# File containing the input data. The columns are 'id' (name of the # object), 'redshift' (if 0 the distance is assumed to be 10 pc), the # filter names for the fluxes, and the filter names with the '_err' # suffix for the uncertainties. The fluxes and the uncertainties must be # in mJy. This file is optional to generate the configuration file. data_file = Lockman-SWIRE_cigale_best_extcor_20180219.fits # Don't use this parameter with HELP version of CIGALE. parameters_file = # Order of the modules use for SED creation. Available modules: # SFH: sfhdelayedplusExpburst # SSP: bc03 # Dust attenuation: dustatt_2powerlaws # Lyman continuum absorption: lyc_absorption # Dust emission: dl2014 # AGN: fritz2006 # Redshift: redshifting (mandatory!) sed_modules = sfhdelayedplusExpburst, bc03, dustatt_2powerlaws, lyc_absorption, dl2014, fritz2006, redshifting # Method used for statistical analysis. Available methods: pdf_analysis. analysis_method = pdf_analysis # Number of CPU cores available. This computer has 20 cores. cores = 18 # Bands to consider. To consider uncertainties too, the name of the band # must be indicated with the _err suffix. For instance: FUV, FUV_err. #bands = wfc_u, wfc_u_err, megacam_u, megacam_u_err, megacam_g, megacam_g_err, gpc1_g, gpc1_g_err, wfc_g, wfc_g_err, gpc1_r, gpc1_r_err, wfc_r, wfc_r_err, megacam_r, megacam_r_err, gpc1_i, gpc1_i_err, megacam_i, megacam_i_err, megacam_y, megacam_y_err, wfc_i, wfc_i_err, gpc1_z, gpc1_z_err, wfc_z, wfc_z_err, megacam_z, megacam_z_err, gpc1_y, gpc1_y_err, ukidss_j, ukidss_j_err, ukidss_k, ukidss_k_err, irac_i1, irac_i1_err, irac_i2, irac_i2_err, irac_i3, irac_i3_err, irac_i4, irac_i4_err #, mips_24, mips_24_err, bands = pacs_green, pacs_green_err, pacs_red, pacs_red_err, spire_250, spire_250_err, spire_350, spire_350_err, spire_500, spire_500_err # Configuration of the SED creation modules. [sed_modules_params] [[sfhdelayedplusExpburst]] # e-folding time of the main stellar population model in Myr. tau_main = 3000.0 # e-folding time of the late starburst population model in Myr. tau_burst = 10000.0 # Mass fraction of the late burst population. f_burst = 0.001, 0.01, 0.03, 0.1, 0.2, 0.3 # Age of the main stellar population in the galaxy in Myr. The precision # is 1 Myr. age = 1000, 2500, 4500, 6000, 8000, 12000 # Age of the late burst in Myr. The precision is 1 Myr. burst_age = 10, 50, 80, 110 # Value of SFR at t = 0 in M_sun/yr. sfr_0 = 1.0 # Normalise the SFH to produce one solar mass. normalise = True [[bc03]] # Initial mass function: 0 (Salpeter) or 1 (Chabrier). imf = 1 # Metalicity. Possible values are: 0.0001, 0.0004, 0.004, 0.008, 0.02, # 0.05. metallicity = 0.02 # Age [Myr] of the separation between the young and the old star # populations. The default value in 10^7 years (10 Myr). Set to 0 not to # differentiate ages (only an old population). separation_age = 10 [[dustatt_2powerlaws]] # V-band attenuation in the birth clouds. Av_BC = 0.3, 0.8, 1.2, 1.7, 2.3, 2.8, 3.3, 3.8 # Power law slope of the attenuation in the birth clouds. slope_BC = -0.7 # Av ISM / Av BC (<1). BC_to_ISM_factor = 0.3, 0.5, 0.8, 1.0 # Power law slope of the attenuation in the ISM. slope_ISM = -0.7 # Filters for which the attenuation will be computed and added to the # SED information dictionary. You can give several filter names # separated by a & (don't use commas). filters = bessell_b & galex_fuv [[lyc_absorption]] # Fraction of Lyman continuum photons escaping the galaxy f_esc = 0.0 # Fraction of Lyman continuum photons absorbed by dust f_dust = 0.0 [[dl2014]] # Mass fraction of PAH. Possible values are: 0.47, 1.12, 1.77, 2.50, # 3.19, 3.90, 4.58, 5.26, 5.95, 6.63, 7.32. qpah = 0.47, 1.12, 2.5, 3.9 # Minimum radiation field. Possible values are: 0.100, 0.120, 0.150, # 0.170, 0.200, 0.250, 0.300, 0.350, 0.400, 0.500, 0.600, 0.700, 0.800, # 1.000, 1.200, 1.500, 1.700, 2.000, 2.500, 3.000, 3.500, 4.000, 5.000, # 6.000, 7.000, 8.000, 10.00, 12.00, 15.00, 17.00, 20.00, 25.00, 30.00, # 35.00, 40.00, 50.00. umin = 5.0, 10.0, 25.0 # Powerlaw slope dU/dM propto U^alpha. Possible values are: 1.0, 1.1, # 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, # 2.6, 2.7, 2.8, 2.9, 3.0. alpha = 2.0 # Fraction illuminated from Umin to Umax. Possible values between 0 and # 1. gamma = 0.02 [[fritz2006]] # Ratio of the maximum to minimum radii of the dust torus. Possible # values are: 10, 30, 60, 100, 150. r_ratio = 60.0 # Optical depth at 9.7 microns. Possible values are: 0.1, 0.3, 0.6, 1.0, # 2.0, 3.0, 6.0, 10.0. tau = 1.0, 6.0 # Beta. Possible values are: -1.00, -0.75, -0.50, -0.25, 0.00. beta = -0.5 # Gamma. Possible values are: 0.0, 2.0, 4.0, 6.0. gamma = 0.0 # Full opening angle of the dust torus (Fig 1 of Fritz 2006). Possible # values are: 60., 100., 140. opening_angle = 100.0 # Angle between equatorial axis and line of sight. Psy = 90◦ for type 1 # and Psy = 0° for type 2. Possible values are: 0.001, 10.100, 20.100, # 30.100, 40.100, 50.100, 60.100, 70.100, 80.100, 89.990. psy = 0.001 # AGN fraction. fracAGN = 0.0, 0.05, 0.1, 0.25, 0.8 [[redshifting]] # Redshift to apply to the galaxy. Leave empty to use the redshifts from # the input file. redshift = # Configuration of the statistical analysis method. [analysis_params] # List of the physical properties to estimate. Leave empty to analyse # all the physical properties (not recommended when there are many # models). variables = stellar.m_star, sfh.sfr10Myrs, dust.luminosity, dust.mass, dust.qpah, dust.umin, agn.fracAGN, attenuation.Av_BC, attenuation.bessell_b, attenuation.galex_fuv, attenuation.slope_BC, attenuation.BC_to_ISM_factor, attenuation.slope_ISM, sfh.tau_main, sfh.age, sfh.burst_age, sfh.f_burst # If true, save the best SED for each observation to a file. save_best_sed = True # If true, for each observation and each analysed variable save the # reduced chi2. save_chi2 = False # If true, for each observation and each analysed variable save the # probability density function. save_pdf = False # If true, for each object check whether upper limits are present and # analyse them. lim_flag = False # If true, for each object we create a mock object and analyse them. mock_flag = True