This notebook presents the merge of the IRAC pristine catalogues to produce the HELP master catalogue on XMM-LSS.
from herschelhelp_internal import git_version
print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version()))
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'
import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))
import os
import time
from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.table import Column, Table
import numpy as np
from pymoc import MOC
from herschelhelp_internal.masterlist import merge_catalogues, nb_merge_dist_plot, specz_merge
from herschelhelp_internal.utils import coords_to_hpidx, ebv, gen_help_id, inMoc
TMP_DIR = os.environ.get('TMP_DIR', "./data_tmp")
OUT_DIR = os.environ.get('OUT_DIR', "./data")
SUFFIX = os.environ.get('SUFFIX', time.strftime("_%Y%m%d"))
try:
os.makedirs(OUT_DIR)
except FileExistsError:
pass
#candels = Table.read("{}/CANDELS.fits".format(TMP_DIR)) # 1.1
#cfht_wirds = Table.read("{}/CFHT-WIRDS.fits".format(TMP_DIR)) # 1.3
#cfhtls_wide = Table.read("{}/CFHTLS-WIDE.fits".format(TMP_DIR)) # 1.4a
#cfhtls_deep = Table.read("{}/CFHTLS-DEEP.fits".format(TMP_DIR)) # 1.4b
#We no longer use CFHTLenS as it is the same raw data set as CFHTLS-WIDE
# cfhtlens = Table.read("{}/CFHTLENS.fits".format(TMP_DIR)) # 1.5
#decals = Table.read("{}/DECaLS.fits".format(TMP_DIR)) # 1.6
servs = Table.read("{}/SERVS.fits".format(TMP_DIR)) # 1.8
swire = Table.read("{}/SWIRE.fits".format(TMP_DIR)) # 1.7
#hsc_wide = Table.read("{}/HSC-WIDE.fits".format(TMP_DIR)) # 1.9a
#hsc_deep = Table.read("{}/HSC-DEEP.fits".format(TMP_DIR)) # 1.9b
#hsc_udeep = Table.read("{}/HSC-UDEEP.fits".format(TMP_DIR)) # 1.9c
#ps1 = Table.read("{}/PS1.fits".format(TMP_DIR)) # 1.10
#sxds = Table.read("{}/SXDS.fits".format(TMP_DIR)) # 1.11
#sparcs = Table.read("{}/SpARCS.fits".format(TMP_DIR)) # 1.12
#dxs = Table.read("{}/UKIDSS-DXS.fits".format(TMP_DIR)) # 1.13
#uds = Table.read("{}/UKIDSS-UDS.fits".format(TMP_DIR)) # 1.14
#vipers = Table.read("{}/VIPERS.fits".format(TMP_DIR)) # 1.15
#vhs = Table.read("{}/VISTA-VHS.fits".format(TMP_DIR)) # 1.16
#video = Table.read("{}/VISTA-VIDEO.fits".format(TMP_DIR)) # 1.17
#viking = Table.read("{}/VISTA-VIKING.fits".format(TMP_DIR)) # 1.18
We first merge the optical catalogues and then add the infrared ones. We start with PanSTARRS because it coevrs the whole field.
At every step, we look at the distribution of the distances separating the sources from one catalogue to the other (within a maximum radius) to determine the best cross-matching radius.
master_catalogue = servs
master_catalogue['servs_ra'].name = 'ra'
master_catalogue['servs_dec'].name = 'dec'
nb_merge_dist_plot(
SkyCoord(master_catalogue['ra'], master_catalogue['dec']),
SkyCoord(swire['swire_ra'], swire['swire_dec'])
)
# Given the graph above, we use 1 arc-second radius
master_catalogue = merge_catalogues(master_catalogue, swire, "swire_ra", "swire_dec", radius=1.*u.arcsec)
When we merge the catalogues, astropy masks the non-existent values (e.g. when a row comes only from a catalogue and has no counterparts in the other, the columns from the latest are masked for that row). We indicate to use NaN for masked values for floats columns, False for flag columns and -1 for ID columns.
for col in master_catalogue.colnames:
if "m_" in col or "merr_" in col or "f_" in col or "ferr_" in col or "stellarity" in col:
master_catalogue[col] = master_catalogue[col].astype(float)
master_catalogue[col].fill_value = np.nan
elif "flag" in col:
master_catalogue[col].fill_value = 0
elif "id" in col:
master_catalogue[col].fill_value = -1
master_catalogue = master_catalogue.filled()
#Since this is not the final merged catalogue. We rename column names to make them unique
master_catalogue['ra'].name = 'irac_ra'
master_catalogue['dec'].name = 'irac_dec'
master_catalogue['flag_merged'].name = 'irac_flag_merged'
master_catalogue[:10].show_in_notebook()
master_catalogue.add_column(Column(data=(np.char.array(master_catalogue['servs_intid'].astype(str))
+ np.char.array(master_catalogue['swire_intid'].astype(str) )),
name="irac_intid"))
id_names = []
for col in master_catalogue.colnames:
if '_id' in col:
id_names += [col]
if '_intid' in col:
id_names += [col]
print(id_names)
Both SERVS and SWIRE provide IRAC1 and IRAC2 fluxes. SERVS is deeper but tends to under-estimate flux of bright sources (Mattia said over 2000 µJy) as illustrated by this comparison of SWIRE, SERVS, and Spitzer-EIP fluxes.
seip = Table.read("../../dmu0/dmu0_SEIP/data/SEIP_XMM-LSS.fits")
seip_coords = SkyCoord(seip['ra'], seip['dec'])
idx, d2d, _ = seip_coords.match_to_catalog_sky(SkyCoord(master_catalogue['irac_ra'], master_catalogue['irac_dec']))
mask = d2d <= 2 * u.arcsec
fig, ax = plt.subplots()
ax.scatter(seip['i1_f_ap1'][mask], master_catalogue[idx[mask]]['f_ap_servs_irac_i1'], label="SERVS", s=2.)
ax.scatter(seip['i1_f_ap1'][mask], master_catalogue[idx[mask]]['f_ap_swire_irac_i1'], label="SWIRE", s=2.)
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel("SEIP flux [μJy]")
ax.set_ylabel("SERVS/SWIRE flux [μJy]")
ax.set_title("IRAC 1")
ax.legend()
ax.axvline(2000, color="black", linestyle="--", linewidth=1.)
ax.plot(seip['i1_f_ap1'][mask], seip['i1_f_ap1'][mask], linewidth=.1, color="black", alpha=.5);
fig, ax = plt.subplots()
ax.scatter(seip['i2_f_ap1'][mask], master_catalogue[idx[mask]]['f_ap_servs_irac_i2'], label="SERVS", s=2.)
ax.scatter(seip['i2_f_ap1'][mask], master_catalogue[idx[mask]]['f_ap_swire_irac_i2'], label="SWIRE", s=2.)
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel("SEIP flux [μJy]")
ax.set_ylabel("SERVS/SWIRE flux [μJy]")
ax.set_title("IRAC 2")
ax.legend()
ax.axvline(2000, color="black", linestyle="--", linewidth=1.)
ax.plot(seip['i1_f_ap2'][mask], seip['i1_f_ap2'][mask], linewidth=.1, color="black", alpha=.5);
When both SWIRE and SERVS fluxes are provided, we use the SERVS flux below 2000 μJy and the SWIRE flux over.
We create a table indicating for each source the origin on the IRAC1 and IRAC2 fluxes that will be saved separately.
irac_origin = Table()
irac_origin.add_column(master_catalogue['irac_intid'])
# IRAC1 aperture flux and magnitudes
has_servs = ~np.isnan(master_catalogue['f_ap_servs_irac_i1'])
has_swire = ~np.isnan(master_catalogue['f_ap_swire_irac_i1'])
has_both = has_servs & has_swire
print("{} sources with SERVS flux".format(np.sum(has_servs)))
print("{} sources with SWIRE flux".format(np.sum(has_swire)))
print("{} sources with SERVS and SWIRE flux".format(np.sum(has_both)))
has_servs_above_limit = has_servs.copy()
has_servs_above_limit[has_servs] = master_catalogue['f_ap_servs_irac_i1'][has_servs] > 2000
use_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)
use_servs = (has_servs & ~(has_both & has_servs_above_limit))
print("{} sources for which we use SERVS".format(np.sum(use_servs)))
print("{} sources for which we use SWIRE".format(np.sum(use_swire)))
f_ap_irac_i = np.full(len(master_catalogue), np.nan)
f_ap_irac_i[use_servs] = master_catalogue['f_ap_servs_irac_i1'][use_servs]
f_ap_irac_i[use_swire] = master_catalogue['f_ap_swire_irac_i1'][use_swire]
ferr_ap_irac_i = np.full(len(master_catalogue), np.nan)
ferr_ap_irac_i[use_servs] = master_catalogue['ferr_ap_servs_irac_i1'][use_servs]
ferr_ap_irac_i[use_swire] = master_catalogue['ferr_ap_swire_irac_i1'][use_swire]
m_ap_irac_i = np.full(len(master_catalogue), np.nan)
m_ap_irac_i[use_servs] = master_catalogue['m_ap_servs_irac_i1'][use_servs]
m_ap_irac_i[use_swire] = master_catalogue['m_ap_swire_irac_i1'][use_swire]
merr_ap_irac_i = np.full(len(master_catalogue), np.nan)
merr_ap_irac_i[use_servs] = master_catalogue['merr_ap_servs_irac_i1'][use_servs]
merr_ap_irac_i[use_swire] = master_catalogue['merr_ap_swire_irac_i1'][use_swire]
master_catalogue.add_column(Column(data=f_ap_irac_i, name="f_ap_irac_i1"))
master_catalogue.add_column(Column(data=ferr_ap_irac_i, name="ferr_ap_irac_i1"))
master_catalogue.add_column(Column(data=m_ap_irac_i, name="m_ap_irac_i1"))
master_catalogue.add_column(Column(data=merr_ap_irac_i, name="merr_ap_irac_i1"))
master_catalogue.remove_columns(['f_ap_servs_irac_i1', 'f_ap_swire_irac_i1', 'ferr_ap_servs_irac_i1',
'ferr_ap_swire_irac_i1', 'm_ap_servs_irac_i1', 'm_ap_swire_irac_i1',
'merr_ap_servs_irac_i1', 'merr_ap_swire_irac_i1'])
origin = np.full(len(master_catalogue), ' ', dtype='<U5')
origin[use_servs] = "SERVS"
origin[use_swire] = "SWIRE"
irac_origin.add_column(Column(data=origin, name="IRAC1_app"))
# IRAC1 total flux and magnitudes
has_servs = ~np.isnan(master_catalogue['f_servs_irac_i1'])
has_swire = ~np.isnan(master_catalogue['f_swire_irac_i1'])
has_both = has_servs & has_swire
print("{} sources with SERVS flux".format(np.sum(has_servs)))
print("{} sources with SWIRE flux".format(np.sum(has_swire)))
print("{} sources with SERVS and SWIRE flux".format(np.sum(has_both)))
has_servs_above_limit = has_servs.copy()
has_servs_above_limit[has_servs] = master_catalogue['f_servs_irac_i1'][has_servs] > 2000
use_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)
use_servs = (has_servs & ~(has_both & has_servs_above_limit))
print("{} sources for which we use SERVS".format(np.sum(use_servs)))
print("{} sources for which we use SWIRE".format(np.sum(use_swire)))
f_ap_irac_i = np.full(len(master_catalogue), np.nan)
f_ap_irac_i[use_servs] = master_catalogue['f_servs_irac_i1'][use_servs]
f_ap_irac_i[use_swire] = master_catalogue['f_swire_irac_i1'][use_swire]
ferr_ap_irac_i = np.full(len(master_catalogue), np.nan)
ferr_ap_irac_i[use_servs] = master_catalogue['ferr_servs_irac_i1'][use_servs]
ferr_ap_irac_i[use_swire] = master_catalogue['ferr_swire_irac_i1'][use_swire]
flag_irac_i = np.full(len(master_catalogue), False, dtype=bool)
flag_irac_i[use_servs] = master_catalogue['flag_servs_irac_i1'][use_servs]
flag_irac_i[use_swire] = master_catalogue['flag_swire_irac_i1'][use_swire]
m_ap_irac_i = np.full(len(master_catalogue), np.nan)
m_ap_irac_i[use_servs] = master_catalogue['m_servs_irac_i1'][use_servs]
m_ap_irac_i[use_swire] = master_catalogue['m_swire_irac_i1'][use_swire]
merr_ap_irac_i = np.full(len(master_catalogue), np.nan)
merr_ap_irac_i[use_servs] = master_catalogue['merr_servs_irac_i1'][use_servs]
merr_ap_irac_i[use_swire] = master_catalogue['merr_swire_irac_i1'][use_swire]
master_catalogue.add_column(Column(data=f_ap_irac_i, name="f_irac_i1"))
master_catalogue.add_column(Column(data=ferr_ap_irac_i, name="ferr_irac_i1"))
master_catalogue.add_column(Column(data=m_ap_irac_i, name="m_irac_i1"))
master_catalogue.add_column(Column(data=merr_ap_irac_i, name="merr_irac_i1"))
master_catalogue.add_column(Column(data=flag_irac_i, name="flag_irac_i1"))
master_catalogue.remove_columns(['f_servs_irac_i1', 'f_swire_irac_i1', 'ferr_servs_irac_i1',
'ferr_swire_irac_i1', 'm_servs_irac_i1', 'flag_servs_irac_i1', 'm_swire_irac_i1',
'merr_servs_irac_i1', 'merr_swire_irac_i1', 'flag_swire_irac_i1'])
origin = np.full(len(master_catalogue), ' ', dtype='<U5')
origin[use_servs] = "SERVS"
origin[use_swire] = "SWIRE"
irac_origin.add_column(Column(data=origin, name="IRAC1_total"))
# IRAC2 aperture flux and magnitudes
has_servs = ~np.isnan(master_catalogue['f_ap_servs_irac_i2'])
has_swire = ~np.isnan(master_catalogue['f_ap_swire_irac_i2'])
has_both = has_servs & has_swire
print("{} sources with SERVS flux".format(np.sum(has_servs)))
print("{} sources with SWIRE flux".format(np.sum(has_swire)))
print("{} sources with SERVS and SWIRE flux".format(np.sum(has_both)))
has_servs_above_limit = has_servs.copy()
has_servs_above_limit[has_servs] = master_catalogue['f_ap_servs_irac_i2'][has_servs] > 2000
use_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)
use_servs = (has_servs & ~(has_both & has_servs_above_limit))
print("{} sources for which we use SERVS".format(np.sum(use_servs)))
print("{} sources for which we use SWIRE".format(np.sum(use_swire)))
f_ap_irac_i = np.full(len(master_catalogue), np.nan)
f_ap_irac_i[use_servs] = master_catalogue['f_ap_servs_irac_i2'][use_servs]
f_ap_irac_i[use_swire] = master_catalogue['f_ap_swire_irac_i2'][use_swire]
ferr_ap_irac_i = np.full(len(master_catalogue), np.nan)
ferr_ap_irac_i[use_servs] = master_catalogue['ferr_ap_servs_irac_i2'][use_servs]
ferr_ap_irac_i[use_swire] = master_catalogue['ferr_ap_swire_irac_i2'][use_swire]
m_ap_irac_i = np.full(len(master_catalogue), np.nan)
m_ap_irac_i[use_servs] = master_catalogue['m_ap_servs_irac_i2'][use_servs]
m_ap_irac_i[use_swire] = master_catalogue['m_ap_swire_irac_i2'][use_swire]
merr_ap_irac_i = np.full(len(master_catalogue), np.nan)
merr_ap_irac_i[use_servs] = master_catalogue['merr_ap_servs_irac_i2'][use_servs]
merr_ap_irac_i[use_swire] = master_catalogue['merr_ap_swire_irac_i2'][use_swire]
master_catalogue.add_column(Column(data=f_ap_irac_i, name="f_ap_irac_i2"))
master_catalogue.add_column(Column(data=ferr_ap_irac_i, name="ferr_ap_irac_i2"))
master_catalogue.add_column(Column(data=m_ap_irac_i, name="m_ap_irac_i2"))
master_catalogue.add_column(Column(data=merr_ap_irac_i, name="merr_ap_irac_i2"))
master_catalogue.remove_columns(['f_ap_servs_irac_i2', 'f_ap_swire_irac_i2', 'ferr_ap_servs_irac_i2',
'ferr_ap_swire_irac_i2', 'm_ap_servs_irac_i2', 'm_ap_swire_irac_i2',
'merr_ap_servs_irac_i2', 'merr_ap_swire_irac_i2'])
origin = np.full(len(master_catalogue), ' ', dtype='<U5')
origin[use_servs] = "SERVS"
origin[use_swire] = "SWIRE"
irac_origin.add_column(Column(data=origin, name="IRAC2_app"))
# IRAC2 total flux and magnitudes
has_servs = ~np.isnan(master_catalogue['f_servs_irac_i2'])
has_swire = ~np.isnan(master_catalogue['f_swire_irac_i2'])
has_both = has_servs & has_swire
print("{} sources with SERVS flux".format(np.sum(has_servs)))
print("{} sources with SWIRE flux".format(np.sum(has_swire)))
print("{} sources with SERVS and SWIRE flux".format(np.sum(has_both)))
has_servs_above_limit = has_servs.copy()
has_servs_above_limit[has_servs] = master_catalogue['f_servs_irac_i2'][has_servs] > 2000
use_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)
use_servs = (has_servs & ~(has_both & has_servs_above_limit))
print("{} sources for which we use SERVS".format(np.sum(use_servs)))
print("{} sources for which we use SWIRE".format(np.sum(use_swire)))
f_ap_irac_i = np.full(len(master_catalogue), np.nan)
f_ap_irac_i[use_servs] = master_catalogue['f_servs_irac_i2'][use_servs]
f_ap_irac_i[use_swire] = master_catalogue['f_swire_irac_i2'][use_swire]
ferr_ap_irac_i = np.full(len(master_catalogue), np.nan)
ferr_ap_irac_i[use_servs] = master_catalogue['ferr_servs_irac_i2'][use_servs]
ferr_ap_irac_i[use_swire] = master_catalogue['ferr_swire_irac_i2'][use_swire]
flag_irac_i = np.full(len(master_catalogue), False, dtype=bool)
flag_irac_i[use_servs] = master_catalogue['flag_servs_irac_i2'][use_servs]
flag_irac_i[use_swire] = master_catalogue['flag_swire_irac_i2'][use_swire]
m_ap_irac_i = np.full(len(master_catalogue), np.nan)
m_ap_irac_i[use_servs] = master_catalogue['m_servs_irac_i2'][use_servs]
m_ap_irac_i[use_swire] = master_catalogue['m_swire_irac_i2'][use_swire]
merr_ap_irac_i = np.full(len(master_catalogue), np.nan)
merr_ap_irac_i[use_servs] = master_catalogue['merr_servs_irac_i2'][use_servs]
merr_ap_irac_i[use_swire] = master_catalogue['merr_swire_irac_i2'][use_swire]
master_catalogue.add_column(Column(data=f_ap_irac_i, name="f_irac_i2"))
master_catalogue.add_column(Column(data=ferr_ap_irac_i, name="ferr_irac_i2"))
master_catalogue.add_column(Column(data=m_ap_irac_i, name="m_irac_i2"))
master_catalogue.add_column(Column(data=merr_ap_irac_i, name="merr_irac_i2"))
master_catalogue.add_column(Column(data=flag_irac_i, name="flag_irac_i2"))
master_catalogue.remove_columns(['f_servs_irac_i2', 'f_swire_irac_i2', 'ferr_servs_irac_i2',
'ferr_swire_irac_i2', 'm_servs_irac_i2', 'flag_servs_irac_i2', 'm_swire_irac_i2',
'merr_servs_irac_i2', 'merr_swire_irac_i2', 'flag_swire_irac_i2'])
origin = np.full(len(master_catalogue), ' ', dtype='<U5')
origin[use_servs] = "SERVS"
origin[use_swire] = "SWIRE"
irac_origin.add_column(Column(data=origin, name="IRAC2_total"))
irac_origin.write("{}/xmm-lss_irac_fluxes_origins{}.fits".format(OUT_DIR, SUFFIX), overwrite=True)
columns = ["help_id", "field", "ra", "dec", "hp_idx"]
bands = [column[5:] for column in master_catalogue.colnames if 'f_ap' in column]
for band in bands:
columns += ["f_ap_{}".format(band), "ferr_ap_{}".format(band),
"m_ap_{}".format(band), "merr_ap_{}".format(band),
"f_{}".format(band), "ferr_{}".format(band),
"m_{}".format(band), "merr_{}".format(band),
"flag_{}".format(band)]
columns += ["stellarity", "stellarity_origin", "flag_cleaned", "flag_merged",
"flag_gaia", "flag_optnir_obs", "flag_optnir_det"
]
# We check for columns in the master catalogue that we will not save to disk.
print("Missing columns: {}".format(set(master_catalogue.colnames) - set(columns)))
master_catalogue.write("{}/irac_merged_catalogue_xmm-lss.fits".format(TMP_DIR), overwrite=True)