from herschelhelp_internal import git_version
print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version()))
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'
import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))
plt.style.use('ggplot')
import locale
locale.setlocale(locale.LC_ALL, 'en_GB')
import os
import time
import itertools
from astropy.coordinates import SkyCoord
from astropy.table import Table
from astropy import units as u
from astropy import visualization as vis
import numpy as np
from matplotlib_venn import venn3, venn2
from herschelhelp_internal.masterlist import (nb_compare_mags, nb_ccplots, nb_histograms, find_last_ml_suffix,
quick_checks)
OUT_DIR = os.environ.get('OUT_DIR', "./data")
SUFFIX = find_last_ml_suffix()
#SUFFIX = "20171016"
master_catalogue_filename = "master_catalogue_spire-nep_{}.fits".format(SUFFIX)
master_catalogue = Table.read("{}/{}".format(OUT_DIR, master_catalogue_filename))
print("Diagnostics done using: {}".format(master_catalogue_filename))
quick_checks(master_catalogue)
flag_obs = master_catalogue['flag_optnir_obs']
flag_det = master_catalogue['flag_optnir_det']
The master list if composed of several catalogues containing magnitudes in similar filters on different instruments. We are comparing the magnitudes in these corresponding filters.
u_bands = []
g_bands = [ "GPC1 g"]
r_bands = [ "GPC1 r"]
i_bands = [ "GPC1 i"]
z_bands = [ "GPC1 z"]
y_bands = [ "GPC1 y"]
We compare the histograms of the total aperture magnitudes of similar bands.
for bands in [u_bands, g_bands, r_bands, i_bands, z_bands, y_bands]:
colnames = ["m_{}".format(band.replace(" ", "_").lower()) for band in bands]
nb_histograms(master_catalogue, colnames, bands)
We compare one to one each magnitude in similar bands.
for band_of_a_kind in [u_bands, g_bands, r_bands, i_bands, z_bands, y_bands]:
for band1, band2 in itertools.combinations(band_of_a_kind, 2):
basecol1, basecol2 = band1.replace(" ", "_").lower(), band2.replace(" ", "_").lower()
col1, col2 = "m_ap_{}".format(basecol1), "m_ap_{}".format(basecol2)
nb_compare_mags(master_catalogue[col1], master_catalogue[col2],
labels=("{} (aperture)".format(band1), "{} (aperture)".format(band2)))
col1, col2 = "m_{}".format(basecol1), "m_{}".format(basecol2)
nb_compare_mags(master_catalogue[col1], master_catalogue[col2],
labels=("{} (total)".format(band1), "{} (total)".format(band2)))
Cross-match the master list to SDSS to compare magnitudes.
master_catalogue_coords = SkyCoord(master_catalogue['ra'], master_catalogue['dec'])
The catalogue is cross-matched to SDSS-DR13 withing 0.2 arcsecond.
We compare the u, g, r, i, and z magnitudes to those from SDSS using fiberMag
for the aperture magnitude and petroMag
for the total magnitude.
sdss = Table.read("../../dmu0/dmu0_SDSS-DR13/data/SDSS-DR13_SPIRE-NEP.fits")
sdss_coords = SkyCoord(sdss['ra'] * u.deg, sdss['dec'] * u.deg)
idx, d2d, _ = sdss_coords.match_to_catalog_sky(master_catalogue_coords)
mask = (d2d < 0.2 * u.arcsec)
sdss = sdss[mask]
ml_sdss_idx = idx[mask]
for band_of_a_kind in [u_bands, g_bands, r_bands, i_bands, z_bands]:
for band in band_of_a_kind:
sdss_mag_ap = sdss["fiberMag_{}".format(band[-1])]
master_cat_mag_ap = master_catalogue["m_ap_{}".format(band.replace(" ", "_").lower())][ml_sdss_idx]
nb_compare_mags(sdss_mag_ap, master_cat_mag_ap,
labels=("SDSS {} (fiberMag)".format(band[-1]), "{} (aperture)".format(band)))
sdss_mag_tot = sdss["petroMag_{}".format(band[-1])]
master_cat_mag_tot = master_catalogue["m_ap_{}".format(band.replace(" ", "_").lower())][ml_sdss_idx]
nb_compare_mags(sdss_mag_ap, master_cat_mag_ap,
labels=("SDSS {} (petroMag)".format(band[-1]), "{} (total)".format(band)))
nb_ccplots(
master_catalogue['m_gpc1_r'],
master_catalogue['m_ap_gpc1_r'] - master_catalogue['m_gpc1_r'],
"r total magnitude (GPC1)", "r aperture mag - total mag (GPC1)",
np.full(len(master_catalogue), 1.),
invert_x=True
)
nb_ccplots(
master_catalogue['m_gpc1_g'] - master_catalogue['m_gpc1_z'],
master_catalogue['m_gpc1_r'] - master_catalogue['m_gpc1_y'],
"i - z (GPC1)", "z - J (GPC1)",
np.full(len(master_catalogue), 1.)
) #No stellarity in panstarrs so use all sources