{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# xFLS Selection Functions\n", "## Depth maps and selection functions\n", "\n", "The simplest selection function available is the field MOC which specifies the area for which there is Herschel data. Each pristine catalogue also has a MOC defining the area for which that data is available.\n", "\n", "The next stage is to provide mean flux standard deviations which act as a proxy for the catalogue's 5$\\sigma$ depth" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "708e28f (Tue May 8 18:05:21 2018 +0100)\n", "This notebook was executed on: \n", "2018-06-07 13:20:15.559072\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n", "import datetime\n", "print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "import os\n", "import time\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table, join\n", "import numpy as np\n", "from pymoc import MOC\n", "import healpy as hp\n", "#import pandas as pd #Astropy has group_by function so apandas isn't required.\n", "import seaborn as sns\n", "\n", "import warnings\n", "#We ignore warnings - this is a little dangerous but a huge number of warnings are generated by empty cells later\n", "warnings.filterwarnings('ignore')\n", "\n", "from herschelhelp_internal.utils import inMoc, coords_to_hpidx, flux_to_mag\n", "from herschelhelp_internal.masterlist import find_last_ml_suffix, nb_ccplots\n", "\n", "from astropy.io.votable import parse_single_table" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "FIELD = 'xFLS'\n", "#FILTERS_DIR = \"/Users/rs548/GitHub/herschelhelp_python/database_builder/filters/\"\n", "FILTERS_DIR = \"/opt/herschelhelp_python/database_builder/filters/\"" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Depth maps produced using: master_catalogue_xfls_20180501.fits\n" ] } ], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "SUFFIX = find_last_ml_suffix()\n", "#SUFFIX = \"20171016\"\n", "\n", "master_catalogue_filename = \"master_catalogue_{}_{}.fits\".format(FIELD.lower(), SUFFIX)\n", "master_catalogue = Table.read(\"{}/{}\".format(OUT_DIR, master_catalogue_filename))\n", "\n", "print(\"Depth maps produced using: {}\".format(master_catalogue_filename))\n", "\n", "ORDER = 10\n", "#TODO write code to decide on appropriate order\n", "\n", "field_moc = MOC(filename=\"../../dmu2/dmu2_field_coverages/{}_MOC.fits\".format(FIELD))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## I - Group masterlist objects by healpix cell and calculate depths\n", "We add a column to the masterlist catalogue for the target order healpix cell per object." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Add a column to the catalogue with the order=ORDER hp_idx\n", "master_catalogue.add_column(Column(data=coords_to_hpidx(master_catalogue['ra'],\n", " master_catalogue['dec'],\n", " ORDER), \n", " name=\"hp_idx_O_{}\".format(str(ORDER))\n", " )\n", " )" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Convert catalogue to pandas and group by the order=ORDER pixel\n", "\n", "group = master_catalogue.group_by([\"hp_idx_O_{}\".format(str(ORDER))])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Downgrade the groups from order=ORDER to order=13 and then fill out the appropriate cells\n", "#hp.pixelfunc.ud_grade([2599293, 2599294], nside_out=hp.order2nside(13))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## II Create a table of all Order=13 healpix cells in the field and populate it\n", "We create a table with every order=13 healpix cell in the field MOC. We then calculate the healpix cell at lower order that the order=13 cell is in. We then fill in the depth at every order=13 cell as calculated for the lower order cell that that the order=13 cell is inside." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "depths = Table()\n", "depths['hp_idx_O_13'] = list(field_moc.flattened(13))" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhp_idx_O_13
0167510016
1167510017
2167510018
3167510019
4167510020
5167510021
6167510022
7167510023
8167510024
9167510025
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "depths[:10].show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "depths.add_column(Column(data=hp.pixelfunc.ang2pix(2**ORDER,\n", " hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[0],\n", " hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[1],\n", " nest = True),\n", " name=\"hp_idx_O_{}\".format(str(ORDER))\n", " )\n", " )" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhp_idx_O_13hp_idx_O_10
01675100162617344
11675100172617344
21675100182617344
31675100192617344
41675100202617344
51675100212617344
61675100222617344
71675100232617344
81675100242617344
91675100252617344
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "depths[:10].show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "Table masked=True length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhp_idx_O_13hp_idx_O_10ferr_ap_wfc_u_meanf_ap_wfc_u_p90ferr_wfc_u_meanf_wfc_u_p90ferr_ap_wfc_g_meanf_ap_wfc_g_p90ferr_wfc_g_meanf_wfc_g_p90ferr_ap_wfc_r_meanf_ap_wfc_r_p90ferr_wfc_r_meanf_wfc_r_p90ferr_ap_wfc_i_meanf_ap_wfc_i_p90ferr_wfc_i_meanf_wfc_i_p90ferr_ap_wfc_z_meanf_ap_wfc_z_p90ferr_wfc_z_meanf_wfc_z_p90ferr_ap_gpc1_g_meanf_ap_gpc1_g_p90ferr_gpc1_g_meanf_gpc1_g_p90ferr_ap_gpc1_r_meanf_ap_gpc1_r_p90ferr_gpc1_r_meanf_gpc1_r_p90ferr_ap_gpc1_i_meanf_ap_gpc1_i_p90ferr_gpc1_i_meanf_gpc1_i_p90ferr_ap_gpc1_z_meanf_ap_gpc1_z_p90ferr_gpc1_z_meanf_gpc1_z_p90ferr_ap_gpc1_y_meanf_ap_gpc1_y_p90ferr_gpc1_y_meanf_gpc1_y_p90ferr_ap_90prime_g_meanf_ap_90prime_g_p90ferr_90prime_g_meanf_90prime_g_p90ferr_ap_90prime_r_meanf_ap_90prime_r_p90ferr_90prime_r_meanf_90prime_r_p90ferr_ap_mosaic_z_meanf_ap_mosaic_z_p90ferr_mosaic_z_meanf_mosaic_z_p90ferr_ap_mosaic_r_meanf_ap_mosaic_r_p90ferr_mosaic_r_meanf_mosaic_r_p90ferr_ap_ukidss_j_meanf_ap_ukidss_j_p90ferr_ukidss_j_meanf_ukidss_j_p90ferr_ap_irac_i1_meanf_ap_irac_i1_p90ferr_irac_i1_meanf_irac_i1_p90ferr_ap_irac_i2_meanf_ap_irac_i2_p90ferr_irac_i2_meanf_irac_i2_p90ferr_ap_irac_i3_meanf_ap_irac_i3_p90ferr_irac_i3_meanf_irac_i3_p90ferr_ap_irac_i4_meanf_ap_irac_i4_p90ferr_irac_i4_meanf_irac_i4_p90
uJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJy
01668214392606584nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan0.14785360.10374766588211060.172088060.1592467576265335nannaninf0.00.845743953.15716385841369630.474713774.559648513793945nannannannannannannannannannannannannannannannannannannannannannannannan
11668215022606585nannannannannannannannannannannannannannannannannannannannan1.060503411989399229.711993961720530.890440428728194330.711927529848830.888818831621836663.5538533492028251.135568173027421256.8709182164918451.1173107671078941102.8772617033291.124513276081867101.359896754591632.0485063845681837119.747331475235092.0156262732821038112.485817742307664.35498549936339143.520310562615585.0346046516889755135.15749940584470.147854331.48041307926177980.195032251.3280870556831361nannaninf0.01.12721946.99135887622833250.854268977.624085760116577nannannannan5.589353209.351638793945310.647171200.32347106933594nannannannannannannannannannannannannannannannan
21668214972606585nannannannannannannannannannannannannannannannannannannannan1.060503411989399229.711993961720530.890440428728194330.711927529848830.888818831621836663.5538533492028251.135568173027421256.8709182164918451.1173107671078941102.8772617033291.124513276081867101.359896754591632.0485063845681837119.747331475235092.0156262732821038112.485817742307664.35498549936339143.520310562615585.0346046516889755135.15749940584470.147854331.48041307926177980.195032251.3280870556831361nannaninf0.01.12721946.99135887622833250.854268977.624085760116577nannannannan5.589353209.351638793945310.647171200.32347106933594nannannannannannannannannannannannannannannannan
31668214992606585nannannannannannannannannannannannannannannannannannannannan1.060503411989399229.711993961720530.890440428728194330.711927529848830.888818831621836663.5538533492028251.135568173027421256.8709182164918451.1173107671078941102.8772617033291.124513276081867101.359896754591632.0485063845681837119.747331475235092.0156262732821038112.485817742307664.35498549936339143.520310562615585.0346046516889755135.15749940584470.147854331.48041307926177980.195032251.3280870556831361nannaninf0.01.12721946.99135887622833250.854268977.624085760116577nannannannan5.589353209.351638793945310.647171200.32347106933594nannannannannannannannannannannannannannannannan
41668214862606585nannannannannannannannannannannannannannannannannannannannan1.060503411989399229.711993961720530.890440428728194330.711927529848830.888818831621836663.5538533492028251.135568173027421256.8709182164918451.1173107671078941102.8772617033291.124513276081867101.359896754591632.0485063845681837119.747331475235092.0156262732821038112.485817742307664.35498549936339143.520310562615585.0346046516889755135.15749940584470.147854331.48041307926177980.195032251.3280870556831361nannaninf0.01.12721946.99135887622833250.854268977.624085760116577nannannannan5.589353209.351638793945310.647171200.32347106933594nannannannannannannannannannannannannannannannan
51668214812606585nannannannannannannannannannannannannannannannannannannannan1.060503411989399229.711993961720530.890440428728194330.711927529848830.888818831621836663.5538533492028251.135568173027421256.8709182164918451.1173107671078941102.8772617033291.124513276081867101.359896754591632.0485063845681837119.747331475235092.0156262732821038112.485817742307664.35498549936339143.520310562615585.0346046516889755135.15749940584470.147854331.48041307926177980.195032251.3280870556831361nannaninf0.01.12721946.99135887622833250.854268977.624085760116577nannannannan5.589353209.351638793945310.647171200.32347106933594nannannannannannannannannannannannannannannannan
61668214822606585nannannannannannannannannannannannannannannannannannannannan1.060503411989399229.711993961720530.890440428728194330.711927529848830.888818831621836663.5538533492028251.135568173027421256.8709182164918451.1173107671078941102.8772617033291.124513276081867101.359896754591632.0485063845681837119.747331475235092.0156262732821038112.485817742307664.35498549936339143.520310562615585.0346046516889755135.15749940584470.147854331.48041307926177980.195032251.3280870556831361nannaninf0.01.12721946.99135887622833250.854268977.624085760116577nannannannan5.589353209.351638793945310.647171200.32347106933594nannannannannannannannannannannannannannannannan
71668214832606585nannannannannannannannannannannannannannannannannannannannan1.060503411989399229.711993961720530.890440428728194330.711927529848830.888818831621836663.5538533492028251.135568173027421256.8709182164918451.1173107671078941102.8772617033291.124513276081867101.359896754591632.0485063845681837119.747331475235092.0156262732821038112.485817742307664.35498549936339143.520310562615585.0346046516889755135.15749940584470.147854331.48041307926177980.195032251.3280870556831361nannaninf0.01.12721946.99135887622833250.854268977.624085760116577nannannannan5.589353209.351638793945310.647171200.32347106933594nannannannannannannannannannannannannannannannan
81668214852606585nannannannannannannannannannannannannannannannannannannannan1.060503411989399229.711993961720530.890440428728194330.711927529848830.888818831621836663.5538533492028251.135568173027421256.8709182164918451.1173107671078941102.8772617033291.124513276081867101.359896754591632.0485063845681837119.747331475235092.0156262732821038112.485817742307664.35498549936339143.520310562615585.0346046516889755135.15749940584470.147854331.48041307926177980.195032251.3280870556831361nannaninf0.01.12721946.99135887622833250.854268977.624085760116577nannannannan5.589353209.351638793945310.647171200.32347106933594nannannannannannannannannannannannannannannannan
91668215002606585nannannannannannannannannannannannannannannannannannannannan1.060503411989399229.711993961720530.890440428728194330.711927529848830.888818831621836663.5538533492028251.135568173027421256.8709182164918451.1173107671078941102.8772617033291.124513276081867101.359896754591632.0485063845681837119.747331475235092.0156262732821038112.485817742307664.35498549936339143.520310562615585.0346046516889755135.15749940584470.147854331.48041307926177980.195032251.3280870556831361nannaninf0.01.12721946.99135887622833250.854268977.624085760116577nannannannan5.589353209.351638793945310.647171200.32347106933594nannannannannannannannannannannannannannannannan
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for col in master_catalogue.colnames:\n", " if col.startswith(\"f_\"):\n", " errcol = \"ferr{}\".format(col[1:])\n", " depths = join(depths, \n", " group[\"hp_idx_O_{}\".format(str(ORDER)), errcol].groups.aggregate(np.nanmean),\n", " join_type='left')\n", " depths[errcol].name = errcol + \"_mean\"\n", " depths = join(depths, \n", " group[\"hp_idx_O_{}\".format(str(ORDER)), col].groups.aggregate(lambda x: np.nanpercentile(x, 90.)),\n", " join_type='left')\n", " depths[col].name = col + \"_p90\"\n", "\n", "depths[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## III - Save the depth map table" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "depths.write(\"{}/depths_{}_{}.fits\".format(OUT_DIR, FIELD.lower(), SUFFIX))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IV - Overview plots\n", "\n", "### IV.a - Filters\n", "First we simply plot all the filters available on this field to give an overview of coverage." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'90prime_g',\n", " '90prime_r',\n", " 'gpc1_g',\n", " 'gpc1_i',\n", " 'gpc1_r',\n", " 'gpc1_y',\n", " 'gpc1_z',\n", " 'irac_i1',\n", " 'irac_i2',\n", " 'irac_i3',\n", " 'irac_i4',\n", " 'mosaic_r',\n", " 'mosaic_z',\n", " 'ukidss_j',\n", " 'wfc_g',\n", " 'wfc_i',\n", " 'wfc_r',\n", " 'wfc_u',\n", " 'wfc_z'}" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tot_bands = [column[2:] for column in master_catalogue.colnames \n", " if (column.startswith('f_') & ~column.startswith('f_ap_'))]\n", "ap_bands = [column[5:] for column in master_catalogue.colnames \n", " if column.startswith('f_ap_') ]\n", "bands = set(tot_bands) | set(ap_bands)\n", "bands" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5,1,'Passbands on xFLS')" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAesAAAFPCAYAAABtfuZZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXl4VdXV/7/r3DE3c0JGwjzFAMGUwQEqoGjBESdUtGp/+iKvBa04UduqrVVf7Cut+KJIVazWCi11AlTUCiQCgmCYAiFMQSBkHm9ucqezf3+cOw+5J5CQgfV5njzJ3WfvfXbI5X7PWnvttUgIAYZhGIZhui9SVy+AYRiGYZi2YbFmGIZhmG4OizXDMAzDdHNYrBmGYRimm8NizTAMwzDdHBZrhmEYhunmsFgzvRIiepaI/t7b7sUwzPkJizVzziCiUiJqISIzEVUQ0QoiiunqdfV2iEgQUbPr391MRPWu9ilEdDLMmCwi+jcRVRNRAxHtJaJ7z+nCGYbxwGLNnGuuE0LEAPgJgPEAftvF6zlfGCOEiHF9Jajo/x6AEwAGAEgGcDeAis5cIMMw4WGxZroEIcQpAJ8DGAUARPQLIjpARE1EdJSIHnD3JaI+RLSWiOqJqJaICohIcl17kohOucYdJKIrfG5jJKJVrms/ENEYnzkXEtER17X9RHSjz7V7iehbIvpfIqojomNENMPn+iAi2uQa+xWAPj7XjET0dyKqca33eyJKC/VvQEQXENFGV78iIrre59o7RLSUiNa57rONiIaEmec2179ZnOv1DCIqJ6IUtX+PEIwH8I4QolkI4RBCFAohPj+L+RiGOQtYrJkugYj6AbgaQKGrqRLAtQDiAPwCwJ+J6Ceua48COAkgBUAagKcACCIaAWAegPFCiFgAPwNQ6nObGwD8C0ASgH8A+JiIdK5rRwD8FEA8gN8D+DsRZfiMvQjAQShC/BKAt4iIXNf+AWCn69pzAO7xGXePa85+UCzSuQBaQvz+OgBrAHwJIBXAfADvu34nN3e41pYI4DCA5wPnAQAhxCoAWwEsIaJkAG8BuF8IURWqv0q+A7CUiG4nov5nMQ/DMB0AizVzrvnYtWf6LYBNAF4AACHEOiHEEaGwCYqI/dQ1xg4gA8AAIYRdCFEglKT2TgAGADlEpBNClAohjvjca6cQYrUQwg5gMQAjgItd9/uXEKJMCCG7xO4QgAk+Y48LIf4qhHAC+Jvr/mku4RoP4HdCCKsQIh+K6LqxQxHpoUIIpxBipxCiMcS/w8UAYgD8jxDCJoT4BsBaKALt5kMhxHYhhAPA+wAubOPf9ZcALgewEcAaIcTagOs/uCz4eiJa0sY8bm4FUADgdwCOEdEuIhqvYhzDMJ0AizVzrpkphEgQQgwQQjwohGgBPK7b71xu7nooVrfbvfwnKJblly5370IAEEIcBvArAM8CqCSilUSU6XOvE+4fhBAyFOs803W/u10CVO+63yif+wFAuc9Yi+vHGNf4OiFEs0/f4z4/vwdgPYCVRFRGRC/5WPO+ZAI44VqX7zx9Q60BgMV1/5AIIeqheBFGAXg5RJefuP7dE4QQD4Wbx2e+OiHEQiHESCjejF1QHrQowlCGYToBFmumyyEiA4B/A/hfAGmuAKjPABAACCGahBCPCiEGA7gOwAL33rQQ4h9CiElQAqEEgEU+U/fzuYcEIAtAGRENAPBXKC70ZNf99rnvF4HTABKJKNqnzeMmdln+vxdC5AC4FIpr/+4Q85QB6Ofee/eZ55SKNQRBRBcC+H8APgCgxnJWjRCiGsrfJhPKlgLDMOcYFmumO6CH4s6uAuBwBXNd5b5IRNcS0VCXVdcIxf3tJKIRRHS5S+xboewNO33mHUtENxGRFooFboWyFxsNRdirXPP/Aq5At0gIIY4D2AHg90SkJ6JJUB4g3GudSkSjiUjjWqs9YE1utgFoBvAEEemIaIprnpVq1uELERkB/B3KXv4vAPQlogfbMz7gi4hoERGNIiItEcUC+G8Ah4UQNe1dH8MwZw+LNdPlCCGaADwE4J8A6gDMBvCpT5dhAL4GYIYSSPWaEGIjFIH/HwDVUFzGqVAEy80nAG5zzflzADe5LN/9UFzFW6EcRxoNYHM7ljwbSgBaLYBnALzrcy0dwGooQn0Ayr58UMIUIYQNwPUAZrjW/xqAu4UQxe1Yh5sXAZwUQrwuhLACuAvAH4lomIqxfaE85Ph+DQFgAvARgHoAR6F4Lq4PMwfDMJ0MKXE6DMMwDMN0V9iyZhiGYZhuDos1wzAMw3RzWKwZhmEYppvDYs0wDMMw3RwWa4ZhGIbp5mi7egHtpU+fPmLgwIFdvQyGYZgexc6dO6uFEGdT3AU7d+5M1Wq1b0LJS8DGXsciA9jncDjuHzt2bGXgxR4n1gMHDsSOHTu6ehkMwzA9CiI6HrlX22i12jfT09MvSElJqZMkic/9diCyLFNVVVVOeXn5mwiR04CfjBiGYRi1jEpJSWlkoe54JEkSKSkpDQiTTZHFmmEYhlGLxELdebj+bUPqcqeJNRG9TUSVRLQvzHUioiVEdJiI9vjULmYYhmEYxofOtKzfATC9jeszoOR8HgZgDoDXO3EtDMMwTC9lwoQJI/Lz802B7ZMnTx5aXV2tCWxfsGBB5tNPP512tvctLS3VTZ8+ffDZzqOGTgswE0LkE9HANrrcAOBdoSQn/46IEogoQwhxurPWxDAMw5w/bNq06XBnzj9w4ED7F198cbQz7+GmK6PB+wI44fP6pKuNxZphGKab8/jq3f1KypuCrNmzYXh6rOVPt4w5Ee76wYMH9ddee+2wQ4cOFQHA008/nWY2mz2Ws9PpxK233jowKyvLtmTJkrK+ffuO3rFjx4GMjAzHk08+mb5q1ao+mZmZtuTkZHteXp4FAP74xz+mrlixIkWj0Yjhw4e3rl279ui6detiHn300f4AQETYsmVLcWJiohxpPZ1JV4o1hWgLGbhARHOguMrRv3//zlwT04HIsh1VVeuh1cYhOfmyrl4OwzC9GLvdTjNnzhyUk5PTsmjRonLfawUFBaaPPvooae/evfvtdjsuvPDCHLdYL1myJP348eN7o6KihNtl/vLLL6cvWbLk+FVXXdXc0NAgmUymIKE+13SlWJ8E0M/ndRaAslAdhRDLASwHgHHjxnEkYjfH6bTCbq/F5i2TPG0Txq9FbOwFaG4+DJNpEIiCtpEYhulBtGUBdwUPPvjggJkzZ9YGCjUAbNiwIebqq6+uj42NlQHgqquuqndfGzFiRMuNN9446Prrr6+/88476wHg4osvNj/22GP9Zs2aVXvHHXfUDRkypMvFuiuPbn0K4G5XVPjFABp4v7rnI8tWfLv5Ij+hBoAjR1/Gf74Ziu+2/QzfbBgOp7MFDkdTF62SYZieiFarFbLs1c3W1laPho0bN85cUFAQZ7FYQnltQRSyGRs2bDj0y1/+smrnzp3RY8aMybHb7XjhhRfK33zzzeMtLS3SpZdeekFhYaGxo3+X9tKZR7c+ALAVwAgiOklE9xHRXCKa6+ryGYCjAA4D+CuABztrLcy5o7Fxr0eEExIuwhWXH8HgQb9CTc0G+O5ybNw0Ct9unoSWlpNdtFKGYXoaWVlZjtraWm15ebmmpaWF1q9fH+++9sADD1RfddVVDddee+0Qu93uN+7yyy83r1u3LsFsNlNdXZ301VdfJQDKHveRI0f01113XdNrr712sqmpSdPQ0KApKioyTJgwoeX5558vHz16dPO+ffu6XKw7Mxr8jgjXBYBfdtb9ma7BZqsGAJhMg3HhmBUAgH797sXRY38BAFx6ST62bJ0MQMDpNON0+UcYPGh+Vy2XYZgehMFgEI8++ujpCRMmXJCVlWUdOnRoq+/1Z599tuKRRx7R3HTTTYM+/vjjY+72SZMmWW688cbaUaNGjezbt691woQJZgBwOBw0e/bsQU1NTRohBD3wwAMVffr0cT766KOZW7ZsiZMkSQwfPrzllltuaQi3JiI6J1uzpGhmz2HcuHGCc4N3X06VrUJx8VOYeGkBjMZMT7ss20Ck83NFbdt+LQyGNFw45q2uWCrDnFcQ0U4hxLizmWP37t2lY8aMqe6oNfV0CgoKTAsWLOj3/fffH+yoOXfv3t1nzJgxAwPbOd0o06E47Erchk6X4NcuSfqgPaPo6KFobu7UY5AMwzCdQn5+vunnP//54Hnz5lWci/v1uKpbTPfG4WgCkQaSFBWxb7RpKCoq1sDptECj6dDjmgzDMB3G9u3bo+6+++5Bvm16vV4uLS0NmU67M2CxZjoUxd0dbEWHIjp6GACgufkI4uJGd/bSGIZhzogJEya0FBcX7+/KNbAbnOlQZGGHJOlU9Y2OHgoAaGrq9OQ/DMMwPRoWa6ZDEbIdROrEOipKyUZXfPA3nbkkhmGYHg+LNdOhtMeyVtuPYRjmfIfFmulQhGyHJOlV9x808CFlnOjybH4MwzDdFhZrpkORhR1E6sVao1GixmW5NUJPhmGYjmH+/Pl909PTc00mU15Xr0UtLNZMhyLLtna5t8nVV5YdnbUkhmEYP2bOnFm/bdu2A+0dF5jG9FzCR7eYDkUIOySVAWYAPNW3hGCxZpgexce/7IfK/R2bICE1x4KZS9us5vX4449nrF69OikjI8OWnJzsyMvLs3zxxRcJo0aNshQWFkabzWbN8uXLj02dOtXS0NAg3Xffff337NljAoCnnnqq7N57762/4oormtUu6eabbx6YmJjo2Lt3ryk3N9fy17/+tUsKGrBYMx2KLNs91rIaiJS3oBDOzloSwzC9hPz8fNOaNWsSXXWpybcutcVikQoLC4s///zzmDlz5gw6dOhQ0cKFCzPi4uKcJSUl+wGgqqrqjGrzHjlyxLh58+YSrbbrJJPFmulQhMyWNcOcF0SwgDuDjRs3xsyYMaM+JiZGABBXXnmlpy717NmzawFgxowZZrPZLFVXV2vy8/PjVq5cedTdJyUl5YysgptuuqmuK4Ua4D1rpoORRfssa4kta4ZhVNJW4anArIlEBCGEqmyKkYiJieny4yos1kyH0ti4Cw6HWXV/rxucLWuGYdpmypQp5vXr18dbLBZqaGiQvv76a0/FoA8++CARANavXx8TGxvrTE5Odk6ZMqVx8eLFqe4+Z+oG7w6wWDMdTmNjoeq+7AZnGEYtkydPtkyfPr0hJydn5NVXXz0kNze3OT4+3gkAiYmJzry8vOx58+YNeOONN0oB4MUXXzxdX1+vGTZs2MgRI0bkfPbZZ7EAMHfu3Ky0tLTc1tZWKS0tLXfBggWZbdy2W8B71kyXwgFmDMO0h2eeeaZ88eLFZU1NTdIll1wy4oknnqhYtWpV8m233Va3dOnSU7594+Pj5Q8//LA0cI5ly5adXLZsmaqo7n//+99B47sCFmumQ6ivKEdscp92j2PLmmGY9nDXXXcNOHToUJTVaqXbb7+9ZtKkSZauXtO5gMWaOWvqTp/C2796ABNn3QUktm+sV6zZsmYYJjJr1qw5Fti2ffv2g2c775NPPpn+ySefJPm23XDDDbWLFi0qP9u5OwIWayYikSIqyw+XAAAObi1A1tXtnV2ZVyB8lCfDMExns2jRovLuIsyh4ACzXoZTCNTaO8albK+yoPK1Xaj4yw+QWxywV4X2NrU0NQIAqk8cb/9N3A8BXMiDYRgmLCzWvYw/HilDzrf7UH+Ggi2EQM37B9BaUofKVwth+7EJjgoLKl75ARUv70TroTq//jUnT2DD3/7qHg3AW0lLDeR5C7JlzTAMEw4W617G6yeqAADZ3+6DVW6/tVq5dBda9laj+u19EDYZ0RelQ5cRDWe9FQDQetBfrD99+XnPzykDBik/UDveVq6+XCKTYRgmPCzWvYjTVpvf6zlFpe0aX//pEdhP+ic0iZ3cD1KMNyOZvcz/utsFDgD9Ro0GAFjq66EW4j1rhmGYiLBY9yKeOVzm93p9dWOYnsGcXFgA8xb/8RSlhSbR4NdmO2mG3OJA68FaAP5i3X9kLgCgcP06CNVWPe9ZMwzTMbz99tuJgwcPHnnRRRcN7+q1dDQs1r2ITyvVW7S+CGdoq1YTp1eiwH0iwYXNiarle1C9oigo4Kx/7hhXJ6B0j7osZkS8Z80wTMewYsWKPq+88sqP27ZtK+nqtXQ0fHSrl1NjcyBZ3/afWdiVM87R49PhqG2B9UgDAMARJvrbfrrZ851IghAyfjr7XkiSIrySRotju3Zg0IVjVayQ96wZpifyu82/63e47nCH1rMemjjU8tzE58JW8/rtb3+bZjQaxW9/+9vK++67r19RUVHUd999V/LJJ5/E3njjjcONRqM8f/78AWvXrq1funTpyQcffDBr48aNcQBwzz33VP/mN7+pDDXvqlWr4hcuXJiVlJTkGD16tOX48eOGDRs2HO7I3+1sYcu6F1Ly09Gen/9UGvnYoHAoQqnLjPY3cAP0U5NkhDbV+3/TerQBoy6/EgAw/rqbPAPi+qTi1IH9qtbKljXDMGqZOnWqefPmzTEAsGvXLlNzc7PGarVSfn5+zKJFi46PGjXK8u677x594403Tr788sspx48fNxQVFe0vKSnZf//999eEmtNisdDDDz884PPPPz+0c+fOgzU1Nd3SiO2Wi2Laj+xTOi5O6y0s886pavzP8Kw2x3rc4Jq2S8mRhqDvHwtHpWJx20obgSiB6MQkkCR5RD8uJR2HvjwGW4sF+ih1D95sWTNMz6ItC7izmDRpkuWee+6JrqurkwwGg8jNzTUXFBSYtm7dGvvqq6/++K9//SvZ3febb76Jmzt3bpVOpwTIpqWlhUyTuGvXLmO/fv2s2dnZNgC4/fbba998882Uc/ILtQO2rHsJRyxWv9eZBm8E99GAa0G4RJY0EtyaHzUyGanz85R2t4ZLBE2c3jPMXtkM4RQgyd86jk9JhxAyyg5FzgDIljXDMGoxGAwiKyvLunTp0j4TJkwwX3bZZeavv/469vjx44a8vLxW376uzIsRP1jaqpHdnWCx7iU8GxAJvsjHmn63rLrNsW7LmrQEt2hGX5oJfd8Yv34kEXQZ0QAA009SARnQ2/SevWq3dRyXkgYAKFch1p4960CfO8MwTAguvfRS89KlS9OmTJnSNG3atKa//e1vKTk5ORZJ8pezadOmNS5btizFbrcDACoqKkLWsh4zZkzriRMnDAcPHtQDwKpVq5JC9etqOlWsiWg6ER0kosNEtDDE9f5EtIGIColoDxG1O7M0o/Bdg3L++Z5MxQt0ZZ94z7VlrkQp4fCItUZCzMVKWVddagj3tYYQNaoP0h8bh5iJfZV+NoNP3nBlHp3egOjEJNRXRN4v91jWPeTplmGYrmXy5MlNVVVVussvv7y5X79+DoPBICZOnGgO7PfII49UZWVl2bKzs0eOGDEi56233gopwjExMWLx4sXHp0+fPmzs2LEjUlNT7bGxsd2uslCn7VmTUk5pKYArAZwE8D0RfSqE8I08+i2AfwohXieiHACfARjYWWvqzVyeFIc1VfV+Iv1J3lDcUKgENNplAZ0UZk/a6bJqNQTTqD4wjQnYrnGJMUkEIoK2TxRkq/JeNtgNHje4Z9+ZJMSnpqOhSn1OfLasGYZRww033NDkcDh+cL8uLS3d5/7Zt/qWTqfDm2++eRKK/rTJNddc0zR79uwiWZZx99139x87dmxzhy/8LOlMy3oCgMNCiKNCCBuAlQBuCOgjAMS5fo4HUAbmjNC7hHhUTJSnbWCUN6HJf2rCJ0gRPnvWbeITgCYZNCC9BhqnFiS5vUuueSAhITUNDRUVkRfOljXDMF3MX/7ylz7Z2dk5w4YNG9nY2KhZsGBB23uHXUBnRoP3BeAbLXgSwEUBfZ4F8CURzQcQDWBaqImIaA6AOQDQv3//Dl9ob6DKpuzLJOm82zKpPuer7913DOVTLww5Vn00uL+YS7E6aM1ajxvcE6hBEuJS09H07UY4HXZotLrAqbxzep4X2bJmGKZzufLKK4ecOHHCLy3j888/f/KZZ56pfOaZZ0Kewe4udKZYh/rkDzSf7gDwjhDiZSK6BMB7RDRKBJzjEUIsB7AcAMaNG8cmWAgGRhmwz9wCvU+QRVs1qP3wBJhFsKwD3OiSXgNJSPAGdnj/bAlp6YAQaKyqRGJG3/Bzegp58J+VYZjO5auvvjrS1Ws4UzrTDX4SQD+f11kIdnPfB+CfACCE2ArACKBPJ66p11LvcCJRG/zs9eGFQyOOFbJLrMPtabuag65rJZCQvHvWrmcxgoT4VCUivCFCkJm3kAdb1gzDMOHoTLH+HsAwIhpERHoAtwP4NKDPjwCuAAAiugCKWLcdusyEpNHuRLwu+GTCuHgVSUlkt/s6Qr8AsSaJQMI3otu1Z+0KMAOA0j0/oG38I8kZhmGYYDpNrIUQDgDzAKwHcABK1HcREf2BiK53dXsUwH8R0W4AHwC4V7A/9IwwO52ICREg5usWP2BuCT3Y/U8ezrJ2EVimmjQEEuQTDe7+00mISVKOkDXV1rY9Z4DQMwzDMMF0arpRIcRnUI5j+bY97fPzfgATO3MN5wvNThkp+tCBXFMSY7GxrglTvz8YOsjMrbHh9rjd7YHXXW7woD1rUvbLB144Fg0VpyOsnAt5MAzDRIIzmPUSzE4Z0WGOXo2KjQrZ7sZtEUeMRwu4ThoCQEHpRt0R3lExsbA2t31cMTChCsMwTGczf/78vunp6bkmkymvq9eiFhbrXkKz0xlWrOf3T217sMeyjnCTADUnDcHZakNDpRJE5psUBQC0ej3stgh5yT0BZizWDMOcG2bOnFm/bdu2A129jvbAVbd6Cc1OGdGakKlvEa/z/pmdQkATaEJ7zkdH2LMOvKyRIJGE5vo690RKP9czoNZggCOCWPOeNcP0TMqe+k0/66FDHVrP2jBsmCXzhefbrOb1+OOPZ6xevTopIyPDlpyc7MjLy7N88cUXCaNGjbIUFhZGm81mzfLly49NnTrV0tDQIN1333399+zZYwKAp556quzee++tv+KKK1RnKCsqKjLMnj17kNPppGnTpjUsX748zWKxFJ7t79pe2LLuBdhlAassEBPpnDSAhSUhMu9Fsqzd7SEsawneBwSvZa300+oNcNhsEVbEhTwYhlFHfn6+ac2aNYl79+7dv27duiN79uyJdl+zWCxSYWFh8ZIlS47PmTNnEAAsXLgwIy4uzllSUrK/pKRk/zXXXNPU3nvOmzev34MPPli5b9++A5mZmfaO/H3aA1vWvYBmp5KnO1Q0uJsErQb1DicKGy1B17yGdQQ/eNCetWJZe+bxpBtVOur0BjjtdsiyE5IU2ur3TMqHABimRxHJAu4MNm7cGDNjxoz6mJgYAUBceeWV9e5rs2fPrgWAGTNmmM1ms1RdXa3Jz8+PW7ly5VF3n5SUlHYX6CgsLIz58ssvDwPA/fffX/Pss89mRRrTGbBl3QswuwpxhHODA8BtGUrBmX2hjm9FOGftaQ4Ucw1BkrTInjhZee2TbhQANK6i7057+IdRDjBjGEYtbZ3sDTQ2iMhd07qzl3VOYLHuBbTKilhHtWFZXxwfHfaa2j3rUNHgEmmgN7qjzf33rCXXw4PsbONhlvjoFsMw6pgyZYp5/fr18RaLhRoaGqSvv/46wX3tgw8+SASA9evXx8TGxjqTk5OdU6ZMaVy8eLEnwraqqiq8RROGCy+80PzOO+8kAsDbb7/dZbWuWax7ATaXZWxoI6nJlcne0pmtzgBh9OQyiWRaB6CVIEHy8WT771lLGmWXpbEqfH584j1rhmFUMnnyZMv06dMbcnJyRl599dVDcnNzm+Pj450AkJiY6MzLy8ueN2/egDfeeKMUAF588cXT9fX1mmHDho0cMWJEzmeffRYLAHPnzs1KS0vLbW1tldLS0nIXLFiQGe6er7766olXX301bfTo0RecPn1aFxMT0yW1rnnPuhfgtqwNUvhnL62PEJfb7H7lM9Wesw7MDU4SQYLkjegO2LO2tyou93efmI9HV60NN6t7EW3fnGEYBsAzzzxTvnjx4rKmpibpkksuGfHEE09UrFq1Kvm2226rW7p06SnfvvHx8fKHH35YGjjHsmXLTi5btixinWsAGDhwoH3Xrl3FkiRh+fLliaNHj+6SWtcs1r0Aq8uyNkZIF/qHoZl4+nAZnjtShrdGDfJeUJ3BLKBdIpdQu0tkuq1jRbx3ffUZIsF71gzDtIe77rprwKFDh6KsVivdfvvtNZMmTQqOmu1ANm/ebHr44Yf7CyEQFxfnfOedd0o7837hYLHuBVhVWNaA4gp/+nAZSppb/S8IlYU8ggI43N/9BddtaV80cxb+89ZrkSZ1jWQ3OMMwkVmzZs2xwLbt27cfPNt5n3zyyfRPPvnEb0/6hhtuqF20aFH5wYMH95/t/GcLi3UvwG1Z6yNY1plGJTr7kCUgUYnaDGaBuETaLdYiYCLZ6VAxhTspClvWDMN0HYsWLSpftGhR2zV9uxAOMOsFePes21ZbX8vbLvuIoxwhGpwCvrtx3U+CfxYytwC7A8yAto5csGXNMAwTCRbrXoB3z1r9n7PZ5ziV6pNbgR0CMpt5BdcdDe6T3UwOJ8b8FmQYhokEf1L2AqwqLWsAeGxgOgDghaM+pStV1rMOOmcd4AYPSoqi9clJHsYl7h3LljXDMEw4WKx7AVbPOevIf06tSxvfLavxNkaKBkeY654AM41rGndSlOB5DhRsCDep31iGYRgmGBbrXoBVRVIUAEDBy+jzze+C2yNFg7dxdMuvOaBEpi9fLf+/cJP7j2UYhmmDvLy87M6a+/33349/6qmn0n3bVqxYkUhEY/Pz8zu0wlh74WjwXoDHDR5CJD2U7QL+8wcYU6/0NLU6ZRg1UjsKeYSzrP2zkFE7ngG9CVXYsmYYJjKFhYXFgW0OhwNa7dnL2Z133tkAoMH9uq6uTlq6dGlqbm5ulyRC8YXFuhdglQW05J+lLIgypfzqTIMZ81xN1XYHsjR61eesg7SawljWISbKnTY93KzKUD66xTA9iv+8e6Bf7Slzh1qbSX1jLFfcfUGb1bxMJlOexWIpXLt2bexzzz2XkZqaat+/f7/pyJEjRdOmTRty+vRpvdXC4HXAAAAgAElEQVRqlebOnVvx2GOPVQPA6tWr455++um+TqeTkpKSHFu3bi0JNfeSJUuSd+zYEf3uu+/+CACPPvpo30cffbT8z3/+c3qo/ucSFuteQKssR96vrjwA6KKh/cVnwKY9AICm5nrAmApvEHeko1sB1yV3s/+9A18DgEarCz01ZzBjGOYM2bNnT3RhYWFRdna2DQDef//90rS0NKfZbKa8vLycu+66q06WZZo3b97AjRs3FmdnZ9sqKipUFfPYvHlz1KlTp/R33HFHA4s10yFYZRF5v7rqAJAyApAk/Crehr806PHZsYO4IDm1HRnMAl+7LeuAylmu9v6jxni6OmwBiVgCJuVz1gzTs4hkAZ8LcnNzm91CDQCLFi1KW7duXQIAlJeX64qKiowVFRXaCRMmNLn7paWlRSzE4XQ68cgjj/R/7733grKldRUcYNYLsMoy9G3tV5esB47lK2IN4IbByvc/NcVCWGq9ycMi1rMOfcFrHfvvWccm98Gjq9YiIS0Ddms4seYMZgzDnBkmk8nzlL927drYTZs2xe7YsaP44MGD+y+44IKWlpYW6UxqWtfX12sOHTpkvPzyy0f07dt39O7du6NvueWWoV0ZZMZi3QuwyyI41WjdcWD1/wNO7QQ2PK+09R0LAEiK8r7ffvh+tSKUFD7ATITJcObtH1jIw7+fVq+Hw2ZDKIJTlTIMw7Sf+vp6TXx8vDM2NlYuLCw07t69OxoApk6d2rxt27bY4uJiPQCocYMnJyc76+rqdp86dWrvqVOn9o4ZM6Z59erVhy+77LJOLRrSFuwG74bYnDasPboWPxv4M7Q4WtBka8Kg+EHh+wuvG9xsNqOuthb91t4OVO4HrE3A6d1AdCow/n4AQKzW+161VhQD8Ve16QJv2VMNAHDUtPi1C8+JrkAR938G1Or1cNhDi7X3eZHFmmGYM+fmm29uWL58ecrw4cNzhgwZ0jpmzJhmAMjMzHQsWbKk9MYbbxwqyzKSk5PtW7ZsOdTV620vqsSaiNIB9PftL4TY0lmLOl+xOW0oM5eh4FQBXvr+Jeyv2Y9dlbtwsO4gtt6xFTH6mNDjZBk6l4W6evVqlJaW4iGcQhIAHPpS6dRc6bGMo3yscGf9j0CciJwQBYBsCcxC5q6yFTrdqBut3hB2z5ozmDEM0x4sFkshAFx77bVN1157bZO7PSoqSuTn54cU4VmzZjXOmjUrYuWshx56qAZATWB7R1T1OlsiijURvQDgLgDFANwb8wLA1Z24rvOShQUL8dXxrzyvN53chPJmpQjMnqo9uLTvpSHH2WQBHQFbt25FaWkpAOCwNhvjcwaD9nwQ1N/X3b3ONBKjbS2qxDqoC7kLefgLbqBlXXPyR7Q0NaKtvSN2gzMMw4RHjWV9M4DhQojWiD2ZM+a709/5CXVGdAZON3vzd++u3h1WrO1CIL65Ees3rve0fea4FJsP6zATWUhCPeJvWBRy7Dt9b8TCarMarQ6h1v6RaV7L2l+sW5oaAQAOuw06vSHExBLYDc4wzLnilVdeSX799dfTfNvGjx9vfu+9937sqjVFQo1YHwMHonU6S35YgvTodPx9xt+xo2IHBsYNxO3rbgcAmLQmrNi3ArUttXhiwhPQSf5nlm2yQGptFQBgxKAsaI/9B0UYgQaLHX/DrTAajViYd1fI+xpkK9DaDJDRr7227BRkhx19+g8Mu2bPnnVgTepwyh8m4puI2A3OMMw54+GHH655+OGHg9zd3Rk1ItwEoJCIlhLRYvdXZy/sfKK8uRx7q/fizuw7kRadhmsGX4MLki/wXHcHmq08uBJby7YGjbfJAqamBhiNRtw+Pg0TsQMj+nsfGltbg50ib4wcAACwSgbA1hwUYLbikQfwt8fnQZZ9jiSGtb79I7pDFfIAANkZvkwm29UMwzDhUSPWXwB4CcAPAIp8vpgOouBUAQDgp1k/9bRJJGHltSvx0fUfITvJm7c+/2R+0HibkGE0N6BPchLon3chE5W44657/PrY7Xa/19enJPhM4L9n7Vt7umjjf7z9gvKNBohzG4U8APgLv/9EbFkzDMO0QUQ3uBDiLSLSAhjqajoshAhdnJg5IwpOFiAjOgOD4wf7tY9MHgkAyIjJgF22I/9kPraXbw8ab5MF9I316CNcAYv6WEBvwuTJk7Fp0yYAwL59+/Dtt9/innvuQVxcnF+g13GnDik++mpp9OSxx8GtBbgYVykvwiVNCYgGDyzkcfkvHsCWd/8PKN8LDA3ed1fGs23NMAwTjoiWNRH9FMBhAG8BeBtACRFNVDM5EU0nooNEdJiIFobpM4uI9hNRERH9oz2L7w3YZTu2l2/HxL4Tw0ZKR+uicc/IezCp7yQcaziGKkuV33Wnww6N1Yok2ymlYY5SO3rq1Km47777AABff/01ampqcOxYcPa8OlnrJ8RN1d75j+8p9PxcX14Gp8P7nOYNL3Nb1qFToWm0OtwxYDei/j4j5O8HEKcbZRiGaQM1bvA/A7haCDFRCHEpgGsAvBJpEBFpACwFMANADoA7iCgnoM8wAL8GMFEIMRLAr9q5/h5NpaUS93x+D5rtzZiYGfn5Z0L6BADAD5U/+LVrLUpSnXi4jhwmehOoJCQo7u7mZqXCW6A7HABIdvq5uJtqqkPev+rHUnz68vM+A13fAi3rwExnGglJBv+EKn7XSeJ0owzDnDPmz5/fNz09PddkMuV19VrUokas9UIIz2FyIcQBAHoV4yZAcZkfFULYAKwEcENAn/8CsFQIUeeau1LdsnsHf93zV+yt3ovLsi7D5H6TI/bPis0CAFQ0V/i161sUIY4fejHwq72Axru7ER0dDY3Gm7EsVLAZZNlPrBtdlrXBFO3XTQiBlsZG3xbX90DL2v9tJUk+2f3kUBY08TlrhmHOGTNnzqzftm3bga5eR3tQc3TrByJ6A8B7rtd3Aihso7+bvgB8q7KcBHBRQJ/hAEBEmwFoADwrhPgicCIimgNgDgD0799fxa17BrurduPijIux9IqlqvrH6eOgIQ3qrfV+7QaXWMf1HQ4k+P/7SJKExMREVFcr1rKvWC8fORBzikrhlIVf7FhTTRW0egOSs/qjrMT7fjZEm2Cuq/W8FgGWNcJY1pJv+c6T24H+Fwf8ZrxnzTA9jfWv/6Vf9YnjHVrYok+/AZaf/fev2qzm9fjjj2esXr06KSMjw5acnOzIy8uzfPHFFwmjRo2yFBYWRpvNZs3y5cuPTZ061dLQ0CDdd999/ffs2WMCgKeeeqrs3nvvrb/iiiua1a4pOzvb4xEuLS01/vvf/y655pprzGf+W54ZasR6LoCHADwB5VM1H8CrKsaF2oAN/ETWAhgGYAqALAAFRDRKCOGnRkKI5QCWA8C4ceN6xae63WnHofpD+HnOz1WPISIkGBJQ2+oVTGx6CYbmdAgIxKWHzh+elpbmEeuWFq87+vrUBMwpAo7qUnGB3ccNXl2F2OQ+mPHLBTi4tQDYprTHJCWj6Xg1HHY7tDodhNuSFoHFOALqW/tY9ohKDPl7CY4GZxgmAvn5+aY1a9Yk7t27d7/dbqcLL7wwJy8vzwIAFotFKiwsLP78889j5syZM+jQoUNFCxcuzIiLi3OWlJTsB4CqqipVtax9KS4u3g8A//jHP+Jffvnl9GnTpqkW+o5ETTR4K5SjWy+1c+6TAPr5vM4CUBaiz3dCCDuAY0R0EIp4f9/Oe/U4jjQcgUN24IKkCyJ39iHeEI9Gm8sVXX0Y2PA8jGkvgzSAts+QkGMyMjJQVKSctmttbcXWrVths9kwebLiereT1mMlA8qedWyfFCSkZ+CiG2fh5DblaJk+KgoQAg0Vp5Gc1d9jjXvze7tzhQe4wTUaOGSCVhJhjmhxBjOG6WlEsoA7g40bN8bMmDGjPiYmRgAQV155pcewmz17di0AzJgxw2w2m6Xq6mpNfn5+3MqVK4+6+6SkpESsZR2KvXv3Gn7zm99kbdiwocRgMHTJh1XYPWsi+sD1vZCIfgj8UjH39wCGEdEgItIDuB3ApwF9PgYw1XWfPlDc4kdxHlBcWwwAfmeo1RCnj/OK9Y63AQB6hx2kkYHEgSHHXHLJJbjzzjuRmZmJ1tZWrF+/Hhs2bPBYxhIAOcANHpvcJ2genVHJcuaOFnePp6B0o/5IksbrZpdDnfojDjBjGCYioo3PiaDAVqI26xGopbGxUZo1a9aQ119//fjAgQODI3TPEW0FmD3u+n4LgFtDfLWJ6yz2PADrARwA8E8hRBER/YGIrnd1Ww+ghoj2A9gA4HEhRI9KAXemFNcWI0obhf6x7duDj9XHotHqEuvj30IMngK9wwEymABt6Lg/jUaDYcOGwWg0wmr1Vr9y71+Tz/vf6XDAXF+HuD4pQfNoDUpeb8++dRjLOjApiuTrBg+RGIVI4gAzhmEiMmXKFPP69evjLRYLNTQ0SF9//bUnu9MHH3yQCADr16+PiY2NdSYnJzunTJnSuHjx4lR3nzNxg99+++0D77zzzurp06ef831qX8KKtRDipOvHMgBHhRBHXK9HADiuZnIhxGdCiOFCiCFCiOddbU8LIT51/SyEEAuEEDlCiNFCiJVn/qv0HLac2oJVxauQnZQNjdS+906cwWVZOx1AZTEc6bnQOx2QEtIjjjUajTCbve+3hgYl+YlGAKdtygPjif17ASHQp9+AoPFusd7+yb/wwdNPhNizdidFCQ4wI7cYh81ixnvWDMO0zeTJky3Tp09vyMnJGXn11VcPyc3NbY6Pj3cCQGJiojMvLy973rx5A954441SAHjxxRdP19fXa4YNGzZyxIgROZ999lksAMydOzcrLS0tt7W1VUpLS8tdsGBBZqj7lZSU6L/44ovEv//9732ys7NzsrOzc/Lz8zs0qE4tagLMCgBcRkTxADZBiQS/HcDdnbmw3szinYvhEA7cP/r+do/1uMFrDgNOK+ypo6F3lEIKWc3KH6PRiPp6b+xeU5NyLpsAuGPES3fthFanx+CfTAgaL2k0iE5IRN3pMtSdLkNzveIECc4u2kaAmQhtWbMbnGEYNTzzzDPlixcvLmtqapIuueSSEU888UTFqlWrkm+77ba6pUuXnvLtGx8fL3/44YelgXMsW7bs5LJly04GtgcyfPhwmyzLOztw+WeMmnPWkhDCAqVU5v8JIa4DkNu5y+q9OGUnjjUcw70j78VlWZe1e3ycPg5mmxlytZJa1JE8DHqHHVp95KPvBoO/oDc1NWGZpgiS8Nq1NadOILFvVtj5Wpo8td7R6Iow90SniTBHtzQar60dZs+aM5gxDKOGu+66a0B2dnZObm7uBdddd13dpEmTLF29pnOBGstaIqLxAGbDddYZyplo5gwoM5fBJtuC8oCrJU4fBwGBJvNpxAOwGpOgdzg8Luq2MBr9y2A2NTVhhr4Jq4RXb2tO/oi+I3JCjAZAwJVz5mH9639RxtdVIw5ZQRnMAk/t+SdFCWFZgy1rhmHUsWbNmqCcydu3bz94tvM++eST6Z988kmSb9sNN9xQu2jRovKznbsjUCPWCwD8HsA6IcQ+IhoMxTXOnAHHGpX32aD40GeiIxFniAMA1DSVIR5AqxQNCQJalW5wN3q9Hk1NTdCkakFQLOuGZguaqquQfHm/sHOMmjINIydfgTf++x6Ya2sAZIFE20e3SJLajgYnzmB2PiNkAZLOLmKXYc6WRYsWlXcXYQ5FRDe4EOIbIcTVQojnSTGhKoQQD56DtfVKjtYrJ9POVKzdQV1PV2wCtEY0uwxVNZa1rxs8MTERTU1N0BJBclnWhyuVbK8xIY5tAfB8oBIREtIy0Fxf69ce1rKOEA3OGczOX6zHGnDqqW9R836PyvzIMOccNVW33iWiOCIyQaljfYyIFnT+0nonRxuOItmYjHhD/BmNH5MyBgDglO1AVCIsruNXehVibTJ5gxjj4uJw8OBB7C9vUXaMCXC0KtnN9FFRoSfw0eCE9AzvEa4gnQ2wrH33sEMFmHE96/MWS6HygNiyt7rNM7QMc76jJsBstBCiEcBMAF9CyUR2b2cuqjdztOEoBiec2X41AAxOGIxEQyJGUhSgj/acldYbjBFGAunp6Z7v7hzr//qh2hNgZmtxi3XkkwmJ6ZlobXZFk7vd3mECzMg3N3hINzifsz5fsVd4Y4Oc9dY2ejLM+Y2qqltEpIVSMetjVwUtNoPOAKvTigM1B5CTFCaASyUaSQOHbAd0UWhxibVOhWUdFxeHGTNm4KabbsIll1yClJQUxVgWAoKA7yqV6G69MZxl7RXhhHTvsUS3yIdzg/uJd0Oo0xKcwex8RMgC9tNm6LJiAAD2012ScplhegRqxPpNAD8CSASwiYj6A+jSTC49lY0nNsIm2zA2bexZzaOVtIobXGeC1SXWBmNksQaAiy66CKmpqdBqtcjLy4MsgGF1ZRAC0BQpaUTVuMGTMvt6rOEDBRuVxnABZr5i/fkTQGVxiOss1ucbjtpWCJuM6LxUgAB7GX+sMJHJy8trX47mdvD+++/HP/XUU+kA8Oyzz6YNGTJk5PDhw3MuueSS4SUlJWpKQ3caagLM/iyEyBRCXCWUTaUTAC7v/KX1Pl7b9RqGxA/BpX0vPat5NKSBQ3YCWm/6UL2KaHBfak6Z8cM6xcq12uKQXueEZp/Lsg7jBvcV3eR+/T17jDEJSiUtryu7DTc4ANSVBs7M56zPQxyVigtc1y8W2uQo2MrYsmYiU1hYWBzY5nCEyt/Qfu68886GF154oRwAxo4da9m1a9eBkpKS/TNnzqx75JFHsjrkJmdI2KNbRHSHEOIDInooTJclnbSmXkmDtQFHG47i4Z88DIOmfcIaiGJZOwCDCXabDUBwwpO2qDllxj9f+B5WnQwkAA5ygoQAhDJXWMvaB0nS4PrHnoJtZbnHDe51ZQeIc8RE+uwGPx+xu8U6xQRdRjRsbFn3KGpXl/Szlzd3aOpNXXq0JemW4W1W8zKZTHkWi6Vw7dq1sc8991xGamqqff/+/aYjR44UTZs2bcjp06f1VqtVmjt3bsVjjz1WDQCrV6+Oe/rpp/s6nU5KSkpybN26tSTU3EuWLEnesWNH9Lvvvvvjdddd58kANWnSJPOqVauSO/J3bS9tnbN2Fx4OrujAtJvjjUo69SHxoctYtgctaeEQDkAXBZtLrPUqMpi5+XzZXshOgayRyThQCcgkK17oSGIdRnOtFguELMMdyhBc/SbQgSOCrnOA2fmH7VgDtH2iIEVpoUszoWVfNWSbE5Kecy4x6tizZ090YWFhUXZ2tg0A3n///dK0tDSn2WymvLy8nLvuuqtOlmWaN2/ewI0bNxZnZ2fbKioq2v0Ge+ONN1KmTZvW0PG/gXrCirUQ4jXX99+du+X0XqpalP3gVFNqhJ6R0UgaOIQM6Eyw2WywabTQqkwqkf/BQTRUtaBPvxiMmZKAA//cDCecEAKwamzQSjr/jGO+BIiwR2CFQGuzGUKECTALXFuQFc171ucj9qoW6PvFAgD0A+IAAbTsq0b0T9K6eGWMGiJZwOeC3NzcZrdQA8CiRYvS1q1blwAA5eXluqKiImNFRYV2woQJTe5+aWlp7app/dprryXt3r3b9MYbb5x1lrSzIWIGM1dA2TwAA337CyFu6rxl9T5qWpSiF32iQiccUUPFS39C85YtGDrFBnOUE9AZ4bDYYNdooI3gahZC4PDOSuzdpOS5v27+haiuV5L1OEl57zbrHUhobU8MhbeetaWhwfs6MMAsnEnuvs6FPM47hEOGs64V2jzl4dUwJAGaZCMavyiF6cJUCIcM0kggDWc2Y8JjMpk8wS5r166N3bRpU+yOHTuKY2Nj5QkTJoxoaWmRzqam9ccffxz7v//7vxkFBQUHo6KiuvRDSk00+KcAygH8FcBSny+mHVS1VIFASI46s22P1uJi1L79NqzFxZj6VSUcEIBGD7vdBrtGG1Gsf9xfiy/fLPK8NsXpodPpAABOyJAJIGGDkNoQ60AD2dNMsDTUtRFgFri24Pc8B5idH1gKK3H6xe3KMS0BaPsoWy4kEWJ/mgVnow32CgvKnt6C2lVBcUQME5b6+npNfHy8MzY2Vi4sLDTu3r07GgCmTp3avG3bttji4mI9AKh1g2/evDlq/vz5Az755JPDffv27ZgItrNATW5wmxBicaevpJdTZalCojERWknNP3kwrUWK0EZf9lNkfLcZkAUgaeCwKWKtiSDWe75RIr8N0Vrc8sQ4APCKNTkBAki2QYYu/CSB93Bbw0SoryxH9IBw56zbfiYkSGA3+PlB7SrFk+jOXKZN9ibzMQ5XwmQs3ysen5Y91Ur5IIZRwc0339ywfPnylOHDh+cMGTKkdcyYMc0AkJmZ6ViyZEnpjTfeOFSWZSQnJ9u3bNlyKNJ8jz/+eD+LxaK59dZbh7jmsX3zzTeHO/v3CIca5XiViH4LYD0AT4ohIcSeTltVL6S6pRopUWceq2c9ehSk0yHuZ9PRnF+AxFoBDNPCYbe7LOs2xlrsOHmwFmMu74dJs4Z52t1BaU7IEBIBwoG23hJBWu1xgwONVVUwDRAAKNjlFPh65Wzg2Qa/64LTjZ4fuMITWg/VAQC0Cd5TDJpEA6Q4Pcxbyjxtwqm4wxnGjcViKQSAa6+9tunaa6/1RGxHRUWJ/Pz8kCI8a9asxlmzZu2PNPdDDz1UA6AGALZs2RIyYryrUCPWwwHcD2AGvJnLBID2F2M+j6m0VCLFdOZibTtWCv3AgYi6UMkNnlYOQNLBGcGydtid+PafhyA7BIZN8A/c0WqVP78gGRIBJDugEVrYbU7oQkXkhhFrnSEKTdWVSBdycCeEcoMHwh/G5wNCCOXBTQg4qloADUGK8W67EBF0qSZYGz3xQnBUt0CXFt0Vy2WYboUasZ4FYKAQghP3ngWVlkrkJLc/zahl506YN26EuaAAsVOnQj9oEAQBcQ0ESFo47XbYdaaQe9ZNta1Y+dx22FqU7ZbUAbF+191i7YQMDRGirTaAYrH76x8x7upQVcFCi67BFI2GqkoAySFd3kQS3J/THn7cBvS/yDUrF/Lo6TgcZhDpoGkjh4BodSrbNy408YagBzltshHWw4AUo4NstsNRxWLNdDyvvPJK8uuvv+5nvYwfP9783nvv/dhVa4qEGrHeAyAWPi5wpn3YnXbUtNYgzaTuSErFS38ChEDak0+g7IknYT+lRHBHjRkDkiTYDBrobTKg0SqWtTEuSKyFEPjP3w54hBoIPv+scZWulEmGrVUGyQ5A08ZbImjLWhFYg9GEE/s3YfCpnyCUlUxEEIHDW+t9O/A56x6M3V6P/IKxkCQ9pkzeHzbyVm62+73WxAcLOxmV959xeCIsP1TCwcU9mE7g4Ycfrnn44Ydrunod7UGN/zEZQDERrSOiD91fnb2w3kRlixJMo+aMtdzcjNq330btihWwnTgB++nTAADTRRchYdatAACrUQO9DYCkheywu9zg/vMc+aEKpw7WIWdiRth7aTQaEAhOyJC0BAEHQFo0URjhDBJrpZ+7lvampT+ETFYWlG405MRsWfcUAktZVld/AwCQZRuam8PH7ThdYu0u3CEZg7dajMOUILOYSzNBegnOutYOWTPD9HTUWNbPd/oqejkltUqcwpCEtrOXtR48iPpV//S8rvrLK4Aso98byxAzebKn3aEjaJ2AIA1kuz3onLWtxYFtnx4FAEy4bjD2bz6NoeNCPyhIRJBJRnySBFuZE1HQ4pvWFkwN1TkocEz5pvPLSx7asm4LPmfdcxBCYOfOWyELO5KSJiE+/iewtBz3XK+r24qYmOEhx7ot6+jx6ag/eRjRY4M9TcahCej7/ESQRoImwQhHHVvWDAOoE+stAFqFEIKIhgAYAaWuNaOSDw9/CJPWhOGJoT/E3Jyc/xDsP3q3TBrXrQOZTIga61+lS5YkSE6CXWgBIWDX6PzEel/+KdRXWDB59ghEJxjwi5cmwWAK/aeWIMEJWdk7FA5A0sIih7ZygzTXJbAZQ0cg/mQaGiorIEQo05oQfNTaV5zZDd5TqK0tQENjIQCgqWkfACAt7ToYjVlobT2JkkN/QELiRYiNCS6MJLu2ZIxDE9D3uUtButDHXd3R39pEA5z1bFkzDKDODV4AIIqIMgBsAvDfAN7u1FX1IhyyA9+e/Ba3DL8FJl34nPetxcV+Qp3+h99DiotD5qL/gSYmxq+vrCVIMmATyp/PpvVGg7c02bD1oyPIyk7EqMv6AlASoGi0of/UOq0EGTIMUQSdU3GD722whOxrCkgD6ZsEZdTUq5SfRAjLOuxv7b7OhTx6Cubm4IyL9fU7EBXVH6mpVwMAqqu+hsMRXEFL2JRMeWTQhBVqXzQJBjjqrEFud+b85lyVyHzppZdShg8fnpOdnZ0zduzYETt37jRGGt+ZqBFrSQhhAXAzgP8TQlwHILdzl9V7OG0+DYdwYGjC0Db71X/4IUing3HUKCTeeScSZ83C8G3fIe7KK4P6yhpFrK2y8oFn12ggrE58+VYR3n78WwDAmCv6qVqf0UCQJAuM0QAJGQQtwm1ZSzH+CVOEp341QeOKLJfl9ou1EmDGe9Y9Abu9HkRaGI1ZIFLef1braURF9cfoUa/CaMjE0WN/xqb8XNhstX5jZatLrFUW6tClR0O0ONBaUof6T49AOPg9wpy7Epn3339/TUlJyf7i4uL9CxYsKP/Vr36l7kO1k1DjBpeIaDyUXEJzXG1cFkcl5RYlG1NGTPhAL+FwoHHtOsRcfjmyXvmLnwiGQpZclrWsXLdrtDj6XTkOfV/h6TNglLq0plqN4gYXbtc3aZEbre4B0pMURcAj1pBDnLMOp/4eOINZT8FqLYdBn4qJl26CLNuxYaNi5EQZlVK/MbE5aLUqSU2stkro9UmescLmypSnU3eu3jAkAQBQs0LJ3hd1YQoM/eM67Hdhzo6PP/64X2VlZYeWyExNTeRhrCgAACAASURBVLXMnDmzW5TITEpK8jwdms1mzZnmF+8o1Ij1AgC/B7BOCLGPiAZDcY0zKrDYFZdyjC4mbB/rkaNw1tYi9orLAUQOyBIagmT3F+tTRV4r5o6nL1KduF4Ra+GTQUyLw+b27hMSNK7UpbIz+DmOQgmxz9EtAmcw6+78eGIFDh36IxISJsBgTAcASJIOOl0i7PY6RLuCymJjR6K6+msAgNPhX59a2GSQXqP+vZkSBU2SEc5a5f3oqGllsWb86OwSmS+++GLKa6+9lma326Wvvvqqe1fdEkJ8A+Abn9dHATzYmYvqTVgcilibtOEfQK0lykOe8YILVM3pdoPbnK4PPaFB+aF6DBuXikEXpiApU30SCa1GggMyZOG1rB1OdVaub0lMyZ0NzanSDf7RA8CY210dOINZd+fQoT8CAOrrt3v2pgFg6NCFOHXqH0hKnAgAiI3xJv5xOv1jH4TNqdoFDigPrRlPjIewyzj1u80e0Wa6B5Es4HNBZ5fI/PWvf13161//umrZsmVJzzzzTMaHH35Y2uG/hErUlMgcCsW6Hgj/EplXdd6yeg/NdiXQpq3gMuvhw4BWC/3AgarmlDUStDLg2gJEeh0gOwVG/rQv+o5IbNf6tJBhJQFhUSxzIi0kAeTXNuGyJP+MZ+Fzgwtota797FB71mq0mC3rbg2RDkIoR68MBm+gYWbGLcjMuMXzOjZulOdnIfz3EWWrE5Kh/TtopJNAOglya5cXPmK6GZ1dItPNf/3Xf9U+/vjj/c96wWeBmo/R1QAOAPgjgN/5fDEqcLvB2xJr29Gj0PfvD9K1UfHKB1kDSE6vWA8rk2GK1yNjWEK716eNioEDArLHVa2FJAT+78eKNscp+BTJdCU+EaFyg0eYhUjio1vdGCWGwvv38RXrQIyGdAwb9lvXOH9xVSzrM/OiUJTWc/SLYULR0SUy9+7d60kgsWrVqvgBAwZ06aF/NXvWshDi1U5fSS9FlRv86FHoB4fKxR0aWUPQyIDb0BhYITBschqkiAUzgtHqjXCiwSuypIUkI0x97OCUpkqrV6wR4px1yD3roHnZsu5OCCFw4MATMEUPRWbGrX7CG21qO7lPUuKlAAA5UKyt7XOD+yIZNRBsWTNt0NElMhcvXpxaUFAQp9VqRXx8vOOdd9451vm/RXjUiPUnRDQHwEfwL5HZGGkgEU0H8AqU6PE3hRD/E6bfLQD+BWC8EGKHmoX3FCx2CwwaQ9g61sJuh+3HHxF7xRWq5xSuaHCr6yiL1qlBSkCRDrVotVo4IUN2RYMTFDf4N7VNEUbC77iVV6xDWU5tizWBM5h1N6zWcpwuV7IKJydN8rsWG9f2yU0ixUMk5AA3uM0JTbQ671EgklELuVX1ViPTizlXJTJXrFjR5XvyvqgR6/td331d3wJAm/57Ug5hLgVwJYCTAL4nok+FEPsD+sUCeAjANrWL7klYHJaIVjXs9vZb1k7A7JABjQ4EQlzymZ3X12p1cJKAkF0fhKS4wUMStGftvdCmZR1JiLmQR7fD0lLq+Xn799cDAMbkvglJ0sOg79PmWMn1YOre43YjbE5Q4pm9T6UorSe3OMOcj6iJBj/Tg+ATABx2RY+DiFYCuAFA4NPNcwBeAvDYGd6nW2OxW4L2q2WrFSAC6XSofu11QKNBzMSJqucULje41S4DkmKp6MOkE42E17JWxFqSdJBUeqTd0eAE+JTGDOE+DyfWrrqZBAKfs+5eOOwNQW1JSRMhSfoQvf0hciXICXKDy2fsBiejFqK65YzGMkwgvbVEJogoG0AOAM9jsRDiHxGG9QXg60Y4CeCigHnzAPQTQqwlorBi7XLDzwGA/v27NCCv3TTbm/3EWgiBYzNvBOn1kKKj0fLDD0hZsADalBTVc7qPbrXanZ6SlhrNmQXuaHU6JcDMJdak0XkymB0wt+CCmKjwg90iLADJbVmHiAZ3R3o3GzIR7UqYAQDY+y8gd5ZiWXM0eLfC7lDEesjgxyFpDNBoTKqEGvCKtRD+buszjQYHFMua3eBMR9ETS2SqObr1WwBXAcgGsB7AzwB8CyCSWIeKUPKYT6SYYn8GcG+kNQghlgNYDgDjxo3rUSZYoBvcdvgwbMe8cQqxM6Yj+f772jWnkFyWtcMJ4bKspcAamSrRanVwQobTqVhBRFrPH+6jiro2xdrjuqa2o8HdYl0WPxHDKv/lbT+Wr4g1W9bdDrdlnZV1F7Ta8Al9QuERa9nrthZCKG7wMxVroxZyqwMdcQyHYXoiasyx2wBMBXBaCPFzAGOgziI/CcDXhZ4FwMeswv9n793jo6ju///XmdnZazZXkhAISZAEQrgGFOSi3ERArValrdcPtfwqtl+titbaSrWIWqmXT22lFWq1aj+tqJWqoChUBarcL3JJAoFAIORGLptk7zsz5/fHzGw2m93NJjubBDPPx0PZy5kzJ7uz5z3vuxXAWABfEkLOALgcwIeEkEujmPuiwelzwsK1Fylxl5Z2eH/Is89G0e+5I5QhUuqWVwCV/YM9FtYcBxCAVwLMAjTrTxo6m0I7rEORrzSg6lqorluysO4kyA++JZ1TKzfa7/DxrSBEB5aNvsCOAiPfQFLKQ2j1om17FcCLgEh7LKyJkQUECurTLDAaA5NohK6LUioQQng5GKwWwCVRHLcXQAEhZDiA8wBugVRfHABAKW0B4I9UIYR8CeDhb100OO9Ehrm9l7TndMfof8ZgCD6kSygDMJTA4+MBIm2mTI/N4JJpk1fM4ETnDwgrdwalFQYHmFERIqXQdRFg5hfWod6TTqp1Vupn8HwLdLrEHmmxgT7r5g9Own2sEbpMybrE9DR1yyRr624B6OEcGhoXM9EI64OEkGRIbTH3AWgFcKCrgyilPCHkXkimcxbAa5TSY4SQJwHso5R+GMO6LxqCA8y8Z86Ay8nBoJ/+BMaRkftbh6LOUYePRtiR/xXg8fpAddLG1XPNWhLWPspL5mzCIkUXZbBagIBVfNYhBbJfWFPAmgW01QQN0Mzg/QVKRZyvfhsu1zlwXFKP5vAHG1IBolMyhfMXpOCwWMzgACC6ebCJ0fnONTS+TUTclYl0W/0bSqkNwBpCyKcAEimlXQprAKCUfgzg46DXHg8zdnZUK77IcPCOjj7r02egz8tF8ne/2+252rxt+M6/vwNXhgcnBwM+XlBPWIsCdJweDMvg+vQkvINQdZg7F0Xx1zDzR4OHDzDrYAYfcxNw4lN5VqKVG+0n2Fr24/hxKUszMXFij+YIDDBT8qp5OZK7x0VRLNKc9p3VSLkhcrtZDQ01KC4uLgzVjrOviGg7pZJtcmPA85PRCmoNiUDNmooivGfOwDA8+pzqQB768iG4eGnTs3gBQRChCNCYfNaQhbVeDxBAH21jDUoBSkFoYFGUUOPEgLfkdRqsgM8BCD5AKzfabxCF9vSonmrWyrZCqQDG3FFY9zQa3DBcWouo5Vpr9BL9SVAD0ZnB9xBCJmlCuvv4BB98os+vWfO1taBuN/TdFNZt3jas3LkSO2t2+l8TCMALAqjcWrwnpUYBQK9XzOCSsCZB/mOvGF7jbdesA6LBAyqYUZ5Hw9q1SP3OlWChWM3luY2yIPC0QTOD9x+EAGGt56LriR6MZJBjOqRu+TXrngaYsQyIUQc2QTOB9xdKSn8xzGE/oWo/a0vCSGfR6NVhK4cdP35cv3DhwoIpU6bYDxw4kDB69Gjnj370o4Ynn3xyaGNjo+5vf/tbRVFRkef222/PO3v2rMFkMonr1q2rnDp1qmvTpk0JDz30UA4gXaNff/11GcMwWLhwYX5LSwvL8zx5/PHHq++44w4b0N43GwBWrFiR+c4776QRQjBv3ryWP/3pT+eD13bmzBlu4cKFBcrz8vJyU2lp6ZGRI0d6g8f2hLDCmhCio1JB4JkAfkwIOQXAAXlnpZROUmMB32aUjltKNLj3zBkAgD6ve8L69aOv49Mzn+KywZehKLUIb5S8AUHWpBUfMempsJbN4F4qysK6Yw2TErs7IAqw47GBQt1//gCfddtnn6Hhjy+DP3cKWUZADPRnG+W+xJ5WqZGHFmDWLxCE9h7U+i4qlUWCEFZqDyO3WxVsUrBiTzVrACAsARU0d8lA59y5c8b169dXTJ48uXL8+PGj/+///i9t3759Zf/4xz+Sn3766ayhQ4d6J0yY4Ny6deupDz/80LpkyZLhZWVlJS+88MLgP/zhD5VXX321o6WlhVE6dm3atOlkamqqWFNTo5s6dWrhbbfdZmMCMnTeeeedxE2bNqXs37+/zGq1iuEageTl5fnKyspKAKkP9o4dO6xqCWogsma9B8AkAN13rmoAkPzVQLuw9pw8BQDd0qyb3c1Yf3w9rsq5Cv8753+xs3on3ih5AzzbntdMgR7nnhrkaHQvFaDTGyAGadZiBI03ULNmGFZ+DXDs3oOzS5a0z+F0BZTTUU4sC2u3UmJe24T7A3xAD2pO3zPNGpCFNRUAseP101OfNaAIa+2mrr8QSQOOJ0OHDvVMmTLFBQAjR450zZ07t5VhGEyaNMn51FNPDTl//rzhX//610kAuP7669vuvvtuXWNjI3v55ZfbH3744WHf//73m2699dbmESNGiB6PhzzwwAPZu3btSmAYBvX19fqqqipdTk6Ov/zeli1bEu+4444Gq9UqAl33w/7ss88sb775ZvquXbtUNaNHck4SAKCUngr1n5qL+LYSrFm7S0vBpqVBlxFdtTKf6MND2x6Ck3fiJxN/AgD+hiC8P2KbCd07I0oM/mhw6tesAzdYBx/JDC6JcoJ2nzWhDKofeaTjQDEgGnz8D6TXkrKlfz1tWp51PyKwu5aeS+3xPIqwDtaEe2oGBwCwBNCE9YBHr9f7LwKGYWA0GikAsCwLQRBIKCsdIYQ+88wzta+++mqly+Vipk+fPvrgwYPGtWvXpjY2NuqOHDlSWlZWVpKWluZzuVwddtTuFOKprKzkli1blrd+/fpTSUlJqmogkbb5dELI8nD/qbmIbyuBwppvbIR9xw6Yxo2L6ov3CT5cv+F67K3diwcnPYiRKVKaFyMHf3XQrGOo6GTQS5q132fNEFAKFFokVfjt2qawx1KRykFm7Zo9pQR8XV3wQP9aMe8J4JfnpRQuAPC0auVG+xGBwtpk6nlpX8m10Vmzjs0MzkjXnIZGBC6//PK2119/PQ0ANm7caE1JSeFTU1PFY8eOGaZMmeJ6+umna8eNG+c4evSosaWlhR00aJDPYDDQjz76yFpdXd0pKGLhwoWtb7311qC2tjYGCN8P2+PxkJtuuumSVatWnR8/frzqva8jmcFZAAkIXTZUIwoChXXrJ5shNDQg7e67uzyOUopn9zyLKnsVrsq5CreOvtX/Hkuk60QMDOiK4RvilGhwUJj1BsAjnf+9iQUY+9VR/KuuGb9UBnc6D/VHcfujwUMYiPQ5QwGX7AtnGMCQ0G4Gd9lAOE2z7i8o3deKJ76J5ORYigmyABU7ma2JLgYzEEukSmgaGhFYvXp19W233ZY3cuTIIpPJJCp9qH/3u99lfP3114kMw9CRI0e6Fi9e3GKz2dhFixbljx07dvSYMWOcw4cP75Szunjx4tYDBw6YJ06cOJrjOHrVVVe1vPzyy50CzLZu3Wo5evSo5amnnhry1FNPDQGAzZs3l+fl5amSwhBJWNdQSp9U4yQDlUBh7Tl1EozVClNx17mrvz/we7xz4h0sKVqChy59qIMmrpjBhUDNOob9j9NJ5UV9EKHjlGhwIJULcfOo2LyVpyL1v+g3g9d0jqdIuGw8sD1IyVLM4C1VwCCtgll/QdGsk5OndjEyMlKAWZBm3cP0Qv+cLNE06wHOqFGjvOXl5ceU5//617/OhHrvP//5TydX7RtvvNHJx24ymfhDhw6F9C0rkeAA8Mwzz9Q+88wztZHWdu2119o9Hk/csqa69FlrdOT9A1W46sVt+OJ4fZdjA4W191QFDCNGdGkCL20sxWtHXwPHcHhg8gOdxiuadUOSEtDFADGYwQkADjr4gIBocAomYE7Hj0YjYVZ2yGhwCjnPWsnN5qVBw/6yrn0c37FVIgCAMwKcGXDb5PVrm3B/QBHWhMRW0pMQFlTkOwhX0sOSuH4YLcBMY+AS6dczr9dWcZFw3ubC8ne+wcl6O1Z9VNKlNmj3SmkwkmZ9Cvr8ERHHN7ga8P2N3wcArL9uvV+LDkTxWf93jFIlKrYAM1CAAwseFDq9QfIfB1kaT6dwSF40vPONBqX+z0BJdWDKJSuSPjcXpsmTpXGyabWTVsSZgbZarYJZP4JSHoSwMXe2IoQBhQgIFFx2ArihCUi+LpqWAhHmZILyCjU0+og777wzp7CwsCjwv5deeqnn6RNRENYMTikNH1k0ABFFirte3wMA+PEVw/GXHaexv7IZl+aFj5htcDeAYzhYHCKExkYYRoQvk+gRPFj6qdQq87dX/BYFKQUhxymvTzxNgHQAIDFp1lSk4KgOPHG3R4MH0egLoRkDclAYIwWY+X3W0mbKDRuGxAUL4Nq/H1yG9BmJwaq5swE4+h4w5h6tglk/gVIhZq0aCIgGFykYA4v0H4+PfXGEdApY6680nreDYQl0ehZuuw/pOda+XpKGirz11ltne/ucUXZs0Hhn3zmcqLPj1ik5uHdOAf6y4zT2dSWsnQ0YZBoEb4XkPjGMCK9ZPLf3OVS0VOD6EdfjukuuCztO0ayJYhQRYwswA6XQg4ULCFnBDACeOHketw/pfNOomMGB9qIoFAT63FwQQpBy5x1IuukmsLZS5VRh0Mzg/QVJWHMxz0OIFGAGkQJcjOZvBab/G2BEkeLotirsWF/e4XWGIbj5F5ORkZvYRyvTuNhR6Vf07YZSir99fQajsxLxzI1jkWTmMDjRiBO1bRGPq3XWIt2c7i+GYsgPrVl/duYzrD++HvnJ+Xhs6mNdrodQgDLtAWboYfUyeQJwVAeBADq9QfJZyxviX8fmAQDs4apGUTnALFCz9lAwyVIpUUII2ARLQNetoOMv/3+APkE2g2vCuj8gymbwWCGEhUh5UIHG7qv2z9l/rxPlBvfQlrN+QZ01IgmEANZUI0SRovTr4G5zGhrRo2nWUbCvshlltW347U3tOdKjBltxvC68sOZFHscajuGGvOtw4ek/gk1Kgi4rq9O4c23n8NC2h1CYWoh189d1aKcZDgJAJKxUFZyqIKzBQmTgz7NWNsTJiZbIhwZo1koFM7gE6LKDrA2ysO5kwTQlA167lOKjVTDrF0iatRrbQoBmHcv1GQjTf1O3tv3zBBqr7GiqtiN1iAVXLx2DtKEJEEUKhiHYuOYbnD/ejOZaB5IzzD0uD6wxcNE06yh4a2clrAYdbpg4xP/aqMFWlNfbIYTxoVW0VMDJOzHZlQmhsREpt9/WKWiHUoofbJQqev1m2m+QYkyJaj0EAGRzOFXBDO7XrLmOtcEHG9rNoefcnVOyqFwQJbAoClwidBkZQQOVoihBn5VJ+nt1Xh80M3j/gKqmWTOgEGTNWj1h3R9Tt2z1Thzbfh61FS3wugUs+PFYpA1NANDeYCczLxHNtU784ze7ceCzyr5crsZFiiasu6DF6cPmo7W4adJQmPXtGkdOqhleXkSDPXShmlM2yfSd55Q05YQ5czqNeeXwK2jztiE/OR9jBo2Jek2BZnDEaAanFNCDhSBr1gjhswYAPsQm6U/dCuy6xVMw1oSggWLgP+3Iwpr1ebQKZv0E9QLMdO0VzFTSIiWrjypTqYaz1Ys9H50GAJiT9Lj8u5cgNauzRSpzeLuvumxnxHRdjX5CcXFxYV+vIRDNDN4Fm4/VwCuIuHlydofXs5Kkcpw1LW5kJgZ3qWjPsTbUt8AFgBs6tMP7tY5avPLNKxidOhp/ufov3VoTAUAVzZoysQSDA5SCBQtKELLrlkKl24PhZkPHQ0VR0pYp7VDBjLUGRb4qZvBgE4ApGQDAelRrTKMRI5JmHfu2oJQbpSJVz+QbVLe+r2m54MS7z+6Dx8GjcHoW5v3P6LBjM4cnwZSoBxUpbHVONFS1YVC2FiHen4m1n7XP5/NXiFQDTVh3wcdHajEs1YRxQ5M6vD5YFta1LS5gWHKn49y8lG/M1DaAmExgUzqauN898S5EKuLF2S8iyZDU6fhIEBC/sIaImH3WjNy5i+VCR4MDwEuVdZidGiqSVY4GV24eCMAmB30eNKCRRyCKZu31gOo0zbo/oHbqFgRRVZ91fzGDV5fbsOEFqViVOVGPy2+InENuMOlw17Mz4HHyeP3R/6L06xpc8f2LW1g/UHp2WJnDrWo/60KL0fn70TkXZT9rAJgyZcqoKVOm2Hfv3p1wzTXX2FauXFkXalxP0IR1BGxOL7462YClV3QuCJKVZAIgadahcPEu6UFtPbihQzocv+3cNqw7vA7zc+cj25od8vhIMACgbKiUUdzXPUOkYOUqaCzHdYgGB4A7stLw95rG0D5rUZT91sRfFIWCgE1OCR4o/dMpwKxdWEPXPzbhgY5qmrWcZ0VF9XzW/akoytHt0l596bV5mHJdiIJBISAMgTGBwyUT0nFidx1mLC7w+7Q1oqe/9rNWsNls7N69e4+r/XdrwjoCO8obwIsUC8YM7vReipmDXsegtjW8sGYIA/58dScT+MqdKwEAyyf3rHkZofAHmCHGcqOUUjCyeZrhOBCGdtgQf5abgb/XNKLK3bkWfbumHGAGJwCbFKSBd6lZuwGzpln3B9QLMNNBpLxUJEdVM7g6U8VK9YlmjJySianf6X5VtuETB+Hk/npcONuGzLyLN+86kgYcT/p7P+tbb701LgXFtACzCOysaESCQYfxQzubqQkhGJxoRG0YzdotuGHSmeA7Xw19gLDeV7sPF1wXcF/xfT3SqgHZZ+3vH43YfIIUYOTLgNFJ/pVAoaqLdCPgT90iAUVRAMZi6TQOCOGzNiQBIJIZvJ9oTAMd1VK3iPqaNZj+0fDF2eqFo8Xb46pkwwpTAQKcK2lUeWUDg/7czxoAFKGuNpqwjsCuU42YMjwVujBFHQYnGVFjC69Zp3r1EFtbwWUPAyB96f974H9h5ay4Y/QdPV6XVO9L0ocZysQorNs1a8Ky/q5bClkB6VvBPwJ/nnVAURRKSAhhHSYanGEAYxIYrwf9Lsx3gKKeZi133VJRsyb9pNxoQ5VUX2HQsJ4Ja5NVj/RhVpwt0So6x4O+6mcdbzQzeBhqW9yoaHDg1ik5YcekWw0orW4N+Z6bd2NIq/Sd6nMkYb29ajsOXziMX075ZVTFT8Ih5VmzYBgGRFBe6CFygBkAMDqdpBAF7IeBd5Qvn63HfbmZ7YdSUZqA0vYAMwCMyRR0jjB51gBgSpHM4Jqw7hdQUQCjSjQ4CxoHzbqvzeCN5+346A/fAAAGZSd0MTo8OUWpOPjZWXhdPPQmbRtWk77qZx1vtKskDDsrGgAA00aEb6SSZtGj0RE67cjNuzH1sJSDzeXkQKQi/nDwD8ix5uB7o74X09qUoigsQ8DEaAanIm03g7O6iCUd/1BZFySsFW2byEKdSmnfYVK3Qk5rSgHrtfUL86aGmqlbrNRuU80KZiRE3EOcaKy2o+LgBQwekSSZrQEc31WD0p1SydDEQUYYLT1Py8kuTMH+zZWorWhBzpi4Nmv6VtGf+1kDwJ49e1QPLFPQhHUYdp5qRJKJw+is8AEgqRY9Wlw+8ILYyVQutLXh8p02GAoKYMjPx4aT/8aJ5hN49opnwTGx5d4pwpohBAyNMY+VAgwNNIOHD7htC6oRTkX5uXyAJK5DmcGpPD7EpKYUsLYaaB6Z/oHqqVuxxlQEzsn0jhnc0eLBe8/uA++VLthbfj0FAi9i69+khjQpg8248aFJMZ0jdYikldvqXciJvh6SxgBGE9Zh2FnRiKnDU8FG2GjSLJJ7o9npQ7q1Y8EQ69km6ASKjIcfAmEY/Kv8XzCwBizMWxjz2hg5GpwQJvYAswDNmjCs3M86OlujKAqdGmZRHdMeGe5/USmKEgJTCpg6NwBTqHc1ehlKeTCMoeuBXUDAtFelU9MM3gua9f5PKiHwFFO+Mxx7PjqNt1ft6fD+6OlDYLJ2cm12C5OVg87AovWCK6Z5NPqGO++8M2fv3r0d/CA/+clP6u6///64RQ1qwjoE520unGty4UczhkcclyIL6yaHt7OwrpeCUPTDh0MQBZQ1luHaS64Fy6igtQCSz5pIZvBg2dgdKKVgFac3w3TKswaAN8cNx/8cOd352IAKZsq6qC7ExhwudQsAzGlgPU5Q2rkKnEbvQ6kg3bTFiL/cKND55q3HkwI0YtJMbLQ2SILz2H/PY/T0LFx27XCk51jx9fun4HPzmLwoDzo9g/zJGV3M1DWEEJgT9XDZtep9FyNaP+t+woHKZgDAZRF6VQOSGRyQhHUwifUOCCwBN2QIPjnzKbyiF9OHTFdlfXI4GAghqqZuSQp75/SYmSmho16pKO2cynACCqoLsTErmnUo1dqcBtbnAYlSm9eIL2qmblFRTlW9CIqinC1p9AeOAcCEeVJQaN64QcgbNygu5zQlcHDZO9cv0NAIheYoDME352zQ6xiMGhw5NSPNImnToYR1ar0b9nQLwLJYf3w9MswZmJ87X5X1SRXMGDBEMokzsRQHF9tTt0RRDOmzNgXcDHza0NJ+qCDK6nT7ATTUxhxJs7ZIwTU6L9/5PY1eR9XULfl7V602eBx91qf21/sfmxP1SBmsahXNkBgTOLg1Ya0RJZqwDsHhqhaMGZIILkx+tUK7Zt2581ZagxfOzCTsrd2LA/UHsLhgsSomcKBdswYhIDEGmNEAYS0IQsho8MD0rSUB5nDRH2Amj6MUCPWZKUVRQu2zZklYc/20T/FAQ1RJsyaEabdZXwRFUWpPt/pTIAePSOpWEYyeYkrg4GrTzOAa0aGZwYPgBRFHzrfgB5cN63JsilmK6m5ydLw7pqKIa3cifAAAIABJREFUjCYBVZem4ouKj2DVW7FkzBLV1qj4rKWiKCqYwakkYCVhHb2lUTKDtw+WfNbdNYNLJka9V11nZLXNhb1nmnDDxKFdD9bwQykv1fWOkY4+azWLoqgyVQd8HgFNNQ5cuigPRguH4RPjY/YOxpig1zRrjaiJq2ZNCFlICDlOCDlJCHk0xPvLCSElhJDDhJD/EEJy47meaDjd4IDLJ3TqshUKHcvAatTB5up4d+w5XwU9D7iGpGJ71XZMy5oWUxGUYBhI0baKzzqm+B3a0Qwerp91yENFETSgbSGhAA2pWUcoimKRNkbOR1XVmqY/+znuf/sQdlc0ghc0rT1apAAzdRp5KMJava5biIvP2tHiASiQnGHChHnDkJjWO5kJRosOvE+ET+Ub1YHMa6+9lnLJJZeMmTp16si+XovaxE1YE8nxtQbAIgBFAG4lhBQFDTsI4FJK6XgA7wH4XbzWEy0lNVJFsqIh0RXYTzZzsDk73h03b3hfmqvAiCZ3E64Zfo2qa1TyrAFFWKvssw4h2345PKvzoULHYifhzeCicqrOyGZwPS9CDbXphjVfIe/RTf7nP1i3C/mPfRLzvAMFSbNWsdwooF4FM0LkgnnqCmxXm/T7jTUdq7sYZMucx6HFa6jF66+/Puill146u3v37hN9vRa1iacZfAqAk5TSCgAghLwN4AYAJcoASukXAeN3Aeh5wWyVKKlphZ5lMCI9ulKCKWY9mp0dNWv7p5/hcB7BYVKFNGMarsi+QtU1Eqn0iFQtTIxNWFMq9ccGAnzWITTgn+Vm4LenpepNdl5Ago71R4P7U7e60KxDSmuTFHHPeUW5YH6P/xRQSvHNOVvI9+weHgkGzevTJVRUJcAMAQFmqtUGV+YRARXuJ/wofuPeF9bS9ehx+pCQEntue2/z8/e+GXaitk3VSLyRg63O5xZPCNvNa8WKFZlGo5GuWLGifunSpcOOHTtm2rVr14kPPvjAeuONN440Go3ifffdl7tx40bbmjVrqn76059mf/nll4kAsGTJkobHHnusPtS8Q4cOHbdv377SrKwsfvv27eaHH354WDyrkfWEeO5eQwEEfuhVAKZGGL8UQEgViBByN4C7ASAnJ3ytbjUoqW5FfkYC9KF8ryFIMnXUrEWvF/yZShyfCpxrO4f5ufOhZ9XdBBQzOIDYK5gFFEURI/isAwNuZu8tw75pY2SzecAgGsYm79esQ0zM6iDoTeB4ilg06+InP0OzM7z/z6EJ66gQKa+OGZyw/gAz9aLB5X/lErdq4WztG2FtVDRrp6ZZR8ucOXPszz//fCaA+kOHDpm9Xi/j8XjI9u3bE1avXl357rvvpj3//PPnrrzySufq1avTKysrDceOHSvhOK7PGnCoRTx3r1C/ppD2K0LIHQAuBTAr1PuU0nUA1gHApZdeGtcSRqU1bZg9Kj3q8SlmPc41Of3PvRUVgCBiTyEDJ+/EnGFzVF8jkRrCgco+60hV1rok0Gct8ADhQLtIj1F6W/uFtd8MHi51S9q0w00rGi3Q+1oR5vLokmqbK6Sgfu+eafj+2p0QqZpb+7cbSgX1zOBqR4PLN4xUpKp+n+2adWxlgLuLwdKuWV+MRNKA48XMmTOdS5YssTQ3NzMGg4GOHz/evmPHDvPOnTutf/zjH8++++67/kLrn3/+eeI999xzgeOk77WrPtT9nXgGmFUBCAypzgZQHTyIEHIVgMcAXE8p7ZwD1YvUt7nRYPdErAceTIqZ6yAo3KVlsJmBygyCorQizBoW8v4jJhhIXa4opGhwNpbNMKDrlsD7OnXdinhogBmc8jwIpf4+2x2Qx4lhpLVgTADn7XmA2WfH2uvrP35de1hEcU4KvlssRYPvPdPco7kHHmrVBmdAoW6etX+eOPisDWYd2CitaWrRbgbXNOtoMRgMNDs727NmzZpBU6ZMsV955ZX2rVu3WisrKw3FxcUdOmbJfaijulhYlqVKKmpwP+v+QjwXtRdAASFkOCFED+AWAB8GDiCEFANYC0lQh/Ql9CalNVKJ0KJuCOsksx6tbh8EWRC5S0tweCQHEIKbC26GTgWTYjAEkhlc9GvWPf8aqUj9jTxEgZf7WXd9fVNKpRristlcdLlAKHBOTMBOmz34JNL8NPSmLRotcp519zfht/ecxW8+ksIgylYtxJLpef73WIbg6iKpS5hZf1FbwHoN1Rp5IH6atdrpW642b6+bwIGAADNNWHeL6dOn29esWZM5e/bstquuuqrtjTfeSC8qKnIyQfvgVVdd1frKK6+k+3ySMhXJDJ6dne396quvzADwzjvvpMRz/T0lbsKaUsoDuBfApwBKAbxDKT1GCHmSEHK9POw5AAkA3iWEHCKEfBhmul6hVI4EH50VfVP5FDMHSoFWl3RBuL75BrsnSqkf+cn56i8Ssmat/J9S6GI0gxMECuvwissjwwf7HwtU8nErc4guFwgAB3R4uCzIOhYpdQuAYLRA7xPbA5Ki5Mdv7sOj7x/xPzdybCeXwLBUKf7Fq6VvRYWqFcwQH591V26a7iIJ6941gQOAwaQDCOC+SM3gfcWsWbPaLly4wM2dO9cxbNgw3mAw0BkzZtiDxz344IMXsrOzvYWFhWNGjRpV9Ne//jVs/ejHH3+8+pFHHsmZPHnyKJZl+2W/3rhG3FBKPwbwcdBrjwc8viqe5+8u5XV2ZFgNSDZHf5edYlY6b3mRRHicrSrBvkXSexbOEuHIniNp1ixEADpVzOBKURQ+Yj/rWwan4nenJZOzL0CzBgVEh0P6N6IZPPQSRGMCOB+F2E1hvaWkrssxRk4SPG7fRe2u6jWoStHg0hxyo5cuKgFGPac/GlzdvdTZ5uuV8qLBEIbAYNJpmnU3ueGGG9p4nj+gPD9z5sxR5XFgBDfHcXj11VerILlkI7Jw4UJ74Dz9kX5pm+8rTta3oSAzupQthSTZlGVz+eA6fASfTBT9kdMmXXyKKzByupUod92KJcAssNyoX7MOIzOzDO3ax/Dth+FGuw9RdDlBQEMLa9q1sGYoAE9L6AEhcAUVkvjZ3NBWDE1YRw+lVNas1WjkoQj8GLMVAombz9oLU0Lva9aA5Le+WAPMNHoXLZdFhlKKk/V2fO/SrsuMBqJo1janFy2HD+DLcQRFSaNwtKUMRl182j4yohwQJvusdbH4rAWxXVjzfMT6y8H1kps4g79QhehygFBIfvTgvTlSURQAglFyO1BHI5CQHdW6mwJy2w/8er6/9GswJr+w1szgXSN/RioFmEkPRPXyrP3R4KpM58fr5qE39c1WaDBzmmbdi8yfP3/EuXPnOiS1P/3001U333xza1+tKVo0YS1T0+KGwytgREb3NGtFSDQ7fNjWvAeOwQSjM8fFVVjr5NQaEZJmrYvBDC74fAEVzLpXGzwwdUt0uwBQ0FBVTbqIBhdN0mdOHNHHGPrkxh/ZKSZ/Q5VQGDlJaLg0zbpLlIAwRhVhLW0tlAjqVTBT7klVNIMLggiRp+AMfROAaDDrtApmvciWLVtO9fUaeopmBpcpr5fiEwq6KayTTYrP2oN3zSUY5OKQbpLytE1sfMzgbKBmDcQUYCb4+PYKZjwvd7wMvxnmm9tvSh0sJ0eDUwiyZh1SWEcqigJANMrR987GqNftlM3gK64dHXGcUaeZwaPFH73dTzVrv8lGRTM475H+5j4V1poZXCMKNGEtc7KHwtpq1IEhwLHmvShPdOKHDYVwCS5wDAeOjY8fTEm1EmQhG4tmLcrCmlBRiu5mSMS98OPJ7fXxX5p0dbtm7XSCQDKDdz5JF0VRTHL0vSN6Ya1oyiZ9Z+NQYUAfcoYh0OsYzQweBVICB1RL3QIASkTV86x7Eg0uCAKcTieUNB4Fn0e6LvpOWHNwa2ZwjSjQzOAyJ+vbkGrRIy2hezV6GYYgycShxnUGADCNKcA7PmfcIsEBgJVbWvKy9hKbZi1tXgwoRFEA24UdPFEXtKnJ46kcYBYylVpJ3QpbFEUWrs6GqNetBJgpPulA/vWT6Wh1t2/KRh2jadZRoKTOqVUURXpAVexnLf8bpaz2+XzweDz4+uuvcejQITidUqXBK664AvPmzZPGeCRB2deatVzAo0/WoHFxoAlrmfI6O/KjbN4RTIpZj2ZPDSxuipSENDh9tfET1qLoF9aCUh88htQYgZe1KYgQBB76bvisOyzL5ZTM4H6jegBUgAgmfOCazgCeJYCjKerzKZp1qGInFoMOloA64CY9qwnrKFBVsw70WattBo9Csz569Cg+/vhjv4AuLCxEbm4uysrKsGPHDjAMg9mzZ8Mnm8F1fVQ0x2DWQeQpeJ8ITivcoxEBTVhD8rmW19tx7fjObSCjIdnMoYavxeBmgElPgMPniFvaFkQeTJCwjmUzFGUhxkCUA8yi72ctnRyyGdwV3mctCgAiRZmz8HIEhm5o1k6vJFiMITTrYIycJqyjQfFZq5O6FeCzVkmzjsYM3tzcjC1btqCkRKpql5aWhnnz5qGoSCpDO3nyZKxfvx7btm1DRkYGUvRDAACcse/M4IDUJlMT1r3HfffdN/Tdd99Na21tZZ1O58G+Xk80aD5rAA12L1pcvm77qxWSzXq4UY/MZgrGmgAnH0czuOAFS+VocHlDjKVFpuiThB4D0d91qztVP1v1RlBK/dHgIaEiKGHCJloTRgcfxwCO6IW1O4JmHYxRx2rR4FHQLqzVKooCUIggKhVFaQ8w6/iyIAiorq6G0+nE+vXrUVJSgpEjR2LFihW47777/IIaAPR6PW6//XYkJydjw4YNKDl+DEDfmcGNFqXkqBZk1pt897vfte3evbu0r9fRHTTNGkB5vVQTPL/HwpoD77RhUCvAWq1w+pxI0Pdsri4RfX7N2kcUzbrn0wk8Dwayz1oQQXSkywCeb6aPwYSvpU2u1JqGfI+kWYMAJFQSLBVBI2jWDOHgMTCwtnVdkUzBGcFnHYxRz2oBZlHgF9Yqdd2SHqinWYdL3dq4cSMOHmxXjr73ve9hzJgx4adhGMydOxfvv/8+9n7zX1hxWZ9ptUa585bbcREK63//v2GoL1G39FtGkRPfXROxm9fPf/7zrPfeey81KyvLm5aWxhcXFzs3b96cPHbsWOfBgwctdrudXbdu3ek5c+Y4W1pamKVLl+YcPnzYDAC/+tWvqn/4wx/a5s2b54hmOc3NzczYsWPHVFRUHDUYDLSpqYkZN26c/7kaf3K0aMIagZHg0dcEDyTJpANcPIxeCiYhAY5GBzItmWousR2hXVgL8oYYS2CKyPOQtmcBgigAUXTdygiIwBaJZJakbkVYhzhYFAAwEMNp1kQHt4EBqa+VTh7F39MeDR6NZs1omnUUxC0aXDVhLZvB5WvM4XCgpqYGhw4dQn5+PvLy8pCamtpBkw7H+PHjQSnFhg0bYNY5+i7AzNJuBtfomu3bt5s/+uijlCNHjpT4fD4yceLEouLiYicAOJ1O5uDBg2WffPJJwt133z28vLz82KOPPpqVmJgonDhxogQALly40K0vOiUlRZw2bVrbO++8k3TnnXfaXnvttdRrrrmmubcFNaAJawCSsLYadMhM7F4kuILVKAkhHc9Iwroujj5rwesX1jxRwWfN8wA42WctRuWzDrw5EAH4RAricgFMGGFNBVDCSLXEQ83H6OA2sCA+B+BpBYxJXa7b5ZVM9oYo2hoaORa2gIpnGqFRNxo8QLNWuYIZRAqPx4N169ahpUUqUXvjjTfCYume6yk9XaqHILDuPvNZK2bwi7KZRxcacDz48ssvExYtWmRLSEigAOj8+fNtynu33XZbEwAsWrTIbrfbmYaGBnb79u2Jb7/9doUyJj09vdt37XffffeF1atXD77zzjttf//73wf95S9/OaPG39JdNJ815EjwzIQea6hmkySgRKoHa7WixdOCJEPXAqdHCD4wstaiaNYx+ax56dplA3zW3Ykvo4SgyeuD6HQCDMCEMYODkPYuXUEwhINXL1+KbbUhxwTj8gowc2xU35mJ08zg0aBuNLj0fVKdiilJ8iXicbvx/vvvo6WlBTqdDjfccEO3BTUAJCVJv1GB9fSZGVzpaX1RmsH7gEiKRPB1pigesV5/V199taOqqsqwadOmBEEQyGWXXebu+ij10YQ1pOplPU3bAgCLQSn6oYfPyMHFu5BqDNuNLTYEn78oileO2o3FZ90urAUIUWrWgVDI/axlYR3ODE7BQBT4kHMTooPHL6xrojqv0ydEZQIHpJKjmhm8aygUzTp2g5t/DkY9a6FiQdqyZxuOHz+OuXPnYsWKFSguLu7RfCaTCQABZXxgub7ZCjkDC4Yl8GjCOipmz55t//TTT5OcTidpaWlhtm7dmqy8989//jMFAD799NMEq9UqpKWlCbNnz2598cUXM5Qx3TWDK9xyyy2Nd9111yV33HFH9FGwKjPghbXN6UWD3dPtbluBGPXSJifAiFZO0k5SDHHqXy54wQRFg8dmBhdAKQULQTaDAyJPIXTR//m69CR5DVL21rFGN0SGCWsGV+4oQpnCCdHBY+ieZu32dkdYa6lb0RAPzRpqtgZmCESIOHHuJCZOnIgrr7wytukYBhyrBzi+zwqSEEJgtHBwaz7rqJg1a5Zz4cKFLUVFRWOuueaaEePHj3ckJSUJAJCSkiIUFxcX3nvvvblr1649AwC//e1va2w2G1tQUDBm1KhRRR9//LEVAO65557szMzM8W63m8nMzBy/fPnyIZHOu3Tp0sbW1lbd0qVLoy8GoTID3mcda3AZAOj1kiDwwQQb4wIApBjjJKwDosH9PusYNhoqCKCgYInks244L30eu/9dgek3h247CQC/HZmNjRdaQCEVqSIuN9os1jDCWk7dAiAKAhi2ozAgDNeuWbdWR7Vup1eIKhIckIS1pll3jZqpW/764joVhTUhqGVa4PF5MWrUKFWm5BgDqK5vtVqDhdM0627wxBNP1L744ovVbW1tzLRp00Y98sgjdevXr0/7wQ9+0LxmzZrzgWOTkpLE999//0zwHK+88krVK6+80mWfa4X//Oc/1oULFzYPGjSozzaSAS+slQYePU3bAgC9rE3z+iQ0e6WAl3iawYlsEPEx0tcXq8+aSvXFIAginC1SIFZjtT3icWlyYJdIJPOM0eOGwFhDp26Jol+zFgUeQMcuWQzRQWQJREMCmJbofj8unxCyLngojBwLj+az7hIqSgKDMLHXtFeuUTU1a8IQnGMawDIMLrnkElXm1DEGeJm+FZRGi+7iDDDrI+64447c8vJyk8fjIbfcckvjzJkznfE835IlS4Z98cUXSRs3biyP53m6QhPWdXaYOBZDk3sevc3pJGHt1VvR5JasJHHTrAWf3wwuyJtqLGZwKoigoGAgQBTbbxq70taVMqUUklvS5HFDYFkwotC54GiAGVwIEWSm+DcFazqYlugCTF1eAaYo/YwmjoVXECGIFKxapS+/hYiidKPGEBWEteKzZlW8SSLAWaYBw9KzYTD0LHMjGBZ6iCSue32XGMwc2pr6JGbpouSjjz46Hfzanj17jsc67y9+8YvBH3zwQQct64Ybbmh64403zgHo9cj3YAa8sD55wY4RGZaYtFMKaZPzcIl+YR0/zbrdZ82rUBSF8hQiBDCg4EURjJwTK3bhsxYVYU0AgMLsdoNnOehCRXyLAT7rUMJavukQrIPA2c5GtW6XT0C6NboNW+lp7fYJHWqGa3SEUrmpCxO+P3i0xMNn3WxvQQvjxKWDc1Wbk6UcBPRtWp/RokPDOU2z7mtWr15du3r16uiCZvqAAR9gdrKuLSZ/NQC4Bemu2M0locndBI7hkMDFqYKZ4AOhDESIEGQzeEw+a172WcuatdLQgPdGFtYCz+NHb/8eIqT92OjzwqfTgRFDCGsqBmjWnQNpGL9mnQbYzkaVO+b08t3yWQNaT+uuUDRrVczgis9axWjwmgvSPpqTPlS1OYnAQYAvpMWnt5ACzDRhrRGZAS2s7R4e1S3umPzVAOARPAAAJyuZwVONqfGLLhV9cBEdBCJAkFO4YrIKCBSUKD5rCk4O9PJ5I29eAu9Dmq0ByUSETpbrPp0erCDAF+y3pgKoUis6hMaumEz5hDTA5wScXQdcun1i1NHgilDXgswiIyqatQpmcH+AmYot3W12KR4kyZSo3qS8tEClO1dfYLBw4L0ieO361IjAgBbWx2ulmuAjM2PUrHlJs3Yw7cI6bvAeNDN6CEQApVJ525jKOfIiKAPZZy1CZ4hOs1bM4HN0HujlWs0+jgMr8DjtCjIrCjwgWwFCadZEFg68VfbzN3dySXXC6eWjauIBAAa/GVwLMouEEmCmhhmcUUrhcupp1ra2FhgpBz2rniuDeqV19qWwNiXIVczsWvqWRngGtLAuqWkFAIwZEtudumIGbyRWNLmakGqKo7D2uVDoESEwAkRZe2di0eKlst1SIw9RhMEkbYRd+ax5rxw5rGPAggCEhUdvgE4UOpuxRR+oLKyVIiyBMLLZ1ZeYJr3Q0HXQpcvXvdQtQDODd4XfDE5iF9btqVuxT6XQ0tYKKzV12WimOwhuaQt0OKLq6xAXjIqwdmglcTXCM7CFdXUrks0cspKMMc3j4l0ABRqoCY2uJqQZ01RaYQh8TjCUhUAEEHnP0ulj+BpFAAzAEgKBUkxaIAXvjLkysl+Q90qmf8Yg2zlZHdx6KeCLCS58IngBWSCLIXzaLCs17vFYzJIG3nAi8rkFEW6fCHOUqVsmTVhHhd8MrmbqlorC2tbaggRqBFQykAg+EfBJC3S5XOpM2gMUzdpl1/zW0bBq1aqMgoKCMfn5+WOefPLJDACoq6tjp0+fXpCbmzt2+vTpBT2pVFZcXFyo/mrVY0AL68NVNhRlJcbsX3a57dDxDLxg0ejwxK96GQB4HSBUB57wYAXp64upCYEIgCVgGAJRpNAbpc1L10ValM8tWRNYvVLylIPbIN30sGKQOU/wtQtrvrOpTxLWBLzoAgaNBOpLIp67xSVtasnm6ISK0uyjukVLj4kEVVK3VIkGV7coiiiKaGlrgZWaOrXI7CkeFw8i9r2wNlqkz9utCesu2bt3r/HNN99MP3DgQGlpaemxzZs3Jx85csTwxBNPZM2ePbutsrLy6OzZs9sef/zxwdHOyct70sGDB8vitnAVGLB5LDanFyU1rXhg3siY53K52qDnJYHvchvjl2MNSAFYVAeBEcDKlcx62t5PFAWpzriOgAGBSCmUFOlQtU06LEPWrFkjBwoPwHJwGiUNmQ2OrBV8ACsL65B51gxY1gJBcAAZRcC53RHP3ezsnrAuld0d9799ENdPiFhVcEDTbgZXMRpcpTzrtrY2iKIIKzV2q3Z9JLwuHkx/ENZ+n/XFJax//dWvh51sPqlqP+v8lHznqhmrwuY0HzlyxDRp0iS71WoVAWDGjBlt69evT968eXPytm3bjgPAsmXLGmfNmjUKwPnly5cPqaioMNTW1nI1NTX6n/3sZ7UPPfRQw8aNG62rVq3KysjI8JWUlJhPnTp1zGw2FzudzoMbN260rly5ckh6erqvpKTEfM011zSPGzfO9ac//SnT4/GQDRs2nBozZoynurpad9ddd+WeP39eDwAvvvji2auvvjqkP6W6ulq3ePHi4TabTTdx4kTnl19+mbh///7SrKysqAMVBqxmvfNUIygFZuTHbrJ2udtg8Mmdt3ypSDPF0QzudYCCg0AE6Hm5NWcPOwb53G7oiB6EY8ASBoIYfYEVn0fWrA2yFsZwsJulzkesIGBfS8A1K3gBVhrH+0L75XS6BPC8HRhSDLScA5orw567RQ5gSzZHpwEOkQveqLTHf2sRRdm1oYJm7d9a9OpkRdhsUidENTVrr5sHAQuW1fWpsDZY5BuGi0xY9wUTJ0507d6921pbW8u2tbUxW7ZsSTp37py+sbFRl5ub6wOA3NxcX1NTk18RLS0tNW3durV8165dZc8999yQM2fOcABw+PBhy3PPPXf+1KlTx4LPU1ZWZvrzn/98rrS09Nh7772XduLECeORI0dK77zzzoYXXnghAwCWLVs2bPny5XVHjx4t3bBhw6l77rknL9y6H3300SGzZs1qKykpKb3pppuaa2pquv0jG7Ca9VenGmDWsxifndz14C5weewwe0UQUIiezPj6rP3C2ov01tg0a7fdDgNrAjGxYJwMRN6vWHepvXjlzU1n0oMH4DGa4ZI1a73Pg+sOlOPUleNgYVkpN9yQDEDwHxeMX7MefR3w2Qrg4FvA3BUhxzbLOanJpug0wDmFUtOdkTE0axkI8IIDDKNXxWcNQbqS1IhVA9qFteSzVskM7pSUGqPe2KfR4CzLwGDWXXSadSQNOF5MmjTJff/999fOnTt3pNlsFouKipw6XWQxpvS/TkhI4KdNm9a6Y8cOS0pKijB+/HhHYWFhSO1h3LhxDkX45+TkeBYtWtQCABMmTHBt27bNCgBfffVVYnl5ub/0pd1uZ5ubm5mUlJRO5qQ9e/Yk/Pvf/z4JAIsXL25NTEzsdgDNgNWsvz7ZiCnDU6HXxf4RuLxOGH0UmWYBoiczztHgTgjgwDM8Jp+WArp62ovXYWuGnjVDZzWAZXUQKKI2g7vtUtqbPkHSplsTU+EySNftg3Le+i2HKsCLFBC8IJzkz/a6Qm+KkmbdBqTkASMXAPv/BvCekGNtss86JUrNmmMZXJJuiTmf/tuOIDjAsup8RtQtt9tUSVg3NzcDkIS1WhYSv7A2mfpUswYkU7irTYsGj4YHH3ywoaSkpHTfvn3HU1NThYKCAndaWhpfWVnJAUBlZSWXmprqNy+H6nMNAGazOewuZzAY/FcZwzAwGo1UeSwI0p0opRT79u0rLSsrKykrKyupr68/HEpQK2NjZUAK65oWFyoaHJgxYpAq87l9Tuh9QIbVB8EzOL6atb0ePmqAl2n/Yfe0NrizwQaWsOCSzDCbjPDMQbu8AAAgAElEQVRRFrycB93VxeW220EYBpxFEtAtSWnwyMJ6voXDikuysLfVgext30DkXWAMcsR3GA2G0yXB55OLoUxdBjguAMc2hBxrc0p/e1KUPmsAGJxoRF1raOGvISHwDuhUEtbELUlpUa+OALLZbLAmWKEDq5pm7ZSvB4ul74V1YpoRrQ19u4aLhfPnz+sAoLy8XL9p06bkpUuXNi1YsMC2du3aNABYu3Zt2sKFC23K+E8++STZ6XSS2tpadteuXdaZM2eqkqc3c+bM1tWrV/t7ZX/99ddhG0xMmTLF/tZbb6UCwPvvv5/Y2trabQ1rQArrHeVS//DpKvirAUmzNvgoUgc5Qb3p4L0WVeYNhdBaC4HqwBPJipI/teebq+uCdD0b0qywJEjzuMJovsHYmxpgTkoGa5EEZkaKA25ZWLvtbbg3NxMjzZI2bbc3o4KRCs+E06yNphy4XHLHrUvmSFHhO18OOdbm9IFlCBKN0XtxLAYd9lc2Rz1+IOLjW6HTxVYgSIG0SlYfUa9O/rLNZkNystRDnQoqCesWLwhDYLFY+lxYJ6Wb0XJBE9bRcP31148YMWLEmOuuuy7/97///dn09HRh5cqVNV988UVibm7u2C+++CJx5cqVNcr44uJix7x58wqmTp06+uGHH67Jy8tTxd+wbt26cwcOHLCMHDmyaMSIEWNefvnl9HBjn3322erPP/88saioaPSmTZuS0tPTfcnJyd0yhcfVZ00IWQjgJQAsgFcppc8GvW8A8CaAyQAaAfyAUnomnmuilOK9/VXITjGhKEudsoVO3olkYgBJOQ0gDdtPNOO2qepseh2gFM5WSftkBUlzSaE997W5qpqRAgssOWmwNCQDcMHZXC+fKvKG2Hj+HNKGZoPKLUHNKQY4TdJNir2pEQCwfWohFh84jkTBgXV2gufveQp/87mxXxShZzreJ5pMw8DzLfB6G6HXpwFT7gY+fhjY8gQwf2WHsSfq2pCdYupWyt2WkjoAQLXN5Q840+iIx1MHgyFTlbmERh6EN0JQSVhfuHABBQUFIGcZiCrV0Xa0eGC2crAkWHD6zGlQSuNXJrgLEtNN8Dh5uO0+f3S4Rmj279/fqcPW4MGDhZ07d4Ys0FBQUOD+5z//2SFi9brrrmu77rrr2gJfczqdB0O9F9jRK/C9rKwsftOmTRXRrDk1NVXYvn37CY7jsHXrVstXX31lNZlM3brrjJtmTaTcjTUAFgEoAnArIaQoaNhSAM2U0nwA/wtgdbzWo/DmzkrsOd2EH19xiSo/TIfHjrMGOzINaTjv3QtrQivWbj/lzwVWA1ERnGd3ocEjaSyXnb0eXpZHRsPRHs9rPM+Bhw/6IVak5kj1AKqP/Rcsx8BWG/4moP5MBWpPlSOroBD2HV+C+txgk7LhNprhtCaj9lR7BbL30iVhXquXrBgXOCNyth3G4C8OdfiPSZgCADh9RtamJ/8QyJ0BfPV74I3vAK3VAKR67rtPN+GyvJ7FBfzk/w706LhvO6LIw+U6C5MxW5X5vGdaoRMS4RUaYp6rqakJDocDgwcPBpOgh2BXx7TeXOtEUoYZgwYNgtvt7tMqZoOHS4pD5dHYPy+N/sfJkyf148ePLxo1alTRAw88kLN27doz3Z0jnpr1FAAnKaUVAEAIeRvADQACK17cAOA38uP3ALxMCCFUrUTKAN4/UIU1X5zEqQsOzMwfhDsvj73N3onmE7jzvZsBPTB6+GX4oO0j3H4Fh1c/deH3W0/gie+MifkclS4Ppu4qBQBcdoJgVuuvQazHwQomfJb/Tyxcuwt1ogOZj/4i6jkFuxc1T+9GKs1Ec1YTGD2LQRMWYPDmbfjm0D4UFQzC0T0Uk6/JQ3JGxzTKv//yAdRVnITeZEbxvIU4+52rwU24DVbuChw6TvDN1MtR8sVWtF6oR2L1F8CGuwEAzy+8HXMPn8WPEDoH/U8XUnAVCKqq3oRBn4G8vJ8A//Mh8OkvgT3rgM2/BL7/Bs40OGDkGNw2Nadbn+P2n8/Blc99gWdvGtet4wYCdXWbcKL8SQiCHSmp07p9vK/BhboX9oGxcABDQN0CqFdAwtBC1NdvwpEjIsaO/WO3bo7PnDmDrVu3gud5tLS0gBCCwsJC+Eqq4Dp0AXUNLlCfCOvsYbAUZ3Q9oQwVKTa8eACCT0R9ZRsmLcjF4MGS+/D1119HVlYWFi9e3O3PIFYGX5KEpHQTvvy/4zj8RRUoBUSRgmEIGJZAlE3/kxbkIn9y9H/vQOfFF1+s7s3zvfTSS2l//vOfO5inLrvsMvtbb711trS0NHK1py6Ip7Aeio4Nu6sATA03hlLKE0JaAKQB6HB7SQi5G8DdAJCT071NWsGsZzF8UAJuuSwHt03NialTlcIlSZdgPi3CAhRj5g8ewRX2e5BsTMb8PD7m5iAKFMCM5AR8ZbOjNoXFwdxsVKXm4uzkw3hm0JVIFcfCNH58t+YkHIuEmUPBMz4Mv6xIfs2I7932Q5iOvw+aNxh8chLYEJHyo6ZdgWFjxmP0zNmwpGfA+vwy+EQ3EtxDwZoNmDn2duQUjYN1UDrgzQdmPggUXA2kjcA1c0Zg+67/orr8OKbcsBglVIcP62047nDjifyh0I04hNLSR2EwZkknY3XANc8Bw6ZKxVIAjB2ahO2PzIFB1734jJw0M848e223jhko6PXpSEmZhtSU6UgfdHW3j2fNOlhnD4PQ5gVECqJnQX0iCi9diaqGN6Hn0rptxWJZFnq9HmazGWlpacjPz0dycjJ813BoNbCgXgFEx4AxdW8LIwwBq2PAGVgUXTEExfNzoDezmDFjBqqrq9FVGlC8IAzB9fdPxP7NlbA3uwFIQppSClGg/v0qptLCGnHn/vvvb7z//vsb4zE3iYMSK01MyPcALKCU/n/y8zsBTKGU3hcw5pg8pkp+fkoeE/aPvfTSS+m+ffvismYNDQ2NbyuEkP2U0ktjmeObb745M2HCBM1WH0e++eabQRMmTMgLfj2et2lVAIYFPM8GEGyS8I8hUlPjJABdNzPW0NDQ0NAYQMRTWO8FUEAIGU6knnu3APgwaMyHAJbIjxcD+Dwe/moNDQ0NDY2Lmbg5aGQf9L0APoWUuvUapfQYIeRJAPsopR8C+CuAtwghJyFp1LfEaz0aGhoaGhoXK3GNpqCUfgzg46DXHg947AbwvXiuQUNDQ0NjYPDaa6+lPPXUU0PS09N9u3fvDpl3fbGihRZqaGhoaHwreP311we99NJLZ79tghoYwF23NDQ0NDR6TvWvHhvmKS9XtZ+1oaDAOeSZp8N281qxYkWm0WikK1asqF+6dOmwY8eOmXbt2nXigw8+sN54440jjUajeN999+Vu3LjRtmbNmqqf/vSn2V9++WUiACxZsqThscceqw+ec/v27ea77747DwBEUUR5ebmJUrpfzb9LDTRhraGhoaFxUTBnzhz7888/nwmg/tChQ2av18t4PB6yffv2hNWrV1e+++67ac8///y5K6+80rl69er0yspKw7Fjx0o4jkNdXV3I4gxXXnmls6ysrAQAli1blj1nzpzWXv2jokQT1hoaGhoa3SaSBhwvZs6c6VyyZImlubmZMRgMdPz48fYdO3aYd+7caf3jH/949t133/V3Z/r8888T77nnngscJ9Vaz8zMjNg449VXX005fPiweceOHf3ShH7RCev9+/c3EEIqux7ZiSQALWqvJ47niHWunhzf3WOiHR/NuEEIqlz3LaY3rsVo0X4X6h7Tn38TsddY7mMMBgPNzs72rFmzZtCUKVPsEyZMcG3dutVaWVlpKC4udgeOlRuzRJUKvG/fPuMzzzwz5L///e/xvqpi1xX9c1URoJSGbUMWCULIOkrp3WqvJ17niHWunhzf3WOiHR/NOELIvlirK10s9Ma1GC3a70LdY7TfRPyZPn26fc2aNZl//vOfz0yePNn1q1/9Knvs2LFOJqiT31VXXdX6yiuvpF977bVtihk8lHbd2NjI3nbbbZe8/vrrp4cMGcL32h/STQZSNPhHF9k5Yp2rJ8d395hox/fGZ38x0Z8+D+13oe4x2m8izsyaNavtwoUL3Ny5cx3Dhg3jDQYDnTFjhj143IMPPnghOzvbW1hYOGbUqFFFf/3rX0O26vvHP/6RXF1dbVi2bFleYWFhUWFhYXB3yH5B3GqDa2h0B02L0NDoSH/8TWi1weNPX9QG19DoDuv6egEaGv0M7Teh4eei81lrfDuhlGobk4ZGANpvQn3mz58/4ty5c4bA155++umqm2++uV+mawWiCWsNDQ0NjQHBli1bTvX1GnqKZgbX0NDQ0NDo52jCWkNDQ0NDo5+jCWuNfgkhxEII2U8Iua6v16Kh0R8ghMwmhOwghLxCCJnd1+vR6F00Ya3RKxBCXiOE1BNCjga9vpAQcpwQcpIQ8mjAW78A8E7vrlJDo3fp5u+CArADMAKo6u21avQtmrDW6C3+BmBh4AuEEBbAGgCLABQBuJUQUkQIuQpACYC63l6khkYv8zdE+bsAsINSugjSjezKXl5nv2HVqlUZBQUFY/Lz88c8+eSTGQBQV1fHTp8+vSA3N3fs9OnTCy5cuBCyaUckiouLC9VfrXpowlqjV6CUbgfQFPTyFAAnKaUVlFIvgLcB3ABgDoDLAdwG4MeEEO061fhW0p3fBaVUlN9vBmDAAGTv3r3GN998M/3AgQOlpaWlxzZv3px85MgRwxNPPJE1e/bstsrKyqOzZ89ue/zxxwdHOyfPSxVGDx48WBa3hQfg8/l6dJyWuqXRlwwFENi5pwrAVErpvQBACPkhgIaATUpDYyAQ8ndBCLkJwAIAyQBe7ouFBfKfN0uHNZ23q9rPOnVognPe/4wO283ryJEjpkmTJtmtVqsIADNmzGhbv3598ubNm5O3bdt2HACWLVvWOGvWrFEAzi9fvnxIRUWFoba2lqupqdH/7Gc/q33ooYcaNm7caF21alVWRkaGr6SkxHzq1KljZrO52Ol0Hty4caN15cqVQ9LT030lJSXma665pnncuHGuP/3pT5kej4ds2LDh1JgxYzzV1dW6u+66K/f8+fN6AHjxxRfPXn311Y5Q616+fPmQmpoa7uzZs/rU1FT+o48+Ot3dz0YT1hp9CQnxmr/+LaX0b723FA2NfkPI3wWl9H0A7/f2YvoTEydOdD355JNDa2trWYvFQrds2ZI0YcIER2Njoy43N9cHALm5ub6mpia/bCstLTXt37+/tK2tjS0uLi66+eabWwDg8OHDloMHDx4rLCz0Bp+nrKzM9N5771VkZGTwubm54wwGQ8ORI0dKV61alfHCCy9kvPbaa+eWLVs2bPny5XULFiywl5eX6xcsWFBQUVFxLNzaDx8+bN69e3dZQkJCj2p8a8Jaoy+pAjAs4Hk2gOo+WouGRn/hovhdRNKA48WkSZPc999/f+3cuXNHms1msaioyNlVS8tFixbZEhISaEJCAj9t2rTWHTt2WFJSUoTx48c7QglqABg3bpxDEf45OTmeRYsWtQDAhAkTXNu2bbMCwFdffZVYXl5uUo6x2+1sc3Mzk5KSEtISuHDhQltPBTWgCWuNvmUvgAJCyHAA5wHcAslPraExkNF+FxF48MEHGx588MEGALj33nuHZmdne9PS0vjKykouNzfXV1lZyaWmpvpbXRLS0VChPDebzWHdawaDwS9UGYaB0WikymNBEAgg9cvet29fabQC2GKxxOTO0wJ3NHoFQsg/AewEMIoQUkUIWUop5QHcC+BTAKUA3qGUhjUjaWh829B+F93n/PnzOgAoLy/Xb9q0KXnp0qVNCxYssK1duzYNANauXZu2cOFCmzL+k08+SXY6naS2tpbdtWuXdebMmSH9yt1l5syZratX///t3W1QVFeaB/D/QbAJdIuI0IIQXIw0NgbtUjEiJS9ibcyuUZapTTa6MTW6hrU0tbLkZQ2TmphYhgwxYsL6MhFKLSumtFKyEo0jcRFHMY4EX4B1sUxEjIJtAkjTCnRz9kN3u9iDvEgjffX/+9T39rnnnksV9fRz7rn3yQ5ybJ88efKpntoPFDNreiSklP/0gP0HARx8xMMhcgv8v+i/F198cXxTU5Onp6en3Lhx49XAwEDr+++/fyM1NXV8eHj46JCQkPb9+/ffewe4wWBonTNnzoTr168Pz8zMvDFu3LiOyspK74GOY9u2bXXLli17OjIyUm+1WsWMGTNa4uLirg603wdhPWsiIuoTpdWzzsjICFGr1da1a9cq5p0NrGdNRESkUJwGJyKix9KGDRse6Sr63NzcgM2bN2u77ps+fbpp165dA54e5zQ4ERH1idKmwZWI0+BEREQKxWBNRETk5hisiYiI3ByDNRERkZtjsCZ6TAghPhNC/CCEmD7UYyEaCvn5+f4RERHRM2bMiOzPcS+99FJ4eXn5gF+UMpj46BbRY0AI4QsgCMDrAP4etvdLEz1RCgoKRufm5l6dP39+S3+O++qrr2oHa0yuwmBNiiOE+BRArZRyo337MIA6KeUy+/YnAH6WUm5w4TlNUkq1C/sbCeAVKeV/2rfHASiSUk7qw7FPAfgWQLKU0goAUspWIUQwgBIATwshhgMotrexPLAzood0ePPGsFt1tS6tZz06LNz8t//6bw+s5pWVlaX19vaWWVlZN5cuXRpWVVX11KlTp2oKCws1qampkd7e3p2rVq0KLyoqasrLy7u2YsWK0JKSkhEAsGTJklvvvvvuze76jY2N1eXk5NTNnj3b7MrrcSVOg5MSnQQQBwBCCA8AowFEd/k+DsCJIRhXf4wEsOIhj/0tgK8dgRoAhBABAHwAtACwSinbAXwH4KWBDpTIXSQlJZlOnDihBoCzZ8/6tLa2DmtraxOlpaXq7Ozs2kmTJpl37tz549atW6998skngbW1taqqqqrqmpqa6mXLlv0y1OMfCGbWpEQnAHxq/xwNoBJAsBDCH4AZwEQAFUKI/bDVBfYGkCul3AYAQohs2DJzR1b7e9iCXAOANwAMB/A9gBVdA6K97eLu2tgz40MA/gzbj4WfASyQUt4RQvwOwCIAdQBuASgHMA3AeCHEWQBHAOQBGCaE+KPz8d1c/yL8dcnELAA5AP4FgB62HzT7AawHsLvXvyhRP/WUAQ+W+Ph485IlS3wbGxs9VCqVjImJMR0/ftynrKxM89lnn13du3dvgKPt0aNHR6Snpxu9vLwAAFqt1vrAjhWAmTUpjpTyOgCLEOJp2AJbGWyBcyZsQfC8PbP8rZRyqn3fG/bsEwD24P6M8x8BnLHvmyWlnALACltQvEcIMbGXNhMA5EkpowE0AUgTQkwDkAbAAOAf7GMBgHcAXJZSTpFSvvmg452v3T69HSGlvNJl3zj73+Er2EoqOmYZKgFwsRk9NlQqlQwNDW3Ly8sbHRsba5o9e7apuLhYU1tbqzIYDHe7tpVSQgjx2Lyik8GalOoEbAHKEazLumyftLd5QwhxDsAp2DLsCQAgpawAECSECBFCTAbQCOBZAFMB/MWe7c4BEOF0zjm9tPlJSnnW/rkcwDgA8QAKpZR3pJQtAA70cE3dHe9sNGyBvKsPAayVtncH3wvW9lmBdiGEpodzEilKXFycKS8vT5uYmNiSkpLSsmPHjkC9Xm/28Lg/nKWkpNzesmVLYEdHBwCgoaFh2FCM11UYrEmpHPetn4UtgzwFW2YdB+CEECIRQAqAmVLKyQAqYJsOd9gH4DewZcp7AAgAO+yZ7hQppU5K+Xunc/bWpq3LZytst5lEP66pu+Od3el6HUKIKbBl7HlCiCsAfof779+rANyXcRApWUJCQovRaPRKTk5uDQsLs6hUKjlr1iyTc7vVq1cbQ0ND26OioqJ1Op1++/bto4ZivK7Ce9akVCcA/DuAH+0Z5K/2FdbRsN23nQWgUUppFkJEAXjO6fg9AP4IW6aaAMAfQKEQ4lMp5U0hxCgAGill10c6vutDG2d/BrBVCLEetv+3v7OftwVAvzNeKWWjEGKYEMJbSnkXQDaA+VLK7wBACKGF7YeJY9GZUUrZ0d/zELmrBQsWtFgslh8c21euXKl0fD59+vT/Oj57eXnhiy++uAbgWm99dj3OXTGzJqW6AFugPeW0r1lKeQu2R5s8hRDnAXzg1A5SyirYguXPUsobUspq2BZp/cl+zBEAwU7H9NrGmZTyLwD+C8A5AF/Ddm+8WUr5C2wzAJVCiD/089r/BCBeCJEMwNcRqO3nawDga/8hkQTgYD/7JiI3xBKZRINMCKGWUpqEED4ASgEsl1L+0NtxPfRnAJAhpfznXtp9DeA/pJRunzWQMii9RObcuXPH19XVqbruW7du3bW0tLTbQzUmZw8qkclpcKLBt00IoYftXvOOgQRqwLZATgjx30KIYc6PljnYV43vZ6Am+n9Hjhy5PNRjeFgM1kSDTErp/Ey0K/rM7+X7dgA7XX1eIhoavGdNRETk5hisiYiI3ByDNRERkZtjsCYioifKqlWrxo4ZMybGx8fH0Fvbjz/+OPDzzz8P6K3dYOMCMyIieqIsXLiwKTMz8+bEiRN7LUn71ltvGR/FmHrDYE1ERP32676asI76VpfWs/Ya42se9ZvIHqt5vfnmm8H79u0bFRwc3B4QEGAxGAzmb7/9duSkSZPMFRUVviaTadi2bdt+SkpKMjc3N3ssXbr06fPnz/sAwJo1a66/9tprTXPmzGnt65gyMjJC1Gq1de3atQ0Dvb6BYLAmIiJFKC0t9Tlw4ID/hQsXqjs6OsSUKVP0BoPBDABms9mjoqLi4qFDh9TLly//m0uXLlW98847wSNGjLDW1NRUA4DRaFRsMQ8GayIi6rfeMuDBUFJSop43b16TWq2WAOTcuXPvVaB75ZVXfgWAefPmmUwmk8etW7eGlZaWjtizZ8+PjjaBgYGKrWnNBWZERKQIPb0eWwjxV9v2mtaDPaxHgsGaiIgUITEx0XT48GE/s9ksmpubPYqLi0c6vvvyyy/9AeDw4cNqjUZjDQgIsCYmJt7esGFDkKONkqfBGayJiEgREhISzM8//3yzXq+PfuGFF8bHxMS0+vn5WQHA39/fajAYolauXBm+devWKwCwfv36G01NTcMmTJgQrdPp9AcPHtQAQHp6eqhWq425e/euh1arjcnIyAgZwsvqE1bdIiKiPnGHqlvNzc0efn5+nS0tLR4zZ87UbdmypTYjIyMsJyenbvbs2eahHJsrsOoWEREp3uLFi8MvXbr0VFtbm3j55Zd/iY+PV3yA7gsGayIiUowDBw785Lzv9OnTAy4F+/bbb48pLCwc1XXfggULfs3Ozq4faN+uwGlwIiLqE3eYBn/cPWganAvMiIiI3ByDNRERkZtjsCYiInJzDNZERERujsGaiIgeC/n5+f4RERHRM2bMiBzqsbgaH90iIqJ+279/f9jNmzddWiIzKCjIvHDhwocuEFJQUDA6Nzf36vz581setg+LxQJPT/cLjcysiYhIEbKysrQffvhhEAAsXbo07LnnnosEgMLCQo2Hh8fU8vJy9apVq8Jff/31UIvFguXLl4dGRkbqIyMj9evWrQt6UL9jx459NjMzM3jq1Km6/Px8/0d1Pf3hfj8fiIjI7Q0kA35YSUlJppycHC2Am2fPnvVpb2/3aGtrE6Wlpers7OzavXv3BjheO5qdnR1YW1urqqqqqvby8kJDQ0OPRTy8vb07y8vLB/xylcHCzJqIiBQhPj7efOHCBd/GxkYPlUolp02bZjp+/LhPWVmZJjk52dS17dGjR0ekp6cbvby8AABarbbHWtavvvpq4yAOfcCYWRMRkSKoVCoZGhralpeXNzo2NtY0efLkO8XFxZra2lqVwWC427WtvZZ1n1/RqdFoOl0/YtdhZk1ERIoRFxdnysvL0yYmJrakpKS07NixI1Cv15s9PO4PZykpKbe3bNkS2NHRAQC9ToO7OwZrIiJSjISEhBaj0eiVnJzcGhYWZlGpVHLWrFkm53arV682hoaGtkdFRUXrdDr99u3bR3XXn1KwkAcREfUJC3kMPhbyICIiUiguMCMioifC3Llzx9fV1am67lu3bt21tLS020M1pr5isCYioifCkSNHLg/1GB4Wp8GJiIjcHIM1ERGRm2OwJiIicnMM1kREpBgGgyFqsPrevXu335o1a8YAwKFDh9R6vX6ip6fn1IKCgiEv7sEFZkREpBgVFRUXnfe5qqzlokWLmgE0A0BERER7QUHBlY8++kg74I5dgMGaiIj6rfp/3g5rNdW4tJ61rzrSrJ+Y3WM1Lx8fH4PZbK4oKirSfPDBB8FBQUEd1dXVPpcvX65KSUkZf+PGjeFtbW0e6enpDZmZmbcAYN++fSPee++9sVarVYwaNcpSVlZW013fmzZtCjhz5ozvzp07r+p0unYAcH6N6VBhsCYiIkU6f/68b0VFRVVUVFQ7AOzevfuKVqu1mkwmYTAY9IsXL27s7OwUK1euHFdSUnIxKiqqXanvCGewJiKifustA34UYmJiWh2BGgCys7O133zzzUgAqK+v96qqqvJuaGjwjI2NbXG0661UprtisCYiIkXy8fG5V9ayqKhIc+zYMc2ZM2cuajSaztjYWN2dO3c87KUyh3KYLuEek/FEREQD0NTUNMzPz8+q0Wg6KyoqvM+dO+cLAElJSa3ff/+95uLFi8MB5ZbKZLAmIiLFS0tLa7ZYLCIyMlK/Zs2akMmTJ7cCQEhIiGXTpk1XUlNTn9HpdPrU1NSIvvR37NgxH61WG3Pw4EH/1atXhz/zzDPRg3sFPWOJTCIi6hOWyBx8LJFJRESkUFxgRkRET5Tc3NyAzZs33/eyk+nTp5t27dp1dajG1BtOgxMRUZ9wGnzwcRqciIgGqrOzs1P5z0G5KfvftrO77xisiYioryqNRqMfA7brdXZ2CqPR6Aegsrvvec+aiIj6xGKxLKuvr/+ivr5+EpjsuVongMXtsmEAAAA2SURBVEqLxbKsuy95z5qIiMjN8ZcRERGRm2OwJiIicnMM1kRERG6OwZqIiMjNMVgTERG5uf8DbPX4+MZCgOgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for b in bands:\n", " plt.plot(Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Wavelength']\n", " ,Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Transmission']\n", " , label=b)\n", "plt.xlabel('Wavelength ($\\AA$)')\n", "plt.ylabel('Transmission')\n", "plt.xscale('log')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.title('Passbands on {}'.format(FIELD))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### IV.a - Depth overview\n", "Then we plot the mean depths available across the area a given band is available" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "wfc_u: mean flux error: 5.076475143432617, 3sigma in AB mag (Aperture): 20.943291203110682\n", "wfc_g: mean flux error: 1.23035728931427, 3sigma in AB mag (Aperture): 22.48211874670529\n", "wfc_r: mean flux error: 1.516801118850708, 3sigma in AB mag (Aperture): 22.254875262334885\n", "wfc_i: mean flux error: 2.441751480102539, 3sigma in AB mag (Aperture): 21.737943214089093\n", "wfc_z: mean flux error: 16.176753997802734, 3sigma in AB mag (Aperture): 19.684968410286665\n", "gpc1_g: mean flux error: 75.78848761741543, 3sigma in AB mag (Aperture): 18.00818876152001\n", "gpc1_r: mean flux error: 228.4292055023892, 3sigma in AB mag (Aperture): 16.810317790080028\n", "gpc1_i: mean flux error: 17.959658020702886, 3sigma in AB mag (Aperture): 19.571451706250095\n", "gpc1_z: mean flux error: 13.87429992907835, 3sigma in AB mag (Aperture): 19.851669166526428\n", "gpc1_y: mean flux error: 381.5910077390603, 3sigma in AB mag (Aperture): 16.253201533388783\n", "90prime_g: mean flux error: 0.1612749546766281, 3sigma in AB mag (Aperture): 24.688279541911847\n", "90prime_r: mean flux error: 0.40438205003738403, 3sigma in AB mag (Aperture): 23.690217189169566\n", "mosaic_z: mean flux error: 1.1628565788269043, 3sigma in AB mag (Aperture): 22.543381477637233\n", "mosaic_r: mean flux error: 0.09364917874336243, 3sigma in AB mag (Aperture): 25.278436930246507\n", "ukidss_j: mean flux error: 6.114259243011475, 3sigma in AB mag (Aperture): 20.74133724131527\n", "irac_i1: mean flux error: 5.836461942838672, 3sigma in AB mag (Aperture): 20.791822718167218\n", "irac_i2: mean flux error: 5.440669724080579, 3sigma in AB mag (Aperture): 20.86806595606469\n", "irac_i3: mean flux error: 19.904765159686086, 3sigma in AB mag (Aperture): 19.459804218053172\n", "irac_i4: mean flux error: 19.47866972636668, 3sigma in AB mag (Aperture): 19.48329862843388\n", "wfc_u: mean flux error: 6.4852681159973145, 3sigma in AB mag (Total): 20.67737702437453\n", "wfc_g: mean flux error: 4.083687782287598, 3sigma in AB mag (Total): 21.179565536282745\n", "wfc_r: mean flux error: 4.159158640675417, 3sigma in AB mag (Total): 21.159683148814132\n", "wfc_i: mean flux error: 6.607170367913834, 3sigma in AB mag (Total): 20.65715809977815\n", "wfc_z: mean flux error: 30.17353630065918, 3sigma in AB mag (Total): 19.008131333382998\n", "gpc1_g: mean flux error: 84.62049680255278, 3sigma in AB mag (Total): 17.888507936392934\n", "gpc1_r: mean flux error: 128.69759763001056, 3sigma in AB mag (Total): 17.433270762951686\n", "gpc1_i: mean flux error: 13.21199952632183, 3sigma in AB mag (Total): 19.90477548957835\n", "gpc1_z: mean flux error: 12.957271263727522, 3sigma in AB mag (Total): 19.925912985884928\n", "gpc1_y: mean flux error: 342.9716913139146, 3sigma in AB mag (Total): 16.3690511754374\n", "90prime_g: mean flux error: inf, 3sigma in AB mag (Total): -inf\n", "90prime_r: mean flux error: inf, 3sigma in AB mag (Total): -inf\n", "mosaic_z: mean flux error: inf, 3sigma in AB mag (Total): -inf\n", "mosaic_r: mean flux error: 0.17217998206615448, 3sigma in AB mag (Total): 24.617240217583863\n", "ukidss_j: mean flux error: 10.784326553344727, 3sigma in AB mag (Total): 20.125214288236343\n", "irac_i1: mean flux error: 8.666832274512162, 3sigma in AB mag (Total): 20.362545883374985\n", "irac_i2: mean flux error: 8.406512976134104, 3sigma in AB mag (Total): 20.39565714399904\n", "irac_i3: mean flux error: 24.813720996072533, 3sigma in AB mag (Total): 19.22046712635251\n", "irac_i4: mean flux error: 23.015498675270777, 3sigma in AB mag (Total): 19.30214589029726\n" ] } ], "source": [ "average_depths = []\n", "for b in ap_bands:\n", " \n", " mean_err = np.nanmean(depths['ferr_ap_{}_mean'.format(b)])\n", " print(\"{}: mean flux error: {}, 3sigma in AB mag (Aperture): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n", " average_depths += [('ap_' + b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n", " flux_to_mag(3.0*mean_err*1.e-6)[0], \n", " flux_to_mag(5.0*mean_err*1.e-6)[0])]\n", " \n", "for b in tot_bands:\n", " \n", " mean_err = np.nanmean(depths['ferr_{}_mean'.format(b)])\n", " print(\"{}: mean flux error: {}, 3sigma in AB mag (Total): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n", " average_depths += [(b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n", " flux_to_mag(3.0*mean_err*1.e-6)[0], \n", " flux_to_mag(5.0*mean_err*1.e-6)[0])]\n", " \n", "average_depths = np.array(average_depths, dtype=[('band', \"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dat in data:\n", " wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n", " depth = average_depths['5s'][average_depths['band'] == dat[0]]\n", " #print(depth)\n", " plt.plot([wav_deets[0],wav_deets[1]], [depth,depth], label=dat[0])\n", " \n", "plt.xlabel('Wavelength ($\\AA$)')\n", "plt.ylabel('Depth')\n", "plt.xscale('log')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.title('Depths on {}'.format(FIELD))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### IV.c - Depth vs coverage comparison\n", "\n", "How best to do this? Colour/intensity plot over area? Percentage coverage vs mean depth?" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5,1,'Depths (5 $\\\\sigma$) vs coverage on xFLS')" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAAJ/CAYAAACQgBG/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XlcVPX+P/DXG1wQGBYB2Xdl2AQXAndcsrSkTIvr1nItzcpMk8ryd9e+3vReTfN6K5fMFpdLaZbmUppAZMJFBWRxNBaVRQVFGEHc+Pz+mBka9mVmmIX38/GYh86ZOee8z4C+5/N5n3PeJIQAY4wxxkyTmb4DYIwxxpjucKJnjDHGTBgnesYYY8yEcaJnjDHGTBgnesYYY8yEcaJnjDHGTBgnesYYY8yEcaJnjDHGTBgnetYqIiokoge1tK33iGixNrbVzLZTiShEF9tmjDFjxoneyCgT7y0ikhPRDSI6TkQLiEgrP0ttJvZG23UC8AyAjWrLEoiolohuKh8yDXaxGsDfNY2TdT213+mbag83tdea/D4S0Sjl734lEV0nol+I6IGuj54xw8eJ3jjFCCEkALwBrATwFoBP9BtSm54DcEAIcavR8oVCCGvlQ6rB9r8DMI6IXDXYhkEjoh76jkGHYtR+D6yFECUtvZGIbADsB/BvAH0BuAP4G4DbXRMqY8aFE70RE0JUCiG+A/AHAM8SUSgAEJEbEe0mojIiKiCiRap1lCOkt4koh4gqiOhTIrJQvvYFAC8A+5SjqjeVqw0iokzl6Om/qvcr13mLiIqVMwwyIprQQriTASR29liJqCcRrVDGf5eIhPKRofwsagGcBPBQM+suI6KvGy37gIjWd/AYQESeRLRH+dleI6INyuVByhmKG0SUTUSPtWffyudt/bzeIqJMANVE1EO5zTxlvDlE9ITa+4cQ0Wnla18pf17/1559NXOszR6TWlxxLf1eNNqOv3LUPUQthnIiGtvSvtsQAABCiJ1CiPtCiFtCiB+EEJmd3B5jpk0IwQ8jegAoBPBgM8svAngJii9vJwH8GUAvAH4A8gE8rLZ+FgBPKEZDvwD4v5a2r3yeCsBN+f5cAAuUr0kBXALgpnzuA8C/hbjLADzQaFmCcnm5Mo6xrRz3KgAnlHFbATgCYA8AP7X3rAfwfjPregOoAWCjfG4OoBTAsA4egzmADABrlTFYABgFoCeA3wC8o/zMxwOQK7fd4r6Vz9vz80pXHncf5bKnlD8PMyi+5FUDcFWufwHAa8qYpgG4o/r5trWvRsfa4jG19XvRwmc3T/keSwCHAaxu63e6pdcA2AC4BuAzKL5A2uv73yU/+GHIDx7Rm44SKP7DfQCAkxDi70KIO0KIfACbAcxQe+8GIcQlIcR1ACsAzGxj2+uFECXK9+8DMEi5/D6A3gCCiainEKJQCJHXwjbsoEgU6t6CItm4A9gExUyCf+MViUgCYBGAp5VxVwPYDaCv8vhU5Mr9NCCEuADgFICpykXjAdQIIU508BgioUhsbwghqoUQtUKIZCi+MFgDWKn8zH+CYmp5Zhv7Btr381qvPO5byuP5SvnzqBNC/BfAeWVswwD0UL7/rhBiDxTJGB3Yl0qLx9QoruZ+L5oQQmxWxpkCxZeS5Y3eslc5c3CDiPa2tB3ltqqg+IIllPGXEdF3ROTc2nqMdVec6E2HO4DrUIwg3dT+07wBxahM/T/BS2p/vwBF8mrNZbW/10CRACCE+A3AYgB/BXCViHapTqJqRgUAifoCIUSKEEIuhLgthPgMilH9I82sOwZAvhDivNoy+0ZxQbn9Gy3sfwd+T1KzlM87egyeAC4IIe41Wu4G4JIQok5t2QUofiYt7lupoz8vENEzRJSu9v5QAI7KOIqFEKKFdduzr/YeE9DC70UrNitj/bcQonE9faoQwk75mNrMug0IIXKFEM8JITyU23QDsK6t9RjrjjjRmwDl2cbuAJKh+I+9QO0/TTshhEQIoZ5APdX+7gXFbICKepJokxBihxBiFBRJREAxxd6cTChrq61tDgA1s9wJii8KAAAiIgBPQDHCVBcExdR6c74CMJaIPJTr1ifbDhzDJQBezZwUVwLAkxpe+eAFoLitfaN9P6/6nwkReUORMBcCcBBC2EFRiiEoSgLuys9HRf1n3Z59tfeYOoSIrKFIxJ8A+CsR9e3MdpojhDgLYBsUCZ8x1ggneiNGRDZENAXALgBfCiHOQDFVW6U8gasPEZkTUSg1vPToFSLyUP5n+w6A/6q9dgWK6fT27F9KROOJqDeAWgC3oJgKb84BANFq69oR0cNEZKE8wWw2FCP3w82smwVgCBENIqI+AN6DIvn9V217vQEMBfBjczsXQpRBcU7Ap1Aku9xOHEMqFMl0JRFZKWMfCcV0dDWAN0lx0uBYADFQ/Fxa3LfaNtv6eamzUh57mTL+P+L3BPerMvaFys/0cSim9Duzr1aPqRM+AHBSCPECgO8BfNyBdXsqP2vVI5SIliq/OIGIPKGYMTnR+mYY65440RunfUQkh2KEthzA+wD+CABCiPtQ/Ic8CEABFCe6bQFgq7b+DgA/QHEiVj6A/1N77T0A/085tRvXRhy9obi8rxyKadx+UHxxaM7nAB5RJmpAcbLX/+H3k/FehWL6tsm19EKINCjOJTigjNcFwCNCiLtqb3sMQIJo5bIsKI77QTQcUbf7GNQ+2/5QnPxYBOAPQog7yv1PVm7nQwDPKEeare27vT8v9ffnAFgDRVK/AmAgFCUPKOOYBuB5KEoYc6CY9bjd0X2185jaRfmFYxKABcpFr0PxxW12OzdxAIovYKrHUgBRAFKIqBqKBJ+lXM4Ya4QalvOYqSOiQgAvCCGO6GHf/wBwVQih9VoqEaUAeF4IkaXtbRsz5efysRDiU33HwhjTD1O+AQczMEKIlkb72th2lK62bUyIKBqADIpR+GwAYQAO6TUoxphecaJnzLRIAcRDcQZ8HoAnhRCl+g2JMaZPPHXPGGOMmTA+GY8xxhgzYUYxde/o6Ch8fHz0HQZjjBmVkydPlgshnDRYv1+PHj22QHEJJw8MDVMdgKx79+69MHTo0KvNvcEoEr2Pjw/S0tL0HQZjjBkVIrqgyfo9evTY4uLiEuTk5FRhZmbGdV4DVFdXR2VlZcGXL1/eAsUlsU3wNzTGGGMtCXVycqriJG+4zMzMhJOTUyVauTMkJ3rGGGMtMeMkb/iUP6MW8zknesYYY8yEcaJnjDHGTBgnesYYYxpbfVjmfCT3SoNW1Edyr0hWH5Y11wbZoJSUlPQICwsLDAoKCj506FBb7ZaNDid6xhhTc23LFlSfSGmwrPpECq5t2aKniIzDIC+7mtfj0/1Uyf5I7hXJ6/HpfoO87Gr0HVtb9u/fL+nfv39tbm5uzqRJk27qOx5t40TPGGNqLEIHonjJkvpkX30iBcVLlsAidKCeIzNsDwY5y9+PHZT/eny639/2Zbu9Hp/u937soPwHg5zlGm/7wQf9Q0JCgvr37x+yevVqRwCwtLQcPG/ePI/g4OCg4cOHB5SUlDR7uXhxcXGPkJCQIAD49ddf+xDR0PPnz/cCAE9Pz9Aff/zR6i9/+YvHsWPHbAMDA4Nv3rxJX3/9tU1wcHCQVCoNHj58eEBLcb3++utuf/7zn+tnLAYMGBAik8l6aXq82saJnjHG1FgNi4L72rUoXrIEZevXo3jJErivXQurYdw3qS0PBjnLpw/xKPv0l0LX6UM8yrSR5AFg+/bthdnZ2bnp6ek5GzdudL58+bL5rVu3zIYMGVKTk5OTO3LkSPmyZcvcmlvX3d393u3bt82uX79uduzYMeuQkJCaI0eOWJ87d66Xg4PDvYkTJ1a//fbbJTExMRVnz57NqaqqMl+4cKHPnj178mQyWc7evXvztHEM+mQUN8xhjLGuZDUsCvYzZ6D8w4/g+PJLnOTb6UjuFcnuU0VOfxzpU7r7VJHTyP6Ocm0k+1WrVjl///33dgBw+fLlntnZ2RZmZmZ44YUXrgPA3Llzr02bNq1/S+tHRETcPHLkiHVycrLkzTffLD106JCtEALDhg1rMk2fkJBgFRkZKQ8MDLwDAM7Ozvc1jV/feETPGGONVJ9IQcXOXXB8+SVU7NzVpGbPmlLV5N+PHZT/l5iQEtU0fuMT9Dpq//79ksTERElaWtpZmUyWExQUdOvWrVtNchcRtbiNUaNG3UxKSpIUFRX1mj179o3s7Ow+ycnJ1tHR0U2+hAghWt2Wuh49eoi6urr657dv327fil2MEz1jjKlR1eTd166F06JF9dP4nOxbl37xhqV6TV5Vs0+/eMNSk+3euHHD3NbW9r5EIqk7ffq0RUZGhhUA1NXV4dNPP7UHgG3btjlERka2OHMwceJE+e7du/v6+vreNjc3h52d3b1jx47ZPvjgg01G9OPGjatOSUmRnD17thcAXLlyxbyl7fr4+NxOT0+3AoDk5GTL4uLi3pocq67w1D1jjKmpzTrToCavqtnXZp3hKfxWxD0svdJ42YNBzhpP3U+fPr1y06ZNTgEBAcH+/v614eHh1QDQp0+fuuzs7D4hISEuEonk/p49e/Jb2oZUKr0DAKNHj5YDwPDhw2+Wlpb2cnJyajIt7+bmdm/9+vWFTzzxRP+6ujo4ODjcPX78+PnmtvvMM89UbN++3SEwMDB40KBB1d7e3rWaHKuuGEU/+oiICMFNbRhjrGOI6KQQIqKz62dkZBSGh4eXazMmbbG0tBxcU1NzWt9xGIqMjAzH8PBwn+Ze46l7xhhjzITx1D1jjDGj09xo/umnn/b63//+1+DOdi+99NKV11577Zom+/rggw8cPvroowZ3+HvggQdufvHFFxc12W5X4UTPGGPMJOgq8b722mvXNP2yoE88dc8YY4yZME70jDHGmAnjRM8Y6xIfJ+bheF7DE7iP55Xj40Sjv8MoYwaNEz1jrEuEedhi4Y7T9cn+eF45Fu44jTAPWz1Hxphp40TPGOsSI/wdsWHWYCzccRrv/yDDwh2nsWHWYIzwd9R3aA1szdqK1NLUBstSS1OxNWurniIyEkffdYbsYMPb3coOSnD0Xe5Hr2c6S/RE5ElEx4gol4iyiei1Rq/HEZEgIsP6V84Y05kR/o6YE+WF9T/9hjlRXgaX5AEg1CEUcYlx9ck+tTQVcYlxCHUI1XNkBs4jogbfLPCrT/aygxJ8s8APHhHcj17PdDmivwdgqRAiCMAwAK8QUTCg+BIAYCIAo7gGkTGmHcfzyvFlykUsGt8fX6ZcbFKzNwSRrpFYHb0acYlx2HB6A+IS47A6ejUiXSP1HZphk06W44mP8/HNAj8cXOaGbxb44YmP8yGdbLL96EtKSnqMGDFiQHBwcNCsWbO83dzcBpaWlhrcZes6S/RCiFIhxCnl3+UAcgG4K19eC+BNAIZ//13GmFaoavIbZg3G6w9J66fxDTXZx0pjsTFzI2KlsZzk20s6WY7wmWVI+cgV4TPLtJHkAcPtR79s2TK36OhoeU5OTu60adMqSktLe2njeLWtS2r0ROQDYDCAFCJ6DECxECKjjXXmE1EaEaWVlZV1QZSMMV3KLKpsUJNX1ewziyr1HFlTqaWpiJfF48WwFxEvi29Ss2ctkB2UIGOnE6JeKkXGTqcmNftOWrVqlbNUKg0eOnRoUEv96FNTU1usrTfuR//zzz9Ljhw5Yq1pP/rU1FTrZ5999joAPPnkk1U2NjYG2bte51MMRGQNYDeAxVBM5y8H8FBb6wkhNgHYBCia2ugyRsaY7i2I9m+ybIS/o8HV6VU1edV0faRLJE/ft4eqJq+arveLlmtj+l69H71EIqmLjIyUatqPfs2aNS4ARExMTJNvmR3pR28MTeEAHY/oiagnFEl+uxBiDwB/AL4AMoioEIAHgFNE5KLLOBhjrL2yrmU1SOqqmn3WtSw9R2bgitIsGyR1Vc2+KM1k+9FHRkbe/OKLL/oCwJ49e2yqqqpafK8+6WxET4qvRJ8AyBVCvA8AQogzAPqpvacQQIQQwvCKdIyxbmlu6NwmyyJdI3k035YJf2rSjx7SyXJN6/SG3I9+5cqVJU8++aRfcHCw/fDhw286OTndtbOzM7jpe531oyeiUQB+BnAGQJ1y8TtCiANq7ylEOxI996NnjLGO4370unXr1i3q0aOH6NmzJ44cOWK1cOFC77Nnz+boI5bW+tHrbEQvhEgG0GqhQwjho6v9M8YYY7r022+/9YqNjfWvq6tDz549xcaNGwv1HVNzDO56P8YYY6wthtKPPjc3Vy8j+I7gRM8YY8wkcD/65vG97hljjDETxomeMcYYM2Gc6BljjDETxomeMcYYM2Gc6BljjGls/an1zgmXEhrc2z7hUoJk/an13I9ezzjRM8YY01iYU1jN8uTlfqpkn3ApQbI8eblfmFNYt+hHf/fuXW2HpTWc6BljjGlsrOdY+YpRK/KXJy/3W5m60m158nK/FaNW5I/1HGuy/ehff/11t5kzZ3qPHDlywLRp03w1PU5d4evoGWOMacVYz7HyGP+Ysu25211nB80u1UaSBxT96J2dne/fvHmTBg8eHDxnzpwKVT/6zZs3F8XFxbkuW7bM7fPPP29yHX1L/eiFEDfV+9GnpaVZff755xdLSkp6LFy40CchIeFsYGDgndaa2gBAZmamZUpKyllra2uDbWVnmiP65HVAQVLDZQVJiuWMMcZ0IuFSgmRf3j6n2UGzS/fl7XNqXLPvLEPtRw8AkyZNumHISR4w1UTvPgT46rnfk31BkuK5+xB9RsUYYyZLVZNfMWpF/rLIZSWqaXxNk716P3qZTJYTFBR0S9N+9NnZ2X2Sk5Oto6Ojm8w4dKQfPQBYWVnVtf0u/TLNRO87BnhqmyK5/7RC8edT2xTLGWOMaV1mWaalek1eVbPPLMs02X70xsJ0a/S+Y4CI54GkfwJj3uQkzxhjOrRoyKIm/ejHeo6Va1qnN+R+9MZCZ/3otalT/ehV0/URzwNpn/CInjHW7XA/+u6jtX70pjl1r0ryT20Dxi//fRq/8Ql6jDHGmIkzzan74lMNR/Cqmn3xKR7VM8aYCTCUfvSabLermO7UPWOMdXOmPHXPGup+U/eMMcYYA8CJnjHGGDNpnOgZY4wxE8aJnjHGGDNhnOgZY4xp7Oq6dc7yY8ca3O5WfuyY5Oq6dSbbj3779u2277zzjosuY9MG07y8jjHGWJfqEx5eU/LWMj+3VSvzJePGyeXHjklUz/UdW1tU/ej37NlT2JH1Zs+eXQmgUjdRaQ+P6BljjGlMMm6c3G3VyvySt5b5Xf7HP9zUk76m2zbUfvTr1693eOaZZ7w0PT5d40TPGGNMKyTjxsltpz5eVvH5F662Ux8v00aSBxT96LOzs3PT09NzNm7c6Hz58mVzVT/6nJyc3JEjR8qXLVvm1ty6LfWjP3fuXC/1fvQxMTEVZ8+ezamqqjJfuHChz549e/JkMlnO3r1787RxDPrEU/eMMca0Qn7smKRy77dO9s88XVq591snq+HD5dpI9qtWrXL+/vvv7QCgpX7006ZN69/S+o370R86dMhWCAFt9KM3BjyiZ4wxpjH1mrzLO++UqKbxG5+g11GG3o/eGHCiZ4wxprFbGRmW6jV5Vc3+VkYG96PXM566Z4wxprF+ixc36UcvGTdO46l77kevOW5qwxhjJsqUm9pwP/qGuKkNY4wx1k3x1D1jjDGjw/3o248TPWOMMZOgq8T72muvXdP0y4I+8dQ9Y4wxZsJ0luiJyJOIjhFRLhFlE9FryuX/IqKzRJRJRN8QkZ2uYjBWW7O2IrU0tcGy1NJUbM3aqqeIGGOMGStdjujvAVgqhAgCMAzAK0QUDOBHAKFCiDAA5wC8rcMYjFKoQyjiEuPqk31qaSriEuMQ6hCq58iY0UheBxQkNVxWkKRYzhjrVnSW6IUQpUKIU8q/ywHkAnAXQvwghLinfNsJAB66isFYRbpGYnX0asQlxmHD6Q2IS4zD6ujViHSN1HdozFi4DwG+eu73ZF+QpHjuPkSfUTETduLbPOeCzPIGd8EryCyXnPg2z+Db1Jq6LqnRE5EPgMEAUhq9NBfAwRbWmU9EaUSUVlZWptsADVCkayRipbHYmLkRsdJYTvKsY3zHAE9tUyT3n1Yo/nxqm2I5Yzrg7Gtbc3Rbjp8q2RdklkuObsvxc/a1rdF3bG3pbD96Y6Hzs+6JyBrAbgCLhRBVasuXQzG9v7259YQQmwBsAhQ3zNF1nIYmtTQV8bJ4vBj2IuJl8Yh0ieRkzzrGdwwQ8TyQ9E9gzJuc5JlO+YY5yic8F5x/dFuOn3SYS5nsxGWnCc8F5/uGOWqlg50udbYfvbHQ6YieiHpCkeS3CyH2qC1/FsAUALOFMdyar4upavKro1dj4eCF9dP4jU/QY6xVBUlA2ieKJJ/2SdOaPWNa5hvmKJcOcynL/KnIVTrMpUxbSd5Q+9FHR0f3DwwMDA4MDAyWSCSD/v3vfzto43i1TZdn3ROATwDkCiHeV1s+CcBbAB4TQhj8lI4+ZF3LalCTV9Xss65l6Tky49Ktr15Q1eSf2gaMX/77ND4ne6ZDBZnlEtmJy05h4z1KZScuOzWu2XeWofajT0xM/O3s2bM5mzdvLnR1db0za9asG9o4Xm3T5Yh+JICnAYwnonTl4xEAGwBIAPyoXPaxDmMwSnND5zaZpo90jcTc0Ll6isg4deurF4pPNazJq2r2xaf0GRUzYaqa/ITngvNHxwaUqKbxtZHsV61a5SyVSoOHDh0a1FI/+tTU1BZr64370f/888+SI0eOWGujH31paWmP5557znf79u35Dg4OBtm7Xmc1eiFEMoDmmvoe0NU+GVOnfvVCrDQW8bL47nP1wqjFTZf5juE6PdOZKwWVluo1eVXN/kpBpaUmU/jq/eglEkldZGSkVNN+9GvWrHEBIGJiYiobv7cj/ejv3buH6dOn+7311lslDzzwQG0HDqtL8Z3xmEnjqxcY6xrDHve/0jih+4Y5yoc97t+kfW1HGHI/+ldeecUjODi4Zv78+RWaHKOu8b3umUnjqxcYM26G3I9+06ZNzv37968NDAy0AYA//elPxbNnz24yS6Bv3I+emSz1qxciXSObPGfM1HE/+u6D+9GzbomvXmCMMZ66ZyasuasUIl156p4xU8D96NuPEz1jjDGTwP3om8dT94wxxpgJ40TPGGOMmTBO9IwxxpgJ40TPGGvWtS1bUH2iYWfp6hMpuLZli54iYoYsedfnznknUxvc7jbvZKokedfn3I9ezzjRM8aaZRE6EMVLltQn++oTKShesgQWoQP1HBkzRK4DAmsO/meNnyrZ551MlRz8zxo/1wGBJtO87ODBg9bBwcFBPXr0GKq6K58x4LPuGWPNshoWBfe1a1G8ZAnsZ85Axc5dcF+7FlbDovQdGjNA/kMj5ZNfWZp/8D9r/ELGTCjLTjrqNPmVpfn+Q1u+Na2x8fPzu/Ppp58Wrly50qhmKXhEzxhrkdWwKNjPnIHyDz+C/cwZnORZq/yHRspDxkwoO3XwO9eQMRPKtJXkNelHDwCJiYmWAQEBwYMGDQp88cUXPQYMGBACAOvXr3eYMGGC/+jRowf4+PiELl261FW1zoYNGxwCAgKCpVJp8NSpU30Bxa10o6KibpmZtZ0679+/jzlz5nj1798/ZNy4cf2jo6P762sWgBM9Y6xF1SdSULFzFxxffgkVO3c1qdkzpi7vZKokO+mo05DJj5VmJx11alyz7yxN+tEDwAsvvOD7n//850J6evpZc3PzBvd9z8zMtPrqq6/ys7Kysr/77ru+SUlJlmlpaRarV692TUxMPCeTyXI2btzY4evzP//8c/tLly71kslk2Z999lnh6dOnW2yjq2s8dc8Ya5aqJq+arreMjGrwnDF1qpq8arrea+AgufpzTba9atUq5++//94OAFrqRz9t2rT+za1bXl5uXl1dbTZx4sRqAHj22Wev//jjj3aq10eNGlXl4uJyHwAeffTRioSEBGtzc3PExMRUuLq63gPa7knfnJ9//tl62rRpFebm5vDy8ro3bNgwvZUweETPGGtWbdaZBkldVbOvzTqj58iYISo9f9ZSPamraval589aarJd9X70MpksJygo6FZH+tG31bit8XpEpOpJr1HHN0NqGMeJnjHWLIcXXmgycrcaFgWHF17QU0TMkI2a8cyVxiN3/6GR8lEzntFrP3onJ6f7VlZWdUePHrUCgC+++KKv+uvJyck2V65cMb958yYdOHDALjo6+uakSZOqvvvuu76XL182B1rvSd+S0aNH39y7d6/9/fv3cenSpR4pKSlaKWN0Bk/dM8YYM1ja6Ee/cePGwgULFnhbWlrWjRw5Ui6RSOqn4iMiIm7+4Q9/8C0sLLSYPn36tTFjxtQAwNKlS0tHjx4daGZmJkJDQ2t2795dmJiYaBkbG9u/qqrK/OjRo3YrVqxw++2337Kb2+ezzz5bceTIEUlAQECIr69vbXh4eLWdnV2HSwDawP3oGWPMRHE/eoXKykozW1vbOgB45513XEpLS3t++umnl9avX++QlpZm9fnnn+ukGY5qv5cvXzZ/4IEHgn755ZezXl5e93Sxr9b60fOInjHGmEmLj4+3XbNmjev9+/fJ3d399o4dOwq7Yr8TJ04cUFVVZX737l164403SnWV5NvCiZ4xxpjR6Wg/+nnz5lU0fv+iRYuuAdCo/WxqamqfZ555xld9Wa9eveoyMzPPpqamyjTZtra0K9ETUW8A0wH4qK8jhPi7bsJiTAuS1wHuQwDfMb8vK0gCik8BoxbrL64u8HFiHsI8bDHC37F+2fG8cmQWVWJBtL8eI2NMd3TVj741kZGRt86ePZvT1fvtiPaedf8tgMcB3ANQrfZgzHC5DwG+ek6R3AHFn189p1hu4sI8bLFwx2kcz1OUV4/nlWPhjtMI87DVc2SMsa7W3ql7DyHEJJ1Gwpi2+Y4BntqmSO4RzwNpnyieq4/wTdQIf0dsmDUYC3ecxpwoL3yZchEbZg1uMMJnjHUP7R3RHyciblnFjI/vGEWST/qn4s9ukORVRvg7Yk6UF9b/9BvmRHlxkmesm2o10RPRGSLKBDAKwCkikhEH7hrIAAAgAElEQVRRptpyxgxbQZJiJD/mTcWfqmn8buB4Xjm+TLmIReP748uUi/XT+IzpQuXhQudbudca3BTmVu41SeXhQqPq9GaK2hrRTwEQA2AygP4AHlI+Vy1nzHCpavJPbQPGL/99Gl8Lyf7jxLwmifN4Xjk+TszTeNvaoKrJb5g1GK8/JK2fxudkz3Sll5ek5nr8OT9Vsr+Ve01yPf6cXy8vCfej17NWE70Q4oIQ4gKA/1P9XX1Z14TIWCcVn2pYk1fV7ItPabxpQz/ZLbOoskFNXlWzzyyq1HNkzFT1CXKQ940NyL8ef87vxr48t+vx5/z6xgbk9wlyMLl+9DExMR26JO/ePb1cPl+vvTX6EPUnRGQOYKj2w2GsY+SJl1Cbd6PBstq8G5AnXlJcQte4Ju87RiuX1qmf7Pb+D7L60bOh1MEXRPs3iWWEvyNfWsd0qk+Qg9xqSL+ym7+UuFoN6VemrSRvjP3o9+/fL4mKigqIiYnxlUqlIW2uoENt1ejfJiI5gDAiqiIiufL5VSguuWNMr3p6SHB9R259sq/Nu4HrO3LR00P3/SP4ZDfGGrqVe01Sfeqqk/VIt9LqU1edGtfsO8sY+9Grtv2vf/2rOC8vr9n74XeVtqbu3xNCSAD8SwhhI4SQKB8OQoi3uyhGxlqUmXUE94b3xvUduaj8oRDXd+Ti3vDeyMw6ovN988lujP1OVZPvGxuQbxfjX6KaxtdGsl+1apWzVCoNHjp0aFBL/ehTU1Otm1u3uX706q+r+tFbW1sLVT/6w4cP22jajx4AwsLCqgMDA+90Zl1tau/U/TtENI2I3ieiNUQ0VadRMdZOLv4B2L9rNe77mUP+0yXc9zPH/l2r4eIfoNP9GvrJbqcOX0CRrOEdP4tkFTh1+IKeImKm7s5FuaV6TV5Vs79zUd4t+9EDgKWlZZ2m29CG9ib6/wBYAOAMgCwAC4joPzqLirF28goNw5QZcbiTcQM3XG7gTsYNTJkRB6/QMJ3u98NLV/HitKAGJ7u9OC0IH166qtP9tlc/Hxsc3pxVn+yLZBU4vDkL/Xxs2r2NrVlbkVqa2mBZamkqtmZt1WqszDTYPuxzpXFNvk+Qg9z2YZ9u2Y/ekLQ30UcDeFgI8akQ4lMAjwAYq7OoGGun2rwb6PHrbVRIK3H4142okFaix6+3m5ygp20Lwj3xQUUFkisU/7ckV8jxQUUFFoR76nS/7eUhtcfD80JxeHMWUr7Lx+HNWXh4Xig8pO2/IijUIRRxiXH1yT61NBVxiXEIdQjVVdiMNTF9+vTKe/fuUUBAQPA777zj1kw/+qCkpCTJe++9V9rSNjZu3Fj40ksveQ8aNChQCIHm+tGHhoaGxMTEVIwZM6YmIiKiVtWPXiqVBr/88suegOKkPmdn57ADBw7YL1myxLt///56PcmuvdrVj56I9gBYorysDkTkDWClEGKmjuMDwP3oWcvkiZdQcbcM+3etRvhDjyDjhwOYMiMO9j2dIInWbdJNrpBjfnYhnnVzxGcl5dgU4oNR9ro/CbAjUr7LR9qBQkQ84oOox/w6vL4qucdKYxEvi8fq6NWIdI3UQaRMF7gfvYK++tF3pdb60bd3RO8AIJeIEogoAUAOACci+o6IvmtuBSLyJKJjRJRLRNlE9JpyeV8i+pGIziv/NJqbDjDDU+FQgf27VmPK4mUYGTsHUxYvw/5dq1Hh0KQjpdaNspfgWTdHrL1wBc+6ORpcki+SVSArqRgRj/ggK6m4Sc2+PSJdIxErjcXGzI2IlcZykmdGKT4+3jYwMDB4wIABIcePH7desWJFi6N/U9TepjZ/7sS27wFYKoQ4RUQSACeJ6EcAzwE4KoRYSUTLACwD8FYnts8YLuedw5TFy+pr8l6hYZiyeBku553TeZ0+uUKOz0rKscTbGZ+VlGOkvbXBJHtVTV41Xe8ute/U9H1qaSriZfF4MexFxMviEekSycmeGQRj6EevyXa1qV1T90D9dP0AIcQRIuoDoIcQot03QyCibwFsUD7GCiFKicgVQIIQQtraujx1zwyNatpeNV3f+Lm+nTp8Af18bBok9SJZBa4WVmHIw97t2oZq2l41Xd/4OTN8pjx1zxrSeOqeiOYB+BrARuUiDwB72xsAEfkAGAwgBYCzEKIUAJR/9mthnflElEZEaWVlZe3dFetmUr/9GhezGvZXupiVidRvv9bpftOrahok9VH2EmwK8UF6lWHc1nvIw95NRu4eUvt2J3kAyLqW1SCpR7pGYnX0amRdy9JqrIwx3Wpvjf4VACMBVAGAEOI8WkjQjRGRNYDdABYLIaraG5gQYpMQIkIIEeHk5NTe1Vg3I6+wxXdr3qtP9hezMvHdmvcgr9DtPecXejs3GbmPspdgobfpNOqaGzq3ycg90jUSc0Pn6ikixlhntLdGf1sIcUd1YwEi6gGgzTl/IuoJRZLfLoTYo1x8hYhc1abuDePCY2aUpMMjcD7tCr5b8x4GT34Upw9+jx5Wj0I6vNOzlYwxZlLaO6JPJKJ3APQhookAvgKwr7UVSPGt4BMAuUKI99Ve+g7As8q/Pwu+Zz7TgIfUHlNefRToMRAndu8CegzElFcf7dAJZ4wxzR09etRZJpM1mOaSyWSSo0ePmsw0V0fa1BYWFvacNGlSx69p1YH2JvplAMqguDPeiwAOAPh/bawzEsDTAMYTUbry8QiAlQAmEtF5ABOVzxnrtLq7l3D/dgbMLaJw/3YG6u5e0ndIjHU7Hh4eNd98842fKtnLZDLJN9984+fh4WEYJ65oQUfa1Pr4+Nw9dOhQflfE1ZZ2JXohRB0UJ9+9LIR4UgixWbRxur4QIlkIQUKIMCHEIOXjgBDimhBighBigPLP661th7HWqGryvW1iMHz6bPS2iWlQs2eMdQ2pVCp/4okn8r/55hu/gwcPun3zzTd+TzzxRL5UKtW4Va0xtqmVyWS9VPvRt7ba1BIR/ZWIygGcBSAjojIi6sx19YxpnexEBnpYPYoprz6KqMf8MOXVR9HD6lHITmToOzS9urZlC6pPpDRYVn0iBde2bNFTRKw7kEql8vDw8LKUlBTX8PDwMm0kecB429Qaira+liyGYgr+AWVr2r4AogCMJKIlOo+OsTY4eI5pUJNX1ewdPMfoOTL9sggdiOIlS+qTffWJFBQvWQKL0IF6joyZMplMJsnIyHCKiooqzcjIcGpcs+8sY21TayjaOuv+GQAThRD1N0wQQuQT0RwAPwBYq8vgGGtLc9eFe0jtu/3JeFbDouC+di2KlyyB/cwZqNi5C+5r18JqWJS+Q2MmSlWTV03X+/n5ybUxfa/eplYikdRFRkZKjaVNraFoa0TfUz3JqwghygD01E1IjDFtsBoWBfuZM1D+4UewnzmDkzzTqaKiIkv1pK6q2RcVFWnUj57b1GqurRH9nU6+xhjTs+oTKajYuQuOL7+Eip27YBkZxcneSCQnJ8Pd3R2+vr/fQr2goADFxcUYNWqUHiNr2YQJE5r0nZdKpXJN6/TTp0+v3LRpk1NAQECwv79/bTNtal0kEsn9PXv2tHiG+8aNGwsXLFjgbWlpWTdy5Eh5c21qCwsLLaZPn35tzJgxNQCgalNrZmYmQkNDa3bv3l2YmJhoGRsb27+qqsr86NGjditWrHD77bffsjU5vq7QVqIPJ6Lm7mZHACx0EA9jTAtUNXnVdL1lZFSD58yw2Zf3RPzP8YidEQtfX18UFBQgflc8pgSN1XdoXa5Pnz4iKSnpfHOvffDBByUAStraxtChQ2+dO3cuB1C0qVV9WQAAR0fHe821qX311Vevvfrqqw0uo4uOjq65cuVKuy7pkUqld86fP28QXwJaTfRCCKOermCsu6rNOtMgqatq9rVZZzjRGwHrfucwLj0Q8bvi8UDUA/hfyv8w7nYgrPudg+J8aNYR8fHxtmvWrHG9f/8+ubu7396xY0ehvmPqSu3uXqdP3L2OMdadXK/4Fb8lrEdpxsM4jUIMhg9cww+j/9hF6Gs/vN3b6W7d61prU6urfRpKm9rWute19173jDHGukhf++Ho7X8N2Wf+h8F3fJHdqwA+/rM7lOS7oy+++KLLr3ePjIy8dfbs2Zyu3m9HtPcWuIwxxrpIQUEBDn2fjQl14fD2ysKEunAc+j4bBQUF+g6NGSFO9Ix1oVOHL6BIVtFgWZGsAqcOX9BTRMwQXTiTh3G3A0HhX0HyoDso/CuMux2IC2fy9B0aM0Kc6BnrQv18bHB4c1Z9si+SVeDw5iz087HRc2TMkAT16gOE70L/sYvg77cE/ccuAsJ3KZYz1kFco2esC3lI7fHwvFAc3pyF0DHuyEoqxsPzQrv9nfxYQ7l99qOfV2x9Tb6v/XBYSy8jt2w/nDFSz9ExY8Mjesa6mIfUHqFj3JF2oBChY9w5ybMmvL3mY//+8/U1+YKCAuzffx7eXvP1HFnL8vLWOJeVH21wb/uy8qOSvLw13bIfvSHhRM+MzoULG3G94tcGy65X/IoLFzbqKaKOKZJVICupGBGP+CArqbhJzZ4xX19fPPXUU/jqq6/w008/4auvvsJTTz3V4E55hsbGdlBNTk6cnyrZl5UfleTkxPnZ2A7qlv3oDQknemZ0LlwwQ0bGK/XJ/nrFr8jIeAUXLhj+r7OqJv/wvFBEPeZXP43PyZ415uvri4iICCQlJSEiIsKgkzwAODlOkAcHr87PyYnzO3fuXbecnDi/4ODV+U6OE7plP/rFixe7BQYGBgcGBgb369cv7Mknn/TR9HPoLMP/n5GxRjw9H0Ru7mhkZLyCvPy1yMh4Bbm5o+Hp+aC+Q2vT1cKqBjV5Vc3+amFzd5pm3VlBQQHS0tIwZswYpKWlGcWldU6OE+SuLtPKLhVtc3V1mVamjSQPGGc/+nXr1pWcPXs255dffpHZ2dnde+2116525ti1gU/GY0bH19cXkyctRvIvJair24CSkiGYPGmxwY94AG6ry9qnoKCgwXS9r6+vUUzfl5UflZRe3uPk6fFcaenlPU72fUfItZHsV61a5fz999/bAUBL/einTZvWv7l1m+tH/+OPP9qpXlf1owcAVT96c3NzaKMffV1dHZ588knfV1555cro0aP1VsLgET0zOsnJyaiSZ8PN7RwuXhgIN7dzqJJnIzk5Wd+hMaYVxcXFDZK6qmZfXFys58hapqrJBwevzg8I+FOJahq/8Ql6HaXej14mk+UEBQXdMpZ+9EuXLnVzdXW9o8tb8LYHJ3pmdCQ2N7B/3y84c+ZBeHsvwpkzD2L/vl8gsbmh79AY04pRo0Y1Gbn7+voabItaAKiqTLdUr8mravZVlendsh/9zp07bRMSEmy2bt16qaPrahtP3TOj0zurAq69+uBKjeImM7dqHOHa6y56Z1UAYXoOjrFuyt9/aZN+9E6OEzSeujfWfvTr1q1zvnr1as9BgwYFAcCkSZNurFu3rs2WurrAiZ4ZnZuWPphY7YfcgVVISkrCiIFRCDpjgyuWdfoOjTGmZcbajz4lJeVce97XFTjRM6MTMXU0ZE5ncOrHBER5hOPUmVPwnvgYIkYO1HdojDED1N370XOiZ0anoKAA3/5yEFNCxsPu5D14Dh2Pb385iKfcrA36jGTGmPbU1NScbrystX708+bNa3KzikWLFl0DoNGJcobSj741nOiZ0SkuLsbjIydD8tNNWI33hFlKKR4fPxnFxcWc6BnrxrgfffP4rHtmdCJcQyH56Sb6zgqC7UM+6DsrCJKfbiLCNVTfobXp2pYtqD6R0mBZ9YkUXNuyRU8RMcZMHSd6ZnTuFsnRd1YQLPwV97yw8LdD31lBuFuklZtw6ZRF6EAUL1lSn+yrT6SgeMkSWITy+QWMMd3gqXtmdCTRnk2WWfjb1Sd+Q2Y1LArua9eieMkS2M+cgYqdu+C+di2shkXpOzTGmIniET1jXcxqWBTsZ85A+YcfwX7mDE7yjDGd4kTPWBerPpGCip274PjyS6jYuatJzZ4xY/RefqnzD+WVDW53+0N5peS9/FLuR69nnOgZ60Kqmrz72rVwWrSofhqfkz0zdkNtLGtezb3op0r2P5RXSl7Nveg31MaS+9HrGSd6xrpQbdaZBjV5Vc2+NuuMniNjTDMPOdrK/x3klf9q7kW/P50vcns196Lfv4O88h9ytO2W/einTp3q++WXX9afOPTYY4/5bt++3VaDj6HTONEz1oUcXnihSU3ealgUHF54QU8RMaY9DznaymNd7Ms2F5W7xrrYl2kjyQPG2Y9+3rx5Zdu2bXMAgGvXrpmfPHnSOjY2trLjR685TvSMMca04ofySkn85QqneR6OpfGXK5wa1+w7a9WqVc5SqTR46NChQS31o09NTbVubt3m+tGrv67qR29tbS1U/egPHz5so2k/+kcfffTmhQsXLIqLi3t88sknfR999NGKnj17dvzgtUBniZ6IthLRVSLKUls2iIhOEFE6EaURUaSu9s8YY6zrqGry/w7yyn93gEeJahpf02RvzP3oY2Njr23ZsqXvl19+6TB//vxyTbfXWboc0W8DMKnRsn8C+JsQYhCAPyufM8YYM3Inq2os1Wvyqpr9yaqabtmPHgAWLFhQvnHjRmcAiIiIqO3MNrRBZzfMEUIkEZFP48UAbJR/t0U72gsyxhgzfG/7uTbpR/+Qo61c0zq9sfajBwBPT897/v7+tTExMTc0+Qw01dV3xlsM4DARrYZiNmFEF++fMcaYETHWfvQAIJfLzQoLC3s///zz19t+t+509cl4LwFYIoTwBLAEwCctvZGI5ivr+GllZWVdFiBjjDHTEh8fbxsYGBg8YMCAkOPHj1uvWLGiVNf73Lt3ryQgICBk3rx5Vx0cHDp8Mp82UVsnKmi0ccXU/X4hRKjyeSUAOyGEIMUZEJVCCJtWNgEAiIiIEGlpaTqLkzHGTBERnRRCRHR2/YyMjMLw8HC9nUTWUa31o9fVPg2lH31GRoZjeHi4T3OvdfXUfQmAaAAJAMYDaHY6hjHGGOso7kffPJ0leiLaCWAsAEciKgLwFwDzAHxARD0A1AKYr6v9M8YYY0y3Z93PbOGlobraJ2OMMcYa4jvjMcYYYyaMEz1jjDFmwjjRM8YY09jqwzLnI7lXGtzu9kjuFcnqwzK996P/9ddf+wwaNCgwICAgePz48f2vX79en/vefvttFy8vr1AfH5/Q3bt3t3kVWGOLFy9227t3r1bu6a8rnOgZY8zApH77NS5mNbwvy8WsTKR++7WeImrbIC+7mtfj0/1Uyf5I7hXJ6/HpfoO87PTej37evHk+K1asKDp37lzOY489VvG3v/3NBQBOnjxpsWfPnr4ymSz70KFD5xYvXux17969dm/33r17WLduXcnUqVO10qVPVzjRM8aYgXHxD8D+dSvrk/3FrEzsX7cSLv4Beo6sZQ8GOcvfjx2U/3p8ut/f9mW7vR6f7vd+7KD8B4Oc9d6PvrCw0GLy5Mk3AWDKlClV+/fvtweAr7/+2m7atGnX+/TpIwIDA+94e3vfTkhIsJLJZL18fX1Dpk2b5hMQEBA8adIkP7lcbgYA7u7uA+Pi4lyHDh0q3bp1q/306dN9VPfcd3d3H7hw4UL3QYMGBYaGhgYlJydbjho1aoCnp2foP//5TydVPH/605+cQ0NDgwICAoKXLFnSYntdAHjjjTdcfX19Q0aMGDEgJibG989//nOHZ0g40TPGmIHxCg3DlMXLsH/dSvwS/yX2r1uJKYuXwSs0TN+hterBIGf59CEeZZ/+Uug6fYhHmTaSPKB5P/oBAwbc2rFjhx0AfPnll30vX77cCwCKi4t7eXp63lG9z83N7c6lS5d6AYovBwsWLCg7d+5cjkQiqfvXv/5Vn6gtLCzqTp48KZs/f35F4315enreSU9PPxsVFXVz7ty5Pvv27ctLSUk5u3LlSjcA2LNnj81vv/1mkZmZmZubm5uTnp5uefDgwWZb7CYlJVnu27fP/syZMznff/99XmZmplVnPj9O9IwxZmBOHb4As56eCH/oEZzYvQvhDz0Cs56eOHX4gr5Da9WR3CuS3aeKnP440qd096kip8Y1+87SpB89AGzdurXwo48+cgoJCQmSy+VmPXv2FEDzLWxV7WldXFzuPPTQQ9UA8PTTT187fvx4/fafeeaZJgleJTY29gYADBw4sGbIkCHV9vb2dW5ubvd69+5dV15ebn7o0CGbpKQkm+Dg4OCQkJDgvLw8i7Nnz1o0t62EhATryZMn37C2thb29vZ1EydO7FRznK6+Mx5jjLE29POxwcGP0nGn+jSGTZ+B9B9PI+e4Oya/NEjfobVIVZNXTdeP7O8o18b0vXo/eolEUhcZGSntSD96ABg8eHDtL7/8ch4AMjMze//www92AODh4VE/ggeAkpKSXh4eHneb2576c4lEUtfSviwsLAQAmJmZoVevXvXfJMzMzHD37l0SQmDx4sWlb7zxRpu3FtbWLep5RM8YYwam7u4l3Knej15WU9DDYgR6WU3Bner9qLt7Sd+htSj94g1L9aSuqtmnX7yh1370AFBcXNwDAO7fv4+//OUvrs8///xVAJg+ffqNPXv29L116xadPXu2V2FhocXYsWOrAaC0tLTXkSNHrABgx44dfUeMGHFTk+NQmTx5ctUXX3zhWFlZaQYABQUFPVXxNTZ27Nibhw8ftq2pqaHKykqzI0eO2HVmnzyiZ4wxA3M57xxiXnsWpfnWSDtQiIhHfODq9ywu550z2Dp93MPSJv3oHwxylmtap9dGP/qtW7f2/eSTT/oBwCOPPFKxaNGiawAQERFRO3Xq1OsBAQEh5ubmeP/99y/06KFIi35+frVbt251ePnll719fX1vx8XFaaWN6rRp06qys7MtHnjggUAAsLS0rNu+fXuBu7t7k9P9o6OjayZNmlQZHBwc4u7ufjssLKza1ta2w53wdNq9Tlu4ex1jrLspklXg8OYshI5xR1ZSMR6eFwoPqX2HtmHK3essLS0H19TUnNbFtmUyWa8pU6YMOH/+fLYutt8RlZWVZra2tnVyudxs+PDh0o8//vjCqFGjmlyyaEjd6xhjjLVBleRVyd1dat/gOes+5syZ433+/Pk+t2/fphkzZlxrLsm3hRM9Y4wZmKuFVQ2SuofUHg/PC8XVwipO9ErNjea11Y9eKpXe6crR/OXLl83Hjh0rbbw8ISFBtm/fvgJNt8+JnjHGDMyQh72bLPOQ2nOSb4M++tFrg4uLy31d9rTns+4ZY4wxE8aJnjHGGDNhnOgZY8zAGGNTG2a4ONEzxpiBMcamNsxwcaJnjDEDY5RNbY6+6wzZwYb3tpcdlODou9yPXs840TPGmAHyCg1r0NTGoJM8AHhE1OCbBX71yV52UIJvFvjBI4L70WtBXV0d7t/v8E3xAHCiZ4wxg3QxKxMZPxzAsOkzkPHDgSY1e4MjnSzHEx/n45sFfji4zA3fLPDDEx/nQzqZ+9F3sh+9TCbr5efnFzJnzhwvZae7Xi29tzWc6BljzMCoavJTFi/DyNg59dP4RpHsw2eWIeUjV4TPLNNGkge6bz96VRx//OMfr+Xm5uYEBATcael9reFEzxhjBuZy3rkGNXlVzf5y3jk9R9YG2UEJMnY6IeqlUmTsdGpSs++k7tqPHgBcXV3vTJgwobrND6kVfGc8xhgzMJGPP9lkmVdomGHX6VU1edV0vV+0XBvT9925Hz2g6G7Xnve1hkf0jDHGNFeUZtkgqatq9kVp3I9eTUf60WsLj+gZY4xpbsKfmvSjh3SyXNM6fXfuR68t3I+eMcZMFPej7xxD6kffXq31o+epe8YYY8yE8dQ9Y4wxo9Nd+tG7uLh07i45ajjRM8YYMwncj755PHXPGGMGRp54CbV5Nxosq827AXniJT1FxIwZJ3rGGDMwPT0kuL4jtz7Z1+bdwPUduejpYdC9U5iB4ql7xhgzMBb+dug7KwjXd+TCKsoV1Sml6DsrCBb+dvoOjRkhHtEzxpgBsvC3g1WUK+Q/XYJVlCsnedZpnOgZY8wA1ebdQHVKKSTjPVGdUtqkZm9o1p9a75xwKaFBbSHhUoJk/an1eu9H35UMsT+9zhI9EW0loqtElNVo+atEJCOibCL6p672zxhjxkpVk+87Kwi2D/nUT+MbcrIPcwqrWZ683E+V7BMuJUiWJy/3C3MK03s/+q7UVf3pO0KXI/ptACapLyCicQAeBxAmhAgBsFqH+2eMMaN0t0jeoCavqtnfLTKo/NHAWM+x8hWjVuQvT17utzJ1pdvy5OV+K0atyB/rOVbv/egjIyOlzz//vGdERITUz88vJDEx0fKhhx7y9/b2Dl20aFF9e9u//vWvzgMGDAgZMGBAyN///vd+AFBVVWU2duzY/lKpNHjAgAEhmzdvtgeAuLg419DQ0KABAwaEzJw507uuTtF7Rr0/fWJiouXgwYMDpVJp8MCBA4MqKiqazbl/+MMfvAMDA4MDAwOD7e3tw5cuXeqq6WemTmcn4wkhkojIp9HilwCsFELcVr7nqq72zxhjxkoS7dlkmYW/ncHX6cd6jpXH+MeUbc/d7jo7aHapNpI8oOhH7+zsfP/mzZs0ePDg4Dlz5lSo+tFv3ry5KC4uznXZsmVun3/+eYvX0ffq1asuLS1N9u677/Z76qmn+v/vf//L7dev3z0fH5+B77zzzpXz58/33rFjh8PJkydzhRAYOnRo0IQJE+Tnz5/v7eLicjchIeE3ALh27Zo5ALzxxhtXV69eXQoAU6dO9d21a5ftrFmzKlX7q62tpdmzZ/tv3749Lzo6uub69etm1tbWzXai++9//3sBAM6dO9fr4YcfHvDiiy926AY/benqGn0AgNFElEJEiUT0QEtvJKL5RJRGRGllZVrpJcAYY0yHEi4lSPbl7XOaHTS7dF/ePqfGNfvO0rQfPQA88cQTNwAgPDz8Vv/+/W95e3vf7dOnj/D09Lydn5+B5ocAACAASURBVJ/fKyEhwfqRRx65YWNjU2dra1v36KOPVhw7dkwyZMiQWz///LPNSy+95H7o0CFrBweH+wBw8OBBSVhYWGBAQEDw8ePHJVlZWX3U95eZmWnRr1+/u9HR0TUA0Ldv37qePXu2GF9NTQ1Nnz7df+3atRcDAgLuaPiRNdDVib4HAHsAwwC8ASCeWmgiLITYJISIEEJEODk5dWWMjDGmVxcubMT1il8bLLte8SsuXNiop4japqrJrxi1In9Z5LIS1TS+pslevR+9TCbLCQoKutXRfvRAwz7xvXv3btAn/t69ey02eAsLC7t96tSpnIEDB95avny5e1xcnGtNTQ0tXbrUe8+ePXnnzp3LmTNnTnltbW2DmIQQIKJ2d417+umnvWNiYip0Ud/v6kRfBGCPUEgFUAfAsYtjYIwxgyaxCUNW1qL6ZH+94ldkZS2CxCZMz5G1LLMs01K9Jq+q2WeWZeq9H317jB8//uaBAwfs5HK5WVVVldmBAwfsx40bJy8sLOwpkUjqXn755euLFy++kp6ebllTU2MGAC4uLvcqKyvN9u3bZ994e+Hh4bVXrlzplZiYaAkAFRUVZnfv3m123++9957TzZs3zf/xj39c1uQYWtLVN8zZC2A8gAQiCgDQC4BBtkBkjDF96Ws/HKGh65GVtQju7rNQXLwDoaHr0dd+uL5Da9GiIYua9KMf6zlWrmmdXhv96Ntj1KhRNbNmzbo2ZMiQIAB4+umny0aOHHlr9+7dNm+//baHmZkZevToIT788MMLjo6O92fPnl0WHBwc4uHhcUcVkzoLCwuxffv2vEWLFnnV1taaWVhY1CUlJZ2ztbVtUqffsGGDS8+ePUVgYGAwAMydO7fszTff1FrNWmf96IloJ4CxUIzYrwD4C4AvAGwFMAjAHQBxQoif2toW96NnjHUnGy5cwSAbS7hWbEFh4Qb4+CxEqf0LSK+qwULv9l+Wzv3ou4/W+tHr8qz7mS28NEdX+2SMMVMwyMYS/zqzD4uwHT4+C1FYtB3ri5zxxsAYfYfGjBDf654xxgxMMLKwCO9jPV7HCIzDcThjEd5HMHwBGO70fVfSZT96Xdm9e7fN8uXLPdSXeXp63v7xxx/zdLlfTvSMMWZg5FWZGDzw3xhR4YO1F65gifc4DLb3hbwq06Dr9Ppm6P3op0+fXjV9+nSd9Z1vCd/rnjHGDIy394vIQSg+KynHEm9nfFZSjhyEwtv7RX2HxowQJ3rGGDMwyRVyzM8uxKYQH7zl54pNIT6Yn12I5ArDvQUuM1yc6BljzMCkV9VgU4gPRtkr7jUzyl6CTSE+SK/qVv1hmJZwjZ4xxgxMc5fQjbKX1Cd+xjqCR/SMMcY0dnXdOmf5sWMNvonIjx2TXF23jvvR6xknesYYYxrrEx5eU/LWMj9VspcfOyYpeWuZX5/w8G5Vb9C0H31Lt8nVBCd6xhhjGpOMGyd3W7Uyv+StZX6X//EPt5K3lvm5rVqZLxk3jvvRt9GPfv369Q6TJ0/2Gz9+fP/Ro0cHaPp5NcY1esYYY1ohGTdObjv18bKKz79wtX/m6VJtJHnA9PvRA8CpU6esMzMzs52dne9r4zNTxyN6xhhjWiE/dkxSufdbJ/tnni6t3PutU+OafWd1h370o0ePrtJFkgeMZER/8uTJciK6oO841DjCsLvuGXp8gOHHaOjxARyjNhh6fIBmMXprM5DWqGryqul6q+HD5dqYvlfvRy+RSOoiIyOl+uhHv3v3btvly5e7HzlypOrvf//75aVLl3qnpKTk9O/f/+7rr7/upmk/ektLyxZH+5oyikQvhHDSdwzqiChNk45Qumbo8QGGH6OhxwdwjNpg6PEBxhEjANzKyLBUT+qqmv2tjAxLTRJ9W/3o58+fX6GtfvRz5871effddy8LIXDgwAH7bdu25RcWFvbs16/fvZdffvm6RCKp++yzzxya60cfExNTob499X700dHRNRUVFWbW1tatjup1xSgSPWOMMcPWb/HiJv3oJePGyTWt03eHfvS6prN+9KbM0L9hG3p8gOHHaOjxARyjNhh6fIB+Y+R+9MajtX70fDJe52zSdwBtMPT4AMOP0dDjAzhGbTD0+ADjiJEZMB7RM8YYa5Yhj+ib05370bc2oudEzxhjrFnGlui7M566Z4wxxropTvStIKJJRCQjot+IaFkzry8gojNElE5EyUQUbEjxqb3vSSISRNTlJ/S04zN8jojKlJ9hOhG9YEjxKd8TS0Q5RJRNRDu6Mr72xEhEa9U+v3NEdMPA4vMiomNEdJqIMonoka6Mr50xehPRUWV8CUTk0dx2dBjfViK6SkRZLbxORLReGX8mEQ3pyviYceNE3wIiMgfwHwCTAQQDmNlMIt8hhBgohBgE4J8A3jew+EBEEgCLAKR0VWxq+25XjAD+K4QYpHxsMaT4iGgAgLcBjBRChABY3FXxtTdGIcQS1ecH4N8A9hhSfAD+H4B4IcRgADMAfNhV8XUgxtUAPhdChAH4O4D3ujJGANsATGrl9ckABigf8wF81AUxMRPBib5lkQB+E0LkCyHuANgF4HH1NwghqtSeWgHoyhMe2oxP6V0ovoTUdmFsKu2NUV/aE988AP8RQlQAgBDiqgHGqG4mgJ1dEplCe+ITAGyUf7cFUNKF8QHtizEYwFHl348187pOCSGSAFxv5S2PQ/FFRAghTgCwIyLXromOGTtO9C1zB3BJ7XmRclkD9P/bu/e4qOr8f+Dvw0VkZEQu48hFgQFmhkG5SOI1b5hKrSbaz0zLtWzVLbNEW93ctasVJX7NUtN21dW11Cw0dcmUVNTWG3KTy4AgCjIgIOLBQeRyfn/AaQEHRc8wN17Px8PHwnA48xl0e3E+nzmfF8O8zjBMHjWF6SIDjY2oA+NjGCaUiPpyHHfQgONqqUM/QyKa1jwduZdhmL6GGRoRdWx8ciKSMwxzmmGYMwzDPOiqqzN09GdIDMN4EZEPEf1qgHHxOjK+94joRYZhiojoP0T0hmGG9ruOjDGViKY1fxxFRGKGYVwMMLaO6vC/A2M5sz9PeiWtvNXe9lfSysVn9ueZbB/9unXrXGbPnt2v7eOfffaZ5Kuvvrrv71+tVnfz9/cP1MdzP//8815JSUnd9XGuh0HQt0/Xxsn3XbFzHLee4zhfIlpGTVOUhvLA8TEMY0VE/0dESww2ovt15Gd4gIi8m6dMjxLRvzp9VP/TkfHZUNN06Whqulr+B8MwvTp5XC116N9hsxlEtJfjuE4pxmhHR8b3AhFt4zjOk4ieJqIdzf8+DaUjY1xKRKMYhkkmolFEdJ2I6jt7YI/gUf4dGIXUx1GbsC1Txof9lbRyccK2TJnUx9Hs+uj/8pe/lC1cuLBTb8nbvXv31bCwMIPMtCLo21dERC2vLj3pwVOOu4hoSqeOqLWHjU9MRP2J6DjDMAVENISIfjLwG/Ie+jPkOK6C47ja5k+/IaIwA42NqGN/x0VEtJ/juDqO464QkZqagt9QHuXf4Qwy7LQ9UcfGN5eI9hARcRz3XyLqTk1FLYbSkX+HxRzHTW1+H8GK5seqyHQ86n+PDM4nyJWNmKPKT9iWKTu5J8c9YVumLGKOKt8nyNUk+ugTExNFREQajcbGw8NjQNtjdu3a5RgSEqLUaDQ20dHR7itXrpQSEZ08eVKkUChUISEhyjVr1vTmj79w4UL3AQMGBCiVSpVcLlelp6fbtddd/7AxdTYEffvOE5E/wzA+DMN0o6b/iP7U8oDmN2rxniGiXFMZH8dxVRzHuXIc581xnDcRnSGiyRzHXTCVMRIRtVlnnExEWaY0PiLaR0RjiIgYhnGlpql8QXtqd8IYiWEYBRE5EdF/DTi2jo7vGhFFEBExDBNATUFfZkpjZBjGtcUsw1+JaIsBx9cRPxHR7OZ33w8hoiqO4zTGHlRbPkGurGJIn7K0X4vcFEP6lOkj5Ima+ugzMjKyUlJSMjdt2iQtKSmx5vvoMzMzs4YPH84uX77c/XHPv3379l6ff/55nyNHjuS6ubm1msmZO3eu95o1a66lpKRkt3z8yy+/lLz22mul2dnZmWlpaVk+Pj73fvzxx559+vSpU6vVmbm5uRlTp069TSYAQd8OjuPqiWghER2mpvDZw3FcBsMwHzAMM7n5sIXNt1ylEFE0Ef3RxMZnVB0c46Lmn2EqNb3HYY6Jje8wEVUwDJNJTW/SepvjOIPtsvUIf88vENEuzsA7YHVwfEuI6E/Nf8ffEdEcQ46zg2McTURqhmFyiEhKRKsMNT4iIoZhvqOmX9IUDMMUMQwzl2m6fXdB8yH/oaZfMC9T08zXa4YcX0ddSSsXq8+USILGemrUZ0okbdfsH5c++ujb89tvv4ljY2P7HDlyJFcikbRa9qqoqLBmWdb6mWeeqeafh//a0KFD78TGxrqtWLGiT25ubjcHBweuve56Y0N73QNwHPcfavo/WMvHVrb4+E2DD6r1WB44vjaPjzbEmHQ878N+hn+lpisoo+jA+Dhq+iUu2sBDazmeh/49cxz3niHH1Oa5H/YzzCSi4YYeV0sdGONeItpr6HG1eP4XHvJ1joheN9BwHgu/Js9P13sqnVl9TN/ro4/exsaGa2hoylytVtvqwH79+tVeu3bN7tKlS91HjhzZ6v0EzZ3yOs+5YMGCm08++eSduLg4x8jISPmGDRsKJk+ezLbtrl+9erXRZ15wRQ8AAIKVXqkStQx1fs2+9EqVoHXoh/XRExE9rI++b9++tefOnetBRLRz585W6+aenp73fvjhh8svv/yyz4ULF1q9C97V1bXBwcGh4fDhww7Nz+PMfy0zM7NbQEBA7d/+9rcb48ePv5WSkmJfUFBgKxaLG1977bWbb731VmlKSopB1uAfBlf0AAAg2JBnfe/ro/cJcmWFrtPro49++fLlpc8//7xs165dLk8++eR96+bBwcG127dvz3/++ed9f/rpp8stv/bPf/6z4NVXX/W2t7dvHDt27O/fu2PHDufvv//excbGhpNIJHWffPJJ8alTp3q07a5/0Gt70CyEPqHUBgAAdDLlUhtz76OXy+Wqn3766bJSqbynj/Oh1AYAAMBEDBs2zF+hUNToK+QfBlP3AABgdnRdzZtiH/1TTz3lW1hYaNfysVWrVhVNmzbNYLfeIeihS2AYpg8RrSWiQURUS0QFRPQWx3E5xhwXAOjPjh07rhl7DG0dOXIkz9hjwNQ9WDym6R0vcUR0nOM4X47jVET0DjXdL63v57LW9zkBAIRA0ENXMIaI6jiO+5p/gOO4FCI6xTDM5wzDXGIYJp1hmOeJiBiG2d2yM51hmG0Mw0xjGMa6+fjzzSU885u/Pppp6lv/lojSmx/bxzBMUvNmQPNanGsu09QZf5xhmG8Yhvmq+XEJwzA/NJ/7PMMwRr3vHAAsB6buoSvoT0RJOh6fSkQhRBRMTXuvn2cYJpGaegueJ6L/NG+ZGkFEf6amPdurOI4bxDCMHRGdZhjml+ZzhRNR/+b98ImIXuE47ibDMPbN5/2BiOyI6O9ENJCIWGpqmUttPv4LIvo/juNOMQzTj5p2cQvQ348AALoqXNFDVzaCiL7jOK6B47hSIjpBTWv48UQ0tjnMI4kokeO4GiIaT037jacQ0VkicqH/FdycaxHyRE1b+6ZSU8dA3+bjwonoBMdxNzmOqyOi71scP46Ivmo+909E1JNhGL1sHwpgCKd2bZfmJZ1r9W82L+mc+NSu7SZbU9tVIOihK8gg3a14Oner4DjuLhEdJ6IJ1HRlv6vF8W9wHBfS/MeH4zj+iv7O7ydlmNHUFNxDOY4LJqJkaipyedDuGFbNx/Pn9uA4Ti+FIACG4Oav1Mavj5XxYZ+XdE4cvz5W5uavNHpN7VtvveW+b9++TvvFOTQ0VMl//OSTT/qLxeKQMWPG+HXW8z0qBD10Bb8SkR3DMH/iH2AYZhARVRLR881r7xIiGklE55oP2UVELxPRk9Q0jU7N//tnhmFsm88hZximh47ncySiSo7jtAzDKKmpIpiazz2KYRgnhmFsiGhai+/5hZqKV/jxhQh6xQAG5hsWzka+viQ/fn2s7Ni2ze7x62Nlka8vyfcNa39rWkNZu3Zt8ZQpU+4bR319va7DH1lycvLvzXZLly4t2bRp05UHHW9oCHqweM2FIFFE9BTDMHkMw2QQ0XtE9C0RpVHTOvmvRPQXjuNKmr/tF2oK/qMcx/GbWvyDiDKJ6CLDMJeIaBPpfp/Lz0RkwzBMGhF9SE3T98Rx3HUi+piapv2PNp+L7zxfRERPNL/JL5OIFtx3VgAT5xsWzgaOjCi7GP+TW+DIiDJ9hbzQPvpp06Z58/vie3h4DFi6dKlbWFiYYsuWLU6xsbGu/fv3D1AoFKoJEyb4sixrRURUWFho89RTT/kqFAqVQqFQHTlyRNcv9cSPhf/42WefZXv27Nmoj9etL3gzHnQJHMcVE9F0HV96u/lP2+PrqGkNvuVjjdR0W947bQ4/3vyHP66Wmtb2dfmW47jNzVf0cdT0CwVxHFdOTcsEAGYrL+mcOCMxQTIwcrImIzFB0m9ACKuPsN+5c2eBVCptqK6uZkJDQ1UvvvhiJd9H/8033xQtXbrUbfny5e7bt2/v0H303bt3b0xKSlITEZWUlFgvWbKknIho0aJF7uvWrXNdsWLFjQULFvR78skn2ZUrV+bV19dTVVWV2d46i6AHMKz3GIYZR01r9r8Q0T4jjwdAL/g1eX66vt+AEFZf0/cxMTHSQ4cO9SIiaq+PfurUqR1eE589e3Yl/3FSUpL9ypUrPViWtb5z5471qFGjqoiaeur37t17hYjIxsaGTKVb/nEg6AEMiOO4pcYeA0Bn0ORmi1qGOr9mr8nNFgkJen300bclFot/n1qfN2+ez969ey8PHTq0Zt26dS4nTpywuLtdsEYPAACCjZgxu7RtoPuGhbMjZsy+r772Ueijj/5BtFqtVb9+/epqa2uZXbt2/d43P3z4cPbzzz+XEDW9ae/mzZtmm5dmO3AAALB806ZNq6qvr2fkcrnqnXfecdfRRx+QmJgo/uSTTzSPc/7ly5cXh4eHBzz55JNyf3//u/zjGzduvHbixAmxXC5X9e/fX3Xx4kX7jpwvLCxM8dJLL8n++9//9pRKpUE//PBDz8cZlz6hjx4AAHRCH735QB89AABAF4U34wEAgNkxdB99SUmJ9ejRoxVtHz9+/Li6T58+Jv2OfAQ9AABYhM7so+/Tp09DdnZ2ZmedvzNh6h4AAMCCIegBAAAsGIIeAADAgiHoAQBAsKrDBdKarIpWu8rVZFWIqw4XoI/eyBD0AAAgWLd+Yu3NPTkyPuxrsirEN/fkyLr1E3eZPvrffvvNPiQkROnn5xcol8tV33zzjVNnPeejwIY5AACg06NumMOHe4+BvcvuXLwhcZ4uz7cPcDF6H3176uvrycZGfzefpaWl2TEMQwMGDKgtKCiwHTRoUEBWVlaGq6trp99+hw1zAACg09kHuLA9BvYuqz5d7NZjYO8yfYW8ufTRBwUF1Q4YMKCWiMjb27vO2dm5XqPRGP02dgQ9AADoRU1WhfjOxRsSh+HumjsXb0jartk/rp07dxZkZGRkpaSkZG7atElaUlJizffRZ2ZmZg0fPpxdvny5e0fPx/fRz5s3r3LWrFmVly5dylKr1ZkKhaJm3bp1rkREfB+9Wq3OzMjIyBw4cODdh523pWPHjonq6uoYlUpV+6ivV9+M/psGAACYP37anp+ut/Prxbb8XMi5za2P/urVq7Yvv/yy7J///OcVa2vrjn5bp8EVPQAACHbvGitqGer2AS6s83R5/r1rrEjIeVv20avV6syAgIAafffRf/XVV9dycnIyly1bVlxbWysoF2/evGkVGRnpt3LlyusRERF3hJxLXxD0AAAgmOME79K2V+72AS6s4wTvLtNHf/fuXeaZZ57xmzFjRsUrr7xS+bDjDQVBDwAAJsuc+ui3bNnidP78eYdvv/3WValUqpRKpeq3337rUI99Z8LtdQAAoBP66M0Hbq8DAADoovCuewAAMDvoo+84BD0AAFgE9NHrhql7AAAAC4agBwAAsGAIegAAAAuGoAcAAMESEhKkarW61d72arVanJCQgD56I0PQAwCAYJ6entq4uDgZH/ZqtVocFxcn8/T07DJ99Dk5Od0CAwMDlEqlys/PL/Czzz6TdNZzPgpsmAMAADo96oY5fLgHBweXpaamSqKiovIVCkWX6aO/e/cuw3Ec2dvbc1VVVVYqlSrw9OnT2d7e3nV6e5J2YMMcAADodAqFgg0ODi47e/asW3BwcJm+Qt5c+ui7d+/O2dvbc0RENTU1TGNjY3vfYlAIegAA0Au1Wi1OTU2VDB48WJOamippu2b/uMypj/7y5cu2crlc5ePjE7Ro0aISQ1zNPwyCHgAABOOn7aOiovIjIyOLo6Ki8luu2QsRExMjVSgUqrCwsID2+ujPnTvn8LDz8Nr20YeFhSnkcrnqhx9+cMnIyOhO1NRH//bbb5cRPVofvZ+fX11OTk5mVlbWpW+//da1sLDQ6BvTIegBAECwoqIiUcs1eYVCwUZFReUXFRV1qT56nre3d51Coag5evRop70JsKMQ9AAAIFhERERp2zV5hULBRkREdJk++ry8PNvq6mqGiKisrMz6woULDoGBgR2a8u9MRp9SAAAAaM+0adOqNm/eLJHL5SpfX9+7Ovro+4jF4oYff/wx/3HOz/fRe3h43AsICNBWV1dbEzX10c+ZM8dLLpe7WllZ0VdffXV13Lhxdx50rrS0NPtly5Z5MgxDHMfRwoULS8LDw2seZ1z6hNvrAABAJ/TRmw/cXgcAANBFYeoeAADMDvroOw5BDwAAFgF99Lph6h4AAMCCIegBAAAsGIIeAADAgiHoAQBAsLy8WGlZeUKrXeDKyhPEeXmxRu+jN1RNLe/mzZtWvXv3Dpo9e3a/znrOR4GgBwAAwXo6hmgzM5fK+LAvK08QZ2YulfV0DDF6H/3atWuLp0yZct/OefX19Xo5f3JycnbLz5csWeIxePBgk6nnRdADAIBgEtcIVqVanZ+ZuVSWk/Ohe2bmUplKtTpf4hohOPDMpaaWiOjkyZOisrIy26eeeuq20NetLwh6AADQC4lrBOvWZ2pZYdE2N7c+U8v0EfJE5lNT29DQQEuWLOm7du3aQiGvV99wHz0AAOhFWXmCWFPyo6Sv5xyNpuRHiZPzMFYfYR8TEyM9dOhQLyKi9mpqp06d6tfR87WtqV25cqUHy7LWd+7csR41alQVUVNN7d69e68QdbymNiYmRjJ+/Phbfn5+Ru+gbwlBDwAAgvFr8vx0vZPzMFYf0/cta2rFYnFjeHi4Qt81tXv37r08dOjQmnXr1rmcOHHisd+0d+bMGYfz5887bN26tbdWq7Wqq6uzcnBwaNiwYcP1xz2nPmDqHgAABLtdlSJqGer8mv3tqhRBffTmVFP7008/XdFoNOnXr19Pf//994umTp1aYeyQJ8IVPQAA6IGv75L7euclrhGCp+7NqabWVKGmFgAAdEJNrflATS0AAEAXhal7AAAwO6ip7TgEPQAAWATU1OqGqXsAAAALhqAHAACwYAh6AAAAC4agBwAAsGAIegAAEOyTfI30l/KqVtvH/lJeJf4kX9OpffRbtmxxkslkgYMHD5Z35vOYMwQ9AAAIFtZTpH0j65qMD/tfyqvEb2Rdk4X1FHVqH/3WrVtdv/jii2tnz57N6cznMWcIegAAEGy8qyP7ZUC//Deyrsn+nlvk/kbWNdmXAf3yx7s6CtoC929/+5v0o48+6k1ENHfu3L5DhgyRExHt379fbGVlFZaUlOTwxhtveM2fP9+zvr6e5s2b5ymXy1VyuVy1atWq3u2d18PDY4BGo7EhIkpMTBSFh4ffd4+8pcB99AAAoBfjXR3Z6X2cyr4pKnf7k6erRmjIExGNGTOmevXq1VIiupGSkiK6d++eVW1tLZOYmOgQExNz9fvvv3dZvXp14ciRI7UxMTGSq1ev2mVkZGTa2tpSaWmptR5eltnDFT0AAOjFL+VV4j0llZI/ebpq9pRUStqu2T+OESNGaNPT03tUVlZa2dnZcU888UT1yZMnRf/973/FY8eOrW557K+//tpzwYIFZba2tkREJJVKTXrHOkPBFT0AAAjGr8nz0/VPOolZfUzf29nZcZ6enrXr1693DQ8Prw4ODq45evSo+OrVq3ahoaF3Wx7LcRwxDNOhpjZra2uusbGpll5Xv70lsegXBwAAhpF0WytqGer8mn3Sba2gPnoiomHDhlWvX79eOnr0aHbcuHHsv/71L4lKpdJaWbWOsHHjxt3++uuvJXV1dURED5y69/T0vHf69GkREdGePXuchI7RlCHoAQBAsL/K3ErbXrmPd3Vk/ypzu6+n/lGNGjWKLSsrsx07duydvn371tvZ2XHDhw+vbnvc4sWLyzw9Pe8plcpAhUKh+uc//+nc3jlXrlxZ/Je//KVfWFiYwtra2qL72tFHDwAAOplyHz20hj56AACALgpvxgMAAIv11FNP+RYWFtq1fGzVqlVF06ZNu22sMRkagh4AACzWkSNH8ow9BmPD1D0AAIAFQ9ADAABYMAQ9AACABUPQAwAAWDAEPQAACLb6sFp6NKu01d72R7NKxasPq9FHb2QIegAAECykXy9t9J4UGR/2R7NKxdF7UmQh/Xqhj97IEPQAACDYuAApu2Z6SH70nhTZ+wcy3KP3pMjWTA/JHxcgNck++t27dzv6+PgEhoWFKebMmdN3zJgxfkLGacoQ9AAAoBfjAqTstIGeZVtPF7hNG+hZJjTkiZr66E+fPu1ARJSSkiK6c+eOdcs++v79+2u3b9+ev2nTpqLY2Njf++hzcnIyX3311Qpd59Rqtcybb77pFR8fn5uUlKSuqKiw6D1lEPQAAKAXR7NKxT9cLJK8BC1lagAAIABJREFUPNxb88PFIknbNfvH0Rl99CkpKd379u1bq1Qq7xERzZgx46bQcZoyi/4tBgAADINfk+en64f7ubL6mL7vjD76rlbmhit6AAAQLOXaLVHLUOfX7FOu3TK5Pvrg4OC7hYWFdmq1uhsR0e7du9uts7UECHoAABBs6QRFadsr93EBUnbpBIXJ9dE7ODhwa9asuTpx4kT/sLAwRe/evevEYrHOaX5LgD56AADQyZL76KuqqqwcHR0bGxsbafbs2f38/f3vvvvuuzeMPa7HhT56AACAFtauXeuqVCpV/v7+gbdv37aOjo62yF9oiPBmPAAAsGDt9dG/++67N8z5Cv5RIOgBAMBioY8eU/cAAAAWDUEPAABgwRD0AAAAFgxBDwAAYMEQ9AAAIFzCh1JSx7fe214dL6aED9FHb2QIegAAEM7zCS3FLZD9HvbqeDHFLZCR5xMm30dfX1+vzyGZHAQ9AAAIp4hkKerrfIpbIKP45e4Ut0BGUV/nkyLSJPvoPTw8BixdutQtLCxMsWXLFichYzR1uI8eAAD0QxHJUvALZXR2oxsN/rNGaMgTNfXRr169WkpEN1JSUkT37t2zatlH//3337usXr26cOTIkdqYmJjf++htbW3bLbXhde/evTEpKUktdIymDlf0AACgH+p4MaV+J6HBf9ZQ6neS+9bsH0Nn9NHzZs+eXSl0fOYAV/QAACAcvybPT9fLRrH6mL7vjD56nlgsbnzccZkTXNEDAIBwRRdErUKdX7MvumByffRdDYIeAACEi/h76X1X7opIliL+bnJ99F0N+ugBAEAnS+6jtzToowcAAOii8GY8AACwWO310U+bNu22scZkaAh6AACwWOijx9Q9AACARUPQAwAAWDAEPQAAgAVD0AMAAFgwBD0AAAi27uI66fHC4632tj9eeFy87uI6k+yjf/75572SkpK6d9a4TAmCHgAABAuSBGlXnFoh48P+eOFx8YpTK2RBkiCT7KPfvXv31bCwsLsPP9L8IegBAECw0X1Hs6tGrMpfcWqF7NNzn7qvOLVCtmrEqvzRfUebZB99eHi4IjExUfA+/OYA99EDAIBejO47mp3kO6lsZ9ZOt1kBszRCQ56oc/vouwpc0QMAgF4cLzwuPpB3QDIrYJbmQN4BSds1+8fRmX30XQWu6AEAQDB+TZ6frh/iNoTVx/R9Z/bRdxW4ogcAAMHSytJELUOdX7NPK0tDH72RIegBAECwRQMXlba9ch/ddzS7aOAi9NEbGfroAQBAJ/TRmw/00QMAAHRReDMeAABYLPTRI+gBAMCCoY8eU/cAAAAWDUEPAABgwRD0AAAAFgxBDwAAYMEQ9AAAINiNtWul7LFjrfa2Z48dE99Yu9Yk++i7EgQ9AAAIZh8crC1etlzGhz177Ji4eNlymX1wsEn20XclCHoAABBMPGYM6x7zaX7xsuWyko8/di9etlzmHvNpvnjMGJPro09MTBQplUqVUqlUyeVyFcMwYULGaOpwHz0AAOiFeMwY1nHKs2WV23e4Oc1+SSM05Ik6p49+5MiR2uzs7Ewiovnz53uOGTPGojfPwRU9AADoBXvsmLhq336J0+yXNFX79kvartk/js7so//HP/7hlJaWJlq/fn2R0HGaMlzRAwCAYPyaPD9d32PoUFYf0/ed1Ud/4cKF7h9//LH7qVOn1DY2lh2FuKIHAADBalJTRS1DnV+zr0lNNbk++oqKCuuZM2fKtm7desXd3b1e6PhMHYIeAAAE6/3WW6Vtr9zFY8awvd96y+T66L/99ttexcXFdvPnz/fm35QndIymDH30AACgE/rozQf66AEAALooy34HAgAAdGnoo0fQAwCABUMfPabuAQAALBqCHgAAwIIh6AEAACwYgh4AAMCCIegBAECwM/vzpFfSylvtbX8lrVx8Zn9ep/bRd9Qbb7zh0adPnyCRSBRq7LEYGoIeAAAEk/o4ahO2Zcr4sL+SVi5O2JYpk/o4dmoffUdNmTLl1tmzZ7OMPQ5jwO11AAAgmE+QKxsxR5WfsC1TphjSp0x9pkQSMUeV7xPkKriq9u2333bbu3evs5ub2z0XF5f60NBQ7c8//9yrf//+2uTk5B7V1dXWmzdvvjJmzBhtVVWV1dy5c/ulpaWJiIjeeeed4jlz5tyKiIi409Hny8jIsJs5c6ZPQ0MDM27cuKrNmzdLtVptstDXYSy4ogcAAL3wCXJlFUP6lKX9WuSmGNKnTB8hn5iYKDpw4IBTenp65qFDh/LS0tJ68F/TarVWycnJ2evWrbs6b948HyKi5cuXu/Xs2bMhJycnMycnJ/OZZ5555DEsXLiw72uvvXbj0qVLWe7u7nVCX4OxIegBAEAvrqSVi9VnSiRBYz016jMlkrZr9o/j+PHjDpGRkbccHBw4JyenxqeeeuoW/7WZM2feJCKKjIysrq6utiovL7dOTEzsuXjx4hv8MRKJ5IGd9LokJyc7vPLKKzeJiF599dUKoa/B2BD0AAAgGL8mHzFHlf/kdHkxP40vNOwfVLzGMMx9nzd30gt5SouDoAcAAMFKr1SJWq7J82v2pVeqBPXRjx49uvrw4cOOWq2Wqaqqsjp69Ggv/mvfffedExHR4cOHHcRicYOLi0vD6NGjb69Zs6Y3f0xZWZnOTvoHCQkJqd62bZsTEdGWLVt0Vt2aEwQ9AAAINuRZ39K2a/I+Qa7skGd9BfXRjxo1Sjtx4sQqlUoV+PTTT/sGBQXdcXR0bCAicnJyaggNDVUuXLjQa9OmTQVERJ988onm1q1b1v7+/oEKhUL1n//8R0xEtGDBAk+pVBp09+5dK6lUGhQdHe3e3nN++eWXhV9++aV0wIABARqNxtbBweGRp/9NCfroAQBAJ1Ppo6+qqrJydHRsZFnWaujQoYqvv/76anR0dN/Vq1cXjhw5Uu+377Esa9WjR49GKysr2rx5s9Pu3budExISTLoc50F99Li9DgAATNqLL77olZuba19bW8vMmDGjYsSIEZ16b/7p06dFb775Zj+O46hnz54N27ZtK+jM5+tsCHoAADBpBw4cuNL2sXPnzqmFnnfZsmV99u/f32oN/tlnn70ZExNTolarM4We31Rg6h4AAHQylal7eLgHTd3jzXgAAAAWDEEPAABgwRD0AAAAFgxBDwAAYMEQ9AAAINipXduleUnnWm13m5d0Tnxq13b00RsZgh4AAARz81dq49fHyviwz0s6J45fHytz81eadR99XZ3Zl9fhPnoAABDONyycjXx9SX78+lhZ4MiIsozEBEnk60vyfcPCza6Pftq0ad5OTk716enpoqCgIO0333xTJPQ1GBOCHgAA9MI3LJwNHBlRdjH+J7eBkZM1+gj5ln30dXV1TEhIiCo0NFRL9L8++vj4eId58+b55ObmZrTsoyd6vFIbIqK8vLzup0+fzrGxMf+YxNQ9AADoRV7SOXFGYoJkYORkTUZigqTtmv3jMEYfPRHR1KlTKy0h5IkQ9AAAoAf8mnzk60vyx8yZV8xP4wsNe2P10Ts4ODQKPomJQNADAIBgmtxsUcs1eX7NXpObbXZ99JYGQQ8AAIKNmDG7tO2avG9YODtixmyz66O3NCi1AQAAnUyl1MbQffTmCH30AABgtgzdR29pEPQAAGDSjNFHL/TcpgRT9wAAoJOpTN3Dw6GPHgAAoItC0AMAAFgwBD0AAIAFQ9ADAIBgVYcLpDVZFa12wavJqhBXHS4wiZrargxBDwAAgnXrJ9be3JMj48O+JqtCfHNPjqxbP7FJ3Ar3KH30n332meSrr75yMcS4DAHvugcAAJ0e9V33fLj3GNi77M7FGxLn6fJ8+wAXwQ12+pCQkNDDz8/vXkBAQH+tVpts7PHoGzbMAQCATmcf4ML2GNi7rPp0sZvDcHeNvkLe0H300dHR7g4ODg0ffPCBoO17TQWCHgAA9KImq0J85+INicNwd82dizckdn69WKFhb6w+ekuCoAcAAMH4aXt+ut7Orxfb8vPHPW/LPnoi4jrSR79r1658/pjH7aO3JHgzHgAACHbvGitqGer2AS6s83R5/r1rrKCaWmP10VsSBD0AAAjmOMG7tO2Vu32AC+s4wVvQOjf66IVD0AMAgMlCH71wuL0OAAB0MpVSG/TRPxxurwMAALOFPnphEPQAAGDS0EcvDKbuAQBAJ1OZuoeHQx89AABAF4WgBwAAsGAIegAAAAuGoAcAAMESEhKkarW6VR+9Wq0WJyQkoI/eyBD0AAAgmKenpzYuLk7Gh71arRbHxcXJPD09TeJWuEfpo7c0CHoAABBMoVCwUVFR+XFxcbL4+Hj3uLg4WVRUVL5CoTCJPvopU6bcOnv2bJaxx2EMuI8eAAD0QqFQsMHBwWVnz551Gzx4sEZfIW/oPnqlUqniPy4oKOj+ww8/5DzzzDPV+ngtxoCgBwAAvVCr1eLU1FTJ4MGDNampqRKZTMYKDXtj9NFnZ2dnEhF9++23jrGxsX3GjRvX4V8STBGCHgAABOPX5PnpeplMxupj+t5YffTp6el2K1as8Dx27FiOnZ2dWe8shzV6AAAQrKioSNQy1Pk1+6KiIrPro799+7bV9OnTfTdu3HjV29u7TtDJTACCHgAABIuIiChte+WuUCjYiIgIs+ujnzFjhvesWbPKJ06caLbr8i0h6AEAwGQZuo8+Jyen288//+z073//21WpVKqUSqUqMTFR0KyEsaHUBgAAdDKVUhv00T8c+ugBAMBsoY9eGAQ9AACYNPTRC4OpewAA0MlUpu7h4dBHDwAA0EUh6AEAACwYgh4AAMCCIegBAECwvLxYaVl5Qqs++rLyBHFeXqxJ9NGjphYAAECAno4h2szMpTI+7MvKE8SZmUtlPR1DTOJWuK5cU4ugBwAAwSSuEaxKtTo/M3OpLCfnQ/fMzKUylWp1vsQ1QnBV7dtvv+3m4+MTOGzYMP9Jkyb5rFy5UhoeHq545ZVX+oaGhir9/f0Djx07JiJq2lznueee85bL5Sq5XK7atm1bLyKiiIiIO15eXg/dt76ystLKw8NjQG1tLUNEdPPmzVafmyPcRw8AAHohcY1g3fpMLSss2ubW13OORh8hb+iaWicnp8ahQ4eye/bscXzppZdubdmyxfnpp5+uNOcGO1zRAwCAXpSVJ4g1JT9K+nrO0WhKfpS0XbN/HC1rap2cnBo7UlO7ePHiG/wxj1NTO2/evLJt27a5EBH9+9//dp03b55Z7yWAoAcAAMH4NXmVanW+XP73Yn4aX2jYG6Omdvz48XeKiorsDh065NDQ0MAMGjTorqATGhmCHgAABLtdlSJquSbPr9nfrkoR1PxmjJpaIqIZM2ZUvPzyy7IXX3zRrK/miRD0AACgB76+S0rbrslLXCNYX98lgvroDV1Ty5s7d27F7du3bebOnXtTyPhNAfa6BwAAnUxlr3tj1NRu3brVaf/+/b327dt3X6GOKUJNLQAAmC1D19T+8Y9/7Hvs2DHHgwcP5nbm8xgKgh4AAEyaoWtq//WvfxUSUaHQ85sKTN0DAIBOpjJ1Dw+HmloAAIAuCkEPAABgwRD0AAAAFgxBDwAAYMEQ9AAAINgn+RrpL+VVrba7/aW8SvxJvkZwH/2HH37Y29/fP9DPzy/wgw8+6E1EVFpaaj1s2DB/Ly+v/sOGDfN/nB3wQkNDlULHZg4Q9AAAIFhYT5H2jaxrMj7sfymvEr+RdU0W1lMk6J738+fPd9++fbvk4sWLWVlZWRk///xzr/T0dLt3333XbfTo0ezVq1cvjR49ml25cmWfjp6zvr6eiIiSk5OzhYzNXCDoAQBAsPGujuyXAf3y38i6Jvt7bpH7G1nXZF8G9Msf7+ooqKo2PT3dfuDAgdVisbjR1taWhg8fzu7evbvXzz//3Gv+/PkVRETz58+viI+PdyIiio6Odp8yZYrPkCFD5F5eXv1jY2NdiYgOHjwoHjx4sHzSpEk+CoUikIhIJBKF8l8bNGiQ4umnn5Z5e3v3f+211zw2btzoPGDAgAC5XK7KyMiwIyIqLi62mTBhgm///v0D+vfvH/DLL7/0aG/cxcXFNsOGDfNXqVQBM2fO9HJ3dx+g0WiMsncNgh4AAPRivKsjO72PU9k3ReVu0/s4lQkNeSKikJCQmrNnz4pLSkqsWZa1OnLkiGNhYWG3iooKGy8vrzoiIi8vr7qbN2/+HqJZWVn2R48ezT1z5kz2559/7l5QUGBLRJSWltbj888/v56Xl5fR9nmys7PtN27cWJiVlZWxd+9el5ycnO7p6elZL730UnlsbGxvIqL58+f3jY6OLr106VJWXFxc3oIFC7zbG/fy5cvdR40axWZmZmZNnTq1UqPRdBP6s3hc2BkPAAD04pfyKvGekkrJnzxdNXtKKiVPOolZoWE/cODAu2+++WbJ2LFj5SKRqFGlUmltbB4cXXx/vYODQ/3QoUNvnzx5soeTk1NDUFDQHaVSeU/X9wwYMOAO/4tDv379aiMjI6uIiIKDg2tOnDghJiI6ffp0z9zcXHv+e6qrq60rKyutnJycGtue79y5cw779u27TET03HPP3e7Zs2fDY/8QBELQAwCAYPyaPD9d/6STmNXX9P3ixYvLFy9eXE5EtHDhQg9PT897Li4u9VevXrX18vKqu3r1qq2zs3M9f7yunnoiIpFIdF8g8+zs7H7fJtbKyoq6d+/O8R83NDQwREQcx9GFCxeyHBwcHrqlrCntOoupewAAECzptlbUMtT5Nfuk21pBffRERNevX7chIsrNze126NChXnPnzr05YcKEW5s2bXIhItq0aZPLxIkTb/HHx8fH99JqtUxJSYn1mTNnxCNGjLgjdAxERCNGjLgdExPze9f9b7/9Zt/eseHh4dU7duxwJiL68ccfe96+ffuR7wrQF1zRAwCAYH+Vud3XOz/e1VHw1D0R0eTJk31v3bplY2Njw61du/aaRCJpeP/99zVRUVG+Xl5eru7u7vf27duXxx8fGhp6JyIiwr+4uLjb0qVLNd7e3nWXLl3qLnQcmzdvLnz11Vf7yeVyVUNDAzN48GB22LBh13Qd++mnnxY/99xzMpVK5TR06NBqiURS16tXL6NM36PUBgAAdDLHUpvo6Gh3BweHhg8++OC+XzwMqaamhrGxseFsbW3p6NGjPRYuXOiVnZ2d2VnPhz56AAAAA7p8+XK36dOn+zY2NpKtrS23adOmAmONBUEPAAAWY82aNcWGfL4vvvjCZePGja12/xs0aFD1jh07rmVlZXXaFfyjwNQ9AADoZI5T910V+ugBAAC6KAQ9AACABUPQAwAAWDAEPQAAgAVD0AMAgGCrD6ulR7NKW/XRH80qFa8+rEYfvZEh6AEAQLCQfr200XtSZHzYH80qFUfvSZGF9OvV5fvo6+rqDPE07cJ99AAAINi4ACm7ZnpIfvSeFNm0gZ5lP1wskqyZHpI/LkCqtz56ImrVR3/ixAk1UVMf/ahRoxREdD06Oto9Pz/frqSkxFaj0XRbtGhRyZIlS8oPHjwo/vDDD9169+5dl5mZKcrLy8sQiUShWq02+eDBg+L333/fXSKR1GVmZoqefvrpygEDBtRs2LBBWltby8TFxeUFBgbWFhcX27z88ste169f70ZEtGbNmmvjx4/XuY9+dHS0u0ajsb127Vo3Z2fn+gMHDlwR8nMQAkEPAAB6MS5Ayk4b6Fm29XSB28vDvTVCQ56oqY/+gw8+8CgpKbHu0aMHd+TIEcfg4OA7D+ujT0pKymJZ1jo0NFQ1bdq0KqKmPvrk5OQMXVW12dnZ9nv37s3v3bt3vZeX1wA7O7vy9PT0rA8//LB3bGxs7y1bthTyffQTJkyozs3N7TZhwgT//Pz8+7rteWlpaaKzZ89md6TtrjMh6AEAQC+OZpWKf7hYJHl5uLfmh4tFkuF+rqzQsDfXPnoiookTJ94ydsgTIegBAEAP+DV5frp+uJ8r2/JzIec2xz56IqIePXq0+3yGhDfjAQCAYCnXbolahjq/Zp9y7VaX7KM3JbiiBwAAwZZOUNxXCzsuQCp46p7IPPvoTQlKbQAAQCdzLLUxlT56Q0OpDQAAQBeFqXsAALAYptRHb8hxPAim7gEAQCdznLrvqjB1DwAA0EUh6AEAACwYgh4AAMCCIegBAAAsGIIeAACES/hQSur4Vn30pI4XU8KHgvvoDcVS++kR9AAAIJznE1qKWyD7PezV8WKKWyAjzycE9dEbkqH66Q0NQQ8AAMIpIlmK+jqf4hbIKH65O8UtkFHU1/mkiBS0Ba5are7m4+MT+Pzzz3v5+/sHTp482Wffvn3igQMHKr28vPofO3ZMVFpaaj1u3DhfuVyuCg4OVp49e9aeiOjQoUMOSqVSpVQqVQEBAarKykqrqqoqq6FDh8pVKlWAXC5X/fvf/+7FP5dIJArlP/7b3/4mlcvlKoVCoXrttdc8dI2toKDAlj+/UqlUWVtbh+Xk5HQT8no7AzbMAQAA/VBEshT8Qhmd3ehGg/+sERryvMLCwu67d+/ODwsLuxoUFBSwc+dOlwsXLmR/++23vVatWuXm4eFxLzg4WHv06NG8n376SfzHP/7RJzs7OzM2NrbPunXrro4fP/5OVVWVFd9ed+jQocvOzs6NGo3GZvDgwcqZM2fesrL633Xvnj17eh46dMgpKSkpWywWN5aWllrrGpe3t3dddnZ2JhHRJ598Ijl58qRYLpfrrME1JlzRAwCAfqjjxZT6nYQG/1lDqd9J7luzf0weHh614eHhNdbW1iSXy2vGjh1728rKigYOHKgtKiqyO3funHju3LkVRESTJ09mb926ZVNRUWE9ZMiQ6qVLl/b96KOPepeXl1vb2tpSY2Mj89Zbb3nK5XLVmDFj5Ddu3OhWVFTU6qL3yJEjPV988cVysVjcSEQklUobHjS+X375pcf27dsl3333XYE+Xq++IegBAEA4fk0+6ut8ivy0+PdpfD2Efbdu3XR2xVtbW1NDQ4POHV4ZhuE+/vjjkn/84x9Xa2pqrIYNGxaQnJzcfdOmTc4VFRU26enpWdnZ2ZkuLi51NTU1rbKQ47j7Ou3bc/XqVdv58+d77969O8/R0dEk+ufbQtADAIBwRRdErdbk+TX7oguC++gfZsiQIezWrVtdiIgOHjwodnJyqnd2dm7MyMiwCw8Pr1m1alXJgAED7ly6dKl7VVWVtaura52dnR134MABcXFx8X1r6hMnTry9Y8cOV5ZlrYiI2pu6r62tZaZOnSr78MMPrwcFBdV27qt8fFijBwAA4SL+fn8trCKS1dc6/YPExMQUz5w501sul6vs7e0bt23bdoWI6LPPPuv922+/9bSysuLkcnnNc889V3Xr1i3ryMhIv/79+wcEBgZqfXx87rY933PPPXf74sWLopCQkABbW1tu3LhxVV999dX1tscdPXq0x6VLl3p89NFH7h999JE7EdHPP/+c6+3tXdfZr/lRoNQGAAB0QqmN+UCpDQAAQBeFqXsAAICHeOmll/qdP3/eoeVjf/7zn0vffPPNCmONqaMQ9AAAAA+xY8eOa8Yew+PC1D0AAIAFQ9ADAABYMAQ9AACABUPQAwAAWDAEPQAACLbu4jrp8cLjrba7PV54XLzu4jr00RsZgh4AAAQLkgRpV5xaIePD/njhcfGKUytkQZKgLtNHX1dnUhvi/Q5BDwAAgo3uO5pdNWJV/opTK2SfnvvUfcWpFbJVI1blj+472mL76ImIwsPDFQsXLvQYNGiQ4qOPPjLJ2QvcRw8AAHoxuu9odpLvpLKdWTvdZgXM0ggNeZ6p9tHzbt26ZX3+/Hm1Pl5rZ8AVPQAA6MXxwuPiA3kHJLMCZmkO5B2QtF2zf1ym3kf/wgsv3NTH6+wsCHoAABCMX5NfNWJV/vLw5cX8NL4+wt6U++iJiPhfCEwVgh4AAARLK0sTtVyT59fs08rSLLaP3lxgjR4AAARbNHDRfX30o/uOZvW1Tv8gxuqjNxfoowcAAJ3QR28+0EcPAADQRWHqHgAA4CHQRw8AAGDB0EcPAAAAJglBDwAAYMEQ9AAAABYMQQ8AAGDBEPQAACDYjbVrpeyxY622u2WPHRPfWLu2UxrdwsPDFYmJifftujdq1Ci/8vLy+3ayi46Odl+5cqXgsRQUFNhOnDhRJvQ8hoSgBwAAweyDg7XFy5bL+LBnjx0TFy9bLrMPDjZoH/2JEycuu7q6PrCERghvb++6n3/+Ob+zzt8ZEPQAACCYeMwY1j3m0/ziZctlJR9/7F68bLnMPebTfPGYMYL76P39/QP5z1euXCmNjo525z9vaGigqVOnei9atMidiMjDw2OARqOxISJatmxZH29v7/7Dhg2T5+bm2vHf89FHH/X29fUNlMvlqj/84Q8yIt3d9R0ZjznAffQAAKAX4jFjWMcpz5ZVbt/h5jT7JY3QkH+Yuro6ZsqUKT4qlaomJiampOXXTp48KYqLi3NOT0/PrKuro5CQEFVoaKiWiGjdunV9rl69mm5vb8/x0/ztdddbAlzRAwCAXrDHjomr9u2XOM1+SVO1b7+k7Zq9vr322mteukKeiOjYsWMOTz/99C2xWNzo7OzcOH78+Fv81xQKRU1UVJTPhg0bnG1tbTkiIl3d9ZYCQQ8AAILxa/LuMZ/m93nnnWJ+Gl9o2NvY2HCNjf+7uL579+7vufXEE09Unzx5sqdWq9VZHt9ep/yxY8dyX3/99bKkpKQewcHBqrq6OtLVXS9k3KYEQQ8AAILVpKaKWq7J82v2NampgvroPT0962/evGlTUlJiXVNTwxw+fNiR/9r8+fPLx48fX/WHP/zBt66urtX3jR07tvrQoUO9qqurmcrKSqsjR470Impa08/Ly+s2adIkdsOGDUUsy1pXVVVZ6+quFzJuU4I1egAAEKz3W2/d10cvHjOGFbpOb2dnxy1ZskQTHh4e4OnpWevn59eqP/69994rXbx4sfX6r6WgAAAJr0lEQVTUqVN99u3bd4V/fMSIEdqoqKib/fv3D/Tw8KgNDw+vJiKqr69nZs6c6cOyrDXHccz8+fNLXV1dG5YsWeLetru+vTExDGNW/e7oowcAAJ3QR3+/kydPiqKjo/ueP39ebeyxtIQ+egAAAIESExNFL730kmzhwoX3zV6YMkzdAwAAtHHu3Dn72bNn+7R8rFu3bo0FBQWXjDWmx4WgBwAAaCM8PLwmOzs709jj0AdM3QMAAFgwBD0AAIAFQ9ADAABYMAQ9AACABUPQAwCAYGf250mvpJW32u72Slq5+Mz+PEEd8KGhoUphI2vfzp07Hd95550+RETx8fEOKpUqwMbGJmzr1q1OnfWcxoCgBwAAwaQ+jtqEbZkyPuyvpJWLE7ZlyqQ+joL66JOTk7PbPlZfXy/klL+bNWtW1ccff1xCRCSTye5t3bq1YNKkSRV6ObkJQdADAIBgPkGubMQcVX7CtkzZyT057gnbMmURc1T5PkGugrbAFYlEoUREBw8eFA8ePFg+adIkH4VCEUhENG7cON/AwMAAPz+/wNWrV7vy37N3796eKpUqQKFQqIYOHSpv79zr1q1zmT17dj8iIoVCcW/w4ME1VlaWF4u4jx4AAPTCJ8iVVQzpU5b2a5Fb0FhPjdCQbystLa1HcnJyhlKpvEdEtHPnzgKpVNpQXV3NhIaGql588cXKxsZGZuHChd7Hjx/PViqV90pLS631OQZzhKAHAAC9uJJWLlafKZEEjfXUqM+USDyVzqw+wz4oKOgOH/JERDExMdJDhw71IiIqKSmxzcjI6F5aWmoTHh7O8sdJpdIGfT2/uULQAwCAYPyaPD9d76l0ZvU1fc8TiUS/F9MfPHhQfOLECfGFCxeyxWJxY3h4uKKmpsaK47h2e+i7KstbjAAAAIMrvVIlahnq/Jp96ZUqQX307bl165a1o6Njg1gsbkxOTu6emprag4hozJgxd86ePSvOzs7uRkSEqXtc0QMAgB4Medb3vkY3nyBXvU7dtzRt2rSqzZs3S+RyucrX1/ducHDwHSIid3f3+nXr1hVERUX5NTY2kouLS91vv/2W+7DznThxQjR9+nS/27dvWyckJPRatWqV++XLlzM6Y+yGhj56AADQCX305gN99AAAAF0Upu4BAMCiffHFFy4bN25stUPfoEGDqnfs2HHNWGMyJEzdAwCATpi6Nx+YugcAAOiiEPQAAAAWDEEPAABgwRD0AAAAFgxBDwAAgp3atV2al3SuVR99XtI58ald282ij/69996T+vr6BsrlctXQoUPlOTk53TrreQ0NQQ8AAIK5+Su18etjZXzY5yWdE8evj5W5+SvNoo8+LCxMm5KSkpWTk5M5ZcqUysWLF3vq5UlMAIIeAAAE8w0LZyNfX5Ifvz5WdmzbZvf49bGyyNeX5PuGhZtFH/2kSZNYsVjcSEQ0YsSIao1GYzFX9NgwBwAA9MI3LJwNHBlRdjH+J7eBkZM1QkO+LUP10W/atEkybty4Kn2O3ZgQ9AAAoBd5SefEGYkJkoGRkzUZiQmSfgNCWH2GvSH66Dds2OCcmpoq2rRpk1pf4zY2BD0AAAjGr8nz0/X9BoSw+pq+53V2H/2+ffvEq1evdjt58qTa3t7eYraNxRo9AAAIpsnNFrUMdX7NXpObbRZ99KdPn7Z/4403vPbv33/Zw8NDP+/2MxG4ogcAAMFGzJh9Xx+9b1i4XqfuW9J3H/3bb7/dV6vVWv+///f/fJvPc+/XX3+93BljNzSU2gAAgE4otTEfKLUBAADoojB1DwAAFg199Ji6BwAAHTB1bz4wdQ8AANBFIegBAAAsGIIeAADAgiHoAQBAsKrDBdKarIpWNbU1WRXiqsMFgmpqQTgEPQAACNatn1h7c0+OjA/7mqwK8c09ObJu/cSCamoN1Uf/2WefSeRyuUqpVKrCwsIUSUlJ3TvreQ0N77oHAACdHvVd93y49xjYu+zOxRsS5+nyfPsAF73vjFdfX082Nvq9O/zmzZtWzs7OjURNvwB8/fXXvU+ePPnQHfVMBd51DwAAnc4+wIXtMbB3WfXpYrceA3uX6SPkDdVHz4c8EVF1dbX14xbjmCJsmAMAAHpRk1UhvnPxhsRhuLvmzsUbEju/Xqw+r+g7u4/+k08+kWzYsEFaV1dndeTIEYupqcUVPQAACMZP2ztPl+f3muRb7Dxdnt9yzV4fdPXRKxQKVVhYWADfR3/8+PEej9tH/9e//rWssLDw0nvvvVf07rvvuulr3MaGoAcAAMHuXWNFLdfk7QNcWOfp8vx711i91dS210evVqszAwICaoT20fP+9Kc/3Txy5EgvwQM2EQh6AAAQzHGCd2nbaXr7ABfWcYL3ffW1+qDvPvr09HQ7/uPdu3c7enl51XbGuI0Ba/QAAGB29N1Hv2bNmt4nT57saWNjwzk6OtZv27btSue/CsPA7XUAAKATSm3MB26vAwAA6KIwdQ8AABYNffSYugcAAB0wdW8+MHUPAADQRSHoAQAALBiCHgAAwIIh6AEAQLCEhASpWq1utd2tWq0WJyQkoI/eyBD0AAAgmKenpzYuLk7Gh71arRbHxcXJPD09zaKPnrd161YnhmHCEhMT9bZ1r7Hh9joAABBMoVCwUVFR+XFxcbLg4OCy1NRUSVRUVL5CoRDUXpecnJzd9jF99dHPmjWrioiq+M8rKyut1q9f3zsoKOiO4JObEFzRAwCAXigUCjY4OLjs7NmzbsHBwWVCQ57IcH30RERLlizxWLJkSYmdnZ1F3XeOK3oAANALtVotTk1NlQwePFiTmpoqkclkrD7CnteZffSnT5+2v379ercXXnih6v/+7//6PPw7zAeCHgAABOPX5PnpeplMxrb8XB/PoauP/tChQ72IiPg++tLSUptH7aNvaGigxYsX99uxY4fFFNm0hKl7AAAQrKioSNQy1Pk1+6KiIpPvo79165Z1bm5u97Fjxyo8PDwGpKam9njuuef8LOUNeQh6AAAQLCIiorTtlbtCoWAjIiJMvo/excWlobKyMvX69evp169fTw8ODr6zd+/eyyNHjhR0x4CpwNQ9AACYHX330VsylNoAAIBOKLUxHyi1AQAA6KIwdQ8AABYNffSYugcAAB1SU1PzBwwYUGllZYWgMGGNjY1Menq6U3BwsEzX1zF1DwAA7blUVlbm2NjY+Gj3q4HBNDY2MmVlZY5EdKm9YzB1DwAAOtXX179aUlLyj5KSkv6EC0NT1UhEl+rr619t7wBM3QMAAFgw/IYGAABgwRD0AAAAFgxBDwAAYMEQ9AAAABYMQQ8AAGDB/j85RDuCRZ21wwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dat in data:\n", " wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n", " depth = average_depths['5s'][average_depths['band'] == dat[0]]\n", " #print(depth)\n", " coverage = np.sum(~np.isnan(depths['ferr_{}_mean'.format(dat[0])]))/len(depths)\n", " plt.plot(coverage, depth, 'x', label=dat[0])\n", " \n", "plt.xlabel('Coverage')\n", "plt.ylabel('Depth')\n", "#plt.xscale('log')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.title('Depths (5 $\\sigma$) vs coverage on {}'.format(FIELD))" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }