{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# XMM-13hr Selection Functions\n", "## Depth maps and selection functions\n", "\n", "The simplest selection function available is the field MOC which specifies the area for which there is Herschel data. Each pristine catalogue also has a MOC defining the area for which that data is available.\n", "\n", "The next stage is to provide mean flux standard deviations which act as a proxy for the catalogue's 5$\\sigma$ depth" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "017bb1e (Mon Jun 18 14:58:59 2018 +0100)\n", "This notebook was executed on: \n", "2018-06-26 12:32:49.540731\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n", "import datetime\n", "print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "import os\n", "import time\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table, join\n", "import numpy as np\n", "from pymoc import MOC\n", "import healpy as hp\n", "#import pandas as pd #Astropy has group_by function so apandas isn't required.\n", "import seaborn as sns\n", "\n", "import warnings\n", "#We ignore warnings - this is a little dangerous but a huge number of warnings are generated by empty cells later\n", "warnings.filterwarnings('ignore')\n", "\n", "from herschelhelp_internal.utils import inMoc, coords_to_hpidx, flux_to_mag\n", "from herschelhelp_internal.masterlist import find_last_ml_suffix, nb_ccplots\n", "\n", "from astropy.io.votable import parse_single_table" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "FIELD = 'XMM-13hr'\n", "#FILTERS_DIR = \"/Users/rs548/GitHub/herschelhelp_python/database_builder/filters/\"\n", "FILTERS_DIR = \"/opt/herschelhelp_python/database_builder/filters/\"" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Depth maps produced using: master_catalogue_xmm-13hr_20180501.fits\n" ] } ], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "SUFFIX = find_last_ml_suffix()\n", "#SUFFIX = \"20171016\"\n", "\n", "master_catalogue_filename = \"master_catalogue_{}_{}.fits\".format(FIELD.lower(), SUFFIX)\n", "master_catalogue = Table.read(\"{}/{}\".format(OUT_DIR, master_catalogue_filename))\n", "\n", "print(\"Depth maps produced using: {}\".format(master_catalogue_filename))\n", "\n", "ORDER = 10\n", "#TODO write code to decide on appropriate order\n", "\n", "field_moc = MOC(filename=\"../../dmu2/dmu2_field_coverages/{}_MOC.fits\".format(FIELD))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Remove sources whose signal to noise ratio is less than five as these will have been selected using forced \n", "# photometry and so the errors will not refelct the RMS of the map \n", "for n,col in enumerate(master_catalogue.colnames):\n", " if col.startswith(\"f_\"):\n", " err_col = \"ferr{}\".format(col[1:])\n", " errs = master_catalogue[err_col]\n", " fluxes = master_catalogue[col]\n", " mask = fluxes/errs < 5.0\n", " master_catalogue[col][mask] = np.nan\n", " master_catalogue[err_col][mask] = np.nan" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## I - Group masterlist objects by healpix cell and calculate depths\n", "We add a column to the masterlist catalogue for the target order healpix cell per object." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#Add a column to the catalogue with the order=ORDER hp_idx\n", "master_catalogue.add_column(Column(data=coords_to_hpidx(master_catalogue['ra'],\n", " master_catalogue['dec'],\n", " ORDER), \n", " name=\"hp_idx_O_{}\".format(str(ORDER))\n", " )\n", " )" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Convert catalogue to pandas and group by the order=ORDER pixel\n", "\n", "group = master_catalogue.group_by([\"hp_idx_O_{}\".format(str(ORDER))])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#Downgrade the groups from order=ORDER to order=13 and then fill out the appropriate cells\n", "#hp.pixelfunc.ud_grade([2599293, 2599294], nside_out=hp.order2nside(13))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## II Create a table of all Order=13 healpix cells in the field and populate it\n", "We create a table with every order=13 healpix cell in the field MOC. We then calculate the healpix cell at lower order that the order=13 cell is in. We then fill in the depth at every order=13 cell as calculated for the lower order cell that that the order=13 cell is inside." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "depths = Table()\n", "depths['hp_idx_O_13'] = list(field_moc.flattened(13))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhp_idx_O_13
0171770621
1171770622
2171770623
3171770786
4171770787
5171770790
6171770791
7171770792
8171770793
9171770794
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "depths[:10].show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "depths.add_column(Column(data=hp.pixelfunc.ang2pix(2**ORDER,\n", " hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[0],\n", " hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[1],\n", " nest = True),\n", " name=\"hp_idx_O_{}\".format(str(ORDER))\n", " )\n", " )" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false, "deletable": true, "editable": true, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhp_idx_O_13hp_idx_O_10
01717706212683915
11717706222683915
21717706232683915
31717707862683918
41717707872683918
51717707902683918
61717707912683918
71717707922683918
81717707932683918
91717707942683918
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "depths[:10].show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "Table masked=True length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhp_idx_O_13hp_idx_O_10ferr_ap_ukidss_j_meanf_ap_ukidss_j_p90ferr_ukidss_j_meanf_ukidss_j_p90ferr_ap_90prime_g_meanf_ap_90prime_g_p90ferr_90prime_g_meanf_90prime_g_p90ferr_ap_90prime_r_meanf_ap_90prime_r_p90ferr_90prime_r_meanf_90prime_r_p90ferr_ap_mosaic_z_meanf_ap_mosaic_z_p90ferr_mosaic_z_meanf_mosaic_z_p90
uJyuJyuJyuJyuJyuJy
01717282532683253nannannannan0.25039242.06661884784698470.375441672.02675151824951170.202700732.9261349439620970.24982692.96604359149932861.203019610.5190134048461910.600062138.704996156692506
11717282552683253nannannannan0.25039242.06661884784698470.375441672.02675151824951170.202700732.9261349439620970.24982692.96604359149932861.203019610.5190134048461910.600062138.704996156692506
217172834026832555.9318357356.37519836425812.612087413.830072021484340.2503915418.0969251632690560.493872529.279965972900410.1907013426.5241508483886860.298606133.346382522583041.20301798.897079467773440.95266587111.70701904296901
317172834126832555.9318357356.37519836425812.612087413.830072021484340.2503915418.0969251632690560.493872529.279965972900410.1907013426.5241508483886860.298606133.346382522583041.20301798.897079467773440.95266587111.70701904296901
417172834226832555.9318357356.37519836425812.612087413.830072021484340.2503915418.0969251632690560.493872529.279965972900410.1907013426.5241508483886860.298606133.346382522583041.20301798.897079467773440.95266587111.70701904296901
517172834326832555.9318357356.37519836425812.612087413.830072021484340.2503915418.0969251632690560.493872529.279965972900410.1907013426.5241508483886860.298606133.346382522583041.20301798.897079467773440.95266587111.70701904296901
617172834426832555.9318357356.37519836425812.612087413.830072021484340.2503915418.0969251632690560.493872529.279965972900410.1907013426.5241508483886860.298606133.346382522583041.20301798.897079467773440.95266587111.70701904296901
717172834526832555.9318357356.37519836425812.612087413.830072021484340.2503915418.0969251632690560.493872529.279965972900410.1907013426.5241508483886860.298606133.346382522583041.20301798.897079467773440.95266587111.70701904296901
817172838026832555.9318357356.37519836425812.612087413.830072021484340.2503915418.0969251632690560.493872529.279965972900410.1907013426.5241508483886860.298606133.346382522583041.20301798.897079467773440.95266587111.70701904296901
917172837126832555.9318357356.37519836425812.612087413.830072021484340.2503915418.0969251632690560.493872529.279965972900410.1907013426.5241508483886860.298606133.346382522583041.20301798.897079467773440.95266587111.70701904296901
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for col in master_catalogue.colnames:\n", " if col.startswith(\"f_\"):\n", " errcol = \"ferr{}\".format(col[1:])\n", " depths = join(depths, \n", " group[\"hp_idx_O_{}\".format(str(ORDER)), errcol].groups.aggregate(np.nanmean),\n", " join_type='left')\n", " depths[errcol].name = errcol + \"_mean\"\n", " depths = join(depths, \n", " group[\"hp_idx_O_{}\".format(str(ORDER)), col].groups.aggregate(lambda x: np.nanpercentile(x, 90.)),\n", " join_type='left')\n", " depths[col].name = col + \"_p90\"\n", "\n", "depths[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## III - Save the depth map table" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "depths.write(\"{}/depths_{}_{}.fits\".format(OUT_DIR, FIELD.lower(), SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## IV - Overview plots\n", "\n", "### IV.a - Filters\n", "First we simply plot all the filters available on this field to give an overview of coverage." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "{'90prime_g', '90prime_r', 'mosaic_z', 'ukidss_j'}" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tot_bands = [column[2:] for column in master_catalogue.colnames \n", " if (column.startswith('f_') & ~column.startswith('f_ap_'))]\n", "ap_bands = [column[5:] for column in master_catalogue.colnames \n", " if column.startswith('f_ap_') ]\n", "bands = set(tot_bands) | set(ap_bands)\n", "bands" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "Text(0.5,1,'Passbands on XMM-13hr')" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAesAAAEgCAYAAACU3FvWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl4VNX5wPHvO1t2QoCwL0EBWQWEoqKtO4J1L7buu2CtS4tW/VXF3Vata13qUtfWrbYigqJQN0SRRVRWZZElhEBYErJnlvP7486EISSTSchk7mTez/PwzHLv3PtOwuSd95xzzxFjDEoppZSyL0e8A1BKKaVUZJqslVJKKZvTZK2UUkrZnCZrpZRSyuY0WSullFI2p8laKaWUsjlN1sqWROQOEflnWztXWyUin4rI5fGOQ6m2SpO1ipqIrBeRShEpE5GtIvKiiGTGO65EJyIjRaRERPqFPTdKRIpFJC/4eL2I1IhIpzqv/VZETNh+LwUfn1pnv0eDz18cIY67RWSpiPhE5I46244JbisWkR0i8o6I9Ni/d66UipYma9VUpxhjMoFDgJ8Bt8Y5noRnjFkCPAk8JxY38AIw1RizPmzXn4BzQg9EZBiQVs8hfwQuCtvPBZwFrG0klDXAjcDMeratAE40xrQHugOrgacbOV69gvEopZpAk7VqFmPMZuADYCiAiFwiIitFpFRE1onI5NC+ItJJRGYEq7KdIjJXRBzBbTeJyObg634QkePCTpMqIm8Gt30jIsPDjnmziKwNblshImeEbbtYRL4Qkb+KyC4R+UlEJoRt7ysinwVfOxvoFLYtVUT+Gawei0VkoYh0qe9nICKDgs2/xSKyPLyaDVa4T4rIzOB5vhaRAyP8SO8EugGTgD8BZcATdfZ5Fbgw7PFFwCv1HOs94AgRyQk+Hg98DxRGOD/GmJeNMR8ApfVs22qMKQh7yg/0q7NbHxGZF3y/H4VaAUQkL1jVXyYiG4GPI8WhlNqXJmvVLCLSCzgJWBJ8ahtwMtAOuAR4REQOCW67HsgHcoEuWMnIiMhBwNXAz4wxWcCJwPqw05wG/BvoALwGTAtWnWBViT8HsrES3T9FpFvYaw8FfsBKxA8A/xARCW57DVgc3HY3YVVo8H420AvoCFwJVNbz/t1YSfEjoDNwDfCv4HsKOScYWw5W1Xpv3eOEGGOqgcuA+4M/r8uMMYE6u80H2gW/JDiB3wD19bVXAdOBs4OPL6T+pN4kItJbRIqxfh43YP1cw52L9bvvDHiC+4Q7ChiE9XtWSjWBJmvVVNOCf7C/AD4D7gMwxsw0xqw1ls+wktjPg6/xYlWNfYwxXmPMXGNNSu8HUoDBIuI2xqw3xoQ31S42xrxtjPECDwOpwGHB8/3bGFNgjAkYY97EapYdE/baDcaY54wxfuDl4Pm7iEhvrOb724wx1caYz7GSbogXK0n3M8b4jTGLjTG76/k5HAZkAn8xxtQYYz4GZhDWTA381xizwBjjA/4FjGjkZ7sM8AFLjTGrGtgnVF2fAKwCNjew3yvAhSKSjZUkpzVy7kYZYzYGm8E7YXV/1I3xRWPMj8aYSuAt9n2/dxhjyoPblVJNoMlaNdXpxpj2xpg+xpirQn94RWSCiMwPNnMXY1XdoeblB7Eqy4+CTeQ3Axhj1gC/B+4AtonIGyLSPexcm0J3glVmPlZ/KSJyYXBwVXHwfEPDzgdhTb7GmIrg3czg63cZY8rD9t0Qdv9V4EPgDREpEJEHwqr5cN2BTXWq3w1A+KCr8GbniuD5I3kI6wtQTxE5u4F9XsWqYC8mQrVsjPkCqyXjVmBG3QQZbLYvC/77eb0HafjYO7G+AL1bp/+5sfe7CaVUs2iyVvtNRFKA/wB/BboEq6/3AQEwxpQaY643xhwAnAJMCfVNG2NeM8YcCfQBDFYzcEivsHM4gJ5AgYj0AZ7DakLvGDzfstD5GrEFyBGRjLDneofuBCv/O40xg4GxWE37F7KvAqBXqO897DgNVboRBX8ep2E1u18JPCYiHeruZ4zZgDXQ7CTgv40c9p9YTer7JHVjzBBjTGbw39xmhOzCau5u14TX6BJ/SjWTJmvVEjxYzdlFgC84mGtcaKOInCwi/YJ9xruxmr/9InKQiBwbTPZVWH2h/rDjjhKRM4PV2++Baqx+2wysP/xFweNfQnCgW2OCyW4RcKeIeETkSKwvEKFYjxGRYcE+4d1YzeL+eg71NVAO3CgibhE5OnicN6KJI1zwi8NzwO+NMUXBQV6zgUcaeMllwLF1Wgfq8zhWc/nnUcbhFpFUrL8LruBgO2dw25nB35dDRHKxuiWWBKtspVSMabJW+80YUwpci9VPuQurmXZ62C79gTlYI5y/Ap4yxnyKleD/AmzHakLtjDX4LORdrEFUu4ALgDODle8KrCbjr4CtwDBgXhNCPhdrANpO4Hb2rjy7Am9jJeqVWM3S+wziMsbUAKcCE4LxPwVcGKGvOZL7gFXGmH+FPfd7YIKIjKu7c3BswKLGDmqM2WmM+Z+JftH657C+MJ0D3BK8f0FwWw9gFtZI8aVAADijnmMopWJAov8cK6WUUioetLJWSimlbE6TtVJKKWVzmqyVUkopm9NkrZRSStmcJmullFLK5hJu9ZtOnTqZvLy8eIehlFIJZfHixduNMbn7eYzOLpfreax5DbTYa1kBYJnP57t81KhR2+puTLhknZeXx6JFjV5iqpRSKoyIbGh8r8hcLtfzXbt2HZSbm7vL4XDodb8tKBAISFFR0eDCwsLnseZw2It+M1JKKRWtobm5ubs1Ubc8h8NhcnNzS2hgNkZN1koppaLl0EQdO8Gfbb15OWbJWkReEJFtIrKsge0iIo+LyBoR+T5s7WOllFJKhYllZf0SMD7C9glYc0b3ByYBT8cwFqWUUipqI0eOHBjvGMLFLFkbYz7HWiihIacBrxjLfKC9iHSLVTxKKaVUtJYsWdKcRXliJp6jwXuw92L0+cHntsQnHKWUUtH649vf9fqxsDS9JY85oGtWxYMTh29qaPsPP/zgGT9+fP8xY8aUffPNN5mDBg2quPTSS7ffddddPXbs2OF66aWX1g0ePLj6vPPOy9u4cWNKWlpa4Nlnn91w6KGHVs6cOTPz+uuv7w0gInz55ZerHA4H48eP71dSUuL0+XwyderUgvPPP78YID09fWRFRcUSgFtvvbXLW2+91VFEOO6440qeeuqpfdatX79+vXv8+PH9Q49Xr16dtnLlyqUDBgyoaYmfTTyTtdTzXL0DF0RkElZTOb17945lTEolPX/AsK20ihpfgCpvgO/zizlqQC6d26XGOzSl2LRpU+qbb765btSoURsOPvjgQf/61786Llq0aNVrr73W/t577+3Wo0ePmuHDh1fMmTNn7fTp07MuuuiivqtWrVrx0EMPdX388cc3jBs3rrykpMSRnp4eAJg5c+aaDh06BLZs2eI69NBDB5577rnFDseeRue33nqr3cyZM3MWL168KisrK7B161ZnfXHl5eV5V61atQLgz3/+c+7cuXOzWipRQ3yTdT7QK+xxT6Cgvh2NMc8CzwKMHj1aRyIq1QL8AUONL0Cax/rbU1Hj4y8frOLtxflU1Pj32f+iw/tw04SBpHv2/bPhDxgKiitpl+omO90d89hV/EWqgGOpR48e1WPGjKkEGDBgQOWxxx672+FwcMghh1Tcc8893Tdv3pzyn//8Zw3AqaeeWjpp0iTXjh07nIcddljZDTfc0OvXv/71znPOOWfXgQceGKiurpbf//73PefPn5/pcDjYtm2bJz8/39W7d29f6HyzZ89ud/7552/PysoKAHTp0mXfD0eYjz76KOOVV17JnT9/fos2o8czWU8HrhaRN4BDgRJjjDaBK9UKNhdXcsrfvqC82sfFR+TRu0M6T368hoKSKrq2S2VQt3ZU+/yMPbATC9fvZMnGYl7+agMvf7WBxbceT8fMFAC+21TMLdOWsnJLKf6A9T16aI923HP6MEb0ag9Atc/Ppp0ViAgH5mbG7T2rtsHj8dQWbA6Hg9TUVAPgdDrx+/3idDr3KehExNx3332Fp59+esm7776bPXbs2EGzZs36ce7cuRk7duxwLV26dGVKSorp0aPHsMrKyr3GchljEKmvIXhfGzZscE+ePDnv3XffXZOdnR3Yz7e6l5glaxF5HTga6CQi+cDtgBvAGPN34H3gJGANUAFcEqtYlFJ7e3PBRnaW1zCwaxbPfLYOgN4d0nlz0mEcekDHel/z0ryfuOO9FYy6Zw6nDu/OvDXb2VFutfKdMLgLHTM8lFb5mLd2O6c/OY/hPbNJ8zj5blMJlV6rGLn22H5MGXdQ67xJlZQOO+yw0hdffLHjgw8+uGXGjBlZOTk5vg4dOgSWL1+eMmbMmMoxY8ZUfv311xnLli1LLSkpcXbq1MmbkpJi3nvvvayCggJP3eONHz9+97333tv9iiuu2BlqBq+vuq6urpYzzzzzgLvvvnvzwQcfXN3S7ytmydoYc04j2w3wu1idXynVsP+t2saYvA68deXhrNyym5JKL6P75OByNnyByMVH9KVvbiaXvLiA6d9ZPVbnjOnNVUcfSK8Oe8YZlVX7ePKTNcxesZWCkipOGd6NQd3a8fGqbTz+8RoO6ZPD0Qd1jvl7VMnp/vvvLzj33HPzBgwYMDgtLS3w0ksv/QTwwAMPdP7yyy/bORwOM2DAgMqJEyeWFBcXOydMmNBv6NChg4YMGVLRt2/fqrrHmzhx4u5vvvkmfcSIEYPcbrc5/vjjS5544ol9BpjNmTMnY9myZRn33HNP93vuuac7wKxZs1bn5eV5W+J9iZUzE8fo0aONzg2uVPN5/QEG3TaLSb84gBvHN+9SUq8/gEDE5F5XjS/AuEc+I83j4v1rj4y6aVG1DBFZbIwZvT/H+O6779YPHz58e0vFpPb13XffdRo+fHhe3ed1ulGlksyGHeX4AoZ+nZvff+x2OpqUqAE8LgeXHdmXlVt2s3JLabPPrVQy0mStVJIpKLZa+sKbrlvLhGHdcAj8e3FcBhIr1SIuuOCC3gMHDhwc/u+xxx6rf7BHC0m4JTKVUvtnW6k19qVzVkqrn7tTZgpH9OvER8u3MvXkwdoUrhLSq6++urG1z6mVtVJJpiiYrDtltn6yBjh1eHc2F1eycP0uqrwRL1lVSgVpslYqyWwrrSLD4yQjJT4NaycN60ZWiotfP/MVh//5f5RUtshgWaXaNE3WSiWZ7WU15MahCTwkI8XFI78ZQV7HdHZVeFnwU6T1fpRSoMlaqaSzu9JLdlp8pwQ9fnAX/nvVEQDk76qIayxKJQJN1kolmbJqH5mp8R9bmpPuxu0Utu5u8cmeVJIZM2bMQZ9//vk+lzccddRR/bZv377PwhtTpkzpPnXq1C77e97gSlsH7O9xohH/T6xSqlWVVfnolNn6l23VJSJ0yPCws1yTtYqNzz77bE0sj5+Xl+edNWvWulieI0STtVJJpqzaR2aKPVbGykhxUV7PCl8qAUz7XS+2rWjZb32dB1dw+pMR17M++eST+69evXo5wNSpU7uUlZXVVs5+v5+zzjorr2fPnjWPP/54QY8ePYYtWrRoZbdu3Xw33XRT1zfffLNT9+7dazp27OgdOXJkBcA999zT+cUXX8x1Op1mwIABVTNmzFhX39rXOTk5+yzMUTeeWNJkrVSSKa3ykmWDZnCAzBQX5dW+xndUqhFer1dOP/30voMHD668//77C8O3zZ07N/2dd97psHTp0hVer5cRI0YMDiXrxx9/vOuGDRuWpqWlmVCTeUNrX8eTPT6xSqlWYYyhrNpnm2Sd7nFSUa2VdUKKUAHHw1VXXdXn9NNP31k3UQN88sknmSeddFJxaE3qcePGFYe2HXTQQZVnnHFG31NPPbX4vPPOKwaob+3r1nsn9dMBZkolkUqvn4CxKlo7yPC4KNPKWkXJ5XKZQGBP3qyqqqrNYaNHjy6bO3duu4qKinqnxWtotrxPPvlk9e9+97uixYsXZwwfPnyw1+vlvvvuK3z++ec3VFZWOsaOHTtoyZIlqS39XppKk7VSSSR/VyWALUaDg9VnXVGjyVpFp2fPnr6dO3e6CgsLnZWVlfLhhx9mh7ZNnjx5+7hx40pOPvnkA73evSfaOfbYY8tmzpzZvqysTHbt2uWYPXt2e7D6uNeuXes55ZRTSp966qn80tJSZ0lJiTO09vW9995bOGzYsPJly5bFPVnb4xOrlGoVZ/39K8BqfraDdI+TCh1gpqKUkpJirr/++i1jxowZ1LNnz+p+/frttf70HXfcsfUPf/iD88wzz+w7bdq0n0LPH3nkkRVnnHHGzqFDhw7p0aNH9ZgxY8oAfD6fnHvuuX1LS0udxhiZPHny1k6dOvmvv/767nXXvm4oJhFplXWmNVkrlURCU3s6HfZoVPO4HNT4494dqBLIrbfeuu3WW2/d1tD2Rx55pCB0f/PmzUtD9++///7C+vqzFy9e/EPd515++eWo+uO3bdvmys7ObpVvm/b4xCqlWlWGTSprj9NBjU+TtUo8n3/+efoFF1xwwNVXX721Nc6nlbVSSSjNbZNk7dJkrexvwYIFaRdeeGHf8Oc8Hk9g/fr1y1orBk3WSiWhFBsla1/AEAgYHA5d21rZ05gxYypXrVq1Ip4xaDO4UknogE4Z8Q4BsJI1oP3WSjVCk7VSSeS0Ed3J65hOToYn3qEAkOKyKvxqbQpXKiJN1kolEa8/gMtpn499bWWtyVqpiOzzqVVKxVyNz+C2UbJOcWozuFLRsM+nVikVc75AAI/TPgO5tLJWTXX33Xd37t+//5B+/foNueuuuzoDbN261Tl27Nj+ffr0GTp27Nj+RUVFTR5BOXLkyIEtH23L0WStVBLx+gO2qqw1WaumWLhwYeorr7yS+80336xcuXLl8lmzZrVfunRpyu23397t6KOPLt2wYcOyo48+unTq1Kldoz2mz2dNd7tkyZJVMQu8BeilW0olEa/P4LJRZR364uDVZvCEc9u823qt2bWmRdez7pfTr+LuI+5ucPawpUuXph1yyCFlodWzjjjiiNI333yz/axZs9p/9tlnPwBMnjx5x1FHHXUQsHnKlCnd161bl1JYWOjesmWL59prry28/vrrt8+YMSPr7rvv7ta5c2fvihUr0teuXbs8PT19ZEVFxZIZM2Zk3Xnnnd1zc3O9K1asSD/ppJN2DRs2rPKpp57qUl1dLe+8887aIUOGVBcUFLguueSSPps3b/YAPPzwwxvHjRtXXl/cBQUFrokTJ/YtLi52jRgxouLTTz9tt3jx4pXdunWLemJ8+3zFVkrFXI3NKmtX8NpqX6BVpldWCW7EiBGVX3/9dVZhYaGztLTUMXv27OxNmzZ5duzY4erTp48XoE+fPt6dO3fWFqIrV65MmzNnzur58+evevDBB7uvX7/eDfD9999nPPjgg5vXrl27vO55Vq1alfb0009vWrly5fK33367448//pi6dOnSlRdccMH2hx56qDPA5MmTe02ZMmXrsmXLVr7zzjtrr7zyyryG4r755pu7H3XUUaUrVqxYeeaZZ+7asmVLky/H0MpaqSRi9VnbJ1k7g8naH9DKOtFEqoBj5ZBDDqm67rrrCo899tgB6enpgcGDB1e4XJHT2IQJE4ozMzNNZmam7/DDD989d+7cjJycHP/BBx9cPnDgwJr6XjNs2LDyUPLv3bt39YQJE0oAhg8fXvnZZ59lAcybN6/d6tWr00KvKSsrc+7atcuRk5Ozz3/mBQsWZE6bNm0NwMSJE3e3a9euyfOJa7JWKol4bTYaPNQk7/NrZa2i84c//GH7H/7wh+0AV199dY+ePXvWdOzY0bdhwwZ3nz59vBs2bHB36NChtnm57jrWocfp6ekNfkNMSUmp/Q/pcDhITU01oft+v18AjDEsWrRoZWZmZqP/eY3Z///f9vnUKqVizrrO2j591q7g6l/aDK6itXnzZhfA6tWrPTNnzmx/2WWX7TzxxBOLn3nmmY4AzzzzTMfx48cXh/b/4IMP2ldUVEhhYaFz/vz5WUceeWS9/cpNdeSRR+6+//77O4cef/nll2kN7TtmzJiyV199tQPAf//733a7d+9u8mj1mFbWIjIeeAxwAs8bY/5SZ3tv4GWgfXCfm40x78cyJqWSmTdgrz5rp/ZZqyY69dRTDywuLna5XC7z6KOPbszNzfXfeeedW84444wD+/Tp06l79+4106ZNWxvaf+TIkeXHHXdc/4KCAs8NN9ywJS8vz7ts2bLU/Y3j2Wef3XT55Zf3HjBgwGC/3y+HHnpo6dixYzfWt+9f/vKXgokTJx4wePDgnMMPP7wsNzfX2759+yY1hccsWYuIE3gSOAHIBxaKyHRjTPhk6LcCbxljnhaRwcD7QF6sYlIq2fn9pnZQlx24ndpnrZqmvvWnu3bt6v/qq69+rG///v37V73++usbwp87+eSTS08++eTS8OcqKiqW1LdtwYIFP9T3um7duvlmzpy5LpqYO3To4P/8889/dLvdzJkzJ2PevHlZaWlpTfqGGsvKegywxhizDkBE3gBOA8KTtQHaBe9nAwUopWLGG7DXpVuhytqrfdaqDVuzZo3n17/+9YGBQAC3222eeeaZ9U09RiyTdQ8gfLRgPnBonX3uAD4SkWuADOD4GMajVNLzB0xtP7EdhGLxazO4ioGHH364VQvAxx57rOPTTz/dJfy5n/3sZ2WvvvrqxpUrV+7XEpuxTNb1fX2v+4k8B3jJGPOQiBwOvCoiQ40xe7WJicgkYBJA7969YxKsUsnA6w/UVrN2oH3Wqi257rrrdlx33XU7YnHsWH7Fzgd6hT3uyb7N3JcBbwEYY74CUoFOdQ9kjHnWGDPaGDM6Nzc3RuEq1fb5A6a2n9gO3LWXbmmftVKRxDJZLwT6i0hfEfEAZwPT6+yzETgOQEQGYSXrohjGpFRS8/kNThs1g2tlrVR0YvapNcb4gKuBD4GVWKO+l4vIXSJyanC364ErROQ74HXgYtMSV48rpeplXbpln8pa+6yVik5Mr7MOXjP9fp3npobdXwEcEcsYlFKWQMBgDLbqs3ZpM7hSUbFPe5hSKqa8wWuZ7TQpii7koZpK17NWSrVpoaZmO1XWexby0GStGtcW1rP2er3Nep0u5KFUkghNPGKnGcxCfdY6KUriKfjTLb2qV69u0fWsU/r3r+h+371tbj3rKVOmdN+yZYt748aNng4dOvjee++9n5r6s9FkrVSSCFWvtkrWOt2oaoIRI0ZU3nXXXT0KCwudGRkZZvbs2dnDhw8vb2w968WLF68sLS11jhw5cvCvfvWrErDWs16yZMny+pbJXLVqVdrbb7+9rnPnzr4+ffoMS0lJ2b506dKVd999d+eHHnqo8wsvvLAptJ71iSeeWLZ69WrPiSee2H/dunX7rI0d8v3336d//fXXq6JZpas+mqyVShKhQVwuG/VZO0X7rBNVpAo4VhJ1PWuA8ePHFzc3UYMma6WSRigh2unSLYdDcIiuZ62il4jrWQNkZGTsV/ORfb5iK6ViKpQQ7TQpCliVvlbWKlqJuJ51S9DKWqkk4au9dMs+lTVYfejaZ62ilYjrWbcESbQJw0aPHm0WLVoU7zCUSjg/bi1l3COf88S5Izn54O7xDqfWsDs+ZOKontx+ypB4h9KmichiY8zo/TnGd999t3748OHbWyqmWJsyZUr3zMxM/1133bU13rFE67vvvus0fPjwvLrP26s9TCkVM77aS7fs9bF3Ox3aZ61UI7QZXKkkEWoGt9OlW2BNjKJ91ioW7LSe9f4eW5O1UkkilBBd2metmi8QCATE4XDot6t67O961oFAQIB6Pwz2ag9TSsWMXZvBnQ7RZvDEsayoqCg7mFRUCwoEAlJUVJQNLKtvu1bWSiWJ2mZwO1bWCTbQNVn5fL7LCwsLny8sLByKFnstLQAs8/l8l9e3UZO1UknCZ8O5wUH7rBPJqFGjtgGnxjuOZKTfjJRKErVzg9toulGwkrVfm8GVishen1qlVMx4/XYdDa4zmCnVGE3WSiUJv41Hgwe0z1qpiDRZK5UkvDZcIhO0z1qpaGiyVipJ+GsnRbHXx16vs1aqcfb61CqlYsZbu+qWvSprh15nrVSjNFkrlSRCCdFts9Hg2metVOPs9alVSsVMqKnZbpW19lkr1ThN1kolCW9tZW2vZG31WWuyViqSqGYwE5GuQO/w/Y0xX8YqKKVUywslRFtW1tpnrVREjSZrEbkPOB9YBfiDTxvgpBjGpZRqYd5gM7jd+qyd2metVKOiqax/BQwwxlTFOhilVOz4bToa3KUzmCnVqGi+Yv8U5X5KKRuz86Qo2metVGTRVNalwBIRmQNUh540xkyJWVRKqRbnDwRwOQQR+yVrn06KolRE0STrWcF/SqkE5vMb2zWBg666pVQ0Gk3Wxph/iIgL6Bd8ao0xxhfbsJRSLc0XMLYbXAbBS7d0gJlSETX6yRWRnwNrgH8ALwA/isgR0RxcRMaLyA8iskZEbm5gn1+LyAoRWS4irzUleKVU9Hz+gH0ra+2zViqiaJrBHwFOMsasABCRQcCrwOhILxIRJ/AkcAKQDywUkemh4wT36Q/8H3CEMWaXiHRu3ttQSjXGqqztmax1NLhSkUXTJuYJT7DGmJWAJ4rXjcFqMl9njKkB3gBOq7PPFcCTxphdwWNviy5spVRTaZ+1UokrmmT9jYg8IyJHBv89DSyJ4nU9gE1hj/ODz4UbAAwQkXkiMl9Extd3IBGZJCKLRGRRUVFRFKdWStXlCxjbLY8J2metVDSi+eReCawFbgRuAtYBk6N4XX1f4et+Il1Af+Bo4BzgeRFpv8+LjHnWGDPaGDM6Nzc3ilMrperyBQK4bNkMrpOiKNWYaEaDVwEPBP81RT7QK+xxT6Cgnn3mG2O8wE8i8gNW8l7YxHMppRphVdb2S9a6kIdSjWuwshaR14O3S0Tkm7r/ojj2QqC/iPQVEQ9wNjC9zj7TgGOC5+mE1Sy+rjlvRCkVmc8fsGUzuCOYrI02hSvVoEiV9R+DtxObc2BjjE9ErgY+BJzAC8aY5SJyF7DIGDM9uG2ciKzAWiTkj8aYHc05n1IqMn+6ICghAAAgAElEQVTA2LIZPFTtBwzYMDylbKHBZG2MyQ/eLQCqjDFGRA4EDgI+iubgxpj3gffrPDc17L4BpgT/KaViyOu3ZzN4aIS6LxDA6XDGORql7CmaNrG5QJqIdAM+A36LNTmKUiqBWJW1/ZrBQ18gtN9aqYZF88l1GGMqsJbKfMIYcwpwcGzDUkq1NK+NZzADdES4UhFElaxF5GfAucCM4HPaVqVUgvHbeAYzgIAma6UaFE2yngLcCcw0xiwTkQOwmsaVUgnEGzA4bTga3KWVtVKNiuY664+BjwHEWgh3qzHmqlgHppRqWT5/ALctm8GtLxDaZ61Uw6JZdesVEWknIunAcqzJS3T0tlIJxh+w69zg1q1W1ko1LJo2sWHGmN3A6ViXbPUELo5lUEqpluf1B2y5nnVtZa2LeSjVoKhW3RIRF9aKWdOCK2gFYhuWUqql2bWyrr10S2cwU6pB0axn/TywEVgGfCYivYGymEalVBzUbNpE2dy5OFJSaffLk3Ckpu61vXz+10iKh/SRI+MU4f7x+u05g5mz9jprrQGUakg0A8weAR4JPRaRTcCxsQxKqdZQ+r//UfrJJ/h3FWO8NVQuWkygogKA6rVr6XKjNeNuycyZeHr2ZOPFFwMwYMHXONu1i1fYzea38UIeoH3WSkXSYLIWkXOMMa+LyLUN7PJ4jGJSKmbKvpiHq2MH/LtLyb/6GsTtxtWlC46MDDKPP44OF11E/tXX4C2wFojz795NwfU37HWMHc89T+frE2+MpbVEpv36rB2hZK191ko1KFJlnRO81QWkVcIzxrDzpZfZdv/9tc95+vQh7603cWZn77WvMzsbU1MDwO4PZtU+n3XCCSDCrjffpNPVv8ORktI6wbcQX8DY8tKtPQt5aLJWqiGRFvJ4Knh7W+uFo1TLqly2nOoffqB83hfsfv8D0g45hLQRIxCnk46XX7ZPogYQjwfj9bJ71iwKb7+d1MGD6Tr1NlIPPpjyL7+i9KOPKJ/3JVnHHhOHd9R8Pr89J0XR6UaValyjfdbBAWVXA3nh+xtjzoxdWEo1X9WKFfhLy0gbOoT1E4MrvDoc5F53LR0nT0YaSVjidmNqaih6/G8AdL3zTtKGDQUgpX8/AHxFRbF7AzHiCwRsOd2oSydFUapR0YwGnw68AsxGL9lSNuYvK6fo4YfY9drr+2zrdvfdtP9VdN8vxePGu7kA78aNdL75ptpEDeDIyAAgUJZ4F0RYlbX9knXou5P2WSvVsGiSdY0x5uGYR6LUfghUV7Pp8sup/PZb2p/9Gzx98tj5wgt48vLIve5a0kaNivpY4nbXDjBzd+++1zZHerp1vvLylgu+FRhj8Nl2iUwrJu2zVqph0STrv4nIrcCHQHXoSWPM9zGLSqkmCFRUsHnK9VR++y09Hn6IdiedBECHiy4EYxBn0xaJE48HfD4AXJ067b3N4cCRnp5wyTrUxGzHS7e0z1qpxkWTrAcAlwMT2NMMboBfxCoopRoTqKjAV1SEu2dPNk+5nrLPP6fr7VNrEzXQaN90Q8Ttrr3v6thxn+2OzEzKFy6gatUqUgcObNY5WlsoEdpxUhSXToqiVKOiSda/BvKMMdWN7qlUDNVs2sSu19+g8ttvqfzuO/D7a7d1ue1Wcs45p0XO4/B4au+7cve9ctGRkUH1ipX8dPoZDFq1skXOGWu+RKistc9aqQZFU3p8D2TFOhClGmL8frbe/wDrfnkyu159FVNTYyXmYAXc7pRTyDn33BY7X82GjbX3Q33UexH7JbzGhBbJcNn40i0dDa5Uw6KprDsCq0Tka/bus9ZLt1TMebdsYc0x1uy27X75Szrf+EfcXboAUP7FF9SsX0/2aachLZhAA+WRR3r7S3e32LlaizfYxGzrZnAdYKZUg6JJ1vfGPAql6iif/zW7Z31AxVfzAci54AK63vKnvfZJGzmSmvXrSenfv0XP7S+1knXev9+qd3uXG2+i4I9/xFlPf7ZdhapWO166pZW1Uo2LJll/CVQZY4yIHAgchLWutVItzhjD9qeeYvvfnsCRmUnKwIPofu01ZP/yl/vs23XqbeScczbuLp1bNIZAaSkArmAFX1f2KSdT8c1iSmd92KLnjSWv36qs3TZuBtc+a6UaFk2yngv8QkSygc+AJcDZwIWxDEwlH29BAVsffJDSD2aRfdppdL3rzojzbzvS0kg7+OAWjyN12DAq5s/HlZPT4D6OtHQClZUtfu5YCSVCOzaDa2WtVOOiSdYOY0yFiFwKPGGM+YuIfBvrwFTb5S8rp/jNNzFeL9lnnEH+VVdRtXx57fbOf7yBDpde2qL90E3R82+PU7Nx416XcNXlSEvDVFVh/P4mX8cdD77aPmv7Vda1041qn7VSDYoqWYvIz4BzgUnB5+z/10nZUqCigvW/+Q01a9cCUPToo7XbJD2dno89SubPfx6v8ABwZmWRNmRIxH0c6WkABCqrcGZmtEZY+yUhLt3SylqpBkWTrKcAdwIzjTHLROQArKZxpZps+zPPUrN2Lb2efYaq5cspesxaFv2A998n5YC+cY4uepJmJWtTWQGJkKz99k3WtaPB/TopilINaTRZG2M+Bj4Oe7wOuCqWQam2qeS999jx7LNkn3Yamb/4BRmHHUagqprMI49IqEQNVp81kDD91rUDzGzYDO7QylqpRkWzRGY/rOo6L3x/Y8y42IWl2pqyzz6j4Ob/I33MGLreeQdgzcHd+Q+/j29gzVS7oEeCJOtEmG5UF/JQqmHRNIO/DfwD+Cfgb2RfpfZR8t57bPnTLaQcNICeTz6JIzU13iHtt9o+64qKOEcSnVAzuJ2vs9bKWqmGRZOsA8aYv8U8EtUmVXzzDQU33Uz66NH0ePSRhBiMFQ1HbZ91olTW9m0G39NnrclaqYZE88l9V0QmiUiuiLQL/Yvm4CIyXkR+EJE1InJzhP0miogRkdFRR64Swo5nnsXVsSO9nn4KV4cO8Q6nxYQGmCVMM7iNB5hpZa1U46KprC8P3t4W9pwBekd6kYg4gSeBE4B8YKGITDfGrKizXxZwLfB1tEGrxBCorKT8q6/IOedsHBlto6IOqR1glijN4MFEaMfKWkRwiPZZKxVJNKPBezXz2GOANcHR44jIG8BpwIo6+90NPADc0MzzKJvyFhZiampIHTw43qG0uD191olSWVvN4HbsswZrYhStrJVqWDSVNSIyEBgM1I4MMsa81sjLegCbwh7nA4fWOe5IoJcxZoaINJisRWQSwQlZeveOWNArGwmUlQPgyGp7K6xKcBpUU50Yy7x7aytreyZrp0N0ulGlIojm0q1bgXHAQOBD4ETgC6CxZF3fX4XaT6OIOIBHgIsbi8EY8yzwLMDo0aP1E50gAmXWghiOzMw4R9LyQlORGp8vzpFEJ1RZ23E9a7CStS7koVTDovnk/gY4BthijLkAGE50FXk+EN6E3hMoCHucBQwFPhWR9cBhwHQdZNZ2+MuspSadbTFZu6yPQMIkaxtfZw2hylpnMFOqIdEk60pjjB/wBQeDFQIHRPG6hUB/EekrIh6slbqmhzYaY0qMMZ2MMXnGmDxgPnCqMWZRk9+FsqU23Qxem6y9cY4kOntGg9uzsnY5RBfyUCqCaD65S0SkPfACsAhYAHzT2IuMMT7gaqym85XAW8aY5SJyl4icuh8xqzj6qeQn3ln9TlT7htaFbovN4IRW2kqYyjq06padK2tN1ko1JGJztlhrFN5hjCkGnhSRD4F2xphGkzWAMeZ94P06z01tYN+jo4pYtbqdVTsByEnJYeq8qXy//XtO73d6o0tYBsqDzeBt7LItsC43Ercb402MytobrKzdNq2stc9aqcgiJmtjjBGRGcCo4OM1rRKVsgVvwMvLy1/miSVPIAjH9D6Gb4uspcyr/FWkudIivt5fVoakpCAeT2uE2/rcbow3MSrrUH+wUytrpRJSNAPFFojIIdFW0ypxBUyAeZvnUVBWQHF1MW/98BbbKrdxfO/jWVeyjtkbZtfuW+VrPFkHSsvaZhN4kLhcCTPAzGvjGcxA+6yVakyDyVpEXMF+5yOBK0RkLVCOdUmWMcYc0koxqlZQWlPKdZ9cx8LChbXP9c3uy1/H/JVxfcZR7a/mtVWvsXrXamasm0Glr5IcciIeM1BWhqONzAVeHytZJ0YzeKiJ2Y4zmEGwGVwra6UaFKmyXgAcApzeSrGoOFmxYwW3fHEL60vWc9thtzGm6xi6ZnQl1bVndaxUVyqXDr2UWT/Nqk3WjfGXl+HMbHsjwUMSqc86NMDMzjOY6UIeSjUsUrIWAGPM2laKRbWyd1a/w2urXmPVzlW087TjqeOf4vDuh0d8TajpO5pknQzN4IkyGtzrN3hc9qyqARxaWSsVUaRknSsiUxraaIx5OAbxqBjyB/y8vup1XlnxCk5xkl+Wz0E5B3HzmJs5+YCTyU7JbvQYoWo7qmRdVoa7d3Onlrc/cbkSZoCZ1x/AY9MmcLD6rHUhD6UaFilZO4FM6p82VCWQbRXb+Gj9R8xYN4PlO5YzPHc4boebU/udyuXDLsftcEd9rCZV1mVlODPabmWNO5EGmAVsOy84aJ+1Uo2JlKy3GGPuarVIVItbvmM5b6x6g9kbZlPuLad3Vm/u//n9TOg7odFrpBvSlGTtL2vrzeDuBEvW9q6sdbpRpRrWaJ+1SixevxeD4Y1Vb/DoN4/iDXg5ttexXD3yavrn9N/v44eS9bfbvuXEvBMj7huoqGhz61iHS6QBZjU+Y+tk7dBJUZSKKFKyPq7VolD7rcZfwzPfP8MLy17AF7CqvbHdx3LvkffSKa1Ti50nlKz/ufKf3DTmpgb3M4EA+Hxtd0IUEuvSLbs3g7scQo1PK2ulGtJgsjbG7GzNQFTzFJYXUlZTxv998X+s2rmKo3oexcG5B9Mzs+d+NXc3pENqh6j2MzU1AG0+WZNAA8zsXFk7dVIUpSKKZgYzZUObyzbz9LdP8+7adwHIcmfx4FEPMq7POBwSuz/KIsK5A89lxroZEfcLNQ+H1n1ui8TtIlDReN+9HXj99m4Gd+l0o0pFpMk6gRhj+Cz/MxZvXcx7a9+jpLqE8wedT5f0LhzT+xj6tOvTKnG4HW68gcjNv3sq67abrEmo6UYDuG18nbUu5KFUZJqsE4A/4Gd3zW7+uuivTF87HY/Dw5BOQ7jl0Fs4qMNBrR6Px+nB6482WbfhZnC3J2EGmFnXWdu3z1oX8lAqMk3WNhcwAa6ccyXzt8zHKU6uGHYFvx3+W9zO+FWsbqcbn/ERMIEGm9yTohk80SprWzeDO7TPWqkINFnbkDGGeQXzeGHZCyzfvpwKXwUHZh/In3/+ZwZ1HBTv8GonUfEGvKQ4U+rdJ1RZO9pyZZ1Ao8Fr/IZ0j32TtVbWSkWmydpmqnxV3PT5TXy86WM6pHbgxLwTGZ47nDP7n9niI7uby+OwEnCNv6bRZE0br6wTZjS4z+6VtdQuNqKU2pcmaxtZvWs1t395O8u2L+P6Uddz7qBz8TjtV5mGmuAjDTILNYO36crakziTonj9ATwue3zZq4/DIbrqllIRaLK2gWXbl/HmD2/y0fqPSHGmcP8vrClB7Sq8sm5IMgwwS7jR4DavrLXPWqmGabKOI2/Ay5+//jP//vHfABzX+zhu+tlNdMvsFufIImtKZd22B5gl0tzgBpfDvsla+6yVikyTdZzsrNrJLV/cwhebv+CMfmdw/uDzGZAzIN5hRSVUWUe6fCuQBJV1Io0Gr7F5M7hLV91SKiJN1q3MGMP0tdN57JvHKK4u5o+j/8iFQy6Md1hNEj4avCHJ0AyeSMna7s3g2metVGSarFvR9srt3PnlnXya/ylDOg7h3iPv5fDuh8c7rCYLNYNH7LNOhmZwtxu8Xowxthmp35BEGA2ufdZKNUyTdSsImABv/fAWf1vyN6r91dz4sxs5b9B5MZ3DO5aiq6yDybotV9bu4MfH57P9JWregL3nBnc6HNoMrlQEmqxjzB/wM3n2ZL4u/JpDux7Knw77EwdkHxDvsPZL6HKymoCOBgcwPp+tWxCMMbafblQX8lAqMk3WMVThreDsmWfzU8lPXDX8KiYPn5yw1XS42so6wgCzpGgGd1nvze791v6AwRhsXVk7gsk6EboUlIoHTdYx9PzS5/mp5CduGH0DFwy+oE0katDKOkTCKms78wYHbtl51S2Xw0rQ/oDBZeMWAKXiRZN1DFT7q7nrq7uYvnY64/PGc9GQi+IdUouKqrJOhmQdbDUI9c/bVY3fmsbTzpW1M5SsjdE/SkrVQz8XLSx8xPd5g87jt8N/G++QWlztddbRTIriarv/xfYMMLN3svYGk7Xd+6wB7bdWqgFt9y9pHMzfMp8bPruBkuoSbhh9Q5urqEOiunSrpgbcbsTGs2btr8RpBk+cylpHhCtVP03WLWTljpX8dvZv6ZbZjSeOfYIRnUfEO6SYiXZSFEcbHlwG7DUa3M68vmCfdQIk66SZGCXgh6oSSO8Q70hUgojpp1dExovIDyKyRkRurmf7FBFZISLfi8j/RKRPLOOJlXUl67jqf1eRk5rDaye91qYTNYQNMGtkUpS2PBIcwvqsbb7yVqjP2s4Dt1zJVFnP/zvc1QEe6AsP9gdfdbwjUgkgZslaRJzAk8AEYDBwjogMrrPbEmC0MeZg4G3ggVjFEyvritdx6axLMcbw/LjnaZ/aPt4hxVxUlbW3pk0PLoOwS7dsvqb1nj5r+1bWnuBI9dAXizbjx4/goYGQv8h6vLsAZt20Z3v5NnjqcCj4Fu7IhkeGgq7rreoRy0/vGGCNMWadMaYGeAM4LXwHY8wnxpiK4MP5QM8YxtPilmxbwnnvn4eI8ML4FzigfWJPdhKtULKOfOlWMlTWoWZwe1fWidBnneJyAlDja0OJavHL8NpZULoFnj8OijfBw4P2bL+9GE76K+xcC88eZT1XsgnuyolPvMrWYvnp7QFsCnucH3yuIZcBH9S3QUQmicgiEVlUVFTUgiE2366qXdz+5e1kebJ4dcKrCT8rWVM4HU6c4mxkUpRkqKzDphu1sdpkbePrrEOVdbXPH+dImun9G+GfEyF/sfV47Scw4w977/Po0D33T7gbRGDMFfUfr2RzbOJUCSuWA8zq6yCrt0NKRM4HRgNH1bfdGPMs8CzA6NGj49qpVVJdwhur3uDdte+ytXwrTx7/JD2zEqpBoEV4nJ6IzeCBmuRJ1nYfYFYTGmDmsG+fdUooWXsTsLJ+sB+UB4uINbNhyJnw4yzIPQgunQXPHQs71uz9miOu3XP/jhL46FZY8Bz4qqzntq2E7Ei1jUo2sfyqnQ/0CnvcEyiou5OIHA/cApxqjLH1SIsFWxZw2rTTePLbJ8nyZPHcuOc4rNth8Q4rLlwOlw4wS5ABZqFqNcXtjHMkDattBk+0Pusl/9yTqI/4PfQ/EdZ9CnlHwgXvQGo2XLN479dc882+xxl3D9y6dc/jih0xC1klplhW1guB/iLSF9gMnA2cG76DiIwEngHGG2O2xTCW/ZZfms9V/7uKnpk9+fsJf2dgh4HxDimuPI7IlbVJgsqaBJkbvMprJes0GydrT6JU1r4a8JZDWg6UFcG7v7Oen7IK2nWL7hip2Q1vO/M5+O8VULF9/2NVbUrMkrUxxiciVwMfAk7gBWPMchG5C1hkjJkOPAhkAv8OTt6/0Rhzaqxiaq5tFdu48fMbEYRnTniGLhld4h1S3Lmd7kYmRfG2+WRdO8DM5qPBK0PJ2mPfZJ1i9z7rgm/3DAKrT2OJeuKL8PYl1n1HhD+7Q39lJeu5D8Phv2t6nKrNiumkKMaY94H36zw3Nez+8bE8f0tYvHUx1396PRW+Cv788z9rog5qtLL2enGkpbViRK1vT5+1vZvBK2usajURKmtbjgb/+hn44MaGt0/d1fgxBv5yz31nhC+xjuDvSCtrVYd9h4fGmTGGf638F5d/eDmZnkxeO+k1ju9j++8WrcbtcCd9M3iijAavTIBm8D2Vtc2StTH7JurDrtpz//z/QjRT6rpS9tx3tu2xHCo2dLrRevgDfu746g6mrZnG0b2O5r4j7yPLkxXvsGzF4/Q0uupWm0/WCTLALNRnneqx73fz0OA321XWJfl7P76jxLo95hbIXwgHHtP0Y0ZqBg8XCET3RUAlBf2fUIc/4OeWebcwbc00Jh08iceOeUwTdT3cDnfESVECVZU4UlNbMaI4SJBLtypr/DjE5jOYOW3aZz33oT33T7h7z/2UzOYlarCur47kxPus26ri5h1ftUlaWYdZsm0Jjy5+lG+2fcM1I69h0sGT4h2SbbmdjTSDV1TiSG/jfdbuxJhutMrrJ83tRBpLEnGU4rZpM3hooY0b1kBmbiuds6N1W7lLF/pQtez7VbuVfZ7/ORd9cBGbSjdxx+F3aKJuhMfhiTgaPFBVhaQmS7K2dzN4pddv65HgYOM+61BlndFp/48lUf4O0oIJumRT5P1UUtHKOujl5S/TNaMr006bRro7Pd7h2J7b6aamuv5kbQIBTFVVm28Gr03Wdm8G9/prJx2xqz3N4DZL1iEt0SpxzWLYsbbx/ULV9LL/wgFH7/95VZugyRpYvn05CwoXcN0h12mijlKkS7dMtTURXZtvBg/1WXsbbmGwg6oEqKxFBI/LYb8+65R2cNCEljlWh77Wv8Z0P8S6zeraMudVbYI2gwP/WPYP2qe05+yDzo53KAkj0qVbgcpKgLbfDO50gtOJqbF5M3iN39aXbYWkOB32Gg1eUwHVu6HTgNY9b2gE+Mb5rXteZWtJn6yr/dV8sfkLTsw7kUxPZrzDSRhup7vBS7dMMFk70tp2MziAeDyJ0WedCMna7bBXM/ju4FIG2XFaqGf93PicV9lS0jeD/+fH/1Dpq+SYXs28DCNJRbp0K1BlrRzU1mcwA6vf2u7JuqLGT066/a95T3E5a68Jt4XdwWUq28Vh9ateh9HAIoUqSSV9Zf3KilcY1WUUY7uPjXcoCSXSEpmBiuRoBodQsrZ3n/XuSi/ZafafNSsjxUlFtY2SdekW67Zd99Y/d7tuULGz9c+rbCupk7UxhqKKIoZ1Gmbra1DtyO1oeCEPU5VEzeAJUFnvrvLRLs3+jWgZKS7Kqm00sj7UDB6PgV7pHXV+cLWXpE7WFb4KagI15KTmxDuUhBOxsk6mZnCPx9YDzIwx7K700i7V/pV1pt2SdekWSMkGT0brnzu9I1QWg99GPw8VV0mdrHdVWavl5KRosm4qt8ONL+AjYPYdEFTbDJ4MydrmlXVFjR9fwNAuAZrBM1NclNsqWRdCVpxW2UvvBBidclTV0mQNdEjVKf2ayhNc5q++6rq2GbyNT4oCwWRdXY0J2GgUc5jdVdbvRyvrZijfDhmd43Pu0MQo5doUrizJnayrrWTdPrV9nCNJPG6H9ce/vsu3ApVWM3iyVNZln3zCD6NGxzuUeu2utJKf9lk3Q/m21psPvK7Q/OAVO+JzfmU7SZ2sd1ZZoy07pGhl3VShZF3f5VuB2uuskyBZB5cBDV1bbjehyjoRRoOHmsGNscklS2VF8ausQ3ORa7JWQUmdrGv7rHWAWZO5nQ1X1snWDG5nuysTqBk81UXAWJO4xJ23CqpLICPelbU2gytL0idrt8NNhjsOoz0TnMdhVZT1V9ZV4HbbPpG1BLu3HtT2WSdAZZ2RYjXV26IpPJQktRlc2URSJ+udVTvJSc3Ra6ybIdIAs0BlZVJU1QDuXnGaijJKO8ut30/7BEjWWcFkXVplg2Rdts26jVczuCsFPFk6MYqqldTJelf1Lh0J3kyhPuu1xfsu+WeqkidZe3r3iXcIERWWVJLictA+3f7JukOG9QVwZ7kNZoSrnRAlTpduAbhTYct38Tu/spXkTtZVu/Qa62ZKdVnJ+KFFD+2zLVBZhbTx5TFDPH16xzuEiApKqujePi0hWo9ys1IA2F5aHedIgOIN1m37vPjFUF4EG+bF7/zKVpI6WYeawVXTje5iXarUPXPfeZOtZvDkSNbuHvZuBi8sqaJru8Ro5eiUaSXrojI7JOuN4Mncc71zPNWUxzsCZQNJnayLq4u1GbyZUl2pjOoyqt4ZzHzbtuHq2DEOUbU+T884rMjUBFuKK+nWPjGSdYcMDw6BIltU1pugfW+wQ4vEN6/EOwJlA0mbrGv8NZR7y7Wy3g9prjQqffteX+zNz8fd094VZ0sRj4eOkyaBy36TjvgDhq2l1XTLToxk7XQIHTNT2G6HyrpkY/zWsQ65YJp160qM35+KraRN1qEJUTRZN199ydpfVo5/1y7bj5JuSeJygc9Gk3kEFRRX4g8YurdPnC6JzlkpbCmpincYVmWd3Su+MXTqb93O+H1841C2kLTJenuldR1lp9ROcY4kcaW50qjy7f2H1bs5HwBPklTWAOIOVtU+G1xyFOb7/BIAhnbPjnMk0evbKYN1RXHuo91dYC2g0WlAfONIT46uJBWdpE3WRRVFAOSmx2nSgzagvsram28la3fPOFclrSnYBG5slqy/3bQLj8vBoG7t4h1K1A7MzWTTrgqq4jmL2fbV1m3ngfGLAcAd1iLis8HlbCqukjdZV1rJulOaVtbNle5K3ytZl86ZQ/7vrgbAbfOBVy1JXNY1zPZL1sUM6d4OjytxPub9OmdiDKwtKotfEAVLrNuO/eMXQ8iRU6zbFe/GNw4Vd4nzKW5h2yu3Iwgd07SpqbnSXGlU+6vxB6wqqPi/79Ruc7ZPnpXMxIaVdUWNj+/zSxjZK7HGZIzoZf2/WfhTHGfumnO7dZttgy+cvQ+zbv97eXzjUHGXtMm6qLKInNSc2pm4VNOluaxmuip/FSYQoHLJEjKPO44D3n8/ISbhaCmhPmvj3Xfq1Xj5YGkh1b4AJw6J4wxczdCrQzp5HdOZs3JbfAIIzVzWbUR8zl/XgBP33Pfac2U31TpimqxFZLyI/CAia0Tk5igk3EgAAAtYSURBVHq2p4jIm8HtX4tIXizjCVdYXqhN4Psp3Z0OQGlNKeVz5+LftYus448n5YC+cY6sdYUqa7sMMCuuqOH+WasY2DWLn+Ul3jwCp43owby12/luU3Hrn3z2VOt24gutf+6GdBlm3d7bNb5xqLiKWbIWESfwJDABGAycIyKD6+x2GbDLGNMPeAS4P1bxhNteuZ2FhQsZ1WVUa5yuzTHG4Nuxg6ErK7h8lp+CM37DpslX4urShcyjfhHv8FqdBGdrK/3kkzhHAmu2lTHp1cXsLK/hr2cNx+FIvBaOS47Io3t2Gle8soj3visgEGiFS+K8lfDFI7D039CxH3Q8MPbnjNbFM/bcXz07fnGouIrlTA5jgDXGmHUAIvIGcBqwImyf04A7gvffBp4QETExuGB1zoY5vPXDW2ws3UhBmdXUddqBp7X0adqkHf/4BxULF+EvKcFfUoK3sBBTUYEAJwis7rGdTr89k8Mv/xOOjORbbjTrmKNJP/wwtt59D2Wff07XW27B07v15gyvqPFx67RlrN5axtLNJaS4HDz06+EM7ZE4l2yFa5/u4cVLfsZFLyzgmteXcOPb3zO0RzvOGNmTc8b0ik0XS00FzLnDum+nqhogrb21+lf5NtjwJfQ/Id4RqTiIZbLuAWwKe5wPHNrQPsYYn4iUAB2BvVZcF5FJwCSA3s38I1jhq6C0ppThucM5o98ZjO0+liGdhjTrWMnGu6UQ77atOLOzSencn4wjj8DTsxcp/ftRPrAXjy++hysPPispEzWAIyOD3s8/z47nnmPXG2+2+s8h1eVkycZiumWnctP4gZw1umftPNuJakCXLOZMOYr7Z61iR3kNPxSWMn/dDs4ZE6NLAjM6wqTPrGurPemxOcf+uOFHa7nMDB0Qm6wkVrMuichZwInGmMuDjy8AxhhjrgnbZ3lwn/zg47XBfRpccX306NFm0aJFMYlZqf1ljEmqwXWtJRAw+AImoS5DsxsRWWyMGR3vOFTzxPJ/fj4Q/jW4J1DQ0D4i4gKyAV1tXSUsTdSx4XCIJmqV1GL5v38h0F9E+oqIBzgbmF5nn+nARcH7E4GPY9FfrZRSSiWymPVZB/ugrwY+BJzAC8aY5SJyF7DIGDMd+Afwqoiswaqoz45VPEoppVSiium6fsaY94H36zw3Nex+FXBWLGNQSimlEp12AimllFI2p8laKaWUsjlN1koppZTNabJWSimlbC5mk6LEiogUARticOhsoCQGx7WDRHtvdo033nHF4/ytdc5O1Jm5ULW4PsaY3HgHoZon4ZJ1rIjIs8aYSfGOIxYS7b3ZNd54xxWP87fWOUVkkc6upVTDtBl8j/fiHUAMJdp7s2u88Y4rHueP93tWSqGVtVLKBrSyVioyrayVUnbwbLwDUMrOtLJWSimlbE4ra6WUUsrmNFkrpZRSNqfJej+IyCAR+buIvC0iv413PMlMfxdKqbaszSRrEXGKyBIRmbEfx3hBRLaJyLJ6to0XkR9EZI2I3AxgjFlpjLkS+DWgI1kBEWkfTJirRGSliBzezOPo7yLJiUiGiCwWkZPjHYtS8dZmkjVwHbCyvg0i0llEsuo816+eXV8CxtfzeifwJDABGAycIyKDg9tOBb4A/rc/wbchjwGzjDEDgeHU+Z3o7yJ5NfQFrL4vX0E3AW+1bpRK2VObSNYi0hP4JfB8A7scBbwrIqnB/a8AHq+7kzHmc2BnPa8fA6wxxqwzxtQAbwCnBV8z3RgzFjhvv99IghORdsAvgH8AGGNqjDHFdXbT30Xyeok6X8Aa+vIlIscDK4CtrR2kUnbkincALeRR4EYgq76Nxph/i0hf4A0R+TdwKXBCE47fA9gU9jgfOFREjgbOBFKA95sRd1tzAFAEvCgiw4HFwHXGmPLQDvq7SF7GmM9FJK/O07VfvgBEJPTlKxPIwErglSLyvjEm0IrhKmUrCZ+sg/1Z24wxi4N/sOtljHkg+IfgaeBAY0xZU05T/yHNp8CnTThOW+cCDgGuMcZ8LSKPATcDt4XvpL8LFabeL1/GmKsBRORiYLsmapXs2kIz+BHAqSKyHqtJ9FgR+WfdnUTk58BQ4B3g9iaeIx/oFfa4J1DQrGjbtnwg3xjzdfDx21jJey/6u1Bh6v3yVXvHmJeMMc0eNKpUW5HwydoY83/GmJ7GmDzgbOBjY8z54fuIyEjgOazmtUuADiJyTxNOsxDoLyJ9RcQTPM/0FnkDbYgxphDYJCIHBZ86DqvfsZb+LlQd+uVLqSgkfLKOUjpwljFmbbA57SLqWRNbRF4HvgIOEpF8EbkMwBjjA64GPsQa3fyWMWZ5q0WfWK4B/iUi3wMj+P/27iXEqyqA4/j310RpKpmZ9KAaiiAVSdEgrYU9VpWLUiqoNi4MXERoQUJR9CLpBYWLXoKrDES0IEqRSppe5iMdeyyiICp6qNlUljX8Wpw7cfszOTNpzf1Pv8/q/s89555zZxa/Oeee/1x4oOV8fhdRlz++IgYh/xs8Iv4T1R9gc4GJlF3ed9l+VtLllE2iHcBK2/cP3ygjmilhHRER0XD/l2XwiIiItpWwjoiIaLiEdURERMMlrCMiIhouYR0REdFwCeuIiIiGS1hHREQ0XMI6IiKi4RLWESOEpCckbZN0/nCPJSKOrIR1xAggaQwwCbgJuHKYhxMRR1jCOtqOpMck3VL7/IqkZ2qfH5G05Aj3OZR3bg/meuMlLa597pTUPci2oyW9Lqmjr8z2T8AplHd6Py7pGEmbJbX9O+sjImEd7elNYA6ApKMoL4aYWjs/B+gahnENxXhg8YC1+rcQWGu7t69A0omUN5r1AL22DwKbgGsPd6ARMfwS1tGOuqjCmhLS3UCPpBMkHQtMBrZLWidpq6Tdkhb1NZa0vGVWe7ekpZJukPSupB2SnqzPXGt1+61TzYw/lPR01d8GSaOrc3dK+kjSRknPSboVeBA4u7rOQ9XlO/pr34/rgfUtZXcADwO7gSlV2bqqbkS0uYR1tB3bXwK/SzqDEtpvAe8As4FZwM5qZrnQ9syq7OZq9gmwmr/OOK8B3qvKLrQ9HeilJegkTR6gzjnACttTge+B+ZJmAfOBGcDV1VgAbgc+sT3d9m1/17713qt3Pp9l+7NaWWf1c3ie8o7vvlWGbiCbzSJGgDzPinbVN7ueAzwKnFYd76csk0MJ6Kuq49MpYbjH9nZJkySdCpwE7AOmATOBLZIARgPftPR56QB1PrW9ozreCnRSlujX2z4AIOnFQ9xTf+1bTaQEed19wD22LenPsLbdK+mgpHG2ew7Rb0Q0XMI62lXfc+tplBnk58BS4AdgpaS5wGXAbNs/S3oNGFVrvwZYAJxMmWkLWGV72SH6HKjOr7XjXkqYawj31F/7Vgeo3Yek6ZQZ+0WSVlTndtXqHwv8MoQxREQDZRk82lUX5StKe2332t5L2bQ1m7Isfjywrwrqc4ELWtqvBq6jBPYaymasBZImAUiaIOnMljaDqdPqDWCepFGSxgJXVOU9wLih3rTtfZRn232BvRyYZ7vTdidwHtXMulr2/9b2b0PtJyKaJWEd7WoXZUn47Zay/ba/A14Gjpa0E7i3pR62d1PC8gvbX9n+gLJJa0PVZiPlq1D1NgPWaWV7C/AC8D6wlvJsfL/tPUCXpO7aBrPB2kCZSV8CjLG9qdbf18AYSROAi4GXhnjtiGgg2R7uMUSMaJLG2v5R0nHAZmCR7W2Hcb0ZwBLbNw5Qby2wzPbH/7SviGiGPLOO+Pc9JWkK5XnyqsMJaoBqg9yrkjrq37Wuq3aNr0tQR4wMmVlHREQ0XJ5ZR0RENFzCOiIiouES1hEREQ2XsI6IiGi4hHVERETDJawjIiIaLmEdERHRcAnriIiIhvsD6F+yIicqwdMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for b in bands:\n", " plt.plot(Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Wavelength']\n", " ,Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Transmission']\n", " , label=b)\n", "plt.xlabel('Wavelength ($\\AA$)')\n", "plt.ylabel('Transmission')\n", "plt.xscale('log')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.title('Passbands on {}'.format(FIELD))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### IV.a - Depth overview\n", "Then we plot the mean depths available across the area a given band is available" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ukidss_j: mean flux error: 6.34442663192749, 3sigma in AB mag (Aperture): 20.701215914476926\n", "90prime_g: mean flux error: 0.19539351761341095, 3sigma in AB mag (Aperture): 24.479921484593298\n", "90prime_r: mean flux error: 0.20366299152374268, 3sigma in AB mag (Aperture): 24.434916566562514\n", "mosaic_z: mean flux error: 0.8766658902168274, 3sigma in AB mag (Aperture): 22.850111590395464\n", "ukidss_j: mean flux error: 14.469086647033691, 3sigma in AB mag (Total): 19.806094069728168\n", "90prime_g: mean flux error: 8.714170455932617, 3sigma in AB mag (Total): 20.35663173615155\n", "90prime_r: mean flux error: 0.6011230945587158, 3sigma in AB mag (Total): 23.25978832955969\n", "mosaic_z: mean flux error: 8.997316360473633, 3sigma in AB mag (Total): 20.321914385057077\n" ] } ], "source": [ "average_depths = []\n", "for b in ap_bands:\n", " \n", " mean_err = np.nanmean(depths['ferr_ap_{}_mean'.format(b)])\n", " print(\"{}: mean flux error: {}, 3sigma in AB mag (Aperture): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n", " average_depths += [('ap_' + b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n", " flux_to_mag(3.0*mean_err*1.e-6)[0], \n", " flux_to_mag(5.0*mean_err*1.e-6)[0])]\n", " \n", "for b in tot_bands:\n", " \n", " mean_err = np.nanmean(depths['ferr_{}_mean'.format(b)])\n", " print(\"{}: mean flux error: {}, 3sigma in AB mag (Total): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n", " average_depths += [(b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n", " flux_to_mag(3.0*mean_err*1.e-6)[0], \n", " flux_to_mag(5.0*mean_err*1.e-6)[0])]\n", " \n", "average_depths = np.array(average_depths, dtype=[('band', \"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dat in data:\n", " wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n", " depth = average_depths['5s'][average_depths['band'] == dat[0]]\n", " #print(depth)\n", " plt.plot([wav_deets[0],wav_deets[1]], [depth,depth], label=dat[0])\n", " \n", "plt.xlabel('Wavelength ($\\AA$)')\n", "plt.ylabel('Depth')\n", "plt.xscale('log')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.title('Depths on {}'.format(FIELD))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### IV.c - Depth vs coverage comparison\n", "\n", "How best to do this? Colour/intensity plot over area? Percentage coverage vs mean depth?" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "Text(0.5,1,'Depths (5 $\\\\sigma$) vs coverage on XMM-13hr')" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAAEYCAYAAAC0mTTAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd8VGX2P/DPSSMJGXogkIQUSA8JzYDACoLSFlkBK4prR1l+isiuKLvuroJiAV3WtbcvCCsqoCACglJlAQNSUgmhQ4KhhYGEEnJ+f9w7OKmEJJMy+bxfr3kx89x27p0hZ+7z3LlHVBVERETknFxqOwAiIiJyHCZ6IiIiJ8ZET0RE5MSY6ImIiJwYEz0REZETY6InIiJyYkz0REREToyJnoiIyIkx0Ts5EdkvIjdV07peFpEJ1bGuUta9RURiHLFuour8f0BU3zDR1zDzD06+iFhF5LSIbBSRx0SkWt4LR/1BExFfAPcBeM+ubY2InBeRs+YjvQqbeB3AC1WNk6qfiPiYn6vRdm0WETkoIreZr/eLyEURaVVs2e0ioiISfC3zlRHHeBFJFJELIvJpKdM/E5EsETkjIrtF5OEq7DaR02Cirx23qKoFQBCA6QCeAfBR7YZ0VfcD+E5V84u1j1dVH/MRUYX1LwZwo4i0rcI66jQRcavtGCpDVc8CeBTAv8wvfADwKoBEVf3KbtZ9AO62vRCRTgC8SlllRecr7iiAqQA+LmP6ywCCVbUJgOEApopItwqst4j6+j4RlYWJvhapaq6qLgZwJ4A/ikgsAIhIOxFZICI5IrJPRJ6wLWOeET0rIikickpEPhERT3PaHADtASwxz7D/Yi7WWUR2ikiuiMy3zW8u84yIHDF7GNJFZEAZ4Q4BsLay+yoi7iIyzYz/knn2piKywzwW5wFsBTCwlGUni8hXxdr+JSKzrnEfICKBIrLQPLYnROQtsz3K7KE4LSLJIjK8Its2X1/t/XpGRHYCOCcibuY6M814U0RkhN38XUXkF3Pal+b7NbUi2yplX0vdJ7u4JpX1uShOVb8HsBTALBHpB+AOAH8qNtscGL0+Nn8EMLuU1VV0vuIxLFTVrwGcKGN6sqpesL00Hx3sZinv/0GJ9+lq8RDVG6rKRw0+AOwHcFMp7QcBPA7jy9dWAM8D8AAQCmAvgEF2yycBCATQAsBPAKaWtX7z9RYA7cz5UwE8Zk6LAHAIQDvzdTCADmXEnQPgumJta8z242Yc/crZ71cAbDLjbgxgFYCFAELt5pkFYGYpywYByAPQxHztCiALQM9r3AdXADsAvGHG4AmgDwB3AHsAPGce8/4ArOa6y9y2+boi79d2c7+9zLbbzffDBcaXvHMA2prLHwDwpBnTSAAXbe/v1bZVbF/L3KerfS7KeQ+bm/t+HMADpX2uAaQDiDKP0yHz+CmMM+0Kz3eVOKYC+LSMaW+b75cC2AbApyL7W9r7xAcfzvLgGX3dcRTGH6DrAPiq6guqelFV9wL4AMBddvO+paqHVPUkgGmw6wYtwyxVPWrOvwRAZ7P9MoBGAKJFxF1V96tqZhnraAYjUdh7Bkay8QfwPoyehA7FFxQRC4AnAIwx4z4HYAGAFub+2VjN7RShqgdg/NG+1WzqDyBPVTdd4z4kwPhD/2dVPaeq51V1A4wvDD4AppvH/EcA3wK4+yrbBir2fs0y9zvf3J8vzfejUFXnA8gwY+sJwM2c/5KqLoSRnHAN27Ipc5+KxVXa56JUqnoKQDIAbxhf0kpjO1u/GUAagCNVnO+aqOo4ABYAvzNjvGA3+Wr7W+R9InIWTPR1hz+AkzDObNqZ3a2nReQ0jLOyNnbzHrJ7fgBG8ipPtt3zPBgJAKq6B8AEAP8A8KuIfC4iZa3rFIw/oFeo6mZVtarqBVX9Pxhn9UNLWfYGAHtVNcOurXmxuGCu/3QZ25+H35LUaPP1te5DIIADqlpQrL0dgEOqWmjXdgDGe1Lmtk3X+n5BRO4T4+Iz2/yxAFqZcRxRVS1j2Ypsq6L7BJTxuSiLiNwLo8dkFYwemtLMgXGM7kf53fHlzici98hvF3kuKy+u4lT1svkFLgBGL5nN1fb3EIicEBN9HSAi18H4A7wBxh+bfarazO5hUVX7BBpo97w9jN4AG/skcVWqOk9V++C3rtOy/oDvBBB+tdUBkFLafWF8UQAAiIgAGAHjDNNeFIyu9dJ8CaCfiASYy15JttewD4cAtC9l/PUogEAp+suH9vjtLLPMbaNi79eV90REgmCchY8H0FJVm8EYihEY3eL+5vGxsX+vK7Ktiu7TNRGR1jCGPB4BMBbAHSJyQ/H5zB6QfTC+8JV11n/V+VR1rv52keeQysQMo3ekRA9TOa7p/w5RfcFEX4tEpImIDAPwOYDPVHUXjK7aM+aFQV4i4ioiseaXAZs/iUiAiLSAcUY3327aMRjd6RXZfoSI9BeRRgDOA8iH0RVemu8A9LVbtpmIDBIRT/MCs3tgnLmvKGXZJABdRaSziHjBuDpa7eM2Y+gGYGVpG1fVHBjXBHwCI9mlVmIftsBIptNFpLEZe28Am2GMk/9FjIsG+wG4Bcb7Uua27dZ5tffLXmNz33PM+B+AcUYPAP8zYx9vHtM/wOjSr8y2yt2nSngLwNequlpVswD8BcAH5nEv7iEA/c0hmvJUdD4AxtXw5gV0rgBcbZ89c1prEblLjJ8CuorIIBi9MD9WcP+InBYTfe1YIiJWGGdoUwDMBPAAYHQ7wviD3BnGGc9xAB8CaGq3/DwA38O4EGsvjIuTbF4G8Feza3fSVeJoBOPnfcdhdGu2hvHFoTSzAQw1EzVgXOw1Fb9djPf/ANyqqiV+S6+qiTCuJfjOjNcPwFBVvWQ323AAa1T1aPHl7cyDcSGX/Rl1hffB7th2hHHx42EAd6rqRXP7Q8z1vA3gPlVNu8q2K/p+2c+fAmAGjKR+DEAnGEMeMOMYCSMBngZwL4xejwvXuq0K7lOFiMitMC5a/LPd+j+EcfyeL2XbmeZ7Xq6KzmfnrzC+yE2GcWzyzTbA+PL0uBnTKRj3ZZigqt9cw/qJnJIUHQ6kuk5E9gN4WFVX1cK2XwLwq6q+6YB1bwbwkKomVfe66zPzuLyrqp/UdixEVD/xt6JUYapa1tl+day7h6PWXZ+ISF8YPz07DuAeAHEAltdqUERUrzHRE9UtEQC+gHFFeCaA28wxcSKiSmHXPRERkRPjxXhEREROrF503bdq1UqDg4NrOwwionpl69atx1XV9+pzlrl8azc3tw9h/ASUJ4Z1UyGApIKCgoe7dev2a2kz1ItEHxwcjMTEa/kVDhERiciBqizv5ub2oZ+fX5Svr+8pFxcXjvPWQYWFhZKTkxOdnZ39IYyf1JbAb2hERFSWWF9f3zNM8nWXi4uL+vr65uK3G2+VnKcG4yEiovrFhUm+7jPfozLzucMSvRh1v1eLSKpZC/vJYtMniVGPvJWjYiAiImroHDlGXwDgaVXdZpYp3SoiK1U1RUQCYZSnPOjA7RMRETV4DjujV9UsVd1mPrcCSMVvJTLfgFEUg11CRERO4PUV6W1WpR4rUsp6Veoxy+sr0ksro1wnzJo1q+V9993Xvnj7q6++6vvWW2+1LN6enp7uERYWFlMd277zzjuDtm7d6lkd67qaGhmjF5FgAF0AbBaR4TBqbpdVjtS2zKMikigiiTk5OdUb0IY3gX3rirbtW2e0ExHRNevcvlnexC+2h9qS/arUY5aJX2wP7dy+WV5tx3at/vKXv+SMHz/+hCO3MX/+/APdunU778ht2Dg80YuID4AFACbA6M6fglIqXhWnqu+randV7e7rW+mfgZbOvyvw5f2/Jft964zX/l2rdztERA3ETVFtrDPv6Lx34hfbQ/+5JLndxC+2h868o/Pem6LaWKu87ptu6hATExPVsWPHmNdff70VAHh7e3d55JFHAqKjo6Ouv/768KNHj5Y5FJ2QkBCxbt06bwDIyspy8/f371R8ns8//7xp586dI7OystwmTpzY7vnnn28DAOvXr/eOiIiI7ty5c+TMmTNb2+ZPTEz07NSpU1RkZGR0eHh49K5duxqdOXPGpV+/fh0jIiKiw8LCYj744IPmFYnJ0Rya6EXEHUaSn6uqCwF0ABACYIdZhS0AwDYR8XNkHMV9fG4Pttz8nJHcf5wGfHk/ttz8HD4+t6cmwyAicio3RbWxjuoakPPJT/vbjuoakFMdSR4A5s6duz85OTl1+/btKe+9916b7Oxs1/z8fJeuXbvmpaSkpPbu3ds6efLkdpVd/+zZs5u99tprfitXrsxo27Ztgf20hx56KHjmzJkHt2/fXqTE87///W/fcePGHUtLS0vZuXNnakhIyMWFCxc28fPzu5Senp6SkZGRPHLkyDOVjak6OfKqewHwEYBUVZ0JAKq6S1Vbq2qwqgbDqB3dVVWzHRVHaWJbxmJS+mxsiR0GrHsVW2KHYVL6bMS2LPNniEREdBWrUo9ZFmw77PtA7+CsBdsO+xYfs6+sV155pU1ERER0t27dorKzs92Tk5M9XVxc8PDDD58EgAcffPDEli1bfCqz7o0bN1pmzJjht3LlygxfX9/L9tNOnDjharVaXX//+9+ftW3HNu36668/N2PGjLZTpkzxy8jI8PDx8dGuXbvmr1+/vsnjjz/uv3z5cp+WLVteLr692uDIM/reAMYA6C8i283HUAdur8IS2ibg9Yj7MOnYj3grfggmHfsRr0fch4S2CbUdGhFRvWQbk595R+e9f78l5qitG7+qyf7bb7+1rF271pKYmJiWnp6eEhUVlZ+fn18idxnnlqVzc3PTy5eNnJuXl1dkxvbt2184d+6ca1JSUokL41S1zPU+9thjJ7/55ps9Xl5ehUOGDAlfvHixJS4u7sK2bdtSOnXqlD9lyhT/SZMmtb3G3XUIR151v0FVRVXjVLWz+fiu2DzBqnrcUTGUad86JKx8CXcED8V7Z5JxR/BQJKx8qeQFekREVCHbD572th+Tt43Zbz94ukrj0KdPn3Zt2rTpZYvFUvjLL7947tixozEAFBYW4pNPPmkOAJ9++mnLhISEMocJAgMDL2zZsqUxAMydO7fIuHlAQMDFBQsW7HnggQdCEhMTiyT7Vq1aXfbx8bm8YsUKH3M7LWzTUlJSPKKioi789a9//XXgwIGnt2/f7rV//353i8VSOG7cuJMTJkw4tn379hoZg7+aenGv+2p3ZBu23PwcvkifjbFxY/FF+hdIuPk5JBzZBoTcUNvRERHVO5MGRRwr3nZTVBtrVcfpR40alfv+++/7hoeHR3fo0OF8fHz8OQDw8vIqTE5O9oqJifGzWCyXFy5cuLesdUyePPnYnXfeGfr555+3/N3vfldi3Dw+Pv7C7Nmz9955550dFi9eXORirY8++mj/ww8/HOzl5VXYv3//K8vOmTOnxZdfftnSzc1NfX19L7388stHN2zY0PjZZ58NcHFxgZubm7799tvl1hoorxeiOtWLevTdu3fX6ixqsyVrCyatnYTX+76OhLYJJV4TETkDEdmqqt0ru/yOHTv2x8fH13yvawV4e3t3ycvL+6W246is8PDw6MWLF++JjIy8WB3r27FjR6v4+Pjg0qY1yHvdJ51IKpLUE9om4PW+ryPpRFItR0ZERM6uV69eYREREfnVleSvpkF23T8Y+2CJtoS2CTybJyKqJ0o7mx8zZkz7n3/+ucjV948//vixJ5980qE3vynPzTff3OHQoUON7NumTZt2eNSoUTX207sGmeiJiMj5zJkzp87VT1m5cmVmbcfQILvuiYiIGgomeiIiIifGRE9EROTEmOiJiIicGBM9ERFV3Q8vtkH6sqK3u01fZsEPL9Z6Pfr//e9/Xp07d44MDw+P7t+/f8eTJ09eyX3PPvusX/v27WODg4NjFyxY0ORa1z1hwoR2X3/9dbXc099RmOiJiKjqArrnYdFjoVeSffoyCxY9FoqA7rVej/6RRx4JnjZt2uHdu3enDB8+/NQ///lPPwDYunWr58KFC1ukp6cnL1++fPeECRPaFxQUXG11VxQUFODNN988euutt1ZLlT5HYaInIqKqixhixYh392LRY6FYNrkdFj0WihHv7kXEkFqvR79//37PIUOGnAWAYcOGnfn222+bA8BXX33VbOTIkSe9vLw0MjLyYlBQ0IU1a9Y0Tk9P9wgJCYkZOXJkcHh4ePTgwYNDrVarCwD4+/t3mjRpUttu3bpFfPzxx81HjRoVbLvnvr+/f6fx48f7d+7cOTI2NjZqw4YN3n369AkLDAyMffXVV31t8fztb39rExsbGxUeHh791FNPlVte989//nPbkJCQmF69eoXdcsstIc8///w195Aw0RMRUfWIGGJF/N052PxOW8TfnVMdSR6oej36sLCw/Hnz5jUDgM8++6xFdna2BwAcOXLEIzAw8Mrd6dq1a3fx0KFDHoDx5eCxxx7L2b17d4rFYil87bXXriRqT0/Pwq1bt6Y/+uijp4pvKzAw8OL27dvTevTocfbBBx8MXrJkSebmzZvTpk+f3g4AFi5c2GTPnj2eO3fuTE1NTU3Zvn2797Jly0otsbtu3TrvJUuWNN+1a1fK0qVLM3fu3Nm4MsePiZ6IiKpH+jILdvzXFz0ez8KO//qWGLOvpKrWo//444/3v/POO74xMTFRVqvVxd3dXQGjDG1xIqIA4Ofnd3HgwIHnAGDMmDEnNm7ceGX99913X4kEb3PHHXecBoBOnTrlde3a9Vzz5s0L27VrV9CoUaPC48ePuy5fvrzJunXrmkRHR0fHxMREZ2ZmeqalpZUokQsAa9as8RkyZMhpHx8fbd68eeHNN998ukIHrBjeGY+IiKrONiZv664P7Wutju57+3r0FoulMCEhIeJa69F36dLl/E8//ZQBADt37mz0/fffNwOMErW2M3gAOHr0qEdAQMCl0tZn/9pisRSWtS1PT08FABcXF3h4eFz5JuHi4oJLly6JqmLChAlZf/7zn69aLKi6is7xjJ6IiKrucKJ3kaRuG7M/nFjr9eiPHDniBgCXL1/G3//+97YPPfTQrwAwatSo0wsXLmyRn58vaWlpHvv37/fs16/fOQDIysryWLVqVWMAmDdvXotevXqdrcp+2AwZMuTMnDlzWuXm5roAwL59+9xt8RXXr1+/sytWrGial5cnubm5LqtWrWpWmW3yjJ6IiKpuwN9K1KNHxBBrVcfpq6Me/ccff9zio48+ag0AQ4cOPfXEE0+cAIDu3bufv/XWW0+Gh4fHuLq6YubMmQfc3Iy0GBoaev7jjz9uOW7cuKCQkJALkyZNyqnKftiMHDnyTHJysud1110XCQDe3t6Fc+fO3efv71/icv++ffvmDR48ODc6OjrG39//Qlxc3LmmTZtevtZtNsh69EREDQHr0VdOenq6x7Bhw8IyMjKSHbH+a5Gbm+vStGnTQqvV6nL99ddHvPvuuwf69OlT4ieL5dWj5xk9ERFRHXXvvfcGZWRkeF24cEHuuuuuE6Ul+athoicionrHkfXoIyIiLtbk2Xx2drZrv379Ioq3r1mzJn3JkiX7qrp+JnoiInIKdbEefUX4+fldTktLS3HU+nnVPRERkRNjoiciInJiTPREREROjImeiIjIiTHRExFRlc3aNqvNmkNritzbfs2hNZZZ22axHn0tY6InIqIqi/ONy5uyYUqoLdmvObTGMmXDlNA43zjWo68GhYWFuHz5mm+KB4CJnoiIqkG/wH7WaX2m7Z2yYUro9C3T203ZMCV0Wp9pe/sF9mM9+krWo09PT/cIDQ2Nuffee9uble48ypq3PEz0RERULfoF9rPe0uGWnLmpc9ve0uGWnOpI8kDDrUdvi+OBBx44kZqamhIeHn6xrPnKw0RPRETVYs2hNZYlmUt874m6J2tJ5hLf4mP2ldVQ69EDQNu2bS8OGDDg3FUPUjl4ZzwiIqoy25i8rbu+Z9ue1urovm/I9egBo7pdReYrD8/oiYioynbm7PS2T+q2MfudOTtZj97OtdSjry48oycioip7ousTJerR9wvsZ63qOH1DrkdfXRxWj15EAgHMBuAHoBDA+6r6LxF5EcAfzLZfAdyvqkfLWxfr0RMRXTvWo6+culSPvqLKq0fvyK77AgBPq2oUgJ4A/iQi0QBeU9U4Ve0M4FsAzzswBiIiogbNYV33qpoFIMt8bhWRVAD+qmpfiq8xAMd0KRARkdNqKPXo/fz8KneXHDs1MkYvIsEAugDYbL6eBuA+ALkAbixjmUcBPAoA7du3r4kwiYioHmM9+tI5/Kp7EfEBsADABFU9AwCqOkVVAwHMBTC+tOVU9X1V7a6q3X19fUubhYiIiK7CoYleRNxhJPm5qrqwlFnmARjlyBiIiIgaMoclejHuLvARgFRVnWnXHmY323AAaY6KgYiIqKFz5Bh9bwBjAOwSke1m23MAHhKRCBg/rzsA4DEHxkBERNSgOfKq+w0ASrsn4XeO2iYREdWOX998s41XfHye5cYbr9wgx7p6tSV/xw7v1hMmlLiZjrOaMGFCu379+llronRtRfEWuEREVGVe8fF5R5+ZHGpdvdoCGEn+6DOTQ73i42u9Hn1Nqqn69NeCiZ6IiKrMcuON1navTN979JnJodkvvdTu6DOTQ9u9Mn2v/Rl+ZVW1Hn1CQkLEQw89FNi9e/eI0NDQmLVr13oPHDiwQ1BQUOwTTzxxpbztP/7xjzZhYWExYWFhMS+88EJrADhz5oxLv379OkZERESHhYXFfPDBB80BYNKkSW1jY2OjwsLCYu6+++6gwkKj9ox9ffq1a9d6d+nSJTIiIiK6U6dOUadOnSo15955551BkZGR0ZGRkdHNmzePf/rpp9tW9ZjZY6InIqJqYbnxRmvTW/+Qc2r2nLZNb/1DTnUkeaDq9egBwMPDozAxMTH9gQceyLn99ts7fvDBBwfT0tKS58+f3yo7O9t1/fr13vPmzWu5devW1MTExNTZs2f7/vTTT14LFy5s4ufndyk9PT0lIyMjeeTIkWcA4M9//vOvSUlJqRkZGcn5+fkun3/+eVP77Z0/f17uueeeDm+++ebB9PT0lLVr16b7+PiUWolu/vz5B9LS0lIWL168p1mzZgVjx469phv8XA0TPRERVQvr6tWW3K+/8W1+35is3K+/8bV141dVVevRA8CIESNOA0B8fHx+x44d84OCgi55eXlpYGDghb1793qsWbPGZ+jQoaebNGlS2LRp08Lf//73p1avXm3p2rVr/vr165s8/vjj/suXL/dp2bLlZQBYtmyZJS4uLjI8PDx648aNlqSkJC/77e3cudOzdevWl/r27ZsHAC1atCh0d3cvM768vDwZNWpUhzfeeONgeHj4xSoesiIaZKK3rj2E85mni7SdzzwN69pDtRQREVH9ZhuTb/fK9L1+zz131NaNX9Vkb1+PPj09PSUqKir/WuvRA0XrxDdq1KhInfiCgoIyC7zFxcVd2LZtW0qnTp3yp0yZ4j9p0qS2eXl58vTTTwctXLgwc/fu3Sn33nvv8fPnzxeJSVUhIhW+xfuYMWOCbrnlllOOGN9vkInePcCCk/NSryT785mncXJeKtwDquXLJxFRg5O/Y4e3/Zi8bcw+f8eOWq9HXxH9+/c/+9133zWzWq0uZ86ccfnuu++a33jjjdb9+/e7WyyWwnHjxp2cMGHCse3bt3vn5eW5AICfn19Bbm6uy5IlS5oXX198fPz5Y8eOeaxdu9YbAE6dOuVy6dKlUrf98ssv+549e9b1pZdeyq7KPpSlQdaj9+zQDC1GR+HkvFQ07tEW5zZnocXoKHh2aFbboRER1Uul/YTOcuON1qqO01dHPfqK6NOnT97o0aNPdO3aNQoAxowZk9O7d+/8BQsWNHn22WcDXFxc4Obmpm+//faBVq1aXb7nnntyoqOjYwICAi7aYrLn6empc+fOzXziiSfanz9/3sXT07Nw3bp1u5s2bVpinP6tt97yc3d318jIyGgAePDBB3P+8pe/5FRlf+w5rB59dXJUPfrc7/fD+uMhWPoHounA4GpfPxFRbWI9+oajturR12nnM0/j3OYsWPoH4tzmrBJj9kRERM6gQXbd28bkbd31jTo0K/KaiIjqNkfWo3eUBQsWNJkyZUqAfVtgYOCFlStXZjpyuw0y0V86bC2S1G1j9pcOW5noiYjqqbpej37UqFFnRo0a5bC682VpkIne0jewRJtnh2ZM8kRE5HQa7Bg9ERFRQ8BET0RE5MSY6ImIqMo2fZPZZt/O40XuOrZv53HLpm8y29RWTGRgoicioiprE9I074dPU0JtyX7fzuOWHz5NCW0T0tQhZWoTEhIi1q1bV+Kue3379u14/Phx1+LtEydObPf8889X+UvH/v373QcPHhxa1fXUpAZ5MR4REVWvkLhW1gH3R+/94dOU0Iiefjnpm7J9B9wfvTckrlWN1mZfu3btHkeuPzg4+NLy5curdBe+msYzeiIiqhYhca2sET39cnb+eLhtRE+/nOpI8unp6R5hYWExttfPP/98m4kTJ14pSXv58mWMHDky2FZX3t/fv1NWVpYbADzzzDN+wcHBsb169QrPyMhoZFtm6tSprTt06BATHh4ePWzYsFAAWLp0qY+tJnxUVFR0WbXji8dTH/CMnoiIqsW+ncct6ZuyfeP6B2Slb8r2DYhsYXXkGf2lS5fk1ltvDYmOjs5/5ZVXihSEWb9+vfeiRYta7Nq1K+XSpUvo3LlzdJcuXfIAYNasWX4HDhzY5eXlpbZu/hkzZvjNmjXrwMCBA8/l5ua6eHt7l1o7vj7iGT0REVWZbUx+wP3Re393R/hRWzd+8Qv0qtO4ceOCSkvyALB69WqfoUOHnrZYLIUtWrQoHDhw4JX7nEdEROSPGDEi5O23327h7u6uANCzZ8+zkyZNCpw6dWrr48ePu5ZXO76+YaInIqIqO7Yv19t+TN42Zn9sX26VytS6ublpYeFvJ9f2dd+7d+9+dv369U3y8vJKLUZfVo361atXZ/zpT3/K2bp1a+P4+PjoS5cu4aWXXsr+8MMPD+Tn57v06tUr6pdffvGsStx1SYNI9Cc+/BDnNm0u0nZu02ac+PDDWopqlXTLAAAgAElEQVSIiMi59PxDh2PFu+lD4lpZe/6hQ4nytdciICCg4OTJk27Z2dmu+fn5smLFiqa2aWPHjj0+cODA3GHDhnUoXuu9f//+Z5cuXdrs7NmzcurUKZeVK1c2A4wx/czMTI9bbrnF+vbbbx+2Wq2uubm5rsnJyY0SEhLyp02blt2pU6dzSUlJTPT1iWdsJxx56qkryf7cps048tRT8IztVMuRERFReRo1aqRPP/10VkJCQtSAAQM6duzY8bz99H/84x/H4uPj80aOHBly+fLlK+19+vTJGzFixMnY2NiYYcOGdUhISDgLAAUFBTJ69OiQ8PDw6NjY2OixY8cea9Wq1eVXX321dVhYWExERES0l5dX4W233ZZbVkwiUvfru9tpMPXobcm9+d134dR/P4f/G2+gcc8e1RQhEVHd48z16GvL+vXrvSdOnBj4888/p9d2LPZYjx5A45490Pzuu3D87XfQ/O67mOSJiOiarFu3znvMmDGh48ePr9JwRE1rMD+vO7dpM07993O0Gvc4Tv33c3gn9GCyJyKiUm3ZssXrvvvuC7Fv8/DwKNy/f39SbcVUWQ0i0du67W3d9d4JPYq8JiIispeQkJCflpZW47XjHaFBdN2fT9pVJKk37tkD/m+8gfNJu2o5MiIiIsdqEGf0LR9+uERb457suiciIufXIM7oiYiIGiomeiIiqrINn89uk7l1S5Hb3WZu3WLZ8Pls1qOvZUz0RERUZW3DIvOW/WdGqC3ZZ27dYln2nxmhbcMiq1yP/sUXX2wdFhYW07Fjx5gXXnihNQAcO3bMtVevXmFBQUGxvXr1CsvJySlRg/5qunTpElnV2OoDJnoiIqqyDt0SrEP+9PTeZf+ZEbr60/fbLfvPjNAhf3p6b4duCVWqXvfzzz97zp4923fbtm2pqampycuXL2+2a9euRn//+9/b9uvXz3rgwIGkfv36WZ9//nm/iq6zoKAAAPDLL7+kVSW2+oKJnoiIqkWHbgnWmBsG5GxbtrhtzA0Dcqqa5AFg165dXl27dj1rsVgK3d3d0bt3b+v8+fObLV++vNnYsWNPAMDYsWNPLFu2rDkATJw4sd2tt94a0rNnz/CgoKDYGTNmtAKAb7/91tKjR4/wW265JSQiIiIGALy9vbvYpl133XURQ4cODQ0ODo4dN26c/zvvvNOiU6dOUeHh4dHJycmNAODo0aNugwYN6hAbGxsVGxsb9f333zcuK+6jR4+69erVKyw6Ojpq9OjRQe3ateuUlZVVKxfAOyzRi0igiKwWkVQRSRaRJ83210QkTUR2isgiEWnmqBiIiKjmZG7dYkle94Nv1yHDs5LX/eBbfMy+Mjp37py/efNmS3Z2tqvVanVZuXJl00OHDnmcOHHCLSgo6BIABAUFXTp58uSVJJqamuq1atWqjE2bNqW99tpr7fbv3+8OADt37mz82muvHcnMzEwuvp20tDSvd95551BqamryV1991XL37t2eu3btSh0zZszxGTNmtAaAsWPHBk6cOPFYUlJS6qJFizIfe+yx4LLinjx5cru+fftaU1JSUkeOHHkqKyvLo6rHorIc+e2iAMDTqrpNRCwAtorISgArATyrqgUi8gqAZwE848A4iIjIwWxj8rbu+vadOluro/u+a9eu55988sns/v37h3t7exdGR0fnubmVn7qGDBly2sfHR318fAquv/76M+vXr2/cvHnzy3FxceciIyMvlrZMp06dztm+OLRv3/7CkCFDcgEgPj4+f+3atRYA+Omnn5pkZGR42ZY5e/as66lTp1yaN29eWHx9W7Zs8fn666/3AMBtt912pkmTJpeLz1NTHHZGr6pZqrrNfG4FkArAX1W/V9UCc7ZNAAIcFQMREdWMrIw0b/ukbhuzz8pIq1I9egB46qmnjqekpKQmJiamt2jR4nJYWNj5li1bFhw4cMAdAA4cOODeokULW14pUYfe9trb27tEQrZp1KjRlQpvLi4u8PT0VNvzy5cvCwCoKhITE1PT0tJS0tLSUn799dedpSV527x1RY2M0YtIMIAuADYXm/QggGVlLPOoiCSKSGJOTo5jAyQioirpc9d9x4qfuXfolmDtc9d9VS4Ac+TIETcAyMjI8Fi6dGmzhx566OSgQYNOv/feey0B4L333ms5ePDg07b5ly1b1iwvL0+ys7NdN23aZOnTp8+5qsYAAH369DnzyiuvtLa93rhxo1dZ8yYkJJydM2dOCwBYuHBhkzNnzlzzrwKqi8MvDBARHwALAExQ1TN27VNgdO/PLW05VX0fwPuAUabW0XESEVHdNHz48A6nT592c3Nz0zfffPOgr6/v5X/+859ZI0aM6BAUFNSqXbt2F7/++utM2/xdunQ5N2DAgLCjR496TJo0KSs4OPhSUlKSZ1XjeP/99w89/PDD7cPDw6MvX74sPXr0sPbq1etgafNOnz796G233RYaHR3d/Prrrz/r6+t7qVmzZrXSfe/QevQi4g7gWwArVHWmXfsfATwGYICqXvU3ltVRj56IqKFpiPXoJ06c2M7Hx+fyCy+8UKulZPPz88XNzU3d3d2xatWqxuPHjw9yZJGc8urRO+yMXoxBkY8ApBZL8oNhXHzXtyJJnoiIqL7Zs2ePxx133NGhsLAQ7u7u+t577+2vrVgc2XXfG8AYALtEZLvZ9hyAWQAaAVhpXiCxSVUfc2AcRETUQMycOfNoTW7vX//6V8t33nmnyG1+r7vuurNz5sw5mJqaWifK3FYo0YtIIwCjAATbL6OqL5S1jKpuACClTPru2kIkIiKqm5588skTTz755InajqM8FT2j/wZALoCtAC44LhwiIiKqThVN9AGqOtihkRAREVG1q+jv6DeKSCeHRkJERETVrtwzehHZBUDN+R4Qkb0wuu4FgKpqnONDJCKiui53xf42Hu0teV5RLa/cNCc/9YTl4kGrd9NBwbX6U7eG7mpn9MMA3AJgCICOAAaar23tRERE8GhvyTv5xe7Q/NQTFsBI8ie/2B3q0d7CevS1rNxEr6oHVPUAgKm25/ZtNRMiERHVdV5RLa0t7gjfe/KL3aGnl2S2O/nF7tAWd4TvtT/DrwxnqEd/6dKlmthMmSo6Rh9j/0JEXAF0q/5wiIiovvKKamlt3LV1ztmfjrZt3LV1TlWTPFB/69FPnDix3d133x3Uu3fvsJEjR4ZU9ThUxdXG6J+FcZMbLxE5g99+F38R5n3oiYiIAKO7/ty2X319erfLOrftV99GHZtZq5rsO3funP/CCy/4Z2dnuzZu3FhXrlzZND4+/tzV6tFv3bo11Wq1unbp0iV61KhRuYBRj/6XX35JLq1UbVpamtdXX321t3Xr1gVBQUGdGjVqdHzXrl2pL774YusZM2a0/vjjjw/Z6tEPGjTobEZGhsegQYPC9u7dW6K2vc3OnTu9N2/enObj41Or9VrKTfSq+jKAl0XkZVV9toZiIiKiesY2Jm/rrm/UsZm1Orrv62s9egAYPHjw6dpO8kDFf0f/nIiMBNAHxlX461X1a8eFRURE9cnFg1Zv+6RuG7O/eNDqXdWz+qeeeur4U089dRwAxo8f7x8QEHDRVo8+KCjoUk3Xo69o8m7cuHGZ26tJFR2j/w+ManO7ACQBeExE/uOwqIiIqF5pOij4WPGE7hXV0lodP62rj/Xo65KKntH3BRCrZk1bEfk/GEmfiIjIoepjPfq6pEL16EVkIYCnzJ/VQUSCAExX1bsdHB8A1qMnIqoM1qNvOKqjHn1LAKkissV8fR2A/4nIYgBQ1eFVjpKIiIiqXUUT/fMOjYKIiKga1KV69DUZR3kqlOhVda3ZXR+mqqtExAuAm6pW+WYIRERE9VV9qEdfoavuReQRAF8BeM9sCgDAn9cRERHVcRX9ed2fAPQGcAYAVDUDQOtylyAiIqJaV9FEf0FVr9xNSETcYNw4h4iIiOqwiib6tSJiu+f9zQC+BLDEcWEREVF98sMPP7RJT0+32Lelp6dbfvjhhzZlLVPXOGvZ2oom+skAcmDcJGcsgO8A/NVRQRERUf0SEBCQt2jRolBbsk9PT7csWrQoNCAgoMr16GtKTZWtrWkVSvSqWgjj4rtxqnqbqn6gFbnTDhERNQgRERHWESNG7F20aFHosmXL2i1atCh0xIgReyMiIqr066z09HSPkJCQmDvvvDMoLCwsZvjw4SFff/21pWvXrpFBQUGxq1ev9j527JjrTTfd1CE8PDw6Pj4+cvPmzV4AsHTpUp/IyMjoyMjI6KioqOhTp0655Obmulx//fXh0dHRUeHh4dGfffZZM9u2bGVrAeCvf/1rm/Dw8OiIiIjocePG+ZcW2/79+91t64+MjIx2dXXttnv3bo+q7K8jXK1MrQD4O4DxMErUiohcBvBvVX2hBuIjIqJ6IiIiwhofH5+zefPmtj169MiqapK3OXTokOf8+fP3duvW7UBcXFzU3LlzWyYmJqbNmzev2bRp09r6+/tfjI+Pz1u1alXm4sWLLX/84x9D0tLSUmbMmOE3a9asAwMHDjyXm5vrYitqs3Tp0j0tWrQozMrKcuvRo0fk6NGjT7u4/Hbe+8UXXzRZunRp861bt6ZZLJbCY8eOuZYWV3Bw8KW0tLQUAHj55Zd9169fbwkPDy+1Ol5tutoZ/QQYV9tfp6otVbUFgB4AeovIUw6PjoiI6o309HTLjh07fHv06JG1Y8cO3+Jj9pXl7+9/ISEhId/V1RXh4eH5/fv3P+Pi4oKuXbvmHT58uNGWLVssDz300AkAGD58uPX06dNuJ06ccO3Zs+fZSZMmBU6dOrX18ePHXd3d3VFYWCgTJkwICA8Pj77xxhvDf/31V4/Dhw8XOelduXJlk3vvvfe4xWIpBIA2bdpcLi++77//vvHs2bN9//vf/+6vjv2tbldL9PcBuFtV99kaVHUvgHvNaURERFfG5EeMGLF3yJAhR23d+NWR7D08PEotIevq6orLly+XWrNFRPSll17K/vDDDw/k5+e79OrVK+qXX37xfO+991qcOHHCbdeuXalpaWkpLVu2vJSfn18kF6pqiVK3ZTlw4ID72LFjg+fPn5/ZtGnTOlGWtrirJXp3VS1R0EBVcwC4OyYkIiKqbw4fPuxtPyZvG7M/fPiwt6O33bNnT+snn3zSEgC+/fZbS/PmzQtatGhRmJyc3CghISF/2rRp2Z06dTqXlJTkmZub69qqVatLjRo10iVLlliOHj1aYkx98ODBZ+bMmdPKarW6AEBZXfcXLlyQkSNHhr744otH4uLiLjh2LyvvarfALW+soc6NQxARUe0YMGBAiWpxERER1uoapy/PK6+8cnT06NHB4eHh0V5eXoWffvrpPgB49dVXW2/cuLGJi4uLhoeH59922225p0+fdh0yZEjH2NjYqJiYmLyQkJDzxdd32223ndm2bZt3586do9zd3fWmm27Kfeutt44Un2/VqlWNk5KSGk+dOrXd1KlT2wHA8uXLM4KDgy85ep+vRbllas0L786VNgmAp6rWyFk9y9QSEV27hlimtqGqdJlaVS21u4KIiIjqh4qWqSUiImqwxowZ0/7nn3/2sW97/PHHj9X1ynUAEz0REdFV1aX68teqorfAJSKihqewsLCwYr8zo1pjvkdl/rSPiZ6IiMqSlJOT05TJvu4qLCyUnJycpgCSyprHYV33IhIIYDYAPxjfNN5X1X+JyO0A/gEgCkCCqvJyeiKiOqigoODh7OzsD7Ozs2PBE8O6qhBAUkFBwcNlzeDIMfoCAE+r6jYRsQDYKiIrYXzrGAngPQdum4iIqqhbt26/Ahhe23FQ1Tgs0atqFoAs87lVRFIB+KvqSgAVvr0gERERVV6NdMWISDCALgA2X8Myj4pIoogk5uTkOCo0IiIip+bwRC8iPgAWAJigqmcqupyqvq+q3VW1u6+vr+MCJCIicmIOTfQi4g4jyc9V1YWO3BYRERGV5LBEL8Yg/EcAUlV1pqO2Q0RERGVz5FX3vQGMAbBLRLabbc8BaATg3wB8ASwVke2qOsiBcRARETVYjrzqfgOMKnelWeSo7RIREdFveAMEIiIiJ8ZET0RE5MSY6ImIiJwYEz0REZETY6InIiJyYkz0REREToyJnoiIyIkx0RMRETkxJnoiIiInxkRPRETkxJjoiYiInBgTPRERkRNjoiciInJiTPREREROjImeiIjIiTHRExEROTEmeiIiIifGRE9EROTEmOiJiIicGBM9ERGRE2OiJyIicmJM9ERERE6MiZ6IiMiJMdETERE5MSZ6IiIiJ8ZET0RE5MSY6ImIiJwYEz0RUR3z7tpMbMw8XqRtY+ZxvLs2s5YiovqMiZ6IqI6JC2iK8fN+uZLsN2Yex/h5vyAuoGktR0b1kVttB0BEREX16tAKb43ugvHzfsG9Pdrjs80H8dboLujVoVVth0b1EM/oiYjqoF4dWuHeHu0x68c9uLdHeyZ5qjQmeiKiOmhj5nF8tvkgnujfEZ9tPlhizJ6oopjoiYjqGNuY/Fuju2DiwIgr3fhM9lQZDkv0IhIoIqtFJFVEkkXkSbO9hYisFJEM89/mjoqBiKg+2nk4t8iYvG3Mfufh3FqOjOojUVXHrFikLYC2qrpNRCwAtgK4FcD9AE6q6nQRmQyguao+U966unfvromJiQ6Jk4jIWYnIVlXtXttxUO1y2Bm9qmap6jbzuRVAKgB/AH8A8H/mbP8HI/kTERGRA9TIGL2IBAPoAmAzgDaqmgUYXwYAtC5jmUdFJFFEEnNycmoiTCIiIqfj8EQvIj4AFgCYoKpnKrqcqr6vqt1Vtbuvr6/jAiQiInJiDk30IuIOI8nPVdWFZvMxc/zeNo7/qyNjICIiasgcedW9APgIQKqqzrSbtBjAH83nfwTwjaNiICIiaugceQvc3gDGANglItvNtucATAfwhYg8BOAggNsdGAMREVGD5rBEr6obAEgZkwc4artERET0G6e8M96Wb77CwaSdRdoOJu3Elm++qqWIiIiIaodTJnq/DuH49s3pV5L9waSd+PbN6fDrEA4A2LBhA/bt21dkmX379mHDhg01HisREZEjOWWibx8bh2ETJuPbN6fjpy8+w7dvTsewCZPRPjYOAODv748vv/zySrLft28fvvzyS/j7+9dm2ERERNXOaevRt4+NQ/zAodi04HP0HHXXlSQPACEhIbj99tvx5Zdfonv37khMTMTtt9+OkJCQWoyYiIio+jnlGT1gdNfv+P479Bx1F3Z8/12JMfuQkBB0794d69atQ/fu3ZnkiYjIKTlloreNyQ+bMBm977j3Sje+fbLft28fEhMTccMNNyAxMbHEmD0REZEzcMpEn525u8iYvG3MPjtzN4DfxuRvv/129O/f/0o3PpM9ERE5G4eVqa1O1V2mdsOGDfD39y/SXb9v3z4cOXIEffr0qbbtEBHVJpapJcCJL8YrT2nJPCQkhOP0RETkdJyy656IiIgMTPREREROjImeiIjIiTHRExEROTEmeiIiIifGRE9EROTEmOiJiIicGBM9ERGRE2OiJyIicmJM9ERERE6MiZ6IiMiJMdETERE5MSZ6IiIiJ8ZET0RE5MSY6ImI6phtKw7gcPqpIm2H009h24oDtRQR1WdM9EREdUzr4CZY8UHSlWR/OP0UVnyQhNbBTWo5MqqP3Go7ACIiKiogojkGPRKLFR8kIfYGfyStO4JBj8QiIKJ5bYdG9RDP6ImI6qCAiOaIvcEfid/tR+wN/kzyVGlM9EREddDh9FNIWncE3YcGI2ndkRJj9kQVxURPRFTH2MbkBz0Six7DQ6904zPZU2Uw0RMR1TG/7j9TZEzeNmb/6/4ztRwZ1Ue8GI+IqI7pOiioRFtARHOO01Ol8IyeiIjIiTHRExEROTEmeiIiIifGRE9EROTEmOiJiIicmKhqbcdwVSKSA8BR1RxaATjuoHU7Un2NG6i/sTPumldfY68rcQepqm9tB0G1q14kekcSkURV7V7bcVyr+ho3UH9jZ9w1r77GXl/jJufErnsiIiInxkRPRETkxJjogfdrO4BKqq9xA/U3dsZd8+pr7PU1bnJCDX6MnoiIyJnxjJ6IiMiJMdETERE5sXqf6EVksIiki8geEZlcyvQgEflBRHaKyBoRCbCb9qqIJItIqojMEoO3iCwVkTRz2nS7+e8XkRwR2W4+Hq5LsZvta8x12mJsbbY3EpH55rY2i0hwXYlbRCx28W4XkeMi8qY5f7Ud8yrG/YqIJJmPO+3aQ8zjmWEeXw+zva4c77LinmuuM0lEPhYRd7O9n4jk2h3v5ysbtwNj/1RE9tnF2NlsF/MztcdcX9c6Fvd6u5iPisjXZnu1HnOiElS13j4AuALIBBAKwAPADgDRxeb5EsAfzef9Acwxn/cC8JO5DlcA/wPQD4A3gBvNeTwArAcwxHx9P4C36mrs5rQ1ALqXsr1xAN41n98FYH5dirvY8lsB3FCdx7yKcf8ewEoYZZ0bA0gE0MSc9gWAu8zn7wJ4vA4d7/LiHgpAzMd/7eLuB+DbOvAZLy/2TwHcVsr2hgJYZu5TTwCb61LcxZZfAOC+6j7mfPBR2qO+n9EnANijqntV9SKAzwH8odg80QB+MJ+vtpuuADxh/EduBMAdwDFVzVPV1QBgrnMbgABUv2qP/Srb+wOA/zOffwVggIjRC1CX4haRMACtYXzBqk5ViTsawFpVLVDVczD+8A82j19/GMcTMI7vrebzunC8S40bAFT1OzUB2IK69xkvM/Zy/AHAbHO3NgFoJiJt61rcImKB8bn5uhKxEV2z+p7o/QEcsnt92GyztwPAKPP5CAAWEWmpqv+D8R80y3ysUNVU+wVFpBmAW/Dbf2gAGGV2130lIoF1NPZPzC7Av9kllyvbU9UCALkAWtaxuAHgbhhnv/Y/B6mOY17puM32IWIM67QCcCOAQBjH77R5PIuvs9aPdzlxX2F22Y8BsNyu+XoR2SEiy0QkphIx10Ts08zPxBsi0ugatlfbcdvm/0FVz9i1VdcxJyqhvif60s6Qiv9ecBKAviLyC4C+AI4AKBCRjgCiYJzJ+APoLyI3XFmxiBuMLs1ZqrrXbF4CIFhV4wCswm9nbHUp9ntUtROA35mPMdewvdqM2+YuGMfdprqOeaXjVtXvAXwHYKMZ2/8AFFxlnbV+vMuJ297bANapqq0HZRuM+6PHA/g3qnbW6ajYnwUQCeA6AC0APHMN26vNuG3uRtHPeHUec6IS6nuiP4yi35YDABy1n0FVj6rqSFXtAmCK2ZYL41v1JlU9q6pnYYzt9bRb9H0AGar6pt26TqjqBfPlBwC61bXYVfWI+a8VwDwY3ZBFtmd+iWkK4GRdiduMKx6Am6putVtXdR3zqsQNVZ2mqp1V9WYYiSADRtGSZubxLL7OunC8y4obZlx/B+ALYKLdus6Y7w1U9TsA7uaZaWU4JHZVzTK75y8A+ASlfMbL2l5txg0A5ll/AoClduuqzmNOVEJ9T/Q/AwgT48pnDxhng4vtZxCRViJi289nAXxsPj8I4xu5m9l92RdAqrnMVBh/mCcUW5f9eN9w2/x1JXbzdStzWXcAwwAkmcssBvBH8/ltAH4s1j1ea3HbLVr8TKc6j3ml4xYRV/MPNEQkDkAcgO/N47caxvEEjOP7jfm81o93WXGbrx8GMAjA3apaaLcuP9twj4gkwPgbcaIScTsy9rbmvwLjmgj7z/h9YugJIFdVs+pK3KbbYVx4d95uXdV5zIlK0jpwRWBVHjCutN0N4yrZKWbbCwCGm89vg/GNejeADwE0MttdAbwHI3GkAJhptgfA6KZLBbDdfDxsTnsZQDKMcbjVACLrWOyNYVyxvtOM818AXM1pnjCuFN4D4+Kr0LoSt9169xY/ptV5zKsQt6cZbwqATQA6260z1Dyee8zja79MbR/v8uIuMNdn+4w/b7aPtzvemwD0qqXPeHmx/whgF4wE/xkAH7NdAPzH3NYulPLrk9qM25y+BsDgYm3Vesz54KP4g7fAJSIicmL1veueiIiIysFET0RE5MSY6ImIiJwYEz0REZETY6InIiJyYkz01CCYv1X+XEQyRSRFRL4TkfDajouIyNGY6MnpmTcjWQRgjap2UNVoAM8BaOOAbblW9zqJiKqCiZ4aghsBXFLVd20NqrodwAYReU2MuuG7xKwdLkYd+aG2ecWofz7KvOvZayLys1lQZaw5vZ+IrBaReTBu1AIR+VpEtopIsog8areuh0Rktxg1zD8QkbfMdl8RWWCu+2cR6V0jR4aInJ7b1WchqvdiYdwxsLiRADoDiAfQCsDPIrIORlnSOwF8Z94CdQCAxwE8BOO2qteJUTHtJxGx3d40AUCsqu4zXz+oqidFxMtc7wIYpXn/BqArACuMO7ztMOf/F4A3VHWDiLQHsAJGASAioiphoqeGrA+A/6rqZQDHRGQtjIpoywDMMpP5YBjV3fJFZCCAOBGx3du+KYAwABcBbLFL8gDwhIiMMJ8HmvP5wahVfhIARORLALbrBG4CEC2/laxvIiIWNYoTERFVGhM9NQTJ+K3wjL3SypFCVc+LyBoYRV/uxG+FdgTA/1PVFUVWItIPwLlir28CcL2q5pnr8ixreyYXc/78q+8OEVHFcYyeGoIfATQSkUdsDSJyHYBTAO40x959AdwAowANYHTfPwDgdzC60WH++7hZeQ8iEi4ijUvZXlMAp8wkH4nfSvFugVG9r7kYpWtH2S3zPYziJrb4Oldpj4mITDyjJ6enqmp2o78pIpMBnAewH0YZYh8Y4+QK4C+qmm0u9j2A2QAWq+pFs+1DAMEAtplX8ufAKJNa3HIAj4nITgDpMCqSQVWPiMhLADbDqG+eAiDXXOYJAP8xl3EDsA7AY9VyAIioQWP1OqIaJCI+qnrWPKNfBOBjVV1U23ERkfNi1z1RzfqHiGyHUUt9H4CvazkeInJyPKMnIn4EAPEAAAArSURBVCJyYjyjJyIicmJM9ERERE6MiZ6IiMiJMdETERE5MSZ6IiIiJ/b/AVD8MH2/xD6HAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dat in data:\n", " wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n", " depth = average_depths['5s'][average_depths['band'] == dat[0]]\n", " #print(depth)\n", " coverage = np.sum(~np.isnan(depths['ferr_{}_mean'.format(dat[0])]))/len(depths)\n", " plt.plot(coverage, depth, 'x', label=dat[0])\n", " \n", "plt.xlabel('Coverage')\n", "plt.ylabel('Depth')\n", "#plt.xscale('log')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.title('Depths (5 $\\sigma$) vs coverage on {}'.format(FIELD))" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }