])),
         nb=1, irac=True, savefig=True)
IRAC i1: Number of flagged objects: 0
IRAC i2: Number of flagged objects: 0

3/ Outliers

$$chi^2 = \frac{(mag_{1}-mag_{2})^2}{magerr_{1}^2 + magerr_{2}^2}$$


Interquartile range (IQR) and outliers:
We consider as outliers objects which have a high $chi^2$, about $5\sigma$ away from the mean.
$25th, 75th \;percentile = 0.6745\sigma$
$IQR = (75th \;percentile - 25th \;percentile) = 0.6745\sigma * 2 = 1.349\sigma$
$75th \;percentile + 3.2\times IQR = 0.6745\sigma + 3.2\times1.349\sigma = 5\sigma$

$$outliers == [chi^2 > (75th \;percentile + 3.2\times (75th \;percentile - 25th \;percentile))]$$

NB:
Bright sources tend to have their errors underestimated with values as low as $10^{-6}$, which is unrealistic. So to avoid high $chi^2$ due to unrealistic small errors, we clip the error to get a minimum value of 0.1% (i.e. all errors smaller then $10^{-3}$ are set to $10^{-3}$).

In [12]:
def outliers(x, y, xerr, yerr, labels=["x", "y"], savefig=False):
    
    import matplotlib
    import matplotlib.gridspec as gridspec
    from astropy import visualization as vz
    
    fig = plt.figure(figsize=(13, 6))

    gs1 = gridspec.GridSpec(1, 1)
    gs1.update(left=0.05, right=0.4, wspace=0.05)
    ax1 = plt.subplot(gs1[:, :-1])

    gs2 = gridspec.GridSpec(1, 3)
    gs2.update(left=0.47, right=0.98, hspace=0.05, wspace=0.05)
    ax2 = plt.subplot(gs2[:, :-1])
    ax3 = plt.subplot(gs2[:, -1], sharey=ax2)

    
    # Use only finite values
    mask = np.isfinite(x) & np.isfinite(y) & np.isfinite(xerr) & np.isfinite(yerr)
    x = np.copy(x[mask])
    y = np.copy(y[mask])
    xerr = np.copy(xerr[mask])
    yerr = np.copy(yerr[mask])
    
    # mag1 - mag2
    diff = y - x

    x_label, y_label = labels
    
    # If the difference is all NaN there is nothing to compare.
    if np.isnan(diff).all():
        print("No sources have both {} and {} values.".format(
            x_label, y_label))
        print("")
        return
    
    # Set the minimum error to 10^-3
    np.clip(xerr, 1e-3, np.max(xerr), out=xerr)
    np.clip(yerr, 1e-3, np.max(yerr), out=yerr)

    # Median, Median absolute deviation and 1% and 99% percentiles
    diff_median = np.median(diff)
    diff_mad = np.median(np.abs(diff - diff_median))
    diff_1p, diff_99p = np.percentile(diff, [1., 99.])
    diff_25p, diff_75p = np.percentile(diff, [25., 75.])
    
    
    diff_label = "{} - {}".format(y_label, x_label)

    print("{} ({} sources):".format(diff_label, len(x)))
    print("- Median: {:.2f}".format(diff_median))
    print("- Median Absolute Deviation: {:.2f}".format(diff_mad))
    print("- 1% percentile: {}".format(diff_1p))
    print("- 99% percentile: {}".format(diff_99p))

    
    # Chi2 (Normalized difference)   
    ichi2 = np.power(diff, 2) / (np.power(xerr, 2) + np.power(yerr, 2))
    
    # Use only non-null values of ichi2
    mask2 = ichi2 != 0.0
    diff, ichi2 = np.copy(diff[mask2]), np.copy(ichi2[mask2])
    x, y, xerr, yerr = np.copy(x[mask2]), np.copy(y[mask2]), np.copy(xerr[mask2]), np.copy(yerr[mask2])

    # Outliers (5sigma)
    log_ichi2_25p, log_ichi2_75p = np.percentile(np.log10(ichi2), [25., 75.])
    out_lim = log_ichi2_75p + 3.2*abs(log_ichi2_25p-log_ichi2_75p)
    
    outliers = np.log10(ichi2) > out_lim 
    nb_outliers = len(x[outliers])
    
    print("Outliers separation: log(chi2) = {:.2f}".format(out_lim))
    print("Number of outliers: {}".format(nb_outliers))

    print("")

    # Comparing mag
    ax1.scatter(x, y, marker='.', alpha=0.1, s=50)
    ax1.scatter(x[outliers], y[outliers], marker='.', c='b', alpha=0.3, s=50, label='Outliers ({})'.format(nb_outliers))
    min_val = np.min(np.r_[x, y])
    max_val = np.max(np.r_[x, y])
    ax1.autoscale(False)
    ax1.plot([min_val, max_val], [min_val, max_val], "k:")
    ax1.invert_xaxis()
    ax1.invert_yaxis()
    ax1.set_xlabel(x_label)
    ax1.set_ylabel(y_label)
    ax1.legend(loc='lower right', numpoints=1)
    

    # Chi2 vs Diff
    #ax1.set_yscale('log')    # to place before scatter to avoid issues
    ax2.scatter(diff, np.log10(ichi2), marker='.', alpha=0.1, s=50)
    if nb_outliers != 0:
        ax2.scatter(diff[outliers], np.log10(ichi2[outliers]), marker='.', alpha=0.3, s=50, color='b',\
                    label='Outliers ({})'.format(nb_outliers))
    ax2.axhline(out_lim, color='grey', linestyle=':')
    ax2.set_xlabel(diff_label)
    ax2.set_ylabel('log(chi2)')
    ax2.legend(loc='lower right', numpoints=1)
    
    # Hist
    n, bins, patches = vz.hist(np.log10(ichi2), ax=ax3, bins='knuth', facecolor='red', lw = 2, alpha=0.5,\
                                   orientation="horizontal")
    if nb_outliers > 3:
        n, bins, patches = vz.hist(np.log10(ichi2[outliers]), ax=ax3, bins='knuth', facecolor='b', lw = 2, alpha=0.7,\
                                   orientation="horizontal")
    ax3.axhline(out_lim, color='grey', linestyle=':')
    ax3.yaxis.set_tick_params(labelleft=False)
    
    # Save ex. fig
    if savefig:
        survey_label = ((diff_label.replace(" ", "_")).replace("(", "")).replace(")", "")
        figname = field + "_outliers_" + survey_label + ".png"
        plt.savefig("/data/help/plots/" + figname, bbox_inches='tight')


    display(fig)
    plt.close()
In [14]:
for band_of_a_kind in all_bands:
    for band1, band2 in itertools.combinations(band_of_a_kind, 2):

        basecol1, basecol2 = band1.replace(" ", "_").lower(), band2.replace(" ", "_").lower()
        
        if basecol1 == "gpc1_g" and basecol2 == "bass_g":
            savefig = True
        else:
            savefig = False
        
        # Aperture mag
        col1, col2 = "m_ap_{}".format(basecol1), "m_ap_{}".format(basecol2)
        ecol1, ecol2 = "merr_ap_{}".format(basecol1), "merr_ap_{}".format(basecol2)
        outliers(master_catalogue[col1], master_catalogue[col2],
                 master_catalogue[ecol1], master_catalogue[ecol2],
                 labels=("{} (aperture)".format(band1), "{} (aperture)".format(band2)), savefig=savefig)
        
        # Tot mag
        col1, col2 = "m_{}".format(basecol1), "m_{}".format(basecol2)
        ecol1, ecol2 = "merr_{}".format(basecol1), "merr_{}".format(basecol2)
        outliers(master_catalogue[col1], master_catalogue[col2], 
                 master_catalogue[ecol1], master_catalogue[ecol2],
                 labels=("{} (total)".format(band1), "{} (total)".format(band2)))
WFC g (aperture) - GPC1 g (aperture) (92730 sources):
- Median: 0.03
- Median Absolute Deviation: 0.22
- 1% percentile: -2.2397776222229004
- 99% percentile: 1.9368937301635833
Outliers separation: log(chi2) = 5.08
Number of outliers: 3

WFC g (total) - GPC1 g (total) (92680 sources):
- Median: -0.03
- Median Absolute Deviation: 0.19
- 1% percentile: -1.6782892417907713
- 99% percentile: 2.2698214149475104
Outliers separation: log(chi2) = 4.94
Number of outliers: 0

BASS g (aperture) - GPC1 g (aperture) (93121 sources):
- Median: 0.11
- Median Absolute Deviation: 0.22
- 1% percentile: -2.0781490325927736
- 99% percentile: 5.5882854461669975
Outliers separation: log(chi2) = 6.03
Number of outliers: 226

BASS g (total) - GPC1 g (total) (93533 sources):
- Median: -0.03
- Median Absolute Deviation: 0.18
- 1% percentile: -1.8167191314697266
- 99% percentile: 2.7549723815917933
Outliers separation: log(chi2) = 5.11
Number of outliers: 90

BASS g (aperture) - WFC g (aperture) (93887 sources):
- Median: 0.05
- Median Absolute Deviation: 0.13
- 1% percentile: -0.6256225967407226
- 99% percentile: 3.0758930015563952
Outliers separation: log(chi2) = 4.87
Number of outliers: 230

BASS g (total) - WFC g (total) (94092 sources):
- Median: -0.02
- Median Absolute Deviation: 0.12
- 1% percentile: -1.0549715042114258
- 99% percentile: 1.0528565597534065
Outliers separation: log(chi2) = 4.48
Number of outliers: 10

WFC r (aperture) - GPC1 r (aperture) (77113 sources):
- Median: 0.03
- Median Absolute Deviation: 0.14
- 1% percentile: -1.342835464477539
- 99% percentile: 1.279700164794922
Outliers separation: log(chi2) = 4.91
Number of outliers: 12

WFC r (total) - GPC1 r (total) (77114 sources):
- Median: -0.05
- Median Absolute Deviation: 0.12
- 1% percentile: -0.9246087837219239
- 99% percentile: 1.5688879203796382
Outliers separation: log(chi2) = 4.67
Number of outliers: 4

BASS r (aperture) - GPC1 r (aperture) (31410 sources):
- Median: -0.10
- Median Absolute Deviation: 0.13
- 1% percentile: -1.5617235946655272
- 99% percentile: 5.567615804672241
Outliers separation: log(chi2) = 5.36
Number of outliers: 441

BASS r (total) - GPC1 r (total) (31560 sources):
- Median: -0.21
- Median Absolute Deviation: 0.13
- 1% percentile: -1.578474712371826
- 99% percentile: 1.4610954570770263
Outliers separation: log(chi2) = 5.98
Number of outliers: 4

BASS r (aperture) - WFC r (aperture) (10223 sources):
- Median: -0.13
- Median Absolute Deviation: 0.15
- 1% percentile: -1.005444869995117
- 99% percentile: 4.584682769775396
Outliers separation: log(chi2) = 5.31
Number of outliers: 0

BASS r (total) - WFC r (total) (10315 sources):
- Median: -0.13
- Median Absolute Deviation: 0.16
- 1% percentile: -1.8431853485107421
- 99% percentile: 1.4611610031127977
Outliers separation: log(chi2) = 5.45
Number of outliers: 0

WFC i (aperture) - GPC1 i (aperture) (110755 sources):
- Median: -0.04
- Median Absolute Deviation: 0.11
- 1% percentile: -0.8918610382080079
- 99% percentile: 0.9523522949218652
Outliers separation: log(chi2) = 4.44
Number of outliers: 6

WFC i (total) - GPC1 i (total) (110825 sources):
- Median: -0.11
- Median Absolute Deviation: 0.10
- 1% percentile: -0.8438045501708984
- 99% percentile: 0.8853607177734322
Outliers separation: log(chi2) = 4.72
Number of outliers: 0

WFC z (aperture) - GPC1 z (aperture) (83820 sources):
- Median: -0.06
- Median Absolute Deviation: 0.13
- 1% percentile: -1.2323098182678223
- 99% percentile: 0.8765241622924795
Outliers separation: log(chi2) = 4.07
Number of outliers: 1

WFC z (total) - GPC1 z (total) (83884 sources):
- Median: -0.10
- Median Absolute Deviation: 0.17
- 1% percentile: -1.4901214027404786
- 99% percentile: 0.9696512603759759
Outliers separation: log(chi2) = 4.55
Number of outliers: 0

BASS z (aperture) - GPC1 z (aperture) (48458 sources):
- Median: -0.12
- Median Absolute Deviation: 0.14
- 1% percentile: -1.3437538528442383
- 99% percentile: 3.2730864048004165
Outliers separation: log(chi2) = 5.64
Number of outliers: 467

BASS z (total) - GPC1 z (total) (48658 sources):
- Median: -0.27
- Median Absolute Deviation: 0.13
- 1% percentile: -1.4669511032104492
- 99% percentile: 1.0143740749359131
Outliers separation: log(chi2) = 6.59
Number of outliers: 1

BASS z (aperture) - WFC z (aperture) (22742 sources):
- Median: -0.05
- Median Absolute Deviation: 0.12
- 1% percentile: -0.8590372657775879
- 99% percentile: 3.0984138011932383
Outliers separation: log(chi2) = 4.36
Number of outliers: 18

BASS z (total) - WFC z (total) (22856 sources):
- Median: -0.16
- Median Absolute Deviation: 0.20
- 1% percentile: -1.3481196403503417
- 99% percentile: 1.4228333473205579
Outliers separation: log(chi2) = 4.58
Number of outliers: 0

4. Aperture correction issues

In [15]:
def apcor_check(x, y, stellarity, labels=["x", "y"], savefig=False):
    import matplotlib.gridspec as gridspec
    from astropy import visualization as vz
    
    #fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(16, 6))   # 
    fig = plt.figure(figsize=(13, 6))

    gs1 = gridspec.GridSpec(1, 1)
    gs1.update(left=0.05, right=0.4, wspace=0.05)
    ax1 = plt.subplot(gs1[:, :-1])

    gs2 = gridspec.GridSpec(1, 3)
    gs2.update(left=0.47, right=0.98, hspace=0.05, wspace=0.05)
    ax2 = plt.subplot(gs2[:, :-1])
    ax3 = plt.subplot(gs2[:, -1], sharey=ax2)

    
    # Use only finite values
    mask = np.isfinite(x) & np.isfinite(y) & np.isfinite(stellarity)
    x = np.copy(x[mask])
    y = np.copy(y[mask])
    stellarity = np.copy(stellarity[mask])


    diff = y - x

    x_label, y_label = labels
    
    # If the difference is all NaN there is nothing to compare.
    if np.isnan(diff).all():
        print("No sources have both {} and {} values.".format(
            x_label, y_label))
        print("")
        return
    
    
    diff_label = "{} - {}".format(y_label, x_label)
    print("{}:".format(diff_label))
    
    # Subsample
    zoom = (x > 16) & (x < 20)


    # Comparing mag
    ax1.scatter(x, diff, marker='.', alpha=0.1, s=50)
    ax1.invert_xaxis()
    ax1.set_ylabel(diff_label)
    ax1.set_xlabel(x_label)
    

    # Zoom Plot
    y_min, y_max = np.percentile(diff[zoom], [1., 99.])
    y_delta = .1 * (y_max - y_min)
    y_min -= y_delta
    y_max += y_delta

    if len(x[zoom]) < 1000:
        alpha = 0.4
    else:
        alpha = 0.1
    print(len(x[zoom]))
    pl = ax2.scatter(x[zoom], diff[zoom], marker='.', alpha=alpha, s=50, c=stellarity[zoom], cmap="jet")
    ax2.invert_xaxis()
    ax2.set_ylabel(diff_label)
    ax2.set_xlabel(x_label)
    ax2.set_ylim([y_min, y_max])
    fig.colorbar(pl, label="stellarity (1=star)")
    
    #ax2.legend(loc='lower right', numpoints=1)
    
    # Hist
    n, bins, patches = vz.hist(diff[zoom], ax=ax3, bins='knuth', facecolor='black', lw = 2, alpha=0.5,\
                                   orientation="horizontal")
    ax3.yaxis.set_tick_params(labelleft=False)
    
    # Save ex. fig
    if savefig:
        survey_label = ((diff_label.replace(" ", "_")).replace("(", "")).replace(")", "")
        figname = field + "_apcorrIssues_" + survey_label + ".png"
        plt.savefig("/data/help/plots/" + figname, bbox_inches='tight')


    display(fig)
    plt.close()
In [16]:
for band_of_a_kind in all_bands:
    for band1, band2 in itertools.combinations(band_of_a_kind, 2):

        basecol1, basecol2 = band1.replace(" ", "_").lower(), band2.replace(" ", "_").lower()
       
        if basecol1 == "gpc1_r" and basecol2 == "wfc_r":
            savefig = True
        else:
            savefig = False
            
        # Aperture mag
        col1, col2 = "m_ap_{}".format(basecol1), "m_ap_{}".format(basecol2)

        apcor_check(master_catalogue[col1], master_catalogue[col2], master_catalogue['stellarity'],
                 labels=("{} (aperture)".format(band1), "{} (aperture)".format(band2)), savefig=savefig)

for j in range(10):
    plt.close()
WFC g (aperture) - GPC1 g (aperture):
13275
BASS g (aperture) - GPC1 g (aperture):
14147
BASS g (aperture) - WFC g (aperture):
9436
WFC r (aperture) - GPC1 r (aperture):
15131
BASS r (aperture) - GPC1 r (aperture):
6152
BASS r (aperture) - WFC r (aperture):
928
WFC i (aperture) - GPC1 i (aperture):
30887
WFC z (aperture) - GPC1 z (aperture):
32706
BASS z (aperture) - GPC1 z (aperture):
16693
BASS z (aperture) - WFC z (aperture):
7932
In [ ]: