{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# ELAIS-N1 Luminosity Function\n", "\n", "Use the depth maps to get a histogram of areas with a given depth." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "708e28f (Tue May 8 18:05:21 2018 +0100)\n", "This notebook was executed on: \n", "2018-05-10 16:59:39.449385\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n", "import datetime\n", "print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "import os\n", "import time\n", "import glob\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table, join\n", "from astropy.cosmology import FlatLambdaCDM\n", "\n", "\n", "\n", "import numpy as np\n", "from pymoc import MOC\n", "import healpy as hp\n", "#import pandas as pd #Astropy has group_by function so apandas isn't required.\n", "import seaborn as sns\n", "\n", "import warnings\n", "#We ignore warnings - this is a little dangerous but a huge number of warnings are generated by empty cells later\n", "warnings.filterwarnings('ignore')\n", "\n", "from herschelhelp_internal.utils import inMoc, coords_to_hpidx, flux_to_mag, mag_to_flux\n", "from herschelhelp_internal.masterlist import find_last_ml_suffix, nb_ccplots\n", "\n", "from astropy.io.votable import parse_single_table\n", "\n", "from pcigale.sed import SED\n", "from pcigale.sed_modules import get_module" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "os.environ['GAMA_DATA'] = 'We are not using GAMA data'\n", "#from luminosity_function.gal_sample import CosmoLookup" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "FIELD = 'ELAIS-N1'\n", "FILTERS_DIR = \"/opt/herschelhelp_python/database_builder/filters/\"\n", "DMU_DIR = '/mnt/hedam/dmu_products/'\n", "#DMU_DIR = '/Users/rs548/GitHub/dmu_products/'" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "depths = Table.read(\"{}dmu1/dmu1_ml_ELAIS-N1/data/depths_elais-n1_20180216.fits\".format(DMU_DIR))\n", "final_cat = Table.read(\"{}dmu32/dmu32_ELAIS-N1/data/ELAIS-N1_20171016.fits\".format(DMU_DIR))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## I - Histogram of areas\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "depths = depths[\"hp_idx_O_13\", \n", " \"hp_idx_O_10\", \n", " \"ferr_ap_irac_i1_mean\", \n", " \"f_ap_irac_i1_p90\", \n", " \"ferr_irac_i1_mean\", \n", " \"f_irac_i1_p90\"]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0, 5.0)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAELCAYAAAAiIMZEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmYXGd15/HvqbX31tJtW9ZuYkO8gBd5YUsMBDDL4CExg80SSEKcMBBgJsuEJAMTJ5kkM5NMQkjwOIFhx4R1HGIwDsYYT7xItuVNlo0Mbau1WFJLvVd1bSd/1K1Wq9VLLbfqtrp/n+epp6u6bt9+XY/8q7fPfeu85u6IiMjyEot6ACIiEj6Fu4jIMqRwFxFZhhTuIiLLkMJdRGQZUriLiCxDCncRkWVI4S4isgwp3EVElqHEYgeYWRtwF5AOjv+qu3901jFp4LPAJcAQ8FZ3H1jovH19fb5ly5b6Ri0iskI98MADR9y9f7HjFg13YAp4pbuPm1kSuNvMvu3u98445leAY+7+U2Z2LfDnwFsXOumWLVvYsWNHFb9eREQqzOyZao5btCzjZePBw2Rwm92Q5mrgM8H9rwKvMjOrcqwiIhKyqmruZhY3s53AIeB2d79v1iHrgb0A7l4ARoC1c5znejPbYWY7Dh8+3NjIRURkXlWFu7sX3f1CYANwmZmdP+uQuWbpJ7WbdPeb3H2bu2/r71+0ZCQiInWqabWMuw8DdwJXzXpqENgIYGYJoBc4GsL4RESkDouGu5n1m9mq4H478HPA7lmH3QK8K7h/DXCHq1G8iEhkqlktsw74jJnFKb8Z/KO7f8vMbgB2uPstwCeBz5nZHsoz9mubNmIREVnUouHu7o8AF83x/Y/MuJ8F3hLu0EREpF76hKqIyDKkcA/ZobEsV/3VXTw7NBn1UERkBVO4h+zJg2PsPjjGrgMjUQ9FRFYwhXvIRjOF8tdsIeKRiMhKpnAP2Wg2D8C4wl1EIqRwD9lIphzuYwp3EYmQwj1ko0G4j0/lIx6JiKxkCveQVcoymrmLSJQU7iGrXFAdm1K4i0h0FO4hU81dRJYChXvIjq+WUc1dRKKjcA/ZqGbuIrIEKNxDNhLU3MdVcxeRCCncQ6bVMiKyFCjcQ5TNF8kVSqTiMcanCpRK2q9ERKKhcA9RZdZ+5qo2AMZzmr2LSDQU7iGqXExdv7odUH8ZEYmOwj1ElYup61eVw111dxGJisI9RMfLMpVw11p3EYmGwj1E02WZSrhrOaSIREThHqLZNXeVZUQkKgr3EFV2X6rM3HVBVUSionAP0UgmTzoRY21XGlDNXUSio3AP0WgmT097ks5UHDO1IBCR6CjcQzSazdPbnsTM6EonVHMXkcgo3EM0minQ05YAoKctqXAXkcgsGu5mttHMvm9mT5jZ42b2wTmOudLMRsxsZ3D7SHOGu7SNBGUZIJi5q+YuItFIVHFMAfhNd3/QzLqBB8zsdnffNeu4H7r7G8Mf4qljNJvnrP5OALrbEqq5i0hkFp25u/sBd38wuD8GPAGsb/bATkWjmTw9bcHMvU01dxGJTk01dzPbAlwE3DfH0y82s4fN7Ntmdl4IYzuluDuj2QI97eU/hrrbkpq5i0hkqinLAGBmXcDXgA+5++ispx8ENrv7uJm9HvgmcPYc57geuB5g06ZNdQ96KZrIFSmW/PjMXTV3EYlQVTN3M0tSDvYvuPvXZz/v7qPuPh7cvxVImlnfHMfd5O7b3H1bf39/g0NfWiqtB3qDC6o9KsuISISqWS1jwCeBJ9z9L+c55ozgOMzssuC8Q2EOdKmrdIScuVpmqlAiVyhFOSwRWaGqKcu8FHgn8KiZ7Qy+93vAJgB3vxG4BnivmRWADHCtu6+oPeZGJoNwD8oy3cF69/GpAmsSqcjGJSIr06Lh7u53A7bIMR8HPh7WoE5FlaZhlbJMVxDyY9k8azoV7iLSWvqEakgqNffjq2XKX1V3F5EoKNxDMpKZVZZJK9xFJDoK95BULqhWZuzdQchrrbuIREHhHpLRTIGudIJEvPySdk2XZbTWXURaT+EektFsfrojJJy4WkZEpNUU7iGZ2RESyuvcQTV3EYmGwj0ko7PCvS0ZJxWPKdxFJBIK95CMZgvTK2Uqyp0hVXMXkdZTuIekPHM/8TNh6ukuIlFRuIdkNJOf/nRqhfZRFZGoKNxDUCw5Y1Mnl2W62xKMK9xFJAIK9xCMzeoIWdGVTk5/uElEpJUU7iEYzZRn5zPXuVceq+YuIlFQuIegMjufXXPv1oYdIhIRhXsIjneEPHkp5PhUgRXW2l5ElgCFewhmd4Ss6G5LUiw5mXwximGJyAqmcA/BdFmm4+SlkIBWzIhIyyncQzDfBdVK87BRhbuItJjCPQQjmTwxg87U3OGuFTMi0moK9xCMZstNw2KxE7ea7Z6xj6qISCsp3EMwmsmfdDEVVHMXkego3EMwmi2c1DQMtEm2iERH4R6CkXlm7t3poCyjmruItJjCPQRzdYQE7aMqItFRuIegvH/qyeEejxkdqbhq7iLScgr3EIzMsVFHhfrLiEgUFO4NmioUyeZLc5ZloLxiRuvcRaTVFg13M9toZt83syfM7HEz++Acx5iZfczM9pjZI2Z2cXOGu/RUZuWzm4ZVdLepp7uItN7ctYQTFYDfdPcHzawbeMDMbnf3XTOOeR1wdnC7HPhE8HXZm69pWIX2URWRKCw6c3f3A+7+YHB/DHgCWD/rsKuBz3rZvcAqM1sX+miXoOPtflVzF5Glo6aau5ltAS4C7pv11Hpg74zHg5z8BrAsVZqCLVhzV7iLSItVHe5m1gV8DfiQu4/OfnqOHzlphwozu97MdpjZjsOHD9c20iVqdNGyTFLr3EWk5aoKdzNLUg72L7j71+c4ZBDYOOPxBmD/7IPc/SZ33+bu2/r7++sZ75IzMs8uTBVd6QQTuSLFknZjEpHWqWa1jAGfBJ5w97+c57BbgF8MVs1cAYy4+4EQx7lkzbd/aoXa/opIFKpZLfNS4J3Ao2a2M/je7wGbANz9RuBW4PXAHmAS+KXwh7o0jWYKpOIx0om53ydnhvt8bwAiImFbNNzd/W7mrqnPPMaB94U1qFNJ5dOp5T9wTnZiT/f2Fo5MRFYyfUK1QZWNOuajnu4iEgWFe4Pm26ijQj3dRSQKCvcGlTfqqCLcdUFVRFpI4d6g8sx9/ksX2kdVRKKgcG/QfBt1VKjmLiJRULg3wN0XvaDakYoTM9XcRaS1FO4NyOSL5Iu+4AVVM1NPdxFpOYV7A0YzCzcNq1BPdxFpNYV7AyqBPV+734ruNnWGFJHWUrg3YLGOkBXq6S4iraZwb0ClI+RiZRnV3EWk1RTuDThellm85q517iLSSgr3BlQuqC70ISaALu2jKiItpnBvwGIbdVR0tyWmt+MTEWkFhXsDRjN5OlJxkvGFX8budIJcocRUodiikYnISqdwb8BoduGOkBWV/jJaDikiraJwb0Blo47FTPeXUd1dRFpE4d6A0Ux1W+epp7uItJrCvQHVlmW6FO4i0mIK9wYs1hGyokc93UWkxRTuDRiZXHijjgrV3EWk1RTudSqVnLEp1dxFZGlSuNdpPFfAffEPMMHxmrtm7iLSKgr3Oo1MVtcREiCdiJNKxNTTXURaRuFep2qbhlV0p9XTXURaR+Fep+mmYVV8iAnU011EWkvhXqfpmXsVZRlQZ0gRaa1Fw93MPmVmh8zssXmev9LMRsxsZ3D7SPjDXHqq3aijojutnu4i0jrVzNw/DVy1yDE/dPcLg9sNjQ9r6Rutst1vRZfKMiLSQouGu7vfBRxtwVhOKaPZAmblC6XVUM1dRFoprJr7i83sYTP7tpmdF9I5l7TRTJ6udIJYzKo6vlv7qIpIC1U37VzYg8Bmdx83s9cD3wTOnutAM7seuB5g06ZNIfzq6Ixm8lXX26Hc0318qoC7Y1bdG4KISL0anrm7+6i7jwf3bwWSZtY3z7E3ufs2d9/W39/f6K+OVLUdISu62xIUS85kTrsxiUjzNRzuZnaGBVNRM7ssOOdQo+dd6kYzharXuINaEIhIay2aTmb2JeBKoM/MBoGPAkkAd78RuAZ4r5kVgAxwrbt700a8RIxk8mzp66j6+O4ZbX9P72lr1rBERIAqwt3dr1vk+Y8DHw9tRKeImssyaXWGFJHWCeOC6inhi/c9G+r5hiZy7B/OnHTet10+94Vitf0VkVZS+4E6FEtOrlCiPRWv+mdUcxeRVlK41yGbL694aUtWH+7d2mpPRFpI4V6HSri31xDuXaq5i0gLKdzrkKlj5q5wF5FWUrjXIVPHzD0eMzpTcdXcRaQlFO51yOZLALTVcEEVynV31dxFpBUU7nXI5mqfuYM27BCR1lG416Gesgyo7a+ItI7CvQ6ZfJGYQTJeW3fHrrTCXURaQ+Feh2y+SFsyXnPr3h7V3EWkRRTudcjkizWXZKA8c1fNXURaQeFeh2y+WFPrgQrV3EWkVRTudcjkijV9gKmiqy3BZK5IsbTsOyKLSMQU7nXI5kt1hXulv8y4Zu8i0mQK9zrUW3Of7uk+pYuqItJcCvc6ZPNF2pO1v3Tq6S4iraJwr1G+WKJQ8rpr7qCe7iLSfAr3Gk1/OrWu1TLq6S4iraFwr1Glr0xdM3e1/RWRFlG416iejToqelRzF5EWUbjXqJ6NOipUcxeRVlG41ygT9HKvZ+benowTj5lq7iLSdAr3Gh3fHLv2l87Myv1lVJYRkSZTuNeokZo7qL+MiLSGwr1GmVyRZNxIxOt76brSCcZUcxeRJlO41yiTr69pWIV6uotIKywa7mb2KTM7ZGaPzfO8mdnHzGyPmT1iZheHP8ylI9tguGsfVRFphWpm7p8Grlrg+dcBZwe364FPND6spavepmEVqrmLSCssGu7ufhdwdIFDrgY+62X3AqvMbF1YA1xqsvlSQ+Gu1TIi0gph1NzXA3tnPB4MvncSM7vezHaY2Y7Dhw+H8Ktbr1xzr/9l625LauYuIk0XRrjPtUv0nFsNuftN7r7N3bf19/eH8Ktbr9Gae3dbglyxxFShGOKoREROFEa4DwIbZzzeAOwP4bxLjrvXvX9qhXq6i0grhBHutwC/GKyauQIYcfcDIZx3yckVSpS8/g8wwfHOkKq7i0gzJRY7wMy+BFwJ9JnZIPBRIAng7jcCtwKvB/YAk8AvNWuwUWukaVjF8Z7uCncRaZ5Fw93dr1vkeQfeF9qIlrBMFa0Hvnjfswue48eHxwH45s59PLpvpO6xvO3yTXX/rIgsf/qEag2yQUfIRmbulZ+dyuuCqog0j8K9Bo02DQNIJ8ovebZQCmVMIiJzUbjXoJH9UysqM/esZu4i0kQK9xpkcvX3cq9IBz87pZm7iDSRwr0Gldl2OlH/zD0Ri5GImWbuItJUCvcaZPNF0okY8dhcH8qtXjoZZyqvmbuINI/CvQaNdoSsaEvEyKr9gIg0kcK9Bpl8qaFlkBVtmrmLSJMp3GvQaNOwinQyppq7iDSVwr0GmVxjTcMq2hJxrZYRkaZSuNcgmy/S3sAyyIo2zdxFpMkU7jVodHPsinQirguqItJUCvcqldyZKoR1QTXGVL5EueeaiEj4FO5VCqOvTEU6EceBXFF1dxFpDoV7lSodIUNZ5z7dX0bhLiLNoXCvUhgbdVRUetOo7a+INIvCvUqVpmFhLIWs9KZR218RaRaFe5Wy+cY7QlZo5i4izaZwr1KoF1STmrmLSHMp3KtUzf6p1WpLaOYuIs2lcK/SobEp2pNxUokwyjLajUlEmkvhXqWBIxNs6evErLFe7sD0G4TKMiLSLAr3Koxm8wxN5NiytiOU88XMSCdiKsuISNMo3KswcGQCgK19naGdsy0Z18xdRJpG4V6FgaEJUvEY63rbQztnOqHOkCLSPAr3KgwcmWTz2o6G906dqS2pnu4i0jxVhbuZXWVmT5rZHjP73Tmef7eZHTazncHtPeEPNRqTuQLPjWbZvDa8kgxo5i4izZVY7AAziwN/C7waGAS2m9kt7r5r1qFfdvf3N2GMkXpmaBIn3Ho7lGfuw5P5UM8pIlJRzcz9MmCPu//Y3XPAzcDVzR3W0jFwZIJ4zNiwOrx6OwQzd23YISJNUk24rwf2zng8GHxvtl8ws0fM7KtmtjGU0S0BPxmaYMPqdpLxcC9PtCXjTKnlr4g0STWJNddVxNlbCP0TsMXdXwj8C/CZOU9kdr2Z7TCzHYcPH65tpBGYKhTZP5xha8j1doB0MkauWKJY0m5MIhK+asJ9EJg5E98A7J95gLsPuftU8PDvgUvmOpG73+Tu29x9W39/fz3jbam9RzOUHLaEXG8HaAva/ua0YkZEmqCacN8OnG1mW80sBVwL3DLzADNbN+Phm4AnwhtidH5yZAIDNq8J55OpM1Xa/mrFjIg0w6KrZdy9YGbvB24D4sCn3P1xM7sB2OHutwAfMLM3AQXgKPDuJo65ZQaGJjhzVft0i94wHd+wQ+EuIuFbNNwB3P1W4NZZ3/vIjPsfBj4c7tCiVSiW2Ht0ksu3rmnK+bWPqog0kz6hOo99wxkKJQ99fXvF9G5MmrmLSBMo3Ofxk6BZWNifTK2YLsto5i4iTaBwn8fA0ASndafpTFdVuaqZZu4i0kzNSa5TXMmdZ4YmedHGVU37HTNn7u5OvuhM5gpM5opk8kUmc0UmcwUyufL9jWs6uGB9b9PGIyLLi8J9DgdGskwVSmxpUkkGIBk3YgZ37H6O7z3xHIUFPswUM0gMxDjntK6mrNwRkeVH4T6HyuYcYe28NBcz49XnnsHQ+BQdqTjtqUT5azJORzpORzJ4nIpzYCTLjT94mkcGR7i0Sat3RGR5UbjPYWBogtUdSVZ1pJr6e372nOo+pbtxdTtn9LRx/8BRhbuIVEUXVGdxd35yZKJpSyDrYWZcumU1+4Yz7BvORD0cETkFKNxnOTw2xWSu2NR6ez0u3LiaRMzYPnA06qGIyClA4T7LwNAk0JxmYY1oT8V54YZeHt47rOWTIrIohfssA0MTdKcTrO1sbr29HpdtWcNUocQjgyNRD0VEljiF+yw/OTLB5r5OzMLbDDssG9d0cHpPWqUZEVmUwn2GY5M5RjJ5tjZxCWQjyhdW1zB4LMNj+zR7F5H5KdxnmF7fvsTq7TNdFFxYvXn7s1EPRUSWMIX7DD85MkFbMsbpPW1RD2Ve7ak4F6zv5ZsP7WcyV4h6OCKyRCncZxgYmmDL2k5iS7DePtNlW9cwPlXgWw8fqPsch8emcNf+rSLLlcI9MJbNc2Q8t+TWt89l05oOzj6tiy/eX19p5p8fOcClf/Iv/O/bnwp5ZCKyVCjcA5X17Uvpk6nzMTOuu2wTO/cOs2v/aE0/+/ThcX7nqw/TnozzsTv2cNvjB5s0ShGJksI9MHBkgmTcOHNVe9RDqcrPX7yeVCJW04XVyVyB937+AdLJON/+4Mt54YZefvMfH2bPofEmjlREoqBwDwwMTbBpTQfx2NKut1es6kjxhgvW8Y0H95HJLf6JVXfnD77xGD86NM5fX3shW/o6+cQ7LiGViPFrn9vBWDbfglGLSKso3IFMrsjBkeySXgI5l+su28TYVIFvPbJ/0WO/eP+zfP2hfXzoVefw8rPL3SjXr2rn42+7iIGhSX7rKw9TWqCnvIicWhTuwDNHJ3Bg6ylwMXWmS7es5nn9nYteWH10cIQ/vGUXP3NOP7/xyp864bmXPK+PD7/uBdz2+HN84gdP1z2WYsnJ5tXzRmSpUD93yvX2uBkb1yzNT6bO5Yv3lQP9+Wf0cOujB/iL7z7Jut6TrxdM5gr87ff30J6K8/Kf6uPm7XtPOqY9GedFG3r5X7c9yeGxKc45vXv6ubddvmnRsezcO8xvf+Vhjk3m+cQ7LubSLeo5LxI1zdwpr5RZv7qdZPzUezku3riKeMzYPnDspOdK7nz1gUFGMwXedtmmeTf7NjPefNEGTu9p4+btzzI0PlXV787mi/z5d3bz83/3/xmfKtCVjnPdTffy+Xuf0Rp6kYidemkWslyhxOCxyVNiCeRcOtIJzj+zh517j5ErlE547q6nDrP74Bivv+CMRf8qSSVivOOKzRjGF+579qRzzbZz7zD/7m/u5hN3Ps01l2zgtv/0M/y/97+Ml53dxx988zF+7xuPqjWxSIRWfLjvPTZJyZu7X2qzXbp1Ddl86YRmYk8fHuf2Xc/xwg29XHHW2qrOs6YzxVsv3chzo1m+/tDgnLPv2bP1T//SpfyPa15ET1uS3vYkn3zXpbzvFc/jS/fv5bqb7uXQaLau/yZ3Z8+hcb1BiNRpxdfcB45MYMDmU+xi6kxb13bS15Xi/oGjXLx5NaOZPDdv30tfV5o3X7S+pvbF55zezavPPZ3v7nqODavaefsVm6efq9TWf3RonLdu28jvv/Gn6WlLnvDz8Zjx2699Aeeu6+W3vvIwb/ybu7nxnZdw8abVVf3+TK7IN3fu4zP/OsDug2Os7Uzxtss38fbLN3NG79Lt+SOy1FQV7mZ2FfDXQBz4B3f/s1nPp4HPApcAQ8Bb3X0g3KGGZzJXYPfBMXbtH+Wp58Y4c1U7bcl41MOqW6UV8LcfO8j+4Qz/9Mh+coUi73nZVtKJ2v+7fvacfvYNZ/jO4wf5o2/tYtOaDu7YfYi7njpMT3uSd79kC+ec3r1ob5v3vHwrn7/3Gd5y4z1c/aIz2bbAhdaXn93H5+59hi9v38tIJs+563r4gzf8NPf++Cgf//4ePnHn07z2/DN490u2sG3z6presA6OZLnzyUPcsfsQw5N5XnZ2H698wWmcu66H2CnyuQaRWtliF77MLA48BbwaGAS2A9e5+64Zx/xH4IXu/utmdi3wZnd/60Ln3bZtm+/YsaPR8VftxjufZteBUXbtH+XHR8YpOfS2Jzl3XQ8ved5a1nalWzaWZpiYKvBn39lNezLO+FSB/7BtIxduXFX3+abyRf7uB08zMVWgK53g0NgU2zav5vUXrKvpjXAyV+Dm7XvZc2icK85awxsuOHP6g2LuztOHJ7jnx0M8eXAUM+Oq887g3S89McCfHZrkc/cO8OXtexnNFjjvzB7e9ZItvOlFZ845lmLJeejZY3z/yUPcsfswTxwot2hY19tGX1eaR4PyVX93mivP6eeVLziNl53dR/esv0LmcnQix6P7Rnhs3wiPDo7w1HNj9HenOX99Lxes7+X89b2c1ddZ95tGNl9kMldkdUdySW4YI9Ezswfcfduix1UR7i8G/pu7vzZ4/GEAd//TGcfcFhxzj5klgINAvy9w8laE+8CRCW57/CDfefwgDz07DEBfV4rzzuzlvDN7WL+qfVn9D3Tz9md5ZHCEy7eu4eoL1zd8vsNjU/zdnXtoS8Z580XrT1giWYtiyfnu4wf54Z4jbFnbwTWXbORHh8a45+khDo1N0ZGKc9mWNVx+1lp62+cP2FyhxEN7j53wc5duWcPlW9eQjMf40aExdh8c40fPjZPJF4lZucna88/o4fmnd3N6T5q3X7GZw2NT3PXUYe54svzXyFi2QCJW/uvnFS8oh/3z+rs4Mp7jsf0jPDY4Mh3o+0eOX0PYvLaDF5zRzXOjUzxxYJSp4CJ0Zype/je2vocLgtA/q7+LeMwYy+YZPJZh37EM+4bLt8Fjk9OPj4znAGhLxli/qp31qztYv6qdDavLt/L9Dk7rTk+/gWTzRYYmchwdz3FkYoqh8RxD41McnchxZDzHsckcbckYazvTrO1KsbYzxdquNGs6U/R1pVjbmaa3PXnCG1KuUGIkk5++jWbzjFYeT+bJFUt0tyXobU9OX2/paT/+tTudOOF8U4UiRydy5bFN5DgajPPoRPk2NJEjnYixtjPFms40a7pS9HWmWNOZCsZ88hiz+SIjmTzDk3mGJ3MMB2MbzuQYnsyTyRfpaUuyqiO4tafo7Uiyqj3Jqo4UPW0JErNWyLk72XyJiVyByali+WuuyGSuwMRUkUTM6EjF6Ugn6Jz5NZUglZj7Eqa7M1UokckVyeSDW3A/XyiRTsZpT8ZpT8XpSMVpCx4n4zZnPoUZ7tcAV7n7e4LH7wQud/f3zzjmseCYweDx08ExR+Y7bzPD/dhEjuv+/l52HxwD4Pz1PazrbefcdT2c1p1eVoE+09GJHA88c4xXPL//pH+09RrL5kkn4vP+w63Fzr3DfOOhQfLF8r+5M1e18eKz+njhht6alqG6Oz8+MsE9Tw9Nz8oBnHKwnnN6N88/o5uzT+umPbXwXxnFkvPs0UmePDjGU8+NcTC4AJxOxKbDGmBtZ4r1QbieuaqdM3vbTzh3seQcGsuyfzjLvuEMuUKRXQdGyebL56j8zzqaPbEHfyoRY8Oq9ulzb1jdTkcqwf7hmeGf4ehE7oSfS8aNvq40Y9kC41Nz9/VPJWL0daZY3ZmafgMYnpy7zUQ8ZqzuSBGPwUgmPz3u+ZjBQtERM+huS9KVTjCayTM2zxgTMWN1Z4o1HSlyxRJD41MnvUYnjjFJIhZjOJNbcIyJmNEW/BW7kO62BD1tSXLFEpNTBSbzxQX/uxZSCf7OdIKYGdn88TCv55zxmE2HfuXf43i2wO4/fl1V4V5NzX2uJJw91GqOwcyuB64PHk4FbwpN90wrfklj+oB53whr9emwTtRkzwD3nPzthl+LXYsfUrNngAebcF6AH83/1IKvxZ7Gzn2qCfX/kVPc86s5qJpwHwQ2zni8AZjdzKRyzGBQlukFTtrF2d1vAm4CMLMd1bz7rAR6LY7Ta3GcXovj9FocZ2ZVlTyq+Vt4O3C2mW01sxRwLXDLrGNuAd4V3L8GuGOheruIiDTXojN3dy+Y2fuB2ygvhfyUuz9uZjcAO9z9FuCTwOfMbA/lGfu1zRy0iIgsrKp17u5+K3DrrO99ZMb9LPCWGn/3TTUev5zptThOr8Vxei2O02txXFWvxaKrZURE5NSz4nvLiIgsR5GEu5ldZWZPmtkeM/vdKMawFJjZp8zsUKuWhC5lZrbRzL5vZk+Y2eNm9sGoxxQVM2szs/vN7OHgtfjDqMcUJTOLm9lDZvatqMcSNTMbMLNHzWznYqtmWl6WqaadwUphZj8DjAOfdffzox5PlMxsHbDO3R80s27gAeDfr9Czg9xRAAAFYUlEQVR/FwZ0uvu4mSWBu4EPuvu9EQ8tEmb2n4FtQI+7vzHq8UTJzAaAbQt9QLQiipn7ZcAed/+xu+eAm4GrIxhH5Nz9Lub4PMBK5O4H3P3B4P4Y8ATQeA+FU5CXjQcPk8FtRV4cM7MNwBuAf4h6LKeaKMJ9PTBzr7dBVuj/xDI3M9sCXATcF+1IohOUInYCh4Db3X2lvhZ/BfwOsHA/hJXDge+a2QPBJ/7nFUW4V9WqQFYmM+sCvgZ8yN1HFzt+uXL3ortfSPkT4ZeZ2Yor25nZG4FD7v5A1GNZQl7q7hcDrwPeF5R25xRFuFfTzkBWoKC+/DXgC+7+9ajHsxS4+zBwJ3BVxEOJwkuBNwV15puBV5rZ56MdUrTcfX/w9RDwDcpl7jlFEe7VtDOQFSa4iPhJ4Al3/8uoxxMlM+s3s1XB/Xbg54Dd0Y6q9dz9w+6+wd23UM6JO9z9HREPKzJm1hksNsDMOoHXAPOutGt5uLt7Aai0M3gC+Ed3f7zV41gKzOxLlBsjPt/MBs3sV6IeU4ReCryT8uxsZ3B7fdSDisg64Ptm9gjlydDt7r7ilwEKpwN3m9nDwP3AP7v7d+Y7WJ9QFRFZhvQJVRGRZUjhLiKyDCncRUSWIYW7iMgypHAXEVmGFO4iIsuQwl1CYWYfCNr1fiHqscxmZjeY2c818fz/OuP+d8xsWO1pJWpa5y6hMLPdwOvc/SdVHJsIPsxWeRx392JTBzj3OEL/vWb2KqAD+LWV3p5WoqWZuzTMzG4EzgJuMbPfDzYh2R5ssHB1cMy7zewrZvZPlLvaXRlszvFF4NEFzv3NoAPe4zO74JnZuJn9hZk9aGbfM7P+Bc7xaTO7Jrg/YGYfMbO7gbeY2a8GY33YzL5mZh3Bcaeb2TeC7z9sZi9Z4PyV9ry4+/eAsSpftwEz++9mdo+Z7TCzi83sNjN72sx+fcZxvx2M8ZGZG3cs8tr8STDue83s9GrGI8uLwl0a5u6/Trn52yuATso9QC4NHv/PoA8GwIuBd7n7K4PHlwG/7+7nLnD6X3b3Syhv1vABM1sbfL8TeDDokPcD4KM1DDnr7i9z95uBr7v7pe7+IsrtMCotID4G/CD4/sVAs1pk7HX3FwM/BD4NXANcAdwAYGavAc6m/FpdCFwyoxPgQq/NvcHY7wJ+tUljlyUsEfUAZNl5DeVOfr8VPG4DNgX3b3f3mZuT3F9FGecDZvbm4P5GykE3RLm/95eD738eqKWL5Jdn3D/fzP4YWAV0Ue55BPBK4Beh3H4XGKnh/LWoNM17FOgKNioZM7Ns0DzsNcHtoeC4LsqvwV3M/9rkgErN/wHKu57JCqNwl7AZ8Avu/uQJ3zS7HJiYdezsxyeeyOxKyh0RX+zuk2Z2J+U3i7nUcvFo5u/9NOXt/B42s3cDV9ZwnjBMBV9LM+5XHicov55/6u7/Z+YPLfLa5P34xbQi+v98RVJZRsJ2G/AbQQtfzOyiBs7VCxwLwusFlMsVFTHKJQyAt1HeZ7Qe3cCBoJf822d8/3vAe2F6V6SeOs/fqNuAXw42McHM1pvZaSz82ogo3CV0f0R5z89HzOyx4HG9vgMkgta3fwTM3CB6AjjPzB6gXEK5oc7f8V8pb+d3Oyf2TP8g8Aoze5RyaeO8ak5mZj8EvgK8Kmjj/No6xwWAu38X+CJwTzCWr1J+Q1rotRHRUkg5NZnZuLt3RT0OkaVKM3cRkWVIM3eJXLCE73tzPPUqdx+q4Tx/S3lHp5n+2t3/byPjC85d9xjN7BvA1lnf/i/ufttcx4uEQeEuIrIMqSwjIrIMKdxFRJYhhbuIyDKkcBcRWYYU7iIiy9C/AQ3GDFJQ929kAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "depth_hist_plot = sns.distplot(depths[\"ferr_ap_irac_i1_mean\"][~np.isnan(depths[\"ferr_ap_irac_i1_mean\"])])\n", "depth_hist_plot.set_xlim(0,5.)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "bins = np.linspace(0.,2.,1000)\n", "depth_histogram = np.histogram(depths[\"ferr_ap_irac_i1_mean\"][~np.isnan(depths[\"ferr_ap_irac_i1_mean\"])], bins)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "19.785714285714285" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.max(depths[\"ferr_ap_irac_i1_mean\"][~np.isnan(depths[\"ferr_ap_irac_i1_mean\"])])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0. , 0.002002 , 0.004004 , 0.00600601, 0.00800801,\n", " 0.01001001, 0.01201201, 0.01401401, 0.01601602, 0.01801802,\n", " 0.02002002, 0.02202202, 0.02402402, 0.02602603, 0.02802803,\n", " 0.03003003, 0.03203203, 0.03403403, 0.03603604, 0.03803804,\n", " 0.04004004, 0.04204204, 0.04404404, 0.04604605, 0.04804805,\n", " 0.05005005, 0.05205205, 0.05405405, 0.05605606, 0.05805806,\n", " 0.06006006, 0.06206206, 0.06406406, 0.06606607, 0.06806807,\n", " 0.07007007, 0.07207207, 0.07407407, 0.07607608, 0.07807808,\n", " 0.08008008, 0.08208208, 0.08408408, 0.08608609, 0.08808809,\n", " 0.09009009, 0.09209209, 0.09409409, 0.0960961 , 0.0980981 ,\n", " 0.1001001 , 0.1021021 , 0.1041041 , 0.10610611, 0.10810811,\n", " 0.11011011, 0.11211211, 0.11411411, 0.11611612, 0.11811812,\n", " 0.12012012, 0.12212212, 0.12412412, 0.12612613, 0.12812813,\n", " 0.13013013, 0.13213213, 0.13413413, 0.13613614, 0.13813814,\n", " 0.14014014, 0.14214214, 0.14414414, 0.14614615, 0.14814815,\n", " 0.15015015, 0.15215215, 0.15415415, 0.15615616, 0.15815816,\n", " 0.16016016, 0.16216216, 0.16416416, 0.16616617, 0.16816817,\n", " 0.17017017, 0.17217217, 0.17417417, 0.17617618, 0.17817818,\n", " 0.18018018, 0.18218218, 0.18418418, 0.18618619, 0.18818819,\n", " 0.19019019, 0.19219219, 0.19419419, 0.1961962 , 0.1981982 ,\n", " 0.2002002 , 0.2022022 , 0.2042042 , 0.20620621, 0.20820821,\n", " 0.21021021, 0.21221221, 0.21421421, 0.21621622, 0.21821822,\n", " 0.22022022, 0.22222222, 0.22422422, 0.22622623, 0.22822823,\n", " 0.23023023, 0.23223223, 0.23423423, 0.23623624, 0.23823824,\n", " 0.24024024, 0.24224224, 0.24424424, 0.24624625, 0.24824825,\n", " 0.25025025, 0.25225225, 0.25425425, 0.25625626, 0.25825826,\n", " 0.26026026, 0.26226226, 0.26426426, 0.26626627, 0.26826827,\n", " 0.27027027, 0.27227227, 0.27427427, 0.27627628, 0.27827828,\n", " 0.28028028, 0.28228228, 0.28428428, 0.28628629, 0.28828829,\n", " 0.29029029, 0.29229229, 0.29429429, 0.2962963 , 0.2982983 ,\n", " 0.3003003 , 0.3023023 , 0.3043043 , 0.30630631, 0.30830831,\n", " 0.31031031, 0.31231231, 0.31431431, 0.31631632, 0.31831832,\n", " 0.32032032, 0.32232232, 0.32432432, 0.32632633, 0.32832833,\n", " 0.33033033, 0.33233233, 0.33433433, 0.33633634, 0.33833834,\n", " 0.34034034, 0.34234234, 0.34434434, 0.34634635, 0.34834835,\n", " 0.35035035, 0.35235235, 0.35435435, 0.35635636, 0.35835836,\n", " 0.36036036, 0.36236236, 0.36436436, 0.36636637, 0.36836837,\n", " 0.37037037, 0.37237237, 0.37437437, 0.37637638, 0.37837838,\n", " 0.38038038, 0.38238238, 0.38438438, 0.38638639, 0.38838839,\n", " 0.39039039, 0.39239239, 0.39439439, 0.3963964 , 0.3983984 ,\n", " 0.4004004 , 0.4024024 , 0.4044044 , 0.40640641, 0.40840841,\n", " 0.41041041, 0.41241241, 0.41441441, 0.41641642, 0.41841842,\n", " 0.42042042, 0.42242242, 0.42442442, 0.42642643, 0.42842843,\n", " 0.43043043, 0.43243243, 0.43443443, 0.43643644, 0.43843844,\n", " 0.44044044, 0.44244244, 0.44444444, 0.44644645, 0.44844845,\n", " 0.45045045, 0.45245245, 0.45445445, 0.45645646, 0.45845846,\n", " 0.46046046, 0.46246246, 0.46446446, 0.46646647, 0.46846847,\n", " 0.47047047, 0.47247247, 0.47447447, 0.47647648, 0.47847848,\n", " 0.48048048, 0.48248248, 0.48448448, 0.48648649, 0.48848849,\n", " 0.49049049, 0.49249249, 0.49449449, 0.4964965 , 0.4984985 ,\n", " 0.5005005 , 0.5025025 , 0.5045045 , 0.50650651, 0.50850851,\n", " 0.51051051, 0.51251251, 0.51451451, 0.51651652, 0.51851852,\n", " 0.52052052, 0.52252252, 0.52452452, 0.52652653, 0.52852853,\n", " 0.53053053, 0.53253253, 0.53453453, 0.53653654, 0.53853854,\n", " 0.54054054, 0.54254254, 0.54454454, 0.54654655, 0.54854855,\n", " 0.55055055, 0.55255255, 0.55455455, 0.55655656, 0.55855856,\n", " 0.56056056, 0.56256256, 0.56456456, 0.56656657, 0.56856857,\n", " 0.57057057, 0.57257257, 0.57457457, 0.57657658, 0.57857858,\n", " 0.58058058, 0.58258258, 0.58458458, 0.58658659, 0.58858859,\n", " 0.59059059, 0.59259259, 0.59459459, 0.5965966 , 0.5985986 ,\n", " 0.6006006 , 0.6026026 , 0.6046046 , 0.60660661, 0.60860861,\n", " 0.61061061, 0.61261261, 0.61461461, 0.61661662, 0.61861862,\n", " 0.62062062, 0.62262262, 0.62462462, 0.62662663, 0.62862863,\n", " 0.63063063, 0.63263263, 0.63463463, 0.63663664, 0.63863864,\n", " 0.64064064, 0.64264264, 0.64464464, 0.64664665, 0.64864865,\n", " 0.65065065, 0.65265265, 0.65465465, 0.65665666, 0.65865866,\n", " 0.66066066, 0.66266266, 0.66466466, 0.66666667, 0.66866867,\n", " 0.67067067, 0.67267267, 0.67467467, 0.67667668, 0.67867868,\n", " 0.68068068, 0.68268268, 0.68468468, 0.68668669, 0.68868869,\n", " 0.69069069, 0.69269269, 0.69469469, 0.6966967 , 0.6986987 ,\n", " 0.7007007 , 0.7027027 , 0.7047047 , 0.70670671, 0.70870871,\n", " 0.71071071, 0.71271271, 0.71471471, 0.71671672, 0.71871872,\n", " 0.72072072, 0.72272272, 0.72472472, 0.72672673, 0.72872873,\n", " 0.73073073, 0.73273273, 0.73473473, 0.73673674, 0.73873874,\n", " 0.74074074, 0.74274274, 0.74474474, 0.74674675, 0.74874875,\n", " 0.75075075, 0.75275275, 0.75475475, 0.75675676, 0.75875876,\n", " 0.76076076, 0.76276276, 0.76476476, 0.76676677, 0.76876877,\n", " 0.77077077, 0.77277277, 0.77477477, 0.77677678, 0.77877878,\n", " 0.78078078, 0.78278278, 0.78478478, 0.78678679, 0.78878879,\n", " 0.79079079, 0.79279279, 0.79479479, 0.7967968 , 0.7987988 ,\n", " 0.8008008 , 0.8028028 , 0.8048048 , 0.80680681, 0.80880881,\n", " 0.81081081, 0.81281281, 0.81481481, 0.81681682, 0.81881882,\n", " 0.82082082, 0.82282282, 0.82482482, 0.82682683, 0.82882883,\n", " 0.83083083, 0.83283283, 0.83483483, 0.83683684, 0.83883884,\n", " 0.84084084, 0.84284284, 0.84484484, 0.84684685, 0.84884885,\n", " 0.85085085, 0.85285285, 0.85485485, 0.85685686, 0.85885886,\n", " 0.86086086, 0.86286286, 0.86486486, 0.86686687, 0.86886887,\n", " 0.87087087, 0.87287287, 0.87487487, 0.87687688, 0.87887888,\n", " 0.88088088, 0.88288288, 0.88488488, 0.88688689, 0.88888889,\n", " 0.89089089, 0.89289289, 0.89489489, 0.8968969 , 0.8988989 ,\n", " 0.9009009 , 0.9029029 , 0.9049049 , 0.90690691, 0.90890891,\n", " 0.91091091, 0.91291291, 0.91491491, 0.91691692, 0.91891892,\n", " 0.92092092, 0.92292292, 0.92492492, 0.92692693, 0.92892893,\n", " 0.93093093, 0.93293293, 0.93493493, 0.93693694, 0.93893894,\n", " 0.94094094, 0.94294294, 0.94494494, 0.94694695, 0.94894895,\n", " 0.95095095, 0.95295295, 0.95495495, 0.95695696, 0.95895896,\n", " 0.96096096, 0.96296296, 0.96496496, 0.96696697, 0.96896897,\n", " 0.97097097, 0.97297297, 0.97497497, 0.97697698, 0.97897898,\n", " 0.98098098, 0.98298298, 0.98498498, 0.98698699, 0.98898899,\n", " 0.99099099, 0.99299299, 0.99499499, 0.996997 , 0.998999 ,\n", " 1.001001 , 1.003003 , 1.00500501, 1.00700701, 1.00900901,\n", " 1.01101101, 1.01301301, 1.01501502, 1.01701702, 1.01901902,\n", " 1.02102102, 1.02302302, 1.02502503, 1.02702703, 1.02902903,\n", " 1.03103103, 1.03303303, 1.03503504, 1.03703704, 1.03903904,\n", " 1.04104104, 1.04304304, 1.04504505, 1.04704705, 1.04904905,\n", " 1.05105105, 1.05305305, 1.05505506, 1.05705706, 1.05905906,\n", " 1.06106106, 1.06306306, 1.06506507, 1.06706707, 1.06906907,\n", " 1.07107107, 1.07307307, 1.07507508, 1.07707708, 1.07907908,\n", " 1.08108108, 1.08308308, 1.08508509, 1.08708709, 1.08908909,\n", " 1.09109109, 1.09309309, 1.0950951 , 1.0970971 , 1.0990991 ,\n", " 1.1011011 , 1.1031031 , 1.10510511, 1.10710711, 1.10910911,\n", " 1.11111111, 1.11311311, 1.11511512, 1.11711712, 1.11911912,\n", " 1.12112112, 1.12312312, 1.12512513, 1.12712713, 1.12912913,\n", " 1.13113113, 1.13313313, 1.13513514, 1.13713714, 1.13913914,\n", " 1.14114114, 1.14314314, 1.14514515, 1.14714715, 1.14914915,\n", " 1.15115115, 1.15315315, 1.15515516, 1.15715716, 1.15915916,\n", " 1.16116116, 1.16316316, 1.16516517, 1.16716717, 1.16916917,\n", " 1.17117117, 1.17317317, 1.17517518, 1.17717718, 1.17917918,\n", " 1.18118118, 1.18318318, 1.18518519, 1.18718719, 1.18918919,\n", " 1.19119119, 1.19319319, 1.1951952 , 1.1971972 , 1.1991992 ,\n", " 1.2012012 , 1.2032032 , 1.20520521, 1.20720721, 1.20920921,\n", " 1.21121121, 1.21321321, 1.21521522, 1.21721722, 1.21921922,\n", " 1.22122122, 1.22322322, 1.22522523, 1.22722723, 1.22922923,\n", " 1.23123123, 1.23323323, 1.23523524, 1.23723724, 1.23923924,\n", " 1.24124124, 1.24324324, 1.24524525, 1.24724725, 1.24924925,\n", " 1.25125125, 1.25325325, 1.25525526, 1.25725726, 1.25925926,\n", " 1.26126126, 1.26326326, 1.26526527, 1.26726727, 1.26926927,\n", " 1.27127127, 1.27327327, 1.27527528, 1.27727728, 1.27927928,\n", " 1.28128128, 1.28328328, 1.28528529, 1.28728729, 1.28928929,\n", " 1.29129129, 1.29329329, 1.2952953 , 1.2972973 , 1.2992993 ,\n", " 1.3013013 , 1.3033033 , 1.30530531, 1.30730731, 1.30930931,\n", " 1.31131131, 1.31331331, 1.31531532, 1.31731732, 1.31931932,\n", " 1.32132132, 1.32332332, 1.32532533, 1.32732733, 1.32932933,\n", " 1.33133133, 1.33333333, 1.33533534, 1.33733734, 1.33933934,\n", " 1.34134134, 1.34334334, 1.34534535, 1.34734735, 1.34934935,\n", " 1.35135135, 1.35335335, 1.35535536, 1.35735736, 1.35935936,\n", " 1.36136136, 1.36336336, 1.36536537, 1.36736737, 1.36936937,\n", " 1.37137137, 1.37337337, 1.37537538, 1.37737738, 1.37937938,\n", " 1.38138138, 1.38338338, 1.38538539, 1.38738739, 1.38938939,\n", " 1.39139139, 1.39339339, 1.3953954 , 1.3973974 , 1.3993994 ,\n", " 1.4014014 , 1.4034034 , 1.40540541, 1.40740741, 1.40940941,\n", " 1.41141141, 1.41341341, 1.41541542, 1.41741742, 1.41941942,\n", " 1.42142142, 1.42342342, 1.42542543, 1.42742743, 1.42942943,\n", " 1.43143143, 1.43343343, 1.43543544, 1.43743744, 1.43943944,\n", " 1.44144144, 1.44344344, 1.44544545, 1.44744745, 1.44944945,\n", " 1.45145145, 1.45345345, 1.45545546, 1.45745746, 1.45945946,\n", " 1.46146146, 1.46346346, 1.46546547, 1.46746747, 1.46946947,\n", " 1.47147147, 1.47347347, 1.47547548, 1.47747748, 1.47947948,\n", " 1.48148148, 1.48348348, 1.48548549, 1.48748749, 1.48948949,\n", " 1.49149149, 1.49349349, 1.4954955 , 1.4974975 , 1.4994995 ,\n", " 1.5015015 , 1.5035035 , 1.50550551, 1.50750751, 1.50950951,\n", " 1.51151151, 1.51351351, 1.51551552, 1.51751752, 1.51951952,\n", " 1.52152152, 1.52352352, 1.52552553, 1.52752753, 1.52952953,\n", " 1.53153153, 1.53353353, 1.53553554, 1.53753754, 1.53953954,\n", " 1.54154154, 1.54354354, 1.54554555, 1.54754755, 1.54954955,\n", " 1.55155155, 1.55355355, 1.55555556, 1.55755756, 1.55955956,\n", " 1.56156156, 1.56356356, 1.56556557, 1.56756757, 1.56956957,\n", " 1.57157157, 1.57357357, 1.57557558, 1.57757758, 1.57957958,\n", " 1.58158158, 1.58358358, 1.58558559, 1.58758759, 1.58958959,\n", " 1.59159159, 1.59359359, 1.5955956 , 1.5975976 , 1.5995996 ,\n", " 1.6016016 , 1.6036036 , 1.60560561, 1.60760761, 1.60960961,\n", " 1.61161161, 1.61361361, 1.61561562, 1.61761762, 1.61961962,\n", " 1.62162162, 1.62362362, 1.62562563, 1.62762763, 1.62962963,\n", " 1.63163163, 1.63363363, 1.63563564, 1.63763764, 1.63963964,\n", " 1.64164164, 1.64364364, 1.64564565, 1.64764765, 1.64964965,\n", " 1.65165165, 1.65365365, 1.65565566, 1.65765766, 1.65965966,\n", " 1.66166166, 1.66366366, 1.66566567, 1.66766767, 1.66966967,\n", " 1.67167167, 1.67367367, 1.67567568, 1.67767768, 1.67967968,\n", " 1.68168168, 1.68368368, 1.68568569, 1.68768769, 1.68968969,\n", " 1.69169169, 1.69369369, 1.6956957 , 1.6976977 , 1.6996997 ,\n", " 1.7017017 , 1.7037037 , 1.70570571, 1.70770771, 1.70970971,\n", " 1.71171171, 1.71371371, 1.71571572, 1.71771772, 1.71971972,\n", " 1.72172172, 1.72372372, 1.72572573, 1.72772773, 1.72972973,\n", " 1.73173173, 1.73373373, 1.73573574, 1.73773774, 1.73973974,\n", " 1.74174174, 1.74374374, 1.74574575, 1.74774775, 1.74974975,\n", " 1.75175175, 1.75375375, 1.75575576, 1.75775776, 1.75975976,\n", " 1.76176176, 1.76376376, 1.76576577, 1.76776777, 1.76976977,\n", " 1.77177177, 1.77377377, 1.77577578, 1.77777778, 1.77977978,\n", " 1.78178178, 1.78378378, 1.78578579, 1.78778779, 1.78978979,\n", " 1.79179179, 1.79379379, 1.7957958 , 1.7977978 , 1.7997998 ,\n", " 1.8018018 , 1.8038038 , 1.80580581, 1.80780781, 1.80980981,\n", " 1.81181181, 1.81381381, 1.81581582, 1.81781782, 1.81981982,\n", " 1.82182182, 1.82382382, 1.82582583, 1.82782783, 1.82982983,\n", " 1.83183183, 1.83383383, 1.83583584, 1.83783784, 1.83983984,\n", " 1.84184184, 1.84384384, 1.84584585, 1.84784785, 1.84984985,\n", " 1.85185185, 1.85385385, 1.85585586, 1.85785786, 1.85985986,\n", " 1.86186186, 1.86386386, 1.86586587, 1.86786787, 1.86986987,\n", " 1.87187187, 1.87387387, 1.87587588, 1.87787788, 1.87987988,\n", " 1.88188188, 1.88388388, 1.88588589, 1.88788789, 1.88988989,\n", " 1.89189189, 1.89389389, 1.8958959 , 1.8978979 , 1.8998999 ,\n", " 1.9019019 , 1.9039039 , 1.90590591, 1.90790791, 1.90990991,\n", " 1.91191191, 1.91391391, 1.91591592, 1.91791792, 1.91991992,\n", " 1.92192192, 1.92392392, 1.92592593, 1.92792793, 1.92992993,\n", " 1.93193193, 1.93393393, 1.93593594, 1.93793794, 1.93993994,\n", " 1.94194194, 1.94394394, 1.94594595, 1.94794795, 1.94994995,\n", " 1.95195195, 1.95395395, 1.95595596, 1.95795796, 1.95995996,\n", " 1.96196196, 1.96396396, 1.96596597, 1.96796797, 1.96996997,\n", " 1.97197197, 1.97397397, 1.97597598, 1.97797798, 1.97997998,\n", " 1.98198198, 1.98398398, 1.98598599, 1.98798799, 1.98998999,\n", " 1.99199199, 1.99399399, 1.995996 , 1.997998 ])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "depth_histogram[1][:-1]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "[Text(0,0.5,'N'), Text(0.5,0,'ferr_ap_irac_i1_mean (uJ)')]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAELCAYAAAAhuwopAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztvXuYHOV15/85Vd0995EGjQYJSViSLaxYBGOsYBxjIl9iYzsLzsZJYLO+xCbgrG/xxvvYiR0nPxzvkk0cApvEBhNfyNpgG9+If7YJGAuFGGwLAgKMDEICa0Awuow0975Unf2jqnqqe6p7ukfT0z0z5/M8o+5+q7rqVHWrTr/v+63vEVXFMAzDMOrBaXYAhmEYxuLDkodhGIZRN5Y8DMMwjLqx5GEYhmHUjSUPwzAMo24seRiGYRh1Y8nDMAzDqBtLHoZhGEbdWPIwDMMw6ibV7AAaRX9/v27cuLHZYRiGYSwa7rvvviOqurqWdZds8ti4cSO7d+9udhiGYRiLBhF5qtZ1bdjKMAzDqBtLHoZhGEbdWPIwDMMw6qZhyUNENojID0XkURF5REQ+ELafIiK3i8jj4WNf2C4icq2I7BORPSJyTmxbbw/Xf1xE3t6omA3DMIzaaGTPowD8sar+EnAe8B4ReRHwEeAHqroF+EH4GuANwJbw73Lg0xAkG+DPgZcB5wJ/HiUcwzAMozk0TG2lqoeAQ+HzURF5FFgHXAzsCFf7IrAT+HDYfqMG1anuFZGVIrI2XPd2VT0GICK3AxcCNzUqdmN5sHPvENft2s/B4Qk29HVyxQWb2bF1oNlhGcaiYEHmPERkI/AS4MfAqWFiiRJM9L91HXAw9rbBsK1Su2HMmZ17h/j4rY8wNDrFyo40Q6NTfPzWR9i5d6jZoRnGoqDhyUNEuoGvA3+kqiPVVk1o0yrtSfu6XER2i8juw4cP1x+ssWy4btd+0q7QmUkhEjymXeG6XfubHZphLAoamjxEJE2QOL6kqt8Im58Lh6MIH6OfeoPAhtjb1wPPVGmfgaper6rbVXX76tU13SRpLFMODk/QkXZL2jrSLoPDE02KyDAWF41UWwnwT8Cjqvq3sUW3ApFi6u3At2PtbwtVV+cBJ8JhrduA14lIXzhR/rqwzTDmzIa+TibzXknbZN5jfV9nkyIyjMVFI3serwDeCrxaRB4I/94IXAX8uog8Dvx6+Brgu8B+YB/wWeC/AYQT5Z8Afhr+XRlNnhvGXLnigs3kPWUiV0A1eMx7yhUXbG52aIaxKJBA3LT02L59u5q3lVGNSG01ODzBelNbGQYicp+qbq9l3SVrjGgYs7Fj64AlC8OYI2ZPYhiGYdSNJQ/DMAyjbix5GIZhGHVjycMwDMOoG0sehmEYRt1Y8jAMwzDqxpKHYRiGUTeWPAzDMIy6seRhGIZh1I0lD8MwDKNuLHkYhmEYdWPJwzAMw6gbSx6GYRhG3VjyMAzDMOrGkodhGIZRN40sQ/s5ERkSkYdjbV+JVRV8UkQeCNs3ishkbNlnYu95qYg8JCL7ROTasLytYRiG0UQaWQzqC8DfAzdGDar6u9FzEfkUcCK2/hOqenbCdj4NXA7cS1Cq9kLgew2I1zAMw6iRhvU8VHUXkFhrPOw9/A5wU7VtiMhaoFdV79GgXu6NwJvnO1bDMAyjPpo15/FK4DlVfTzWtklE/kNE7hKRV4Zt64DB2DqDYZthGIbRRJpVw/xSSnsdh4DTVfWoiLwU+JaIbAOS5je00kZF5HKCIS5OP/30eQzXMAzDiLPgPQ8RSQH/GfhK1KaqWVU9Gj6/D3gCOIOgp7E+9vb1wDOVtq2q16vqdlXdvnr16kaEbxiGYdCcYavXAntVtTgcJSKrRcQNn28GtgD7VfUQMCoi54XzJG8Dvt2EmA3DMIwYjZTq3gTcA7xQRAZF5F3hokuYOVF+AbBHRB4EbgHerarRZPsfAjcA+wh6JKa0MgzDaDISiJiWHtu3b9fdu3c3OwzDMIxFg4jcp6rba1nX7jA3DMMw6saSh2EYhlE3ljwMwzCMurHkYRiGYdSNJQ/DMAyjbix5GIZhGHVjycMwDMOom2Z5WxnGgrJz7xDX7drPweEJNvR1csUFm9mxdaDZYRnGosV6HsaSZ+feIT5+6yMMjU6xsiPN0OgUH7/1EXbuHWp2aIaxaLHkYSx5rtu1n7QrdGZSiASPaVe4btf+ZodmGIsWSx7Gkufg8AQdabekrSPtMjg80aSIDGPxY8nDWPJs6OtkMu+VtE3mPdb3dTYpIsNY/FjyMJY8V1ywmbynTOQKqAaPeU+54oLNzQ7NMBYtprYyljw7tg5wJcHcx+DwBOurqK1MlWUYtWHJw1gW7Ng6MGsSiFRZaVdKVFlXhu83DGMaG7YyjBBTZRlG7TSykuDnRGRIRB6Otf2FiDwtIg+Ef2+MLfsTEdknIj8XkdfH2i8M2/aJyEcaFa9hmCrLMGqnkT2PLwAXJrRfrapnh3/fBRCRFxGUp90WvucfRcQN65r/A/AG4EXApeG6hjHvmCrLMGqnYclDVXcBx2ZdMeBi4GZVzarqAYJ65eeGf/tUdb+q5oCbw3UNY94xVZZh1E4z5jzeKyJ7wmGtvrBtHXAwts5g2Fap3TDmnR1bB7jyom0M9LRzYjLPQE87V160zSbLDSOBhVZbfRr4BKDh46eAdwKSsK6SnNy00sZF5HLgcoDTTz/9ZGM1liG1qLIMw1jgnoeqPqeqnqr6wGcJhqUg6FFsiK26HnimSnul7V+vqttVdfvq1avnN3jDMAyjyIImDxFZG3v5m0CkxLoVuERE2kRkE7AF+AnwU2CLiGwSkQzBpPqtCxmzYRiGMZOGDVuJyE3ADqBfRAaBPwd2iMjZBENPTwJXAKjqIyLyVeBnQAF4j6p64XbeC9wGuMDnVPWRRsVsGIZh1IaoVpxCWNRs375dd+/e3ewwDMMwFg0icp+qbq9lXbvD3DAMw6gb87YylixJJod7Bo9zw90HGM95dGVcLjt/E+9/7RnNDtUwFh2WPIwlSZLJ4ftuup/xnIfrCCknuHv8mjv3AVgCMYw6sWErY0mSZHI4nvPwFVKOgyNO+Ag33H2g2eEaxqLDkoexJEkyOfQTtCGOwHjOm7nAMIyqWPIwliRJJodOgo+Br9CVcWcuMAyjKpY8jCVJkslhV8bFESj4Pr764SNcdv6mZodrGIsOmzA3liTx0rOPPzfCeM6j4CsoeL7iAd1tqVnVVlaW1jCSsZ6HsWTZsXUgsFMXIe8pAqRcwRFhVVeGay95yayJ4+O3PsLQ6FRJWdqde4cW7iAMo0Wx5GEsaa7btZ+xbAFXBNdxwj9hdKowa3lZK0trGJWx5GEsaQ4OT+D5isQmyyWc95itvKyVpTWMyljyMJY0G/o6cR0hbuGm4b0es5WXtbK0hlEZSx7GkuaKCzbT3ZbCU8Xz/fBP6WlPzVpe1srSGkZlTG1lLEniKql2V1BVcn6wLOVAe9rlj7/2AHlPyaQctgz08PLNp3DP/mM89txIsb2/K4OIcGIyz3pTWxlGEUsexpIj7mvlChw8kcUnSBqqUPBhcHgSxwFHhMmcx95nT/CTJ4/R2+4ylg2GqiZzHmlXSLsun7j4TEsahhHDhq2MJUdcJXVkLFcseh/e5gEEj74f+lw5wonJAo4QPCLF9pHJgimsDCOBhiUPEfmciAyJyMOxtr8Wkb0iskdEvikiK8P2jSIyKSIPhH+fib3npSLykIjsE5FrRSTBZMIwpomrpHKeP50wlNKJ8/BRJEgsTvgYfcNEgvebwsowZtLInscXgAvL2m4HzlTVs4DHgD+JLXtCVc8O/94da/80cDlBXfMtCds0jBLiKqmM6xD92hChVLIbPmoscTgynWBUg/ebwsowZtKw5KGqu4BjZW3/qqqF8OW9wPpq2xCRtUCvqt6jQb3cG4E3NyJeY+kQV0n1d2eKScKR6YQhgOOEPle+sqIjha8Ej2ixvbcjZQorw0igmXMe7wS+F3u9SUT+Q0TuEpFXhm3rgMHYOoNhWyIicrmI7BaR3YcPH57/iI1FwY6tA1x50TYGetrxFc44tZv1K9txHYeU67B+ZTtb1/TQ15GmI+2yojPN1jUr+MCrX8DWNStY0Z4qtm9c1c2VF22zyXLDKKMpaisR+ShQAL4UNh0CTlfVoyLyUuBbIrKN6R+KcRKqMoQLVK8HrgfYvn17xfWMpc+OrQPFC34k20WE7oyLiDCaLbDl1N4Z0tv3Nytgw1hkLHjPQ0TeDvwG8HvhUBSqmlXVo+Hz+4AngDMIehrxoa31wDMLG7GxmImbG7oC+w6P8/jQGK5gRoeGcRIsaPIQkQuBDwMXqepErH21iLjh880EE+P7VfUQMCoi54Uqq7cB317ImI3FTblsNzBIFI6M5czo0DBOgkZKdW8C7gFeKCKDIvIu4O+BHuD2MknuBcAeEXkQuAV4t6pGk+1/CNwA7CPokcTnSQyjKuWy3UhxlfOC281NhmsYc6Nhcx6qemlC8z9VWPfrwNcrLNsNnDmPoRnLiA19nQyNTtGZSZFxHQpeMBWWcYPfTSbDNYy5YXeYG0uactluYJCo9HdnzOjQME4C87Yy6qYVS7NWi8n3PPYPZ4s3/7mO8OxIltXdGXra03zs2w+zYVdrHIdhLBZEdWkqWrdv3667d+9udhhLjrjpYEfaZTLvkfe0qfdCVIrpLees48Z7n+L4RB5VxYuSh0BvR4qRKY+Bngyrutpa4jgMo9mIyH2qur2WdW3YyqiLVizNWimmG+4+UCxBW/SxIrAhiYwQRyYLLXMchrGYsORh1EUrlmatFNN4ziuWoNVY9lCmfawi1VX0HlNeGUZtWPIw6qIVS7NWiqkr4xZL0BYNETX0tQqNECPVVfQeU14ZRm1Y8jDqohVLs1aK6bLzNxVL0MZyB45QNELs7Ui1zHEYxmLC1FZGXezYOsCVBPMMg8MTLVGatVpMZ61fyVXfe5QDRycQ3yeTcunMuCVlZ1vlOAxjMWHJw6iZa+94jE/f9QSTeR8B1vd1tMwFN26EeO0dj/GHX7qvJM7r/utLgSDBPPT0MPfuP8o9+4+23HEYxmLBpLpGTVx7x2NcfcfjMyyNV3SkuOZ3X9IyF95KcXamHbraUuQ9n+OThRnva7XjMIxmYFJdY9654e4DxeeRP5QQSF1bSd5aKc6JvM/oVIGRqZmJoxWPwzBaHUseRk2M57zEQioKLSVvrRQnhFUDKyxsteMwjFbHkodRE10ZN7EyVzBn0Dry1kpxAqQcB6fCwlY7DsNodSx5GDVx2fmbis9Vwz8CqWsryVsrxdmZduhpT9HbPlMj0orHYRitjqmtjJp4/2vP4MCRMb75wKFiW9oV3vWKTS03yZxyIO+XtuU9pS3l0N/dhuePM5b1i8NbDsGcxzu+8FMcge62FNtOW1GU8raSAaRhtArW8zBqYufeIf5t31FSjpBxgz9V+Od7n2qZMq7X3vEY19y5D0RIxb7Zbjhx/uxIliNjWf7PpS/lwFVv4gvv+BV62lx8KCYSX2FkqsBDg8Ncc+c+njw6xsqOtJWsNYwyGpo8RORzIjIkIg/H2k4RkdtF5PHwsS9sFxG5VkT2icgeETkn9p63h+s/HtZANxaY63btL5oMuo4T/gmjU62jUrrh7gM4EsxtxCfGPSUx3ut27Wc85yVuayznm3GiYVSh0T2PLwAXlrV9BPiBqm4BfhC+BngDQe3yLcDlwKchSDbAnwMvA84F/jxKOMbCcXB4omgyGCESKJhaRaU0nvOKE+JJty+Vx3tweKKi+grMONEwqtHQ5KGqu4BjZc0XA18Mn38ReHOs/UYNuBdYKSJrgdcDt6vqMVUdBm5nZkIyGsyGvs6iyWCEavArv1VUSl0Zt5gMJEFVVR7vhr7OiuorMONEw6hG1QlzEfl4lcWqqp+Ywz5PVdVD4QYOiUg0A7kOOBhbbzBsq9SeFO/lBL0WTj/99DmEZlTiigs286FbHgwKK4VXaF+hrzPdMiqly87fxDV37qPg+0XXXAjmPLzwHo94vFdcsJmHnz7OaHbm0FV3xmGyoEXjxKhYVKscq2E0m9l6HuMJfwq8C/jwPMeS9BtQq7TPbFS9XlW3q+r21atXz2twBvR3ZQAl7yuqsGWgm79+y4tbQoG0c+8Q333oEOoreU8p+JBxhf6uNCnXQURK4o3K1mrCV6kz47K+r5OV7SmeHcny8DMjHDoxxVvOWdcSx2oYrUDVnoeqfip6LiI9wAeAdwI3A5+q9L5ZeE5E1oa9jrVAJF8ZBDbE1lsPPBO27yhr3znHfRtzIF7mdeua3uKv8A9fuLUlLqY79w4Ve0UpN/it4Sus6EgnJrfoeHIFj4nc9JxGoNASUgLPHJ9kIu+TDse1cgWff773Kc5av7Iljtkwms2scx6hOuovgT0EyeYcVf2wqs5Vs3grECmm3g58O9b+tlB1dR5wIhzeug14nYj0hRPlrwvbjAWiFUvPxqlXCRYdz+hUoTiHE5WndR1hLOcxlvNaWllmGM1mtjmPvwb+M3A98MuqOlbPxkXkJoJeQ7+IDBKopq4Cvioi7wJ+Afx2uPp3gTcC+4AJ4PcBVPWYiHwC+Gm43pWqWj4JbzSQg8MTrOxIl7S1kvIoUoK5sVlyESh4yUqw6Hhy3vSNgoSlaiU2VzJDWVZhe4axHJntDvM/BrLAx4CPyvT/JiGYMO+t9mZVvbTCotckrKvAeyps53PA52aJ1WgQG/o6GRqdojMz/XVpJeXRhr5OjoxlUX/6gl9NCRYdT8Z1KHihkWKYODSsbR5to5btGcZypOqwlao6qtqhqj2q2hv765ktcRhLh1YsPRvnigs2F8vNer4f/ik97cl+VdHx9LSnppMDQdLwfKU749KdcWvenmEsR8yexJiVHVsHuPKibQz0tHNiMs9ATztXXrStZSaOd2wd4G/e8mJesLoLEZmhrEpa/8qLtrGpv5tTOtN0pB3SbjC/sWWgm2svPYdrLz2n5u0ZxnLEjBGNuojmCPYMHue6Xfs5ODxBd8ZFRBjNFppmIBjt77pd+3nsuRGePj7Jh255kC0DPTPi2bl3qFjXHGBzf1dRORYt23d4DE8hJcKpvW0AfOzbD7NhlxkkGgZYGVqjBuJS3Y60y5GxLIfHcgz0ZMi4Dk8fnwJg3cp2Uq5D3tMF75nE5bdHx3NBo0J/T4a06xbjict6o7mN6ObBt573PG689ymOjeUoM+XFlaDWebOOzzAWAitDa8wr5VLd0alC0TTwyFgulLQKR8ZyTZPxxuW3DhIUfnKEkclCSTzVZL033H2AsWyh2LuKq618panHZxithiUPY1YODk/QkXaLr3OeXzQNzHl+sVZ4ZCLYDBlvFGMUD0zHFI+nmsHjeM7D85PuOQ+G65p5fIbRaljyMGZlQ18nk/lp/6eM6xRNAzOuU6zYF5kINkPGG8UYxQPTMcXjqWbw2JVxcR2pWG63mcdnGK2GJQ9jVsqluj3tKXwNSrf2d2dCSavS351pmow3Lr/1UQq+j+8HxobxeKrJei87fxPdbali8ognGEdo6vEZRqthycOYlUjamnaEx4fGGJ7Is7a3jZUdGY6NZyn4SsFXnjo2yeDwZFMMBOPy2xXtKVKOgMCx8TxdGbdkvSRZ71vPex737D+GqhJzYUeA/q40Z5zag6+0nEzZMJqFSXWNmpnI+6zv66Aj7TKZ9xgcnmA0W6pLyhZ8/unfDzTFQHDH1oGioiquDpvMe3z81ke4MrZOuXQ3Wr+7LcWJyQIpp1Q91iomkIbRKljPw6iJJHPEeAnXaNJcCFRYzVQj1WvkGF+/VdRjhtHqWPIwaqJccQVULOGq0FQ1UlKs1RRS8fVbRT1mGK2OJQ+jJsoVV0DFEq4CTVUjJcVaTSEVX79V1GOG0epY8jBqIskcMT4RHV1wlUCF1Uw1Ur1GjvH1W0U9Zhitjk2YGxX54M33c+ueZ4Ob6oDuNpecF4xVre7OsL6vk4PD44xn/WK94PV9HXzi4jMbPrkc96fyfJ9MyqUz49LflUFEGM/myXuKqiIiZFJOcd6iPLYdWwd4y+Bxbrj7AKNTBQAcR3h2JMvm/i7+7E1bAbj0+ns5ODzRNP8uw2glLHkYiXzw5vv55gOHiq8VGM16rGhP0ZFxOTSSxVNl46ruYlnahZKwxv2pVBVPoZDzmMx5DI/nEBHWrWwnW/CLHlyrutoYGp0qUV3Ft3fL/U/TmXGnh7sUTulKM57z2DN4nFvuf5q0K6zsSFfcjmEsJxZ82EpEXigiD8T+RkTkj0TkL0Tk6Vj7G2Pv+RMR2SciPxeR1y90zMuRW/c8C5T6OwGcmCqUeFs1oyxt3J+q6ENFkOCiUrJHxnI1xzmbL9YNdx9o6TK8htEMFrznoao/B84GEBEXeBr4JkHZ2atV9W/i64vIi4BLgG3AacAdInKGqpbOiBrzildJSkWpt1XEQiqS4mVntSx7KKVKqVrijJeljUrZxn2xxnMep9eh3jKM5UCzJ8xfAzyhqk9VWedi4GZVzarqAYIa5+cuSHTLGLeSlIpSb6uIhVQkxf2pij2jqO4400qpWuOczRerKz6cVWU7hrGcaHbyuAS4Kfb6vSKyR0Q+JyJ9Yds64GBsncGwbQYicrmI7BaR3YcPH25MxMuEi85aA5T6OwGsaE+VeFs1oyxt3J8qnjuE6VKy/d2ZmuOczRfrsvM3tXQZXsNoBk1LHiKSAS4CvhY2fRp4PsGQ1iHgU9GqCW9PHFNR1etVdbuqbl+9evU8R7y8uPqSc/jNs9cWeyBCYAzY25FmU383H3j1C9i4qrspZWnj/lQp1yHlQGfGZVV3hi0D3WwZ6MZXao6z3BerI+2yojPNxlXdXHnRNt7/2jNaugyvYTSDZqqt3gDcr6rPAUSPACLyWeA74ctBYEPsfeuBZxYqyOXM1Zecw9WXVF5+1t6hYinaSjLY+Wbn3iE+9s09DJ7IAkFSW9WVpj3tcjicJN/c31UiF35/jdseHs9yfDKPpyBT8GDueEkp25suP68Yw1Xfe5TLbvxpsVTtCwa6ecOZa7hn/zGT8xrLgqaVoRWRm4HbVPXz4eu1qnoofP5B4GWqeomIbAO+TDDPcRrwA2DLbBPmVoa2sSSZDzZarrtz7xDvu+l+RrPJH33KAUekWFb2r9/y4ppiiaS/lcrPDvS2FUvZAonrCsH8y6m9bazqaltw+bJhzActX4ZWRDqBXwe+EWv+3yLykIjsAV4FfBBAVR8Bvgr8DPg+8B5TWjWfes0H52ufcTPGcgKZ7nRZ2VpjiaS/ST+jfKWklG35upEZpMbWNTmvsRxoyrCVqk4Aq8ra3lpl/U8Cn2x0XEbtRPLWOI2Wrx4cnqhoxgjTk/siUPD8mmOJpL/Vys9Gx6Ywc90oe9A8+bJhLDTNVlsZi5R6zQfna59VFMRF2W5UVrbWWCLpb7Xys9GxJa4byyTNki8bxkJjycOYE/WaD87XPuNmjOUEMt3psrK1xhJJf5OShyOUlLItXzcyg5TYuibnNZYDTZswbzQ2YX5y7AyVVI89N8LIZJ6CH1wkOzMu775gM+9/7Rlce8djRTNBxxG6Mi7bTlvRUJVRudoKgonyQmz2OlJgre5pZzRbqEn5FCmo9h0eC9RWCilXKIRDVJGi6sMXbmXP4HE+fdcTTOaDnbqOcEZMbTU4PMF6U1sZi5B6JswteRgziJRUuYLHsyPZGcsdgYtfvJb7fnGCXMHj6HguWKDQ35MpKpMWQrYbxTk0mi3OhziAT6CUWt/XUSwlW09McfPFaKjMV+hMO7SlXXo70gumMjOMhaLl1VZGaxM3CixHCC6it+55tqqZ4EKojOJxFifLoSih9ZU5l5KNmy8GCq5AxTWW8xidKphJorHsseRhzCAqyxpXDhUJf4V7vhbXiSaq42aCC6EyisdZ7D/HJi4ipRTUr3yKFFhxV2GRICEV/NLzYqoqYzliycOYQdwocAbhVdp1pKqZ4EKojOJxFq/xsVHYSCkF9Suf4uaLxU1rMGSXckrPi6mqjOWIJQ9jBnGjwHKU4AJ60VlrqpoJLoTKKB5nUabL9JfaEeZcSjZuvhgouAIVV3fGpac9ZSaJxrLHKgkaM9ixdYArCcb9C57PiQpqq0iRVfBGyHlKJuWwcVX3gqmMyuMcz3kUfMURYXV3hp72NGPZAgM97XXHFJkvRqVuAbas7uLDFwYlaa/btd9UVcayxpKHkciOrQMVL4g79w5x4dV3FS+qm/unL6pXfe9Rrvi/95W0n8yFNV6rvHxfkZQ4Hyauszf0lVzId5YZN+4ZPF63cWFfVxtjOY8NfZ28fPMpM2KJehwXXn1XUeYbl/VaUjGWKibVNeqimoQVYCLvl7TXY1BYz77a0i6uIxVlwkCJceORsWxJPfPZJLblxo9HxrI8N5LFkelCWfHjHst6JUaJrsApXZk5H7thNAOT6hoNo5qEdSznzWivx6Cwnn2NRrXUK8iEy40b6627nvR+iJsvlh53uVGir5zUsRtGq2PDVkZdxOuHR0QS1uh5vL0eg8J69lXwfTyVxJrjkYFh3Lix3rrr5caPJXLghOMuXRAoswr+3I/dMFod63kYdVFNwuoIM9rrMSisZ18px6kqEy43bqy37nrS+4XSspbx4y43ShRO7tgNo9Wx5GHURTUJa3fGndFej0FhPfvqiWqpV5AJlxs31lt3Pen9EDdfLD3ucqNERzipYzeMVqeZlQSfBEYBDyio6nYROQX4CrAReBL4HVUdFhEBrgHeCEwA71DV+6tt3ybMT564WimuTrr2jsdKjAEh+BUiAl7MJmQu5oSRgmoilN2qBtJbBVSVTMrFFZjKe0X5sCPQ3ZaaYcoYbS+S1L588ykzjAuBxGOM3h+ZJRYSbraPZMsA/+fOx4mdDjb0dfDbL11vZWmNRcWiMEYMk8d2VT0Sa/vfwDFVvUpEPgL0qeqHReSNwPsIksfLgGtU9WXVtm/J4+SoVGb2Lees45b7n55hRhgn5YDvA3WUZa1kcphyAKREYZW0fC6qrtlK6dZSnjbvKbm8N0NlZgaKxmJkMautLga+GD7/IvDmWPuNGnAvsFJE1jYjwOVCpTKzN9x9YIYL4ridAAAgAElEQVQZYTm+gkp9ZVkrmhwqMxRWScvnomyarZRuLeVpx7KFRJWZGSgaS51mJg8F/lVE7hORy8O2U1X1EED4GP1EWwccjL13MGwzGkRkOhinI+0ynvNmmhGWoTo9cV6PuinJ5FC1VGFVaflclE2VjjHaTi3laT1f8XWmyswMFI2lTjOTxytU9RzgDcB7ROSCKusmFXmb8X9aRC4Xkd0isvvw4cPzFeeypFKZ2a6MO9OMsAyR6YtpveqmcpNDkZkKq6Tlc1E2zVZKt5bytK4jiSozM1A0ljpNSx6q+kz4OAR8EzgXeC4ajgofh8LVB4ENsbevB55J2Ob1qrpdVbevXr26keEveSqVmb3s/E0zzAjLcSSoxFdPWdaKJofCDIVV0vK5KJtmK6VbS3na7rZUosrMDBSNpU5TkoeIdIlIT/QceB3wMHAr8PZwtbcD3w6f3wq8TQLOA05Ew1vG/BOplMazeX5xdJxHnhnhicPjHBnLcuDIGJ1ph+HQMiTjCmlXSDnTzwHaMy5dGZfxrMezI1MM9LRXnSyP9jeR88i407/2Cz4UfGUs53F0LMezI6WT9J6C7yvjOY8P3fIgl15/Lzv3Ds3YRxI7tg7wlnPWcXg0y6PPjnJ4NMtbzllXjDEyRzzj1O5wYr50v4dOZDk2lisaMua84M91hEzaZVVXhozr8OyJSQ6PZpnIBfMytcZnGK1MU9RWIrKZoLcBwV3uX1bVT4rIKuCrwOnAL4DfVtVjoVT374ELCaS6v6+qVaVUpraaG3EF0shkjsNjeQDSTnihVjilM81pKzsSFUSzKZiq7S/uQdWeEsZzCfrYECHoeXRnHLKRPrjOMrj1xHrtHY9xzZ37UNXku8pJLn97YjKPgKmujEVBy6utVHW/qr44/Numqp8M24+q6mtUdUv4eCxsV1V9j6o+X1V/ebbEYcyduALp6HiQOITp+zcAjk/mKyqIZlMwVdtf3IOqlsQBMJbz51wGt55Yb7j7QFGKW4mk8rdj2YKprowlSatJdY0mE1cgFX9hS6mCKv7Lu1xBNJuCqdr+YNqDqiply+daBreeWMdz3oyJ8UrEy996vprqyliSWPIwSogrkIoXcS1VUMUv7uUKotkUTNX2B9MeVFUpWz7XMrj1xNqVcWdIcisRL3/rOmKqK2NJYsnDKCGuQFrVFbjKKsE4fsTKjnRFBdFsCqZq+4t7UHVlKn81lenOR3fGmXMZ3Hpivez8TbMmtaTyt91tKVNdGUsSKwZlzCDuCaW+z7HJAtmCT1fG5TVbV/PsSK5qCdZyT6laPa3KPagefnqYibwGtuyO4KD4CKpKd1uqGMvjz02Xwd0y0FOXh1Q9sV57x2PccPeBYm0PxxGEae+t8vK35f5ZVrbWaHXqmTC3eh5GRRTYsKqbv6xwsYsuvB/79sNF4z9INhqMmyx2Z9xgcjxbKHm+IZY4Dg5PsG5lJ2PZAofHgmqBm/u7ecOZa4rLHz00GkxIZ4Ohp3UrO+ZUq7yW9XfuHeKe/cfo7Uiz7bQVvHzzKXz1p7/g6ZEsBV+LJolnrV/Jdbv2MzQ6xSPPnOBDtzxYd0IzjMWA9TyMEmqVryatV0mWGpkppl2h4Pk8fXwKgL7OFMMTwa/4dSvbyRb8YqnYjOtw8NgkPoH5oSNCwdOi2WLS8pMte1vrOTkyluXZkWziuis6UnSk3YrlcS2BGK1My0t1jdalVvlq0nqVZKmRmWJnJsWRsVxoIigcHc8Xnx8Zy5WUij0ylivOi0elX+Nmi0nLT7bsba3nJBq2gmkhQTQHMzJZvTyuYSwVLHkYJdQqX01ar5IsNTJThEDCGl1w/ZiKK+f5JaVi4waIcTVVtI2k5XM1SJyNJDnxDGKWKdExRjHVIx82jMWCJQ+jhFrlq0nrVZKlRmaKQLF0bGQeGD3PuE5Jqdi4AWL8QhxtI2n5yZa9rUSSnHgGMZv4auVxDWOpsGSTR8FXjo5lOTGRZ3Qqz2TOI1vwKCT9ajSK1CpfTVqvkiw1MlOcyBXo786EJoLKqq508Xl/d6akVGx/d6aYHKLSr3GzxaTlJ1v2ttZzEpWkhenkF/WCejuql8c1jKXCklVbeb5yYjJfcXlgpS2kXCmOu7uO4DhCKloWtkktd4YtITrTDgeOBkMsm/u7uPjFa2aoqnZsHeBKSiWof/amFwFw1fce5fGhseL7z1q/sqhCGhye4AWruxARxrIFXrC6jbFsgWdHsni+jyvB/IeqknKFnKdhCdjg8iwKJyYLdGZczji1u0SNtWV1Fx++cGtDJqU70w77Do/hKaREWNWZ5vhkvmjb0pZyeM+O53PW+pV87Jt7yMf8XA6dyNKZcdkzeLyoPLvqe4+WnOMPX7i1eO7K2xtxPJVKDBtGrSxZtdUvn32Ofvv2XfOyLSeWXFJhgnFFcMsSjyvBssVKPQqqWo0O6yk/GymUPE+LdTqUmYVbXIFTujLzrqpKolp8IsK6le2kXKd4jHsGj3PNnfvwyu4odML1LzprDf+27yjHQ1dimC5bC8woZ7sQ6jEzazQi7D4PgmGMvOeTThqfrhNfFd9Tyob4E4kSTXkPJnrtlrW1EnFVEUBnJsXTxydBYc2KjmJbZC2edKFJ2kYt6x8dCxRKjiMUfC+YM0jwkopKz0aqqkZf7KrFl3GDXtLm1d3FY3zkmRPBMFrZdnwNnIlv3fMsabf0h4ZoYDkPkA4VWlF7I46z3s/IMJJYssnjicPjvP7v/o3OjEtve5rejlT4mKa3PRU+plnRESxbEb7uDXX6cx2qihINHiTfCTCNxIbG4r0X123O0NnB4QlWdqRL2jxfKe+dzmZ0WL6NWtbPecGQFcQSRlKnOEwojVBV1RtfpKSC6WMcz3kzan9EOAJ5T3GE4rai7fixbcbbC15j1GP1fEaGkcSSTR4REzmPiZzHsyO1vyflyIwkE08+KxKST097GrfOnoSqkq+xRzMjwZQnnbA9dRI9rQ19nQyNThV/kUb7RUuPazajw/Jt1LJ+xnUoFIeDKBpYzRhVDe4TbIiqqt74IiUVTB/jicn8DBVaRHA/SvBZqV+qEnNizxdCPVbPZ2QYSSzZ5LFxVSdX/e6LGZksMDKZZ2QqHz7GXxcYmcpzYjJfYnpX8JVj4zmORXcJ10h3Wyqxh7OiUs+nI017yqmpV+H5OmMcvRLlSSXlOOEwCTMSUHzfV1ywmY/f+ggTuUJxLDwqwxpvm83osHwbtazf057i6HgO31ckVpscSjsgkUljI1RV9cbn+cqa3rYSRVo051GOE/Yu4nMeGn6evkJ3JriPZCLvl7T3daYboh6r5zMyjCQWPHmIyAbgRmANQf2c61X1GhH5C+APgMPhqn+qqt8N3/MnwLsIhpLfr6q3zbafTMrlxetX1hSTalDGNJ5UTsQTTphkRibznIgln6l8qex3LFtgLFvgGaZq2m8QpxMkkyixdKTCZFO559PTnsKpknDmmmhetK6XN525hs//6ABTheD9jsDa0A7kxGS+orFfZBo4nvNwUBzHIVeYvpHvHV/4ac3nBCjJGFL6Ek/h6HiOv/r+XoCGjtPHVWUFLzRg7HDo78oUFWMDPe28fPMpRaWU+lpMFlH8rgRGit964FDiaNxItrS3EvSuhP7utnk9nkhldWx8ism8Fk0mLzt/U03mlabOMiIWXG0lImuBtap6f1jH/D7gzcDvAGOq+jdl678IuAk4FzgNuAM4Q1WrDvbMp9qqErmCX7FHEyWfE5N5RovLCoxO5WevVzELQvDLO55YViQkmfK5nUylwfiQn+w/xl/dtjf4VRxrd4AVnWn+9A2/xK9u6Z8hBPjsXU/wj3c9Ubzpz5vnr1SbC9mET9sBVnUvjOqqGjv3DvGhWx6coaCKlFJRb6RaCdty4qVs50sJlaQcq8V7y9RZy4eWVlup6iHgUPh8VEQeBdZVecvFwM2qmgUOiMg+gkRyT7X9ZFLBWLGvGv5NT/56fvBaVfHCZb6vqFJcvxYyKYf+7ra6fh36qoxNFUqGzUp6NJN5TpQtG5kqkCtM93IUgmQ1VQAma953e8pJ7MlEz7/z4CFGp/Izfhn7wHi2wJd+/AteurFvhhDg8z96MpgEDnsb801S4ojiWijVVTWu27WfsWxhhoIqiq2owKojqUalbONKrpM9xiTlmK/KyGSBNStS86agM5YHTZ3zEJGNwEuAHwOvAN4rIm8DdgN/rKrDBInl3tjbBqmebIJtw6y/tKvh+9NJJ56AfFXUDx69sD1KOl5JAmKGSgkCKW8030Ff7fFM5b0ZPZwT8eST0PsZyxZKt1HwmRrNMjQ6mw5sJjlPeeTQCT72rYdnJJ+JnIfjhOem7i2fHAuluqrGweGJoOZImYIqUkpFCqxCHScnXsp2vpRQScqxWry3TJ1lJNG05CEi3cDXgT9S1RER+TTwCYL/N58APgW8kxkVq4FkEScicjlwOcDpp59+UvE5juAk7rp2qiUg3y/tDfmJCWj6MNvTLu1pl4He2vfv+cpomTAgSTAQJaWDxyYoVBlXyXvKj544WmFf4C146ggkr2t62xnLFqZlzwt8s+aGvk6OjGVnKKgipVSkwIqLAGYjXsp2vpRQScqxWry3TJ1lJNGU5CEiaYLE8SVV/QaAqj4XW/5Z4Dvhy0FgQ+zt64FnkrarqtcD10NQz2P+I6+P+UpAST2cqGeTlICC5ASOKCs7M6zszNS0r5/sP8ZV33+U45OlPRYB2tMOr3h+Pz0d6RnJ58hYtsSOY75xCIaokujIuPzWOesZGikVKcRv1oyUZeU3a85Xornigs3FOY8kpVQlBVY14qVs50sJlaQcQ6G3Kz2vCjpjedCMCXMBvggcU9U/irWvDedDEJEPAi9T1UtEZBvwZaYnzH8AbJltwtyKQU0TT0C+X5pgoude+Prf9x3mH3+4jyePToQ+TnD6qi4uf+Vmzt18SsV9fPHuA3zt/kEm8z4pF7oyKXIFn6m8X/HCP190tbnTgoGEe3Bmk0iLlNnOlN2wGcmcU2HNkCQq+VVFcwLVStgWwh8DkcLq1N62GaVs52tuIVJN1Vu6t97SwsbipKUnzAnmNt4KPCQiD4RtfwpcKiJnEwxJPQlcAaCqj4jIV4GfAQXgPbMlDqOUWntAO/cO8dld+xk8PoUIdKZdOtIOAz1t9HdnOG1lR0XxwUue18fdTxzh4HA4ga9hb0GCL5k4gucrHWmXLQNdPD40znjOQ4C0C55XaumRdgJlj6dK3vNxHYe2tEM278+4CW886zGe9eqSSKddCZNLedKZKY+O1utuS00baIammp+/+wBf/skvGMt6OAJdGZcXrV3B5Rds5tdeuJqde4f42Df38PRItmTIalpKHTy6jnDGQHdJwikp87tr5gU7ST4L0+aKnu+TSbl0ZtySBFG+/YPDE8VCVUnLom3fdPl5M+MKSwd/96FDC2LouBDUK0terjLmJWuMaD2P+ojLTQMVWtDuCgz0ts0q5YxLVfNe8sR5teGnJIRg+ObU3jZcx6HgKx949RbOPn1lMJcTzt+ciN2Pc6LCfM78S6RTjEwWGDw+U+3WlXboaEvx6jNW852HnmEiX9uO49JjoKo8tpKJZS7vBTcazvIZVpPfVtt3+bIjY1meG8mGarvgB0qjDB0Xgrkaey4VGXOr9zyMFiQuN82HPygiE8JapJxxqWrOq2DPUWdMSnBBOj6RZ1MoWf3GfzzNb5x9WqLoIC67Lle8+aqMZwszxAMnJvPJAoLwebaiRLoy43mf8XyOr97/dF3H6wPHJ3L87R0/xxVBRMm4Lr5CW8rF1wKfvusJzt/Sz2fueiLRxDJX8Ek7zqyfYTX5LVDzsmgYzlfIhIXAGmXouBDM1dhzOcqYLXkYQKnctNgZDdU4tUg5y6Wq84XjCHk/mBvoyqQ4dGKS7rbav7bxobVIdDA9/1M9+Xi+ks17ZT2c6d7N5//9yboUVLWQ92HPYGDE5oa/5p3YxP5zI1mu+t5eHjk0Qnc4rxSJAfIFP+xdTd+MGIWWLXgln2E1+a1Czcvi5YAjGmXouBDM1diz1vWXEpY8DGCm3FSVoglhLVLOcqnqfJFkPlgPEs5NzJViIkkQG3xt90Gm8h6eztSOr1vZzrHxHJP5ucsFPA1qh5TfXXjD3QeA6V/95WQrKN+ePj5Jb3uab9w/SHcmxbGJHN2ZVNHjbDJf4LQVHYjA0OgUXW3TF8X4uY/LdgPZb2lPs1GGjgvBXI09l6OMecmWoTXq44oLNtPdlsJTLU6tK9NlX2eTckbv9Xy/4tR8vddwJzQfnG/Jal0xOIFTcVvKpSPj0tUWOCiv6Exz+Ss3o8iMhHlKZxrXcfjDX3s+3Zn6/outaE/xgVe/gMtesZGVHWlWdqQ5pStNd5tLe9rhjFO7eeGaHk7pytQlAi/4MDyR56ljE/z3rz7I3udGeeb4FI8NjfHos6PsfXaEg8cmeW50ipGpAodOZHny6DiHjk/y9PEJjk3k+JXn9fGqF65mPOsxOpmj4Pl0t7mRAXJYCrhx5YAXglrLMM91/aWETZgbRcqVQY4ETsHbTltRk+IkLlVF/Yq2IjDT7DBOtN/TVrQXzQdbRR5arqxZ05vhB3sPMzpVwHGErozLaSvai+Vxg4tp5WMtRwjuXenMuEzlCozlpnsu7Skh72lRQt2WEsZrnIxvBPHkFY/ClcDdYU1vBxeeuYaeNpev7j4YFBYDNq/u5sJta/j+w4d48thkiSosMpwcGp0KhBeqiEhgBdSVCYxHj08V5886My7vvmBzscxxufIs3vbyzadwz/5jPPbcCPkqMuUkWXL5tuLvmW8ZczPVW/VMmFvyMIrMl3Lk2jse45o794VGiVEN8tKEESmpkkq5NjtBVKKW81OuPPP84GIf780BpByCYTCqJ9JGE/WLHAnsU8rjrFchd7LESrmUfFfiMSWxoiNFf3dbxfLJR8ayHB7L0dvuMhb9qqnBFBIWVlHVbPVWPcnDhq2MInHliEjwmHalqLKplRvuPoAjwbh3XB4bvxgo08WRjozl5ryvhaSW8xNXnrmOUzzmcAoJmFZARTW26k0c8zWvJOE/6ZRT9N1qT7sl2/eBjCNkXKEjJWwZ6Oa0Fe10pB1Wd2fCkrqlQ5LCtA19vWjZY/R8tnN0YrJAvuAHPmsijEzmGJnM054O6qSMTAbJ/MRkYAqZCsv9jkwWZv3ezdf/i1pYyH2dLDZhbhSZL+VIvBRrYsc2qsRHcinXVqWW81OuPKt0/Jowyb7gSGnlwohimV3CeS9HQIIiae1pl7aUw3OjWU7tbef4ZJ6064QT7sEv+kwquCH0hWt62XtoBE8h4wChki9/sjfcVOAXw+X33Cg/f3YU15HA7Tk83rzvIxrc4Z/3AmXYE0OjDA5P0NueDo+H4s2gvzg2Tl+ZxU+jvquLSb1lycMoMl/Kka5M0N12hGQpa/zidJJqqoWklvNTrjyrdPxxA8WmocnxlbdFz+OfU/QZJ5YPRmhLOTgipFMOWvARcYoeYgX1gqTFdP32Rg3dFXydNvsMH3yl5ACfOhYknfP/6oc4Aj1lNjeTOZ+RqQnaUk7RvsbzfVZ1tfPzZ0dZ1ZWhLe0U/dREAsNOZw6+aYtJvWXJwygyXwZ4l52/iWvu3EfB92dU1IuGIKI5j6RSrq1KLeen3CQxunTEx+2VYEjH92eO79fCfCWcKA7PVzpSQtbTks9MgRVtLuP5IND453TZ+Zu45f6nZy3P292WIud4JeV1RaeVfPFYou+EKohDaAQKrgPqVx++6m13WdWVIZ1ymcgF9+KgQUVRR4Iqn5N5n5RDVQGDr3AiLHFAWU9mtGzd50ZzvP7vgoJzHWk3uQR1+LeyI01fV4a+zgwrO9Oc0pWhpy2F6zrFu/MdEd75io1c+Z2foZqnM5NqaRNKmzA3Spgv5Ui8LG3GDVRIo1kvUVnTSmqq2ajl/JQrz1Z3Z+hpT3N4dIrxnEchvOlxc38XbzhzDd996BD7Do8FE+sK7aHaSn2f4clC8Zd5d1uQsAK1ldDbnmKy4JMtBBdmDS+8riOc+7yVDE/k2Xd4jHDEJnBHzri4Mv2LPIrjwxduZc/g8ZLPLCpy1pVxEz+nJJPFpM8UmGEaGR13uQdX9P7Do1Pk5qC2SlJIRW2R2ioe7/P7u3jbec/jl9at4Nh4jqPjOYbHcwxP5BmeyHF8IsfxyTxPHZng4PAE2bxXnK87WVxHYiWow2TTnmY8W+CxoTHGswVWdWW48My1nL+lP0g8XSkyrhvr2TCjxxPdtzMXTG2FJY96ufaOx/j0XU8wmQ/u01jf18EnLj6z7ot5XGbYnXGLklUoNcyL1nvo6eEZtbSTZJetnlQiouOK5KDRxS/+GF24VWe66gqQcoXcSVrcZ1zh1N52hieyjGdL7wIvd+89ODxe/AyCWuul9eerEZcWbxnoYU1vhu/sOcRJ3BtZQmeY7Kby3py3mXGFtpQwlvOr9tri52Uy53FsMl9XLy8dUwgE23LwVcmHPdDIMmc+iHpoAG2pYI4mstLp727jP521lvOe3x/cK9SVLt4M6oQ9HFcEiRKPBInHEaEt7VrysORRO9fe8RhX3/H4jIvFio4U1/zuS2q+cMdlhgXP5+CxSXwCWaojUjTMe+t5z+OW+59mZDJXUjvEDeWrvWWyy1aX8EaU1wj3YklhLsNTiwlXgpov47mFFPa2JtEwm4RS9NNWtJFyHbIFnzeduZav3HeQE5PV/dHmm7QrM0sTlFUEXdGR4q0v32TGiEbtRHYXEFPeaGCmV4/BW1xmuP/wWPFC6SuBgiU0zLvh7gOs7mkrGgxGE63R75iRyQKnn9IFLC6jufIa4VFlxST5aatxsh5dvmKJI0RDGXYgBhGOjufZvLobkQI37z5IzvMb9kOi0nbznnI0HJabLyx5GIznkgvIKtQlEYzLDOOGeUXpZ2iYl88pp6fd0i58Fflqq0oVyymvEb5EO/WJLKNDnZX497hcij6eC1SIjTpfbSkHRckXlIHeNv7+v5zDsfEcxyfyHJ/MFcUAI5PJ5ajrwZKHEUxmTxVmuqNCXRLBuMwwMsyL7uWAacO8TMopSnnjNZGkws+mVpUqllOpRvhyYCkPydVLvPdeLkXvyrjkPJ9ChZo39RL/PxQ5NqgG99ps6u9m+8bS6p9RVVEvNPws+IG7tBe2n/rJOvY9D/EvCCJyoYj8XET2ichHmh3PUuKy8zcVn6tO/3Lq7ajP3C5uEtffPW3cF0hypw3zLjt/E3lP6W1PTe+T6f90vR2pRWk0Fx1/T3uK+HRzuVy3FTnZJBdUUVw0l5OGIhKo5pKMPS87fxPdbamq34VqZzG+zJXS71T5/7Ok/zOOI6Rdh/a0S2cmmO9Y2ZlhVXcbAz3t9R3nYpgwFxEXeAz4dWAQ+Clwqar+rNJ75jJhfu0dj/G3dzx+MqEuGdKu8L5XvYD3v/aMut4Xl7J2lamtujMuo9lCUUnUlnKCu3x9EtVWi7FediTTjaS3kcFkZMWSCRU5SWorw5gv5vr/dylWEjwX2Keq+wFE5GbgYoK65vOCJY5SCp7yz/c+xVnrV9Z14Y7XyI6TpOjKFnxWdKT4TIKia7EkiyQm8j7PW9VFwfN5+nhQV31DX3Xzx0qKN8OYC3lPuTq8ntWbQGplsfQz1wEHY68Hw7Z5I644MoJhpKiU6HxQruiSsMsdKbqWCnHF2ZGxXPGmrdnMH+37Z8w3SmO/V4sleSQNEc74kSYil4vIbhHZffjw4bp2MJ6rUnximVLw56+U6Hwpulqdg8MTdIROrjnPLybK2cwfK50fwzgZGnldWyzJYxDYEHu9HnimfCVVvV5Vt6vq9tWrV9e1g66Me3IRLkHms5RoV8ZN/AVQr6Kr1dnQ1zntLus6RQHCbOaPlc6PYZwMjbyuLZbk8VNgi4hsEpEMcAlw63zuIK44MoKL+nyWEp0vRVerU644i2SRs5XSte+fMd8Ijf1eLYoJc1UtiMh7gdsAF/icqj4yn/uIJpVs0jxQB73w1J6iD9V8EJ3f+fDPamV2bB3gSqYN+V6wuqtoFDjQ015ROVZ+fiLCMhjEra4i99nI+Xa5IRKU4Z0v/6ylSFvK4T07nt+wyXJYJFLduWDeVoZhGPVhZWgNwzCMhmLJwzAMw6gbSx6GYRhG3VjyMAzDMOrGkodhGIZRN0tWbSUih4Gn5vj2fuDIPIYzX1hc9WFx1YfFVR9LMa7nqWpNd1gv2eRxMojI7lrlaguJxVUfFld9WFz1sdzjsmErwzAMo24seRiGYRh1Y8kjmeubHUAFLK76sLjqw+Kqj2Udl815GIZhGHVjPQ/DMAyjbpZd8hCRC0Xk5yKyT0Q+krC8TUS+Ei7/sYhsjC37k7D95yLy+gWM6b+LyM9EZI+I/EBEnhdb5onIA+HfvNrU1xjbO0TkcCyGy2LL3i4ij4d/b1/guK6OxfSYiByPLWvIORORz4nIkIg8XGG5iMi1Ycx7ROSc2LJGnqvZ4vq9MJ49IvIjEXlxbNmTIvJQeK7m1Wm0hrh2iMiJ2Gf18diyqp9/g+P6H7GYHg6/T6eEyxp5vjaIyA9F5FEReUREPpCwzsJ9x1R12fwR2Lk/AWwGMsCDwIvK1vlvwGfC55cAXwmfvyhcvw3YFG7HXaCYXgV0hs//MIopfD3W5PP1DuDvE957CrA/fOwLn/ctVFxl67+PwMa/oecMuAA4B3i4wvI3At8jcFU/D/hxo89VjXH9arQ/4A1RXOHrJ4H+Jp2vHcB3Tvbzn++4ytb9T8CdC3S+1gLnhM97gMcS/j8u2HdsufU8zgX2qep+Vc0BNwMXl61zMfDF8PktwGtERML2m1U1q6oHgH3h9hoek6r+UFWj2qX3ElRSXAhqOV+VeD1wu6oeU9Vh4HbgwibFdSlw0zztuyKqugs4VmWVi4EbNeBeYKWIrKWx52rWuFT1R+F+YQG/XzWcrxR6g4IAAAfBSURBVEqczPdyvuNakO8WgKoeUtX7w+ejwKPAurLVFuw7ttySxzrgYOz1IDNPfnEdVS0AJ4BVNb63UTHFeRfBL4uIdgnqtt8rIm+eh3jmEttvhV3kW0QkKhfcqPNV17bDIb5NwJ2x5kaes2pUiruR56peyr9fCvyriNwnIpc3IZ6Xi8iDIvI9EdkWtrXE+RKRToIL8NdjzQtyviQYTn8J8OOyRQv2HVsUlQTnkaQy0eVys0rr1PLeuVDzdkXkvwLbgV+LNZ+uqs+IyGbgThF5SFWfmIe4ao3tX4CbVDUrIu8m6LW9usb3NjKuiEuAW1TVi7U18pxVY6G/W3UhIq8iSB7nx5pfEZ6rAeB2Edkb/jJfCO4nsMsYE5E3At8CttAi54tgyOrfVTXeS2n4+RKRboKE9UeqOlK+OOEtDfmOLbeexyCwIfZ6PfBMpXVEJAWsIOjC1vLeRsWEiLwW+Chwkapmo3ZVfSZ83A/sJPg1Ml/MGpuqHo3F81ngpbW+t5FxxbiEsmGFBp+zalSKu5HnqiZE5CzgBuBiVT0atcfO1RDwTeZnqLYmVHVEVcfC598F0iLSTwucr5Bq362GnC8RSRMkji+p6jcSVlm471gjJnZa9Y+gp7WfYBgjmmjbVrbOeyidMP9q+HwbpRPm+5mfCfNaYnoJwQThlrL2PqAtfN4PPM78ThzWEtva2PPfBO7V6Qm6A2GMfeHzUxYqrnC9FxJMYMoCnrONVJ4AfhOlk5k/afS5qjGu0wnm8H61rL0L6Ik9/xFw4QLGtSb67Aguwr8Iz11Nn3+j4gqXRz8quxbqfIXHfiPwd1XWWbDv2Lyd7MXyR6BGeIzgYvzRsO1Kgl/0AO3A18L/TD8BNsfe+9HwfT8H3rCAMd0BPAc8EP7dGrb/KvBQ+J/nIeBdTThf/wt4JIzhh8DW2HvfGZ7HfcDvL2Rc4eu/AK4qe1/DzhnBr9BDQJ7gl967gHcD7w6XC/APYcwPAdsX6FzNFtcNwHDs+7U7bN8cnqcHw8/4owsc13tj3617iSW3pM9/oeIK13kHgYAm/r5Gn6/zCYaa9sQ+qzc26ztmd5gbhmEYdbPc5jwMwzCMecCSh2EYhlE3ljwMwzCMurHkYRiGYdSNJQ/DMAyjbix5GIZhGHVjycNoGiLy/tBe+kvNjiUJEbkyvLO/Udv/Uez590XkuIh8p1H7my9E5M1xe/QK62yMLM1F5JdF5AsLEpyxYNh9HkbTEJG9BDdbHqhx/ZQGZpXRa1dLPasWhEbsV0ReA3QCV6jqb8zntuebMOldpKpHqqyzkcBO/czw9R3AO1X1FwsSpNFwrOdhNAUR+QzBHbm3isgHRaQrLMLzUxH5DxG5OFzvHSLyNRH5FwK30h1hQZwvE9xBW2n73wqdTR+Ju5uKyJiIfEpE7pegsNbqKtv4goi8JXz+pIh8XETuBn5bRP4gjPVBEfl66LCKiJwqIt8M2x8UkV+tsv2x6Lmq/gAYrfHcPSki/1NE7gndgc8RkdtE5InQnDJa73+EMe4Rkf+vxnPzyTDue0Xk1IR9nwFko8QRP0flx1TGvxDY/RhLBEseRlNQ1XcTGLO9SlWvJrB+uVNVf4Wg+NVfi0hXuPrLgber6qvD1+cSWD+8qMou3qmqLyVwIX6/iKwK27uA+1X1HOAu4M/rCHtKVc9X1ZuBb6jqr6jqiwnqKrwrXOda4K6w/RwCm4pGcFBVXw78G/AF4C0EXkZXAojI6wgcaM8FzgZeKiIXhO+tdm7uDWPfBfxBwn5fQeB2Wy+7gVfO4X1Gi7LcLNmN1uV1wEUi8qHwdTuBYR+ERWxi6/6khqGu94vIb4bPNxBcSI8CPvCVsP3/AknOpJX4Suz5mSLyl8BKoBu4LWx/NfA2gHBo60Qd26+HqHzuQ0C3BsWBRkVkSkRWEpzP1wH/Ea7XTXAOdlH53OSAaM7lPuDXE/a7Fjg8h3iHgNPm8D6jRbHkYbQKAvyWqv68pFHkZcB42brlr0s3JLIDeC3wclWdEJGdBMkoiXom/eL7/QLwZlV9UETeQVAydSGJbPD92PPodYrgfP4vVb0u/qZZzk1epydBPZKvD5MEjrIRBcIRDBERApfbJNrD9xpLBBu2MlqF24D3hRcgRORkamysAIbDi+NWguGcCIdgiAfgvwB3z3EfPcChsL7C78Xaf0BQZx4RcUWkd47bP1luA94ZFg5CRNaFBYqqnZtaeBR4Qez1k0zXcLkYSFd43xnAw3Xuy2hhLHkYrcInCC48e0KJ5ydOYlvfB1Iisifczr2xZePANhG5j2CI6co57uPPCEqA3g7sjbV/AHiViDxEMPSzLeG9MxCRfyMoBfAaERkUkdfPMS4AVPVfgS8D94Sx3EKQ8Kqdm1rYBbwkSvIEBcB+TUR+AsR7iSlKe0SvAv7/uRyL0ZqYVNdYVojImKp2NzuOxYyIXAP8i6reUWWdi4HfU9XfEZE2AnHC+XGptbG4sTkPwzDq5X8S9DISEZErCYaw3hE2nQ58xBLH0sJ6HsaiJZSY/iBh0Ws0Voe7hu38A4EENc41qvr5k4kv3PacYxSRbxKUWo3zYVW9LWl9w1hILHkYhmEYdWMT5oZhGEbdWPIwDMMw6saSh2EYhlE3ljwMwzCMurHkYRiGYdTN/wNZynrxT12ddgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = sns.regplot(depth_histogram[1][:-1], depth_histogram[0])\n", "ax.set(xlabel='ferr_ap_irac_i1_mean (uJ)', ylabel='N')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Vmax = Table.read(DMU_DIR + 'dmu28/dmu28_ELAIS-N1/data/zphot/HELP_final_results.fits')#['id']\n", "Vmax['id'].name = 'help_id'\n", "Vmax = Vmax['help_id','UVoptIR_bayes.dust.luminosity', 'UVoptIR_bayes.dust.luminosity_err']" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhelp_idUVoptIR_bayes.dust.luminosityUVoptIR_bayes.dust.luminosity_err
0HELP_J155631.108+545024.3792.198169421792902e+361.0663852408249705e+36
1HELP_J155634.050+545728.0877.650637925801326e+361.5970113316289962e+36
2HELP_J155635.416+545104.5543.244561267305129e+385.496212040065152e+37
3HELP_J155643.789+545434.5425.324129424654964e+378.495595121241911e+36
4HELP_J155644.449+545428.3041.7308412654885122e+375.16574656922523e+36
5HELP_J155645.249+550054.3672.5455348239298913e+387.152740023424394e+37
6HELP_J155645.430+544835.2253.069129676091064e+385.711586616131259e+37
7HELP_J155647.331+550054.8972.4740858218950754e+387.7436208811361745e+37
8HELP_J155647.710+545045.4245.027260627724687e+356.152251650897128e+34
9HELP_J155651.625+545843.0289.675005851837388e+374.57263773951873e+37
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Vmax[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## II. First calaculate the irac_i1 flux as a function of redshift for each object" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#linearly spaced z - should this be logspace?\n", "redshifts = np.linspace(0, 4, 100)\n", "Vmax.add_column(Column(data=np.full((len(Vmax), len(redshifts)), \n", " np.full(len(redshifts), np.nan)\n", " ) , \n", " name='f_z_relation'\n", " )\n", " )" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhelp_idUVoptIR_bayes.dust.luminosityUVoptIR_bayes.dust.luminosity_errf_z_relation [100]
0HELP_J155631.108+545024.3792.198169421792902e+361.0663852408249705e+36nan .. nan
1HELP_J155634.050+545728.0877.650637925801326e+361.5970113316289962e+36nan .. nan
2HELP_J155635.416+545104.5543.244561267305129e+385.496212040065152e+37nan .. nan
3HELP_J155643.789+545434.5425.324129424654964e+378.495595121241911e+36nan .. nan
4HELP_J155644.449+545428.3041.7308412654885122e+375.16574656922523e+36nan .. nan
5HELP_J155645.249+550054.3672.5455348239298913e+387.152740023424394e+37nan .. nan
6HELP_J155645.430+544835.2253.069129676091064e+385.711586616131259e+37nan .. nan
7HELP_J155647.331+550054.8972.4740858218950754e+387.7436208811361745e+37nan .. nan
8HELP_J155647.710+545045.4245.027260627724687e+356.152251650897128e+34nan .. nan
9HELP_J155651.625+545843.0289.675005851837388e+374.57263773951873e+37nan .. nan
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Vmax[:10].show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "redshifts = np.linspace(0, 4, 100)\n", "n_absent = 0\n", "n_processed = 0\n", "\n", "for gal in Vmax['help_id']:\n", "\n", " try:\n", " orig_spec = Table.read(\"{}{}{}_best_model.fits\".format(DMU_DIR, \n", " 'dmu28/dmu28_ELAIS-N1/data/zphot/best_model_fits/',\n", " gal\n", " ))\n", " \n", " except FileNotFoundError:\n", " n_absent += 1\n", " # print('fail')\n", " continue\n", " \n", " #print('{} no fail'.format(gal))\n", " s = SED()\n", " # This is wrong because the best SED we get from CIGALE is redshifted (written by Yannick)\n", " s.add_contribution(\"HELP_SED\", orig_spec['wavelength'], orig_spec['L_lambda_total'])\n", " \n", " fluxes = []\n", " for r in redshifts:\n", " sed = s.copy()\n", " mod = get_module(\"redshifting\", redshift=r)\n", " mod.process(sed)\n", " fluxes.append(sed.compute_fnu('IRAC1'))\n", " \n", " Vmax['f_z_relation'][Vmax['help_id'] == gal] = fluxes\n", " \n", " #print(\"{}:{}\".format(gal,fluxes[0]))\n", " n_processed +=1" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "50129 processed and 0 missing\n" ] } ], "source": [ "print('{} processed and {} missing'.format(n_processed, n_absent))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## III. Then calculate the zmax for each depth bin for each object\n", "\n", "Given the array of fluxes as a function of redhsift we interpolate at the depths based on taking the redshift that the object would have a flux equal to 5$\\sigma$ for that mean error bin" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 3.99843877, 3.99625932, 3.99407987,\n", " 3.99190042, 3.98972097, 3.98754152, 3.98536208, 3.98318263,\n", " 3.98100318, 3.97882373, 3.97664428, 3.97446484, 3.97228539,\n", " 3.97010594, 3.96792649, 3.96574704, 3.9635676 , 3.96138815,\n", " 3.95923198, 3.95718353, 3.95513509, 3.95308664, 3.95103819,\n", " 3.94898975, 3.9469413 , 3.94489286, 3.94284441, 3.94079596,\n", " 3.93874752, 3.93669907, 3.93465063, 3.93260218, 3.93055374,\n", " 3.92850529, 3.92645684, 3.9244084 , 3.92235995, 3.92031151,\n", " 3.91833692, 3.91645138, 3.91456583, 3.91268028, 3.91079473,\n", " 3.90890918, 3.90702363, 3.90513808, 3.90325253, 3.90136698,\n", " 3.89948143, 3.89759588, 3.89571033, 3.89382478, 3.89193923,\n", " 3.89005368, 3.88816813, 3.88628258, 3.88439703, 3.88251148,\n", " 3.88062593, 3.87873959, 3.87682235, 3.87490512, 3.87298789,\n", " 3.87107066, 3.86915343, 3.8672362 , 3.86531897, 3.86340174,\n", " 3.8614845 , 3.85956727, 3.85765004, 3.85573281, 3.85381558,\n", " 3.85189835, 3.84998112, 3.84806389, 3.84614665, 3.84422942,\n", " 3.84231219, 3.84039496, 3.83847773, 3.83684569, 3.83522834,\n", " 3.83361099, 3.83199364, 3.83037629, 3.82875894, 3.82714159,\n", " 3.82552424, 3.82390689, 3.82228953, 3.82067218, 3.81905483,\n", " 3.81743748, 3.81582013, 3.81420278, 3.81258543, 3.81096808,\n", " 3.80935073, 3.80773338, 3.80611602, 3.80449867, 3.80288132,\n", " 3.80126397, 3.79964662, 3.79802927, 3.79664774, 3.79527365,\n", " 3.79389955, 3.79252546, 3.79115137, 3.78977728, 3.78840319,\n", " 3.7870291 , 3.785655 , 3.78428091, 3.78290682, 3.78153273,\n", " 3.78015864, 3.77878455, 3.77741045, 3.77603636, 3.77466227,\n", " 3.77328818, 3.77191409, 3.77054 , 3.7691659 , 3.76779181,\n", " 3.76641772, 3.76504363, 3.76366954, 3.76229545, 3.76092135,\n", " 3.75954726, 3.75817317, 3.75680584, 3.75544369, 3.75408155,\n", " 3.75271941, 3.75135727, 3.74999513, 3.74863299, 3.74727085,\n", " 3.74590871, 3.74454657, 3.74318443, 3.74182229, 3.74046015,\n", " 3.73909801, 3.73773587, 3.73637373, 3.73501159, 3.73364945,\n", " 3.73228731, 3.73092517, 3.72956303, 3.72820089, 3.72683874,\n", " 3.7254766 , 3.72411446, 3.72275232, 3.72139018, 3.72002804,\n", " 3.7186659 , 3.71730376, 3.71585847, 3.71440425, 3.71295003,\n", " 3.7114958 , 3.71004158, 3.70858736, 3.70713314, 3.70567892,\n", " 3.7042247 , 3.70277048, 3.70131626, 3.69986204, 3.69840782,\n", " 3.6969536 , 3.69549938, 3.69404515, 3.69259093, 3.69113671,\n", " 3.68968249, 3.68822827, 3.68677405, 3.68531983, 3.68386561,\n", " 3.68241139, 3.68095717, 3.67950295, 3.67804873, 3.6766137 ,\n", " 3.6753207 , 3.6740277 , 3.6727347 , 3.6714417 , 3.67014869,\n", " 3.66885569, 3.66756269, 3.66626969, 3.66497669, 3.66368369,\n", " 3.66239068, 3.66109768, 3.65980468, 3.65851168, 3.65721868,\n", " 3.65592567, 3.65463267, 3.65333967, 3.65204667, 3.65075367,\n", " 3.64946067, 3.64816766, 3.64687466, 3.64558166, 3.64428866,\n", " 3.64299566, 3.64170265, 3.64040965, 3.63911665, 3.63782365,\n", " 3.63653065, 3.63537445, 3.63423855, 3.63310264, 3.63196674,\n", " 3.63083083, 3.62969493, 3.62855902, 3.62742312, 3.62628722,\n", " 3.62515131, 3.62401541, 3.6228795 , 3.6217436 , 3.62060769,\n", " 3.61947179, 3.61833588, 3.61719998, 3.61606408, 3.61492817,\n", " 3.61379227, 3.61265636, 3.61152046, 3.61038455, 3.60924865,\n", " 3.60811274, 3.60697684, 3.60584094, 3.60470503, 3.60356913,\n", " 3.60243322, 3.60129732, 3.60016141, 3.59902551, 3.5978896 ,\n", " 3.5967537 , 3.59562986, 3.59453405, 3.59343823, 3.59234242,\n", " 3.5912466 , 3.59015079, 3.58905498, 3.58795916, 3.58686335,\n", " 3.58576754, 3.58467172, 3.58357591, 3.5824801 , 3.58138428,\n", " 3.58028847, 3.57919265, 3.57809684, 3.57700103, 3.57590521,\n", " 3.5748094 , 3.57371359, 3.57261777, 3.57152196, 3.57042615,\n", " 3.56933033, 3.56823452, 3.56713871, 3.56604289, 3.56494708,\n", " 3.56385126, 3.56275545, 3.56165964, 3.56056382, 3.55946801,\n", " 3.5583722 , 3.55727638, 3.55618057, 3.55509371, 3.55401874,\n", " 3.55294376, 3.55186879, 3.55079381, 3.54971884, 3.54864387,\n", " 3.54756889, 3.54649392, 3.54541895, 3.54434397, 3.543269 ,\n", " 3.54219402, 3.54111905, 3.54004408, 3.5389691 , 3.53789413,\n", " 3.53681916, 3.53574418, 3.53466921, 3.53359424, 3.53251926,\n", " 3.53144429, 3.53036931, 3.52929434, 3.52821937, 3.52714439,\n", " 3.52606942, 3.52499445, 3.52391947, 3.5228445 , 3.52176952,\n", " 3.52069455, 3.51961958, 3.5185446 , 3.51746963, 3.51639466,\n", " 3.51531968, 3.51420641, 3.51308605, 3.51196568, 3.51084531,\n", " 3.50972494, 3.50860457, 3.5074842 , 3.50636383, 3.50524346,\n", " 3.50412309, 3.50300272, 3.50188235, 3.50076198, 3.49964161,\n", " 3.49852125, 3.49740088, 3.49628051, 3.49516014, 3.49403977,\n", " 3.4929194 , 3.49179903, 3.49067866, 3.48955829, 3.48843792,\n", " 3.48731755, 3.48619718, 3.48507681, 3.48395644, 3.48283608,\n", " 3.48171571, 3.48059534, 3.47947497, 3.4783546 , 3.47723423,\n", " 3.47611386, 3.47499349, 3.47389978, 3.47281356, 3.47172735,\n", " 3.47064113, 3.46955491, 3.4684687 , 3.46738248, 3.46629627,\n", " 3.46521005, 3.46412384, 3.46303762, 3.46195141, 3.46086519,\n", " 3.45977898, 3.45869276, 3.45760655, 3.45652033, 3.45543411,\n", " 3.4543479 , 3.45326168, 3.45217547, 3.45108925, 3.45000304,\n", " 3.44891682, 3.44783061, 3.44674439, 3.44565818, 3.44457196,\n", " 3.44348575, 3.44239953, 3.44131331, 3.4402271 , 3.43914088,\n", " 3.43805467, 3.43696845, 3.43588224, 3.43479602, 3.43372016,\n", " 3.43265168, 3.43158321, 3.43051474, 3.42944627, 3.42837779,\n", " 3.42730932, 3.42624085, 3.42517238, 3.42410391, 3.42303543,\n", " 3.42196696, 3.42089849, 3.41983002, 3.41876154, 3.41769307,\n", " 3.4166246 , 3.41555613, 3.41448765, 3.41341918, 3.41235071,\n", " 3.41128224, 3.41021376, 3.40914529, 3.40807682, 3.40700835,\n", " 3.40593987, 3.4048714 , 3.40380293, 3.40273446, 3.40166598,\n", " 3.40059751, 3.39952904, 3.39846057, 3.39739209, 3.39632362,\n", " 3.39525515, 3.39418668, 3.39321427, 3.39227078, 3.3913273 ,\n", " 3.39038382, 3.38944033, 3.38849685, 3.38755337, 3.38660988,\n", " 3.3856664 , 3.38472292, 3.38377943, 3.38283595, 3.38189247,\n", " 3.38094898, 3.3800055 , 3.37906202, 3.37811853, 3.37717505,\n", " 3.37623157, 3.37528808, 3.3743446 , 3.37340112, 3.37245763])" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Example object left over as the last object from the previous loop\n", "np.interp(5 * bins *1.e-3, np.flip(fluxes,0), np.flip(redshifts,0))" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Vmax.add_column(Column(data=np.full((len(Vmax), len(bins)), \n", " np.full(len(bins), np.nan)\n", " ) , \n", " name='zmax_histogram'\n", " )\n", " )" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for gal in Vmax['help_id']:\n", " fluxes = np.array(Vmax[Vmax['help_id']==gal]['f_z_relation'])[0]\n", " z_max_f_relation = np.interp(5 * bins *1.e-3, np.flip(fluxes,0), np.flip(redshifts,0))\n", " Vmax['zmax_histogram'][Vmax['help_id'] == gal] = z_max_f_relation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lets check the test object above is correct" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 4. , 4. , 4. , 4. , 4. ,\n", " 3.97000923, 3.91069402, 3.85585164, 3.80247588, 3.74759718,\n", " 3.69361973, 3.64378939, 3.59827304, 3.55633336, 3.51692262,\n", " 3.48085935, 3.4457803 , 3.41089885, 3.37651511, 3.34290257,\n", " 3.30999618, 3.27755546, 3.24596417, 3.2162372 , 3.18816005,\n", " 3.162073 , 3.1366375 , 3.11164496, 3.08737437, 3.06325983,\n", " 3.03945346, 3.01577235, 2.99216944, 2.96924202, 2.94665682,\n", " 2.92578887, 2.90525627, 2.88606653, 2.86707049, 2.84993431,\n", " 2.83279813, 2.81658164, 2.80069418, 2.7848756 , 2.76934438,\n", " 2.75381316, 2.73875464, 2.72402204, 2.70928944, 2.69504105,\n", " 2.68087851, 2.66671596, 2.65249153, 2.63826688, 2.62421933,\n", " 2.61112926, 2.59803918, 2.58502873, 2.57308478, 2.56114083,\n", " 2.54919687, 2.53778956, 2.5266271 , 2.51546464, 2.50435333,\n", " 2.49395385, 2.48355437, 2.47315488, 2.46285597, 2.45300958,\n", " 2.44316318, 2.43331678, 2.42350816, 2.41414354, 2.40477893,\n", " 2.39541431, 2.3860497 , 2.37688197, 2.36777511, 2.35866824,\n", " 2.34956138, 2.34062072, 2.3320218 , 2.32342287, 2.31482395,\n", " 2.30622503, 2.29811449, 2.29029267, 2.28247085, 2.27464903,\n", " 2.2668272 , 2.25924235, 2.25193243, 2.24462251, 2.23731259,\n", " 2.23000267, 2.22269275, 2.21561485, 2.20855291, 2.20149097,\n", " 2.19442903, 2.18736709, 2.18038258, 2.17368204, 2.16698149,\n", " 2.16028094, 2.15358039, 2.14687984, 2.14016892, 2.13341204,\n", " 2.12665517, 2.1198983 , 2.11314143, 2.10638455, 2.09966305,\n", " 2.09307904, 2.08649502, 2.07991101, 2.073327 , 2.06674299,\n", " 2.06018784, 2.05402881, 2.04786978, 2.04171076, 2.03555173,\n", " 2.0293927 , 2.02323367, 2.01715751, 2.01116166, 2.00516581,\n", " 1.99916997, 1.99317412, 1.98717828, 1.98118243, 1.97552744,\n", " 1.96997479, 1.96442214, 1.9588695 , 1.95331685, 1.9477642 ,\n", " 1.94221155, 1.9368612 , 1.93171927, 1.92657734, 1.92143541,\n", " 1.91629348, 1.91115155, 1.90600962, 1.90086769, 1.89587792,\n", " 1.8909757 , 1.88607347, 1.88117125, 1.87626902, 1.87136679,\n", " 1.86646457, 1.86156234, 1.85674131, 1.85204576, 1.84735022,\n", " 1.84265468, 1.83795914, 1.8332636 , 1.82856806, 1.82387252,\n", " 1.81917698, 1.81476102, 1.81042025, 1.80607948, 1.80173871,\n", " 1.79739794, 1.79305717, 1.7887164 , 1.78437563, 1.78003486,\n", " 1.77583015, 1.77177281, 1.76771547, 1.76365813, 1.75960079,\n", " 1.75554345, 1.75148611, 1.74742877, 1.74337143, 1.73931409,\n", " 1.73539224, 1.73159458, 1.72779692, 1.72399926, 1.72020159,\n", " 1.71640393, 1.71260627, 1.70880861, 1.70501095, 1.70121328,\n", " 1.69741562, 1.6938523 , 1.69032017, 1.68678803, 1.68325589,\n", " 1.67972375, 1.67619161, 1.67265947, 1.66912734, 1.6655952 ,\n", " 1.66206306, 1.65853092, 1.65510543, 1.65181371, 1.64852199,\n", " 1.64523026, 1.64193854, 1.63864682, 1.6353551 , 1.63206337,\n", " 1.62877165, 1.62547993, 1.62218821, 1.61889648, 1.61565608,\n", " 1.61266772, 1.60967937, 1.60669101, 1.60370265, 1.6007143 ,\n", " 1.59772594, 1.59473758, 1.59174923, 1.58876087, 1.58577251,\n", " 1.58278415, 1.5797958 , 1.57680744, 1.5739793 , 1.57123792,\n", " 1.56849654, 1.56575517, 1.56301379, 1.56027242, 1.55753104,\n", " 1.55478966, 1.55204829, 1.54930691, 1.54656554, 1.54382416,\n", " 1.54108278, 1.53834141, 1.53560003, 1.5331338 , 1.53069475,\n", " 1.5282557 , 1.52581666, 1.52337761, 1.52093856, 1.51849951,\n", " 1.51606047, 1.51362142, 1.51118237, 1.50874332, 1.50630427,\n", " 1.50386523, 1.50142618, 1.49898713, 1.49654808, 1.49418977,\n", " 1.49198501, 1.48978025, 1.4875755 , 1.48537074, 1.48316598,\n", " 1.48096122, 1.47875647, 1.47655171, 1.47434695, 1.47214219,\n", " 1.46993744, 1.46773268, 1.46552792, 1.46332316, 1.46111841,\n", " 1.45891365, 1.45670889, 1.45450696, 1.45245294, 1.45039892,\n", " 1.44834491, 1.44629089, 1.44423687, 1.44218285, 1.44012883,\n", " 1.43807482, 1.4360208 , 1.43396678, 1.43191276, 1.42985875,\n", " 1.42780473, 1.42575071, 1.42369669, 1.42164267, 1.41958866,\n", " 1.41753464, 1.41548062, 1.41347394, 1.41155596, 1.40963797,\n", " 1.40771998, 1.40580199, 1.403884 , 1.40196602, 1.40004803,\n", " 1.39813004, 1.39621205, 1.39429407, 1.39237608, 1.39045809,\n", " 1.3885401 , 1.38662212, 1.38470413, 1.38278614, 1.38086815,\n", " 1.37895016, 1.37703218, 1.37511419, 1.37324914, 1.37151877,\n", " 1.3697884 , 1.36805803, 1.36632766, 1.36459729, 1.36286692,\n", " 1.36113655, 1.35940618, 1.35767581, 1.35594545, 1.35421508,\n", " 1.35248471, 1.35075434, 1.34902397, 1.3472936 , 1.34556323,\n", " 1.34383286, 1.34210249, 1.34037212, 1.33864175, 1.33691138,\n", " 1.33518101, 1.33345064, 1.33188123, 1.33032352, 1.32876582,\n", " 1.32720811, 1.3256504 , 1.3240927 , 1.32253499, 1.32097728,\n", " 1.31941958, 1.31786187, 1.31630416, 1.31474646, 1.31318875,\n", " 1.31163104, 1.31007334, 1.30851563, 1.30695792, 1.30540021,\n", " 1.30384251, 1.3022848 , 1.30072709, 1.29916939, 1.29761168,\n", " 1.29605397, 1.29449627, 1.29293856, 1.29157367, 1.29020993,\n", " 1.2888462 , 1.28748246, 1.28611872, 1.28475499, 1.28339125,\n", " 1.28202751, 1.28066378, 1.27930004, 1.2779363 , 1.27657257,\n", " 1.27520883, 1.27384509, 1.27248136, 1.27111762, 1.26975388,\n", " 1.26839015, 1.26702641, 1.26566267, 1.26429894, 1.2629352 ,\n", " 1.26157146, 1.26020773, 1.25884399, 1.25748025, 1.25611652,\n", " 1.25475278, 1.25338904, 1.25208411, 1.25088078, 1.24967746,\n", " 1.24847413, 1.2472708 , 1.24606748, 1.24486415, 1.24366082,\n", " 1.2424575 , 1.24125417, 1.24005084, 1.23884752, 1.23764419,\n", " 1.23644086, 1.23523754, 1.23403421, 1.23283088, 1.23162756,\n", " 1.23042423, 1.2292209 , 1.22801758, 1.22681425, 1.22561092,\n", " 1.2244076 , 1.22320427, 1.22200094, 1.22079762, 1.21959429,\n", " 1.21839096, 1.21718764, 1.21598431, 1.21478098, 1.21357766,\n", " 1.21237433, 1.21130014, 1.21026036, 1.20922057, 1.20818079,\n", " 1.207141 , 1.20610122, 1.20506143, 1.20402165, 1.20298186,\n", " 1.20194208, 1.20090229, 1.19986251, 1.19882272, 1.19778293,\n", " 1.19674315, 1.19570336, 1.19466358, 1.19362379, 1.19258401,\n", " 1.19154422, 1.19050444, 1.18946465, 1.18842487, 1.18738508,\n", " 1.1863453 , 1.18530551, 1.18426573, 1.18322594, 1.18218616,\n", " 1.18114637, 1.18010658, 1.1790668 , 1.17802701, 1.17698723,\n", " 1.17594744, 1.17490766, 1.17386787, 1.17282809, 1.1717883 ,\n", " 1.17084793, 1.16991486, 1.16898178, 1.16804871, 1.16711564,\n", " 1.16618257, 1.16524949, 1.16431642, 1.16338335, 1.16245028,\n", " 1.1615172 , 1.16058413, 1.15965106, 1.15871799, 1.15778491,\n", " 1.15685184, 1.15591877, 1.1549857 , 1.15405262, 1.15311955,\n", " 1.15218648, 1.15125341, 1.15032033, 1.14938726, 1.14845419,\n", " 1.14752112, 1.14658804, 1.14565497, 1.1447219 , 1.14378883,\n", " 1.14285575, 1.14192268, 1.14098961, 1.14005654, 1.13912346,\n", " 1.13819039, 1.13725732, 1.13632425, 1.13539117, 1.1344581 ,\n", " 1.13352503, 1.13259196, 1.13165888, 1.13080006, 1.12998494,\n", " 1.12916982, 1.1283547 , 1.12753958, 1.12672447, 1.12590935,\n", " 1.12509423, 1.12427911, 1.12346399, 1.12264887, 1.12183376,\n", " 1.12101864, 1.12020352, 1.1193884 , 1.11857328, 1.11775816,\n", " 1.11694305, 1.11612793, 1.11531281, 1.11449769, 1.11368257,\n", " 1.11286745, 1.11205234, 1.11123722, 1.1104221 , 1.10960698,\n", " 1.10879186, 1.10797674, 1.10716163, 1.10634651, 1.10553139,\n", " 1.10471627, 1.10390115, 1.10308603, 1.10227092, 1.1014558 ,\n", " 1.10064068, 1.09982556, 1.09901044, 1.09819532, 1.09738021,\n", " 1.09656509, 1.09574997, 1.09493485, 1.09411973, 1.09330461,\n", " 1.0924895 , 1.09167438, 1.09086629, 1.09016608, 1.08946588,\n", " 1.08876568, 1.08806548, 1.08736527, 1.08666507, 1.08596487,\n", " 1.08526467, 1.08456446, 1.08386426, 1.08316406, 1.08246386,\n", " 1.08176365, 1.08106345, 1.08036325, 1.07966305, 1.07896284,\n", " 1.07826264, 1.07756244, 1.07686224, 1.07616203, 1.07546183,\n", " 1.07476163, 1.07406143, 1.07336122, 1.07266102, 1.07196082,\n", " 1.07126062, 1.07056041, 1.06986021, 1.06916001, 1.06845981,\n", " 1.0677596 , 1.0670594 , 1.0663592 , 1.065659 , 1.06495879,\n", " 1.06425859, 1.06355839, 1.06285819, 1.06215798, 1.06145778,\n", " 1.06075758, 1.06005738, 1.05935717, 1.05865697, 1.05795677,\n", " 1.05725657, 1.05655636, 1.05585616, 1.05515596, 1.05445576,\n", " 1.05375555, 1.05305535, 1.05235515, 1.05165495, 1.05095474,\n", " 1.05028676, 1.0496766 , 1.04906645, 1.04845629, 1.04784614,\n", " 1.04723598, 1.04662583, 1.04601567, 1.04540552, 1.04479537,\n", " 1.04418521, 1.04357506, 1.0429649 , 1.04235475, 1.04174459,\n", " 1.04113444, 1.04052428, 1.03991413, 1.03930397, 1.03869382,\n", " 1.03808367, 1.03747351, 1.03686336, 1.0362532 , 1.03564305,\n", " 1.03503289, 1.03442274, 1.03381258, 1.03320243, 1.03259227,\n", " 1.03198212, 1.03137197, 1.03076181, 1.03015166, 1.0295415 ,\n", " 1.02893135, 1.02832119, 1.02771104, 1.02710088, 1.02649073,\n", " 1.02588057, 1.02527042, 1.02466027, 1.02405011, 1.02343996,\n", " 1.0228298 , 1.02221965, 1.02160949, 1.02099934, 1.02038918,\n", " 1.01977903, 1.01916887, 1.01855872, 1.01794857, 1.01733841,\n", " 1.01672826, 1.0161181 , 1.01550795, 1.01489779, 1.01428764,\n", " 1.01367748, 1.01306733, 1.01245717, 1.01184702, 1.01123686,\n", " 1.01062671, 1.01002726, 1.00949447, 1.00896168, 1.00842889,\n", " 1.00789609, 1.0073633 , 1.00683051, 1.00629772, 1.00576492,\n", " 1.00523213, 1.00469934, 1.00416655, 1.00363376, 1.00310096,\n", " 1.00256817, 1.00203538, 1.00150259, 1.00096979, 1.000437 ,\n", " 0.99990421, 0.99937142, 0.99883862, 0.99830583, 0.99777304,\n", " 0.99724025, 0.99670745, 0.99617466, 0.99564187, 0.99510908,\n", " 0.99457628, 0.99404349, 0.9935107 , 0.99297791, 0.99244512,\n", " 0.99191232, 0.99137953, 0.99084674, 0.99031395, 0.98978115,\n", " 0.98924836, 0.98871557, 0.98818278, 0.98764998, 0.98711719,\n", " 0.9865844 , 0.98605161, 0.98551881, 0.98498602, 0.98445323,\n", " 0.98392044, 0.98338764, 0.98285485, 0.98232206, 0.98178927,\n", " 0.98125648, 0.98072368, 0.98019089, 0.9796581 , 0.97912531,\n", " 0.97859251, 0.97805972, 0.97752693, 0.97699414, 0.97646134,\n", " 0.97592855, 0.97539576, 0.97486297, 0.97433017, 0.97379738,\n", " 0.97326459, 0.9727318 , 0.972199 , 0.97166621, 0.97113342,\n", " 0.97060063, 0.97006784, 0.96955559, 0.9690904 , 0.96862522,\n", " 0.96816003, 0.96769484, 0.96722966, 0.96676447, 0.96629928,\n", " 0.9658341 , 0.96536891, 0.96490373, 0.96443854, 0.96397335,\n", " 0.96350817, 0.96304298, 0.96257779, 0.96211261, 0.96164742,\n", " 0.96118223, 0.96071705, 0.96025186, 0.95978667, 0.95932149,\n", " 0.9588563 , 0.95839111, 0.95792593, 0.95746074, 0.95699556,\n", " 0.95653037, 0.95606518, 0.9556 , 0.95513481, 0.95466962,\n", " 0.95420444, 0.95373925, 0.95327406, 0.95280888, 0.95234369,\n", " 0.9518785 , 0.95141332, 0.95094813, 0.95048295, 0.95001776,\n", " 0.94955257, 0.94908739, 0.9486222 , 0.94815701, 0.94769183,\n", " 0.94722664, 0.94676145, 0.94629627, 0.94583108, 0.94536589,\n", " 0.94490071, 0.94443552, 0.94397033, 0.94350515, 0.94303996,\n", " 0.94257478, 0.94210959, 0.9416444 , 0.94117922, 0.94071403,\n", " 0.94024884, 0.93978366, 0.93931847, 0.93885328, 0.9383881 ,\n", " 0.93792291, 0.93745772, 0.93699254, 0.93652735, 0.93606217,\n", " 0.93559698, 0.93513179, 0.93466661, 0.93420142, 0.93373623,\n", " 0.93327105, 0.93280586, 0.93234067, 0.93187549, 0.9314103 ,\n", " 0.93094511, 0.93047993, 0.93001474, 0.92954955, 0.92910787,\n", " 0.92869511, 0.92828234, 0.92786958, 0.92745682, 0.92704405,\n", " 0.92663129, 0.92621852, 0.92580576, 0.925393 , 0.92498023,\n", " 0.92456747, 0.92415471, 0.92374194, 0.92332918, 0.92291641,\n", " 0.92250365, 0.92209089, 0.92167812, 0.92126536, 0.92085259,\n", " 0.92043983, 0.92002707, 0.9196143 , 0.91920154, 0.91878877,\n", " 0.91837601, 0.91796325, 0.91755048, 0.91713772, 0.91672496,\n", " 0.91631219, 0.91589943, 0.91548666, 0.9150739 , 0.91466114,\n", " 0.91424837, 0.91383561, 0.91342284, 0.91301008, 0.91259732,\n", " 0.91218455, 0.91177179, 0.91135903, 0.91094626, 0.9105335 ,\n", " 0.91012073, 0.90970797, 0.90929521, 0.90888244, 0.90846968,\n", " 0.90805691, 0.90764415, 0.90723139, 0.90681862, 0.90640586,\n", " 0.9059931 , 0.90558033, 0.90516757, 0.9047548 , 0.90434204,\n", " 0.90392928, 0.90351651, 0.90310375, 0.90269098, 0.90227822,\n", " 0.90186546, 0.90145269, 0.90103993, 0.90062717, 0.9002144 ,\n", " 0.89980164, 0.89938887, 0.89897611, 0.89856335, 0.89815058,\n", " 0.89773782, 0.89732505, 0.89691229, 0.89649953, 0.89608676,\n", " 0.895674 , 0.89526124, 0.89484847, 0.89443571, 0.89402294,\n", " 0.89361018, 0.89319742, 0.89278465, 0.89237189, 0.89195912,\n", " 0.89154636, 0.8911336 , 0.89072083, 0.89030807, 0.8898953 ,\n", " 0.88948254, 0.88906978, 0.88867875, 0.88830467, 0.88793059,\n", " 0.88755651, 0.88718243, 0.88680836, 0.88643428, 0.8860602 ,\n", " 0.88568612, 0.88531205, 0.88493797, 0.88456389, 0.88418981,\n", " 0.88381573, 0.88344166, 0.88306758, 0.8826935 , 0.88231942,\n", " 0.88194534, 0.88157127, 0.88119719, 0.88082311, 0.88044903,\n", " 0.88007496, 0.87970088, 0.8793268 , 0.87895272, 0.87857864])" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array(Vmax[Vmax['help_id']=='HELP_J155700.909+550039.328']['zmax_histogram'])[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IV. Finally calculate the Vmax on EN1 for each object\n", "For every object calculate the Vmax for each depth cell and multiply by the number of cells at that depth" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Vmax.add_column(Column(data=np.full((len(Vmax), len(bins)), \n", " np.full(len(bins), np.nan)\n", " ) , \n", " name='vmax_histogram'\n", " )\n", " )" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "cosmo = FlatLambdaCDM(H0=100. , Om0 = (1-0.7))\n", "\n", "#TODO: Make a lookup table for speed" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "for gal in Vmax['help_id']:\n", " \n", " z_max_f_relation = np.array(Vmax[Vmax['help_id']==gal]['zmax_histogram'])[0]\n", " v_max_f_relation = cosmo.comoving_volume(z_max_f_relation)\n", " Vmax['vmax_histogram'][Vmax['help_id'] == gal] = v_max_f_relation.value\n", " \n", " " ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "Vmax.write(\"data/vmax_ELAIS-N1.fits\", overwrite=True)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#def gal_sample(z0,z1,Ldust,Vmax):\n", " " ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }