xFLS master catalogue

Checks and diagnostics

These revealed a number of issues to be corrected. There was a unit issue with the BASS Legacy Survey magnitudes and fluxes which needs to be corrected across all the fields. The UHS magnitudes are Vega and needed to be corrected.

In [1]:
from herschelhelp_internal import git_version
print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version()))
This notebook was run with herschelhelp_internal version: 
44f1ae0 (Thu Nov 30 18:27:54 2017 +0000)
In [2]:
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))
plt.style.use('ggplot')

import locale
locale.setlocale(locale.LC_ALL, 'en_GB')

import os
import time
import itertools

from astropy.coordinates import SkyCoord
from astropy.table import Table
from astropy import units as u
from astropy import visualization as vis
import numpy as np
from matplotlib_venn import venn3

from herschelhelp_internal.masterlist import (nb_compare_mags, nb_ccplots, nb_histograms, find_last_ml_suffix, 
                                              quick_checks)
In [3]:
OUT_DIR = os.environ.get('OUT_DIR', "./data")
SUFFIX = find_last_ml_suffix()
#SUFFIX = "20171016"

master_catalogue_filename = "master_catalogue_xfls_{}.fits".format(SUFFIX)
master_catalogue = Table.read("{}/{}".format(OUT_DIR, master_catalogue_filename))

print("Diagnostics done using: {}".format(master_catalogue_filename))
Diagnostics done using: master_catalogue_xfls_20171201.fits

0 - Quick checks

In [4]:
quick_checks(master_catalogue).show_in_notebook()
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/numpy/core/numeric.py:301: FutureWarning: in the future, full(152, False) will return an array of dtype('bool')
  format(shape, fill_value, array(fill_value).dtype), FutureWarning)
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/numpy/core/numeric.py:301: FutureWarning: in the future, full(152, 0) will return an array of dtype('int64')
  format(shape, fill_value, array(fill_value).dtype), FutureWarning)
Table shows only problematic columns.
Out[4]:
<Table length=44>
idxColumnAll nan#Measurements#Zeros#NegativeMinimum value
0ferr_ap_gpc1_g0.0157851.046.00.00.0
1merr_ap_gpc1_g0.0157851.046.00.00.0
2ferr_gpc1_g0.0157766.0207.00.00.0
3merr_gpc1_g0.0157766.0207.00.00.0
4ferr_ap_gpc1_r0.0165222.0100.00.00.0
5merr_ap_gpc1_r0.0165222.0100.00.00.0
6ferr_gpc1_r0.0165331.062.00.00.0
7merr_gpc1_r0.0165331.062.00.00.0
8ferr_ap_gpc1_i0.0166567.029.00.00.0
9merr_ap_gpc1_i0.0166567.029.00.00.0
10ferr_gpc1_i0.0166634.023.00.00.0
11merr_gpc1_i0.0166634.023.00.00.0
12ferr_ap_gpc1_z0.0165165.062.00.00.0
13merr_ap_gpc1_z0.0165165.062.00.00.0
14ferr_gpc1_z0.0165238.028.00.00.0
15merr_gpc1_z0.0165238.028.00.00.0
16ferr_ap_gpc1_y0.0163036.0154.00.00.0
17merr_ap_gpc1_y0.0163036.0154.00.00.0
18ferr_gpc1_y0.0161592.063.00.00.0
19merr_gpc1_y0.0161592.063.00.00.0
20merr_ap_bass_g0.0179368.00.03613.0-2939.3527832
21f_bass_g0.0179896.0147.02645.0-5084714.5
22merr_bass_g0.0179749.00.02645.0-2872.12011719
23merr_ap_bass_r0.070297.00.01371.0-284.999450684
24f_bass_r0.0179896.0109296.0888.0-3.14594065121e+13
25m_bass_r0.069712.00.03.0-7.63986968994
26merr_bass_r0.070600.00.0888.0-413.789611816
27merr_ap_bass_z0.0103512.00.02845.0-121594.460938
28f_bass_z0.0179896.075945.01687.0-2719352.0
29merr_bass_z0.0103951.00.01687.0-2262.61791992
30ferr_ap_kpno_r0.0670828.032476.00.00.0
31merr_ap_kpno_r0.0670828.032476.00.00.0
32ferr_kpno_r0.0670833.022859.00.00.0
33merr_kpno_r0.0670833.022859.00.00.0
34f_ap_irac_i10.0181526.00.01.0-17.4093936921
35merr_ap_irac_i10.0181526.00.01.0-0.385237663172
36f_irac_i10.0181526.00.0180.0-448.43377704
37merr_irac_i10.0181526.00.0180.0-304.480823173
38f_irac_i20.0164049.00.0262.0-45.291295668
39merr_irac_i20.0164049.00.0262.0-24020.9043017
40f_irac_i30.044921.00.043.0-644.1452259
41merr_irac_i30.044921.00.043.0-139.830892425
42f_irac_i40.039826.00.042.0-46.998690984
43merr_irac_i40.039826.00.042.0-160.241761788

I - Summary of wavelength domains

In [5]:
flag_obs = master_catalogue['flag_optnir_obs']
flag_det = master_catalogue['flag_optnir_det']
In [6]:
venn3(
    [
        np.sum(flag_obs == 4),
        np.sum(flag_obs == 2),
        np.sum(flag_obs == 6),
        np.sum(flag_obs == 1),
        np.sum(flag_obs == 5),
        np.sum(flag_obs == 3),
        np.sum(flag_obs == 7)
    ],
    set_labels=( 'mid-IR', 'near-IR', 'Optical'),
    subset_label_formatter=lambda x: "{}%".format(int(100*x/len(flag_obs)))
)
plt.title("Wavelength domain observations");
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib_venn/_venn3.py:117: UserWarning: Bad circle positioning
  warnings.warn("Bad circle positioning")
In [7]:
venn3(
    [
        np.sum(flag_det[flag_obs == 7] == 4),
        np.sum(flag_det[flag_obs == 7] == 2),
        np.sum(flag_det[flag_obs == 7] == 6),
        np.sum(flag_det[flag_obs == 7] == 1),
        np.sum(flag_det[flag_obs == 7] == 5),
        np.sum(flag_det[flag_obs == 7] == 3),
        np.sum(flag_det[flag_obs == 7] == 7)
    ],
    set_labels=('mid-IR', 'near-IR', 'Optical'),
    subset_label_formatter=lambda x: "{}%".format(int(100*x/np.sum(flag_det != 0)))
)
plt.title("Detection of the {} sources detected\n in any wavelength domains "
          "(among {} sources)".format(
              locale.format('%d', np.sum(flag_det != 0), grouping=True),
              locale.format('%d', len(flag_det), grouping=True)));
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib_venn/_venn3.py:57: UserWarning: Circle B has zero area
  warnings.warn("Circle B has zero area")

II - Comparing magnitudes in similar filters

The master list if composed of several catalogues containing magnitudes in similar filters on different instruments. We are comparing the magnitudes in these corresponding filters.

In [8]:
u_bands = ["WFC u"]
g_bands = ["WFC g", "BASS g", "GPC1 g"]
r_bands = ["WFC r", "BASS r", "GPC1 r", "KPNO r"]
i_bands = ["WFC i",           "GPC1 i"]
z_bands = ["WFC z",           "GPC1 z"]
y_bands = [         "BASS z", "GPC1 y"]

II.a - Comparing depths

We compare the histograms of the total aperture magnitudes of similar bands.

In [9]:
for bands in [u_bands, g_bands, r_bands, i_bands, z_bands, y_bands]:
    colnames = ["m_{}".format(band.replace(" ", "_").lower()) for band in bands]
    nb_histograms(master_catalogue, colnames, bands)

II.b - Comparing magnitudes

We compare one to one each magnitude in similar bands.

In [10]:
for band_of_a_kind in [u_bands, g_bands, r_bands, i_bands, z_bands, y_bands]:
    for band1, band2 in itertools.combinations(band_of_a_kind, 2):
        
        basecol1, basecol2 = band1.replace(" ", "_").lower(), band2.replace(" ", "_").lower()
        
        col1, col2 = "m_ap_{}".format(basecol1), "m_ap_{}".format(basecol2)
        nb_compare_mags(master_catalogue[col1], master_catalogue[col2], 
                        labels=("{} (aperture)".format(band1), "{} (aperture)".format(band2)))
        
        col1, col2 = "m_{}".format(basecol1), "m_{}".format(basecol2)
        nb_compare_mags(master_catalogue[col1], master_catalogue[col2], 
                        labels=("{} (total)".format(band1), "{} (total)".format(band2)))
BASS g (aperture) - WFC g (aperture):
- Median: 0.05
- Median Absolute Deviation: 0.13
- 1% percentile: -0.6256225967407226
- 99% percentile: 3.0758930015563952
BASS g (total) - WFC g (total):
- Median: -0.02
- Median Absolute Deviation: 0.12
- 1% percentile: -1.0549715042114258
- 99% percentile: 1.0528565597534065
GPC1 g (aperture) - WFC g (aperture):
- Median: -0.03
- Median Absolute Deviation: 0.22
- 1% percentile: -1.936893730163574
- 99% percentile: 2.239777622222912
GPC1 g (total) - WFC g (total):
- Median: 0.03
- Median Absolute Deviation: 0.19
- 1% percentile: -2.26982141494751
- 99% percentile: 1.678289241790777
GPC1 g (aperture) - BASS g (aperture):
- Median: -0.11
- Median Absolute Deviation: 0.22
- 1% percentile: -5.588285446166992
- 99% percentile: 2.078149032592774
GPC1 g (total) - BASS g (total):
- Median: 0.03
- Median Absolute Deviation: 0.18
- 1% percentile: -2.754972381591797
- 99% percentile: 1.8167191314697235
BASS r (aperture) - WFC r (aperture):
- Median: -0.13
- Median Absolute Deviation: 0.15
- 1% percentile: -1.005444869995117
- 99% percentile: 4.584682769775396
BASS r (total) - WFC r (total):
- Median: -0.13
- Median Absolute Deviation: 0.16
- 1% percentile: -1.8431853485107421
- 99% percentile: 1.4611610031127977
GPC1 r (aperture) - WFC r (aperture):
- Median: -0.03
- Median Absolute Deviation: 0.14
- 1% percentile: -1.2797001647949218
- 99% percentile: 1.3428354644775493
GPC1 r (total) - WFC r (total):
- Median: 0.05
- Median Absolute Deviation: 0.12
- 1% percentile: -1.5688879203796386
- 99% percentile: 0.9246087837219206
KPNO r (aperture) - WFC r (aperture):
- Median: -0.17
- Median Absolute Deviation: 0.14
- 1% percentile: -0.8770008087158203
- 99% percentile: 0.5059786605835066
KPNO r (total) - WFC r (total):
- Median: -0.41
- Median Absolute Deviation: 0.19
- 1% percentile: -2.126770496368408
- 99% percentile: 0.5179996490478516
GPC1 r (aperture) - BASS r (aperture):
- Median: 0.10
- Median Absolute Deviation: 0.13
- 1% percentile: -5.567615804672242
- 99% percentile: 1.5617235946655268
GPC1 r (total) - BASS r (total):
- Median: 0.21
- Median Absolute Deviation: 0.13
- 1% percentile: -1.4610954570770263
- 99% percentile: 1.5784747123718255
KPNO r (aperture) - BASS r (aperture):
- Median: -0.04
- Median Absolute Deviation: 0.18
- 1% percentile: -2.1393571090698242
- 99% percentile: 0.8618970489501949
KPNO r (total) - BASS r (total):
- Median: -0.27
- Median Absolute Deviation: 0.19
- 1% percentile: -2.146008892059326
- 99% percentile: 0.9464354515075717
KPNO r (aperture) - GPC1 r (aperture):
- Median: -0.12
- Median Absolute Deviation: 0.20
- 1% percentile: -1.8193340682983399
- 99% percentile: 0.821635704040526
KPNO r (total) - GPC1 r (total):
- Median: -0.47
- Median Absolute Deviation: 0.18
- 1% percentile: -1.8546954727172853
- 99% percentile: 0.7358176422119134
GPC1 i (aperture) - WFC i (aperture):
- Median: 0.04
- Median Absolute Deviation: 0.11
- 1% percentile: -0.952352294921875
- 99% percentile: 0.8918610382079997
GPC1 i (total) - WFC i (total):
- Median: 0.11
- Median Absolute Deviation: 0.10
- 1% percentile: -0.8853607177734375
- 99% percentile: 0.8438045501708963
GPC1 z (aperture) - WFC z (aperture):
- Median: 0.06
- Median Absolute Deviation: 0.13
- 1% percentile: -0.8765241622924804
- 99% percentile: 1.23230981826782
GPC1 z (total) - WFC z (total):
- Median: 0.10
- Median Absolute Deviation: 0.17
- 1% percentile: -0.9696512603759765
- 99% percentile: 1.490121402740476
GPC1 y (aperture) - BASS z (aperture):
- Median: -0.10
- Median Absolute Deviation: 0.22
- 1% percentile: -3.4303236579895016
- 99% percentile: 1.9012526702880828
GPC1 y (total) - BASS z (total):
- Median: 0.08
- Median Absolute Deviation: 0.22
- 1% percentile: -2.127430629730225
- 99% percentile: 1.8989069938659666

III - Comparing magnitudes to reference bands

Cross-match the master list to SDSS and 2MASS to compare its magnitudes to SDSS and 2MASS ones.

In [11]:
master_catalogue_coords = SkyCoord(master_catalogue['ra'], master_catalogue['dec'])

III.a - Comparing u, g, r, i, and z bands to SDSS

The catalogue is cross-matched to SDSS-DR13 withing 0.2 arcsecond.

We compare the u, g, r, i, and z magnitudes to those from SDSS using fiberMag for the aperture magnitude and petroMag for the total magnitude.

In [12]:
sdss = Table.read("../../dmu0/dmu0_SDSS-DR13/data/SDSS-DR13_xFLS.fits")
sdss_coords = SkyCoord(sdss['ra'] * u.deg, sdss['dec'] * u.deg)

idx, d2d, _ = sdss_coords.match_to_catalog_sky(master_catalogue_coords)
mask = (d2d < 0.2 * u.arcsec)

sdss = sdss[mask]
ml_sdss_idx = idx[mask]
In [13]:
for band_of_a_kind in [u_bands, g_bands, r_bands, i_bands, z_bands]:
    for band in band_of_a_kind:
        
        sdss_mag_ap = sdss["fiberMag_{}".format(band[-1])]
        master_cat_mag_ap = master_catalogue["m_ap_{}".format(band.replace(" ", "_").lower())][ml_sdss_idx]
    
        nb_compare_mags(sdss_mag_ap, master_cat_mag_ap,
                        labels=("SDSS {} (fiberMag)".format(band[-1]), "{} (aperture)".format(band)))
    
        sdss_mag_tot = sdss["petroMag_{}".format(band[-1])]
        master_cat_mag_tot = master_catalogue["m_ap_{}".format(band.replace(" ", "_").lower())][ml_sdss_idx]
        
        nb_compare_mags(sdss_mag_ap, master_cat_mag_ap,
                        labels=("SDSS {} (petroMag)".format(band[-1]), "{} (total)".format(band)))
WFC u (aperture) - SDSS u (fiberMag):
- Median: -0.33
- Median Absolute Deviation: 0.13
- 1% percentile: -1.6017975616455078
- 99% percentile: 0.6325454711914066
WFC u (total) - SDSS u (petroMag):
- Median: -0.33
- Median Absolute Deviation: 0.13
- 1% percentile: -1.6017975616455078
- 99% percentile: 0.6325454711914066
WFC g (aperture) - SDSS g (fiberMag):
- Median: -0.45
- Median Absolute Deviation: 0.10
- 1% percentile: -1.1772414016723634
- 99% percentile: 0.4478158187866218
WFC g (total) - SDSS g (petroMag):
- Median: -0.45
- Median Absolute Deviation: 0.10
- 1% percentile: -1.1772414016723634
- 99% percentile: 0.4478158187866218
BASS g (aperture) - SDSS g (fiberMag):
- Median: -0.38
- Median Absolute Deviation: 0.14
- 1% percentile: -1.101987075805664
- 99% percentile: 4.830027141571065
BASS g (total) - SDSS g (petroMag):
- Median: -0.38
- Median Absolute Deviation: 0.14
- 1% percentile: -1.101987075805664
- 99% percentile: 4.830027141571065
GPC1 g (aperture) - SDSS g (fiberMag):
- Median: -0.47
- Median Absolute Deviation: 0.20
- 1% percentile: -2.4040427207946777
- 99% percentile: 1.6819067001342773
GPC1 g (total) - SDSS g (petroMag):
- Median: -0.47
- Median Absolute Deviation: 0.20
- 1% percentile: -2.4040427207946777
- 99% percentile: 1.6819067001342773
WFC r (aperture) - SDSS r (fiberMag):
- Median: -0.34
- Median Absolute Deviation: 0.06
- 1% percentile: -0.9351469993591308
- 99% percentile: 0.3601674079895015
WFC r (total) - SDSS r (petroMag):
- Median: -0.34
- Median Absolute Deviation: 0.06
- 1% percentile: -0.9351469993591308
- 99% percentile: 0.3601674079895015
BASS r (aperture) - SDSS r (fiberMag):
- Median: -0.46
- Median Absolute Deviation: 0.11
- 1% percentile: -1.1453510665893556
- 99% percentile: 5.127978057861326
BASS r (total) - SDSS r (petroMag):
- Median: -0.46
- Median Absolute Deviation: 0.11
- 1% percentile: -1.1453510665893556
- 99% percentile: 5.127978057861326
GPC1 r (aperture) - SDSS r (fiberMag):
- Median: -0.34
- Median Absolute Deviation: 0.12
- 1% percentile: -1.4154183197021484
- 99% percentile: 0.8237089157104492
GPC1 r (total) - SDSS r (petroMag):
- Median: -0.34
- Median Absolute Deviation: 0.12
- 1% percentile: -1.4154183197021484
- 99% percentile: 0.8237089157104492
KPNO r (aperture) - SDSS r (fiberMag):
- Median: -0.50
- Median Absolute Deviation: 0.13
- 1% percentile: -1.3614568710327148
- 99% percentile: 0.02729091644287046
KPNO r (total) - SDSS r (petroMag):
- Median: -0.50
- Median Absolute Deviation: 0.13
- 1% percentile: -1.3614568710327148
- 99% percentile: 0.02729091644287046
WFC i (aperture) - SDSS i (fiberMag):
- Median: -0.40
- Median Absolute Deviation: 0.07
- 1% percentile: -0.9382619476318359
- 99% percentile: 0.3755919170379611
WFC i (total) - SDSS i (petroMag):
- Median: -0.40
- Median Absolute Deviation: 0.07
- 1% percentile: -0.9382619476318359
- 99% percentile: 0.3755919170379611
GPC1 i (aperture) - SDSS i (fiberMag):
- Median: -0.34
- Median Absolute Deviation: 0.09
- 1% percentile: -0.9665631103515625
- 99% percentile: 0.4199513244628907
GPC1 i (total) - SDSS i (petroMag):
- Median: -0.34
- Median Absolute Deviation: 0.09
- 1% percentile: -0.9665631103515625
- 99% percentile: 0.4199513244628907
WFC z (aperture) - SDSS z (fiberMag):
- Median: -0.35
- Median Absolute Deviation: 0.10
- 1% percentile: -1.2951622009277344
- 99% percentile: 0.58636474609375
WFC z (total) - SDSS z (petroMag):
- Median: -0.35
- Median Absolute Deviation: 0.10
- 1% percentile: -1.2951622009277344
- 99% percentile: 0.58636474609375
GPC1 z (aperture) - SDSS z (fiberMag):
- Median: -0.29
- Median Absolute Deviation: 0.13
- 1% percentile: -1.3401688385009765
- 99% percentile: 0.9634982299804702
GPC1 z (total) - SDSS z (petroMag):
- Median: -0.29
- Median Absolute Deviation: 0.13
- 1% percentile: -1.3401688385009765
- 99% percentile: 0.9634982299804702

III.b - Comparing J and K bands to 2MASS

The catalogue is cross-matched to 2MASS-PSC withing 0.2 arcsecond. We compare the UKIDSS total J and K magnitudes to those from 2MASS.

The 2MASS magnitudes are “Vega-like” and we have to convert them to AB magnitudes using the zero points provided on this page:

Band Fν - 0 mag (Jy)
J 1594
H 1024
Ks 666.7

In addition, UKIDSS uses a K band whereas 2MASS uses a Ks (“short”) band, this page give a correction to convert the K band in a Ks band with the formula:

$$K_{s(2MASS)} = K_{UKIRT} + 0.003 + 0.004 * (J−K)_{UKIRT}$$
In [14]:
# The AB zero point is 3631 Jy
j_2mass_to_ab = 2.5 * np.log10(3631/1595)
k_2mass_to_ab = 2.5 * np.log10(3631/666.7)
In [15]:
twomass = Table.read("../../dmu0/dmu0_2MASS-point-sources/data/2MASS-PSC_xFLS.fits")
twomass_coords = SkyCoord(twomass['raj2000'], twomass['dej2000'])

idx, d2d, _ = twomass_coords.match_to_catalog_sky(master_catalogue_coords)
mask = (d2d < 0.2 * u.arcsec)

twomass = twomass[mask]
ml_twomass_idx = idx[mask]
In [16]:
nb_compare_mags(twomass['jmag'] + j_2mass_to_ab, master_catalogue['m_wfcam_j'][ml_twomass_idx],
                labels=("2MASS J", "UHS J (total)"))
UHS J (total) - 2MASS J:
- Median: 0.03
- Median Absolute Deviation: 0.04
- 1% percentile: -0.7433211570646104
- 99% percentile: 0.3831149141023818

The graph above originally revealed that UHS needed conversion to AB.

Keeping only sources with good signal to noise ratio

From here, we are only comparing sources with a signal to noise ratio above 3, i.e. roughly we a magnitude error below 0.3.

To make it easier, we are setting to NaN in the catalogue the magnitudes associated with an error above 0.3 so we can't use these magnitudes after the next cell.

In [17]:
for error_column in [_ for _ in master_catalogue.colnames if _.startswith('merr_')]:
    column = error_column.replace("merr", "m")
    keep_mask = np.isfinite(master_catalogue[error_column])
    keep_mask[keep_mask] &= master_catalogue[keep_mask][error_column] <= 0.3
    master_catalogue[column][~keep_mask] = np.nan

IV - Comparing aperture magnitudes to total ones.

In [18]:
nb_ccplots(
    master_catalogue['m_gpc1_r'],
    master_catalogue['m_ap_gpc1_r'] - master_catalogue['m_gpc1_r'],
    "r total magnitude (GPC1)", "r aperture mag - total mag (GPC1)",
    master_catalogue["stellarity"],
    invert_x=True
)
Number of source used: 131785 / 977148 (13.49%)

V - Color-color and magnitude-color plots

In [19]:
nb_ccplots(
    master_catalogue['m_wfc_g'] - master_catalogue['m_wfc_i'],
    master_catalogue['m_wfcam_j'] - master_catalogue['m_wfc_z'],
    "g - i (WFC)", "J - z (UHS, WFC)",
    master_catalogue["stellarity"]
)
Number of source used: 31244 / 977148 (3.20%)
In [20]:
nb_ccplots(
    master_catalogue['m_wfc_i'] - master_catalogue['m_irac_i1'],
    master_catalogue['m_wfc_g'] - master_catalogue['m_wfc_i'],
    "WFC i - IRAC1", "g - i (WFC)",
    master_catalogue["stellarity"]
)
Number of source used: 48841 / 977148 (5.00%)
In [21]:
nb_ccplots(
    master_catalogue['m_gpc1_g'] - master_catalogue['m_gpc1_r'],
    master_catalogue['m_gpc1_i'] - master_catalogue['m_gpc1_z'],
    "g - r (GPC1)", "i - z (GPC1)",
    master_catalogue["stellarity"]
)
Number of source used: 93631 / 977148 (9.58%)
In [22]:
nb_ccplots(
    master_catalogue['m_wfcam_j'] - master_catalogue['m_irac_i1'],
    master_catalogue['m_irac_i2'] - master_catalogue['m_wfc_g'],
    "J - irac_i1 (UHS, IRAC)", "irac_i2 - g (IRAC, WFC)",
    master_catalogue["stellarity"]
)
Number of source used: 17883 / 977148 (1.83%)
In [23]:
nb_ccplots(
    master_catalogue['m_wfc_i'] - master_catalogue['m_wfc_z'],
    master_catalogue['m_wfc_z'] - master_catalogue['m_wfcam_j'],
    "i - z (WFC)", "z - J (WFC, UHS)",
    master_catalogue["stellarity"]
)
Number of source used: 33231 / 977148 (3.40%)
In [24]:
nb_ccplots(
    master_catalogue['m_irac_i3'] - master_catalogue['m_irac_i4'],
    master_catalogue['m_irac_i1'] - master_catalogue['m_irac_i2'],
    "IRAC3 - IRAC4", "IRAC1 - IRAC2",
    master_catalogue["stellarity"]
)
Number of source used: 6493 / 977148 (0.66%)