{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# XMM-LSS master catalogue\n", "\n", "This notebook presents the merge of the pristine catalogues from CFHT Megacam. This has to be conducted separately on XMM-LSS due to the large amount of memory required on this field.\n", "\n", "This notebook also ingests all the CANDELS-UDS data apart from the photometry that needs to be merged in other 2.x notebooks.\n", "\n", "Since this is where we ingest all the CANDELS fluxes apert from UKIDSS and IRAC we take the opportunity here to merge them in with SXDS Suprime fluxes.\n", "\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "0246c5d (Thu Jan 25 17:01:47 2018 +0000) [with local modifications]\n", "This notebook was executed on: \n", "2018-02-20 16:14:27.605065\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n", "import datetime\n", "print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "import os\n", "import time\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table\n", "import numpy as np\n", "from pymoc import MOC\n", "\n", "from herschelhelp_internal.masterlist import merge_catalogues, nb_merge_dist_plot, specz_merge\n", "from herschelhelp_internal.utils import coords_to_hpidx, ebv, gen_help_id, inMoc" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "SUFFIX = os.environ.get('SUFFIX', time.strftime(\"_%Y%m%d\"))\n", "\n", "try:\n", " os.makedirs(OUT_DIR)\n", "except FileExistsError:\n", " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## I - Reading the prepared pristine catalogues" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#candels = Table.read(\"{}/CANDELS.fits\".format(TMP_DIR)) # 1.1\n", "candels = Table.read(\"{}/CANDELS-UDS.fits\".format(TMP_DIR)) # 1.2\n", "cfht_wirds = Table.read(\"{}/CFHT-WIRDS.fits\".format(TMP_DIR)) # 1.3\n", "cfhtls_wide = Table.read(\"{}/CFHTLS-WIDE.fits\".format(TMP_DIR)) # 1.4a\n", "cfhtls_deep = Table.read(\"{}/CFHTLS-DEEP.fits\".format(TMP_DIR)) # 1.4b\n", "#We no longer use CFHTLenS as it is the same raw data set as CFHTLS-WIDE\n", "# cfhtlens = Table.read(\"{}/CFHTLENS.fits\".format(TMP_DIR)) # 1.5\n", "#decals = Table.read(\"{}/DECaLS.fits\".format(TMP_DIR)) # 1.6\n", "#servs = Table.read(\"{}/SERVS.fits\".format(TMP_DIR)) # 1.8\n", "#swire = Table.read(\"{}/SWIRE.fits\".format(TMP_DIR)) # 1.7\n", "#hsc_wide = Table.read(\"{}/HSC-WIDE.fits\".format(TMP_DIR)) # 1.9a\n", "#hsc_deep = Table.read(\"{}/HSC-DEEP.fits\".format(TMP_DIR)) # 1.9b\n", "#hsc_udeep = Table.read(\"{}/HSC-UDEEP.fits\".format(TMP_DIR)) # 1.9c\n", "#ps1 = Table.read(\"{}/PS1.fits\".format(TMP_DIR)) # 1.10\n", "sxds = Table.read(\"{}/SXDS.fits\".format(TMP_DIR)) # 1.11\n", "sparcs = Table.read(\"{}/SpARCS.fits\".format(TMP_DIR)) # 1.12\n", "#dxs = Table.read(\"{}/UKIDSS-DXS.fits\".format(TMP_DIR)) # 1.13\n", "#uds = Table.read(\"{}/UKIDSS-UDS.fits\".format(TMP_DIR)) # 1.14\n", "vipers = Table.read(\"{}/VIPERS.fits\".format(TMP_DIR)) # 1.15\n", "#vhs = Table.read(\"{}/VISTA-VHS.fits\".format(TMP_DIR)) # 1.16\n", "#video = Table.read(\"{}/VISTA-VIDEO.fits\".format(TMP_DIR)) # 1.17\n", "#viking = Table.read(\"{}/VISTA-VIKING.fits\".format(TMP_DIR)) # 1.18" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## II - Merging tables\n", "\n", "We first merge the optical catalogues and then add the infrared ones. We start with PanSTARRS because it coevrs the whole field.\n", "\n", "At every step, we look at the distribution of the distances separating the sources from one catalogue to the other (within a maximum radius) to determine the best cross-matching radius." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Start with CANDELS" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "f_candels-ukidss_j removed.\n", "ferr_candels-ukidss_j removed.\n", "f_candels-ukidss_h removed.\n", "ferr_candels-ukidss_h removed.\n", "f_candels-ukidss_k removed.\n", "ferr_candels-ukidss_k removed.\n", "f_candels-irac_i1 removed.\n", "ferr_candels-irac_i1 removed.\n", "f_candels-irac_i2 removed.\n", "ferr_candels-irac_i2 removed.\n", "f_candels-irac_i3 removed.\n", "ferr_candels-irac_i3 removed.\n", "f_candels-irac_i4 removed.\n", "ferr_candels-irac_i4 removed.\n", "m_candels-ukidss_j removed.\n", "merr_candels-ukidss_j removed.\n", "flag_candels-ukidss_j removed.\n", "m_candels-ukidss_h removed.\n", "merr_candels-ukidss_h removed.\n", "flag_candels-ukidss_h removed.\n", "m_candels-ukidss_k removed.\n", "merr_candels-ukidss_k removed.\n", "flag_candels-ukidss_k removed.\n", "m_candels-irac_i1 removed.\n", "merr_candels-irac_i1 removed.\n", "flag_candels-irac_i1 removed.\n", "m_candels-irac_i2 removed.\n", "merr_candels-irac_i2 removed.\n", "flag_candels-irac_i2 removed.\n", "m_candels-irac_i3 removed.\n", "merr_candels-irac_i3 removed.\n", "flag_candels-irac_i3 removed.\n", "m_candels-irac_i4 removed.\n", "merr_candels-irac_i4 removed.\n", "flag_candels-irac_i4 removed.\n" ] } ], "source": [ "master_catalogue = candels\n", "master_catalogue['candels_ra'].name = 'ra'\n", "master_catalogue['candels_dec'].name = 'dec'\n", "del candels\n", "unused_bands = [ 'candels-ukidss', 'candels-irac']\n", "for col in master_catalogue.colnames:\n", " \n", " for band in unused_bands:\n", " if band in col:\n", " master_catalogue.remove_column(col)\n", " print(col, ' removed.')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add CFHTLS-DEEP" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "HELP Warning: There weren't any cross matches. The two surveys probably don't overlap.\n" ] } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(cfhtls_deep['cfhtls-deep_ra'], cfhtls_deep['cfhtls-deep_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, \n", " cfhtls_deep, \n", " \"cfhtls-deep_ra\", \n", " \"cfhtls-deep_dec\", \n", " radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add CFHTLS-WIDE" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Wl0XNd55vvnrUIBhQIKQ2EGQXAEZ42mLNmyJVmDRTmx\nFa/4enZu3HYUOXGc+CYrca/uTm53bu5y4k6u5yhqRXE78ZB07OW2E2qwNdGWLVKkJA4gQRCcQMzz\nPFft+6EKFESTBEge1IT/by0soeoc1HlZhoEHe+/zbnPOCQAAANfOl+oCAAAAsgXBCgAAwCMEKwAA\nAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIzmpunB5eblbu3Zt\nqi4PAACwZAcOHOhzzlUsdl7KgtXatWu1f//+VF0eAABgyczs7FLOYyoQAADAIwQrAAAAjxCsAAAA\nPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADw\nCMEKAADAIzmpLiDbfHtv66LnfPjW+iRUAgAAko0RKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsA\nAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8sGqzM\n7HEz6zGzI5c4/hEzO2Rmh83s52Z2g/dlAgAApL+ljFh9Q9Kuyxw/LelO59x1kv5c0qMe1AUAAJBx\nchY7wTm3x8zWXub4zxc8fElS3bWXBQAAkHm8XmP1CUlPePyaAAAAGWHREaulMrN3KB6s3naZcx6S\n9JAk1dfXe3VpAACAtODJiJWZXS/pMUkPOuf6L3Wec+5R59xO59zOiooKLy4NAACQNq45WJlZvaTv\nS/qYc6752ksCAADITItOBZrZdyTdJanczNok/ZmkgCQ55x6R9KeSyiR93cwkac45t3O5CgYAAEhX\nS7kr8EOLHP+kpE96VhEAAECGovM6AACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4h\nWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRg\nBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIV\nAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYA\nAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4JFFg5WZPW5mPWZ25BLHzcy+\nbGYtZnbIzG72vkwAAID0t5QRq29I2nWZ4w9Iakh8PCTpb6+9LAAAgMyzaLByzu2RNHCZUx6U9E0X\n95KkEjOr8apAAACATOHFGqtVks4teNyWeA4AAGBFSeridTN7yMz2m9n+3t7eZF4aAABg2XkRrNol\nrV7wuC7x3C9xzj3qnNvpnNtZUVHhwaUBAADShxfB6oeSfiNxd+Btkoadc50evC4AAEBGyVnsBDP7\njqS7JJWbWZukP5MUkCTn3COSdkt6l6QWSROSPr5cxQIAAKSzRYOVc+5Dixx3kn7Xs4oAAAAyFJ3X\nAQAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrAC\nAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoA\nAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAA\nAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAA\nPEKwAgAA8AjBCgAAwCMEKwAAAI8sKViZ2S4zO25mLWb2uYscLzazH5nZQTNrNLOPe18qAABAels0\nWJmZX9LXJD0gaZukD5nZtgtO+11JR51zN0i6S9Jfm1mux7UCAACktaWMWL1ZUotz7pRzbkbSdyU9\neME5TlLYzExSoaQBSXOeVgoAAJDmlhKsVkk6t+BxW+K5hb4qaaukDkmHJf2+cy7mSYUAAAAZwqvF\n6/dLek1SraQbJX3VzIouPMnMHjKz/Wa2v7e316NLAwAApIelBKt2SasXPK5LPLfQxyV938W1SDot\nacuFL+Sce9Q5t9M5t7OiouJqawYAAEhLSwlWL0tqMLN1iQXpH5T0wwvOaZV0jySZWZWkzZJOeVko\nAABAustZ7ATn3JyZfVrSU5L8kh53zjWa2cOJ449I+nNJ3zCzw5JM0p845/qWsW4AAIC0s2iwkiTn\n3G5Juy947pEFn3dIeqe3pQEAAGQWOq8DAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA\n4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACA\nRwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAe\nIVgBAAB4hGAFAADgEYJVksxFYzrcPiznXKpLAQAAy4RglSQHWgf1nX2tOtEzlupSAADAMiFYJUlz\ndzxQHWkfTnElAABguRCskmAuFtPJ3niwOto5orloLMUVAQCA5UCwSoLW/gnNzMV0c32JJmai2nt6\nINUlAQCAZUCwSoLm7lH5TNq1o0YBv2n34c5UlwQAAJYBwSoJmrvHtKasQIV5OdpcXaSnGrsVjXF3\nIAAA2YZgtcxGJmfVNTKlzVVhSdKO2iL1jU1r/xmmAwEAyDYEq2V2omdUktRQVShJ2lwVVl6OT08c\n6UplWQAAYBkQrJbZ8e4xhYM5qi4KSpLyAn7dsalCTx7pUozpQAAAsgrBahlFY04tPaPaVBmWmZ1/\n/l3XVatrZEqvnhtKYXUAAMBrBKtl1DY4oanZmDZVh9/w/D1bqxTwm548wt2BAABkE4LVMmruHpNJ\n2lhR+Ibni4IBvW1juXYf7mLvQAAAsgjBahk1d49qdSSk/Fz/Lx174LoatQ9N6kj7SAoqAwAAy2FJ\nwcrMdpnZcTNrMbPPXeKcu8zsNTNrNLMXvC0z84xNz6l9aFKbqgovevy+rVXy+0y7mQ4EACBrLBqs\nzMwv6WuSHpC0TdKHzGzbBeeUSPq6pPc457ZL+j+WodaM0pJos7CpKnzR46UFuXrrhjI9cbiT6UAA\nALLEUkas3iypxTl3yjk3I+m7kh684JwPS/q+c65VkpxzPd6WmXmau8cUyvWrtiT/kufs2lGtM/0T\nauoaTWJlAABguSwlWK2SdG7B47bEcwttklRqZs+b2QEz+42LvZCZPWRm+81sf29v79VVnAFizqm5\ne1SbqsLyLWizcKHbN5RLkg63DyerNAAAsIy8WryeI+lNkn5F0v2S/ouZbbrwJOfco865nc65nRUV\nFR5dOv10DE1qYiZ6yfVV81aV5svvM7X2TySpMgAAsJxylnBOu6TVCx7XJZ5bqE1Sv3NuXNK4me2R\ndIOkZk+qzDCn+8YlSRsqLh+sAn6fVpXk6+wAwQoAgGywlBGrlyU1mNk6M8uV9EFJP7zgnP8t6W1m\nlmNmIUm3SjrmbamZY3BiVnk5PoWDgUXPXVMWUmv/eBKqAgAAy23RESvn3JyZfVrSU5L8kh53zjWa\n2cOJ4484546Z2ZOSDkmKSXrMOXdkOQtPZ8MTMyoN5V7y+Lf3tp7/fHoupubusTc8J0kfvrV+2eoD\nAADLYylTgXLO7Za0+4LnHrng8RckfcG70jLX0OSsivMXH62SpLKCXE3ORjU5E71oI1EAAJA56Ly+\nDIYmZlUSWlqwihTER7YGxmeWsyQAAJAEBCuPTc9GNTkbVcllpgIXmg9W/ePTy1kWAABIAoKVx4Ym\nZyVJJUucCmTECgCA7EGw8tjwfLBa4lRgXo5fhXk5BCsAALIAwcpjgxPxgLTUxetSfNSqn2AFAEDG\nI1h5bHhiVj6Tiq4gWJUV5DJiBQBAFiBYeWxoclZF+YHL7hF4oUhBrkYmZzUbjS1jZQAAYLkRrDw2\nNDGz5IXr8yIFuXKSBhm1AgAgoxGsPDY0ObvkVgvzygrzJHFnIAAAmY5g5aFozGlkcvaqRqwksYAd\nAIAMR7DyUM/olGJOKl5iq4V5Bbl+5eX4GLECACDDEaw81D44KUkqyb+yqUAzU4Q7AwEAyHgEKw+1\nDyWC1RWOWEn0sgIAIBsQrDzUMTQlaenb2SxUVpCrwYkZxZzzuiwAAJAkBCsPdQxNKj/gV17Af8Vf\nGynIO7/4HQAAZCaClYfahyavahpQ4s5AAACyAcHKQx1Dk1c1DSjFpwIlelkBAJDJCFYeah+aVPEV\nNgedVxwKyG9GsAIAIIMRrDwyMjWr0am5qx6x8pmpJBRgKhAAgAxGsPJIxzW0WphXVpirgfFpr0oC\nAABJRrDyyOvB6uqmAiWdbxLqaLkAAEBGIlh5pP0aeljNixTkaWo2pomZqFdlAQCAJCJYeaR9cFIB\nv6kwmHPVr8GdgQAAZDaClUc6hiZVU5wvn9lVvwa9rAAAyGwEK490DE2qtiR4Ta8ROT9ixQJ2AAAy\nEcHKI+1Dk6otyb+m1wj4fSoK5jAVCABAhiJYeWA2GlP3yJRWXWOwkuIL2JkKBAAgMxGsPNA9MqWY\nkyfBqizRcgEAAGQegpUHOhKtFq51KlCSIoW5Gp2a0yQtFwAAyDgEKw+0D01I8ihYJRawtw5MXPNr\nAQCA5CJYeeD1EatruytQer2X1dn+8Wt+LQAAkFwEKw+0D00qUpCrUO7VNwedx4gVAACZi2DlAS96\nWM3LD/gVDPh0jmAFAEDGIVh5oH1wUrXF176+SpLMTKWhXJ0bnPTk9QAAQPIQrK6Rc04dQ5NaVepN\nsJKk0lAuU4EAAGQggtU1Gpmc0/hM1JMeVvMiBblqG5yQc86z1wQAAMuPYHWN2jxstTCvtCBXU7Mx\n9Y6xZyAAAJmEYHWNvGwOOi8SCkiSzg2wzgoAgExCsLpGHUPx8OPlVGBpKN5ygTsDAQDILEsKVma2\ny8yOm1mLmX3uMufdYmZzZvY+70pMbx1Dk8r1+8439vRCaQHBCgCATLRosDIzv6SvSXpA0jZJHzKz\nbZc47y8lPe11kemsY3hKNSVB+Xzm2WsG/D5VhvN0bpBgBQBAJlnKiNWbJbU4504552YkfVfSgxc5\n7/ckfU9Sj4f1pb3OoUlVF3nTHHSh1ZEQLRcAAMgwSwlWqySdW/C4LfHceWa2StJ7Jf2td6Vlhs7h\nKU8Xrs+rj4RYvA4AQIbxavH6FyX9iXMudrmTzOwhM9tvZvt7e3s9unTqRGNO3SNTqi5ehhGr0nx1\nDk9qNnrZtxQAAKSRpQSrdkmrFzyuSzy30E5J3zWzM5LeJ+nrZvZrF76Qc+5R59xO59zOioqKqyw5\nffSPTWsu5lS7DMGqLhJSzL1+1yEAAEh/SwlWL0tqMLN1ZpYr6YOSfrjwBOfcOufcWufcWkn/Kul3\nnHM/8LzaNNMxHO9hVe3RPoEL1UdCkuhlBQBAJslZ7ATn3JyZfVrSU5L8kh53zjWa2cOJ448sc41p\nq2s4HnpqlmMqcD5YcWcgAAAZY9FgJUnOud2Sdl/w3EUDlXPuN6+9rMww33V9OYJVdVFQAb/RywoA\ngAxC5/Vr0DUypdwcnyIeNged5/eZakvyabkAAEAGIVhdg46hSdUUB2XmXXPQheojIZ0bZI0VAACZ\ngmB1DbqGp5ZlGnBeXWlIbYxYAQCQMQhW16BzeEo1y3BH4LzVkXz1j89ofHpu2a4BAAC8Q7C6SvPN\nQZdzxKqeOwMBAMgoBKur1JdoDrqcwWp1Kb2sAADIJEtqt4Bf1jk832phOacC54MVI1YAgNT79t7W\nRc/58K31SagkfRGsrlJnYquZ5dgncF5pKKDCvBxaLgAAlt1SQhMWx1TgVZofsaotWb4RKzNTXWm+\n2lhjBQDw0MxcLNUlZC1GrK5S5/Ck8nJ8Kg0FlvU6qyMhtfYTrAAASzc6Navm7lE1dY2qpWdM+88M\nanRqVqNTcxqdntPMXEzhvBxVFwdVVRRUdXFQ1UXBZe3NuFIQrK5SZ6KH1XJ/A64uDelnJ/rknOOb\nHQDwS3pGp3S4bViH2obV2DGspq5RtS1oLp0f8Ksgz6/CvIBqS/IVDuYoP9evwfEZdQ1P6aVT/ZqL\nOUnS5qqwPnjLauUF/Kn652Q8gtVV6hyeWtb1VfPqI/manI2qf3xG5YV5y349AED6Gp6Y1aH2IR08\nN6TXzg3rSPuwukbiS1NMUnk4T9VFQW2tKVJ1UXwUqiQUuOwf5tGYU//4tJo6R/X00S793Z5T+o23\nrFFJyPvt2lYCgtVV6hqe0q3rIst+nYV3BhKsAGDlmJqN6os/OaG2wQm1DU6qbXBCfWMz54+XF+ap\nrjRfb1pTqlUl+aopCSov58pHmvw+U2U4qMpwfCrw2/ta9fXnT+pjt605/zsIS0ewugrRmFPXSHJG\nrOa/qVsHJnRTfemyXw8AkHwzczE1d4/qSPuwDrYN61DbkI53jZ6fogvn5aguEtLN9aWqKw2prjRf\nwWWYrmuoCuvhOzfom784o//x01N635vqdH1diefXyWYEq6vQNzataMypZhnvCJw33yS0jc2YASAr\nzMzFdLxrVIfbh3W4PT6dd7xrVDPR+J16RcEcXV9XoofuWK/hyVnVlYZUFMxJ2jrbqqKgPnXXRn1r\n71l99+Vzmp6L6Za1yz9Dky0IVlehI9HDqqZo+Ues8nP9Ki/Mo0koAGSgaMypuXtUB88N6VD7sA63\nvTFEBQM+1Zbk69b1Ea0qydeqknyVFuTKlwhRdSmaqCjMy9Enbl+nf/j5GT3V2KXrVhUvywhZNiJY\nXYWu+a7rJcsfrKT4ZszsFwgA6a9nZEqvtA7q23tbdW5wUu2Dk78Uom5bH1FtIkRFCnLT9o7vHL9P\nD+yo1tefP6mfn+zT3VuqUl1SRiBYXYWOJGxns9Dq0pBePTeYlGsBAJZmLhpTU9eoXmkd1IGzg3ql\ndfD83q5+M9WUBHXzmlKtLs3X6khIZWkcoi6lrjSkrTVF+llLn96yvlz5uYxaLYZgdRW6ktQcdF59\nJKR/P9ypuWhMOX6a5QNAKsRHo4b07b1n1TowqfahCc1GE4vLgzlaEwnpuh3Fqo+EVFOSr0CW/Ly+\nd2ulvvLsiH7W0qv7tlWnupy0R7C6Ch1Jag46b3UkX9GYU+fwFLe+AkAS9I1N63BbfHH5obY39ovy\nm6m2JKidayOqLw2pviykkvzL94rKZDXF+dqxqlgvnuzXWzeUqyCP6HA5vDtXoWt4KmnTgNLrdwae\nG5ggWAGAh5xzOjcwqcaOYR3tHFFjx4iOdoy83nTTpPXlBbptfUTX1ZXopvoSHW4bzprRqKW6d0ul\nGtuHtedErx7YUZPqctIaweoqdA5N6rb1ZUm73vkmoSxgB4CrNjMX04me0fPh6WjHiI51jmh0ek5S\nvFFmWUGuakvydVN9iVaV5qu2+I39opo6R1dcqJKkyqKgblhdopdO9ettG8sVDiZnKUwmIlhdoWjM\nqXt0Oml3BEpSTXFQOT5TKy0XAGBJpmajakr0impsH9aRjmEd6xhV1MXXRAX8pprifG2rLVJNcb5q\nS+KbEa/E0LRU92yp1KG2Ib3Q3Ktfvb421eWkLYLVFeodjTcHrU7iVGCO36c1ZSGd6B5L2jUBIFPM\nRmP60k9OqH1wUm1D8e1fukemlGharvyAX6tK8nX7xnLVlgRVW5yvSOHrvaKwNGWFebqpvlR7Tw/o\n7Q0VKs5n1OpiCFZXqHM4fittbRK2s1loS3WRjnQMJ/WaAJBunHPqGJ7Sa61Deu3coF47N6TD7cOa\nmn29V1RdSUhvb6iIN9wszc/qheXJdvfmSr3WOqQXmnv0nhtWpbqctESwukKdiR5WydgncKFNVWHt\nPtKpiZk5hXL5nw3AyjAyNasv/ji+EfG5gfho1PyaqByfqbYk/w3752Vir6hMUlqQqx2rinTw3LB+\n5bpa+X281xfiN/QVmg9WtUmcCpSkzdVhOSed6B7TDavZEBNA9pmei6qpc1QH24Z08NywDrYN6WTv\nmBLLolRemKuNlYWqi4S0ujRf1cVB5fhYE5VsO1YV62DbsE73jWtjZWGqy0k7BKsr1DkUbw5akqTm\noPO2VIclSce7RglWADJeNObU0jOmQ21DOtQ2rENtQzrW+foeeuWFubq+rkTvuaFWg+MzqisN0fU7\nTTRUhhXwmxo7hglWF0GwukKdI1OqLclP+lBzfSSk/IBfTV2jSb0uAFyrC9dFHTwXv0tvYiYqScrL\neX0PvVWl8dGo4gXrosoL81JZPi6Qm+PTpqqwjnaM6N031HITwAUIVleoc2hS1UXJXV8lST6faVNV\noY53jyT92gBwJSZnojrUNqTHf3ZarQMTOjc4qbEF66JqioO6oS7eJ6quJF/l4Tx+OWeYHbXFauwY\nUWv/hNaWF6S6nLRCsLpCXcNTum1D8pqDLrSpKqznjvek5NoAcCm9o9N6+cyA9p8Z1IHWQTW2D2su\n0eugvDBXDayLyjqbq8Py++LTgQSrNyJYXYHzzUGTfEfgvM3VYf2vA23qG5tmaBxASsxvAfOlZ07o\nTP+4zvSNq398RlJ8NKquNKTbN5ZrTSSk1ZEQ+8plqWDAr4bKQjV2jOhd19VwJ+YCfMdfgfnmoMnc\nJ3ChLdVFkqTmrlGVbyRYAVh+zjmd7B3T3tMD2ntqQPtOD5zfRy8/4NeaspBuWRvR2vIC1ZYwGrWS\nbK8tUlPXqNqHJlVXyj628whWV6Aj0Rw0lSNWktTUNaq3bixPSQ0AsttcNKZjnaPad2ZAL58e0Mtn\nBs6PSFWE83TruohuXRdR79iMKlkbtaJtrS6Sz9rV2DFCsFqAYHUFuhI9rFI1YlVemKtIQa6Oc2cg\nAI9MzMzptXNDOnBmUC+fHdQrZwfPLzQvDQW0tqxAd26q0LryAkUWNN9MxU08SC+hvBytLy/UkfZh\nvXNbFdOBCQSrK9AxlNoRKzPT5qqwmroJVgCuziMvnFRr/4TO9o/r7MCEOoYmFXOSSaosytP22iKt\nLS/Q2rIC9oLDorbVFumHBzvUPTpN2E4gWF2BruEpBQPJbw660ObqsP5l/znFYk4+thIAcBnRmNPx\nrlEdODugA2cHtf/soNoG438gzi80v6OhQmvKCuK98mjAiSu0vbZIPzrYocb2YYJVAsHqCnQOT6mm\nOPnNQRfaUh3WxExUbYOTqi9jThvA60amZvVq65AOJKb0Xm0d1HiiCWdFOE8715Tq+roSrYmEVMNC\nc3ggHAyoviykxo4R3bO1KtXlpAWC1RU41TeuNSkOM68vYB8hWAErmHNOrQMT53tHvXJ2UMe7RuUU\nn9arLg5qx6pirSkLqT5SoNJQgDUwWBbba4u1+3Cn+semVUYrIILVUkVjTqd6x3R7ipqDzmuoen3P\nwHdur05pLQCSZ2YupiMdwzpwZlD7E1N7fWPxu/XCwRzdXF+qutJ81UcKtLo0X3kBpvWQHNtri7T7\ncKeOdIzozk0VqS4n5ZYUrMxsl6QvSfJLesw59/kLjn9E0p8o/ofSqKRPOecOelxrSrUPTmp6Lpby\nDScL83K0OpLPAnYgyw2Oz+jA2fho1IEzg3qldfB8N/NIQa7WRBKNOMsKaHuAlCoN5WpVSb4aO4YJ\nVlpCsDIzv6SvSbpPUpukl83sh865owtOOy3pTufcoJk9IOlRSbcuR8Gp0tIbDzKpDlaStLmqiJYL\nQBZxzulM/4T2J7aF2X92QCd7xyXFF5lvX1WsW9dFtKasQGvKQgoHuVsP6WVLTVjPHuvReKJVx0q2\nlBGrN0tqcc6dkiQz+66kByWdD1bOuZ8vOP8lSXVeFpkOTnSPSUqPYLWlOr5n4PRcVHk5DPcDmWZ6\nLqoj7SM6cDYepF5s6Tu/yDwY8GlNpEDv3Fal+rKQ6kpCys1hkTnS26bKsJ451qOWnrFUl5JySwlW\nqySdW/C4TZcfjfqEpCeupah01NIzpvLCXJWEclNdijZVhxWNOZ3sGde22qJUlwNgEfPTevvPDurA\n2QEdbBvWzFxMkrSmLKRNVeHzo1EVTOshA60qzVd+wK8TPcymeLp43czeoXiwetsljj8k6SFJqq+v\n9/LSy66ldywtRquk+IiVJB3vHiFYAWnGOaez/RPaf3ZQ+88M6JmmHvWOTkuS/GaqLQnqzWsjqo+E\nmNZD1vCZaWNloU70jMk5t6LvQF1KsGqXtHrB47rEc29gZtdLekzSA865/ou9kHPuUcXXX2nnzp3u\niqtNEeecWnrG9OCNtakuRZK0rrxAAb+piXVWQMrNRmNq7BhZsD5qUH1j8SBVFMxRTXG+blpdojVl\nBaorzVfAz7QeslNDZaEOtw+rqWtUW2tW7h/9SwlWL0tqMLN1igeqD0r68MITzKxe0vclfcw51+x5\nlSnWOzqt0ak5baxIjxGrgN+nDRWFLGAHUmB4clavJO7U+/fDnWobnNBsNP53YmkooDVlBbp9Yxl3\n62HFmW8HtKe5l2B1Oc65OTP7tKSnFG+38LhzrtHMHk4cf0TSn0oqk/T1xPDfnHNu5/KVnVzzi/E2\nVoZTXMnrtlSHtff0QKrLALKac07nBia1/+xAfH3UmUE194zKOcnvM1UXBbVzbURrywq0JhJSEXvr\nYQUrzg+oqihPLzT36rfv3JDqclJmSWusnHO7Je2+4LlHFnz+SUmf9La09NHSmz53BM7bVB3WD17r\n0PDErIpTuHchkE2iMadjnSPae3pA33+lTa39ExpN3D6el+NTfSSke7ZUnp/W465c4I0aKsPad3pA\nEzNzCuWuzB7kK/NffYVaesZUmJejqqL0adU/v4C9uWdUt6yNpLgaIDPNzMV0qG1Ie08PaN/peDfz\nsUSQKgl0XR98AAAYDUlEQVQFtKGy8Pwi86qiINN6wCIaqgr1s5Y+vXSqX3dvWZl7BxKsluBE95g2\nVBam1V0Om6vj89dNXQQrYKnmojEd6RjR3z7XolN94zrTP35+fVRlOE/baou0tqxAa8tCadFaBcg0\na8sKFAz4tKe5j2CFS2vpHdMdDenVpr+2OKhwMEfHu0ZSXQqQtpxzOt03rp+19OmnJ/r00sn+81N7\nleE8vWlNROvLC7SuvEAFefw4BK5VwO/TrevKtKe5N9WlpAw/SRYxPDmr3tFpNVQld33Vt/e2LnrO\n9XXF2scCduAN/v6np9XSO6YT3aNq6RnT0OSspPgde1tqwtpQUaj1FYUqJEgBy+LOTRX6b/92VOcG\nJrQ6Ekp1OUnHT5ZFnL8jME1aLSz0js2V+n/+/ZjaBidUV7ryvnkBKb7g/FDbkF5o7tWe5l692jok\np/hi8w0VhbpjU4UaKgsVKchNq+l8IFvdkdiI+YXmXn30tjUprib5CFaLONmTfncEzrsrEayeP74y\nv3mxcnUNT2lPc69eONGrF1v6NDQxKzPp+lXFumtzhRoqw1odCcnvI0gBybahokCrSvK1h2CFi2np\nHVNuji8thzM3VBRodSRfzzX1rMhvXqwcU7NR7Ts9oEf3nNKJnlF1j8Q7m4eDOWqoDKuhqlAbKwpZ\nJwWkATPTHZvK9aODnZqNxlbcbgP8FFpES8+Y1pcXpOVfvmamuzdX6p/3n9PUbFTBAD11kB2cczrR\nM6Y9zb3ac6JPe0/1a3ouJr/PtLYspJu2l6qhqlDVRUGm94A0dEdDhb6z75xebR3Sm9etrDvXCVaL\naOkZ03V1xaku45Lu2lKp//mLs3rpVL/u2lyZ6nKAq/bYnlPxRec9Y2rpGdNwYtF5RWGe3rSmVA2V\nhVpXXqjcnJX11y+Qid66sVx+n2lPcy/BCq+bmo3q3OCE3nvTqlSXcklvWV+mYMCn54/3EqyQUaIx\np4NtQ3rheK9eaO7VwXPxRefBgE8bKwp19+ZKbawqVCn9pICMU5wf0E2rS7TnRK/+6P7NqS4nqQhW\nl3Gyd0zOpefC9XnBgF9v3VCuZ5t69Gfv3sa0CNJa7+i0Xmju1fPHe/TTE30anowvOr9xdYnesaVS\nmyoLtaqURedANrhrc4X++9PN6h6ZUlVRMNXlJA3B6jLmWy0ku4fVlXrH5go929SjU33j2pCGbSGw\ncs2PSn3lmRY1d4+qfWhSkhTOy1FDVVibEovOQyw6B7LO/dur9d+fbtbTjV362FvWprqcpOGn2WWc\n7BmTz6R15QWpLuWy4lOAjXquqYdghZQbmZrVT5v79ExTt54/3quB8RmZpPpISO/cVqVNVWHVFLPo\nHMh2DVVhbago0BNHCFZIaOkdU30klPY72K+OhNRQWajnjvfok29fn+pysMJ8e2+r+semdaxrVE1d\nIzrTN66Yk/IDfm2uDuu+rVVqqCpcsTvdAyvZrh3VeuSFUxoYn1GkYGWsl+Qn3WW09Iyl9fqqhe7e\nUqnHXzytsek5turAsovGnF5tHdSPj3Xr+6+0q3c03leqMpynt22s0NaaeINOH6NSwIr2wI4afe25\nk/rJ0W69/5bVqS4nKfgNfAlz0ZhO943rHVsy4067uzZX6u/2nNKLLX26f3t1qstBFhqbntNPm3v1\nk2M9eu54jwbGZ5TjM60pC+nWdRFtqS5aMX+RAlia7bVFqivN15ONXQSrla51YEKzUZeWewRezM61\npQrn5ei5ph6CFTzzteda1NQ1qqbOEZ3qG1c05pQf8GtTVeH59VI0pgVwKWamXdur9c1fnNXo1KzC\nwUCqS1p2BKtLaEnjPQIvJuD36e2byvXc8R4551gYjKsyfxffM8e69cyxHjV1jUqSygpy9Zb1ZdpS\nE9aaSHruRAAgPe3aUa3HfnZazzb16MEb07cvpFcIVpdwIsOClRSfDtx9uEtHO0e0vTZ9u8UjvYxP\nz+mnJ+JTfM8f71Hf2Iz8PtPONaV6YEe1tlQXqSKcl+oyAWSom+tLVRHO01ONXQSrlexkz5iqi4IZ\nNWx51+YKSdLzx3sJVrisjqFJff6JJh1bMMUXDPi0qSqse7ZwFx8A7/h8pvu3V+l7B9o1ORNVfm52\nLx/gJ+clNHWNZtRolSRVhoO6blWxdh/u1O/ctYHpQJznnFNjx4h+cqxbPz7arcaOEUkLpviqw1pT\nxhQfgOWxa3uN/umlVu050Zv164AJVhfRPjSpo50j+uNdmbe/0Udvq9effO+wnjzSpQeuq0l1OUih\nuWhM+04P6Omj8TDVPjQpM+lN9aX63ANbNDUbVWV45WwzASB1bl0fUUkooCePdBGsVqInj3RJivff\nyDS/fnOdHvvpaf3VU8d177YqBfy+VJeEJJqciWrPiV498vxJNXWNanI2qhyfqaGyULfetEpbaorO\n9zkryqBpbgCZLeD36d6tVXqqsUszczHl5mTv7yaC1UU8cbhTW6rDab+VzcXk+H36411b9Fvf3K9/\nfvmcPnrbmlSXhGU2PDGrZ5q69VRjl15o7tXUbEz5Ab+2VIe1rbZIDZXhrP4hBiAzPLCjWv96oE0/\nP9mX2IotOxGsLtA9MqUDrYP67L2bUl3KVbt3a6VuWVuqL/7khN570yoV0Ik96/SMTOnpo/Ew9YuT\n/ZqLOVUXBfX+nat1//ZqneodZ70UgLRy+8ZyFeT69VRjF8FqJXmqsUvOSe+6LnPngM1Mn3tgi379\nb3+hv//ZaX3mnoZUlwQPnBuY0FONXfrHX5xV68CEnOKLz9+6oVzba4u0qjRfPjOd7Z8gVAFIO8GA\nX3dvrdLTjd368wdjysnSpSoEqwvsPtyphspCbawMp7qUa/KmNRHdv71Kf/fCSX341nqVF9KHKBO1\n9IzqicNderKx6/ydfDXFQd2ztVLba4tVGc7j7k8AGePBG2r1o4Md+tGhDr33prpUl7MsCFYL9I5O\na9/pAX36HRtTXYon/njXFv3k2B599dkW/d/v2Z7qcrAE33rprLpGpnSkfUSNHcPqSWxuXB8J6YEd\n1dpeW8x+fAAy1t1bKrW1pkhfeaZF776+NitHrQhWCzx9tEsxp4xpU/Dtva2LnvP+nav1rb1n9fHb\n12pNWeYtxl8JnHM60j6i3Uc69S8vn1P/+IxM0tryAr17XUTbaotVnM8dfAAyn89n+v17GvTwPx3I\n2lErgtUCTx7p0rryAm2pzuxpwIU+e2+DfvBquz7/RJO+/pGbmTZKE7GY06vnhvRUY5d2H+5U2+Ck\n/D7T+vIC3dFQoa21r7dFAIBs8s5tVdpSHdZXnmnRe25YlXVrQvnJnTA4PqOfn+zXb9+xPqvCR2VR\nUL9z1wb99Y+b9V9/dFR/+qvb5Muyb+JMMReNad+ZAT15pEtPNXape2RaAb/pbRvL9Zl7GnTf1io9\nkeihBgDZyucz/cG9DXr4n17Rjw526Nduyq79AwlWCT8+2q1ozOldGTINeCU+ffdGDU/O6rGfndb0\nXFR/8WvXEa6SZH6D4x8f7dETRzo1MRNVwG/aVBXWnZsqtKW6SMGAX3NRR6gCsGK8c1u1tlSH9eVn\nT+jdN9Rm1agVwSph95FO1ZXma3ttUapL8ZyZ6T/9ylYFA3599bkWTc/G9Ffvuz4rFw2mg/ahST1/\nvEc/OdqtF0/2a2YupuL8gDZVhbWtpkibqmjYCWBlm19r9alvvaJ/O9ShB2/MnlErgpWk4clZvdjS\np4/fvi6rpgEXMjP90f2blZfj01//uFnTczF98YM3suWNB6Zmo9p3ekAvNPfqheZetfSMSYrfyfex\n29bo3q1V2rm2VP9rf1uKKwWA9HH/9vio1ZeeOaFfvT57Rq0IVpKeOdat2ajTAzsytynoUv3ePQ0K\nBvz6i93HNDEzp79473WqLclPdVkZZTYa06G2Ib10akC/ONmv/WcHNDUbU47PtLa8QO/aUa2GqvD5\nHlOn+8Z1um881WUDQFrx+UyfuadBv5Nlo1YEK0m7D3eptjioG1eXpLqUpPitO9YrmOvXn//oqO76\nwvP66G1r9Dvv2EAT0UsYn57TwbYhvXJ2UPvODGr/mQFNzEQlSVuqw/rgLfVyTlpXXsAUHwBcgV3b\nq7W5KqwvZ9Go1YoPVrsPd+qZpm791tuz627AeZfqdeU30+/f26Bnm3r0jZ+f1ndfbtUn3rZOn3z7\n+hXdMykaczrZO6bDbcM62DakA2cHdbRjRC5xvDKcp+vrirW+vFBrywtoiQAA18DnM332vvgdgn/8\nr4f0V++7PuPD1Yr+rfBiS5/+4Luv6eb60ozedPlqlYZy9es31+kvf/16/X8/adZXnm3RN148o3u2\nVuqerVW6c3OFioLZG7LGp+d0omdMzV2jauwY1uH2YR3rHNXkbHw0qiDXrxvrS3TX5grVRwq0OpKv\nUO6K/r8MAHhu144a/V/3bdLf/LhZM9GY/ub9N2T0+t8V+1vicNuwHvrmfq0rL9Dj/+ctys/1p7qk\nlNlYWaivffhmferOYf3Di2f0bFO3fvBah3J8ptvWl+nuLZW6sb5Em6vCKsiwEZpYzKlzZEpn+8Z1\npn9CZ/vH42Gqe1Rtg5Pnz8v1+1RTEtRN9SWqLcnXqpJ8VYTz5MvCUUwASDefuadBuTk+ff6JJs3O\nxfTlD92UsUsrMuu3pEdO9Y7pN/9hn0pCufrmJ96s4lD2jsosxcLpwjetKdVN9SVq7Z9QU9eIjnWO\n6mctfZIkM2lNJKStNUXaWlOk1ZF8VRflq6Y4qOrioIKB5IbTiZk59Y/NaGA8/tE5PKWu4cn4f0em\n1DE0qXODk5qZi53/mly/T+vKC3RTfak+sHO1ukemVFkUVKQglxAFACn08J0blOv36b/921F96p8O\n6GsfuTnpv1e8sKRgZWa7JH1Jkl/SY865z19w3BLH3yVpQtJvOude8bhWT3SPTOljf79PkvSPn3iz\nqoqCKa4o/fgsfnfb2vIC7dpRo6GJGW2sLNSxztFE2Bq5aDPLklBAkVCuwvkBFQVzVBQMKBzMUX6u\nX7l+n3JzfMr1+xTI8SknMYfu3OtfH3VOM3MxTc9FNTMXS3we0+j0nMam5jSW+O/o1KwGJmY0NRv7\npRp8JlWGXw96t66LqKwgT5GCXJUV5qo4P/CGAFXGgn0ASBv/4W3rlJvj03/+wRH91jf36wvvu0HV\nxZn1e3rRYGVmfklfk3SfpDZJL5vZD51zRxec9oCkhsTHrZL+NvHftOCc04meMT3X1KPv7GvV0MSM\nvvvQW7S+ojDVpWWEklCu+sZmVBHOU0W4Qm9vqNDMXEzDk7ManpzVyNSsRhKfT8xENTE9p4GxaU3N\nxjQ1F9VsNKa5qFM05uQWv5xMUo7f5PeZAn6f8nL8CgZ8ysuJf15dHNSGikKF8nJUkOtXQV6OCvJy\nVJwfUGFeTsYvfASAleyjt61Rrt+nz33/kN7y+Wf0lvVlevDGWu3aUZMRN1ctZcTqzZJanHOnJMnM\nvivpQUkLg9WDkr7pnHOSXjKzEjOrcc51el7xEk3ORPViS5+eO96j54/3qn0ovp5mS3VYf/+bt+i6\nuuJUlZYVcnN8iaC19BEf55xiLn7nXWzBUNV8DDKLhymCEQCsbO+/ZbVuWRfRD15t1w8PduhPvndY\n/+UHjbprc4V2rCpWRThPlYnfQZXhoMoKc9NmwftSgtUqSecWPG7TL49GXeycVZJSFqyau0f1yW/u\nV0GuX29rKNfv3b1Rd26uUE0xzTBTxczkNxGcAACLWldeoM/et0l/cG+DDrcP6wevduiJI516+mj3\nL537gZ2r9Zfvuz4FVf6ypC5eN7OHJD2UeDhmZseTcd2jkh5NxoXiyiX1Je9yKxbvc3LwPicH73Ny\n8D4nwUdScM2/SnwsszVLOWkpwapd0uoFj+sSz13pOXLOPaqkZpzkM7P9zrmdqa4j2/E+Jwfvc3Lw\nPicH7zOSYSkTki9LajCzdWaWK+mDkn54wTk/lPQbFnebpOFUrq8CAABIhUVHrJxzc2b2aUlPKd5u\n4XHnXKOZPZw4/oik3Yq3WmhRvN3Cx5evZAAAgPS0pDVWzrndioenhc89suBzJ+l3vS0tY2X1VGca\n4X1ODt7n5OB9Tg7eZyw7c24pnYUAAACwmPRo+gAAAJAFCFYeMbNdZnbczFrM7HOpridbmdnjZtZj\nZkdSXUs2M7PVZvacmR01s0Yz+/1U15SNzCxoZvvM7GDiff6vqa4pm5mZ38xeNbN/S3UtyF4EKw8s\n2PbnAUnbJH3IzLaltqqs9Q1Ju1JdxAowJ+kPnXPbJN0m6Xf5nl4W05Luds7dIOlGSbsSd1Zjefy+\npGOpLgLZjWDljfPb/jjnZiTNb/sDjznn9kgaSHUd2c451zm/kbpzblTxX0arUltV9nFxY4mHgcQH\nC1+XgZnVSfoVSY+luhZkN4KVNy61pQ+Q8cxsraSbJO1NbSXZKTE99ZqkHkk/ds7xPi+PL0r6Y0mx\nVBeC7EawAnBJZlYo6XuS/sA5N5LqerKRcy7qnLtR8R0r3mxmO1JdU7Yxs1+V1OOcO5DqWpD9CFbe\nWNKWPkAmMbOA4qHqW86576e6nmznnBuS9JxYQ7gcbpf0HjM7o/hSjbvN7J9SWxKyFcHKG0vZ9gfI\nGGZmkv5e0jHn3N+kup5sZWYVZlaS+Dxf0n2SmlJbVfZxzv1H51ydc26t4j+fn3XOfTTFZSFLEaw8\n4JybkzS/7c8xSf/inGtMbVXZycy+I+kXkjabWZuZfSLVNWWp2yV9TPG/7F9LfLwr1UVloRpJz5nZ\nIcX/QPuxc45WAEAGo/M6AACARxixAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAj\nBCsAizKzaKKXVaOZHTSzPzQzX+LYTjP78mW+dq2ZfTh51f7StScTe/GlBTP7gJm1mBn9qoAsRLAC\nsBSTzrkbnXPbFe8O/oCkP5Mk59x+59xnLvO1ayWlJFglnEzsxbdkZuZfrmKcc/8s6ZPL9foAUotg\nBeCKOOd6JD0k6dMWd9f86IuZ3bmgU/urZhaW9HlJb08899nEKNJPzeyVxMdbE197l5k9b2b/amZN\nZvatxNY6MrNbzOznidGyfWYWNjO/mX3BzF42s0Nm9ttLqd/MfmBmBxKjbw8teH7MzP7azA5Kessl\nrrk98flriWs2JL72owue/7v5YGZmuxL/xoNm9oyH/zMASFM5qS4AQOZxzp1KhIfKCw79kaTfdc69\naGaFkqYkfU7SHznnflWSzCwk6T7n3FQimHxH0s7E198kabukDkkvSrrdzPZJ+mdJH3DOvWxmRZIm\nJX1C0rBz7hYzy5P0opk97Zw7vUj5/8E5N5DYm+9lM/uec65fUoGkvc65P0zs+dl0kWs+LOlLzrlv\nJc7xm9lWSR+QdLtzbtbMvi7pI2b2hKT/IekO59xpM4tc8RsNIOMQrAB46UVJf2Nm35L0fedcW2LQ\naaGApK+a2Y2SopI2LTi2zznXJkmJdVFrJQ1L6nTOvSxJzrmRxPF3SrrezN6X+NpiSQ2SFgtWnzGz\n9yY+X534mv5ELd9LPL/5Etf8haT/ZGZ1iX/fCTO7R9KbFA9pkpQvqUfSbZL2zAc959zAInUByAIE\nKwBXzMzWKx5EeiRtnX/eOfd5M/t3Se9SfATp/ot8+WcldUu6QfHlCFMLjk0v+Dyqy/+MMkm/55x7\n6grqvkvSvZLe4pybMLPnJQUTh6ecc9HLfb1z7ttmtlfSr0janZh+NEn/0zn3Hy+41ruXWheA7MEa\nKwBXxMwqJD0i6avugl3czWyDc+6wc+4vJb0saYukUUnhBacVKz4aFJP0MUmLLRQ/LqnGzG5JXCNs\nZjmSnpL0KTMLJJ7fZGYFi7xWsaTBRKjaovio0pKvmQiUp5xzX5b0vyVdL+kZSe8zs8rEuREzWyPp\nJUl3mNm6+ecXqQ1AFmDECsBS5Cem5gKS5iT9o6S/uch5f2Bm75AUk9Qo6YnE59HEovBvSPq6pO+Z\n2W9IelLS+OUu7JybMbMPSPpKYl3UpOKjTo8pPlX4SmKRe6+kX1vk3/GkpIfN7Jji4emlK7zm+yV9\nzMxmJXVJ+n8T67X+s6SnLd6CYlbxdWYvJRbHfz/xfI/id1QCyGJ2wR+cAJA1zGytpH9zzu1IcSlv\nkJiSPL+gH0D2YCoQQDaLSiq2NGsQqvio3WCqawHgPUasAAAAPMKIFQAAgEcIVgAAAB4hWAEAAHiE\nYAUAAOARghUAAIBH/n9P3KKxzowzpQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(cfhtls_wide['cfhtls-wide_ra'], cfhtls_wide['cfhtls-wide_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, \n", " cfhtls_wide, \n", " \"cfhtls-wide_ra\", \n", " \"cfhtls-wide_dec\", \n", " radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add SpARCS" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt83HWd7/H3Z2Yyk9vkfmmaS1NKC7SFFggUCgLqqgVd\n8boKiKJgxVWP7upjdc9lPXvcs0ePx911D7KIiPWCoC6oHAXBG+DSAm1pS2/0fsmtSZr7/fo9f8yk\npKFt0uaX/GaS1/PxmEcyM9/M75MpJO98f5/f92vOOQEAAGDqAn4XAAAAMFsQrAAAADxCsAIAAPAI\nwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPBLy68AFBQWusrLSr8MD\nAABM2ubNm4875wonGudbsKqsrNSmTZv8OjwAAMCkmdmRyYzjVCAAAIBHCFYAAAAeIVgBAAB4hGAF\nAADgEYIVAACARyYMVmb2oJk1mtmOM4y5wcy2mtlOM3vW2xIBAACSw2RmrNZJWnO6J80sR9K9kt7p\nnFsm6f3elAYAAJBcJgxWzrnnJLWcYcitkh5zzh2Nj2/0qDYAAICk4kWP1RJJuWb2jJltNrMPe/Ca\nAAAASceLlddDki6X9GZJaZI2mNkLzrm94wea2VpJayWpoqLCg0MDAAAkDi9mrGokPeWc63bOHZf0\nnKQVpxronLvfOVflnKsqLJxwux0AAICk4kWw+qWka80sZGbpklZJ2u3B6wIAACSVCU8FmtnDkm6Q\nVGBmNZK+LClFkpxz9znndpvZbyS9ImlE0gPOudMuzQAAADBbTRisnHO3TGLM1yV93ZOK8Do/fvHo\nOX/travoZQMAYKaw8joAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRg\nBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIV\nAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYA\nAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeGTCYGVmD5pZo5ntmGDcFWY2ZGbv8648\nAACA5DGZGat1ktacaYCZBSV9TdLTHtQEAACQlCYMVs655yS1TDDsM5IeldToRVEAAADJaMo9VmZW\nKundkv5t6uUAAAAkLy+a1/9F0hedcyMTDTSztWa2ycw2NTU1eXBoAACAxBHy4DWqJD1iZpJUIOkm\nMxtyzv1i/EDn3P2S7pekqqoq58GxAQAAEsaUg5VzbuHo52a2TtKvThWqAAAAZrsJg5WZPSzpBkkF\nZlYj6cuSUiTJOXfftFYHAACQRCYMVs65Wyb7Ys65O6ZUDQAAQBJj5XUAAACPEKwAAAA8QrACAADw\nCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAj\nBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8Q\nrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPDJh\nsDKzB82s0cx2nOb528zsFTPbbmbrzWyF92UCAAAkvsnMWK2TtOYMzx+SdL1z7mJJX5F0vwd1AQAA\nJJ3QRAOcc8+ZWeUZnl8/5u4LksqmXhYAAEDy8brH6k5JT3r8mgAAAElhwhmryTKzNyoWrK49w5i1\nktZKUkVFhVeHBgAASAiezFiZ2SWSHpB0s3Ou+XTjnHP3O+eqnHNVhYWFXhwaAAAgYUw5WJlZhaTH\nJN3unNs79ZIAAACS04SnAs3sYUk3SCowsxpJX5aUIknOufsk/Z2kfEn3mpkkDTnnqqarYAAAgEQ1\nmasCb5ng+bsk3eVZRQAAAEmKldcBAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjB\nCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQr\nAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwA\nAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8MiEwcrMHjSzRjPbcZrnzcz+1cz2m9kr\nZnaZ92UCAAAkvsnMWK2TtOYMz98oaXH8tlbSv029LAAAgOQzYbByzj0nqeUMQ26W9AMX84KkHDMr\n8apAAACAZOFFj1WppOox92vijwEAAMwpM9q8bmZrzWyTmW1qamqayUMDAABMOy+CVa2k8jH3y+KP\nvY5z7n7nXJVzrqqwsNCDQwMAACQOL4LV45I+HL868CpJ7c65eg9eFwAAIKmEJhpgZg9LukFSgZnV\nSPqypBRJcs7dJ+kJSTdJ2i+pR9JHp6tYAACARDZhsHLO3TLB807SpzyrCAAAIEmx8joAAIBHCFYA\nAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEA\nAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA\n4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACA\nRwhWAAAAHiFYAQAAeGRSwcrM1pjZHjPbb2ZfOsXz2Wb2/8xsm5ntNLOPel8qAABAYpswWJlZUNK3\nJN0oaamkW8xs6bhhn5K0yzm3QtINkr5hZmGPawUAAEhok5mxulLSfufcQefcgKRHJN08boyTFDUz\nk5QpqUXSkKeVAgAAJLjJBKtSSdVj7tfEHxvrHkkXSaqTtF3SZ51zI55UCAAAkCS8al5/m6StkuZL\nWinpHjPLGj/IzNaa2SYz29TU1OTRoQEAABLDZIJVraTyMffL4o+N9VFJj7mY/ZIOSbpw/As55+53\nzlU556oKCwvPtWYAAICENJlgtVHSYjNbGG9I/6Ckx8eNOSrpzZJkZsWSLpB00MtCAQAAEl1oogHO\nuSEz+7SkpyQFJT3onNtpZnfHn79P0lckrTOz7ZJM0hedc8ensW4AAICEM2GwkiTn3BOSnhj32H1j\nPq+T9FZvSwMAAEgurLwOAADgEYLVLLO7vkNbq9v8LgMAgDlpUqcCkRx21bXroRePyinW6LaiPMfv\nkgAAmFMIVrPEwaYuPbKxWmW5aQoFA/r3l2uUlZbid1kAAMwpnAqcBWrbevXDF44oNyOsj1xdqQ+t\nWqDc9LB+9MIRHWzq8rs8AADmDIJVkjve2a91zx9SWkpQH7tmodIjIaWFg7pjdaUCJn1s3Ua1dA/4\nXSYAAHMCwSqJtfcO6sH1hyRJH7tmobLHnPrLywjr9qsWqK69Tx//wSb1DQ77VSYAAHMGwSqJ/WTj\nUfUODOuO1QtVEI287vmK/Az981+s1OYjrfrPj233oUIAAOYWglWSausZ0OHmHt1wQZFKc9NOO+7t\nl5ToE9edp8e21OpYe98MVggAwNxDsEpSu+o7JEnL5mdNOPb9VbE9tJ/aeWxaawIAYK4jWCWpnXUd\nKopGVJD5+lOA451flKnFRZl6Ynv9DFQGAMDcRbBKQl39Qzp8vHtSs1Wjbry4RBsPt6ips38aKwMA\nYG4jWCWhV+s75CQtm5896a+5cfk8jTjp6V2cDgQAYLoQrJLQrvoO5aSnqCQ7ddJfc+G8qBYWZOg3\nOwhWAABMF4JVkukfHNa+xi4tK8mSmU3668xMa5bP0/oDzWplwVAAAKYFwSrJ7Gno1PCI09KzOA04\n6qblJRoecfrt7oZpqAwAABCsksyu+g5lhINakJ9+1l+7vDRLZblpnA4EAGCaEKySyNDwiPYc69RF\nJVkKnMVpwFFmphuXz9Of9jWpo29wGioEAGBuI1glkQNNXeofGjmrqwHHW7O8RIPDTn/Y3ehhZQAA\nQCJYJZWddR2KhAJaVJhxzq9xaXmOirMiLBYKAMA0IFgliRHntLu+QxfMiyoUPPd/tkDAdOPyEj27\nt0nd/UMeVggAAAhWSeJIc4+6B4a1tGTyq62fzprl89Q/NKJn9jR5UBkAABhFsEoSu+raFQqYLiiO\nTvm1rqjMU0FmWE/s4HQgAABeIlgliV31HTq/KFORlOCUXysYML112Tz98dVG9Q8Ne1AdAACQCFZJ\nob13UK09gzq/KNOz17x+SaF6Boa1vabds9cEAGCuI1glgaMtPZKkiryzXxT0dKoW5EqSNh5u9ew1\nAQCY6whWSaC6pUehgGneWWy6PJH8zIjOK8zQpsMtnr0mAABzHcEqCRxt6VFpTppCAW//ua5YkKdN\nR1o1MuI8fV0AAOYqglWCGxgaUV1br8o9PA04qqoyV+29g9rf1OX5awMAMBeF/C4AZ7a7vkNDI+6c\ng9WPXzx62ueau/olSff+8YCuXJj3uudvXVVxTscEAGCumtSMlZmtMbM9ZrbfzL50mjE3mNlWM9tp\nZs96W+bcteVorLncy8b1UXkZYWVGQjrS3O35awMAMBdNOGNlZkFJ35L0Fkk1kjaa2ePOuV1jxuRI\nulfSGufcUTMrmq6C55qXj7YpKzWk7LQUz1/bzLQgP12HCVYAAHhiMjNWV0ra75w76JwbkPSIpJvH\njblV0mPOuaOS5Jxr9LbMuWtLdeu0zFaNqszPUGvPoNp7B6ftGAAAzBWTCValkqrH3K+JPzbWEkm5\nZvaMmW02sw97VeBc1tTZr+qW6WlcH7UgP/banA4EAGDqvLoqMCTpcklvl/Q2Sf/NzJaMH2Rma81s\nk5ltampiA+CJbK1ukzQ9/VWjSrLTFA4GdKS5Z9qOAQDAXDGZYFUrqXzM/bL4Y2PVSHrKOdftnDsu\n6TlJK8a/kHPufudclXOuqrCw8FxrnjO2HG1VKGCan5M2bccIBkzleWnMWAEA4IHJBKuNkhab2UIz\nC0v6oKTHx435paRrzSxkZumSVkna7W2pc8+Wo21aOj9LKcHpXW5sQX6G6tv71DfIhswAAEzFhL+x\nnXNDkj4t6SnFwtJPnXM7zexuM7s7Pma3pN9IekXSS5IecM7tmL6yZ7+h4RFtq2nTpeU5036syvwM\nOcW2zgEAAOduUguEOueekPTEuMfuG3f/65K+7l1pc9vehi71DAzrsgW56u6f3pmk8tw0BUw63Nyj\nxcXRaT0WAACzGVvaJKgt1bGFQS8tz532Y0VSgirJps8KAICpIlglqC1H25SfEVZ53vQ1ro9VkZ+u\n6tYeDbMhMwAA54xglaC2HG3VpRU5MrMZOV5lfoYGh53q2npn5HgAAMxGBKsE1NYzoANN3bq0YvpP\nA45akMdCoQAATBXBKgGNLgw6E1cEjspKS1FeRliHWSgUAIBzRrBKQFuOtilg0iUzGKyk2KzVkeZu\nOUefFQAA54JglYC2VLdpSXFUmZFJrYbhmcr8DHUPDKu5a2BGjwsAwGxBsEowIyNOW4+2zmh/1ajy\n+IbMR1s5HQgAwLkgWCWYw83d6ugb0sry7Bk/dlE0onAowArsAACcI4JVgtlR1yFJurh0ZvurJClg\nprKcNNW0suQCAADngmCVYHbUtiscCmhxcaYvxy/PS1d9e68Gh0d8OT4AAMmMYJVgdtS266J5UaUE\n/fmnKc9N04gTC4UCAHAOCFYJxDmnHbXtWlY68/1Vo8riC4VWczoQAICzRrBKINUtveroG9LFPgar\nrNQU5aSl0MAOAMA5IFglkO217ZKk5fP9C1ZSbNaqhiUXAAA4awSrBLKjrl0pQdOSef40ro8qz01T\na8+gmjr7fa0DAIBkQ7BKIDtq27WkOKpIKOhrHeW5sT6r0T0LAQDA5BCsEsRo47rfpwElaX5OmgIm\nba1u9bsUAACSCsEqQdS29aq1Z1DLy/wPVuFQQPOyUpmxAgDgLBGsEsSO2tiK68vnZ/lcSUxZXrpe\nqW7XyIjzuxQAAJIGwSpB7KhtVzBguqgkMYJVRW66OvuHdKCpy+9SAABIGgSrBLGjrl2LizKVmuJv\n4/qosrw0SdIWTgcCADBpBKsEcKJx3ceFQccryIwomhqizwoAgLNAsEoADR39Ot41kDD9VZIUMNPK\n8hxtPUqwAgBgsghWCWBHfMX1ixPgisCxVpbnaE9Dp3oGhvwuBQCApECwSgDba9sVMCVM4/qoleU5\nGh5x2l7T7ncpAAAkBYJVAthZ165FhZlKD4f8LuUkK8tzJLECOwAAk0WwSgDbE6xxfVR+ZkQVeekE\nKwAAJolg5bPGzj41dPQnZLCSYrNWBCsAACaHYOWznQm24vp4K8tzVN/ep4aOPr9LAQAg4U0qWJnZ\nGjPbY2b7zexLZxh3hZkNmdn7vCtxdhu9InBZgs5YXVoR67PacpQNmQEAmMiEwcrMgpK+JelGSUsl\n3WJmS08z7muSnva6yNlse227zivIUGYksRrXRy2bn61IKKBNhwlWAABMZDIzVldK2u+cO+icG5D0\niKSbTzHuM5IeldToYX2z3s66joTtr5KkcCigFWU52nSEYAUAwEQmE6xKJVWPuV8Tf+wEMyuV9G5J\n/+ZdabNfS/eAatt6tbw0MfurRl1emasdte3qHRj2uxQAABKaV83r/yLpi865kTMNMrO1ZrbJzDY1\nNTV5dOjktT3eX5XIM1aSdEVlroZGnLbVcHUgAABnMplgVSupfMz9svhjY1VJesTMDkt6n6R7zexd\n41/IOXe/c67KOVdVWFh4jiXPHtuq22QmXZzgweqyilxJ0mZOBwIAcEaT6ZjeKGmxmS1ULFB9UNKt\nYwc45xaOfm5m6yT9yjn3Cw/rnJW2Vbfp/MJMRVNT/C7ljHLSw1pclKlNh1v8LgUAgIQ24YyVc25I\n0qclPSVpt6SfOud2mtndZnb3dBc4WzkXO7W2Ir5tTKKrqszV5iOtGhlxfpcCAEDCmtQ1/s65JyQ9\nMe6x+04z9o6plzX71bb16njXgFaUJfZpwFFVC/L08EvV2tfYpQvmRf0uBwCAhMTK6z55pSbWuJ5M\nM1aStOkIpwMBADgdgpVPtlW3KRwM6MJ5ib3UwqiKvHQVZEa0mYVCAQA4LYKVT7ZWt2np/CyFQ8nx\nT2BmqlqQq43MWAEAcFrJ8Vt9lhkecdpe266VSXIacFRVZa6qW3rVyIbMAACcEsHKB/sbu9QzMKxL\nkqRxfVRVZZ4ksb0NAACnQbDywbbq2ArmydK4PmrZ/CylpgS0kfWsAAA4JYKVD7bVtCmaGtLC/Ay/\nSzkrKcHYhsyswA4AwKkRrHywraZNK8pyFAiY36WctSsq87SzrkM9A0N+lwIAQMIhWM2wvsFhvVrf\nqRXlydVfNeryylwNjzhtrWZDZgAAxiNYzbCddR0aGnFaUZZc/VWjLqvIlZm0ifWsAAB4HYLVDEvW\nxvVR2WkpWlIU5cpAAABOgWA1w7bVtGleVqqKs1L9LuWcVVXmasuRVg2zITMAACchWM2wV2rak7a/\nalRVZa46+4e051in36UAAJBQCFYzqK1nQIeOdyftacBRVQtiC4WynhUAACcjWM2gV2raJUkrk7Rx\nfVRZbpoq8tL1p31NfpcCAEBCIVjNoNHG9eVJtpXNeGam65cUav2BZg0MjfhdDgAACYNgNYO21bRp\nUWGGslJT/C5lyq5bUqiegWFtOsLpQAAARhGsZohzTlur25O+v2rU1YvylRI0PbuX04EAAIwiWM2Q\n+vY+He/q18pZEqwyIyFdviBXz+097ncpAAAkDILVDNlyNNZfdUmSN66Pdf2SIu2u71BjR5/fpQAA\nkBAIVjNkw8HjyoyEtHx+lt+leOa6JQWSpOf2MWsFAIBEsJox6w8064rKXIWCs+ctX1qSpcJohD4r\nAADiZs9v+QR2rL1PB5u6tXpRgd+leMrMdN3iQv3Hvia2twEAQASrGbHhYOxU2dWL8n2uxHvXLSlQ\na8+gtte2+10KAAC+I1jNgA0HmpWdlqKlJbOnv2rUGxYXykx6dg+nAwEACPldwFyw/kCzrjovT4GA\n+V2K5/IywrqkNFvP7WvSZ/9ssd/lAMCc8+MXj57z1966qsLDSiARrKZddUuPalp79fE3nOd3KdPm\n+iWFuueP+9XeM6js9ORfVR4AZtpUwhESC8Fqmq0/EOuvWj0L+6tGXbekUP/6h/16/sBx3XRxid/l\nAIAvJhOORpzT8IjTyEjsYzgloFCArpzZhGA1zdYfaFZBZkTnF2X6Xcq0WVmeo2hqSM/uaSJYAZhz\nBoZGdKy9TweautTeM6i23gF19g2pq39IXX1D6uwfUnf/kAaHR3SqC6jTw0FlpaYomhpSVmqKirMi\nWlwcVVE0IrPZ10Iy2xGsppFzThsONGv1ovxZ/T9HKBjQGxYX6Ll9TXLOzervFcDc09U/pPq2XtW1\n96m2tVc1rT2qbetVTWuvalt71dDZJzcuMKWlBBVNDSkzElJZbpoyIyGFgwEFA3biFjBT39CwOnuH\n1Nk3qI6+ITV09Gnz0VZpxzFlp6VocVGmFhdHtbgoU6kpQX/eAJwVgtU0OtDUrcbO/lm5zMJ41y0u\n1BPbj2lfY5eWFEf9LgcAJuScU3vvoI519OlYe58aOvp0rL0/fr9X9e19qmvrVUff0ElfFwqYSnJS\nVZaTrmsXF6g0J02lOWl69VinctNTlJ2WMqXFoNt6BrSvsUt7Gzq1o65dm460KhIKaPWifF17fqHS\nwgSsRDapYGVmayR9U1JQ0gPOua+Oe/42SV+UZJI6JX3SObfN41qTzoY50F816rolhZKkZ/Y0EqwA\n+M45p5buAdW19amuvVf1bbGgVN/ep2MdsRDV0NGnvsGR131tfkZYxVmpKstN15UL81SSnab5Oama\nHw9QxVmpCp7iKm+vGtBz0sO6ojJPV1TmaXjE6WhLjzYcbNYf9zRp/YFmXXN+ga5ZVEDASlATBisz\nC0r6lqS3SKqRtNHMHnfO7Roz7JCk651zrWZ2o6T7Ja2ajoKTyfoDzSrNSVNFXrrfpUy7+TlpWl6a\npce31WntdYv8LgfAHDA4PKLqlh4dbOrWkZYeVcdv22vb1dozoMHhk8/PhQKmrLQUZaWGlJ2WovLc\n9JPuj/Y5nWq2qbt/WPsaurSvoWumvj1JUjBgWliQoYUFGapv79UfXm3UH15t1PoDx3Xd4kK9YXHh\nKUMe/DOZGasrJe13zh2UJDN7RNLNkk4EK+fc+jHjX5BU5mWRyWhkxGnDwWb92UXFc6bn6D2Xlul/\n/GqX9hzr1AXzmLUCcO7Gzv4MDo+oqbM/PsvUr6aufjV19qulu/+kZvBIKKC8jLAKMiNaXJSp3Iyw\nctJSlJ0WVnZ6ijLCwaT+eVySnabbVi1QXVuvfr+7QU/vatDehi598IpyZaWx1E2imEywKpVUPeZ+\njc48G3WnpCenUtRs8OqxTrX1DM6J04Cjbl45X//4xG49+nKN/vNNF/ldDoAkMzLiVNPaq131Hfrd\n7oYTfU8t3QMazU9BM+VnhlWcFdGy+VkqzIyoIBpRfkZY6UkenCZrfk6abr+6UluOtuqXW+v0f/+w\nT++vKqcNI0F42rxuZm9ULFhde5rn10paK0kVFbN7tdfR9avmQuP6qPzMiN54YZF+vqVWf/O2C6bU\nvAlgduvuH9Kehk7tru+I3zq151inuvpjjeImKT8zrHnZqVpRnqPirFQVRyPKz4xw6ivu0opcleam\n6eGXjmrd+sO6YUmh3nxRMe+PzyYTrGollY+5XxZ/7CRmdomkByTd6JxrPtULOefuV6z/SlVVVadY\nzWP22HCgWQsLMlSSneZ3KTPqvZeV6be7GvSn/cf1xguK/C4HgM8Gh0d0+Hi39jR0au+xTu1piAWo\nIy09J5YoiEZCurAkqvdcVqqLSrJ0UUmWth5tUzjEH2cTKYqm6pPXn69fvVKnZ/Y26UhLjz60agGN\n7T6aTLDaKGmxmS1ULFB9UNKtYweYWYWkxyTd7pzb63mVSWZoeEQvHmrRO1fO97uUGfemC4uUm56i\nRzfXEKyAOaS9d1CHjnfrQGOXDh7v0jN7mtTU2a/mrgENxxNUbBYqouKsiN58YZHmZaWpJDtVOekp\nJ07hOSftqusgVJ2FcCig91xWpoUFGXpsS60e+I+D+tg1C5URYUUlP0z4rjvnhszs05KeUmy5hQed\nczvN7O748/dJ+jtJ+ZLujf/PMeScq5q+shPb9tp2dfUPzan+qlHhUEDvXDFfD2+sVnvvoLJpqARm\nhaHhEdW396m6Nbb/aXVLjw439+hoc+yKvLaewRNjgwFTbnpYhZlhXTgvGjuNl5WqwmhEKbQITJtL\nK3KVEQnpRy8c0Xf+dFB3XrtQ0VR+Bs+0ScVZ59wTkp4Y99h9Yz6/S9Jd3paWvJ7Z0yQz6arz5l6w\nkqT3Xl6m7284ol+/Us/O6UCS6BscVl1br2rbYquJ1475vKa1V8c6+jQ85hK8gEmluWlakJeht19c\nogX56arMz9CiokxV5KXrZ5tqfPxu5q4lxVF9ZHWlfrDhsL7zp0O689qF/IE7w5gn9JhzTo9vq9Oq\nhXkqyIz4XY4vLi7N1uKiTD36cg3BCvDZ6LIFQ8MjausZVEvPgFp7BtTaHdvTrrV7QG09g+rsP3l1\ncZOUlZainPQUFUYjWlKcqdz0sHLSw8pNT1FOevh1TdLHuwZ0vKtFLx5smalvD6ewqDBTH129UN/f\ncPjEzFVuetjvsuYMgpXHtte269Dxbn3iuvP8LsU3Zqb3Xl6mrz75qg42dem8wtm7ATWQKEZGnJq6\n+lXd0qOjY24vH2lVS3dsU+CxVwwFzZSdHgtOS+ZFlZOeoty0cOxjelhZaSlcXZbEKgsy9LFrFup7\n6w/pO88d1MevO49wNUMIVh77xZY6hYMB3bi8xO9SfPXuS0v1v3/zqh57uVZfeNsFfpcDzAodfYPx\n1cVjGwF1vDKQAAAWVUlEQVRXt/SourVXR+MrjvcPvbY9i5k0LytVkVBQ5xfFZptyM8Kxj+kpykpL\nUWAOrPk0l5XnpevOa8/Td//joNatP6xPXHee0sP82p9uvMMeGh5x+n+v1OmGCwqVnT63z2kXZ6Xq\n2sWF+vmWWv31W5YowF++wIQ6+wZP6muqGW0Ub42FqfbewZPGZ0ZCKs9L16LCDL3xgkJV5KWrLC9d\nFXnpKs1JU2pK0LP965CcSnPS9KGrFuh7zx/WDzYc0Z3XLuQCgmlGsPLQ+gPH1dTZr3ddWup3KQnh\nvZeV6rOPbNULB5u1+vwCv8sBfNfRN6ialtcC09jwVNv2+uAUCQVUlpumYMB0wbyo8k7MOqUoLz2s\ntFOsNF7f1qf6tr6Z/LaQ4M4ryNRfVJXrkZeO6icbq3XrqgpmK6cRwcpDv9hSp2gkpDddyPpNkvS2\nZfMUjYT045eOEqwwJwwOj6i2tfekDYGrW2O9Tgcau9U7OHzS+HAwcKKn6cJ50XhzeMqJj5mR0JzY\nogXT7+LSbHVeUqJfvVKvx7fV6eYV8/lva5oQrDzSNzisp3Ye043L5yk1hRVvJSk1Jajbrlqgbz93\nQJ+q79BFJVl+lwRM2eDwiGpae3XoeJcOHe/RoeNdOtLcoyPNPapt6z1pSYJwMKCyvDSV56Yroyw0\nps8pFp7myt52SAyrFxWos29Iz+5tUlZqCpMA04Rg5ZHf7W5QV/8QpwHH+eT1i/TjF4/of//mVX3v\no1f6XQ4wKc45tXQP6GB8JfEDTV062NStrdVtau0Z0JjspNSUgPIzIsrPDOu8wgzlZ0SUlxFWXkZY\n0dQQp1yQUN66tFgdvYP63e4GZaelsCTONCBYeeQXW+pUFI3M2UVBTyc7PUV/+cbz9dUnX9WLB5u1\nivcHCcQ5p/r2Pu1r7NL+xi7tb+zU/sYu7WvsOmkl8XAooPMKMjQvO1UXl2arIDMWpAoyI8w6IamY\nmd5zWZk6+4f08y01eu9lpbRqeIxg5YG2ngE9u7dRH7m6knVfTuEjV1fqe88f0td+86oe/eRqfglh\nxo2MONW29WpfY6d+urFGjZ39auzsU2NnvwbGLFGQHg6qMBrR4qJMFUZTVZgZUWE0opx0libA7BEM\nmG69skL3PXtAn/jRZj32ydVaXBz1u6xZg2DlgV9vr9fgsOM04GmkhYP63J8t0d8+tl2/292otywt\n9rskzFIjI041rbEAta+xS/saurQvPgvVM/Ba43g0ElJRVkSXV+SqKCsWnoqiqcpk01rMEakpQX1k\ndaXWrT+sj67bqJ//5TUqjM7N3UK8xk8RD/xyS50WFWZo2Xyas0/n/ZeX6TvPHdTXn3pVb7qwiJk9\nTMng8IiONPecOHU3evruQFOX+gZfm4EqzopoSXFUH7iiXIuLolpSnKmt1W0skghIyk0P67sfqdIH\nvv2C7vr+Rj2y9mqlhbn4aqr46TJFNa09eulwiz7/liWz7hTXVBYWHN8QGQoG9IW3XaC/fOhl/XxL\nrd53edlUy8Mc0N47qINNXTrQ1B3/+NrnYxvIs9NSVJwVUdWCPBVFIyqKRlQYTX3dL4m9DV2EKmCM\nS8py9M0PrtQnfrRZn/vJFt172+X84TtF/ISZol9sqZUk3byS04ATuXH5PK0oy9Y//3av3nFJCctS\nQJI0MDSioy09OnQ8FphiH7t18HiXjncNnBgXCpgW5KdrUWGmSnPS4uEpdouE+G8JOFdvXTZP//Xt\nS/WVX+3SV361S1/+86WzbqJgJhGspqC9Z1Df+dMhXb+kUBX56X6Xk/DMTF9cc6FufeBF/eiFI7rr\nDXN3o+q5ZmTEqa69V4eOd5+4Pb//uI53Dai1e+CkzYEzwkEVRCNakJ+hqgV5sfCUGVFuRpi/pIFp\n8rFrKlXX1qvv/sch5WeE9Zk3L/a7pKRFsJqCbz2zXx19g/rSjRf6XUrSWH1+ga5fUqhvPL1XqxcV\naCl9abOGc06tPbFTdwfjs06xRTS7dbi553VX3+Wkpag0J00rymLLF4ze6PEAZp6Z6b/cdJFauwf0\njd/uVW5GWB+6aoHfZSUlgtU5qm7p0brnD+u9l5WxovhZ+vr7L9HN9zyvj/9gk3756WtUkMmVKMlk\ntHF83fOH1NTZr6auAR3v6ldTZ/9JW7YEzZSXEVZBZlirKvNOWvspmspWLUCiCQRMX3vfJWrrHdR/\n++UO5aaH9fZLSvwuK+kQrM7RN57eIzPp829d4ncpSacomqr7b6/S+7+9Xp/80WY9dNdVCofYbT3R\n9AwM6UBj94nlCg40xa6+O9Lco6ExnePR1JAKMyO6OD7zVBgPTznpnLoDkk1KMKBv3XqZPvzgi/rc\nT7YoOy1F1y5mAdGzQbA6Bztq2/WLrXX6yxsWqSQ7ze9yktLFZdn6+vtW6DMPb9Hf/XKH/td7LmYG\nwyedfYMnlivY1/DayuM1rb0nxoxtHH/bsnlaVJipA01dKsiMcBECMMukhYN64CNX6APf3qC1P9yk\nh+5apUsrcv0uK2kQrM6Sc07/+MRu5WWEdfcNi/wuJ6n9+Yr52nOsU/f8cb8unBfVHdcs9LukWa2z\nb/BEeNrbEAtP26rb1N772tYtoYCduNLuwnlZJ5YuyMsMKxR4bVaxf2hEZblcsAHMVtlpKfrBx67U\n++7boA898KK+85EqrV7EzNVkEKzO0jN7m7T+QLP++58vVVZqit/lJL2/fssS7Wno1Fd+vVvnF0WZ\ncvZAd/+Q9jV2aW9D52shqqFTde19J8ZEQgGdX5SphQUZ8fCUquKs2JV3bN0CQJKKslL1009crdu/\n+6Lu+N5G3XPLpXrrsnl+l5XwCFZnYXjE6atPvKrK/HTduoqrJbwQCJj++QMr9Z57n9faH27SP7xr\nud5zGYuHTkbf4LD2N3bp++sPq6GjXw0dfWrs7FNrz+tnoIqiES0vzSZAATgr87Jj4eqOdRv1yYde\n1tfeewkLPE+AYHUWfrapWnsaOnXvbZfRbO2hzEhIP7xzlT7z8Bb99U+3acOBZv39zctYITuuf2hY\nB5u64zNQXdoTn4k60tIjF+8hD5qpIBpWeV66Ll8QC0/F0VTWfgIwZbkZYf34rlVa+8NN+sLPtqmt\nZ4B1CM+A31yT9MLBZn358Z26ojJXNy5nKtRrxVmp+vFdq/TN3+/TPX/cr63VbfrWbZdpyRzacX1g\naESHjseuwtvb0KW9xzq1t7FTR5p7NBy/Ci8YMFXmp2vp/CzdvLJUS4qj2tfQqfzMCAEKwLTJiIT0\n4B1X6LMPb9U//Hq3Gjr69DdrLlRKkEmG8QhWk7Ctuk13rtuo8rx03fehy7l6bZqEggF9/q0XaNXC\nfH3uJ1v1znv+Q3/3jmX6i6oyhWbR/7y9A8PxPe/imwc3dGnzkVY1d/ef2P/OJOVlhFWclao3LC5Q\ncTRVRVmxFcjHvhftvYMqykr15xsBMKdEQkF967bL9N8f36nv/OmQXjrUom9+8FJVFmT4XVpCMefc\nxKOmQVVVldu0aZMvxz4be4516gP3b1A0NaSffWK15mXP/C+xqWyG7JfxmzCfrcbOPn3uka1af6BZ\n87NTddtVC3TLlRXKywh7VOH0cs6poaM/tnHw8W4diu99t7+xS7VtvSdO4QVMqszPUGpKUEVZsSby\n0T3w+EsQwHQ715/VT26v15ce266h4RH9/c3L9d7LSmf9pIOZbXbOVU00jhmrMzh8vFsf+u6LCgcD\neujOq3wJVXNVUTRVP7pzlX7/aqPWrT+krz+1R9/8/T7dvGK+br96gZbPz1bA51NfQ8Mjqm/vU3Vr\nj4409+jJ7cfU3N2vlu4BNXcPnLSFS0rQYotnRiO6YF5URdFUFUYjKsgIz6rZOABzw40Xl2hFeY7+\n6idb9YWfbdOze5v0D+9aruw0rpZnxuo06tp69f77NqhnYEg//cTVWuxjr08yzlhN1fi/ovY2dOr7\n6w/rsZdr1Ts4rKzUkC6tyNXlC3J1WUWuVpRnK+rh8heDwyNq7hpQQ0efjnX0qTH+sb69TzWtvapt\n7dWxjr4TvU9SrIE8NyOs/IxwbCuX+ObBBZlhZaWlcBUegIQz1bMLwyNO9z17QP/0273KTQ/rkzcs\n0m2rKmblwsGTnbEiWI0zPOL06OYa/Z+n96h3YFg//vhVurgs29eaCFavae8d1NM7j+nlo63afKRV\n+xq7TpxWy0lPUWFm5EQv0uiq4MGAnXQbHBpR7+Bw7DYQ+9jRO6iWnkG19QyopXtAnX1Drzt2MGAq\nikZUlpumstx0leWmqTQn9vmC/HQ9u7eJ8AQgqUw1WI16paZNX33yVa0/0KyiaESfvGGRbrlydgUs\ngtU5+NO+Jv3PX+/Wq8c6tbI8R//wruVaXupvqJIIVmfS0TeorUfbtL22Xcfa+9TU2a/Gzj41xTcF\nHhga0cgp/hNPCZpSU4JKSwkqLRxUVmqKcjPCau8ZUHokpIxwUBmRkLJSU2K3tJAyIiGCE4BZxatg\nNeqFg836l9/t1QsHW1ScFdHH33Ce3nHJ/FnRSuNpsDKzNZK+KSko6QHn3FfHPW/x52+S1CPpDufc\ny2d6zUQJVs457ajt0P95eo+e3dukstw0fXHNhXrHJSUJ04hHsDo7498v55xG3GsfR2euAGCu8zpY\njdpwoFn//Lu9eulQiyTp0ooc3bh8ntYsK1FFfnJuh+VZsDKzoKS9kt4iqUbSRkm3OOd2jRlzk6TP\nKBasVkn6pnNu1Zle189gVdfWq+f3H4/dDjSrqbNfWakhfeZNi/Xh1QsUCSXW1OVcDFYAgOk3XcFq\n1P7GTj21s0FP7qjXjtoOSdKS4kxdUpajpSVZWjo/SxeVZCVF07uXVwVeKWm/c+5g/IUfkXSzpF1j\nxtws6QcultJeMLMcMytxztWfQ+2e6Ogb1KbDLapr61N9e6/q2/pU196rmtbYTZIKMsNavahA15yf\nr7cunafcJLmUHwCAZHB+UVTnF0X1qTeer+qWHj2185ie23dcz+xp0r9vrjkxbn52qkpy0k5s/F6U\nFbtyOis1pPRwSBmRoNLDIaWHgwqHAgoFAgoHAwoFTaGgKSUQ8P1K8VGTCValkqrH3K9RbFZqojGl\nknwLVtUtPfrYutiMWDBgKo5GVJKTppXlObpjdaWuXVygC4qjCXO6DwCA2aw8L113veG8E9vhNHb2\naXd9p3bVdWhfQ6eOdfRpX2OXnt9/XB2nuIDoTG5dVaF/fPfF01H2WZvRdazMbK2ktfG7XWa2Z6aO\nfXCmDjQ9CiQd97uIWYD3cep4D73B++gN3scpus3vAjzyv+K3abZgMoMmE6xqJZWPuV8Wf+xsx8g5\nd7+k+ydTGF5jZpsmc14XZ8b7OHW8h97gffQG7yMS0WSWfN4oabGZLTSzsKQPSnp83JjHJX3YYq6S\n1O5nfxUAAIAfJpyxcs4NmdmnJT2l2HILDzrndprZ3fHn75P0hGJXBO5XbLmFj05fyQAAAIlpUj1W\nzrknFAtPYx+7b8znTtKnvC0NY3D61Bu8j1PHe+gN3kdv8D4i4fi28joAAMBsM5keKwAAAEwCwSqB\nmdkaM9tjZvvN7Et+15OszOxBM2s0sx1+15KszKzczP5oZrvMbKeZfdbvmpKRmaWa2Utmti3+Pv69\n3zUlKzMLmtkWM/uV37UAYxGsElR8K6FvSbpR0lJJt5jZUn+rSlrrJK3xu4gkNyTp8865pZKukvQp\n/ns8J/2S3uScWyFppaQ18SupcfY+K2m330UA4xGsEteJrYSccwOSRrcSwllyzj0nqcXvOpKZc65+\ndGN151ynYr/QSv2tKvm4mK743ZT4jUbXs2RmZZLeLukBv2sBxiNYJa7TbRME+MrMKiVdKulFfytJ\nTvFTWFslNUr6rXOO9/Hs/Yukv5E04nchwHgEKwCTZmaZkh6V9DnnXIff9SQj59ywc26lYjtUXGlm\ny/2uKZmY2TskNTrnNvtdC3AqBKvENaltgoCZYmYpioWqh5xzj/ldT7JzzrVJ+qPo/ztb10h6p5kd\nVqxF4k1m9iN/SwJeQ7BKXJPZSgiYEWZmkr4rabdz7p/8ridZmVmhmeXEP0+T9BZJr/pbVXJxzv2t\nc67MOVep2M/FPzjnPuRzWcAJBKsE5ZwbkjS6ldBuST91zu30t6rkZGYPS9og6QIzqzGzO/2uKQld\nI+l2xWYHtsZvN/ldVBIqkfRHM3tFsT+efuucY7kAYBZh5XUAAACPMGMFAADgEYIVAACARwhWAAAA\nHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAmZGbD8bWrdprZNjP7vJkF4s9Vmdm/nuFrK83s1pmr9nXH\n7o3vzZcQzOwDZrbfzFi/CpiFCFYAJqPXObfSObdMsdXCb5T0ZUlyzm1yzv2nM3xtpSRfglXcgfje\nfJNmZsHpKsY59xNJd03X6wPwF8EKwFlxzjVKWivp0xZzw+jsi5ldP2Zl9i1mFpX0VUlviD/2V/FZ\npD+Z2cvx2+r4195gZs+Y2b+b2atm9lB8Kx2Z2RVmtj4+W/aSmUXNLGhmXzezjWb2ipl9YjL1m9kv\nzGxzfPZt7ZjHu8zsG2a2TdLVpznmsvjnW+PHXBz/2g+Nefzbo8HMzNbEv8dtZvZ7D/8ZACSokN8F\nAEg+zrmD8fBQNO6pL0j6lHPueTPLlNQn6UuSvuCce4ckmVm6pLc45/riweRhSVXxr79U0jJJdZKe\nl3SNmb0k6SeSPuCc22hmWZJ6Jd0pqd05d4WZRSQ9b2ZPO+cOTVD+x5xzLfG9+jaa2aPOuWZJGZJe\ndM59Pr4/56unOObdkr7pnHsoPiZoZhdJ+oCka5xzg2Z2r6TbzOxJSd+RdJ1z7pCZ5Z31Gw0g6RCs\nAHjpeUn/ZGYPSXrMOVcTn3QaK0XSPWa2UtKwpCVjnnvJOVcjSfG+qEpJ7ZLqnXMbJck51xF//q2S\nLjGz98W/NlvSYkkTBav/ZGbvjn9eHv+a5ngtj8Yfv+A0x9wg6b+YWVn8+9tnZm+WdLliIU2S0iQ1\nSrpK0nOjQc851zJBXQBmAYIVgLNmZucpFkQaJV00+rhz7qtm9mtJNyk2g/S2U3z5X0lqkLRCsXaE\nvjHP9Y/5fFhn/hllkj7jnHvqLOq+QdKfSbraOddjZs9ISo0/3eecGz7T1zvnfmxmL0p6u6Qn4qcf\nTdL3nXN/O+5Yfz7ZugDMHvRYATgrZlYo6T5J97hxu7ib2SLn3Hbn3NckbZR0oaROSdExw7IVmw0a\nkXS7pIkaxfdIKjGzK+LHiJpZSNJTkj5pZinxx5eYWcYEr5UtqTUeqi5UbFZp0seMB8qDzrl/lfRL\nSZdI+r2k95lZUXxsnpktkPSCpOvMbOHo4xPUBmAWYMYKwGSkxU/NpUgakvRDSf90inGfM7M3ShqR\ntFPSk/HPh+NN4esk3SvpUTP7sKTfSOo+04GdcwNm9gFJ/zfeF9Wr2KzTA4qdKnw53uTeJOldE3wf\nv5F0t5ntViw8vXCWx/wLSbeb2aCkY5L+Md6v9V8lPW2xJSgGFeszeyHeHP9Y/PFGxa6oBDCL2bg/\nOAFg1jCzSkm/cs4t97mUk8RPSZ5o6Acwe3AqEMBsNiwp2xJsgVDFZu1a/a4FgPeYsQIAAPAIM1YA\nAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHvn/VTQceooT8i8AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(sparcs['sparcs_ra'], sparcs['sparcs_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, sparcs, \"sparcs_ra\", \"sparcs_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add CFHT-WIRDS" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl83PV95/HXd2Y00ui+ZZ2WD9n4wmCMOcwRQkgJOWiS\nNgGyySa7LU3bbJpH2t12290ej+2x3TbdBkJCyN00LDlKCAlQCJgbY2xjG9+2ZFunrdF9a87v/iHJ\nCMdg2f7N/OZ4Px8PHtHM/Jj5MJE0b32Pz9dYaxERERGRi+dxuwARERGRTKFgJSIiIuIQBSsRERER\nhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hCfWy9c\nWVlpm5ub3Xp5ERERkQXbuXNnv7W26lzXuRasmpub2bFjh1svLyIiIrJgxpj2hVynqUARERERhyhY\niYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxERERGH\nKFiJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGIz+0CMtGD2zrOec1dVzUloRIRERFJJo1YiYiI\niDhEwUpERETEIQsKVsaYW40xh40xrcaYP3mba95ljNltjNlvjHne2TJFREREUt8511gZY7zAfcAt\nQBew3RjzqLX2wLxrSoGvArdaazuMMdWJKlhEREQkVS1kxGoT0GqtPWatDQMPAbefcc1dwMPW2g4A\na23Q2TJFREREUt9CglU90DnvdtfsffOtAMqMMc8ZY3YaYz7lVIEiIiIi6cKpdgs+4ArgZiAAbDXG\nvGqtPTL/ImPM3cDdAE1N2d1uQC0ZREREMs9CRqy6gcZ5txtm75uvC3jSWjthre0HXgDWn/lE1toH\nrLUbrbUbq6qqLrRmERERkZS0kGC1HWgxxiwxxviBO4BHz7jmZ8B1xhifMSYfuAo46GypIiIiIqnt\nnFOB1tqoMeZzwJOAF/i2tXa/Meazs4/fb609aIz5d+ANIA5801q7L5GFi4iIiKSaBa2xstY+Djx+\nxn33n3H7H4B/cK40ERERkfSizusiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUr\nEREREYcoWImIiIg4RMFKRERExCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQ\nBSsRERERhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi\n4hAFKxERERGHKFiJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUi\nIiLiEAUrEREREYcoWImIiIg4RMFKRERExCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJg\nJSIiIuIQBSsRERERhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxyIKClTHmVmPMYWNMqzHm\nT87y+LuMMSPGmN2z//y586WKiIiIpDbfuS4wxniB+4BbgC5guzHmUWvtgTMufdFa+4EE1CgiIiKS\nFhYyYrUJaLXWHrPWhoGHgNsTW5aIiIhI+llIsKoHOufd7pq970zXGmPeMMY8YYxZ40h1IiIiImnk\nnFOBC/Q60GStHTfG3AY8ArSceZEx5m7gboCmpiaHXlpEREQkNSxkxKobaJx3u2H2vtOstaPW2vHZ\nrx8HcowxlWc+kbX2AWvtRmvtxqqqqosoW0RERCT1LCRYbQdajDFLjDF+4A7g0fkXGGMWGWPM7Neb\nZp93wOliRURERFLZOacCrbVRY8zngCcBL/Bta+1+Y8xnZx+/H/gN4HeNMVFgCrjDWmsTWLeIiIhI\nylnQGqvZ6b3Hz7jv/nlffwX4irOliYiIiKQXdV4XERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQ\nBSsRERERhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi\n4hAFKxERERGHKFiJiIiIOETBykUjUxHu3XKU3tFpt0sRERERByhYueiNrmFOjkyzv2fE7VJERETE\nAQpWLtrfMwrAif5JlysRERERJyhYuWR0OkLn4CQ5XkP74ASxuHW7JBEREblIClYuOXhyFAtc31JF\nJGbpGZ5yuyQRERG5SApWLjnQM0pFgZ+rlpQDcGJgwuWKRERE5GIpWLlgKhyjrW+cNXXFFOXlUFno\n53i/gpWIiEi6U7BywaFTo8QtrKkrAaC5ooATAxPErdZZiYiIpDMFKxfs7xmlOM9HfVkAgCWVBUxH\n4upnJSIikuYUrJIsHI1zNDjG6rpiPMYAMyNWACc0HSgiIpLWFKyS7GhwjEjMsrq25PR9pfk5lARy\nODGgflYiIiLpTMEqyfb3jBLI8bKksuD0fcYYllQWcKJ/Aqt1ViIiImlLwSqJovE4h06Nsqq2GK/H\nvOWx5ooCxkJRBibCLlUnIiIiF0vBKomO900wHYmzpq74Vx5rrswHtM5KREQknSlYJdH+nlH8Xg/L\nqwt/5bGqwlwK/F71sxIREUljClZJEreWAydHWVFTSI73V992YwzNlQXqwC4iIpLGFKySpGtwkvFQ\n9HRT0LNprihgaDLC8KTWWYmIiKQjBaskCY6FAGgqz3/ba+Z2CqrtgoiISHpSsEqS0ekIAEV5vre9\nZlFJHrk+jxawi4iIpCkFqyQZnY6S7/fiO8v6qjkeY2iuKOC41lmJiIikJQWrJBmbilCcl3PO65or\nC+gbCzEeiiahKhEREXGSglWSjE5HKQ68/TTgnOYK9bMSERFJVwpWSTI2HaFoASNWdaUBAIJj04ku\nSURERBymYJUEsbhlbDpK8TssXJ+T4/VQmOtjeDKShMpERETESQpWSTARimJhQSNWAKX5OYxMKViJ\niIikGwWrJJhrtVASWFiwKgnkaMRKREQkDSlYJcHY9MwOv3fqYTVfWb6f4akw1tpEliUiIiIOW1Cw\nMsbcaow5bIxpNcb8yTtcd6UxJmqM+Q3nSkx/cyNWC2m3ADMjVpGY1aiViIhImjlnsDLGeIH7gPcB\nq4E7jTGr3+a6vweecrrIdDc6FcUABbkLG7EqzZ8JYN3DUwmsSkRERJy2kBGrTUCrtfaYtTYMPATc\nfpbr/gvwb0DQwfoywth0hMI8H16PWdD1pQE/oGAlIiKSbhYSrOqBznm3u2bvO80YUw98GPiac6Vl\njtHphXVdn1MyO2LVo2AlIiKSVpxavP7PwB9ba+PvdJEx5m5jzA5jzI6+vj6HXjr1jU5FF7xwHaDA\n78XnMQpWIiIiaWYhn/bdQOO82w2z9823EXjIGANQCdxmjIlaax+Zf5G19gHgAYCNGzdmzZa30ekI\nTeX5C77eGENpfg49w+q+LiIikk4WEqy2Ay3GmCXMBKo7gLvmX2CtXTL3tTHmu8AvzgxV2SoaizMZ\njlG0gHMC5ysN+LXGSkREJM2c89PeWhs1xnwOeBLwAt+21u43xnx29vH7E1xjWhsLzfSwKjmPNVYw\nszOwY3AyESWJiIhIgixoGMVa+zjw+Bn3nTVQWWs/ffFlZY6x2aNpFnqczZyS/ByC7SFC0Ri5Pm8i\nShMRERGHqfN6go3Odl0vvoCpQIDekZDjNYmIiEhiKFgl2FzX9fMdsZprEto1rOlAERGRdKFglWBj\n01G8xpDvP7/pvNLAXC8r7QwUERFJFwpWCTY6FaEoz4fHLKzr+pzigJqEioiIpBsFqwQbnY6cV3PQ\nOTleD5WFuQpWIiIiaUTBKsFGp6OnR5/OV31ZQL2sRERE0oiCVYKNTUfOe+H6nPrSPI1YiYiIpBEF\nqwQKR+NMR+IUX8BUIEBdSYCe4WmszZrTf0RERNKaglUCjc22WrjQqcC60gBTkRjDkxEnyxIREZEE\nUbBKoNPNQS9wKrCuNACgdVYiIiJpQsEqgd5sDnphU4H1ClYiIiJp5cI+8WVB5s4JvPARqzxAvaxE\nRCQ1PLit45zX3HVVUxIqSV0asUqg0ekoOV5DXs6Fvc3lBX7ycjwKViIiImlCI1YJNDrbasGcZ9f1\nOcYY6koDOtZGREQSbiGjUXJuGrFKoNGp6AW3WphTX6omoSIiIulCwSqBLqY56JyZXlYKViIiIulA\nwSpBrLWMTkcuesSqrjRAcCxEKBpzqDIRERFJFK2xSpBQNE4kZi+4OeicuZ2BvSMhmirynShNRESy\njNZPJY9GrBJk9CJbLcyZ62XVNTx50TWJiEj2ilvL8GSY4/0T7OseIRTRTEgiaMQqQea6rhcFLn4q\nENDOQBEROS+haIyf7znJz3Z3s79nlOHJMPF5R8+W5efwG1c0sqSywL0iM5CCVYKcPifwIkesFpWo\nSaiIiCxc31iIH2xr519fbad/PMzSqgIaygKsqy+hPN9PaUEO8bjl52+c5JsvHuPaZRW8d80icrya\nxHKCglWCzE0FXuhxNnPycrxUFeUqWImIyFnNrZ/qGwvx/JE+9nQNE4tbVtYU8aH19SyrKjhrP8Xm\nygL+fd8pXm4b4EjvOL+5sYGGMq3lvVgKVgkyOh0l1+ch1+e96OeqUy8rERF5G8OTYZ45FOT19iF8\nXsOVzWVcu7SSyqLcd/z3cn1ebr+sntW1xTy8q5v7n2/jrk1NrK4rSVLlmUnBKkFmWi1c3DTgnPrS\nPA6fGnPkuUREJDP0j4e479lW/mVrOwa4dlkFN66spjD3/D7aW2qK+Py7W7j/hTaeORRkVW3xBZ8Y\nIgpWCTM2Hb3ohetz6koCPHuoD2utvtlFRLLcyGSEb7x4jG+/fJxQNM7ljaW8+5JqSvP9F/ycAb+X\n65ZV8tPd3RwfmGBpZaGDFWcXBasEGZ2O0FzhzE6LutIAU5EYw5MRygou/AdHRETS13goyndeOs4D\nLx5jbDrKBy6t5Yu3rODVY4OOPP/6xlL+ff8pXmkdULC6CApWCWCtZcyBcwLnzLVc6B6eUrASEcky\nU+EY33/1BF97ro2hyQi3rK7hi7esYFVtMYBjwcrv87BpSTkvHOljaCKsz5sLpGCVAJPhGDF78V3X\n59TPC1Zr67WoUEQkG4xMRfijH+/hldZ+JsIxVtQUcuemJhrK8tnVMcyujmHHX/OqJeW8eLSPrccG\nuG1drePPnw0UrBJgdHqu1YIzwWruWBu1XBARyXzBsWm+9dJxfvBqB+OhKCtqCnnXimqak9DIszTf\nz5q6Ena0D3LzqmpHdrZnGwWrBBib7bru1FRgeYGfvByPgpWISAZrDY7z7ZeP85OdXURjcW5bV0tz\nRcHp5SDJcu2yCvZ2j7CrY5irl1Yk9bUzgYJVAjh1TuAcYwy1JQFOjuhYGxGRTGKtZWvbAN986Thb\nDgXx+zx8dEM9v3PDMporC1w5PLmpPJ/60gBb2wbYtKQcj3ajnxcFqwQYC82MWBU6NGIFsKg4j1MK\nViIiGSEcjfOnD+/lpdZ+To1OU5Dr4+ZV1Vy1pILCXB+vtA3wStuAK7UZY7h2WQU/3tlFa3CcFTVF\nrtSRrhSsEmAiFMXv8zh67lJtSR7bjjuz80NERNwxOh3h/23r4Dsvn+DU6DTVRbl85PJ61jeWptRZ\nfesaSvj3fad4pa1fweo8KVglwGQ4RoHf2QV/i0ry6B2dJh63eDwalhURSWVnTuGNTEV4ubWf7ScG\nCUXjLK0q4NPXNtNSXZiSjZ99Hg9XLS3n6YNB+sZCVJ3jeBx5k4JVAkyEohSc55EC51JbGiAat/RP\nhKguynP0uUVEJDEGJ8I8dzjIro5hLJa19SVc31J1uo1OKtu0pIJnD/ex/cSgWi+cBwWrBJgIRR1r\ntTCntngmTJ0cnlawEhFJcX1jIZ47HGRP1zAeY9jYXMYNLVVp1XSzMNdHU3k+JwYm3C4lrShYJcBE\nOMaiEmfDz9zznRyZZn2jo08tIiIOaQ2O8eVnWvnFnh58XsM1Syu4vqXKsYbRydZYFuDltgGisTi+\nFFoDlsoUrBxmrZ2ZCvQ7PBU4G6xOjaiXlYhIqmnrG+eeZ47y6J4eAjlerm+p5LqWKgodXhaSbA1l\n+cTi/ZwcmaaxPN/tctJCev8/noImwjGicev4GqvyAj9+r4eTo2q5ICKSKo73T3DvM0d5ZHc3uT4v\nd9+wlLuvX8qT+3vdLs0Rc2Gqc2hSwWqBFKwcNjgeBqAg19ldgcYYFpWol5WISCpoDY7z1Wdb+dme\nHnK8ht+6fil337CUysLM2j1XEsihOM9H5+AkLHO7mvSgYOWwwcnZYOXwVCDMrLNS93UREfccPjXG\nH/14D/u6R/B5DVcvKeeGFVUU5eXwVIaMUp2psTyfziEtQ1koBSuHDU6EAByfCoSZdVaJOM1cRETe\n2e7OYb72XCtP7u/F7/Nww4oqNi+vTPs1VAvRWJbP/p7RhLQSykQLeoeMMbcCXwa8wDettf/7jMdv\nB/4XEAeiwBestS85XGtaGDg9FZiIYBXgiZFTahIqIpIEsbjlqf2n+OZLx9nZPkRRno/Pv3s5xYEc\n8hMwK5GqGspnem51DU2yclGxy9WkvnN+ZxhjvMB9wC1AF7DdGPOotfbAvMueAR611lpjzKXAj4BL\nElFwqhucmAlW+Q53XoeZEatwLM7gZDjj5vFFRFLF2HSEH+/o4juvHKdzcIrG8gB/8cHV/ObGRgpz\nfa4cjOym+tIABugcmlKwWoCFRO5NQKu19hiAMeYh4HbgdLCy1o7Pu74AsE4WmU4GJ8J4PYZcn/P9\nPhadbrkwrWAlIuIgay2vdwzzt48d5I3uYSIxy+KKfO7a1MTqumI8xvDo7h63y3RFrs9LTXHezAJ2\nOaeFBKt6oHPe7S7gqjMvMsZ8GPg7oBp4vyPVpaGBiTAFfm9Czn6qndckdG19iePPLyKSbYYmwvx0\nVzcPbe/gSO84fq+HyxpLubK5nIYytReY01geYF/3KNbalDzbMJU4Nklsrf0p8FNjzA3MrLd6z5nX\nGGPuBu4GaGpqcuqlU8rQRDhhi/sWqUmoiMhFC0fjPHc4yMOvd/PMoV4iMcv6hhL+7iPrmA7HyM1x\nfilHumssy2f7iSEGxsNU6kDmd7SQBNANzD9EpWH2vrOy1r5gjFlqjKm01vaf8dgDwAMAGzduzMjp\nwoEEBqvKglx8HqOWCyIi58layz8+dYTXO4bY0znMZDhGQa6PTc3lbFhcRm1JAGtRqHobDfMahSpY\nvbOFJIDtQIsxZgkzgeoO4K75FxhjlgNts4vXNwC5wIDTxaaDwYkwZfmJORPK4zHUFKtJqIjIQvWP\nh3hkVzc/2dnFoVNj+DyGVbXFXN5USkt1EV7tsF6Q6qJc/D4PnUOTXN5U5nY5Ke2cwcpaGzXGfA54\nkpl2C9+21u43xnx29vH7gY8CnzLGRIAp4OPW2owckTqXwYkwDWWBhD1/XWkePZoKFBF5W9FYnGcP\n9/GjHZ08eyhING5Z31jK7ZfVcWl9KYEE7NrOdB5jaCgN0Dmoz59zWdCclbX2ceDxM+67f97Xfw/8\nvbOlpZ9QNMZ4KJrQ/iaLSgLs7VKTUBGR+R7c1sHIVIQdJwbZfmKQ0ekoRbk+rllWwYamMmqK89wu\nMe01lufz0tF+IrE4OV7nd75niuzpcJYEcz2snD4ncL7akjye2j+tnRkiIkA8bnmptZ9/fbWdQ6dG\niVtoqS7kQ+vLWbmoWFN9DmosCxCzlpPDUzRVFLhdTspSsHLQ6WCVyBGr4jxC0TjDkxHKCvwJex0R\nkVQ2Hory8OtdfPeVExzrm6DA7+X6liqubC6nXL8bE+LNBewKVu9EwcpBb45YJe5tnd/LSsFKRLJN\n+8AE33ulnR/v6GQsFGV9Qwn//PHLGJ2K4NP0VEIV5+VQEsihc0iNQt+JgpWDkjEVeLqX1egUq+t0\ntICIZL4fvNpO+8AkL7X2c/DkKMbA2voSNi+rpLE8n8lwTKEqSRrKAurAfg4KVg6aO4C5MIFTgbUl\nMzsO1ctKRDJdNBbniX2n+NrzbXQNTRHI8XLjiiquXlpBcSAxbW3knTWW5bO/Z5TxUJTCBM7OpDO9\nKw4anAjjMZCXwK28VUW5eD1GvaxEJGNNhKL8cHsn33rpON3DU1QU+PnQ+jo2NJXhT8A5rLJwjbPr\nrLoGJ7mkVrMmZ6Ng5aCBiTBl+X48Cdyt5/UYaopy6RlWsBKRzDIwHuJ7r5zge1vbGZmKsKm5nL/8\n0Bp6R6cT+ntVFq6+NIDHzHRgV7A6OwUrBw1NhB3djfLgto6z3u/zetjdOcSD2zq466rMPHNRRLLD\ng9s6GJwI8+LRPna2DxGLW1bVFnPnpiaayvPpGwspVKUQv89DTXEe3cNqFPp2FKwcNOhwsHo7xYEc\nTQWKSNprDY7x4x2d7OkaxhjD5Y2lXNdSSXWRmnmmsqqiXC1gfwcKVg4amAixclFRwl+nJM/HkVMR\nsvTUIBFJc3u7Rrjv2VaePHAKn8dw7bJKNi+vpEQL0tNCZWEue7tGiMbi2o15FgpWDkrWiFVJIIdw\nLM50JJ7w1xIRccqOE4Pcu6WV54/0UZTn43M3Lac4Lyehvf/EeZWFfiwzn3nVOiroV+i72SGxuGV4\nKkJ5QW7CX2tum/HIdCThryUicqEe3NaBtZa2vgmePRzkeP8E+X4v711dw9VLK8jL0WHI6ahi9nOu\nf1zB6mwUrBwyNBnGWqhI0ogVwOiUgpWIpCZrLYdOjfLsoSCdQ1MU5fl4/7parmwuV8uENFdZOBes\nQi5XkpoUrBwyNNt1vazAz/h0NKGvNResRiYVrEQktcTjlif3n+Irz7ayv2eU0kAOH1pfxxWLy8jR\nepyMEPB7KfB7GZhQsDobBSuHDMwGq4okBKuivBwMmgoUkdQRjcX5xRsnue/ZVo4Gx2muyOejG+q5\nrLEMr0ftEjJNRWEu/bOnjchbKVg5ZO6cwPICP+0Did2G6vUYivJ8jGgqUERcFonFeWRXN/c928qJ\ngUlW1BTy5Tsu4wOX1vHD7Z1ulycJUlmYS2twzO0yUpKClUPmj1glQ3EgR2usRMQ1/7L1BLvah3nu\nSJChyQh1JXl84qomVtUWMxGKKVRluMpCP693RAlFY+T6tAlhPgUrhwyOv7nGKhlKAjn0jWl+W0SS\nKxSN8aMdXXzpqSOMTEVoKAvwwUvrWLmoCKMO6VmjYnYB+8B4mLrSgMvVpBYFK4cMToQozvMlbXFm\ncSCH1uB4Ul5LRCQSi/OTnV18ZUsr3cNTNJXn8+HL62mpLlSgykKVhTODCP3jIQWrMyhYOWRgInw6\nwSdDSV4OoWicsekIRXnqViwiiRGNxXl4Vzf3bjlK5+AUlzWW8ncfWUfn4KQCVRab38tK3krByiFD\nk2HK8pMXcOZaLpwamVawEhFHPbitg7i17O0a4emDvQxMhKkvDfAfr1nMipoiuoamFKqynN/noSSQ\nw4B6Wf0KBSuHDIyHaSjLT9rrzQWrkyPTtNQk/nxCEckO1loOnhzllwd6OTU6zaLiPP7DVYtZVas1\nVPJWFYV+NQk9CwUrhwxOhFnfUJq015s/YiUi4oRX2vr5hycPs6tjmIoCPx+/spF19SV4FKjkLOYO\nY5a3UrBygLWWockw5YXJ2REIUBSY+b/upIKViFykXR1D/ONTh3m5dYDakjw+fHk9G5rU2FPeWWWB\nn6lIjMlQlHwdpH2a3gkHjE5HicRs0npYAfg8HgpzfZwanUraa4pIZjl4cpQvPXWEpw/2UlHg53+8\nfxX/4erFPPx6t9ulSRo4fWbgRJgmBavT9E44YH7X9WQqzc+ha0jBSkTOT1vfOF9++ig/f6OHwlwf\nf/TeFXxm8xIK9OEo52H+YcxN5clbY5zq9FPkgMGJ5DYHnVOW76dzMLHH54hI5jjeP8EXf7ib3Z3D\n+LyGG1qquL6lkny/j5/t7nG7PEkzZQV+PAYtYD+DgpUDBpN8nM2c8gI/B0+OEo3F8enUeBF5G+0D\nE9zzTCuP7O7GY+C65ZVcv6KKQo1QyUXwegxl+X4G1MvqLfRT5YDBiZm0nuypwIoCP9G45eTINI0a\nhhWRM7QGx/nqc638bHcPPo/hM9c2U1WUq9534pjKwlyNWJ1BwcoBbx7AnLzO6/Dm1GPH4KSClYic\ntq97hK8+18oT+06R5/Py6Wub+Z0bl1JdlMeD2zrcLk8ySEWhn+P9E1hr1edsloKVAwbHwwRyvAT8\nyT3he27qsX1gks3Lk/rSIpKC/vaxgzx/pI/DvWPk+jzcuKKKa5dVUpjr4+kDQbfLkwxUWZhLOBZn\nbDpKcUAjoaBg5YjBiXDSpwFh5iBmv9dDhxawi2SteNzy9MFevv7CMXa2D5Hv93LL6hquXlKR9D/2\nJPvM3xmoYDVDwcoBg5NhKpLYHHSOxxgaygJ0DE4k/bVFxF3haJxHdnfzwAvHaA2O01AW4IOX1nLF\n4nL8Pm1mkeSonP3s6x8Ps7TK5WJShIKVAwYnwpTlJz9YATRV5NM+oBErkWwxMhnhB6+1892XTxAc\nC7Gqtpgv33EZ719Xy492dLldnmSZ4kAOPo/RYczzKFg5YGA8zPKqQldeu6k8n50nhrRwUCTD3bel\nlZfb+tlxYohwLM7y6kJuW1dLS3UhE6GYQpW4wmOMDmM+g4KVA9xaYwUzwWosFGV4MpL0BqUiknh7\nu0b4+gttPPbGSYyBSxtKub6lktqSgNuliQAz66yCowpWcxSsLtJUOMZUJJbUA5jnW1xRAMy0XFCw\nEskM8bjl+SN9fP2FNl49Nkhhro/Nyyu5dlkFpS4tOxB5OxUFuRw6OUbcWjyaOVGwulgDs81Bk911\nfc7c+Uztg5Osbyx1pQYRccbcgvRvvHCMo8Fxakvy+LPbVvHxTY38Ys9Jt8sTOavKQj8xaxmejLg2\ne5NKFKwu0tBEBIDyJDcHnTMXrDoGtDNQJF1956XjvHZikJdb+xmdjrKoOI/fvKKBSxtK8XqMQpWk\ntPktFxSsFKwu2oBLx9nMCfi9VBXlqpeVSBrqHw/x3ZdP8M2XjjEdibO0soCPbGigpbpQm1EkbVSc\nbrkQYkWxAbpvAAAgAElEQVRNkcvVuE/B6iLNHcDsZkpfXK6WCyLppGd4igdeOMb/e62DcCzO6tpi\nbmip0tFUkpYKc33k+jz06zBmQMHqoqVCsGqqyOfVtgHXXl9EFuZE/wRfe66Nh3d1YS18+PJ6Pvuu\nZWw7Nuh2aSIXzBhDZWGuelnNWlCwMsbcCnwZ8ALftNb+7zMe/wTwx4ABxoDftdbucbjWlDQwESbH\nayjOcy+jNpXn89Nd3YSiMXJ9OsJCJJU8uK2D3tFpnjsc5I2uEbwew8bmMq5vqaIs369QJRmhotBP\np5akAAsIVsYYL3AfcAvQBWw3xjxqrT0w77LjwI3W2iFjzPuAB4CrElFwqukfC1FRkOvqeojFFflY\nC52DUyyvdqdRqYj8qgM9ozy4rZ39PaPkeD1c11LJdcsrKcrTmWqSWcoL/OzrHiEWt26X4rqFDLNs\nAlqttccAjDEPAbcDp4OVtfaVede/CjQ4WWQqC46FqC52Z0fgnLmdgZ2DkwpWIilgb9cI92w5yi8P\n9JLr83Djyio2L6ukIFerLyQzVRT4iVsYmYq4XYrrFvJTXg90zrvdxTuPRv1n4ImLKSqdBMdC1Jfm\nuVpDU/lMk9B2tVwQcdXO9kHu3dLKc4f7KM7z8YX3tFCUm0PAryl6yWxzDarndspnM0f/fDLG3MRM\nsLrubR6/G7gboKmpycmXdk3f2DSXudyYs7LQT77fS8fglKt1iGQjay1b2wa4d0srW48NUF7g57/+\n2ko+dc1iivJyeHBbh9sliiRc+eyJAHMburLZQoJVN9A473bD7H1vYYy5FPgm8D5r7Vm3qFlrH2Bm\n/RUbN25M+4nYSCxO/3iY6iJ3pwKNMTSV59MxqBErkWSJxy1/+eh+njvSR8fgJEV5Pm5bV8um5nL8\nPg8/V1NPySLFgRy8HsOQgtWCgtV2oMUYs4SZQHUHcNf8C4wxTcDDwCettUccrzJFzZ3m7fYaK5hZ\nZ3W8X8FKJNGisTi/eOMkX3uujcO9Y5Tm53D7ZXVsaCojx+txuzwRV3iMoSzfz4CC1bmDlbU2aoz5\nHPAkM+0Wvm2t3W+M+ezs4/cDfw5UAF+d3R0XtdZuTFzZqWHuNO+aInfXWMFMsHr+SB/WWnVsFkmA\n6UiMH+/o5OsvHKNraIqW6sK3HDsjku3KC3I0YsUC11hZax8HHj/jvvvnff1bwG85W1rqC46lzojV\n4op8QtE4wbEQNcXuBz2RTDE2HeFfX+3gWy8dp388xOVNpfzFB9dw8yXVPLS989xPIJIlygtyaR+Y\nzPo/8LX39yIEx6YBqE6BEau5ozA6BicVrEQc8MALx3ilrZ9Xjw0wHYnTUl3Ir19Wx5LKAvrGQgpV\nImcoL/ATisYZnoyc3iWYjRSsLkJwNIQxM7vy3La4Yq7lwiRXNpe7XI1I+gqOTfP154/xL1tPEI1Z\nVtcV864V1dSXBdwuTSSlVcyGqY7BSQUruTDBsRAVBX58KbBgtb40gMfMfEOLyPnrHw/x9efb+P6r\n7URilvUNJdywoiolRqRF0kHZvGC13uU2RG5SsLoIwdFpqlLkl67f56G2JECHmoSKnNP83lIToSgv\nHu1j67EBojHLZY2lvPuSaioK3V87KZJO5npZZfsf+ApWFyE4FnK9h9V8iyvyac/yb2iRhYrE4rzS\n2s9zR/oIR+Osbyzl3SurqUyhn2mRdOL3eSjK9dExkN2fQwpWFyE4Ns2q2iK3yzitqTyfpw/2ul2G\nSEqLxy27OoZ46kAvI1MRVi0q4r1rFmnTh4gDygr8GrFyu4B0FYvb2a7rqfPLuKkin/7xMOOhKIU6\n7FXkV2w7NsBfP3aQvd0j1JXm8ZtXNLC0SgeXizilXMFKwepCDU6EicVtSvSwmrN49jDmzsFJVtUW\nu1yNSOo4NTLN3zx+kJ/v6aGuZCZQrW8sxZPFvXZEEqG8wM+ermHC0Th+n/sbu9ygYHWB3uxhlTrB\nqmm2l1X7gIKVCEA4Guc7Lx/nnmeOEolb/uDmFn73Xct4+PVfOe5URBxQXuDHWugamsza0WAFqws0\nd5xNquwKhJmpQECHMUtWm9vx1xoc5+d7eugbD3HJoiI+cGkd5QV+hSqRBJq/M1DBSs5LKo5YlQRy\nKAnkZP38tmS3sekIj+89yZ6uEcoL/HzqmsVcskgjuCLJUD7bMLsziz+HFKwu0NyIVSqtsYLZlgtZ\nvtVVslM8bnnwtQ7+79NHiMQs776kmhtXVJGTAg18RbJFUa6PXJ8nqz+HFKwuUHAsRGl+Drk+r9ul\nvMWSygJeOz7odhkiSXWgZ5Q//eledncOs7SqgNvX11OVQqPJItnCGENTeX5Wz5woWF2g4Nh0Sk0D\nzllbV8LPdvcwMB5S52jJeJPhKP/89FG+9dJxSgM5/N+Pr2cyFMNot5+IaxZXZHew0hj5BZrpup46\nC9fnrKmfWUuyv2fU5UpEEuvZQ0Fu+acXeOCFY/zmFQ0884c38uHLGxSqRFzWODtiZa11uxRXaMTq\nAgVHQ1y1pMDtMn7FmtoSAPb1jHDDiiqXqxFx1oPbOhidjvDYGyfZ2z1CVVEuv339UpZUFvD43lNu\nlycizLT+mQzHGJgIU5mFMycKVhfAWkvfWIiqFFu4DlCSn0NjeUAjVpJx4nHLtuMDPLn/FNGY5T2r\nqrmhpQqfFqeLpJTFp1v/TCpYycIMT0YIx+IpORUIM+us9nePuF2GiGOO9o7x3x/ey472IZZWFvDr\nl9XrsGSRFDXXrLpjYJINTWUuV5N8ClYXIDg202qhJgVHrADW1BXzxL5TjE5HKM7LcbsckQs2HYnx\n1Wdb+drzbRTk+vjohgY2NJVqHZVICmsoe3PEKhtpDP0CvNkcNDVHrNbUz6yzOqjpQEljW9sGuO3L\nL3LPllY+cGkdz3zxRq5YXKZQJZLi8nK8LCrOy9pgpRGrC3C6OWiKTkWsrZtbwD7KVUsrXK5GZGHm\njqKZCEV5Yt8pXu8YorzAz2c2N9NSXcST+3tdrlBEFqqpPJ+OLG0SqmB1AeamAlOt6/qcqqJcqoty\ntc5K0oq1ll0dwzy+7yTTkRg3rqjippXV+H0aWBdJN43l+bzc2u92Ga5QsLoAvaPTFOb6yPen7tu3\ntr6EfT0KVpIe2vrG+dZLxznWP0FTeT6/flk9i0pSc6pdRM5tcUU+//b6NNORGHk5qXVCSaKlbjJI\nYX1joZSdBpyztq6Y5w4HmQrHCPiz65ta0sdkOMpXtrTyjReP4fUYbr+sjiuby/FoHZVIWpvbGdg1\nNMny6iKXq0kuBasLEBybTvlzyNbUlxC3cOjUKJdn4XZXSW3WWp7c38v/+sUBuoen+MiGelbWFFGk\nXawiGaGx/M2dgdkWrLR44QIEx0LUFKf2NMWaupmjbfZpZ6CkmOP9E3z6O9v57L/upCjPx49+5xr+\n6WOXKVSJZJDTTUKzcAG7RqzOk7WW4GjqTwXWlwYozc/hgNZZSYoYmYpw7zNH+d7WE+T6vPzPD6zm\nP16zWJ3TRTJQRYGffL+X9ixsuaBgdZ7GQ1GmIrGU3RE4xxjD2roS9nVrxErcFY3F+eKP9vD0wV6m\nwjGuWFzGLatrCOR4+dGOLrfLE5EEMMbQVJ5Pp4KVnEvv6R5WqT0VCDPTgd95+QSRWJwcjQqIC148\n2sdf/+Igh3vHWFJZwPvX1VJXGnC7LBFJgqbyfE4MTLhdRtIpWJ2nN7uup/aIFcwsYA/H4hztHWf1\n7JorkWQ4eHKUv338IC8e7aexPMBdm5pYU1esrukiWaSpPJ/nj/QRj1s8nuz52VewOk99Kd4cdL61\npxewjyhYSVKcGpnmS08d5ievd1Gcl8P/eP8qPnnNYv5tZ7fbpYlIki2rLiQUjdM9PHV6l2A2ULA6\nT3PH2VSlyFTg3DEgZxO3Fr/PM9OBfWNjEquSbPLgtg5CkRjPH+3j5dZ+4hY2L6vkppXVBPxehSqR\nLLW8uhCA1uC4gpW8veDYNHk5HorzUv+t8xhDbUmeWi5IwsTilu0nBvnlgV7GQ1EubSjhvasXUV7g\nd7s0EXHZ8qo3g9VNl1S7XE3ypH46SDHBsRDVRXlps1akrjTAns5hYnGLN4vmuCXxXjraz18/doBD\np8ZoKs/nk1cvzqq/SkXknZUV+Kks9HM0OOZ2KUmlYHWeeken02Lh+pz6kgBb2wY43j9xelhW5GIc\n75/gf/3iAFsOBWkoC3DnpibWamG6iJzF8upCWoPjbpeRVApW5yk4FuKSRenTnr+2dGYt2P6eEQUr\nOW/z1/CFo3GePRzkpdZ+fB7DrWsWcc2yCrXyEJG3tby6kJ/t7sFamzV/fClYnae+0RA3tFS5XcaC\nVRflzSxg7xnl9svq3S5H0pC1lr3dIzyx7xQjUxEubyzl19YuolhH0IjIOSyvKmRsOkrfWIjqFD8K\nzikKVudhKhxjLBRN+QOY5/N6DKsWFbGvW0fbyPnrHZ3m0T09HO+foK4kjzuubGRxRYHbZYlImmip\nmZnhaQ2OK1jJr0qn5qDzra0v4dHdPerALgs2FY5xz5ajfP35NnJ9Xm6/rI4rm8vxZMlQvog4Y24J\nytHgONcur3S5muRQsDoPwdnmoDVplrpvWFHFD7Z1sP3EINcuy45vbLlwzxzs5S8e3U/X0BQbmsq4\nde0iCnP1q0JEzl91US5Fub6sWsCu35bnoXd0dsQqDbquz3d9SyV+n4enDwQVrORt9QxP8Vc/38+T\n+3tpqS7kh3dfTVtf9p3zJSLOMcawvCa7dgYuaF7IGHOrMeawMabVGPMnZ3n8EmPMVmNMyBjzR86X\nmRqCaXQA83z5fh/XLa/klwdPYa11uxxJMdFYnG++eIz3/NPzPH+kj/9260oe+/z1XLW0wu3SRCQD\nLK8q5GgWBatzjlgZY7zAfcAtQBew3RjzqLX2wLzLBoHPA7+ekCpTRHAsRI7XUJaffruh3rOqhi2H\nghwNjrOiJn3aRUjiPLitg87BSR7Z3c3JkWlW1hTxwfV1lAb8/GRnl9vliUiGaKkp5Mc7uxiZjFCS\nhp+f52shI1abgFZr7TFrbRh4CLh9/gXW2qC1djsQSUCNKSM4Nk1VYW5a9uK4edXMcQK/PNDrciWS\nCkamIvxsdzf3P9/GRCjKnZua+NQ1i3UUjYg47vSZgX3Z0YF9IcGqHuicd7tr9r6s0zU0RW1pwO0y\nLkhNcR6XNpTw9EEFq2xmreWRXd3c/KXnee34IFcvq+AL71nBuvqStPyDQURS3/KqmVmSo73ZMR2Y\n1L33xpi7jTE7jDE7+vr6kvnSjmgLjtOSxt3L37Oqht2dw/TN7m6U7NIaHOOub2zjCz/cTX1pHr/3\nruV88NI68nK8bpcmIhmsvixAXo4naxawLyRYdQON8243zN533qy1D1hrN1prN1ZVpU/3coCB8RAD\nE+G0PhbmPatqsBaePRR0uxRJoqlwjP/z74d435dfZH/PCH/962t5+Pc2U1+WnqOvIpJevB7D0spC\nWvuyI1gtpN3CdqDFGLOEmUB1B3BXQqtKQXNJuyWNF36vqi2ivjTALw/28rErG8/9L0jaenBbB9Za\n9veM8vjekwxPRdjQVMqta2vxGMMPt3ee+0lERByyvLqQne1DbpeRFOcMVtbaqDHmc8CTgBf4trV2\nvzHms7OP32+MWQTsAIqBuDHmC8Bqa+1oAmtPqrmtouk8FWiM4T2rqvnhjk6mIzFNAWWwvrEQP3+j\nh9bgOIuK8/jtjY0sqdRRNCLijpbqQh7d08NkOEq+P7NbaC7ov85a+zjw+Bn33T/v61PMTBFmrNbg\nOAV+L7Ul6dXD6kw3r6rhe1vbebm1n5tX1bhdjjhsIhTl3i2tfOOFY+T4DB+4tJarllTg9Whhuoi4\nZ24ZzbG+CdbWl7hcTWJldmx00NHgGMtritJ+59RVS8spzPXx9MFeBasMYq3lZ7t7+LsnDtI7GmJD\nUxm/tqaGorzM7xkjIqmvpWbuzMAxBSuZcbR3nBtWpNeC+7PJ9Xm5cUUVTx8M8jdxi0cjGWlvX/cI\nf/nofna0D7GuvoSvfuIKDp/Kjn4xIpIeFlcU4POYrNgZqGC1ACOTEYJjobReXzXfe1ZX89jek7zR\nPcJljaVulyMXaGA8xD8+dYSHtndQnu/n/3z0Un7jigY8HqNgJSIpJcfrYXFFvoKVzJjrFpvOrRbm\nu2llNV6P4ZmDvQpWaej7W9t59dgAzxzqJRyNc+3SCt59SQ3RuOUh7fYTkRTVUl3EkWDm/9GX1Aah\n6WquW2xLdfq2WpivNN/PxsVlOt4mDT13OMg9zxzlsb0naSzL57+8u4X3X1pHwK8dniKS2pZXF9I+\nMEk4Gne7lIRSsFqAo8Fx8nI8GdVQ8b1rFnHo1BhvdA27XYoswLG+cf7Td7fz6e9sJ24tn7p6MZ++\ntpma4vTepSoi2WN5dSGxuOXEwITbpSSUgtUCtAbHWVZVmFFb1j+2sYHiPB/3PNPqdinyDkamIvz1\nLw7wa//8Aq8dH+RPb7uEP7i5hUtqi9N+h6qIZJfThzFn+DorBasFaE3zMwLPpigvh/983VKePtjL\nvu4Rt8uRM8Tilh9sa+emf3yOb718nI9c3sCWP7qRu29Yhs+rH1sRST/LqgoxJvODlRavn8N4KEr3\n8BR31TS5XYrjPr25mW++dIyvbGnl/k9e4XY5wsxRNMf6xnls70lOjkzTXJHPnZuaqC8N8PQBnfEo\nIukr4PfSUBY4fZJJplKwOoe22W+ATNkROF9JIIfPbF7CPc8c5dCpUS5ZVOx2SVmtrW+c7289wcFT\nY5Tm53DnpibW1mnKT0Qyx/KqQo1YZbtMOCPwwW0db/tYcZ6PXJ+Hr2xp5St3bUhiVTJnaCLMl585\nyr++2o7XY3jv6ho2L68kR1N+IpJhllcX8krbALG4zah1y/MpWJ3D0eAYfq+HpvJ8t0tJiHy/j2uW\nVvDY3pN8ITjG8gxpKZEOpiMxvr+1nXu3HGU8FOWOTU0sLs/XMTQikrFWLiomFI3TGhxn5aLM/LzR\nn8Tn0No7ztKqgoxeMLx5eSWBHC9f2aIdgskQi1t+srOLm7/0PH/z+EEuayrjiT+4gb/98DqFKhHJ\naFctKQdga1u/y5UkjkaszuFocJxLGzL7wMiCXB+fvGYx33jhGJ+/uYWlVek77ZnKfvBqO4dOjfHU\ngVP0joaoLw3wnzYvYXl1ITvbh9jZPuR2iSIiCdVYnk9jeYBX2gb49OYlbpeTEJk7DOOAqXCMzqHJ\njOm4/k5++/ql+H0e7nu2ze1SMtLWtgEeePEY33+1nWjMcseVjfzuu5Zl5KYIEZF3cs3SCrYdHyQe\nt26XkhAKVu+grW8cazNzR+CZKgtz+Q9XLeaR3d3s7VJfK6e8emyAOx7Yyp3feJXBiTC3X1bHF96z\ngksbSvFot5+IZKFrl1UyMhXhwMlRt0tJCE0FvoO5LaEtNZkfrAB+76blPL73JJ/91508+rnNVBTm\nul1S2nrt+CD/95dH2HpsgKqiXP7ig6vxGKOdfiKS9a5ZVgHMjOSvrc+8pTb6Lf8OWoPjeD2G5ooC\nt0tJivICP1//5Eb6xkN87sFdRGOZfVCm06y1PHc4yMe+vpWPfX0rR4Pj/M8PrObF/3YTn9m8RKFK\nRASoKc5jaWUBW48NuF1KQmjE6h0cDY7RXJGP35c9H4jrGkr4uw+v4w9/vIe/ffwQf/7B1W6XlPJi\nccuf/XQvLxzpo2dkmpJADu9fV8uVzeX4fR4efr3b7RJFRFLKNcsq+NnuHqKxeMbtulewegdHg+Os\nyIKF62f66BUN7O0e4dsvH2dtfTEf2dDgdkkpaSoc4+FdXXzzxeMc75+gstDPRzfUs76xFJ8ns35R\niIg46ZplFfxgWwd7u0e4vKnM7XIcpWD1NkLRGO0Dk7x/Xa3bpbjiz96/ioMnR/nvD+9lRU1RRs6D\nX6i+sRDf33qC77/aztBkhHX1Jdy5qYk1dcVakC4isgBXL51dZ3VsIOOClf6sfhsn+ieJxW1W7Ag8\nmxyvh/s+sYGKAj+/8/2d9AxPuV2S6w6fGuOPf/IGm/9+C/c+28oVi8v54d1X8+jnNrOuvkShSkRk\ngSoLc1lZU8TWtsxbZ6URq7dxNDgGkBU9rN5OZWEu93/yCu584FU+cO9L3Hvn5WxeXul2WUkVicX5\n85/t59VjAxzvnyDHa9jQVMbmZZVUFuXS1jdBW9+E22WKiKSda5ZV8MPtnYSj8Yxay6xg9TaO9o7j\nMbC0Kjt2BL7TQc2/fcNSfrCtg09+axt/+N6V/O6Ny/Bk6OGZc4Kj0zy0vZMfbGundzREWX4Ot65Z\nxMbFZeTn6sdGRORiXbOsgu++coI9XcNc2VzudjmO0SfE22gNjtNUnk9ejtftUlxXXZTH771rGTvb\nh/iHJw+zq2OYL31sPSWBzDrXLhKLs+VQkB/v6OTZw33E4pYbVlTxa6vzWbGoSFN9IiIOunpJBcbA\nK60DClaZzlrL7s5h1tQVu11Kysj1ebn3zsu5YnEZf/PYQT70lZf4619fy3XLKzFpHDistRw6Nca/\n7ezip7u6GZgIU12Uy903LOVjGxtZUlnwjqN5IiJyYUryc1hTV8zWY/38AS1ul+MYBauz2Nk+RPfw\nFF+8ZYXbpaQUYwyf2byEdfUlfP7/7eKT33qN9Y2l/JeblnPzquq0CVjWWvb3jPLEvpP8cHsn/eNh\nvMZwSW0RH7i0luXVRXg9hq1tAxm5sFJEJFVcs7SC773SznQkljEzRApWZ/Fvr3cTyPFy69pFbpeS\nkjY2l/Psf30XP9nZxdeea+O3/mUHq2qL+f2blvG+tbV4U3D91WQ4yvYTQ7x0tI8n9/fSMTiJ12NY\nUlHA5uWVrKkroVBrp0REkuqaZRV848XjvN4+xLUZsjlKnyRnmI7EeOyNHm5du4gCfdC+xZlTYgbD\n79ywjD1dwzx3uI/PPbiLsvx93LSymnevqub6lirX1mFNhqMc6BnllbYBXm7t5/WOISIxi9/r4Zpl\nFfz+Tcu4ZfUi/n3fKVfqExERuLK5fGaG4NiAglWm2nIoyOh0lA9fXu92KWnB65lpP3BZYykHT44y\nFY7x7OEgD+/qxucxXNlczqYl5axcVMSKmkKaKwocPb4gFrecGp2mvX+CAydH2d8zyr7uEdr6xolb\nMEBtaR7XLK1gWVUhiysK8Ps8xOIoVImIuKwoL4d19SW80jbAH7pdjEMUrM7w8OvdVBflZl2/povl\nMYY1dSXcdVUTsbhld+cQzxwMsuVQkHu2HMXamev8Xg9LqwpoKs+notBPWb6f8oKZ/y3M8+ExBgN4\nPDMjYrG4ZSwUYWw6yuhUhNHpKEMTYbqHp+gamqJneIpo3J6uY1FxHmvri7ltXS1r6orpGJhUewQR\nkRR27bIKHnjhGBOhaEbMFKX/f4GDBsZDPHc4yH+6bklKrhNKB/OnCxvK8vnUNc1EYnH6xkL0jk7T\nOzqN12NoH5hkV+cwQxPhtwSjc8n1eSgJ5FBfFqA0P4cllQWU5/spK/CzqCTvLeuk+sfDClUiIinu\nhhVVfPW5Nh7Z3c0nrlrsdjkXTZ868/zijZNE45aPbNA0oJNyvB7qSgPUlQZ+5TFrLdOROJPhKNPR\nOFiw2NnHwBjIy/HO/OPzZNwp6CIi2e6qJeVcsbiMe545ykc3NKT97kAFq3kefr2LVbXFXLJI/auS\nxRhDwO8l4E/vHyQREbkwxhj++NZL+NjXt/K9V07wOzcuc7uki6I//2e1BsfZ0zXCRzVaJSIiklSb\nlpRz08qZKcGRqYjb5VwUBatZP93VhcfAh9bXuV2KiIhI1vmjX1vJyFSEB15oc7uUi6JgBcTjlkd2\n9XB9SxXVxXlulyMiIpJ11tSV8KH1dXz7pRMEx6bdLueCKVgB244P0j08pUXrIiIiLvriLSuIxOJ8\nZUur26VcMAUrZqYBC/xe3rtaR9iIiIi4pbmygI9f2ciD2zroGJh0u5wLkvXB6pmDvTyyu4fb1tVq\nZ5qIiIjLPn9zCz6v4Z9+edjtUi5IVgerR3Z1c/f3d3LJoiL++22r3C5HREQk69UU5/GZzUv42Z4e\nnj7Q63Y55y1rg9V3Xz7OF364m03N5Tz421dTXuB3uyQREREBPnvjMlbWFPFb/7KDP/vpXibDUbdL\nWrAFBStjzK3GmMPGmFZjzJ+c5XFjjLln9vE3jDEbnC/VGdZa/vnpI/zlzw9wy+oavvOZK99yDIqI\niIi4qySQwyO/v5nfvn4JD77WwfvveYldHUNul7Ug5wxWxhgvcB/wPmA1cKcxZvUZl70PaJn9527g\naw7XedGisTh7u0b405/u5Z+fnmmb/7VPbEj71vkiIiKZKC/Hy5+9fzUP/tbVhKNxfuP+rfzTU4dT\nvoHoQoZqNgGt1tpjAMaYh4DbgQPzrrkd+BdrrQVeNcaUGmNqrbUnHa94gULRGHs6R3jt+ACvnRhi\n54lBJsIxAP7zdUv4s9tW4dFByyIiIintmmUVPPGF6/mrRw9wz5ZW7tnSSmN5gLV1JaypK2ZNfQnr\n6kuoLMx1u1RgYcGqHuicd7sLuGoB19QDrgWrAz2jfOzrWwFYWVPEhzfUs2lJBZuay1lUoiagIiIi\n6aI4L4cvfWw9d25q5LUTg+zvHmV/zwhP7DsFwMc3NvL3v3Gpy1XOSOriImPM3cxMFQKMG2OSspey\nHXgqGS/0pkqgP7kvmZX0Piee3uPk0PucHHqfk+ATLrzm/5n9J8EWL+SihQSrbqBx3u2G2fvO9xqs\ntQ8ADyyksHRmjNlhrd3odh2ZTu9z4uk9Tg69z8mh91mSYSG7ArcDLcaYJcYYP3AH8OgZ1zwKfGp2\nd+DVwIib66tERERE3HDOEStrbdQY8zngScALfNtau98Y89nZx+8HHgduA1qBSeAziStZREREJDUt\naI2VtfZxZsLT/Pvun/e1BX7f2dLSWsZPd6YIvc+Jp/c4OfQ+J4feZ0k4M5OJRERERORiZe2RNiIi\nIh/uMdEAAAYJSURBVCJOU7By0LmO/pGLZ4z5tjEmaIzZ53YtmcwY02iMedYYc8AYs98Y8wdu15SJ\njDF5xpjXjDF7Zt/nv3K7pkxljPEaY3YZY37hdi2S2RSsHLLAo3/k4n0XuNXtIrJAFPhDa+1q4Grg\n9/X9nBAh4N3W2vXAZcCtszurxXl/ABx0uwjJfApWzjl99I+1NgzMHf0jDrLWvgAMul1HprPWnrTW\n/v/27j3U7zmO4/jzZU6MzaQomRxkrImJCQtzmctcomSF+QO55BKRiPKfSJZbi0wRI7JFuW4N0dh2\nmI3WJtc/lsuR+2Vjzl7++H6OjtnOpb58d75ej/rV93y/38/v8/79Tv3O6/f5fs73s6xs/0T1B2m3\nZqtqH1d+Lj92lEcmvtZM0ljgFGB207VE+yVY1Wdzy/pEDGuSOoGDgCXNVtJO5RLVcqAbWGA773P9\n7gKuBzY0XUi0X4JVRGyWpFHAXOBq2z82XU8b2e6xPZFqxYpDJe3fdE1tIulUoNv2O03XEv8PCVb1\nGdSyPhHDhaQOqlA1x/a8putpO9vfA6+SOYR1mwycLukzqikax0p6rNmSos0SrOozmKV/IoYFSQIe\nAlbZntl0PW0laWdJO5btkcBUYHWzVbWL7Rttj7XdSfW5/Irt8xouK1oswaomtv8Aepf+WQU8ZXtl\ns1W1j6QngLeAfSWtkXRh0zW11GRgBtW3++XlMa3polpoV+BVSe9RfTlbYDu3A4gYxnLn9YiIiIia\nZMQqIiIioiYJVhERERE1SbCKiIiIqEmCVURERERNEqwiIiIiapJgFREREVGTBKuIGJCknnIvq5WS\nVki6VtJW5dghku7pp22npHP+u2r/0ffashbfFkHSdEkfScr9qiJaKMEqIgZjre2JtidQ3R38ZOAW\nANtv276qn7adQCPBqvi4rMU3aJJG/FvF2H4SuOjfev6IaFaCVUQMie1u4GLgClWm9I6+SDq6z53a\n35U0GrgNOLLsu6aMIr0haVl5HFHaTpH0mqSnJa2WNKcsrYOkSZLeLKNlSyWNljRC0h2SuiS9J+mS\nwdQv6RlJ75TRt4v77P9Z0p2SVgCHb6bPCWV7eelzn9L2vD77H+gNZpJOKq9xhaSFNf4aImILtXXT\nBUTE8GP7kxIedtno0HXA5bYXSRoFrANuAK6zfSqApO2AqbbXlWDyBHBIaX8QMAH4HFgETJa0FHgS\nmG67S9IOwFrgQuAH25MkbQMskjTf9qcDlH+B7W/L2nxdkuba/gbYHlhi+9qy3ufqTfR5KXC37Tnl\nnBGSxgPTgcm210uaBZwr6UXgQeAo259K2mnIb3REDDsJVhFRp0XATElzgHm215RBp746gPskTQR6\ngHF9ji21vQagzIvqBH4AvrDdBWD7x3L8BOAASWeVtmOAfYCBgtVVks4s27uXNt+UWuaW/ftups+3\ngJskjS2v70NJxwEHU4U0gJFAN3AY8Hpv0LP97QB1RUQLJFhFxJBJ2osqiHQD43v3275N0vPANKoR\npBM30fwa4CvgQKrpCOv6HPutz3YP/X9GCbjS9stDqHsKcDxwuO1fJb0GbFsOr7Pd0197249LWgKc\nArxQLj8KeMT2jRv1ddpg64qI9sgcq4gYEkk7A/cD93mjVdwl7W37fdu3A13AfsBPwOg+p42hGg3a\nAMwABpoo/gGwq6RJpY/RkrYGXgYuk9RR9o+TtP0AzzUG+K6Eqv2oRpUG3WcJlJ/Yvgd4FjgAWAic\nJWmXcu5OkvYAFgNHSdqzd/8AtUVEC2TEKiIGY2S5NNcB/AE8CszcxHlXSzoG2ACsBF4s2z1lUvjD\nwCxgrqTzgZeAX/rr2PbvkqYD95Z5UWupRp1mU10qXFYmuX8NnDHA63gJuFTSKqrwtHiIfZ4NzJC0\nHvgSuLXM17oZmK/qFhTrqeaZLS6T4+eV/d1U/1EZES2mjb5wRkS0hqRO4Dnb+zdcyt+US5J/TeiP\niPbIpcCIaLMeYIy2sBuEUo3afdd0LRFRv4xYRURERNQkI1YRERERNUmwioiIiKhJglVERERETRKs\nIiIiImqSYBURERFRkz8B0vfyhwVWh6sAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(cfht_wirds['wirds_ra'], cfht_wirds['wirds_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, \n", " cfht_wirds, \n", " \"wirds_ra\", \n", " \"wirds_dec\", \n", " radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add VIPERS" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0nHd95/HPd266y7Zs2XJsy06IwZcQHDBOQpbizXJJ\nTGjoabqEQNhSWDcpLdDS04W2C4Wzp9vunnJKSIsJkOXSEKANDTk0gdISCJfajmOcENu5CCe+xBcp\nVqL7bUbf/WOekceKZI3kn2ZGo/frnDl6nmeeeZ6vh2B9/Ht+F3N3AQAA4PzFSl0AAABApSBYAQAA\nBEKwAgAACIRgBQAAEAjBCgAAIBCCFQAAQCAEKwAAgEAIVgAAAIEQrAAAAAIhWAEAAASSKNWNlyxZ\n4mvWrCnV7QEAAAr2yCOPPO/uzVOdV7JgtWbNGu3Zs6dUtwcAACiYmR0u5DweBQIAAARCsAIAAAiE\nYAUAABAIwQoAACAQghUAAEAgBCsAAIBACFYAAACBEKwAAAACIVgBAAAEQrACAAAIhGAFAAAQCMEK\nAAAgEIIVAABAIIlSF1Bpvr7ryJTn3HR5axEqAQAAxUaLFQAAQCAEKwAAgEAIVgAAAIEQrAAAAAIh\nWAEAAARCsAIAAAiEYAUAABAIwQoAACCQgoOVmcXN7Bdm9t0J3jMzu83M2szsMTN7ddgyAQAAyt90\nWqw+JOngJO9dK2lt9Nou6XPnWRcAAMCcU1CwMrOVkt4q6YuTnHK9pK961k5JC81seaAaAQAA5oRC\nW6z+VtKfSBqd5P0Vko7m7R+LjgEAAMwbUwYrM7tOUru7P3K+NzOz7Wa2x8z2dHR0nO/lAAAAykoh\nLVZXSfp1M3tW0jckXW1m/zDunOckrcrbXxkdO4u73+Hum919c3Nz8wxLBgAAKE9TBit3/5i7r3T3\nNZJulPRDd3/3uNPuk/SeaHTgFZK63P1E+HIBAADKV2KmHzSzWyTJ3XdIul/SNkltkvolvTdIdQAA\nAHPItIKVu/9I0o+i7R15x13SB0IWBgAAMNcw8zoAAEAgBCsAAIBACFYAAACBEKwAAAACIVgBAAAE\nQrACAAAIhGAFAAAQCMEKAAAgEIIVAABAIAQrAACAQAhWAAAAgRCsAAAAAiFYAQAABEKwAgAACIRg\nBQAAEAjBCgAAIBCCFQAAQCAEKwAAgEAIVgAAAIEQrAAAAAIhWAEAAARCsAIAAAiEYAUAABAIwQoA\nACAQghUAAEAgBCsAAIBACFYAAACBEKwAAAACmTJYmVm1me02s0fNbL+ZfXKCc7aaWZeZ7YteH5+d\ncgEAAMpXooBzhiRd7e69ZpaU9FMze8Ddd4477yfufl34EgEAAOaGKYOVu7uk3mg3Gb18NosCAACY\niwrqY2VmcTPbJ6ld0g/cfdcEp73OzB4zswfMbGPQKgEAAOaAgoKVu2fcfZOklZK2mNkl407ZK6nV\n3S+V9FlJ9050HTPbbmZ7zGxPR0fH+dQNAABQdqY1KtDdX5T0oKRrxh3vdvfeaPt+SUkzWzLB5+9w\n983uvrm5ufk8ygYAACg/hYwKbDazhdF2jaQ3SXpi3DktZmbR9pbouqfDlwsAAFC+ChkVuFzSV8ws\nrmxg+pa7f9fMbpEkd98h6QZJt5pZWtKApBujTu8AAADzRiGjAh+TdNkEx3fkbd8u6fawpQEAAMwt\nzLwOAAAQCMEKAAAgEIIVAABAIAQrAACAQAhWAAAAgRCsAAAAAiFYAQAABEKwAgAACIRgBQAAEAjB\nCgAAIBCCFQAAQCAEKwAAgEAIVgAAAIEQrAAAAAIhWAEAAARCsAIAAAiEYAUAABAIwQoAACAQghUA\nAEAgBCsAAIBACFYAAACBEKwAAAACIVgBAAAEQrACAAAIhGAFAAAQCMEKAAAgEIIVAABAIAQrAACA\nQAhWAAAAgUwZrMys2sx2m9mjZrbfzD45wTlmZreZWZuZPWZmr56dcgEAAMpXooBzhiRd7e69ZpaU\n9FMze8Ddd+adc62ktdHrckmfi34CAADMG1O2WHlWb7SbjF4+7rTrJX01OnenpIVmtjxsqQAAAOWt\noD5WZhY3s32S2iX9wN13jTtlhaSjefvHomPjr7PdzPaY2Z6Ojo6Z1gwAAFCWCgpW7p5x902SVkra\nYmaXzORm7n6Hu292983Nzc0zuQQAAEDZmtaoQHd/UdKDkq4Z99Zzklbl7a+MjgEAAMwbhYwKbDaz\nhdF2jaQ3SXpi3Gn3SXpPNDrwCkld7n4ieLUAAABlrJBRgcslfcXM4soGsW+5+3fN7BZJcvcdku6X\ntE1Sm6R+Se+dpXoBAADK1pTByt0fk3TZBMd35G27pA+ELQ0AAGBuYeZ1AACAQAhWAAAAgRCsAAAA\nAiFYAQAABEKwAgAACIRgBQAAEAjBCgAAIBCCFQAAQCAEKwAAgEAIVgAAAIEQrAAAAAIhWAEAAARC\nsAIAAAiEYAUAABAIwQoAACAQghUAAEAgBCsAAIBACFYAAACBEKwAAAACIVgBAAAEQrACAAAIhGAF\nAAAQCMEKAAAgEIIVAABAIAQrAACAQAhWAAAAgRCsAAAAAiFYAQAABDJlsDKzVWb2oJkdMLP9Zvah\nCc7ZamZdZrYven18dsoFAAAoX4kCzklL+oi77zWzBkmPmNkP3P3AuPN+4u7XhS8RAABgbpiyxcrd\nT7j73mi7R9JBSStmuzAAAIC5Zlp9rMxsjaTLJO2a4O3XmdljZvaAmW0MUBsAAMCcUsijQEmSmdVL\nukfSh929e9zbeyW1unuvmW2TdK+ktRNcY7uk7ZLU2to646IBAADKUUEtVmaWVDZU3eXu3x7/vrt3\nu3tvtH2/pKSZLZngvDvcfbO7b25ubj7P0gEAAMpLIaMCTdKXJB10909Pck5LdJ7MbEt03dMhCwUA\nACh3hTwKvErSzZJ+aWb7omN/KqlVktx9h6QbJN1qZmlJA5JudHefhXoBAADK1pTByt1/KsmmOOd2\nSbeHKgoAAGAuYuZ1AACAQAhWAAAAgRCsAAAAAiFYAQAABEKwAgAACIRgBQAAEAjBCgAAIBCCFQAA\nQCAEKwAAgEAIVgAAAIEQrAAAAAIhWAEAAARCsAIAAAiEYAUAABAIwQoAACAQghUAAEAgBCsAAIBA\nCFYAAACBEKwAAAACIVgBAAAEQrACAAAIhGAFAAAQCMEKAAAgEIIVAABAIAQrAACAQAhWAAAAgRCs\nAAAAAiFYAQAABDJlsDKzVWb2oJkdMLP9ZvahCc4xM7vNzNrM7DEze/XslAsAAFC+EgWck5b0EXff\na2YNkh4xsx+4+4G8c66VtDZ6XS7pc9FPAACAeWPKFit3P+Hue6PtHkkHJa0Yd9r1kr7qWTslLTSz\n5cGrBQAAKGPT6mNlZmskXSZp17i3Vkg6mrd/TC8NXwAAABWt4GBlZvWS7pH0YXfvnsnNzGy7me0x\nsz0dHR0zuQQAAEDZKihYmVlS2VB1l7t/e4JTnpO0Km9/ZXTsLO5+h7tvdvfNzc3NM6kXAACgbBUy\nKtAkfUnSQXf/9CSn3SfpPdHowCskdbn7iYB1AgAAlL1CRgVeJelmSb80s33RsT+V1CpJ7r5D0v2S\ntklqk9Qv6b3hSwUAAChvUwYrd/+pJJviHJf0gVBFAQAAzEXMvA4AABAIwQoAACAQghUAAEAgBCsA\nAIBACFYAAACBEKwAAAACIVgBAAAEQrACAAAIhGAFAAAQCMEKAAAgEIIVAABAIAQrAACAQAhWAAAA\ngRCsAAAAAiFYAQAABEKwAgAACIRgBQAAEAjBCgAAIBCCFQAAQCAEKwAAgEAIVgAAAIEQrAAAAAIh\nWAEAAARCsAIAAAiEYAUAABAIwQoAACAQglVg7q5Dz/dq39EXS10KAAAoskSpC6gUJ7sGdc/eY/rS\nT59RZ9+wJGnN4lotrE2VuDIAAFAsUwYrM7tT0nWS2t39kgne3yrpO5KeiQ59290/FbLIcnb4dJ/+\n4r79+vFTHRp16cIldXrligX68VMdOtk1SLACAGAeKaTF6suSbpf01XOc8xN3vy5IRXPMZ3/Ypp2H\nOvV7Wy/Wb21eqZ+1ndbgSEY/fqpDJ7oHtW55Y6lLBAAARTJlHyt3f0hSZxFqmZOePtWj16xepD9+\nyyu0enGdJKk6Gdei2qROdg2WuDoAAFBMoTqvv87MHjOzB8xsY6Brlr3RUdfT7b1au6z+Je8tX1Cj\nEwQrAADmlRDBaq+kVne/VNJnJd072Ylmtt3M9pjZno6OjgC3Lq3jXQPqH85o7dKGl7zXsqBap3uH\nNJweLUFlAACgFM47WLl7t7v3Rtv3S0qa2ZJJzr3D3Te7++bm5ubzvXXJPX2qV5L08glarFoaq+WS\n2ntotQIAYL4472BlZi1mZtH2luiap8/3unPB0+09kjRhi9XyBdWSxONAAADmkUKmW7hb0lZJS8zs\nmKRPSEpKkrvvkHSDpFvNLC1pQNKN7u6zVnEZeepUr5Y2VGlBbfIl7y2qSykVj9GBHQCAeWTKYOXu\n75zi/duVnY5h3pms47okxcy0rLGKFisAAOYRlrSZIXdX26meCR8D5ixfUKOT3QOaJw14AADMewSr\nGTreNai+4cykLVZSdmTg4MiougZGilgZAAAoFYLVDD11avKO6zm5Duz0swIAYH4gWM1QWzTVwtql\nk7dYLWuMRgZ2E6wAAJgPCFYz9NSpHi2pr9KiuskXWWZpGwAA5heC1Qw93d474cSg47G0DQAA8wfB\nagbcXW3tved8DJjD0jYAAMwfBKsZONE1qN6htNYum7zjeg5L2wAAMH8QrGbgzIjAQh4FsrQNAADz\nBcFqBtrac4svT91itagupVSCpW0AAJgPCFYzkB0RmDrniMCcmJlaGqtpsQIAYB4gWM3A0+2955wY\ndLyWxmqWtgEAYB4gWE1Tdo3AyRdfnghL2wAAMD8QrKbpZPegeobSBXVcz2FpGwAA5geC1TQ9nVvK\npoCO6zktLG0DAMC8QLCapulMtZBTlYyrqS5FixUAABWOYDVNbe29WlyX0uL6qml9jpGBAABUPoLV\nND11qkcXT6O1KoelbQAAqHwEq2lw92jx5cL7V+Xklrbp6BkKXxgAACgLBKtpONU9pJ7B9LSmWshZ\nXJ+dTLSzfzh0WQAAoEwQrKbh6fZcx/Xpt1g11UbBqpcWKwAAKhXBahqeGptqYfotVlXJuOpScVqs\nAACoYASraWhr79Gi2qQWF7BG4ESa6lLq7CNYAQBQqQhW0/Crjj69rLleZjajzxOsAACobASraTja\n2a/WxbUz/nxTXZVe7B/RSIYpFwAAqEQEqwINjmR0sntQrU3nE6xScknPvTAQrjAAAFA2CFYFeu7F\nAbnrvIOVJB3p7A9VFgAAKCMEqwLlwtDq83oUmA1WhwlWAABUpCmDlZndaWbtZvb4JO+bmd1mZm1m\n9piZvTp8maV3NApDq86jxaqhOqFEzMauBQAAKkshLVZflnTNOd6/VtLa6LVd0ufOv6zyc/h0v6qT\nMTVPc/HlfDEzLapL6fDpvoCVAQCAcjFlsHL3hyR1nuOU6yV91bN2SlpoZstDFVgujnT2q7WpdsZT\nLeQ01aZ0pJPO6wAAVKIQfaxWSDqat38sOlZRjkbB6nw11ad05HSf3D1AVQAAoJwUtfO6mW03sz1m\ntqejo6OYtz4v7q4jnf3n1b8qp6k2pb7hDBOFAgBQgUIEq+ckrcrbXxkdewl3v8PdN7v75ubm5gC3\nLo7TfcPqH85odYBgtZgpFwAAqFghgtV9kt4TjQ68QlKXu58IcN2ycfh0NgSdz6zrOYsIVgAAVKzE\nVCeY2d2StkpaYmbHJH1CUlKS3H2HpPslbZPUJqlf0ntnq9hSyU2PEKSPVS5YnSZYAQBQaaYMVu7+\nzined0kfCFZRGcq1Lq1cdP7BKhmPaVljFZOEAgBQgZh5vQBHOvu1rLFK1cl4kOu1NtXyKBAAgApE\nsCrAkc5+rW6qC3a91qY6HgUCAFCBCFYFOBpoqoWc1qZanewe1OBIJtg1AQBA6RGspjA4ktHJ7sEg\nHddzcgs5H3uBVisAACoJwWoKx14YkLvUurgm2DVzrV/0swIAoLIQrKYQcqqFnNy1DtPPCgCAikKw\nmsKRsWAVrvP6kvqUalNxWqwAAKgwBKspHOnsV00yriX1qWDXNDO1NtWOtYYBAIDKQLCawuHT/Wpt\nqpWZBb1ua1MtjwIBAKgwBKsphJ5qISc3SWh24noAAFAJCFbn4O460tkftON6zurFtRpKj6q9Zyj4\ntQEAQGkQrM7h+d5hDYxkxuadCokpFwAAqDwEq3M4MgtTLeQw5QIAAJWHYHUOuVF7s9HHauWiWpnR\nYgUAQCUhWJ1DrjVp5aJws67npBIxXbCgRkdO9wW/NgAAKA2C1Tkc6exXS2O1qpPxWbl+bmQgAACo\nDASrczja2a/WWei4nkOwAgCgshCszmG2plrIaV1cq+d7h9U3lJ61ewAAgOIhWE1icCSjk92Dsxus\nomsffYFWKwAAKgHBahLHXhiQNDtTLeTk5sd6poMO7AAAVAKC1SSOdGbDzmxMtZBz8dJ6mUlPnuqZ\ntXsAAIDiIVhN4sjp2ZscNKc2ldCaxXV64gTBCgCASkCwmsSRzgHVpuJaUp+a1fusa2nQEye7Z/Ue\nAACgOAhWk8iNCDSzWb3PupZGHe7sZ2QgAAAVgGA1iWdP983qY8Ccdcsb5C49RT8rAADmPILVBAaG\nMzrU0at1yxtn/V4bons8cZJgBQDAXEewmsCTp3o06mdCz2xasbBG9VUJPXGCflYAAMx1BKsJHDie\nDTkbL5j9YBWLmV7R0qCDtFgBADDnEawmsP94lxqqE1q5qKYo91vX0qAnTnTL3YtyPwAAMDsKClZm\ndo2ZPWlmbWb20Qne32pmXWa2L3p9PHypxXPgRLc2LG+c9RGBOeuWN6p7MK0TXYNFuR8AAJgdUwYr\nM4tL+jtJ10raIOmdZrZhglN/4u6botenAtdZNJlR1xMnerTxggVFu+f6lgZJYj4rAADmuEJarLZI\nanP3Q+4+LOkbkq6f3bJK55nn+zQwktGGIvSvynl5FKwOMgM7AABzWiHBaoWko3n7x6Jj473OzB4z\nswfMbGOQ6krgQDQ6rxgjAnMaq5NauaiGKRcAAJjjEoGus1dSq7v3mtk2SfdKWjv+JDPbLmm7JLW2\ntga6dVgHjncrFY/p4qX1Rb3vupZGplwAAGCOK6TF6jlJq/L2V0bHxrh7t7v3Rtv3S0qa2ZLxF3L3\nO9x9s7tvbm5uPo+yZ8/+411au6xeqURxB0yuX96gQ8/3aXAkU9T7AgCAcApJDw9LWmtmF5pZStKN\nku7LP8HMWiwaQmdmW6Lrng5d7Gxzdx043l3Ux4A561oalRl1tbX3Fv3eAAAgjCkfBbp72sx+X9L3\nJcUl3enu+83sluj9HZJukHSrmaUlDUi60efgpEwdPUM63TdclIlBx1u3PDcysEeXrCjeiEQAABBO\nQX2sosd79487tiNv+3ZJt4ctrfj2RzOubyjiVAs5axbXqSoRo58VAABzGDOv58mNCFwftR4VUzxa\n2oaRgQAAzF0EqzwHjndr9eJaNVQnS3L/dS0NOsjSNgAAzFkEqzz7j3eVpON6zrqWRp3uG1ZH71DJ\nagAAADNHsIr0DqX17On+0garXAd2ZmAHAGBOIlhFcp3GN64obYuVxJqBAADMVQSryNiIwOWlm+qg\nqS6lZY1VtFgBADBHEawiB453jwWbUlrX0qiDjAwEAGBOIlhFDpzo1sYLGhVNIF8y65Y3qK29RyOZ\n0ZLWAQAApo9gJWkkM6onT/aUtON6zvqWRo1kXIc6+kpdCgAAmCaClaRfdfRqODOqDSVYyma89VG4\nO8gM7AAAzDkEK2X7V0kqyRqB472suU6LapP6t4OnSl0KAACYJoKVsiMCq5MxXbikvtSlKBGP6bpL\nL9C/HTyl3qF0qcsBAADTUNAizJXuwPFurWtpVDxW2o7rOW+/7AJ9bedhff/xk/rN16wsdTkAgDI0\nnB5V/3BavUNp9Q1l1DuUVv9wdntgJPuzfzit/uGMhtKjGo5eQ+mMRjKuRMyUSsRUlYhHP2N67oUB\nLWusVnNDlVKJmbe93HR5a8A/6dwy74PV4EhGjz/XpbdtuqDUpYx5desirWqq0b37niNYAcAc5u4a\nSo+qfzijgZGMBobTGhjOBqLsfkZ9w9nj/cOZsfP6hrL7Yz+H0+qLAlTfcFr9QxkNT2P0eNxM8bgp\nEcu+4jHTqEvpzKjSo670qCszemadWlNubsVqrV1Wr02rFqoqEZ+Fb6jyzPtg9f39J9UzlNa2S5aX\nupQxZqa3b1qhv3uwTe3dg1raWF3qkgCg4mVGPWr9ybYC5baz+9mQkws1+T8HokDUP3ImIA3kgtRI\nRu5T3ztfImaqSsTOak1KxbP7SxsSSiVqzmplGn9ubj+ViKkqHlMyEVOsgKmEMqOuzr5hneoeHHsd\n7xrUgRPd+t7jJ/Xq1kW6/KImLW3gd9K5zPtgddeuI1q9uFave9niUpdylus3rdBnf9im+x49rve/\n/qJSlwMAZWkkM6r+oYx6h8+EoNxjsVwQ6h1Kq3fwTEDqHRoZO9YzmFZPdG7/cKage5o0FmCS8ehn\nXvhZUp8Y207GTan4mffHfsZjSsXtrM+lphGCZkM8ZmpuqFJzQ5UuWZFdhcTddbSzXzuf6dTuZzv1\nH4dO66LmOm19+VJdvLT0/ZLL0bwOVm3tvdr9TKf+xzXrFCuT/lU5Fy+t1ytXLNB39hGsAMx9o6M+\n9oirb9wjrvyWn9x+9rFY9tz+ofRL90cy03ocFjOpKhFXVSKm6mT2Z1UyprqqhJrqUnnH4qrOawHK\nnZffGpSIWcknky4WM1Pr4jq1Lq7Ttlcu155nO7XrmU7d+bNntOXCJl17SQuPCMeZ18Hq7t1HlIyb\nfmtzefZjun7TBfpf/3JQbe29/MsAQNGlM6PZ1p/hbOtO/uOx8fs9eY/NegbTUZ+gMy1HhbYGSWda\nhMZacsaCTvbVWF1z9iOveP7jsJhSuUAUBaX5FoZmS31VQltfsVRXXbxEPzhwSj9re15t7b36rdes\n1OrFdaUur2zM22A1OJLRPXuP6c0bW7SkvrTrA07m1191gf7y/oP6zr7n9JE3v6LU5QCYA/LD0PhH\nY/n9h8b6EUWPwnqjMJS/PzBSWBhKxu3sMBO19tRXJbS4LjUWcFLxbOvPmSAUPxOc4rF52SI0FyXj\nMW175XKtX96of3rkqO546JBev7ZZb1y/VIk4szjN22D1vcdP6sX+Ed20pXyHhC5trNZVFy/Rvfue\n0x+96eX8RQNUmFwIGhvxFT3m6p3gMdlZI8Sin/nD63OPyYbThT8aG3v8lYhHj7tiqq9OaHF9Ku9Y\n9tFYVTJ+VmiqSsZUHQWjcpmqBsV14ZI6ffDqtbr/8RN66OkOPd3eo3dfsVqLalOlLq2k5m2w+vqu\nI1qzuFZXXlRendbHe/umFfrIPz6qvUde0GtWN5W6HGDec3cNjoyqZ3BE3YMj6h480wm6d2gk2xl6\n8KWPyHKPznJhqXcoraECQ5B0dqtQ/iOyqrNGir10dBiPxjCbqpJx/cZlK7WupVH/+MhR/f2Dbbrp\n8tWlLquk5mWwevpUj3Y/26mPXlt+ndbHe8slLfqze3+pe39xnGAFBDCczoai3qgvUPfgmTDUPTCS\nd2xE3QNp9Qxlf+bO6x4YUXp06vHzqUQs6gR9dqhZXFel5QvOHiJ/dv+g6Ni4/kWlGikGFGL98kbd\n+oaL9bWdh/Wlnx7SmiW1etc8DVjzMljdvfuoknHTDXNg8s36qoTeuH6ZvvvYcX38bRuU5Pk15rHh\n9GgUiM6EnO7BM/s9edtnAlNuP7tdSCtRbSquRMxUnYxHr5gW1CS1rLFaNdGosepUXNWJ7HvVyfjY\naLLqZJwghHmpuaFKt77hZfrmniP6s39+XAdPdOsTb9s4735vzbtgleu0/pYy7rQ+3m9ctkLffeyE\nfvxkh964YVmpywGmLZ0ZHWsh6ho401rUOzRyVmfp8Z2pcx2uc+GokFCUisdUnYydFXTqqrL9hqoT\nUQCKwlB+MKpOnulLRJ8hYGZqUnG958o1OtrZr88/dEhPnerVbTdeppYF82dS0XkXrB54/IS6Bsq7\n0/p4v/byZi1rrNIn7tuvV7Q0aFVTbalLwjyT61fUPTiiroERdQ9kf0706h7ItSSdObevgKH2uXmG\nqpNnd45uqE6oub5qLCzl5iF6SSiKPkcoAkorZqaPbVuv9csb9af//Etd85mH9Ne/eanesrGl1KUV\nxbwKVu6ur+86oguX1OnKMptp/VyS8Zju/O3X6qYv7NJNX9ypb26/UhcsrCl1WZhjRkddPUNpdfWf\nIxQNjow9XusaGFHP2LH0lBMxViViqknGVZPKBp2aZFwXLKjRRUvqzgo/2ZFo0XYuQCXjdKYGKszb\nL1uhS1cu0Ae/8Qv97tce0bsub9Wfv3WDalKVPaHovAlWw+lRfeK+/Xr42Rf0P6/bMOf+At94wQJ9\n7X1b9K4v7NJNX9ipb/7ulVrGGoLzTq7laHwgerF/eKx16MWBEb3Yn/3Z1T88tt8zOKJz9bmOm6k6\nGVNNKhuKzjxCq8oLTFF4ivZz2zw+AzCRi5rr9e1br9Lf/OuT+vxDh7T7mU7d9s7LtH55Y6lLmzXz\nIlid7h3SrXft1e5nOvV7W1+m975uTalLmpFLVy7UV963RTd/cZfe+YVsy1Vzw9zoJ4YzRkd9rHP1\nmcdnZ1qM8h+pdY17pDZVy5EpOzdRTSqu2ij4LKhJqqWxemy/JpVQba5VKS8cJeO0GAEIL5WI6WPb\n1us/rV2iP/rWo3rbZ3+q6zet0C1vuEhrlzWUurzgzAtYdtvMrpH0GUlxSV90978a975F72+T1C/p\nt91977muuXnzZt+zZ89M6y7YwRPd+u9f3aOOniH9nxsu1fWbVszq/b6+60iQ69x0+eR9wHY/06n/\ndudurWqq0V3vv4JwVWQjmdG8xVvPHqrffdZotTPD9McCUv+IeobS51ztPjdxY/5jtbH9vDCUa12q\nTSbGjlX5jef+AAAJ7ElEQVQlGY0GoPQm+x12undItz/Ypm/sPqqBkYzevGGZbt36Ml3WuqjIFU6f\nmT3i7punPG+qYGVmcUlPSXqTpGOSHpb0Tnc/kHfONkl/oGywulzSZ9z98nNdtxjB6nuPn9QffWuf\nGqoTuuPmzXrVqoWzej+pOMFKkn7+q+f13v/3sEbddfmFi3X1uqW6et1SrVnCek353F1D6dGxBVyz\ni7xmZ7fuyy3qOpRbGDa3zEdmbCmQ3ISO2RFqGfUOjWhwZOqRacm4vaS/0VkBKRVXTdS3aPxjtVQi\nRssRgDltqt9hnX3D+vLPn9VXfv6sugZGtGVNk7aua9bm1U26dOUCVSfLrx9WyGB1paS/cPe3RPsf\nkyR3/99553xe0o/c/e5o/0lJW939xGTXne1gtfPQad14x069atVC3XHza4rWH6lYwUrKtsb98y+e\n0w+faFdbe68k6aIldbqsdZGa6pJaVJfSotqUFtUm1VidVDKabTkZTTyYiJliln2ZSbGYKWaSKbs/\n9qt9ot/xLrkkd8nlcpdGPfszt51xl7srMyplRl2j7kqPujLRK50ZVXrUlR4d1UjGlc5kt4fT2f2R\nTHZ7ODOqoXS0nR7VUDqjoXT22OBI5szPkYwGcq/hUQ0MZ9c6K2AuxzHJuJ1Z0T6a3LE6GYsme4yP\nTfI4vuN1bqg+/Y0AoLDfYZLUN5TW3buP6Ou7j+hQR5+k7N/DGy9YoFe3LtIFC6u1uD6lproqLa5L\nqakupZpkXIl49ndZMl68JZUKDVaF9LFaIelo3v4xZVulpjpnhaRJg9Vs27KmSX/xtg26cUtrWSbf\nqRQa0NYsrtPvXHWhOvuG9cTJbj15skf/dvCU+ofTGslMI1HMAfGYKREzxWO5/0OZErGYEtHPVCJ7\nvC6VULIx+34yf/mPeEzJ/Nmt4/GzlgVhUkcAKK66qoTe//qL9P7XX6TOvmHtPfyC9hx+QXsPv6C7\ndh0uaO66mEk3X7Fan7z+kiJUPLWidl43s+2Stke7vVHL1qx672zf4GxLJD1f3FvOW3zXxcH3XBx8\nz8XDd10E7yry/T4VvWZZQWv0FBKsnpO0Km9/ZXRsuufI3e+QdEchhc1FZrankGZCnD++6+Lgey4O\nvufi4bvGbCtkAZ+HJa01swvNLCXpRkn3jTvnPknvsawrJHWdq38VAABAJZqyxcrd02b2+5K+r+x0\nC3e6+34zuyV6f4ek+5UdEdim7HQLRX4CBwAAUHoF9bFy9/uVDU/5x3bkbbukD4QtbU6q2MecZYjv\nujj4nouD77l4+K4xqwqaIBQAAABTK6SPFQAAAApAsArEzK4xsyfNrM3MPlrqeiqVmd1pZu1m9nip\na6lkZrbKzB40swNmtt/MPlTqmiqRmVWb2W4zezT6nj9Z6poqmZnFzewXZvbdUteCykWwCiBa9ufv\nJF0raYOkd5rZhtJWVbG+LOmaUhcxD6QlfcTdN0i6QtIH+G96VgxJutrdXyVpk6RropHVmB0fknSw\n1EWgshGswtgiqc3dD7n7sKRvSLq+xDVVJHd/SFJnqeuodO5+IreQurv3KPvLaHZXMJ+HPKs32k1G\nLzq+zgIzWynprZK+WOpaUNkIVmFMtqQPMOeZ2RpJl0naVdpKKlP0eGqfpHZJP3B3vufZ8beS/kTS\n1GukAOeBYAVgUmZWL+keSR929+5S11OJ3D3j7puUXbFii5mVx4JnFcTMrpPU7u6PlLoWVD6CVRgF\nLekDzCVmllQ2VN3l7t8udT2Vzt1flPSg6EM4G66S9Otm9qyyXTWuNrN/KG1JqFQEqzAKWfYHmDPM\nzCR9SdJBd/90qeupVGbWbGYLo+0aSW+S9ERpq6o87v4xd1/p7muU/fv5h+7+7hKXhQpFsArA3dOS\ncsv+HJT0LXffX9qqKpOZ3S3pPyS9wsyOmdn7Sl1ThbpK0s3K/st+X/TaVuqiKtBySQ+a2WPK/gPt\nB+7OVADAHMbM6wAAAIHQYgUAABAIwQoAACAQghUAAEAgBCsAAIBACFYAAACBEKwAAAACIVgBmJKZ\nZaK5rPab2aNm9hEzi0XvbTaz287x2TVmdlPxqn3JvQeitfjKgpm9w8zazIz5qoAKRLACUIgBd9/k\n7huVnR38WkmfkCR33+PuHzzHZ9dIKkmwivwqWouvYGYWn61i3P2bkt4/W9cHUFoEKwDT4u7tkrZL\n+n3L2pprfTGzN+TN1P4LM2uQ9FeSXh8d+8OoFeknZrY3er0u+uxWM/uRmf2TmT1hZndFS+vIzF5r\nZj+PWst2m1mDmcXN7P+a2cNm9piZ/W4h9ZvZvWb2SNT6tj3veK+Z/Y2ZPSrpyknuuTHa3hfdc230\n2XfnHf98LpiZ2TXRn/FRM/v3gP8zAChTiVIXAGDucfdDUXhYOu6tP5b0AXf/mZnVSxqU9FFJf+zu\n10mSmdVKepO7D0bB5G5Jm6PPXyZpo6Tjkn4m6Soz2y3pm5Le4e4Pm1mjpAFJ75PU5e6vNbMqST8z\ns39192emKP933L0zWpvvYTO7x91PS6qTtMvdPxKt+fnEBPe8RdJn3P2u6Jy4ma2X9A5JV7n7iJn9\nvaR3mdkDkr4g6dfc/Rkza5r2Fw1gziFYAQjpZ5I+bWZ3Sfq2ux+LGp3yJSXdbmabJGUkvTzvvd3u\nfkySon5RayR1STrh7g9Lkrt3R++/WdKlZnZD9NkFktZKmipYfdDMfiPaXhV95nRUyz3R8VdMcs//\nkPRnZrYy+vM9bWb/RdJrlA1pklQjqV3SFZIeygU9d++coi4AFYBgBWDazOwiZYNIu6T1uePu/ldm\n9i+StinbgvSWCT7+h5JOSXqVst0RBvPeG8rbzujcf0eZpD9w9+9Po+6tkt4o6Up37zezH0mqjt4e\ndPfMuT7v7l83s12S3irp/ujxo0n6irt/bNy93lZoXQAqB32sAEyLmTVL2iHpdh+3iruZvczdf+nu\nfy3pYUnrJPVIasg7bYGyrUGjkm6WNFVH8SclLTez10b3aDCzhKTvS7rVzJLR8ZebWd0U11og6YUo\nVK1TtlWp4HtGgfKQu98m6TuSLpX075JuMLOl0blNZrZa0k5Jv2ZmF+aOT1EbgApAixWAQtREj+aS\nktKSvibp0xOc92Ez+8+SRiXtl/RAtJ2JOoV/WdLfS7rHzN4j6XuS+s51Y3cfNrN3SPps1C9qQNlW\npy8q+6hwb9TJvUPS26f4c3xP0i1mdlDZ8LRzmvf8r5JuNrMRSScl/WXUX+vPJf2rZaegGFG2n9nO\nqHP8t6Pj7cqOqARQwWzcPzgBoGKY2RpJ33X3S0pcylmiR5JjHfoBVA4eBQKoZBlJC6zMJghVttXu\nhVLXAiA8WqwAAAACocUKAAAgEIIVAABAIAQrAACAQAhWAAAAgRCsAAAAAvn/CB3oZh5Srj0AAAAA\nSUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(vipers['vipers_ra'], vipers['vipers_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, \n", " vipers, \n", " \"vipers_ra\", \n", " \"vipers_dec\", \n", " radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Add SXDS" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAF3CAYAAACfXf7mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd43OWZ7//3M6ORZtQlW5KtYlsuGGzABgtMMQaSUFNI\nQhJKAksSMCVskrMnm82W7Nnfye61mz17fqkkYAgkEBtTAoENLaTRLXfcwE2yVSzLRX1G0rTn/CGN\nIhyDZWs03ymf13XlQpqZr3TLlyJ9dD/P936MtRYRERERmVgupwsQERERyQQKXSIiIiIJoNAlIiIi\nkgAKXSIiIiIJoNAlIiIikgAKXSIiIiIJoNAlIiIikgAKXSIiIiIJoNAlIiIikgBjCl3GmCuNMTuM\nMbuNMd/6gNedY4wJG2M+c6LXioiIiKQzc7xjgIwxbmAncBnQAqwFbrDWbj/G614GBoAHrbVPjvXa\no02ePNnOmDHjpL4gERERkURav379YWtt2fFelzWGj3UusNta2wBgjFkFXAMcHZz+GvgVcM5JXPse\nM2bMYN26dWMoTURERMRZxph9Y3ndWJYXq4DmUe+3DD82+pNVAZ8Cfnqi14qIiIhkgnhtpP8+8HfW\n2ujJfgBjzDJjzDpjzLpDhw7FqSwRERGR5DCW5cVWoGbU+9XDj41WB6wyxgBMBq42xoTHeC0A1trl\nwHKAurq6D95oJiIiIpJixhK61gJzjDG1DAWm64EbR7/AWlsbe9sY83PgN9baXxtjso53rYiIiEgm\nOG7ostaGjTF3Ay8BbobuTNxmjLlj+Pl7T/Ta+JQuIiIikjqOOzLCCXV1dVZ3L4qIiEgqMMast9bW\nHe91mkgvIiIikgAKXSIiIiIJoNAlIiIikgAKXSIiIiIJoNAlIiIikgAKXSIiIiIJoNAlIiIikgBj\nmUgvIiIiclJW1jeN6XU3Lp42wZU4T50uERERkQRQ6BIRERFJAIUuERERkQRQ6BIRERFJAIUuERER\nkQTQ3YsiIiJyUsZ6Z6IMUadLREREJAEUukREREQSQKFLREREJAG0p0tEREROyEAoQk9/yOkyUo5C\nl4iIiIyJtZbfbm/nf//3dlq7+plZlscFMycxd0ohbpdxurykp9AlIiIix9V42M+/PLuNV3Ye4pSK\nfO6+dDaPrN7HL+ubKPZ5WFxbSt2MUvJyFC3ej/5lRERE5C/ExkEEw1H+tOMgr+0+TJbL8NEzpnLe\nzEm4XYZvXD6Xd9p6WN1whJe2t/Pa7sP8z8vm4st2O1x9clLoEhERkWPa39XPqrVNHO4LsrCmmCtP\nn0Kh1zPyvNtlOL2qiNOrininrYdHVu9jz6E+Tq8qcrDq5KXQJSIiIu9hreWthiO8sKWN3Gw3X15S\ny6yy/A+8Zk5FPh63oeGwX6HrfSh0iYiIyIjuQIhv/uptXtrWztyKAq5dVE3+GPZpZblcTJ+UR8Oh\nvgRUmZoUukRERASA9fs6+Oqjm2jvGeCq06dw4ezJuMzY70qcNTmPl7a30zcYHlNQyzQajioiIpLh\nguEo//XSDj5771u4XPDknRdw0ZyyEwpcADOHlyDV7To2xVAREZEMtrO9l//x2Ca27e/hM4uq+V8f\nn0eB18P2/T0n/LEqi33kZLloOOznzOriCag2tSl0iYiIZKBo1PLgG43850s7yM/J4r6bFnHF/Cnj\n+phul2HGpDwaDvnjVGV6UegSERHJMD/8/S6e3thK42E/p04p4FNnVXGkLzgym2s8ZpblsaO9l57+\nEIU+z/EvyCAKXSIiIhkiHInywOuN/PD3u3C7DJ8+q4pF00swJ7h364PMnDy8r+twHwtrSuL2cdOB\nQpeIiEgG2La/m7/71Wa2tvYwb2ohn1hQOSGdqKnFXrweFw2H/ApdRxlT6DLGXAn8AHADD1hr/+Oo\n568BvgNEgTDwdWvt68PP7QV6gQgQttbWxa16ERER+UADoQg/+sMu7n2lgZJcDz/5/Nl0+oNx7W6N\n5jKG2sn5NBzWvq6jHTd0GWPcwD3AZUALsNYY86y1dvuol/0eeNZaa40xZwKPA6eOev5Sa+3hONYt\nIiIix1HfcIS/f2oLDYf9fGZRNf/00dMozs2Oy96tDzJzch7vtPXQFQhSnJs9oZ8rlYyl03UusNta\n2wBgjFkFXAOMhC5r7eiBHHmAjWeRIiIicnyxMDUQivDitgOsaeygJNfDly6sZXZ5Ps9vOZCQOmaW\n5QHQcMjP2dMVumLGErqqgOZR77cAi49+kTHmU8C/A+XAR0c9ZYHfGWMiwH3W2uUnX66IiIh8kHfa\nenhmUyu9A2GWzJ7MR06rIDsrsbPQKwq95Ga7aTjcx9nTta8rJm4b6a21TwNPG2OWMrS/6yPDTy2x\n1rYaY8qBl40x71prXz36emPMMmAZwLRp0+JVloiISEbo9Ad5bG0Tb7d0M6XQyxfOm051Sa4jtQzt\n68pjzyE/1toJ2z+WasYSfVuBmlHvVw8/dkzDgWqmMWby8Putw/89CDzN0HLlsa5bbq2ts9bWlZWV\njbF8EREReXl7O5d//1W2tHbz4dPKuevSWY4FrpiZZfl094fo8AcdrSOZjCV0rQXmGGNqjTHZwPXA\ns6NfYIyZbYZjrDHmbCAHOGKMyTPGFAw/ngdcDmyN5xcgIiKSqboDIf7msU3c9vA6JufncNcls/nw\nqRVkuZw/WnnW5OF9XbqLccRxlxettWFjzN3ASwyNjHjQWrvNGHPH8PP3AtcCNxtjQkA/cN3wnYwV\nDC05xj7XSmvtixP0tYiIiGSMV3ce4htPvE2HP8jXPjyHr1w6myfXtzhd1oiyghwKcrJoONTHOTNK\nnS4nKYxpT5e19nng+aMeu3fU298FvnuM6xqABeOsUUREJOPF7kwMR6L8dns7r+8+THlBDrdfPIuK\nQm9SBS4AYwy1ZXk0HNa+rhhNpBcREUkRB3sHeGxtM23dA5w3s5SrTp+Kx+38UuL7mTk5n80t3Rzp\nCzK5IMfpchyn0OWAsQylu3Gx7uAUEZEh1lrWNHbw3Jb9eNwubjpvOqdNLXS6rOOqKBwKWh0BhS5Q\n6BIREUlqvQMhvvWrLTy3pY3Z5fl8ZlE1hd74n5k4EQqG6+wdCDtcSXJQ6BIREUlS2/f3cNeK9TR3\n9nPF/ClcNGcyrhTaG5WfMxQz+gZCDleSHBS6REREkoy1lsfWNvPPz26jJNfDo7edx+6Dfce/MMlk\nZ7nIyXLRO6hOFyh0iYiIJJVAMMw/Pb2Vpza2smT2ZL5//UIm5+ekZOiCoW6XlheHKHSJiIg4LHaD\nVVt3P6vWNHO4b5APn1bOpXPL+e22doerG58CbxZ96nQBCl0iIiKOs9ayZm8Hz21uw+dx88ULa5ld\nnu90WXGR7/VwoHvA6TKSgkKXiIiIg7r7Qzy6tpmtrd3MGb47sSBF7k4ciwJvFrsPaiM9KHSJiIg4\nZmNTJ19dtZHWFL07cSwKcrIYCEUJRaJJPcg1ERS6REREEiwYjvLD3+/iJ3/azdQiH8sumsm0SXlO\nlzUhCrxDUaN3IExpXrbD1ThLoUtERCSB3mnr4W8ef5t32nr4zKJq/vnj8/jN221OlzVh8nOGlkr7\nBkIKXU4XICIikgnCkSjLX2vgey/vpMjn4f6b67hsXoXTZU24kU6X7mBU6BIREZlojYf9/M/HN7Gh\nqYurz5jCv37yjIzp+uSPWl7MdApdIiIiE2TF6n3UN3bwwtY23C7D5+pqWFBdxItbDzhdWsLkZWdh\nQLO6UOgSERGZEAe6B/j5m3vZdbCPOeX5fPrsaop86TMKYqzcLkOuptIDCl0iIiJx9+zb+/mnp7fQ\nH4rwiQWVLK4txaTZKIgTUZCTpUOvUegSERGJm0AwzP96ZhtPrG/hrGnFXDq3nMn5OU6X5bgCb5Y2\n0gOZPaVMREQkTnYc6OUTP36DJze08Ncfms0Tt5+vwDUsPyeLPi0vqtMlIiJyMmKHVFtrWbe3k//e\nvB+vx80XL6hlapGPx9e1OFxh8oh1uqy1Gb3MqtAlIiJykgZCEX69qZXNLd3MLsvns3XpdW5ivOR7\nPUSiloFQFF+22+lyHKPQJSIichL2HfHz+LpmuvtDXDavgotPKUu7cxPjpSAnNqsrpNAlIiIiYxOO\nRLnnj3u4/7UGinweli2dxbTSXKfLSmr5o6bSlztci5MUukRERMaotaufr6/ayNq9nSysKeYTCyrx\nejK3czNWsaOAMn0zvUKXiIjIcVhreWJ9C9/5zXashe9dt4D+YNTpslJGwfCh15k+NkKhS0RE5AM0\ndwT4+6e28Pruw5w7o5T/89kzmT4pb+TuRTk+r8dFlsvQm+EDUhW6REREjiEStfzizb38n5d24HYZ\nvvPJ0/n8udNwubRZ/kQZY8j3alaXQpeIiMhRvv/yTp7a2EpTR4C5FQVcs7AStzGsWtvsdGkpqyBH\nU+kVukRERIaFI1GWv9bAj/+4G4/bxefqqllQXZzRAz3jJd/rodMfdLoMRyl0iYiIAO8e6OFvn9jM\nltZu5lcW8okFlRp0GkcFOVk0HfE7XYajFLpERCSjhSJRfvqnPfzoD7so9Hq458az6e7P7A3fEyHf\nm0UgGCEStbgzdF+cQpeIiGSU0XcddgWCrFrbTFNHgDOri/jYmZUKXBOkwJuFBfyDYQp9mdlBdI3l\nRcaYK40xO4wxu40x3zrG89cYYzYbYzYZY9YZY5aM9VoREREnvNPWw4/+sJv2ngGuO6eG68+ZRn6O\nehETZeQooAzeTH/c7y5jjBu4B7gMaAHWGmOetdZuH/Wy3wPPWmutMeZM4HHg1DFeKyIikjCRqOWl\nbQd4ffdhKou8XH/uNCbn5zhdVtrLH94f1zcQAnzOFuOQsUT6c4Hd1toGAGPMKuAaYCQ4WWv7Rr0+\nD7BjvVZERCRRWrv6Wf7qHpo7+1lcW8rVZ0zF4x7Too+M058PvVan64NUAaMHk7QAi49+kTHmU8C/\nA+XAR0/kWhERkYm2prGDO3+5nr7BMDecO40zqoqcLimjxA697svg5cW4xXtr7dPW2lOBTwLfOdHr\njTHLhveDrTt06FC8yhIREWFF/T5uvH81RT4Pd10yW4HLAR63C6/HldGdrrGErlagZtT71cOPHZO1\n9lVgpjFm8olca61dbq2ts9bWlZWVjaEsERGRDxYMR/nHp7fwj09vZcmcyTz9lQspK9D+Lafk53i0\nkf441gJzjDG1DAWm64EbR7/AGDMb2DO8kf5sIAc4AnQd71oREZGJcKRvkDtXbGBNYwd3XDyLv71i\nbsbOh0oWBd6s4Y30mem4octaGzbG3A28BLiBB62124wxdww/fy9wLXCzMSYE9APXWWstcMxrJ+hr\nERERAWBraze3P7Kew32D/OD6hVyzsMrpkoSh0NXa2e90GY4Z00ASa+3zwPNHPXbvqLe/C3x3rNeK\niIjEW2zo6eaWLn61oYXc7CxuXTIT/2DkPQNRxTmZfui17pNNMv3BCO+29fDdF9/l9V2HnS5HRCRl\nRO3Q/K1Va5upLPJx1yWzqCrJzHlQySrf6yEYjjIYjjhdiiM0ejcJNBzqY9v+HvYe8XOge2BkyNnq\nhiMsmTPZ0dpERFJBz0CIR97ax472Xs6dUcrHFkwly6W+QrKJzerqGwiTk+92uJrEU+hyWNRaHn5r\nHxbLtNJcPnRaObWT8ghHLSvrmxgMR8jJyrxvTBGRsdpxoJc7frmefUf8XLOwksW1k5wuSd7H6Fld\nkzLwFACFLof1DoQJRqJ8YkEl58388w+K0jwPP39zL9v293D2tBIHKxQRSV6/3tjK3z+1hXxvFl9e\nMpPayXlOlyQfoMCb2VPp1Xt1WIc/CMCkvOz3PH7WcNDasK8z4TWJiCS7wXCEb/96K19/bBNnVBfx\n3FeXKHClgPwMP/RanS6HdfgHASg9KnRVFHqpKvaxsbnLibJERJJWa1c/d63YwNvNXSxbOpNvXjGX\nLJ2fmBLycrIwkLGzuhS6HNbhD+IyUJyb/RfPnTWtmI1NCl0iIrGRD+8e6OHJ9S1EopYbz53GjEl5\nPL6uxeHqZKxcxpCfk6XlRXHGEX+QIp/nmFOSz5pWQmtXP+09Aw5UJiKSPMLRKM9vaePht/ZR5PPw\nlUtmc7rOT0xJ+d6sjD30Wp0uh3X6g3+xtBhz1rRiADY2dXLl6VMTWZaISNJo7giw/NUGWjr7WVxb\nytVnTMWj5cSUVeBVp0sccsQfpDTv2LfNzq8sJNvtYoOWGEUkQ724tY2rf/gah3oHueHcaVyzsEqB\nK8Xl53jU6ZLEGwhFCAQj79vpyslyM7+qkI1NuoNRRDJLfzDCd57bzsr6JhZUF3HZvCnv+7NSUsvQ\noddhotbiMpl1ALn+XHBQbFzEB/0gOaumhM0t3YQi0USVJSLiqO37e/j4j19nZX0Tty+dyRN3XKDA\nlUbyc7KIWMtAMPOOAlKny0EfFLpid+oEgmEGw1G+9/JOqkty3/OaGxdPm/giRUQSxFrLQ2/s5T9e\neJfiXA+//PJiHYWWhkYGpA6Gyc3JrBiSWV9tknm/waijTSsdClrNHYG/CF0iIulgZX0TvQMhntrQ\nyo72Xk6dUsCnz66mqSMw8geopI8CrwcYmkpfUehwMQmm0OWgDn+Q3Gw3Xs/7n61Y5PNQ4M2iubOf\n8xNYm4hIorzb1sOvNrQwGI7y8QWVnFdbismwvT6ZJC9n6HdeJm6mV+hyUEfg/cdFxBhjmFaaS1NH\nIEFViYgkRn8wwr8+t50V9U1MLfLyuboaKgq9TpclE8w33GgYCGlPlyRQhz9IdYnvuK+rKcll2/4e\n+gbDI+dWiYiksi0t3XztsY00HvZz0ezJXDavQkf5ZAhvBocufYc7JBK1dAWClB7j+J+jjd7XJSKS\nyiJRyz1/3M2nfvIGgcEIK768mKvOmKrAlUE8bhdZLpORoUttE4d094eI2g8eFxFTWezDZaCpI8Bp\nUzNs16GIpI3mjgB/8/gm1u7t5KNnTOXfPnU6xbnZ7D2izfKZJsfjpj+UeaOQFLoccsQ/CEBp/vFD\nV3aWi6lFPnW6RCSlxO48tNayqbmLZ9/eD8BnF1WzsKaY57cccLI8cZDP41KnSxJnZEbXGJYXAWpK\nc9mwr5NI1B7zcGwRkWQUCIZ5ZtN+trR2M2NSLp9dVEOJBp1mPK/HrdAlidPhD+J2GQp9njG9flqp\nj9UNRzjYO8DUouNvvhcRcdrug308ub6ZvsEwl8+rYOkpZRl37Iscm0+hSxKpwx+kJDd7zD+AaoYH\nozZ1BBS6RCSpDYQi/NdLO3jwjUYm5+dw53kzqBrDndqSOXI8broCIafLSDiFLod0+IMfOIn+aKV5\n2eRlu2nuCLC4dtIEViYicvLePdDD11dt4t0DvSyuLeWq06eSnaU7E+W9tKdLEsZaS4c/yPRJeWO+\nxhhDTWkuLZ39E1iZiMjJiUYtD725l++++C6F3iweuuUc2roHnC5LkpTX46Y/A0OX/vxwQCAYYTAc\nPaFOF0BFoZfDfYNEonaCKhMROXEHewa45edr+c5vtrN0zmRe/PpSLj213OmyJIl5PW7CUUs4kllj\nI9TpcsDInYsnGLrKC3KIWjjSN0i5jsoQkSTwu+3tfPNXmwkEw/zrJ0/n84un6dxEOa6RqfThKPkZ\nNBhXocsBJx+6hoLWwV6FLhFx1s/f2MsLW9uob+xgapGXm8+bhcsYHl3T7HRpkgJ8nqGgNRCMZNTx\ndpnzlSaRI8Ohq2SMM7piygpyADjYOwAUxbssEZExaTjUx09f2U17zyBLZk/mcp2bKCfImxXrdGXW\nvi6FLgd0+IMUeLNO+I6e7CwXJbke2nsGJ6gyEZEP9tzmNv7uV5uJWsstF8zglIoCp0uSFBRbXsy0\nzfQKXQ7o8AdPeGkxprzAy6FehS4RSaxgOMq/v/AOD72xl7OmFXPZaRUUn2C3XiTGmz3c6cqw8xfH\n1GoxxlxpjNlhjNltjPnWMZ7/vDFmszFmizHmTWPMglHP7R1+fJMxZl08i09VHf7BE75zMaa8MIdD\nuoNRRBJof1c/1y9/i4fe2MsXL5zBY8vOV+CScfEOr/Rk2qyu43a6jDFu4B7gMqAFWGuMedZau33U\nyxqBi621ncaYq4DlwOJRz19qrT0cx7pT1kAoQs9A+KTPHisv8BKJWjqH94WJiMRb7KBqgMbDflbW\n7yMctdxw7jTmlBfw5PoWB6uTdOCL3b2o0PUXzgV2W2sbAIwxq4BrgJHQZa19c9TrVwPV8SwynbR0\nBgBOvtP1ns30IiITw1pLfWMHv9m8n9K8HL5w3rSRO6hFxis7y4VBe7qOpQoYfQ9wC+/tYh3ty8AL\no963wO+MMRHgPmvt8hOuMo00dQyFrtKTbM3/OXRpX5eITIxwJMqzb+9n3b5O5lYUcN05NSMbn0Xi\nwRiDNwMPvY7rRnpjzKUMha4lox5eYq1tNcaUAy8bY9611r56jGuXAcsApk2bFs+yksq+I8OhKz/n\npK7P8bgp9nlo71GnS0Ti72DPAA+83khTR4BL5pbxkdMqcGnYqUwAr8eljfTH0ArUjHq/evix9zDG\nnAk8AFxjrT0Se9xa2zr834PA0wwtV/4Fa+1ya22dtbaurKxs7F9Bitl3JEC220Ve9sn/1VhemKNO\nl4jE3ZrGDj72o9dp6+7nhnOncfm8KQpcMmF8GdjpGkvoWgvMMcbUGmOygeuBZ0e/wBgzDXgKuMla\nu3PU43nGmILY28DlwNZ4FZ+KmjsClOZlj+uYjNjYCN3BKCLxYK3l/lcbuOH+1eRmu7nj4lmcUaUB\nzDKxMvHQ6+MuL1prw8aYu4GXADfwoLV2mzHmjuHn7wX+GZgE/GQ4TISttXVABfD08GNZwEpr7YsT\n8pWkiH3DoWs8ygtyCEctLZ0Bpk/Ki1NlIpKJegZCfPOJzby47QBXzp/Cf372TH7zdpvTZUkG8Hrc\nI8fiZYox7emy1j4PPH/UY/eOevtW4NZjXNcALDj68UwVjVqaOwKcM6N0XB8ntpl+V3ufQpeInLR3\n2nq485frae7s558+ehpfXlKrw6olYTKx06XDshKoIxBkMBylONczro8TO+x618G+eJQlIhnGWssj\nq/fxyXveIBCMsGrZedx60UwFLkkon8eVcXu6dAxQAsUGmo73RHWvx02hN4td7b3xKEtEMsgDrzbw\n1MZWtrf1MKc8n88sqmZXex+72vVHnCRWjsfNYDhK1NqMuWFDoSuBYmvXudnj/2cvL/Sq0yUiJ+St\nPUf44R924R+McPUZU7lg1qSM+WUnySc2lX4wFMU3jjv6U4lCVwJ1BoZCV17O+L+5ygty2NjURTRq\ncbn0Q1NE3l84EuX7v9vFPX/azaS8HG4+fwaVxT6ny5IMFxu42x+KKHRJ/HX4Q0CcOl0FXvpDEVq7\n+qkpzR33xxOR9HSge4CvPrqRNXs7+FxdNfOmFpGdpe284jyvJ/MOvdb/8xIo1unKjUOirygcuoNx\nt5YYReR9vLrzEB/94Wts3d/ND65fyH9+ZoEClyQNbwYeeq1OVwJ1+IPkZbvxuMf/Q68sNjbiYC+X\nnlo+7o8nIqltZX3TyNtRa/n9O+38acchygtzWHb+TPyDkfe8RsRpPoUumUid/iAl4xyMGpObnUVZ\nQQ47dceRiIzSOxDisbXNNBz2s2haCR9fUKnuliSlP3e6Muf8RYWuBOoIBMc9jX60OeX5uoNRREbs\nO+Jn5ZomBkIRrj27mkXTS5wuSeR9xfZ0ZdKAVIWuBOr0BynOjW/oenJ9C9ZaDTUUyWDWWt7cc5jn\nt7RRnJvNLRfMYGqR7k6U5JaTlXnLi+o5J1BHIEjpOKfRjza7ogB/MEJb90DcPqaIpJZAMMzXH9vE\nbza3cUpFAV+5ZLYCl6QEt8uQnZVZU+nV6UqgLn8obnu6AE4pzweGjgPSzB2RzNNwqI87f7mBnQd7\nuXxeBUtPKdOwU0kpPo87o/Z0qdOVIMFwlN7BMKXxXF6sKADQcUAiGejZt/fz8R+9zsHeAX7xxXO5\nZG65ApekHK/HlVF7uhS6EqRreEZXPDtdpXnZTMrL1plpIhlkIBThH5/ewlcf3chpUwt5/msXsfSU\nMqfLEjkpXo+bgXDmhC4tLyZIx3DoKs3LpisQitvHnV2ez66D6nSJZILGw37uWrGBd9p6uP3imXzj\n8rlxmfsn4hRvlpvewfj9Tkx2Cl0JEjvsuiQ3vqFrTkU+z2zcrzsYRdLYyvomNrd08fTGVlzGcPP5\n05lemscT61qcLk1kXHzZbg71DTpdRsIodCVI5/C5i6V52TQe9sft486tKKB3MMyBngHdsSSShgZC\nEZ7Z1Ep9YwfTSnO5/pyauI6eEXGS1+OiP6jlRYmzjpE9XfEbGQFwyvBm+h0HehW6RNLMviN+vrJy\nA1tbe1gyezJXzJ+C26WOtqQPb5abwXAEa63TpSSENgMkSOeo5cV4ioWunbqDUSStvLCljY/98HWa\njgS46bzpXH3GVAUuSTtej5uohWAkM8ZGqNOVIB3+IAXerLhvei3Jy6a8IIcdB3QHo0g6CEWi/Pvz\n7/LgG40sqCnmxzecxWu7DjtdlsiE8GXY+YsKXQnSGedzF0ebO6VAnS6RNHCod5C7V26gvrGDWy6Y\nwT9cfZoOq5a0ljN8/mKmTKVX6EqQDn8w7kuLMadUFLCifh+RqNXyg0iKWVnfBEBzR4AV9fvoD0X4\n7KJqTqko4Mn1ujtR0tufO10KXRJHXYEQZQU5E/Kx51YUMBCK0twRYMbkvAn5HCIycdbt7eCZt/dT\n6M3i9qWzdKyXZAzvcOjKlKn0Cl0J0uEPMqcif0I+9ilThu9gbO9V6BJJIcFwlF9vamVNYwezy/O5\nvq6G3Bz9WJbM4c2wPV3aLJAgnYFgXM9dHG3O8MHXOw9oX5dIqjjYO8CN969mTWMHS+dM5pYLZihw\nScbxak+XxNtAKEIgGInruYuj5eVkUVPqY4c204ukhE3NXdzxyHq6+0Ncf04NZ1YXO12SiCO8Gban\nS52uBOgcde7iRJlboTsYRVLBE+ua+dx9b5HlNvzqzgsUuCSjedwuslxGoUvip2OCBqOOdkpFAQ2H\n/ATDmbF1pfEfAAAgAElEQVQuLpJqQpEo//LsNv72yc2cM6OE/757CfMqC50uS8RxXo+b/gzZ06Xl\nxQQYfe7iRJk7pYBw1LL3iH9kSr2IJIeDvQPcvWIja/Z2cOuSWr511alkxXlQskiq8nrcGdPpUuhK\ngI6R5cX4nrs42ugzGBW6RJwXm7/VdMTPijVNDIQiXHdODTPL8nl8neZvicR4PS6FLomfiTp3cbSZ\nZXm4XUb7ukSShLWW+sYOntvcRlGuh1sumKFD6UWOwZdBna4x9beNMVcaY3YYY3YbY751jOc/b4zZ\nbIzZYox50xizYKzXZoIOfxBjoMg3cZ2unCw3MyblskNjI0QcNxCK8NSGVp59ez+zy/P5yiWzFbhE\n3of2dI1ijHED9wCXAS3AWmPMs9ba7aNe1ghcbK3tNMZcBSwHFo/x2rTXGQhS5PNM+B6OuVMK2L6/\nZ0I/h4h8sJbOAHf8cj1bW3v40KnlfOjUclxGx3OJvB+vx82gOl0jzgV2W2sbrLVBYBVwzegXWGvf\ntNZ2Dr+7Gqge67WZoMM/cYNRRzulooB9HQH6g5nxzSuSbF7fdZiP/+h19h0OcNN50/nIaRUKXCLH\n4fW4MuYYoLGEriqgedT7LcOPvZ8vAy+c5LVpqSsQmrDBqKPNrSjAWth9sG/CP5eI/Jm1lntf2cPN\nD9ZTVpDDs3+9hNOmahyEyFj4PG7CUctgOP2DV1zXu4wxlzIUuv7uJK5dZoxZZ4xZd+jQoXiW5bgO\nf3BCN9HHjD6DUUQSwz8Y5isrN/AfL7zLVWdM5em7LqRWZ6CKjFlsKn3vQNjhSibeWO5ebAVqRr1f\nPfzYexhjzgQeAK6y1h45kWsBrLXLGdoLRl1dnR1DXSmjMxBk/gQMQYzdkh4TiVqyXIZnNra+Z0jq\njYunxf1zi2Sy2P/3jvQN8sjqfRzqHeTK+VO4YOYkntm03+HqRFJL7PzFnv4Qk/NzHK5mYo0ldK0F\n5hhjahkKTNcDN45+gTFmGvAUcJO1dueJXJvurLVDe7oSsLzodhnKCnJo7x2Y8M8lkul2tveyam0T\nBsMXL6xl9vDB8yJyYmKdrh51usBaGzbG3A28BLiBB62124wxdww/fy/wz8Ak4CdmaNNo2Fpb937X\nTtDXkpT6QxEGw9GE7OkCqCj00njYn5DPJZKJrLX8acdBXt7ezpQiL59fPD0hf1SJpCtfLHT1hxyu\nZOKNaTiqtfZ54PmjHrt31Nu3AreO9dpMEjt3MRF3L8JQ6NrU3EV/MIIv252QzymSKfyDYf72ybf5\n7fZ2zqwu4tNnVZOdpeN8RMYjR3u6JF5i5y4mrtM1tB5+sHeA6ZO0mVckXpo7Atz28Dp2tvdy1elT\nWDJ7MkbjIETGbaTTNaBOl4xTIs5dHK2i0AvAgR6FLpF4eWvPEe5asZ5I1PLQF8+ltbPf6ZJE0sbo\njfTpTn3xCZaIcxdHK/Z5yM5y0d4zmJDPJ5LOrLU88tZebvpZPZPyc3jm7iVcfEqZ02WJpJVstwuX\n0fKixMHInq4ELS8aY6goyKG9R3cwipyM2DiIcDTKf7/dxtq9HZw6pYDP1dXw1p4jvLXnyHE+goic\nCGMMOVluLS/K+HUGgrgMFHoTs7wIQ0uM29t6sNZqz4nISQgMhlmxponGw34uPqWMy+bpOB+RieTL\ndmt5UcYvNo3e5UrcD+yKQi+BYITewfRv1YrE26HeQX7yyh6aOwJ8rq6aK+ZPUeASmWDeLFdGLC8q\ndE2wRJ27ONrU4qHN9G1dWmIUORFv7D7MT1/ZzWA4yq1LallYU+J0SSIZwevJjOVFha4J1uEPJmxG\nV0xlkQ+Atm7dYSUyVivq93Hzg2so8nm46+JZTNPdvyIJ4/W46elP/06X9nRNsM5AkOmTchP6Ob0e\nN6V52ezvUugSOZ5o1PLvL7zD/a81csncMpbOKRs5lkREEsPncWdEo0CdrgmWqHMXjza1yMv+bi0v\ninyQgVCEv161kftfa+Tm86fzwM11ClwiDvB6XDp7UcbHWktnIEhxgpcXASqLfWzb38NAKJLwzy2S\nCroDIW57ZB1rGjv4h6tP5baLZupuXxGHeD1u+gbDRKIWdwJvPEs0ha4J1DcYJhSxCd/TBUOdLoA2\ndbtE/kJLZ4BbHlpL05EAP7zhLD6xoNLpkkQyWqzD3DcQpig3cSOWEk2hawIl+tzF0bSZXuQvraxv\noq27n5+/uZdQJMrN50+nbyA8MhBVRJzhHXX+YjqHLu3pmkCJPndxtAJvFnk5WezX2AiREY2H/Sx/\ntQGXMdy+dBYzy/KdLklEAN/w+YvdaT4gVZ2uCZTocxdHM8ZQWeRVp0tk2B/ebeehNxopyc3mixfO\ncGSvpYgcW6zTle4DUtXpmkCJPnfxaJXFPg72DBIMRx35/CLJ4plNrSx7eD0VhV5uWzpTgUskyYxe\nXkxnCl0TqHN4edGJPV0wtJk+Yi0723sd+fwiyeCRt/by9cc2sWh6CV9eUkt+jhr8IslmJHSl+fKi\nQtcE6gwEyXIZChz6IR/bTL99f48jn1/ESdZafvyHXXz7mW18+NRyfvGlczWDSyRJ+UY6Xem9vKg/\n+eLo6Dug1jR24vO4eXRNsyP1lOZnk53lYtv+bqDGkRpEnGCt5T9eeJf7Xm3gU2dV8Z+fOROPW39j\niiSrnOGN9One6VLomkCBYJjcHOf+snYZw9RCL9vb1OmSzBGNWr79zFZW1DfxhfOm8b8/cTquNB62\nKJIOXMZQ4M3S3Yty8vyDEXKznf0nnlrsY0tLF9Go1S8eSVuxLnMkavnVhhY2NXexdM5kTptSyKq1\nznSaReTEFPk8ad/pUr99AgWCYfKynd1DUlnkxR+MsK8j4GgdIhMtHIny6JomNjV3cfm8Cq6YP0XH\n+oikkCKfJ+07XQpdE8gfjJDr8J1SU4uHNtMP7esSSU+D4QiPrN7H9rYePnbmVC6ZW67AJZJiFLrk\npEWtpT8JOl0VBTlkuYzuYJS01eEP8rPXG9l9sI9rz67iglmTnS5JRE5CJoQu7emaIIOhKFGL43u6\nstwu5lQUsE2hS9JQa1c/N/2sngPdA3x+8XTmVRY6XZKInKRMCF3qdE0Qf3Bo1kiuw50ugPmVhQpd\nknZ2tvdy7U/e5FDvIF+8sFaBSyTFKXTJSQsMxkKX883EeVMLOdw3yMEeHX4t6WH9vg4+e+9bRKzl\n8dvPp3ZyntMlicg4Ffo8DIajDIQiTpcyYRS6Jog/OPRNk+fgnK6Y+cMdAHW7JB28uPUAn3+gnpJc\nD0/deQGnTVWHSyQdFPk8QHoPSFXomiCB4eXFvGTodA2HLg1JlVRmreX+Vxu4c8V6Tp1SyJN3XkBN\naa7TZYlInMRCVzovMTqfCNKUf3Co0+XkRPqYAq+H6ZNyNTZCUtLK+iYiUctvNu+nvrGD+ZWFfOqs\nKn67rd3p0kQkjhS65KQFgmGyXIbsJDnvTZvpJVUNhiKsWtvMjvZeLpozmSvmT8GlGVwiaScTQldy\nJII05A9GyM12J82AxnlTC9l3JEDPQPp+M0v6aevuZ/lrDew62Ms1Cyu56vSpClwiaUqha5gx5kpj\nzA5jzG5jzLeO8fypxpi3jDGDxphvHPXcXmPMFmPMJmPMungVnuwCg2HyHJ5GP9r8qiIAtrWq2yWp\nYXNLF9f8+A06/EFuPn8Gi2snOV2SiEwghS7AGOMG7gGuAuYBNxhj5h31sg7gq8B/vc+HudRau9Ba\nWzeeYlNJrNOVLBZUFwNDv8hEkt0LW9r43H1v4XG7uP3iWZxSUeB0SSIywQoVugA4F9htrW2w1gaB\nVcA1o19grT1orV0LpO+/1AkKBMNJMaMrpjQvm2mlubyt0CVJzFrLPX/czZ0rNnDa1EJ+/ZULmVLo\ndbosEUkAt8tQkJOV8aGrCmge9X7L8GNjZYHfGWPWG2OWnUhxqcw/GEmKGV2jLagp5u1m3cEoyWkw\nHOEbT2zm/7y0g08sqOTR286jrCDH6bJEJIEK03wqfSJaMUusta3GmHLgZWPMu9baV49+0XAgWwYw\nbdq0BJQ1cSJRy0AoklSdLoAF1UX899v7Odg7QHmBugfivJX1TcBQZ3hFfRONh/18+NRyFteW8tSG\nVoerE5FEK/R5Mn44aitQM+r96uHHxsRa2zr834PA0wwtVx7rdcuttXXW2rqysrKxfvik1B+KYIG8\nJNrTBbCwZnhfl7pdkkSO9A1y7yt7aOoI8Lm6Gj58WkXS3PUrIolV5NPy4lpgjjGm1hiTDVwPPDuW\nD26MyTPGFMTeBi4Htp5ssali5NzFJLp7EWB+ZRFul9G+Lkka+474+ekrewgEI3z5wtqRPwxEJDOl\n+6HXx00F1tqwMeZu4CXADTxord1mjLlj+Pl7jTFTgHVAIRA1xnydoTsdJwNPD//VmgWstNa+ODFf\nSvIYOXcxyZYXfdlu5lYUsKlZoUuc98ymVh54vZFin4e/umAGk/O1f0sk02V86AKw1j4PPH/UY/eO\nevsAQ8uOR+sBFoynwFQUO3cxmUZGxCyoKea5zfux1moJRxxhreWnr+zhP1/cwYxJuXxh8fSk6wqL\niDPSPXRpIv0ECAyfu5hMw1FjFtYU0TMQZu+RgNOlSAaKRC3ffmYr//niDj6+oJIvXVirwCUiI4p8\nHgZCUQbDEadLmRD6aTcB/EnW6YrdIQZwoHsAgJ/+aTcLa0pGHr9xcWrfMSrJrz8Y4aurNvLy9nZu\nXzqTv7vyVFatbT7+hSKSMUZPpS8vSI7fofGkTtcECAQjZLtdeJLksOvRygtzyHa7aO7sd7oUySAd\n/iA3PrCa373Tzr98fB5/f/VpuFxa3haR94pNpU/XsRHqdE0A/2CY3CQbjBrjMobKYh8tHVpelIkz\nurva4Q/y0BuNdPeHuOGcaWRnud/zvIhITLqfv5h8rZg0EAhGku7OxdFqSny0dQ8QjkadLkXS3P6u\nfu6LjYRYUsvpwwevi4gci0KXnDB/MJw0+7mOpbo0l3DU0t496HQpksYaDvVx/2sNuFyG25fOZPqk\nPKdLEpEkp9AlJywQjCTlnYsx1SU+AJo7tcQoE2NrazcPvbmXIp+H25fOpFyHVovIGIyErkB6hq7k\nTQYpzD+Y3J2uYp+HvJwsWrSZXibAL1fv49E1TdSU5nLz+dOT7gxSEUlehSOdrrDDlUwM/TSMs3A0\nymA4mtS/aIwx1JT4aFGnS+LIWssPf7+b7/1uJ3MrCrjh3GlkZ6mZLiJj53G7yMt2p+3yYvImgxQV\niB0BlKR3L8ZUl/jYcaCXgVAErye5a5XkF4la/vmZrayob+Las6tZWFOMWyMhROQkpPNUev0ZGmex\nafTJ3OkCqC7JxQKtXVpilPEZCEX4yooNrKhv4s5LZvFfnz1TgUtETlphGoeu5E4GKSg2jT4vifd0\nwZ8307d09jOrLN/haiRVdfeHWPbwOuobO/j2x+bx5SW1TpckIimuyOfRcFQZm9jyYrKfJ5ebncWk\nvGzt65ITFhts2tMf4udv7uVQ7yDX1dXg82joqYiMX5HPw740PR84uZNBCvIPpkanC4a6XY2H/U6X\nISnoYO8AP39zL4HBCDefP505FQVOlyQiaUJ7umTMAiOHXSd/nq0uyaVnIJy239wyMfYd8XPfKw2E\nIpZbL6pV4BKRuErn0JX8ySDF+IMRvB5XSmwkrokNSdU5jDJGL29v52evN1Lk83DLBTOYlJ/jdEki\nkmaKfB76QxGC4WjajZ1Jr68mCQQGwynR5QKoLPHhcRv2HtESoxzfivp93P7IOqYUebn94lkKXCIy\nIYpy0/cooNRIBylk6LDr5N/PBZDlclFTmqt9XfKBrLV87+Wd/PAPu/nQqeUsnVOWdn99ikjyGH3+\nYllBev1xp5+ccTZ02HXqZNnayXkc6B5I23OuZHzCkSh//9QWfviH3XyurprlNy1S4BKRCVWYxode\n66dnnAUGI0k/jX602sl5WGDt3g6nS5EkMxCKcOeKDaxa28zdl87mu9eeSZZbPzJEZGLFOl3pOKsr\ndVoyKSLVOl01Jbm4XYb6xiN8ZF6F0+WIw2JztvqDER5evZemIwE+fuZUKot9PLqm2eHqRCQTFKVx\npyt10kEKCIajhCI2ZfZ0wdDhojUlPuob1emSId39IX7+ZiOH+4Jcd04NZ1YXO12SiGSQdA5dWiuI\no5EZXUk+jf5otZPz2NraTd/wYFfJXId6B7nvlT10BULccsEMBS4RSTiFLhmT2BFAqdTpAqidnE/U\nwjrt68poW1u7Wf7qHkKRKLdeNFNncoqIIzxuF7nZboUu+WD+FJpGP9q00lyyXEZLjBmsvuEINyxf\njcft4vals6gq9jldkohksHSdSp9a6SDJBQZjh12nVqcrO8vFmdVF1DcccboUccAf3m3nzl9uoLrE\nx7VnV1Ocm+10SSKS4dI1dKnTFUexTldeinW6ABbPnMTmlu6RfWmSGZ7Z1Mqyh9dzSkUBj99+vgKX\niCSFQoUuOZ5AMIIBfCm2pwtgcW0p4ahlw74up0uRBHlk9T6+tmoTi6aXsPK2xTrWR0SSRpHPk5Zz\nuhS64sg/GMaX7cZlkv+w66PVzSjFZaC+UUuMmeC+V/bw7V9v5UOnlvOLL51LgdfjdEkiIiPSdXkx\n9dbBklggGEm5TfQx+TlZnF5VRH2DNtOnq5X1TVhr+d077fxxxyHOqCri0rnlPLWh1enSRETeI11D\nlzpdceQPhlNuXMRoi2tL2dTcxUAo4nQpMgGi1vKbLW38ccch6qaXcN05NbhdqdeVFZH0V+TzEAhG\nCEWiTpcSV2MKXcaYK40xO4wxu40x3zrG86caY94yxgwaY75xItemk8BgJOUGo462uHYSwUiUTc3a\n15VuIlHL0xtbeWvPES6cNYlPnVWVksvgIpIZ0nVA6nFDlzHGDdwDXAXMA24wxsw76mUdwFeB/zqJ\na9NGIMU7XefUlmIMWmJMM+FIlP/x2CbW7+vkQ6eWc/UZUzEKXCKSxDI2dAHnAruttQ3W2iCwCrhm\n9AustQettWuBo/91jntturDW4k/hPV0w9E1+2pRCbaZPI8FwlL9+dCPPvr2fK+dP4SOnVShwiUjS\ny+TQVQU0j3q/ZfixsRjPtSnFH4wQiVryUmww6tEWzyxlQ1MnwXB6raNnosFwhLtWrOeFrQf49sfm\nsfSUMqdLEhEZk8IMDl0JYYxZZoxZZ4xZd+jQIafLOWGd/iCQekcAHW1x7SQGQlE2t2hfVyobCEVY\n9vB6fvfOQb5zzXy+vKTW6ZJERMYs1ulKt1ldYwldrUDNqPerhx8bizFfa61dbq2ts9bWlZWl3l/k\nHcOhK5X3dAGcO7yv67Vdh50uRU5SfzDCl3+xlld3HeI/Pn0GN50/w+mSREROSLouL46lLbMWmGOM\nqWUoMF0P3DjGjz+ea1NKR2C405XCdy8ClOZlUze9hJe2HeB/XHaK0+XIGKysbxp5OxiO8vDqvTQe\n8nPtomqi9r3Pi4ikgpHQFUiv0HXcTpe1NgzcDbwEvAM8bq3dZoy5wxhzB4AxZooxpgX4G+CfjDEt\nxpjC97t2or4YJ3WmSacL4Ir5U3j3QC/7jvidLkVOQCgS5ZHhwPWZRdWcPa3E6ZJERE5KdpYLn8ed\nkZ0urLXPA88f9di9o94+wNDS4ZiuTUcdabKnC4ZC178+9w4vbTvAsqWznC5HxmAocO2jYbjDdZYC\nl4ikuHScSp80G+lTXWcgiMuA15P6/6Q1pbnMm1rIS9vanS5FxiAUifLL1fvYc7CPT5+tDpeIpAeF\nLnlfHf4QudlZaTMD6Yr5U9jQ1MnBngGnS5EPMBCKsKJ+H7sO9vGps6pYNF2BS0TSg0KXvK9Of5Dc\nNNjPFXPl6VOwFn67Xd2uZDU0h2sDO9uHAlfdjFKnSxIRiZtCn4eegbDTZcSVQlecdASC5KX4nYuj\nnVKRz4xJuby07YDTpcgxhCJR7l65kT+8e5BrFlZyjgKXiKSZIp8n7eZ0pU9KcFiqd7qONVagpjSX\nN3Yf5mevNeLLdnPj4mkOVCZHC0WifPXRjby8vZ3/fc18slz620lE0o+WF+V9dQaC5KXBnYujzZ9a\nSNTCuwd6nC5FhoUjUb7+2KaRo31u1uBTEUlTRT4PfYNhwpH0OZZOoSsOolFLZyBEboqfu3i06tJc\nCrxZbG9T6EoGkajlfz7xNs9tbuMfrj5VR/uISFor8g01MtJpX5dCVxz0DoSHDrtOs06XyxjmTS1k\nZ3svoTT6SyMVRaKWbzzxNs9s2s/fXjFX89NEJO0V5abfUUDplRIcMnIEUArv6Xo/8yoLqW/sYFd7\nn9OlZKSV9U1EopYn1jezuaWbj5xWQUluto72EZG0l47nLyp0xcHIYddpdPdizMzJ+Xg9Lrbt73a6\nlIwUiVoeX9fMltZurphXwcVzy50uSUQkIdIxdGl5MQ7+fARQ+nW63C7DaVMKefeAlhgTLRSJsmpt\nE1tau7nq9CkKXCKSURS65JjauvuBoUFu6WheZSH9oQhrGjucLiVjBMNRvrJiA9v29/DRM6Zy0Zwy\np0sSEUmoQoUuOZbWzn6y3S7y03B5EWBOeQEet+Hpja1Ol5IRBkIR7vjlen67vZ2PnzmVC2dPdrok\nEZGEi3W60mlAqkJXHLR09VNV4sOVJucuHi07y8Wi6SU8s6mVdp3FOKF6B0L81YNr+OOOg/zbp07n\n/FkKXCKSmXKy3Hg9LnW65L1aO/upKvY5XcaEWjK7jEjU8tAbe50uJW11+IN8/oF61u/r5PvXLeTz\ni6c7XZKIiKMm5eVwuHfQ6TLiRqErDlq70j90leZlc9XpU1lRv4++wfQZVJcsDnQP8Ln73mLHgV7u\nu2kR1yyscrokERHHVRZ72T+8bzodpOcmpAQaCEU41DtIVUl6hy6A25bO5Lktbaxa08StF810upyU\nF5u1daRvkAffaMQfjHDzedNp7xnUHC4REaCy2MeGpk6ny4gbdbrGaX/XUAJP904XwMKaYs6tLeXB\n1xs1PiJO9nf1s/zVBgbDUW5dUsvMsnynSxIRSRqVxT4OdA8QiVqnS4kLha5xah0OXdUZ0OkCuH3p\nTPZ3D/Dc5janS0l5uw/2cf9rDbhchtsumkl1Sa7TJYmIJJWqYh+hiOVwX3rs61LoGqfWzuFOV4aE\nrkvnljO7PJ/7Xm3A2vT4y8MJz2xq5Rdv7qUkN5s7Lp5FRaHX6ZJERJJObBWppTM99nUpdI1Ta1c/\nbpdhSob80hzqytTyTlsPr+8+7HQ5Ken+Vxv42qpNTJuUy20XzRyZRSMiIu9VORy6Ylt5Up1C1zi1\ndPYzpdBLljtz/ik/eVYVZQU5LH+1welSUko0avnX32zn355/h6vPmMItF8zAl4ZHR4mIxEtl8VBD\nQ6FLgMyY0XW0nCw3t1wwg9d2HWb7/h6ny0kJgWCYO1es54HXG/mr86fzoxvOxpNBQV1E5GQUeD0U\nerMUumRIa1d/xmyiH+0Li6eTm+3m+7/bqb1dx9HeM8B1963mt9vb+eePzeNfPjEftys9Ty8QEYm3\nymLfyE1rqU6haxzCkSgHegYyZhP9aEW5Hv76Q3P47fZ2nn17v9PlJK3t+3v45D1vsOdQH/ffVMeX\nltRi0vS4KBGRiVBV7KO1Kz2OoNNw1HFoG54dkmnLizHLls7k5e0H+Pavt7K4dhJTijLjZoLjiQ02\nfbeth1Vrm/F6XHzpwloO9mroqYjIiaoq8bFuX3oMSFWnaxxi7c5M7HQBuF2G//u5hYQilm/+arOW\nGYdZa3llx0EeWb2PyQXZ3HXJ7JE7cERE5MRUFvvo7g+lxRF06nSNQ2xGV6YMtXy/Ls1l8yp49u39\nfP2xTfzg+rMSXFVy8Q+GeXRNE1v393BGVRHXnl1Ndpb+thEROVmjx0acUlHgcDXjo98G4xDrdE3N\n8GW1xbWlzC7P5/ktbew97He6HMfsPezn0z95k237e7hy/hSuP6dGgUtEZJyqhsdGpMNmev1GGIfW\nzn7KCnLwejJ71pIxhmvPrsbtMnzjibfT5oysE/HHHQf5xI9fp713gFsunMHSU8q0YV5EJA6qiodW\nk1rTYCq9Qtc4tHQFMnYT/dGKfB4+fmYl6/Z1cu8re5wuJ2EiUcv3Xt7Jl36+lqqSXP777iXMKU/t\n9reISDIpK8ghy2XSYlaX9nSNQ2tnP/OripwuI2ksrCkmEIrwX7/dwZRCL9cuqna6pAl1sHeArz26\nibcajvDps6v4t0+eoQnzIiJx5nYZphR5Myd0GWOuBH4AuIEHrLX/cdTzZvj5q4EAcIu1dsPwc3uB\nXiAChK21dXGr3kHRqGV/1wBXnD7F6VKShjGG//vZBXQFgvztk2/j9bj56JlTnS4rrmI3E+w+2Mfj\n65oZDEe49uxqFk0v4emNrQ5XJyKSnqqKfexPg1ldx11eNMa4gXuAq4B5wA3GmHlHvewqYM7w/5YB\nPz3q+UuttQvTJXABHO4bJBiJUq3lxffwetzcf3Mdi6aX8LVVG/n9O+1OlxRXUWv5/TvtPPRGIz6P\nmzsvmc2i6SVOlyUiktaq0mQq/Vj2dJ0L7LbWNlhrg8Aq4JqjXnMN8LAdshooNsakV4vjKC0ZPqPr\ng+RmZ/HgLecwr7KQO3+5gdd2HXK6pLho7ghw/2sN/P7dgyysKeauS2cxpTCz71wVEUmEymIfB3oG\nCEeiTpcyLmMJXVVA86j3W4YfG+trLPA7Y8x6Y8yy9/skxphlxph1xph1hw4l/y/pluG7KGJ3Vch7\nFXg9PPylc5lZlsdtD6+jvuGI0yWdNGstT21o4aofvMaB7gE+s6iazyyqJidL+7dERBKhqsRHJGo5\n2DvodCnjkoiN9Eusta3GmHLgZWPMu9baV49+kbV2ObAcoK6uLulnDsRuXVWn672OHqD66bOruf/V\nBr7ws3quq6thXuXQjQc3Lp7mRHknrCsQ5B9/vZXnNrdxzowSLjmlnJK8bKfLEhHJKLEBqa1d/Sl9\nwh9gPYUAAA++SURBVMdYOl2tQM2o96uHHxvTa6y1sf8eBJ5maLky5bV2BSjO9ZCfoxtAP0h+Tha3\nXlRLRaGXFfVNvLrzUMocF/SnHQe58vuv8dLWA3zzyrmsWna+ApeIiANiA1JT/Q7GsYSutcAcY0yt\nMSYbuB549qjXPAvcbIacB3Rba9uMMXnGmAIAY0wecDmwNY71O6a1s18zusaowOvhtotmcnpVES9u\nO8DTG1sJhpN3Xf5w3yBffXQjtzy0lnxvFr/+yoXcdcls3C4NOxURccLoTlcqO26bxlobNsbcDbzE\n0MiIB62124wxdww/fy/wPEPjInYzNDLii8OXVwBPD0/mzgJWWmtfjPtX4YDWrn5mTMpzuoyU4XG7\nuO6cGibnZ/PHHYf4qwfX8NMvnE1xbvJ0jlas3seGpi6e39JGMBzlw6eWc/EpZWxu6WZzS7fT5YmI\nZKzc7CxKcj0pP5V+TGtj1trnGQpWox+7d9TbFvjKMa5rABaMs8akY62lpbOfC2dPdrqUlOIyhsvm\nTWFyfg7PbNrPJ+95gx9cfxYLaoqdLo09h/r42RuNNBzyM700l0+dVUW57kwUEUkalcW+jFhelKN0\nBUIEghEtL56ks6aVsPK2xQyGo3z6p2/yvZd3EnLoNuC27n7+/qnNXP69V2nt7OeahZXctnSmApeI\nSJKpTIMBqdoFfhJia8rVJRoXcbLqZpTy4teX8v89u40f/H4Xf3j3IN+7bgGzE3RuYac/yL2v7OHn\nb+4lai03nTedymKfbowQEUlSVcU+Vu9J3fFDoNB1UmIzuqo1LmJcinwe/v/rFnL5/Ar+4emtXP3D\n1/nmFXO56fzpEzYDq7kjwGNrm/nFm3vpC4b59FnVfP0jc6gpzf2LcRciIpI8qop99A6G6e4PUeTz\nOF3OSVHoOgmxTpeWF0/e0QHn9qUz+X/t3XtwVvWdx/H3JyEkQAIBIdxCjRfuFrRClbLrBdcLXrc7\nuna3xZnWjtrR7WXtdOxsOzvt7Gztdtdd3W7rdttut67r2hG3indHcFRWAQGDIrBGECEEY4DEIOGS\n8N0/nhMnpUCeSPKcPE8+r5nMPDnn/J7zfU6Y8Mnv/M7v9z9r6/mbxzdw93NvMe/Uk/i7a2f1ykD7\nA+0dPLP+PR5ctY2X6pqQ4OLpY7n9kqlMHZebnjUzMzsxnU8w7mhuc+gaSLbv2cfQwcVUDs3PH3p/\nVFFWwqJzT6aucS8v1TXxzJvv8eIPlnLdnGq+NP8UakZn/6RoRFDf3Mar7+xhxZbdPPlGA837DlE5\ntISLpldx9idGUjl0MKu37mH11j19+KnMzKy3TOgyV9f08cNTrubjcej6GOr3tFE9cgjJVBjWSyQx\neWwFk8dWsLNlPzta2nhg5bv8+uWtjB9RxpSxFUwdV8GUsRWcXlUOQOv+Q3zQ1k7r/kO0tB3ijR0f\n8Oo7u2loyQy2LC8dxPlTx1BVUcppY8op8s/MzCwvda4Ak89zdTl0fQz1zZ4Yta+NG1HGX14yhW9d\nOpXfvlbPhoZWNu1s5eXNu447serY4aXMrRnF3JpRzKkZybRxwykuksdrmZnludHDShlcXOTQNdDU\nN7dx1ifSn1uq0HUGpfLSko+CVMfhYPeHB3m/9QBFgtKSYoaUFFNWUkRZSTGlg4o+6oGs3dZC7TZP\nampmVgiKisT4yrK8njbCoauH9h5op3nfISZWerqINBQXiTEVpYypKE27FDMzy7GJlUOo37Mv7TI+\nNk+O2kOdSxBM9HQRZmZmOZXvE6Q6dPVQfXMmYXuOLjMzs9yaUDmE91r3p7aKyYly6Oqhd3clocsD\n6c3MzHJqYmUZEbCzJT97uxy6emj527uYWDnEY4rMzMxyrHM8db4+wejQ1QMH2jtYXtfEhdPGeI4u\nMzOzHOs6QWo+cujqgRWbd7PvYAcLplWlXYqZmdmA03UpoHzk0NUDSzc2UjqoiHmnjk67FDMzswGn\nrKSY0eWDfXux0EUEyzY18pnTTmLI4OK0yzEzMxuQqkcOZdPO1rTL+FgcurK0uelDtu7a51uLZmZm\nKbpoWhVr3m3Oy1uMDl1ZWraxEYALHbrMzMxSc9XsCQA8tm5HypX0nENXlpZubGTK2HKqR3r5HzMz\ns7TUjB7GrOoRLKltSLuUHnPoykLr/kOs3LLbvVxmZmb9wNWzJ/B6fQtbmj5Mu5QecejKwktvNdF+\nOFgw1aHLzMwsbVfMGo8ES2rz6xajQ1cWlm5sZHjZIM4+eWTapZiZmQ1440cMYW7NKB6t3UFEpF1O\n1hy6unH4cGaqiPOnVjGo2JfLzMysP7h69gTqGveyoSF/po9wiujG6/UtNO09yIJpY9IuxczMzBIL\nzxhHcZFYkkdPMTp0dWPpxkYkOH+Kx3OZmZn1FyeVl/IHp49mSR7dYnTo6sayTY2cNamSUcMGp12K\nmZmZdXHV7Als39PG2m3NaZeSFYeu42hs3c+67S2ehd7MzKwfunTmWAYPKuLR1/LjFqND13F4Fnoz\nM7P+q6KshAVTq3j89QY6Dvf/W4wOXcewvK6J7y95k9Orypkxfnja5ZiZmdlRXDV7Au+3HmDF5l1p\nl9Ith66jeHxdA1/891VUjxzK/V8+B0lpl2RmZmZHcdH0KoYNLuah1dv7/YD6rEKXpMskbZJUJ+mO\no+yXpHuS/eskfSrbtv3NfS+/w20PrGH2pBH85uZ5jB1elnZJZmZmdgxlJcV89lMTeXhtPYt+sZK6\nxr1pl3RM3YYuScXAvwALgRnAn0maccRhC4HJyddNwE970LZfiAj+8dn/47uPrOeiaVXcd+M5jBha\nknZZZmZm1o3vXX0G379mJrXbm1l49wv88KmN7DvYnnZZv2dQFsd8GqiLiM0Akv4buAZ4s8sx1wC/\njky/3iuSKiWNB2qyaJtz7R2H2b6njc1Ne3m78UM2N+3lzYZWarc1c93Z1fzgTz7p2efNzMzyRHGR\nuGFeDZd/cjx3PrmRnz7/No+srec7V85g4Rnj+s0woWxC10RgW5fvtwPnZHHMxCzb5tzCu1/krS7d\nj6OGDea0McO4Y+E0bj7v1H7zwzEzM7PsjS4v5e+vm83n5k7iu4+s547F65h/2uh+c+cqm9CVE5Ju\nInNrEmCvpE25OvdWYC3wEPCVE3ur0UDTiVdkPeBrnnu+5rnna557vuY59vk+et/K7/XRG/+uk7M5\nKJvQVQ9M6vJ9dbItm2NKsmgLQET8DPhZFvX0W5JejYg5adcxkPia556vee75mueer7n1hWwGLq0C\nJks6RdJg4HPAo0cc8yhwQ/IU47lAS0Q0ZNnWzMzMrOB129MVEe2SbgOeBoqBX0bEekm3JPvvBZ4A\nLgfqgH3AF4/Xtk8+iZmZmVk/ltWYroh4gkyw6rrt3i6vA7g127YFLK9vj+YpX/Pc8zXPPV/z3PM1\nt16n/j57q5mZmVkh8GRUZmZmZjng0NVL8m25o3wn6ZeSGiW9kXYtA4WkSZKWSXpT0npJX0u7pkIn\nqUzSSkm1yTXPzcPvA5ykYklrJT2Wdi1WWBy6ekE+LXdUQH4FXJZ2EQNMO3B7RMwAzgVu9b/zPncA\nWBARs4EzgcuSJ8Stb30N2JB2EVZ4HLp6x0dLJUXEQaBzuSPrIxHxArA77ToGkohoiIg1yetWMv8p\nTUy3qsIWGZ3LZ5QkXx6I24ckVQNXAD9PuxYrPA5dveNYyyCZFSRJNcBZwIp0Kyl8ya2u14BG4NmI\n8DXvW/8EfAs4nHYhVngcusysRySVA4uBr0fEB2nXU+gioiMiziSzosenJZ2Rdk2FStKVQGNErE67\nFitMDl29I5ulkszynqQSMoHr/oh4OO16BpKIaAaW4bGMfWk+cLWkd8gME1kg6T/TLckKiUNX7/By\nR1bwJAn4BbAhIu5Ku56BQNIYSZXJ6yHAxcDGdKsqXBHx7YiojogaMr/Hl0bEF1IuywqIQ1cviIh2\noHO5ow3Ab7zcUd+S9ADwMjBV0nZJN6Zd0wAwH1hE5q//15Kvy9MuqsCNB5ZJWkfmj7tnI8LTGJjl\nKc9Ib2ZmZpYD7ukyMzMzywGHLjMzM7MccOgyMzMzywGHLjMzM7MccOgyMzMzywGHLjMzM7MccOgy\nsxMiqSOZs2u9pFpJt0sqSvbNkXTPcdrWSPrz3FX7e+duS9Y17BckXS+pTpLn4jIrQA5dZnai2iLi\nzIiYSWbG9IXAXwNExKsR8dXjtK0BUgldibeTdQ2zJqm4r4qJiAeBL/fV+5tZuhy6zKzXREQjcBNw\nmzIu6Oy1kXR+l5ns10qqAO4E/jDZ9o2k9+lFSWuSr88kbS+Q9LykhyRtlHR/siwRkuZK+t+kl22l\npApJxZJ+JGmVpHWSbs6mfkm/lbQ66bW7qcv2vZL+QVItMO8Y55yZvH4tOefkpO0Xumz/187QJumy\n5DPWSnquF38MZtZPDUq7ADMrLBGxOQkWVUfs+iZwa0Qsl1QO7AfuAL4ZEVcCSBoKXBwR+5PQ8gAw\nJ2l/FjAT2AEsB+ZLWgk8CFwfEaskDQfagBuBloiYK6kUWC7pmYjY0k35X4qI3ck6h6skLY6IXcAw\nYEVE3J6sr7rxKOe8Bbg7Iu5PjimWNB24HpgfEYck/QT4vKQngX8DzouILZJG9fhCm1necegys1xZ\nDtwl6X7g4YjYnnRWdVUC/FjSmUAHMKXLvpURsR0gGYdVA7QADRGxCiAiPkj2XwLMknRt0nYEMBno\nLnR9VdJnk9eTkja7kloWJ9unHuOcLwN/Jak6+XxvSboIOJtMgAMYAjQC5wIvdIbAiNjdTV1mVgAc\nusysV0k6lUxIaQSmd26PiDslPQ5cTqbn6dKjNP8G8B4wm8zwh/1d9h3o8rqD4//+EvAXEfF0D+q+\nAPgjYF5E7JP0PFCW7N4fER3Hax8R/yVpBXAF8ERyS1PAf0TEt48411XZ1mVmhcNjusys10gaA9wL\n/Dgi4oh9p0XE6xHxQ2AVMA1oBSq6HDaCTC/SYWAR0N2g9U3AeElzk3NUSBoEPA18RVJJsn2KpGHd\nvNcIYE8SuKaR6Y3K+pxJ2NwcEfcAjwCzgOeAayVVJceOknQy8ApwnqRTOrd3U5uZFQD3dJnZiRqS\n3O4rAdqB+4C7jnLc1yVdCBwG1gNPJq87kgHqvwJ+AiyWdAPwFPDh8U4cEQclXQ/8czIOq41Mb9XP\nydx+XJMMuH8f+ONuPsdTwC2SNpAJVq/08Jx/CiySdAjYCfxtMj7sO8AzykyjcYjMuLZXkoH6Dyfb\nG8k8+WlmBUxH/DFqZjYgSKoBHouIM1Iu5Xcktzk/erjAzAqHby+a2UDVAYxQP5sclUxv3560azGz\n3ueeLjMzM7MccE+XmZmZWQ44dJmZmZnlgEOXmZmZWQ44dJmZmZnlgEOXmZmZWQ78P0oVRU3xdZMr\nAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(sxds['sxds_ra'], sxds['sxds_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, \n", " sxds, \n", " \"sxds_ra\", \n", " \"sxds_dec\", \n", " radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cleaning\n", "\n", "When we merge the catalogues, astropy masks the non-existent values (e.g. when a row comes only from a catalogue and has no counterparts in the other, the columns from the latest are masked for that row). We indicate to use NaN for masked values for floats columns, False for flag columns and -1 for ID columns." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for col in master_catalogue.colnames:\n", " if \"m_\" in col or \"merr_\" in col or \"f_\" in col or \"ferr_\" in col or \"stellarity\" in col:\n", " master_catalogue[col] = master_catalogue[col].astype(float)\n", " master_catalogue[col].fill_value = np.nan\n", " elif \"flag\" in col:\n", " master_catalogue[col].fill_value = 0\n", " elif \"id\" in col:\n", " master_catalogue[col].fill_value = -1\n", " \n", "master_catalogue = master_catalogue.filled()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Since this is not the final merged catalogue. We rename column names to make them unique\n", "master_catalogue['ra'].name = 'cfht_ra'\n", "master_catalogue['dec'].name = 'cfht_dec'\n", "master_catalogue['flag_merged'].name = 'cfht_flag_merged'" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<Table length=10>\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxcandels_idcfht_racfht_deccandels_stellarityf_acs_f606wferr_acs_f606wf_ap_acs_f606wferr_ap_acs_f606wf_acs_f814wferr_acs_f814wf_ap_acs_f814wferr_ap_acs_f814wf_wfc3_f125wferr_wfc3_f125wf_ap_wfc3_f125wferr_ap_wfc3_f125wf_wfc3_f160wferr_wfc3_f160wf_ap_wfc3_f160wferr_ap_wfc3_f160wf_candels-megacam_uferr_candels-megacam_uf_suprime_bferr_suprime_bf_suprime_vferr_suprime_vf_suprime_rcferr_suprime_rcf_suprime_ipferr_suprime_ipf_suprime_zpferr_suprime_zpf_hawki_kferr_hawki_yferr_hawki_km_acs_f606wmerr_acs_f606wflag_acs_f606wm_ap_acs_f606wmerr_ap_acs_f606wm_acs_f814wmerr_acs_f814wflag_acs_f814wm_ap_acs_f814wmerr_ap_acs_f814wm_wfc3_f125wmerr_wfc3_f125wflag_wfc3_f125wm_ap_wfc3_f125wmerr_ap_wfc3_f125wm_wfc3_f160wmerr_wfc3_f160wflag_wfc3_f160wm_ap_wfc3_f160wmerr_ap_wfc3_f160wm_candels-megacam_umerr_candels-megacam_uflag_candels-megacam_um_suprime_bmerr_suprime_bflag_suprime_bm_suprime_vmerr_suprime_vflag_suprime_vm_suprime_rcmerr_suprime_rcflag_suprime_rcm_suprime_ipmerr_suprime_ipflag_suprime_ipm_suprime_zpmerr_suprime_zpflag_suprime_zpm_hawki_kmerr_hawki_kflag_hawki_kcandels_flag_cleanedcandels_flag_gaiacfht_flag_mergedcfhtls-deep_idcfhtls-deep_stellaritym_cfhtls-deep_umerr_cfhtls-deep_um_cfhtls-deep_gmerr_cfhtls-deep_gm_cfhtls-deep_rmerr_cfhtls-deep_rm_cfhtls-deep_imerr_cfhtls-deep_im_cfhtls-deep_zmerr_cfhtls-deep_zm_cfhtls-deep_ymerr_cfhtls-deep_ym_ap_cfhtls-deep_umerr_ap_cfhtls-deep_um_ap_cfhtls-deep_gmerr_ap_cfhtls-deep_gm_ap_cfhtls-deep_rmerr_ap_cfhtls-deep_rm_ap_cfhtls-deep_imerr_ap_cfhtls-deep_im_ap_cfhtls-deep_zmerr_ap_cfhtls-deep_zm_ap_cfhtls-deep_ymerr_ap_cfhtls-deep_yf_cfhtls-deep_uferr_cfhtls-deep_uflag_cfhtls-deep_uf_cfhtls-deep_gferr_cfhtls-deep_gflag_cfhtls-deep_gf_cfhtls-deep_rferr_cfhtls-deep_rflag_cfhtls-deep_rf_cfhtls-deep_iferr_cfhtls-deep_iflag_cfhtls-deep_if_cfhtls-deep_zferr_cfhtls-deep_zflag_cfhtls-deep_zf_cfhtls-deep_yferr_cfhtls-deep_yflag_cfhtls-deep_yf_ap_cfhtls-deep_uferr_ap_cfhtls-deep_uf_ap_cfhtls-deep_gferr_ap_cfhtls-deep_gf_ap_cfhtls-deep_rferr_ap_cfhtls-deep_rf_ap_cfhtls-deep_iferr_ap_cfhtls-deep_if_ap_cfhtls-deep_zferr_ap_cfhtls-deep_zf_ap_cfhtls-deep_yferr_ap_cfhtls-deep_ycfhtls-deep_flag_cleanedcfhtls-deep_flag_gaiacfhtls-wide_idcfhtls-wide_stellaritym_cfhtls-wide_umerr_cfhtls-wide_um_cfhtls-wide_gmerr_cfhtls-wide_gm_cfhtls-wide_rmerr_cfhtls-wide_rm_cfhtls-wide_imerr_cfhtls-wide_im_cfhtls-wide_zmerr_cfhtls-wide_zm_ap_cfhtls-wide_umerr_ap_cfhtls-wide_um_ap_cfhtls-wide_gmerr_ap_cfhtls-wide_gm_ap_cfhtls-wide_rmerr_ap_cfhtls-wide_rm_ap_cfhtls-wide_imerr_ap_cfhtls-wide_im_ap_cfhtls-wide_zmerr_ap_cfhtls-wide_zf_cfhtls-wide_uferr_cfhtls-wide_uflag_cfhtls-wide_uf_cfhtls-wide_gferr_cfhtls-wide_gflag_cfhtls-wide_gf_cfhtls-wide_rferr_cfhtls-wide_rflag_cfhtls-wide_rf_cfhtls-wide_iferr_cfhtls-wide_iflag_cfhtls-wide_if_cfhtls-wide_zferr_cfhtls-wide_zflag_cfhtls-wide_zf_ap_cfhtls-wide_uferr_ap_cfhtls-wide_uf_ap_cfhtls-wide_gferr_ap_cfhtls-wide_gf_ap_cfhtls-wide_rferr_ap_cfhtls-wide_rf_ap_cfhtls-wide_iferr_ap_cfhtls-wide_if_ap_cfhtls-wide_zferr_ap_cfhtls-wide_zcfhtls-wide_flag_cleanedcfhtls-wide_flag_gaiasparcs_intidsparcs_stellaritym_ap_sparcs_umerr_ap_sparcs_uf_ap_sparcs_uferr_ap_sparcs_um_sparcs_umerr_sparcs_uf_sparcs_uferr_sparcs_uflag_sparcs_um_ap_sparcs_gmerr_ap_sparcs_gf_ap_sparcs_gferr_ap_sparcs_gm_sparcs_gmerr_sparcs_gf_sparcs_gferr_sparcs_gflag_sparcs_gm_ap_sparcs_rmerr_ap_sparcs_rf_ap_sparcs_rferr_ap_sparcs_rm_sparcs_rmerr_sparcs_rf_sparcs_rferr_sparcs_rflag_sparcs_rm_ap_sparcs_zmerr_ap_sparcs_zf_ap_sparcs_zferr_ap_sparcs_zm_sparcs_zmerr_sparcs_zf_sparcs_zferr_sparcs_zflag_sparcs_zm_ap_sparcs_ymerr_ap_sparcs_yf_ap_sparcs_yferr_ap_sparcs_ym_sparcs_ymerr_sparcs_yf_sparcs_yferr_sparcs_yflag_sparcs_ysparcs_flag_cleanedsparcs_flag_gaiawirds_idm_wirds_umerr_wirds_um_ap_wirds_umerr_ap_wirds_um_wirds_gmerr_wirds_gm_ap_wirds_gmerr_ap_wirds_gm_wirds_rmerr_wirds_rm_ap_wirds_rmerr_ap_wirds_rm_wirds_imerr_wirds_im_ap_wirds_imerr_ap_wirds_im_wirds_zmerr_wirds_zm_ap_wirds_zmerr_ap_wirds_zm_wirds_jmerr_wirds_jm_ap_wirds_jmerr_ap_wirds_jm_wirds_hmerr_wirds_hm_ap_wirds_hmerr_ap_wirds_hm_wirds_kmerr_wirds_km_ap_wirds_kmerr_ap_wirds_kf_wirds_uferr_wirds_uflag_wirds_uf_ap_wirds_uferr_ap_wirds_uf_wirds_gferr_wirds_gflag_wirds_gf_ap_wirds_gferr_ap_wirds_gf_wirds_rferr_wirds_rflag_wirds_rf_ap_wirds_rferr_ap_wirds_rf_wirds_iferr_wirds_iflag_wirds_if_ap_wirds_iferr_ap_wirds_if_wirds_zferr_wirds_zflag_wirds_zf_ap_wirds_zferr_ap_wirds_zf_wirds_jferr_wirds_jflag_wirds_jf_ap_wirds_jferr_ap_wirds_jf_wirds_hferr_wirds_hflag_wirds_hf_ap_wirds_hferr_ap_wirds_hf_wirds_kferr_wirds_kflag_wirds_kf_ap_wirds_kferr_ap_wirds_kwirds_flag_cleanedcfht-wirds_flag_gaiavipers_idm_vipers_umerr_vipers_um_vipers_gmerr_vipers_gm_vipers_rmerr_vipers_rm_vipers_imerr_vipers_im_vipers_ymerr_vipers_ym_vipers_zmerr_vipers_zm_vipers_ksmerr_vipers_ksf_vipers_uferr_vipers_uflag_vipers_uf_vipers_gferr_vipers_gflag_vipers_gf_vipers_rferr_vipers_rflag_vipers_rf_vipers_iferr_vipers_iflag_vipers_if_vipers_yferr_vipers_yflag_vipers_yf_vipers_zferr_vipers_zflag_vipers_zf_vipers_ksferr_vipers_ksflag_vipers_ksvipers_flag_cleanedvipers_flag_gaiasxds_b_idm_ap_sxds-suprime_bmerr_ap_sxds-suprime_bm_sxds-suprime_bmerr_sxds-suprime_bsxds_flag_mergedsxds_v_idm_ap_sxds-suprime_vmerr_ap_sxds-suprime_vm_sxds-suprime_vmerr_sxds-suprime_vsxds_r_idm_ap_sxds-suprime_rcmerr_ap_sxds-suprime_rcm_sxds-suprime_rcmerr_sxds-suprime_rcsxds_i_idm_ap_sxds-suprime_ipmerr_ap_sxds-suprime_ipm_sxds-suprime_ipmerr_sxds-suprime_ipsxds_z_idm_ap_sxds-suprime_zpmerr_ap_sxds-suprime_zpm_sxds-suprime_zpmerr_sxds-suprime_zpf_ap_sxds-suprime_bferr_ap_sxds-suprime_bf_sxds-suprime_bferr_sxds-suprime_bflag_sxds-suprime_bf_ap_sxds-suprime_vferr_ap_sxds-suprime_vf_sxds-suprime_vferr_sxds-suprime_vflag_sxds-suprime_vf_ap_sxds-suprime_rcferr_ap_sxds-suprime_rcf_sxds-suprime_rcferr_sxds-suprime_rcflag_sxds-suprime_rcf_ap_sxds-suprime_ipferr_ap_sxds-suprime_ipf_sxds-suprime_ipferr_sxds-suprime_ipflag_sxds-suprime_ipf_ap_sxds-suprime_zpferr_ap_sxds-suprime_zpf_sxds-suprime_zpferr_sxds-suprime_zpflag_sxds-suprime_zpsxds_stellaritysxds_flag_cleanedsxds_flag_gaiasxds_intid
degdeg
02153934.3795257693-5.156837759730.0199999995530.07105970.009491950.1070010.01212510.1420950.01127290.233080.01426050.7224950.02324450.9912690.0283521.094220.0176161.501830.02159740.36275320.00662980.48521820.00374310.63681330.00417810.70705350.00610440.94040590.00627881.19891150.01594310.7020830.01402710.029576526.77094157590.14502951418False26.32653040880.12303305629226.01855300910.0861353014717False25.48123747650.066428441513424.25291288520.034930892548False23.90952118830.031053924693823.80223837880.0174794182002False23.45844806150.015613670727525.00097186940.01984328157630.024.6851572940.00837565282595False24.38996968710.00712346057644False24.27636930890.00937378584269False23.96671163710.00724912559825False23.7030321850.0144380972958False24.28402885670.0457385762937FalseFalse0True-1nannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1nannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannanFalse-1nannannannan-1nannannannan-1nannannannan-1nannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenanFalse0-1
12056334.3530670693-5.162396459730.00.1333380.008796550.1808070.01366020.1971510.008975650.3101260.01380660.3333750.01877680.4721170.02922740.5383010.01441170.7601230.02235910.24527520.00682550.29583440.00438750.44029280.00533290.56524370.0070540.90495450.00853241.19061050.01919450.5276080.01412140.030436326.08761515840.0716279891101False25.75696189920.082028758312725.66300253930.0494300722098False25.17115455580.048336242316425.09266742830.0611523106697False24.7148759030.067214792839424.57243703350.0290679461159False24.19779031570.031937047524925.42586590370.03021378625140.025.22237831770.0161024803011False24.7906460410.0131506184211False24.51941067360.0135495241935False24.00843314010.0102369075942False23.71057572930.0175037626346False24.59422156990.0626332293083FalseFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1nannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannanFalse-1nannannannan-1nannannannan-1nannannannan-1nannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenanFalse0-1
21482634.2856193693-5.193955159730.00.04916780.00748490.06191680.01602980.09721860.007836630.1425080.01574030.2640250.01540750.3286060.02780240.3442380.01237050.4672260.02384340.16815610.00735740.20557070.00436880.24003140.00472570.30921490.00674540.38509320.00652480.55105790.01834860.4716310.02109460.044538127.17079805920.165283517241False26.92047874270.28108904554226.43062659320.0875193935553False26.01540188720.11992178392625.34588737180.0633594567742False25.10831127770.091860989328225.05785297540.0390169002869False24.72618249450.055407110530125.83571843420.04750464332180.025.61759696320.023074126475False25.44932985450.0213758015944False25.17434896770.0236849032682False24.93608537530.0183960962925False24.54700691790.0361518078711False24.71599414190.102530638701FalseFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1nannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannanFalse-1nannannannan-1nannannannan-1nannannannan-1nannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenanFalse0-1
3126534.3627124693-5.269532559730.0199999995530.1951740.01140470.2779660.01746070.3948890.01377670.5443390.01993220.6650060.02179090.9664860.03059510.7502290.01516741.114160.02333030.05297330.00758360.09609980.00329590.13988060.00567830.19078710.00522220.40227980.00708760.51671240.02245190.5532090.0455610.095989625.67394509280.0634433669157False25.29002080620.068201557566124.90881240940.0378786493726False24.56032637220.039756679533324.34293609070.0355773768421False23.93701108140.034370086848824.21201538070.02195035824False23.78263109350.022735111095227.0898574290.1554328139350.026.44319379040.0372371009852False26.03560628380.0440742739985False25.69862748330.0297186319646False24.88867943620.0191291333168False24.61687779050.0471768060832False24.54277690770.188390615482FalseFalse0True-1nannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1nannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannanFalse-1nannannannan-1nannannannan-1nannannannan-1nannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenanFalse0-1
41327334.3243668693-5.201701159730.00.1132330.007712460.1614210.01753760.2209570.008718520.3186150.01819050.3049970.01334020.4734840.02770840.3321220.009622140.5081710.02366170.03659080.00665960.08594430.00489990.12595150.00583580.23841270.00857550.33449480.01112570.43078470.02303940.3902390.01948550.039150726.26506746580.0739510306161False25.88009991640.11795991391825.53923058820.0428409727499False25.1418344550.061987302646325.18926108110.0474887888035False24.71173673030.063537549433425.09675588870.0314556270444False24.63497530660.050554565994827.49157023810.1976061968910.026.56445730330.0619005429062False26.14949163990.0503061840766False25.45667653470.0390529985353False25.08902657330.0361128941116False24.81434932440.0580677789065False24.92167332480.108926407744FalseFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1nannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannanFalse-1nannannannan-1nannannannan-1nannannannan-1nannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenanFalse0-1
5903634.2784354693-5.224804659730.00.05430550.007731690.1027590.01825380.1100970.008703820.2023270.01910730.2622030.0153190.3793770.03157010.4502880.01320940.7137410.02767640.15933260.00683460.21875570.00363910.38827040.00658760.67726750.00648111.01868840.0089681.1225820.02263430.6569310.01944690.03972627.06289045830.154580581285False26.37045032680.19286691710126.29556128710.0858338782501False25.63486539480.10253444861625.35340585910.0634332670514False24.95232250520.090350233561424.76627406670.0318505574724False24.26614838750.042101083582725.89423839240.0465728461410.025.55010155490.0180617127816False24.92716429220.018421172004False24.32309941090.0103899344301False23.8798965980.0095582538137False23.77445481430.0218913887621False24.35620060920.0656567530992FalseFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1nannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannanFalse-1nannannannan-1nannannannan-1nannannannan-1nannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenanFalse0-1
6335334.3749212693-5.257935859730.00.02198450.01194910.0366570.01898460.07158050.01215690.09428670.01903160.5901330.03061950.7629890.04399091.324790.02615231.582150.0382111-0.00513250.00821250.00021270.0038226-0.01332220.0071063-0.00220470.00643650.01085660.00774670.10169850.02466580.2477230.01775560.038457728.04470851810.590123518128False27.48960770120.56230099443126.76301318080.184396399405False26.46387391040.21915389078724.47262524780.0563342496041False24.1937043080.062599215466923.59463239690.0214332074877False23.40188086110.0262220236347nan-1.737283698310.033.080581275219.5126244302Falsenan-0.579151130584Falsenan-3.1697469415False28.81076540750.774724375716False26.38171363160.263332812965False25.4150841730.168554866693FalseFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1nannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannanFalse-1nannannannan-1nannannannan-1nannannannan-1nannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenanFalse0-1
73053534.3719116693-5.217731259730.00.02006610.00917157-0.002163990.01898750.05972570.009887450.08811920.01919530.09686410.02286860.2130730.04540370.1127310.02121210.1405030.03936080.00273650.00679580.0058660.00375560.02234290.00641620.03845360.00692020.08293060.00962740.09575570.02460160.08211450.01465980.030701428.14384256940.49625515688Falsenan-9.5265764573126.95959687880.179741090313False26.53732363570.23650954810326.43459288090.256330952047False25.57867894840.23135939757726.26989160120.204298240492False26.03078600670.30416037812930.30701136882.696307728960.029.47914485340.695122893043False28.02715114560.311790351162False27.4376574890.195391632621False26.60321298130.126042941178False26.44708841140.278947862268False26.6139503680.405940747575FalseFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1nannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannanFalse-1nannannannan-1nannannannan-1nannannannan-1nannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenanFalse0-1
81029034.3721179693-5.217992459730.6999999880790.002026510.00576531-0.03354630.01902920.002982730.005744640.01259920.01891480.08514520.01520420.0755130.04503260.1211320.0164430.09091480.0397302-0.01054240.0064933-0.0007040.003589-0.00165230.0061030.0023810.0066523-0.01061470.00923790.01221390.02356710.0651160.01278780.025335330.63312812213.08886005924Falsenan-0.61588584695130.21346514422.09109226491False28.6491425751.6299831073226.57459957510.19387763966False26.70494568910.64748485975126.19185278030.147382693383False26.50341353080.474471885351nan-0.66872921710.0nan-5.53509550977Falsenan-4.01031777379False30.45810151153.03344937208Falsenan-0.944908710179False28.68286410022.09496178216False26.86578071380.422437687641FalseFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1nannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannanFalse-1nannannannan-1nannannannan-1nannannannan-1nannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenanFalse0-1
93048034.4393352693-5.218734759730.709999978542-0.001420790.00516246-0.04201380.0193282-0.001764420.00551065-0.01958920.02062930.03609280.01295180.03106410.04481590.05943950.01388610.0190350.04006230.00127220.0064643-0.0023610.003477-0.0003830.0069160.00759410.00642090.01265210.00788910.03756850.02394010.021650.01273590.026029nan-3.9450374282Falsenan-0.49948651426nan-3.39097959485Falsenan-1.1433840018427.50644856260.389613390393False27.6693530611.566381938626.96481213120.253646842805False28.20111779712.2851110877831.13861152195.516840550560.0nan-1.59894315288Falsenan-19.605617734False29.19880922080.91800260691False28.64459346040.677000774018False27.46294036170.691873066945False28.06135524831.30534077015FalseFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1nannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannanFalse-1nannannannan-1nannannannan-1nannannannan-1nannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenanFalse0-1
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "master_catalogue[:10].show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(data=np.arange(len(master_catalogue)), \n", " name=\"cfht_intid\"))" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['candels_id', 'cfhtls-deep_id', 'cfhtls-wide_id', 'sparcs_intid', 'wirds_id', 'vipers_id', 'sxds_b_id', 'sxds_v_id', 'sxds_r_id', 'sxds_i_id', 'sxds_z_id', 'sxds_intid', 'cfht_intid']\n" ] } ], "source": [ "id_names = []\n", "for col in master_catalogue.colnames:\n", " if '_id' in col:\n", " id_names += [col]\n", " if '_intid' in col:\n", " id_names += [col]\n", " \n", "print(id_names)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VII - Choosing between multiple values for the same filter\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### VII.a CFHT Megacam fluxes: CFHTLS-DEEP, CFHTLS-WIDE SpARCS, CANDELS, CFHT-WIRDS and VIPERS\n", "\n", "According to Mattia CFHTLenS is built on the same data as CFHTLS-WIDE and should not be included. I have therefore excluded it from the merge above.\n", "\n", "CFHTLS-DEEP is prefferred to CFHTLS-WIDE which is prefferred to SpARCS... CANDELS... WIRDS... VIPERS\n", "\n", "| Survey (in HELP use order) | Bands | notes |\n", "|:-------------|:------------------|-------------------|\n", "| CFHTLS-DEEP | u, g, r, i, z, y ||\n", "| CFHTLS-WIDE | u, g, r, i, z ||\n", "| SpARCS | u, g, r, z, y ||\n", "| CANDELS | u | Total fluxes only |\n", "| CFHT-WIRDS | u, g, r, i, z (+ WIRCAM J, H, Ks) ||\n", "| VIPERS | u, g, r, i, z, y (+ WIRCAM Ks) | Total fluxes only |\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "megacam_origin = Table()\n", "megacam_origin.add_column(master_catalogue['cfht_intid'])" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/numpy/core/numeric.py:301: FutureWarning: in the future, full(6, 0) will return an array of dtype('int64')\n", " format(shape, fill_value, array(fill_value).dtype), FutureWarning)\n" ] } ], "source": [ "megacam_stats = Table()\n", "megacam_stats.add_column(Column(data=['u','g','r','i','z','y'], name=\"Band\"))\n", "for col in [\"CFHTLS-DEEP\", \"CFHTLS-WIDE\", \"SpARCS\", \"CANDELS\", \"CFHT-WIRDS\", \"VIPERS\"]:\n", " megacam_stats.add_column(Column(data=np.full(6, 0), name=\"{}\".format(col)))\n", " megacam_stats.add_column(Column(data=np.full(6, 0), name=\"use {}\".format(col)))\n", " megacam_stats.add_column(Column(data=np.full(6, 0), name=\"{} ap\".format(col)))\n", " megacam_stats.add_column(Column(data=np.full(6, 0), name=\"use {} ap\".format(col)))\n", " " ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "megacam_bands = ['u','g','r','i','z','y'] # Lowercase naming convention (k is Ks)\n", "for band in megacam_bands:\n", "\n", " # Megacam total flux \n", " has_cfhtls_deep = ~np.isnan(master_catalogue['f_cfhtls-deep_' + band])\n", " if band == 'y':\n", " has_cfhtls_wide = np.full(len(master_catalogue), False, dtype=bool)\n", " else:\n", " has_cfhtls_wide = ~np.isnan(master_catalogue['f_cfhtls-wide_' + band])\n", " \n", " if band == 'i':\n", " has_sparcs = np.full(len(master_catalogue), False, dtype=bool)\n", " else:\n", " has_sparcs = ~np.isnan(master_catalogue['f_sparcs_' + band])\n", " \n", " if band == 'u':\n", " has_candels = ~np.isnan(master_catalogue['f_candels-megacam_' + band])\n", " else:\n", " has_candels = np.full(len(master_catalogue), False, dtype=bool)\n", " \n", " if band == 'y':\n", " has_wirds = np.full(len(master_catalogue), False, dtype=bool)\n", " else:\n", " has_wirds = ~np.isnan(master_catalogue['f_wirds_' + band])\n", " \n", " has_vipers = ~np.isnan(master_catalogue['f_vipers_' + band])\n", " \n", "\n", " use_cfhtls_deep = has_cfhtls_deep \n", " use_cfhtls_wide = has_cfhtls_wide & ~has_cfhtls_deep\n", " use_sparcs = has_sparcs & ~has_cfhtls_wide & ~has_cfhtls_deep\n", " use_candels = has_candels & ~has_sparcs & ~has_cfhtls_wide & ~has_cfhtls_deep\n", " use_wirds = has_wirds & ~has_candels & ~has_sparcs & ~has_cfhtls_wide & ~has_cfhtls_deep\n", " use_vipers = has_vipers & ~has_wirds & ~has_candels & ~has_sparcs & ~has_cfhtls_wide & ~has_cfhtls_deep\n", "\n", " f_megacam = np.full(len(master_catalogue), np.nan)\n", " f_megacam[use_cfhtls_deep] = master_catalogue['f_cfhtls-deep_' + band][use_cfhtls_deep]\n", " if not (band == 'y'):\n", " f_megacam[use_cfhtls_wide] = master_catalogue['f_cfhtls-wide_' + band][use_cfhtls_wide]\n", " if not (band == 'i'):\n", " f_megacam[use_sparcs] = master_catalogue['f_sparcs_' + band][use_sparcs]\n", " if band == 'u':\n", " f_megacam[use_candels] = master_catalogue['f_candels-megacam_' + band][use_candels] \n", " if not (band == 'y'):\n", " f_megacam[use_wirds] = master_catalogue['f_wirds_' + band][use_wirds]\n", " f_megacam[use_vipers] = master_catalogue['f_vipers_' + band][use_vipers] \n", "\n", " ferr_megacam = np.full(len(master_catalogue), np.nan)\n", " ferr_megacam[use_cfhtls_deep] = master_catalogue['ferr_cfhtls-deep_' + band][use_cfhtls_deep]\n", " if not (band == 'y'):\n", " ferr_megacam[use_cfhtls_wide] = master_catalogue['ferr_cfhtls-wide_' + band][use_cfhtls_wide]\n", " if not (band == 'i'):\n", " ferr_megacam[use_sparcs] = master_catalogue['ferr_sparcs_' + band][use_sparcs]\n", " if band == 'u':\n", " ferr_megacam[use_candels] = master_catalogue['ferr_candels-megacam_' + band][use_candels]\n", " if not (band == 'y'):\n", " ferr_megacam[use_wirds] = master_catalogue['ferr_wirds_' + band][use_wirds]\n", " ferr_megacam[use_vipers] = master_catalogue['ferr_vipers_' + band][use_vipers] \n", " \n", " m_megacam = np.full(len(master_catalogue), np.nan)\n", " m_megacam[use_cfhtls_deep] = master_catalogue['m_cfhtls-deep_' + band][use_cfhtls_deep]\n", " if not (band == 'y'):\n", " m_megacam[use_cfhtls_wide] = master_catalogue['m_cfhtls-wide_' + band][use_cfhtls_wide]\n", " if not (band == 'i'):\n", " m_megacam[use_sparcs] = master_catalogue['m_sparcs_' + band][use_sparcs]\n", " if band == 'u':\n", " m_megacam[use_candels] = master_catalogue['m_candels-megacam_' + band][use_candels]\n", " if not (band == 'y'):\n", " m_megacam[use_wirds] = master_catalogue['m_wirds_' + band][use_wirds]\n", " m_megacam[use_vipers] = master_catalogue['m_vipers_' + band][use_vipers] \n", "\n", " merr_megacam = np.full(len(master_catalogue), np.nan)\n", " merr_megacam[use_cfhtls_deep] = master_catalogue['merr_cfhtls-deep_' + band][use_cfhtls_deep]\n", " if not (band == 'y'):\n", " merr_megacam[use_cfhtls_wide] = master_catalogue['merr_cfhtls-wide_' + band][use_cfhtls_wide]\n", " if not (band == 'i'):\n", " merr_megacam[use_sparcs] = master_catalogue['merr_sparcs_' + band][use_sparcs]\n", " if band == 'u':\n", " merr_megacam[use_candels] = master_catalogue['merr_candels-megacam_' + band][use_candels]\n", " if not (band == 'y'):\n", " merr_megacam[use_wirds] = master_catalogue['merr_wirds_' + band][use_wirds]\n", " merr_megacam[use_vipers] = master_catalogue['merr_vipers_' + band][use_vipers] \n", "\n", " flag_megacam = np.full(len(master_catalogue), False, dtype=bool)\n", " flag_megacam[use_cfhtls_deep] = master_catalogue['flag_cfhtls-deep_' + band][use_cfhtls_deep]\n", " if not (band == 'y'):\n", " flag_megacam[use_cfhtls_wide] = master_catalogue['flag_cfhtls-wide_' + band][use_cfhtls_wide]\n", " if not (band == 'i'):\n", " flag_megacam[use_sparcs] = master_catalogue['flag_sparcs_' + band][use_sparcs]\n", " if band == 'u':\n", " flag_megacam[use_candels] = master_catalogue['flag_candels-megacam_' + band][use_candels]\n", " if not (band == 'y'):\n", " flag_megacam[use_wirds] = master_catalogue['flag_wirds_' + band][use_wirds]\n", " flag_megacam[use_vipers] = master_catalogue['flag_vipers_' + band][use_vipers] \n", "\n", " master_catalogue.add_column(Column(data=f_megacam, name=\"f_megacam_\" + band))\n", " master_catalogue.add_column(Column(data=ferr_megacam, name=\"ferr_megacam_\" + band))\n", " master_catalogue.add_column(Column(data=m_megacam, name=\"m_megacam_\" + band))\n", " master_catalogue.add_column(Column(data=merr_megacam, name=\"merr_megacam_\" + band))\n", " master_catalogue.add_column(Column(data=flag_megacam, name=\"flag_megacam_\" + band))\n", "\n", " \n", " old_columns = []\n", " column_types = ['f', 'ferr', 'm', 'merr', 'flag'] \n", " for col_t in column_types:\n", " old_columns += ['{}_cfhtls-deep_{}'.format(col_t, band)]\n", " if not (band == 'y'):\n", " old_columns += ['{}_cfhtls-wide_{}'.format(col_t, band)]\n", " if not (band == 'i'):\n", " old_columns += ['{}_sparcs_{}'.format(col_t, band)] \n", " if band == 'u':\n", " old_columns += ['{}_candels-megacam_{}'.format(col_t, band)] \n", " if not (band == 'y'):\n", " old_columns += ['{}_wirds_{}'.format(col_t, band)] \n", " old_columns += ['{}_vipers_{}'.format(col_t, band)] \n", " \n", " master_catalogue.remove_columns(old_columns)\n", "\n", " origin = np.full(len(master_catalogue), ' ', dtype='\n", "idxBandCFHTLS-DEEPuse CFHTLS-DEEPCFHTLS-DEEP apuse CFHTLS-DEEP apCFHTLS-WIDEuse CFHTLS-WIDECFHTLS-WIDE apuse CFHTLS-WIDE apSpARCSuse SpARCSSpARCS apuse SpARCS apCANDELSuse CANDELSCANDELS apuse CANDELS apCFHT-WIRDSuse CFHT-WIRDSCFHT-WIRDS apuse CFHT-WIRDS apVIPERSuse VIPERSVIPERS apuse VIPERS ap\n", "0u481650.0481650.0485877.0485877.03115218.02928155.03163862.02974025.0396423.0375948.0385887.0365727.035931.023992.00.00.0134630.024774.0135091.024122.0908447.03132.00.00.0\n", "1g551595.0551595.0553969.0553969.03367177.03163292.03384048.03179110.0436976.0411025.0429994.0404289.00.00.00.00.0143047.026012.0142074.024642.0945986.0851.00.00.0\n", "2r561918.0561918.0565280.0565280.03366913.03163239.03397813.03192615.0446308.0418750.0442998.0415461.00.00.00.00.0144102.026115.0143184.024852.0949549.0479.00.00.0\n", "3i557674.0557674.0561376.0561376.03283920.03084634.03329406.03127407.00.00.00.00.00.00.00.00.0144330.026167.0143316.024852.0728690.0234.00.00.0\n", "4z499627.0499627.0506086.0506086.02864911.02688653.02971971.02789427.0413627.0391475.0389357.0367615.00.00.00.00.0141308.025190.0141154.024142.0922753.02444.00.00.0\n", "5y522629.0522629.0528982.0528982.00.00.00.00.0405761.0405761.0391629.0391629.00.00.00.00.00.00.00.00.0221194.0205424.00.00.0\n", "\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "megacam_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true }, "outputs": [], "source": [ "megacam_origin.write(\"{}/xmm-lss_megacam_fluxes_origins{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### VII.b CFHT WIRCAM fluxes: CFHT-WIRDS and VIPERS\n", "\n", "We take WIRDS over VIPERS" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for col in master_catalogue.colnames:\n", " if '_wirds_j' in col:\n", " master_catalogue.rename_column(col, col.replace('_wirds_j', '_wircam_j'))\n", " if '_wirds_h' in col:\n", " master_catalogue.rename_column(col, col.replace('_wirds_h', '_wircam_h'))\n", " if '_wirds_k' in col:\n", " master_catalogue.rename_column(col, col.replace('_wirds_k', '_wircam_ks'))" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": true }, "outputs": [], "source": [ "has_wirds = ~np.isnan(master_catalogue['f_wircam_ks' ])\n", "has_vipers = ~np.isnan(master_catalogue['f_vipers_ks' ])\n", "\n", "use_wirds = has_wirds\n", "use_vipers = has_vipers & ~has_wirds\n", "\n", "master_catalogue['f_wircam_ks'][use_vipers] = master_catalogue['f_vipers_ks'][use_vipers]\n", "master_catalogue['ferr_wircam_ks'][use_vipers] = master_catalogue['ferr_vipers_ks'][use_vipers]\n", "master_catalogue['m_wircam_ks'][use_vipers] = master_catalogue['m_vipers_ks'][use_vipers]\n", "master_catalogue['merr_wircam_ks'][use_vipers] = master_catalogue['merr_vipers_ks'][use_vipers]\n", "master_catalogue['flag_wircam_ks'][use_vipers] = master_catalogue['flag_vipers_ks'][use_vipers]\n", "\n", "master_catalogue.remove_columns(['f_vipers_ks', 'ferr_vipers_ks', 'm_vipers_ks', 'merr_vipers_ks', 'flag_vipers_ks'])\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "There are 157497 objects with WIRDS Ks fluxes and 644584 with VIPERS Ks.\n", "We use all 157497 Ks fluxes and take the remaining 644510 VIPERS Ks fluxes.\n" ] } ], "source": [ "print('There are {} objects with WIRDS Ks fluxes and {} with VIPERS Ks.'.format(np.sum(has_wirds), np.sum(has_vipers)))\n", "print('We use all {} Ks fluxes and take the remaining {} VIPERS Ks fluxes.'.format(np.sum(use_wirds), np.sum(use_vipers)))" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true }, "outputs": [], "source": [ "wircam_origin = Table()\n", "wircam_origin.add_column(master_catalogue['cfht_intid'])\n", "origin = np.full(len(master_catalogue), ' ', dtype='\n", "idxBandSXDSuse SXDSSXDS apuse SXDS apCANDELS-UDSuse CANDELS-UDSCANDELS-UDS apuse CANDELS-UDS ap\n", "0b906586.0906586.0883356.0883356.035617.09700.00.00.0\n", "1v962918.0962918.0929147.0929147.035617.09119.00.00.0\n", "2rc865238.0865238.0842176.0842176.035617.09742.00.00.0\n", "3ip862149.0862149.0845761.0845761.035617.09730.00.00.0\n", "4zp811734.0811734.0772022.0772022.035617.012297.00.00.0\n", "\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "suprime_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": true }, "outputs": [], "source": [ "suprime_origin.write(\"{}/xmm-lss_suprime_fluxes_origins{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<Table length=10>\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxcandels_idcfht_racfht_deccandels_stellarityf_acs_f606wferr_acs_f606wf_ap_acs_f606wferr_ap_acs_f606wf_acs_f814wferr_acs_f814wf_ap_acs_f814wferr_ap_acs_f814wf_wfc3_f125wferr_wfc3_f125wf_ap_wfc3_f125wferr_ap_wfc3_f125wf_wfc3_f160wferr_wfc3_f160wf_ap_wfc3_f160wferr_ap_wfc3_f160wf_suprime_bferr_suprime_bf_suprime_vferr_suprime_vf_suprime_rcferr_suprime_rcf_suprime_ipferr_suprime_ipf_suprime_zpferr_suprime_zpf_hawki_kferr_hawki_yferr_hawki_km_acs_f606wmerr_acs_f606wflag_acs_f606wm_ap_acs_f606wmerr_ap_acs_f606wm_acs_f814wmerr_acs_f814wflag_acs_f814wm_ap_acs_f814wmerr_ap_acs_f814wm_wfc3_f125wmerr_wfc3_f125wflag_wfc3_f125wm_ap_wfc3_f125wmerr_ap_wfc3_f125wm_wfc3_f160wmerr_wfc3_f160wflag_wfc3_f160wm_ap_wfc3_f160wmerr_ap_wfc3_f160wm_suprime_bmerr_suprime_bflag_suprime_bm_suprime_vmerr_suprime_vflag_suprime_vm_suprime_rcmerr_suprime_rcflag_suprime_rcm_suprime_ipmerr_suprime_ipflag_suprime_ipm_suprime_zpmerr_suprime_zpflag_suprime_zpm_hawki_kmerr_hawki_kflag_hawki_kcandels_flag_cleanedcandels_flag_gaiacfht_flag_mergedcfhtls-deep_idcfhtls-deep_stellaritycfhtls-deep_flag_cleanedcfhtls-deep_flag_gaiacfhtls-wide_idcfhtls-wide_stellaritycfhtls-wide_flag_cleanedcfhtls-wide_flag_gaiasparcs_intidsparcs_stellaritysparcs_flag_cleanedsparcs_flag_gaiawirds_idm_wircam_jmerr_wircam_jm_ap_wircam_jmerr_ap_wircam_jm_wircam_hmerr_wircam_hm_ap_wircam_hmerr_ap_wircam_hm_wircam_ksmerr_wircam_ksm_ap_wircam_ksmerr_ap_wircam_ksf_wircam_jferr_wircam_jflag_wircam_jf_ap_wircam_jferr_ap_wircam_jf_wircam_hferr_wircam_hflag_wircam_hf_ap_wircam_hferr_ap_wircam_hf_wircam_ksferr_wircam_ksflag_wircam_ksf_ap_wircam_ksferr_ap_wircam_kswirds_flag_cleanedcfht-wirds_flag_gaiavipers_idvipers_flag_cleanedvipers_flag_gaiasxds_b_idm_ap_suprime_bmerr_ap_suprime_bsxds_flag_mergedsxds_v_idm_ap_suprime_vmerr_ap_suprime_vsxds_r_idm_ap_suprime_rcmerr_ap_suprime_rcsxds_i_idm_ap_suprime_ipmerr_ap_suprime_ipsxds_z_idm_ap_suprime_zpmerr_ap_suprime_zpf_ap_suprime_bferr_ap_suprime_bf_ap_suprime_vferr_ap_suprime_vf_ap_suprime_rcferr_ap_suprime_rcf_ap_suprime_ipferr_ap_suprime_ipf_ap_suprime_zpferr_ap_suprime_zpsxds_stellaritysxds_flag_cleanedsxds_flag_gaiasxds_intidcfht_intidf_megacam_uferr_megacam_um_megacam_umerr_megacam_uflag_megacam_uf_ap_megacam_uferr_ap_megacam_um_ap_megacam_umerr_ap_megacam_uf_megacam_gferr_megacam_gm_megacam_gmerr_megacam_gflag_megacam_gf_ap_megacam_gferr_ap_megacam_gm_ap_megacam_gmerr_ap_megacam_gf_megacam_rferr_megacam_rm_megacam_rmerr_megacam_rflag_megacam_rf_ap_megacam_rferr_ap_megacam_rm_ap_megacam_rmerr_ap_megacam_rf_megacam_iferr_megacam_im_megacam_imerr_megacam_iflag_megacam_if_ap_megacam_iferr_ap_megacam_im_ap_megacam_imerr_ap_megacam_if_megacam_zferr_megacam_zm_megacam_zmerr_megacam_zflag_megacam_zf_ap_megacam_zferr_ap_megacam_zm_ap_megacam_zmerr_ap_megacam_zf_megacam_yferr_megacam_ym_megacam_ymerr_megacam_yflag_megacam_yf_ap_megacam_yferr_ap_megacam_ym_ap_megacam_ymerr_ap_megacam_y
degdeg
02153934.3795257693-5.156837759730.0199999995530.07105970.009491950.1070010.01212510.1420950.01127290.233080.01426050.7224950.02324450.9912690.0283521.094220.0176161.501830.02159740.48521820.00374310.63681330.00417810.70705350.00610440.94040590.00627881.19891150.01594310.7020830.01402710.029576526.77094157590.14502951418False26.32653040880.12303305629226.01855300910.0861353014717False25.48123747650.066428441513424.25291288520.034930892548False23.90952118830.031053924693823.80223837880.0174794182002False23.45844806150.015613670727524.6851572940.00837565282595False24.38996968710.00712346057644False24.27636930890.00937378584269False23.96671163710.00724912559825False23.7030321850.0144380972958False24.28402885670.0457385762937FalseFalse0True-1nanFalse0-1nanFalse0-1nanFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1False0-1nannanFalse-1nannan-1nannan-1nannan-1nannannannannannannannannannannannannanFalse0-100.36275320.006629825.00097186940.0198432815763FalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannan
12056334.3530670693-5.162396459730.00.1333380.008796550.1808070.01366020.1971510.008975650.3101260.01380660.3333750.01877680.4721170.02922740.5383010.01441170.7601230.02235910.29583440.00438750.44029280.00533290.56524370.0070540.90495450.00853241.19061050.01919450.5276080.01412140.030436326.08761515840.0716279891101False25.75696189920.082028758312725.66300253930.0494300722098False25.17115455580.048336242316425.09266742830.0611523106697False24.7148759030.067214792839424.57243703350.0290679461159False24.19779031570.031937047524925.22237831770.0161024803011False24.7906460410.0131506184211False24.51941067360.0135495241935False24.00843314010.0102369075942False23.71057572930.0175037626346False24.59422156990.0626332293083FalseFalse0False-1nanFalse0-1nanFalse0-1nanFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1False0-1nannanFalse-1nannan-1nannan-1nannan-1nannannannannannannannannannannannannanFalse0-110.24527520.006825525.42586590370.0302137862514FalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannan
21482634.2856193693-5.193955159730.00.04916780.00748490.06191680.01602980.09721860.007836630.1425080.01574030.2640250.01540750.3286060.02780240.3442380.01237050.4672260.02384340.20557070.00436880.24003140.00472570.30921490.00674540.38509320.00652480.55105790.01834860.4716310.02109460.044538127.17079805920.165283517241False26.92047874270.28108904554226.43062659320.0875193935553False26.01540188720.11992178392625.34588737180.0633594567742False25.10831127770.091860989328225.05785297540.0390169002869False24.72618249450.055407110530125.61759696320.023074126475False25.44932985450.0213758015944False25.17434896770.0236849032682False24.93608537530.0183960962925False24.54700691790.0361518078711False24.71599414190.102530638701FalseFalse0False-1nanFalse0-1nanFalse0-1nanFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1False0-1nannanFalse-1nannan-1nannan-1nannan-1nannannannannannannannannannannannannanFalse0-120.16815610.007357425.83571843420.0475046433218FalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannan
3126534.3627124693-5.269532559730.0199999995530.1951740.01140470.2779660.01746070.3948890.01377670.5443390.01993220.6650060.02179090.9664860.03059510.7502290.01516741.114160.02333030.09609980.00329590.13988060.00567830.19078710.00522220.40227980.00708760.51671240.02245190.5532090.0455610.095989625.67394509280.0634433669157False25.29002080620.068201557566124.90881240940.0378786493726False24.56032637220.039756679533324.34293609070.0355773768421False23.93701108140.034370086848824.21201538070.02195035824False23.78263109350.022735111095226.44319379040.0372371009852False26.03560628380.0440742739985False25.69862748330.0297186319646False24.88867943620.0191291333168False24.61687779050.0471768060832False24.54277690770.188390615482FalseFalse0True-1nanFalse0-1nanFalse0-1nanFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1False0-1nannanFalse-1nannan-1nannan-1nannan-1nannannannannannannannannannannannannanFalse0-130.05297330.007583627.0898574290.155432813935FalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannan
41327334.3243668693-5.201701159730.00.1132330.007712460.1614210.01753760.2209570.008718520.3186150.01819050.3049970.01334020.4734840.02770840.3321220.009622140.5081710.02366170.08594430.00489990.12595150.00583580.23841270.00857550.33449480.01112570.43078470.02303940.3902390.01948550.039150726.26506746580.0739510306161False25.88009991640.11795991391825.53923058820.0428409727499False25.1418344550.061987302646325.18926108110.0474887888035False24.71173673030.063537549433425.09675588870.0314556270444False24.63497530660.050554565994826.56445730330.0619005429062False26.14949163990.0503061840766False25.45667653470.0390529985353False25.08902657330.0361128941116False24.81434932440.0580677789065False24.92167332480.108926407744FalseFalse0False-1nanFalse0-1nanFalse0-1nanFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1False0-1nannanFalse-1nannan-1nannan-1nannan-1nannannannannannannannannannannannannanFalse0-140.03659080.006659627.49157023810.197606196891FalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannan
5903634.2784354693-5.224804659730.00.05430550.007731690.1027590.01825380.1100970.008703820.2023270.01910730.2622030.0153190.3793770.03157010.4502880.01320940.7137410.02767640.21875570.00363910.38827040.00658760.67726750.00648111.01868840.0089681.1225820.02263430.6569310.01944690.03972627.06289045830.154580581285False26.37045032680.19286691710126.29556128710.0858338782501False25.63486539480.10253444861625.35340585910.0634332670514False24.95232250520.090350233561424.76627406670.0318505574724False24.26614838750.042101083582725.55010155490.0180617127816False24.92716429220.018421172004False24.32309941090.0103899344301False23.8798965980.0095582538137False23.77445481430.0218913887621False24.35620060920.0656567530992FalseFalse0False-1nanFalse0-1nanFalse0-1nanFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1False0-1nannanFalse-1nannan-1nannan-1nannan-1nannannannannannannannannannannannannanFalse0-150.15933260.006834625.89423839240.046572846141FalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannan
6335334.3749212693-5.257935859730.00.02198450.01194910.0366570.01898460.07158050.01215690.09428670.01903160.5901330.03061950.7629890.04399091.324790.02615231.582150.03821110.00021270.0038226-0.01332220.0071063-0.00220470.00643650.01085660.00774670.10169850.02466580.2477230.01775560.038457728.04470851810.590123518128False27.48960770120.56230099443126.76301318080.184396399405False26.46387391040.21915389078724.47262524780.0563342496041False24.1937043080.062599215466923.59463239690.0214332074877False23.40188086110.026222023634733.080581275219.5126244302Falsenan-0.579151130584Falsenan-3.1697469415False28.81076540750.774724375716False26.38171363160.263332812965False25.4150841730.168554866693FalseFalse0False-1nanFalse0-1nanFalse0-1nanFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1False0-1nannanFalse-1nannan-1nannan-1nannan-1nannannannannannannannannannannannannanFalse0-16-0.00513250.0082125nan-1.73728369831FalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannan
73053534.3719116693-5.217731259730.00.02006610.00917157-0.002163990.01898750.05972570.009887450.08811920.01919530.09686410.02286860.2130730.04540370.1127310.02121210.1405030.03936080.0058660.00375560.02234290.00641620.03845360.00692020.08293060.00962740.09575570.02460160.08211450.01465980.030701428.14384256940.49625515688Falsenan-9.5265764573126.95959687880.179741090313False26.53732363570.23650954810326.43459288090.256330952047False25.57867894840.23135939757726.26989160120.204298240492False26.03078600670.30416037812929.47914485340.695122893043False28.02715114560.311790351162False27.4376574890.195391632621False26.60321298130.126042941178False26.44708841140.278947862268False26.6139503680.405940747575FalseFalse0False-1nanFalse0-1nanFalse0-1nanFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1False0-1nannanFalse-1nannan-1nannan-1nannan-1nannannannannannannannannannannannannanFalse0-170.00273650.006795830.30701136882.69630772896FalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannan
81029034.3721179693-5.217992459730.6999999880790.002026510.00576531-0.03354630.01902920.002982730.005744640.01259920.01891480.08514520.01520420.0755130.04503260.1211320.0164430.09091480.0397302-0.0007040.003589-0.00165230.0061030.0023810.0066523-0.01061470.00923790.01221390.02356710.0651160.01278780.025335330.63312812213.08886005924Falsenan-0.61588584695130.21346514422.09109226491False28.6491425751.6299831073226.57459957510.19387763966False26.70494568910.64748485975126.19185278030.147382693383False26.50341353080.474471885351nan-5.53509550977Falsenan-4.01031777379False30.45810151153.03344937208Falsenan-0.944908710179False28.68286410022.09496178216False26.86578071380.422437687641FalseFalse0False-1nanFalse0-1nanFalse0-1nanFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1False0-1nannanFalse-1nannan-1nannan-1nannan-1nannannannannannannannannannannannannanFalse0-18-0.01054240.0064933nan-0.6687292171FalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannan
93048034.4393352693-5.218734759730.709999978542-0.001420790.00516246-0.04201380.0193282-0.001764420.00551065-0.01958920.02062930.03609280.01295180.03106410.04481590.05943950.01388610.0190350.0400623-0.0023610.003477-0.0003830.0069160.00759410.00642090.01265210.00788910.03756850.02394010.021650.01273590.026029nan-3.9450374282Falsenan-0.49948651426nan-3.39097959485Falsenan-1.1433840018427.50644856260.389613390393False27.6693530611.566381938626.96481213120.253646842805False28.20111779712.28511108778nan-1.59894315288Falsenan-19.605617734False29.19880922080.91800260691False28.64459346040.677000774018False27.46294036170.691873066945False28.06135524831.30534077015FalseFalse0False-1nanFalse0-1nanFalse0-1nanFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0-1False0-1nannanFalse-1nannan-1nannan-1nannan-1nannannannannannannannannannannannannanFalse0-190.00127220.006464331.13861152195.51684055056FalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannan
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "master_catalogue[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## XI - Saving the catalogue" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.write(\"{}/cfht_merged_catalogue_xmm-lss.fits\".format(TMP_DIR), overwrite=True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }