{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# SGP Selection Functions\n", "## Depth maps and selection functions\n", "\n", "The simplest selection function available is the field MOC which specifies the area for which there is Herschel data. Each pristine catalogue also has a MOC defining the area for which that data is available.\n", "\n", "The next stage is to provide mean flux standard deviations which act as a proxy for the catalogue's 5$\\sigma$ depth" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "017bb1e (Mon Jun 18 14:58:59 2018 +0100)\n", "This notebook was executed on: \n", "2018-06-25 18:19:16.286033\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n", "import datetime\n", "print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "import os\n", "import time\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table, join\n", "import numpy as np\n", "from pymoc import MOC\n", "import healpy as hp\n", "#import pandas as pd #Astropy has group_by function so apandas isn't required.\n", "import seaborn as sns\n", "\n", "import warnings\n", "#We ignore warnings - this is a little dangerous but a huge number of warnings are generated by empty cells later\n", "warnings.filterwarnings('ignore')\n", "\n", "from herschelhelp_internal.utils import inMoc, coords_to_hpidx, flux_to_mag\n", "from herschelhelp_internal.masterlist import find_last_ml_suffix, nb_ccplots\n", "\n", "from astropy.io.votable import parse_single_table" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "FIELD = 'SGP'\n", "#FILTERS_DIR = \"/Users/rs548/GitHub/herschelhelp_python/database_builder/filters/\"\n", "FILTERS_DIR = \"/opt/herschelhelp_python/database_builder/filters/\"" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Depth maps produced using: master_catalogue_sgp_20180221.fits\n" ] } ], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "SUFFIX = find_last_ml_suffix()\n", "#SUFFIX = \"20171016\"\n", "\n", "master_catalogue_filename = \"master_catalogue_{}_{}.fits\".format(FIELD.lower(), SUFFIX)\n", "master_catalogue = Table.read(\"{}/{}\".format(OUT_DIR, master_catalogue_filename))\n", "\n", "print(\"Depth maps produced using: {}\".format(master_catalogue_filename))\n", "\n", "ORDER = 10\n", "#TODO write code to decide on appropriate order\n", "\n", "field_moc = MOC(filename=\"../../dmu2/dmu2_field_coverages/{}_MOC.fits\".format(FIELD))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Remove sources whose signal to noise ratio is less than five as these will have been selected using forced \n", "# photometry and so the errors will not refelct the RMS of the map \n", "for n,col in enumerate(master_catalogue.colnames):\n", " if col.startswith(\"f_\"):\n", " err_col = \"ferr{}\".format(col[1:])\n", " errs = master_catalogue[err_col]\n", " fluxes = master_catalogue[col]\n", " mask = fluxes/errs < 5.0\n", " master_catalogue[col][mask] = np.nan\n", " master_catalogue[err_col][mask] = np.nan" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## I - Group masterlist objects by healpix cell and calculate depths\n", "We add a column to the masterlist catalogue for the target order healpix cell per object." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#Add a column to the catalogue with the order=ORDER hp_idx\n", "master_catalogue.add_column(Column(data=coords_to_hpidx(master_catalogue['ra'],\n", " master_catalogue['dec'],\n", " ORDER), \n", " name=\"hp_idx_O_{}\".format(str(ORDER))\n", " )\n", " )" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Convert catalogue to pandas and group by the order=ORDER pixel\n", "\n", "group = master_catalogue.group_by([\"hp_idx_O_{}\".format(str(ORDER))])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#Downgrade the groups from order=ORDER to order=13 and then fill out the appropriate cells\n", "#hp.pixelfunc.ud_grade([2599293, 2599294], nside_out=hp.order2nside(13))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## II Create a table of all Order=13 healpix cells in the field and populate it\n", "We create a table with every order=13 healpix cell in the field MOC. We then calculate the healpix cell at lower order that the order=13 cell is in. We then fill in the depth at every order=13 cell as calculated for the lower order cell that that the order=13 cell is inside." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "depths = Table()\n", "depths['hp_idx_O_13'] = list(field_moc.flattened(13))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhp_idx_O_13
0763033826
1763033831
2763033836
3763033841
4763033846
5763033851
6763033856
7763033857
8763033861
9763033871
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "depths[:10].show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "depths.add_column(Column(data=hp.pixelfunc.ang2pix(2**ORDER,\n", " hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[0],\n", " hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[1],\n", " nest = True),\n", " name=\"hp_idx_O_{}\".format(str(ORDER))\n", " )\n", " )" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false, "deletable": true, "editable": true, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhp_idx_O_13hp_idx_O_10
076303382611922403
176303383111922403
276303383611922403
376303384111922403
476303384611922403
576303385111922403
676303385611922404
776303385711922404
876303386111922404
976303387111922404
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "depths[:10].show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "Table masked=True length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhp_idx_O_13hp_idx_O_10ferr_ap_omegacam_z_meanf_ap_omegacam_z_p90ferr_omegacam_z_meanf_omegacam_z_p90ferr_omegacam_u_meanf_omegacam_u_p90ferr_ap_omegacam_u_meanf_ap_omegacam_u_p90ferr_omegacam_g_meanf_omegacam_g_p90ferr_ap_omegacam_g_meanf_ap_omegacam_g_p90ferr_omegacam_r_meanf_omegacam_r_p90ferr_ap_omegacam_r_meanf_ap_omegacam_r_p90ferr_omegacam_i_meanf_omegacam_i_p90ferr_ap_omegacam_i_meanf_ap_omegacam_i_p90ferr_ap_gpc1_g_meanf_ap_gpc1_g_p90ferr_gpc1_g_meanf_gpc1_g_p90ferr_ap_gpc1_r_meanf_ap_gpc1_r_p90ferr_gpc1_r_meanf_gpc1_r_p90ferr_ap_gpc1_i_meanf_ap_gpc1_i_p90ferr_gpc1_i_meanf_gpc1_i_p90ferr_ap_gpc1_z_meanf_ap_gpc1_z_p90ferr_gpc1_z_meanf_gpc1_z_p90ferr_ap_gpc1_y_meanf_ap_gpc1_y_p90ferr_gpc1_y_meanf_gpc1_y_p90ferr_vista_z_meanf_vista_z_p90ferr_ap_vista_z_meanf_ap_vista_z_p90ferr_vista_y_meanf_vista_y_p90ferr_ap_vista_y_meanf_ap_vista_y_p90ferr_vista_j_meanf_vista_j_p90ferr_ap_vista_j_meanf_ap_vista_j_p90ferr_vista_h_meanf_vista_h_p90ferr_ap_vista_h_meanf_ap_vista_h_p90ferr_vista_ks_meanf_vista_ks_p90ferr_ap_vista_ks_meanf_ap_vista_ks_p90ferr_decam_g_meanf_decam_g_p90ferr_ap_decam_g_meanf_ap_decam_g_p90ferr_decam_r_meanf_decam_r_p90ferr_ap_decam_r_meanf_ap_decam_r_p90ferr_decam_i_meanf_decam_i_p90ferr_ap_decam_i_meanf_ap_decam_i_p90ferr_decam_z_meanf_decam_z_p90ferr_ap_decam_z_meanf_ap_decam_z_p90ferr_decam_y_meanf_decam_y_p90ferr_ap_decam_y_meanf_ap_decam_y_p90
026869554941983675.318588086478927422.8212056431068.29950297456952435.22158172823291.809389304916722553.3035826639266262.150095796598437780.184199890490220.99327298313573681529.90190282698450.85558226246401891563.11850268039851.50757983990944162482.43644450900731.13507408280416662454.73774588402241.860068979348084127.226254556441281.220907753137785123.53868279337105nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan0.4572543723919358608.38824418943720.38499290216799875601.74802186168090.5220544615033763113.277775142925140.2895389699753253653.602552580848251.0606663136426304229.023297265192640.495425578911888370.78498604730872.2464659738502246438.191801479409660.8913570505619027209.653374580123454.6337062089859363775.0102956677542.35323328601241064335.911789895676
126869554841983675.318588086478927422.8212056431068.29950297456952435.22158172823291.809389304916722553.3035826639266262.150095796598437780.184199890490220.99327298313573681529.90190282698450.85558226246401891563.11850268039851.50757983990944162482.43644450900731.13507408280416662454.73774588402241.860068979348084127.226254556441281.220907753137785123.53868279337105nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan0.4572543723919358608.38824418943720.38499290216799875601.74802186168090.5220544615033763113.277775142925140.2895389699753253653.602552580848251.0606663136426304229.023297265192640.495425578911888370.78498604730872.2464659738502246438.191801479409660.8913570505619027209.653374580123454.6337062089859363775.0102956677542.35323328601241064335.911789895676
226869554341983675.318588086478927422.8212056431068.29950297456952435.22158172823291.809389304916722553.3035826639266262.150095796598437780.184199890490220.99327298313573681529.90190282698450.85558226246401891563.11850268039851.50757983990944162482.43644450900731.13507408280416662454.73774588402241.860068979348084127.226254556441281.220907753137785123.53868279337105nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan0.4572543723919358608.38824418943720.38499290216799875601.74802186168090.5220544615033763113.277775142925140.2895389699753253653.602552580848251.0606663136426304229.023297265192640.495425578911888370.78498604730872.2464659738502246438.191801479409660.8913570505619027209.653374580123454.6337062089859363775.0102956677542.35323328601241064335.911789895676
326869555141983675.318588086478927422.8212056431068.29950297456952435.22158172823291.809389304916722553.3035826639266262.150095796598437780.184199890490220.99327298313573681529.90190282698450.85558226246401891563.11850268039851.50757983990944162482.43644450900731.13507408280416662454.73774588402241.860068979348084127.226254556441281.220907753137785123.53868279337105nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan0.4572543723919358608.38824418943720.38499290216799875601.74802186168090.5220544615033763113.277775142925140.2895389699753253653.602552580848251.0606663136426304229.023297265192640.495425578911888370.78498604730872.2464659738502246438.191801479409660.8913570505619027209.653374580123454.6337062089859363775.0102956677542.35323328601241064335.911789895676
426869555041983675.318588086478927422.8212056431068.29950297456952435.22158172823291.809389304916722553.3035826639266262.150095796598437780.184199890490220.99327298313573681529.90190282698450.85558226246401891563.11850268039851.50757983990944162482.43644450900731.13507408280416662454.73774588402241.860068979348084127.226254556441281.220907753137785123.53868279337105nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan0.4572543723919358608.38824418943720.38499290216799875601.74802186168090.5220544615033763113.277775142925140.2895389699753253653.602552580848251.0606663136426304229.023297265192640.495425578911888370.78498604730872.2464659738502246438.191801479409660.8913570505619027209.653374580123454.6337062089859363775.0102956677542.35323328601241064335.911789895676
526869651141983824.925707147199608987.157006060576110.3757607357989881135.05599446051932.1597603280167577219.542570700609871.8425879461132257214.36578933753370.7302657612764134390.096051124744860.540685438387132352.49995870955071.1805207406264309341.735691306568640.6868760603214307292.82424048172452.264313529846699633.50360182296871.3265283663388876551.9303532832823nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
626869649441983824.925707147199608987.157006060576110.3757607357989881135.05599446051932.1597603280167577219.542570700609871.8425879461132257214.36578933753370.7302657612764134390.096051124744860.540685438387132352.49995870955071.1805207406264309341.735691306568640.6868760603214307292.82424048172452.264313529846699633.50360182296871.3265283663388876551.9303532832823nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
726869650641983824.925707147199608987.157006060576110.3757607357989881135.05599446051932.1597603280167577219.542570700609871.8425879461132257214.36578933753370.7302657612764134390.096051124744860.540685438387132352.49995870955071.1805207406264309341.735691306568640.6868760603214307292.82424048172452.264313529846699633.50360182296871.3265283663388876551.9303532832823nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
826869650741983824.925707147199608987.157006060576110.3757607357989881135.05599446051932.1597603280167577219.542570700609871.8425879461132257214.36578933753370.7302657612764134390.096051124744860.540685438387132352.49995870955071.1805207406264309341.735691306568640.6868760603214307292.82424048172452.264313529846699633.50360182296871.3265283663388876551.9303532832823nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
926869651041983824.925707147199608987.157006060576110.3757607357989881135.05599446051932.1597603280167577219.542570700609871.8425879461132257214.36578933753370.7302657612764134390.096051124744860.540685438387132352.49995870955071.1805207406264309341.735691306568640.6868760603214307292.82424048172452.264313529846699633.50360182296871.3265283663388876551.9303532832823nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for col in master_catalogue.colnames:\n", " if col.startswith(\"f_\"):\n", " errcol = \"ferr{}\".format(col[1:])\n", " depths = join(depths, \n", " group[\"hp_idx_O_{}\".format(str(ORDER)), errcol].groups.aggregate(np.nanmean),\n", " join_type='left')\n", " depths[errcol].name = errcol + \"_mean\"\n", " depths = join(depths, \n", " group[\"hp_idx_O_{}\".format(str(ORDER)), col].groups.aggregate(lambda x: np.nanpercentile(x, 90.)),\n", " join_type='left')\n", " depths[col].name = col + \"_p90\"\n", "\n", "depths[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## III - Save the depth map table" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "depths.write(\"{}/depths_{}_{}.fits\".format(OUT_DIR, FIELD.lower(), SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## IV - Overview plots\n", "\n", "### IV.a - Filters\n", "First we simply plot all the filters available on this field to give an overview of coverage." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "{'decam_g',\n", " 'decam_i',\n", " 'decam_r',\n", " 'decam_y',\n", " 'decam_z',\n", " 'gpc1_g',\n", " 'gpc1_i',\n", " 'gpc1_r',\n", " 'gpc1_y',\n", " 'gpc1_z',\n", " 'omegacam_g',\n", " 'omegacam_i',\n", " 'omegacam_r',\n", " 'omegacam_u',\n", " 'omegacam_z',\n", " 'vista_h',\n", " 'vista_j',\n", " 'vista_ks',\n", " 'vista_y',\n", " 'vista_z'}" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tot_bands = [column[2:] for column in master_catalogue.colnames \n", " if (column.startswith('f_') & ~column.startswith('f_ap_'))]\n", "ap_bands = [column[5:] for column in master_catalogue.colnames \n", " if column.startswith('f_ap_') ]\n", "bands = set(tot_bands) | set(ap_bands)\n", "bands" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "Text(0.5,1,'Passbands on SGP')" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAAFfCAYAAABN87UXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXl8VNX5/z/PnTWTfV8gCQgJJCREFimyGtwA15bWBdFabS3tt618aV2qXVBLFRX9ad2tVL8VlALuKBRblgiKsoWQEMKWQMi+b7Pee35/3DuTyT7LHRLCeb9evJjMPffcM5PMfO7znGchxhg4HA6Hw+EMP4TBXgCHw+FwOJzAwEWew+FwOJxhChd5DofD4XCGKVzkORwOh8MZpnCR53A4HA5nmMJFnsPhcDicYQoXec6whohWENG7w+1aHA6H4wlc5DnnHSIqJSIzEbURUTUR/YOIQgZ7XcMBIrqXiIqJqFV5bzcTUajb8alE9BkRNRJRExEVEdFKIopUjt9NRKLyu2khokNEdP3gvSIOh+MPXOQ5g8UNjLEQAJMBXAbgD4O8ngseIpoL4K8AbmeMhQLIAPAvt+MzAOwAsBvAeMZYBID5ABwActym+lr53UQAeAvAv4go6ry8CA6Hoypc5DmDCmPsHIAvAGQBABH9hIiOKpboKSL6uXMsEcUoVmgTETUQUR4RCcqxh4jonHLeMSK60u0yRiJarxw7QEQ5bnM+TEQnlWNFRPR9t2N3E9FXRPSsYvmeJqIFbsdHE9FO5dxtAGLcjhmJ6F0iqlfW+x0Rxff2HhBRBhHtUMYVEtGNbsfeJqKXFYu8lYj2EtGYPt7OyyAL9EHlvW1gjL3DGGtVjj8N4B+MsScZY9XKmDOMsT8zxnb08ruRAKwBEATgkj6uyeFwhjBc5DmDChElA1gI4KDyVA2A6wGEAfgJgOeJaLJy7LcAygHEAogH8AgARkTjAPwKwGWKBXstgFK3y9wEYAOAKADrAHxERDrl2EkAswGEA3gMwLtElOh27vcAHIMs4E8DeIuISDm2DsB+5dgTAH7sdt6PlTmTAUQDWArA3Mvr1wH4FMC/AcQB+DWAtcprcnK7srZIACcArOw+j8JeANcS0WNENJOIDG7XCQZwOYBNfZzbAyLSAvgpgDYAxz09j8PhDB24yHMGi4+IqAnAVwB2QnYzgzG2mTF2ksnshCx+s5Vz7AASAaQyxuyMsTwmN18QARgAZBKRjjFWyhg76Xat/YyxjYwxO4DnABgBTFeut4ExVsEYkxhj6yGL2TS3c8sYY28yxkQA7yjXjyeiFMiW8x8ZY1bG2C7IYu3EDlncxzLGRMbYfsZYSy/vw3QAIQCeYozZGGP/BfAZZGF38gFj7FvGmAPAWgCX9vaGMsbyAPwA8hbIZgD1RPQcEWkg3yAIAKqc44noacV70E5E7tsl05XfTZWyju8zxpp7uyaHwxnacJHnDBY3M8YiGGOpjLFfMsbMAEBEC4joG8Ud3wTZyne6wZ+BbMn+W3HlPwwAjLETAJYBWAGghojeJ6Ikt2uddT5QXNDlAJKU692lBJc1KdfLcrse4CaKjLEO5WGIcn4jY6zdbWyZ2+N/AtgK4H0iqlAEVYeeJAE4q6zLfZ4Rva0BQIdy/V5hjH3BGLsBstfiJgB3Q7bGGwFIkG9SnGMfVPblPwSgdZvmG+V3E8MYm84Y+7Kv63E4nKENF3nOkEFxL28C8CyAeEWAPgdAAMAYa2WM/ZYxdgmAGwAsd+69M8bWMcZmAUgFwACscps62e0aAoCRACqIKBXAm5Bd/dHK9Y44rzcAlQAiFTe4kxTnA8XT8BhjLBPADMhbEHf1Mk8FgGRnbIHbPOc8WEOfKJ6J/wD4L4As5WZkL2RLn8PhXCRwkecMJfSQ3e61ABxKkNs1zoNEdD0RjVX2xFsgu+lFIhpHRPOUmwQL5L1v0W3eKUT0A2WPeRkAK4BvAARDviGoVeb/CZQAwIFgjJUB2AfgMSLSE9EsyDcezrXmElG24ipvgey+F3uZai+AdgAPEpGOiK5Q5nnfk3W4Q0Q3EdFtRBRJMtMAzFVeKwA8COAeJdgwTjlnJIDR3l6Lw+FcGHCR5wwZlCjw30BO+2oEsBjAJ25D0gB8CTkQ7GsAryhR4QYATwGog+zajoMclOfkYwC3KnPeCeAHiqVdBGC1Mlc1gGzI6WWeshhyYF4DgD8D+D+3YwkANkIW+KOQ4w56FMphjNkA3AhggbL+VwDcxRgr9mIdThoB/AxyXEGLcr1nGGNrlWt9BWAegDkASpTtiS2Q0+r+5sP1OBzOEIfkuCUOh8PhcDjDDW7JczgcDoczTOEiz+FwOBzOMCVgIk9Ea4iohoiO9HGciOhFIjpBRIfdCp5wOBwOh8NRgUBa8m9DrovdFwsgB1KlAbgPwKsBXAuHw+FwOBcdARN5pQJYQz9DbgLwf0pls28ARHQrJ8rhcDgcDscPtAMPCRgj4FaJDHIVshGQi4x0gYjug2ztIzg4eMr48ePPywI5HA5nuLB///46xlisn3PEabXav0OuJ8FjugYfCcARh8Px0ylTptT0NmAwRb63qmK95vMxxt4A8AYATJ06le3bty+Q6+JwOJxhBxGVDTyqf7Ra7d8TEhIyYmNjGwVB4PnXg4wkSVRbW5tZVVX1d8j1NnowmHdi5XArNwql1OggrYXD4XA4A5MVGxvbwgV+aCAIAouNjW1GP5U6B1PkPwFwlxJlPx1AM2Osh6uew+FwOEMGgQv80EL5ffSp5QFz1xPRewCuABBDROWQy37qAIAx9hrkxiMLIXcV64DcO5zD4XA4HI5KBEzkGWO3D3CcAfifQF2fw+FwOJyLHR4dyeFwOBzOMGUwo+s5HA6Hc4HywMb85JKqVpOac6YnhHY888Ocs/2NWbFiRfzatWtjAODOO++svfXWW5vmz5+fNm3atLYDBw6EZGRkdNxzzz11jz/++Ij6+nrt22+/fSo3N7ejpaVFuPfee1OOHj0aJIoiPfrooxVLlixpam1tFW699dZRJ06cMKalpVnOnj2rf+mll87MmTOn44477kjJz88Ptlgswg033ND4/PPPVwDAzp07TcuWLUvp6OgQ9Ho927Vr17Gamhrt4sWLR5vNZgEAXnjhhTNXX311+2effRb62GOPJcXGxtqLiopMCxcubMzOzja/8sor8VarlT788MOTEyZMsPb2WsePH5/pfFxaWmrctGlTyXXXXdfmzXvKRZ7D4Qw7JJsIIoB0msFeCkdF8vLyTOvWrYvev3//UcYYpkyZknHllVe2nj171rh+/fpTU6ZMKZs4cWLG2rVro/ft21e8bt26iJUrVybm5uaefOSRRxJzc3NbNmzYUFpXV6eZOnVqxo033tjy7LPPxkZERIglJSVF3333nfHyyy+f4Lzec889dy4+Pl50OByYMWPGuL179wbl5ORY7rjjjjFr1649OXfu3I6GhgYhJCRE0mq1jry8vBKTycQKCgoMt99++yVHjhw5CgDFxcVBGzduPBUXF+dITU3NNhgMdQUFBUefeOKJuNWrV8etWbOm1xub4uLiIgBYt25d+OrVqxOuuuqqdm/fMy7yHI7KMImho9WG4HADAECSGJqqOxCVGDzIK7t4qPjTni4/j1g5C6TprTQHx1cGsrgDwY4dO0IWLlzYFBYWJgHAdddd17h9+/bQESNGWKdNm2YGgPT0dPO8efNaBEHA5MmTO/7yl78kKeeGbd26NeLFF19MAACr1UonTpzQ79mzJ+T++++vAYDLLrvMkp6e3uG83jvvvBP19ttvxzgcDqqtrdXl5+cbiQhxcXH2uXPndgBAVFSUBAAtLS107733phYVFQUJgoCysjKDc57s7Oz21NRUOwCkpKRYFyxY0AwAOTk55p07d4b295oLCgoMjz766Mjt27eXGAwGrzMbuMhzOCrQWNWOljoLUiZEYc8HJ3Doy7OYsWgsJl2dgp3rjqHoqwpcdXcGxk3nlZsDjaPO3OO5c49+hRF/nQUSuNBfyMjx2j3R6/WuA4IgwGg0MgDQaDQQRZGc527cuPFETk5OF9d4X3MWFxfrX3rppfj9+/cfjY2NFRctWjTKYrEIjDEQUY+TVq5cGR8XF2fftGnTaUmSEBQUNMV5zF2c3dcnCIJrfb3R0tIi3HLLLWNeffXVslGjRtn7GtcfPPCOw1GBHWuP4bOX8vHffxYj/7/lAIA9m07glV9uR9FXco2n4/t6rTrJUZmqZ3uviFn55LfneSU9YYzh5P69KN6za7CXckEyb968ts8//zyitbVVaGlpET7//PPI3NzcVk/Ozc3NbVm9enW8JEkAgN27dwcBwIwZM9ref//9SADYv3+/saSkJAgAGhsbNUFBQVJUVJR49uxZ7Y4dO8IBICcnx1JdXa3fuXOnSRkn2O12NDc3axITE+0ajQavvPJKtCiKfr/e2267bdQdd9xRN3/+fK/24d3hljyHowINlfJWWfGeSggCYfFj03Hs2ypY2x0IjTaitc6Moj2VsJodMATxj12gEFttXX42jo+CpVjukyV1O3a+YYzhudtucP0cHBGJ5Mxs2C0WCFotNFr+dzEQs2bN6li8eHH95MmTMwA58C4mJsYjNX3qqacq7rvvvpTx48dnMsZo5MiR1u3bt5944IEHam+55ZZR6enpmVlZWR3jxo0zR0ZGitnZ2dasrKyOtLS0CSkpKdYpU6a0AYDRaGRr1649+Zvf/CbFYrEIRqNR2rVrV8myZctqFi1aNOajjz6KnDVrVmtQUJDkz2stKSnRb9myJfLUqVPGd999NwYA3njjjdI5c+Z0DHSuO9SXq2KowmvXc4YaNrMDb/7vLkyZnwqHQ0Ly+CikZkV3GVN6uA6bXzkMAMiclYTcJbzJUiAofzjP9XjkU7MBAEyUcO7R3QBw3lz2dqsFLbW1qC07hfpz5Zh07XUwt7Xi7eW/6DLuf9d9jOcX3wQA+O36zwK6JiLazxib6s8c+fn5pTk5OXVqrWko4HA4YLPZyGQyscLCQsM111yTfvLkySNOl/qFQH5+fkxOTs6o3o7xW0cOx0+aauQb69jUUIyZFNfrmMSx4dDqBDjsEoq+qkDMyBBkXzHyfC7zgoYxhnO//wpBE6IRfWdmn2OcRN02zvWYNJ27kmKjBdrooMAtVOH/Hvg1mqo7q3R/s+m9Xsc5BZ4zeLS2tgqzZ88eZ7fbiTGG559/vuxCEviB4CLP4fhJc40c6BUR13fKsMGkw+LHpoMI+OSFQyj+upKLvBc0fXISAGAurEf5w3kIu3YUwnKTu4xp3nza9ThoQkyXY2FXp6JlWxmq/98BjHhiZkDXuvtf73YReE8RHQ7ush8EIiMjJWeq22Dx0EMPJXz88cdR7s/ddNNNDatWraryd27+F8Xh+EFdeRtKC+oAAsJj+7cQQ6OMAICUrGgc2XEOSpTu+VjmBU/7111Fs2VrKQCGsNwUALIV3/bVOddx0nWNKQ7+XgJatpWB2f3aJvWIbza93+/xu555CYKgwdu/7eq6t3a0wxQWHsilcYYoq1atqlJD0HuDR9dzOH6w/i/fouTbaoRFG6HVe1Z4JSTCANEhwWZ2BHh1w5uWrWVgkuxVPff7r1zPJz02o8dYTYj+vKypqbr/7+mcqxcgNmUUokcmI2N2LgAgJftSAICtw6t4Kg7HI7glz+H4iCR1btvFJvdbz6ILQaGy4Jhb7TCYdKqvazggttjQUVCLkBlJICJo44LAHAyJD14GW0Ubal48CAA496c9CLsqpcu5gqH/my1ml3pY+mrx1m9+6nqce/d9SM7MRmTSSBzbswsJY9MRPaJzi2Hhr36Lhb/6LY5/9zXOFByC1cxFnqM+3JLncHzEbu3M3Mm5MrmfkV0JCpWFvWOQU7qGMpV/3YvmT09BbLRCsolw1JhdrnZ9UghCr1SE3SGhZUup6zxnRH1vaCLlAmSWE40BW7c7kxfciNjU0dDqdJgw98ouAu+OIUiO5bBxkecEAC7yHI6P2C2yuz13yXgkjo3w+DxjsCzy1nafClhdVEjtdojNcoEybaSrSijCr07tMTbhocv6nSvqNjlt0X7O57oi/eIe3X/dbx7w+Dw9F3lOAOEiz+H4iM0sW/I6o3dNUDRa+WMnicMmSydg2M62QlJiF0Jmd81GSPzjdNfjEU/MhDbS2O9cOqV3QPuBwFQe/PuvO13142bM8fg8l8jzPfnzxq9//esRCQkJE00m06TBXkug4SLP4fiIzSqLj97oXWiLoDRKEcXAR3pfqGjClUA5xmBXqglqwroGz2mCdRj51GyMfGq2R3vsgl4DTaQBunhVu6O6aKmtdj32JmtCZ5A9FHZbr91GOQHg5ptvbtq7d++gps2dL3jgHYfjI3bFktd7ackLSnEWyTE8LPltdc24s+A0vv5eBkabDAOf4AmKSEo2EU651Mb4X8RGlxAMe01gLeYJV1zl1XiNTt6+cdgusO2bj/4nGTVF6t4xxWV24OaX++1u98ADDyRu3LgxKjEx0RYdHe2YNGlSx5YtWyKysrI6Dh48GNzW1qZ54403Tufm5nY0NzcL9957b8rhw4dNAPDII49U3H333U1XXnmlxy1b1ejpPphwkedwfMQZeKfd8zRwyROA4JnYa7SKJe8YHpb8xmo5kG1fS7t6Iq/c/zCLCChvk6D33/GojQ2C5XiT6jUKzhYedj2ee+e93q1JL3soRMcFJvKDwK5du0yffvppZEFBQZHdbqdLL700c9KkSR0A0NHRIRw8eLD4iy++CLnvvvtGHz9+vPDhhx9ODAsLE0tKSooAoLa21rs7cqjT030w4SLP4fiIM4VOOPYJUHULkHSpR+e5LPkLZE9eZAyNdhEx+t6/LvIa5SZgK05U4EcJUb2O8RbmkG+gHI0WkF4DIUQH0nn9/dwDTYgecEhgVhHk5TZLf2xc+UfX46AQz9MpAUCrU0TedoFlWwxgcQeCHTt2hCxYsKApJCSEAWBXX311k/PY4sWLGwBgwYIFbW1tbUJdXZ1m165dYe+///4p55jY2FifWsP529N9MOF78pyLmtraWhw5cgTO9pPeINnkcrYaEoE9LwIeNnu60Cz5XxaV4dI9R7CroWdHzw5RQoNd/t6st6tX3IfZ5PdGsohgZgeEYHXqCQhKjYLu3er8RfKjraig0YAEAQ47t+QHor+Gat09M0SkisdGjZ7ugwkXec5FgSiKaGuTt9EcDge2bt2KN998Ey+//DI2btyIbdu2AQD27t2LgoKCgSe0toFVHAEAEETgyCbgq+c8WotwAUXXn+yw4OOaJjgYsKG6ocfxaqv633mMMVdOPLOKMBfWg1n9780NAJoQ+WZBrbazTJKw+tbrXT9ffd+vfFuXTgeH/QKz5AeBK664om3r1q3hHR0d1NzcLHz55Zeu3NX33nsvEgC2bt0aEhoaKkZHR4tXXHFFy3PPPefqGuWLu16Nnu6DCRd5zrCnsbER77zzDp599lnY7XYUFRXh66+/xrlz55CYmIi4uDh8++23aG1txRdffIFNmzbBNpDr9MkREPe+BQAQlqwHLrkC2P0C4Bg4QlqjRNdLF0B0/Sc1sjd0Wngw8hraelhSjW7Wu16tPW63gERbWQsAqGfJK+VtRZVqFOxa93aXn7OuuNqnebRaHURuyQ/I3LlzO+bPn9+cmZk5YeHChWMmTpzYHh4eLgJAZGSkOGnSpPG/+tWvUl9//fVSAHjyyScrm5qaNGlpaRPGjRuX+fnnn4cCwNKlS0fGx8dPtFgsQnx8/MTly5cn9XY9Z0/3d999N2b8+PGZ48ePz9y1a1dg0jMCBN+T5wxbGGOw2+144YUXXM9ZLBacOnUKBoMBDz30EARBwJkzZ7BmzRqUlZW5xh09ehQ5OTn9z6/cIwvRo4DLfw2sXQQc+wKYcHO/55FAAAHiBRBdv6WuGVPCTLghNgJ/PHEOdXYHYvWdgtug7J1fGRWG/zS0wCExaP3s187sPa12tdLeNMHyV57Urs7Wwr5PP+jys6DxLW5A0GohibyXgSf8+c9/rnruuecqWltbhcsvv3zcgw8+WL1+/froW2+9tfHll18+5z42PDxc+uCDD0q7z/Haa6+Vv/baa+UDXSs9Pd0mSdJ+FZd/3uGWPGfYwRiD1WrFJ598gr/+9a9djjlFfsyYMRAE+c9fq7T3bG/vDJo9fPgwBkKC/IUuGIOBMblAeAqw4cfAl48B/XxhExE0GmHIW/JVVjvyW824JjrcFTVfau7q4XBa8slBsoXc7sfetBOm3PxoojqL26iV9iYovQKkIVZtUNBo/NrXv5hYsmRJ6vjx4zMnTpyYccMNNzTOmjWLVxHqB27Jc4YdR44cwaZNm3o9du7cObS0tOCSSy7pccwp8vHx8Th16hTa2toQEhKC3bt3IyEhAWPGjJEHWmQXssRkkSeB5PS5KT8G/vuEvDevCwLmPtjnGgUtDXlLfk15LQBgQWw4nMZ5mdmKy8KDXWOK2uTgw1FGp8hLCPfTs+7sLCc2WFzPhV3Vs4ytL5BWAOkESFb1realr//T53MFjRaSg1vynvDpp5+e7v7ct99+e8zfeQPZ030w4ZY8Z9hx7Fjn53327NmIj493/fzRRx8BAEaMGNHjPGdg3mWXXQbGGPLz82Gz2bBt2zb8859uX+BmOS/cZckre+yY/kvglv8DkqcD377Z7/68RiNAGsLR9WVmK14vr8UP4yORHmzECIMs4uWWrpZ8YZsZE0ODkGCQlb1NDe+EIvLG8W7ftyq+V6QXXNH7arHkqRcQHBHp8/karQYit+QHlVWrVlUVFxcXuf+70AUe4JY8ZxgiCAIiIiKwbNkyAEBYWBg2b97cZUxYWFiP85yW/JgxYzBq1Cjk5eV1CTRrampCREQEYJVTyZhiyQtOM1dvAjJvAvQhwLs/AAo/AnJu7X2NGoI4hKPrV5yogIYIj1ySCAAI0giI0WlRbunq5q62OTAmyIAgJfff4kMqYg8UkdclBsNSLEf0GzOj/Z9XgXQaV/S+P7i71+NHj/FrLkHD9+Q5gYFb8pxhh91uh07X6TMOCupZDtVk6gzkcubROkU+ODgYc+bMgcViwVdffeUat3fvXvmBTbb4pYzvA3Cz5J2MmQfEpMtu+z6seUFLqlnyZlGCXVLvhuFgSwe+qGvG/6bGI8nYWS9+pFHfw5KvttoRZ9DBoNzoWFSw5J03Vu7BduRnMJ87pBN6De7zljMFh1RYjQzfk+cECi7ynGGHJyLfW4EMh7InqtPpMGrUKAQFBcFisSA5ORlZWVk4cOCAPEaUhU7Sh8tzdRcgIiD3UaC2GCjZ0usaNRpBNUt+XF4BfnKkxzalz2ypa4aWgLuSulrPI4w6lFs7Rd4iSmhyiIjXa2EUnJa8Cq/JOYdArgY0aiKLvP83I1qlscyMW+7wey6+J88JFFzkOcOO7iJvNMpR2iaTCT//+c9x11139XqeKIogIhARBEFAXJxcQyMlJQUZGRmwWq2orq4GmFKNjRFIoN4rao2/HjDFAEc/6/Vaglad6HqzKMHGGL6sb/F7LieHWzswLtiIcF3X3byRRj3OWWwuS7tGaagSb9C5ibwKlrxzChVry7ujlrtedGYWZGb7PZfA9+Q5AYKLPGfYYbfbodd3upkNisWl0+mQmJjYI7LeKdKiKELjlueclZUFAMjJyUFSklwro6KiApDkL2PGqHM/vjsaLTDyMqCq91Q8jUrR9dUB6Fx2rN2CjOCe3o+RBj3MEkO94uo+q7ju4/U6GJUtCzUteQrQt5MceOe/oDpbw+oM/fex9wRB0PA9eR9Yvnx50p/+9Kf4gUdevARU5IloPhEdI6ITRPRwL8dTiGg7ER0kosNEtDCQ6+FcHHS35END5YYhubm5/Z4nSZIrdx4Apk6dit/97neIi4tDREQEgoKCZJF3WvIS9dyPdyd+AlB3vNd9eUGlPPkqt7Kykoe18/uj2e5AhdWO8cE9hWukUX5Pnfvy71TUAwCSVLbkXT0AVNyHd0ctS96hiLxWrx9g5MBotBpIDm7Jc9QnYNH1RKQB8DKAqwGUA/iOiD5hjBW5DfsDgH8xxl4lokwAnwMYFag1cS4ObDZbF5E3GAxYsWLFgOeJothF5IkIISEhrsdJSUmyyGfIngCJDSTymQATgdpjQOLELod8teSL2804Y7bhmhg5HsBd5JsdIiJ1/n2kTyvFbsaaeor8CCUI75zVhkthcgXZZYQEudahSuCdFGiRV2dP3mF1irz/7XXl6Hqz3/OcT/64+4/JJxpPqFridWzk2I4nZj7Rb3e7hx56KGH9+vUxSUlJtujoaPukSZM6CgsLDUuXLk1paGjQGo1G6e9//3vZpEmTLGfPntXec889qWfOnDEAwEsvvVR29dVXt1911VVjKisr9VarVVi6dGn17373uzoAMJlMk3784x/X7Nq1Kyw8PFxcuXJl+UMPPZRcUVGhX7Vq1Zk77rijubc1tba2CrfeeuuoEydOGNPS0ixnz57Vv/TSS2fmzJkz6IV6AmnJTwNwgjF2ijFmA/A+gJu6jWEAnLlM4QAqArgezkVCd0veU7pb8t1JSkpCTU0N7IqLXJKo/6jvuAny/zVFPQ4JPuTJN9gduHZfCe4qOI1aZQ2VbiLfoYLAOt3/zrx3d5KUXPkKJY2uxSFiulIYx+iMrlcxhU7Nfu/ukE4dd31TdSUAdSx5Obp+6NZNGCrk5eWZPvzww6iCgoKizz777ER+fn4wAPz0pz9NfeWVV84UFhYefeaZZ8p/8YtfpADA0qVLU2bPnt167NixosLCwqLJkydbAGDt2rWlhYWFRw8dOlT0+uuvx1dVVWkAwGw2C7m5ua2FhYVHg4ODxT/84Q8j8vLySjZs2HDiiSee6FlcQ+GZZ56JjYiIEEtKSopWrFhRUVRUFNzX2PNNIPPkRwBwvyMrB/C9bmNWAPg3Ef0aQDCAqwK4Hs5Fgrci774n3995SUlJYIyhqrEVyVDc9f2JfPQYQNABNUd7HBIEwOHl/vX6ygZYlXP2NrXj+rgIVLntyZtVEFinRd6byEfrNDAKhHNKhH2NzYHsUHnv3umut6qyJ6/8HyBLXtBrIKlgye/98F/I6VlDAAAgAElEQVQA1BL5Cy9PfiCLOxBs3749ZOHChU2hoaESAFxzzTVNFotFOHjwYMiPfvQjV7ECm81GALBnz57QjRs3ngbk8tXR0dEiAKxatSp+8+bNEQBQVVWlKywsNCYkJLTrdDr2wx/+sAUAJkyYYDYYDJLBYGDTpk0znzt3rs9f9J49e0Luv//+GgC47LLLLOnp6YNuwTsJpCXf2ye0+zfA7QDeZoyNBLAQwD+JeobbENF9RLSPiPbV1tYGYKmc/mhuPoCS4yshSUO/FaazKU0gLPmoKLkCW0uHVblWLzny7mh0cr58bXGPQ3Kva+/Wt72hBWNNBhgFwrfNck6/u7teDVd5tc0OAhDTi9ufiJBo0KFCuWa1zY44vTzOmSevxo0GC3DgHVTKk49Jlkvt6o09gxS9RdBqeXS9h3T38EiShNDQUId7pbpTp04V9nX+Z599Frpz587Qffv2FR87dqwoIyPDbDabBQDQarXM+R0gCAIMBgMDAI1GA1EU+/yw99fnfrAJpMiXA0h2+3kkerrj7wXwLwBgjH0NwAggpvtEjLE3GGNTGWNTY2NjA7RcTm90dJRh3/4f4ezZNWho3DPYyxkQ5xels+mMt+f2J/LOKH2rTba4Bgy8A4CkScCZrwG7pcvTJBC8VfmTHVZcGmrCpDAT9jbLBXncRd6sghVdY3UgRq/ts5PcCIMeFRYb2h0i2kUJcUpHOiKCUSBY1Mj9D3DgnaATAAfr3Pv3kaT0DARHRIL6+ZvxFI2GR9d7wrx589o2b94c0dbWRo2NjcK2bdsiTCaTNHLkSNuaNWsiAVn0v/766yAAmDlzZuszzzwTC8h1MBoaGoSmpiZNeHi4GBoaKh08eNDodPn7w4wZM9ref//9SADYv3+/saSkxP87P5UIpMh/ByCNiEYTkR7AbQA+6TbmDIArAYCIMiCLPDfVB5HS0lexK+8ynDz1HACgvn6761hd3X8Ha1keIymWZH9i3d+5/Z3nzLe32p0i70EltuxFgKUZKPmiy9NEgOSFyNglhkqrHclGPaaFh+BImxlmUUKl1Y4kxbWuhiVfZbMjQd+3F2SEUY9yix01yo1OnNtYoyCouicfyDx5AH4H34kOBwQfbiZ7Qy6Gwy35gZg1a1bH97///YasrKwJ119//Zhp06a1AcB777136h//+EfMuHHjMtPS0iZs2rQpAgBeffXVMzt37gxNT0/PzMrKyjxw4EDQokWLmh0OB6Wnp2c+8sgjSTk5Oe39X3VgHnjggdr6+nptenp65sqVKxPGjRtnjoyMHBK/0IDtyTPGHET0KwBbAWgArGGMFRLR4wD2McY+AfBbAG8S0f9CduXfzYay32OYYzafwenSv0GSrCgtfRmREd9DY+M3CDKmICRkHOrrtgPjBnuV/eOLyDvdf4yxLnny3XHm3lsVV6/ECANeZvRcIDQJOPQeMOH7ndcUvHPXV1htkCC3dA3WCBAZUNJhQZXVjsvCg1FhtaviKq+x2rsId3dGBemx3mbHv6rkmvJJBvVFvtNdHyCR18u/NGYXAYNv/d8BQHTYoVFN5AUwaUhowpBn1apVVb01jsnLyzve/bnk5GTHf/7zn5Pdn9+1a1ePsQDQ0dFx0Pn4ueeeq+jrWHdMJpP0wQcfnDaZTKywsNBwzTXXpKelpQ2J/c2ANqhhjH0OOS3O/bk/uT0uAjAzkGvgeEZb2zHs2/9DEGkw/XvbcCj/Hpw6/QLa208gLvZaGI0jUFu3DZJkhSD4nzIUKPyx5Ac6TxAE6PV6WGydlvyA7npBA2T9ANj7mpwvr5XfOyLyyl3sLDyTYtQjVhHhvIZW2BhDerARu5va1Am8s9ldwXS9MTpIXv/nSunbGZEhrmMGgS6IwDvSOUXeX0veDo3Wz766CiQIrr9dzoVHa2urMHv27HF2u50YY3j++efLjEbjkDBYeRc6DgCgsupDSJId07/3BUym0UhM+D5Ol74IAIiOngubXbbcbPZGGA0Jg7nUfgmkyAPyvrzTkmeSbIENSGIOIDmAxjIgNh2AHFTmjSV/RhH5ZKMeSQY9dETYWieXsk1XCtf4ux/ukBjqbI5+LfmZkSHQE+FYuwVzI0OhcXOpGzUqueudb0xgNF5Vd71aIi9oNFzkLwA2bdoU9uijj450fy45Odm6bdu2k0eOHOmZRjME4CLPAQDU1+9ARMRlMJlGAwBiY6/B6dIXYTAkIibmKtTV/QcAYLc1QiAtDuXfgwmZ/w/BwZf0N+15x7nb46vI9+euB2SXvc0hB9F5tCcPACFyDXy013aKvLeWvNkGAXKuuk4gXB4RjF2NcvDdWMW6tvu40/XvumY0OUTMiQyFBLkWfV/E6nW4LjYcH9Y09aiKZxQIZhWL4dBAXhIfIa2yPeOnyEsOh2ruehIEMB5dP+RZtGhRy6JFi3oWvhjC8Nr1HJjNZ9Defhwx0Z1lX0NCxiM2dj7GXPJbCIIWOl0kAMBub0BN7b/R2lqI0tKXB2vJfeLPnrwn52k0GogV+fK1GPrPk3dilKvTwdJZLEvek/fOXZ9o0EGnXO/ekZ1ZJqNNssjbfLQE7yo4jd8cPYMzZjk1sL/AOwCYFiG76Md1E/kgQVC3C12AAu+geF+YnzckqgbecXc9J0BwS56DM2ffBpEWcXHzXc8RESZmd4q4Xi/niNts9ZAkWQxEqWta2FDA+UXpa7U0j0ReuTeWRA/25AFAp1T+dHSWLSWCV5Z8qdmK1KDOWIirosMwIyIEWSFBCNfK3gebnwJ7uE1eX5yh/6+FOxKjkGYy4HvhIV2eNwgCWlWwRl33PoHak3f+zvx8v0SHA1o/ywg7IUEDxkWeEwC4yF/kVFT8CxUV7yMh/kYYjUl9jtPpZJG32xthNpcBAGy2uvOyRm8I9J68RqOBBKclKEKj90TklUA2u5vIexldX2q24ZqYMNfPGiJ8MGksgM7UOV/d9U4OtchFuuIHsOT1goBZkaE9njdqCLU2FYRKDGx0vfPmgfkZwyA57BCM/negAxRLnrvrOQGAi/xFitVai/Jz/0Rp6csID5+KS8b8tt/xOl04AILN3gCz+QwAoL39OBhjAasx7gv+ivxAe/KCIEA0RAFWQCKDy33eL05L3u6bJd/mEFFnd2BUUO9ZDXplDf5Gth9q7YCAgUW+L3REft9oAHArhuP/VL3hsuT9FHlRFCEM8PfiKYKGW/KcwMD35C9CHI52fLfvZpSWvozY2PmYMnndgBHzRBrodJGwu4m8w9E8ZKz5/WWNmP7X/+BUrRyMFtA9eY0RiEiFJDHPgsNclnxnOWtvLPkyJbI+Naj30tkCEbTkuyWvU17/iQ4r4g26PqvdeTKPKgXvAt2gxrkn7+dNERNFCBoVA++YNKTLo3LOP08//XTsSy+9FO3PHNySvwgpO/M6rNYq5OS8heiouR5/mep0UbDZ6mA2l8NgSITVWglRbAMw+KWG/7K5CFUtFvzjq1NIQGDd9VYGgARIIvMs8E7bi7uePA+8K1MC4vqy5AFARwKsPlqCJo2AZqXaWmI/kfUDoSGCQ1VLPrDuevgbeCeKKgbeKWl9kgRSyTvAufB58MEH/a4Ay0X+IqS6ejOio+ciJvoKr87T6yLR2loExuwIDh4Lq7VyUJvW1LRaEBNswOn6dhw80wQAOFXT6pfIe+Kul5wiL3ko8oIAaAxA/vtAXCaQeaNX7vpSpcf7KGPf3c4MAsHuo2Xq7gHwR+S1aom8GFiRd3pf/N6TFx0D/r14irP+vSRJqm0BBJqKRx5Nth4/rmo/eUNaWkfSX1f2291uxYoV8WvXro0BgDvvvLP21ltvbZo/f37atGnT2g4cOBCSkZHRcc8999Q9/vjjI+rr67Vvv/32qdzc3I6Wlhbh3nvvTTl69GiQKIr06KOPVixZsqSpv17wd9xxR0p+fn6wxWIRbrjhhsbnn3++AgB27txpWrZsWUpHR4eg1+vZrl27jtXU1GgXL1482tns5oUXXjhz9dVXt3/22Wehjz32WFJsbKy9qKjItHDhwsbs7GzzK6+8Em+1WunDDz88OWHCBGtvr3X58uVJISEh4uOPP17t63vKRf4iw25vgtlciqTEH3p9rt4Qh6bm7wAAwcFj0dCQNygizxjDr9YdxOaCSoyLD0VylAkCATdfOgJfFxwHtL67egc6T6PRyBokaMA8ddcDgGgFGk8D/7oTWNHskbveIkr43bGzKDVbEanVILyfSG6dQLD5KLDuqXdj+vEWDIROUEfkXbVwAhXqoVJ0veRQ110PyFsA8KGD4sVCXl6ead26ddH79+8/yhjDlClTMq688srWs2fPGtevX39qypQpZRMnTsxYu3Zt9L59+4rXrVsXsXLlysTc3NyTjzzySGJubm7Lhg0bSuvq6jRTp07NuPHGG1ueffZZVy/47777znj55ZdPcF7vueeeOxcfHy86HA7MmDFj3N69e4NycnIsd9xxx5i1a9eenDt3bkdDQ4MQEhIiabVaR15eXonJZGIFBQWG22+//RJngZzi4uKgjRs3noqLi3OkpqZmGwyGuoKCgqNPPPFE3OrVq+PWrFkTsLa9XOQvEiTJDkmyoKWlAAAQFjbR6zlCgtNQozwONsmtmyUWeJHfcqQSG/aV43fXjkNGYhg+OnQOmwsqce2EePznaA2OVbfi7hmjkBhuxFeHREAb4D15xZL3J+jQk2I4Xze1YWN1IwBgdmRIv2P1RD6l0EmMweF2WkaI782zVHPXO19HoIrhOKPrHf5b8oJWvcA7ABdUrvxAFncg2LFjR8jChQubwsLCJAC47rrrGrdv3x46YsQI67Rp08wAkJ6ebp43b16LIAiYPHlyx1/+8pck5dywrVu3Rrz44osJAGC1WunEiRP6/nrBv/POO1Fvv/12jMPhoNraWl1+fr6RiBAXF2efO3duBwBERUVJANDS0kL33ntvalFRUZAgCCgrK3PdMWdnZ7enpqbaASAlJcW6YMGCZgDIyckx79y5s2eqiopwkb9IOHXqeVRVfYSkEbcD8FHkQzq70wQFpQAAmGTva7gqNLTb8MCGw2i1OlBwrhnrfjYdz24tQfaIcLx6xxQcPteMsw0dmJ+VgA8PnnNVQvXVXT+QaMvuegJIseR90SFJ9Kis7bH2zjoEd4/o0YG5C3qBfCqG44zI/3lyLAxEuCY6bIAz+kZLUMeSD3QxHK0z8E6FPXmVLHnB5a7naXT90Vcci16vdx0QBAHOuvHufeAZY9i4ceOJnJycLq7xvuYsLi7Wv/TSS/H79+8/GhsbKy5atGiUxWIRlJv7HietXLkyPi4uzr5p06bTkiQhKChoivOYsy999/UJgtBvn3o14NH1FwGMSaiq/hhWWzWqqj6EyTQGWq33N4/BwZ0ir9HIFp9a7vq+PmgfHChHq9WB52/NQZvVgaue24nqFgt+v3A8BIFwaXIEbshJgk4jIMqkh/OzFyiR72rJ+5jLbWn2yJJvUoLhPp2choUx4f2O1QuCT+565358ol6HR8YkIdgPy1Tek/f59E5YgLvQuQLv/HXXq7gnr+kMvOP0zbx589o+//zziNbWVqGlpUX4/PPPI3Nzc1s9OTc3N7dl9erV8U5vye7du4OAvnvBNzY2aoKCgqSoqCjx7Nmz2h07doQDQE5OjqW6ulq/c+dOkzJOsNvtaG5u1iQmJto1Gg1eeeWVaHGI1D3glvxFQEvLIVitcmdGs7kMI0Ys9mmeoKBk12Mied9QYv5b8t+cqsdP/vEdJiSF4e17piHEreLaxv3lyEmOwPcnjUR6fCg2H67ElRnxmJIa2WOeyGA9BHgv8t676wlQRNonY1O0eVTWtskhIkqnwWXhwQNO6au73hmRr1dBULVEEFVx1yv/D/nAOzWj69XxLgx3Zs2a1bF48eL6yZMnZwBy4F1MTIxHavrUU09V3HfffSnjx4/PZIzRyJEjrdu3bz/xwAMP1N5yyy2jlJ7zHc5e8NnZ2dasrKyOtLS0CSkpKdYpU6a0AYDRaGRr1649+Zvf/CbFYrEIRqNR2rVrV8myZctqFi1aNOajjz6KnDVrVmtQUNCQ+GVykb8IqK39EkQ6CIIOotiByIjpPs1DJGDMJb+FyTQGgiBHevtryTtECcvXH4LZLmJfWSOe2VKMx27KAgAcrWxBcVUrHr9JjoOZkBSOCUl9W7RRwXqQDyLvjsfuekEjW/K+qLzDokTX9z+sye5wlawdCJ2P0fVOnfOoqM8AaMn3CH93Ot31fk/VO6qVtbWrFgnviq4fItbfUGbFihXVK1as6BJtfvz48ULn402bNpU6H48bN87mPBYSEsLWrVtX1n2+/nrBu8/lzty5czvy8/OL3Z/Lzs62lpSUuJrXvPzyy+cA4Prrr2+9/vrrXd6Gb7/99pjzcfdj3ene094XuMhfBDQ2fo2wsBwQadDUtBeRkd/zea5Ro34JAOjoOA0AYH6KfN7xOlQ0W/DaksnYfaIe7+49g7tnjsbomGBs2l8OrUC4LjvRo7lkkZc5P+565ptL2doKEkwDWvLNDhFhHoq8nnyLrnda3oIKiqolggQ5mE/wZz9dYgAFsBiOK5Ldd5EXHQ4wSYLOoFZZW+6uHyyGci94NeAiP4yRJAcaG3ejpfUIRo36JUym0TCZRkOv7z+IyxOInJa8f+76jfvLEWnSYd74eExOjcQHB8rxp4+P4MXbJuG9b89gYXYiokM8S+sKNWhd7vrAptD5GXj32izQpAMD7slbJAlBHt6s6AVChw/FXVwir4KeKh1c4WAMen8EmrHAFcIBOi15P4rhOGzyza1WpXQ3bskPHpGRkdJg94J/6KGHEj7++OMo9+duuummhlWrVlX5OzcX+WHM2bNrcOLkKgBAZOR0REVejsSEm1WZ2+Wu9yOFrqHdhn8XVeHO6aOg1wqICzXi4QXj8cePC3HZyi8BAL/MHYOq9io8890zmBQ3CW8WvIn7J9+PH6T9oJc1EXSC83Fg9uQFQYAEAQx+BN7Bs7K2VokhzEN3sNbHuvFOmdOoYDU753AwoO+yPQPDJB89JB5CAgFedgHsjjMKXrU9+QswhY6jHqtWrapSQ9B7g4v8MKaq+mMAQFTkTISHTVZ1bkGQLRh/3PXvflMGu8hw62WdAX1LpqeipLoNmwsq8dtr0jE+IQyLNy9FQV0B/l32bwDAn/f8GSG6EFwz6poec+oVczKQ7noAkASt33nyQP+CZpUkGPWefUT1PhaicaWke31mT5w18P0OvpMQwEo4Chryy13PFIvb6Wb3F+KBd5wAwUV+GOFwtOLU6RcREpyOsLCJaGsrRlraH5CS/BPVr+Vv4F1RRQve3HUK12TGY1xCZzofEeGJm7PwxM1y8F1VexUK6gpw38T7oCUtrKIVW0q3YOXelZg9cjaCtF2Lt+gFAqTABt4BACMBTPJBi1JnAmW7QYoNzRgD9bEfbhEZDB6+Dq2P0fWd7noV9uSVmxW/O9FJAXbXQxFVP0Te6VZXswsdwPPkOerDRX4YUVOzBWfPrgEAaDQh0GhMiI+7PiDX8ieFrqiiBbe98TWCDVo8el1Gv2P3Ve8DAFyVchUyouWxs0fOxt1b7saHxz/E4oyu6YA6AX6J/EDnOW8CJJBvgXcZN8gir9wc9aeHFkmCwcP5dT5WmxOh3p68RiVLXvZu+L+eftEQmB978k63urOjnb9wS54TKHgxnGFEc/MBaLXhGDXqfyBJZmRmPguDITAd4oi0AMhrS94hSlj+r0Mw6bXYsPRypEb3nwO+r2ofQnWhSI9Mdz03JX4KJsZOxPvH3u8Roa7XeO+ud7feB7LkXW520iopdB5eZNrP5f+NcgogiXI1u/72ha0Sg9FTS17wcU/e5a73X+V1rj15Py35QAfeQcmV92NPnknquut5njwnUHCRH0Y0txxEePgkjLlkOebMPoC42GsDdi0igiDovd6TX7P7NIqrWrHixglIjuq7gRVjDK/lv4ZNxzdhUvwkaLp9mf4o/Uc43Xwat22+DYdqDrme1ynDAu2ulyAo0fUeitHCp4EVzYBBLhtLolxZcyBL3lOR1xHB4YM+SMoC1CgT75zD71z587AnT4J/e/Kqu+uVv28eXe89paWluvnz51/S1/G6ujrNU089Nfj9sAcJLvLDBLu9Be3txxEeLgfYabX9NzRRAyKdV+760rp2PLetBFdnxuPaCfFdjhXWFeLNw2+i1SbXhShpLMHLh14GAMwZMafHXAtHL8Rt425DUX0RVu5d6bLonUVdApVC57LknYF33lqcRkXky/LkeQaw5L1x19sGqq7TC05JUWVP3uWu92+eQEfXA5DvSPwSefm9Vr0YDrfkvWbUqFH2LVu2nOrreH19veatt96KO59rGkrwPfkLHFHsQGPjN6iplSPPIyKmnbdrC4LeY3e9xS5i+b8OQacR8MRNWV3EdM2RNXh+//MAgFZ7K5ZPWY4Hdz0IAPjj9D/i+2nf7zGfXqPHo9Mfxfio8Vjx9QocrDmIyfGTnb1HAr4nzyAAvgTeifJNkVB1CMCUPgviSIzBzjwPvPO1zWtnMRz/Uc1dL7GAmx+kEdRJoVPLXe+sXX8BWfL/+b+jyQ3n2lTtJx81IqTjyrsy+uxu94tf/GJEamqq7eGHH64F5H7roaGh4rp162KOHz9euG/fPuNPfvKT0Xa7nSRJwqZNm07+/ve/H3H27FnD+PHjM+fOndvy9NNPV8yfP39sc3OzxuFw0J/+9KeKJUuWNPV2vaeffjp2zZo1sQDQ2tqqGTlypHXv3r0lar7mQMMt+QsYs/ksdu+Zi/zDP0Nl5QakpvwcEeFTz9v1ZXe9Z5b8S/89gQNnmvDUDyYiIbyzSlhxQzFePPAi5oycg7ERY7H19FYs37Ecp5rlG/Nbxt0CndB3wZEFoxfAqDHii9NfAIDfefIeu+tJgOSLJZ86U/4/Qc4e6Mv4du6v6zy8i5BLynq3FMC9q6uaefJ+Bt6dhz15CORXMRynW524JX9eWbJkScOmTZtcRWM+/vjjyOnTp7c7f/7b3/4W+8tf/rK6uLi46PDhw0dHjx5tW716dXlycrK1uLi46PXXXy83mUzS5s2bTxQVFR3duXNnySOPPDKyr/f9wQcfrC0uLi7Kz88/mpCQYLv//vurex04hOGW/AVMff0u2O0NmJj9KoKD02AyjT6v1xfIc0t+S2EVZo2NwXUTO0vU2kU7VuxZgXBDOP4666/48PiHWL1/NSraPS/XbNKZMCluEvJr8wH4JvLueOyuhwB4E3jnRCff4Ai2FnmePgTRoaivNsDR9Z178mq46+X/1bDkA+2uJ7Xy5C/i6Pr+LO5AMXPmTHN9fb22tLRUV1lZqQ0PDxcvueQS15fQ5Zdf3v7ss88mlpeX62+77bbG7Oxsa/c5JEmiZcuWjfzmm29CBEFATU2Nvry8XJuSkuLo67r33ntv8pw5c1oXL17cHKjXFii4JX8B09ZeDK02FDExV593gQcAEnQeVbwrb+zAiZo2XDGua+zLxuMbUVhfiN9P+z3CDeGYniQ3znHmvmvJs3vQjOgMHG86Drtod4li4FPo5HE+V7xrPCnP04fL2OGy5D2bz1nxbqB6+N1x7cl7dVbfawDgf7tZyZe7Jy/xU+RVd9cLPE/eU2644YbGd999N3Lt2rVRixYtanA/tnTp0oaPP/74RFBQkLRgwYL0Tz75pEdP7ddffz2qvr5eW1BQcLS4uLgoOjrabjab+/wIvPjii9Hl5eX6Z5991u9mMYMBt+QvYNraihESPD5gjTwGwtM9+f1ljQCAmWO71szPK89Dalgq5o+eDwAYFzkOf5n5F2THZCM6KNrjdWREZ8AhOXCi6YQrwjvQ0fWi8tHx9a13FsNBHzpj99KN7mwV62Ce3xgAateuV8ldLyHgefKkEfxKoVM/uv7Cs+QHizvvvLPhZz/72ajGxkbtzp07j1ksFtdfb1FRkT4jI8M6YcKEmlOnThkOHToUNG3atI729nbXX1Rzc7MmJibGbjAY2KeffhpaUVHRZxXmvLw809/+9reEPXv2FGtU+l2fb7jIX6AwxtDWVoLEhJ5BaecLQdCDeRBdX9ks54SnuKXM2UU79lXvw81jO2vpExFuGnuT1+tIj5Bz6E82n3QF3nlz4+NLnrxE8gfeZ0teUfeBLXnP9+QBeS9f50XOu5p78mqJ/PmoeAfBz2I4zuh6tcraangKnadMnTrV0t7eLsTHx9tSU1Ptx44dc4n0P//5z6gNGzZEa7VaFhsba3/yyScr4uPjxSlTprSlpaVNmDdvXvOKFSuqFixYMDYrKytjwoQJHaNHj7b0da0XXnghrrm5WTN79uxxAJCTk9O+fv36Hu1qhzIeiTwRJQBIcR/PGNsTqEVx+sdub0HJ8ccgim0ICRk3aOsg0nlkyVc2mRFm1CLYIP/5NFmasHzncpgdZswaMcvvdSSFJAEAzrWeg4YiFG9vYFLoXIF3zGnJ+ypGshD2uSevPK/1cH5fI9slqLgnL6hUu/48FcNhdv/d9WoF3nFL3jvc+7a794x/8sknq5588skejV4+/fTT0+4/Hzp0qLj7mN7YuHFjqZ9LHXQGFHki+iuAJQCK0bmFxwAsDOC6OP1QWbkRVVUfAQDCwnIGbR2yu75HXEsPKpstSAwPQp25Du32dmwr24bvqr4DgTA9cbrf6zBqjYgJisG5tnPQCxGw+lG9zdM9edHZ0sWXS4UkQDD37653ibyHYueqG++lC9q5La3mnry/xXC8KjLkK4KfFe9cDWrU2VfgXeg4gcITS34RgHTGWJ8uDc75pb5hF4zGZEy69B+DEnDnRBB0EB1tA46rbLYgPkLAok8WocnaBING7g//7sJ3odf405S0k6SQJFS0VWAMZUICQZIYBA8F0qeytoosenqNLqRfC6mlCY1RB1FekYzMmLQeQ7x11/tqyavZoMYZD+F/WVuchwY11BK/QrMAACAASURBVOdWiSe4Au9UT6Hj7vrBoKqqSnPFFVf0cIvu2LHjWEJCwgX9S/FE5E/Dxxt9IpoP4AXInSz/zhh7qpcxtwBYAfmjnc8YW9x9DKcTUTSjqWkvRoxYMqgCDygpdB5E11c2W5AY34AGsxwIa3aYcfeEuzExdqJqa4kLisPp5tNIJ4CBYBMlGH3YL/U48E6JDPPJ4hS0aIEAh74V23dtQ+bEniLvtIY9daM7K/3ZvHXXu/bkvTqt9zWoVfFODHwxHH8teVeevEqW/IWYQjecSEhIEIuLi4sGHnnh4YnItwI4SERfAnD5Zhljy/s7iYg0AF4GcDWAcgDfEdEnjLEitzFpAH4PYCZjrJGILtrSg57S2LQXkmRDdPTcwV6KnEI3QDEcq0NEXZsVkv4MYAaenfss3i16F4vSFqm6luigaHxX/R00xCABsNolGHXei7zHFe+YM/DO60sAghaC5ACEvt2z3qbQuSx5L4VL1T15t+A/v/ClyJCXkNB/SeGBULusLa9dzwkUnoj8FuWft0wDcIIxdgoAiOh9ADcBcL9b+hmAlxljjQDAGKvx4ToXFS0tBQAI4WGTBnspHqXQNbTLx1vYaSQGJ+LaUdfi2lHqN86JCYpBs7UZAAMDweoQAfRdKa8vPI6uh3+WPCnhLfUNdb0OcbgsbO/c9d4KbCD25P0OvJNYZ1WjQOGvJR8gdz235DlqM6DIM8beIrmv6FjlqROMsT4rA7kxAoB7RaRyAN/rNiYdAIhoN2SX/grGWI8bCiK6D8B9AJCSkuLBpYcvba2FMJlGQ6vtv0Xr+UCg/lPoJCahskUuCV1tKcGUxOyArSUmSM7BlyQLJBCsXrRk86Wsrei05H0xOAUN2ADNZHxNoRvMPXn18uQDH3hHAvllyXcG3qlcu56LPEdlPImunw3gnwDOQY4lTiCiOxljuwc6tZfnun+qtADSAFwBYCSAPCLKYox1aRbAGHsDwBsAMHXqVH/raV3QtLYdHdSIeneoH0veLtrx03//FAdqDkAfOxcNtipkxdwesLVEGCIAABKzgYFg9zEH2vN+8n5UvNMaIEn93ye7RN7TsraCb5a8811StdWsCoF3Ae9CJ/jbhS4wxXC4u56jNp74xJ4HsJAxNpMxNgPAdZCD6QaiHECy288jAXQvC1gO4GPGmJ0xdhrAMciiz+kFu70ZFks5QkMnDPZSAMjR9X2J/GuHX8OBmgMQIMAQsxMAkB0TOEvepJML7UhMBGPk9d60E6/L2vpicUaNgTTAaQ5vA+98TF9z1q4X/Eg7dK3BlSfv50TnqRiOf+56+faIVK5dz1PovCeQ/eSPHTumT0tLGxpfuD7iyV+o3j1YjjF2FIAneU/fAUgjotFEpAdwG4BPuo35CEAuABBRDGT3fZ99gS92Ghpl50loSOYgr0SGSAvGeloeZS1l+HvB33HjmBtx35hXXM9nxWQFbC0huhAAgMQckIAeljyTJI/qunvurneW1vN+rdAaMNBXubdd6Pzdk1fDklfXXe//evrDb3d9oFrN8hQ6r+H95PvHk8C7A0T0OmSXPQDcAeDgQCcxxhxE9CsAWyHvt69hjBUS0eMA9jHGPlGOXUNERZAL7TzAGKv35YUMd6qrP8ORwvuh18cNHXd9HyK/rWwbJCbh15N+jU/2t8NSdSOe+cFMV+OZQOAUecYciru+8wucSRJKb7sdUksLUt7+B3QJCd1ehw9lbbvlydssDuiNHlaJFrSQBriOUyg9teSdxXC89WCIUDNP/sIqazuUatdfiJb81lf/X3Ld2TJV+8nHJKd2XPuLZUOmn7w7RUVF+kWLFo197bXXSoODg6Xu1+mt491QwBNLfimAkwAeBPAQZEv7555Mzhj7nDGWzhgbwxhbqTz3J0XgwWSWM8YyGWPZjLH3fXsZwxvGGErLXkdwcBoun/5v6HRhg70kAACRBr3FYOaV5yEjKgMJwQloNtshNc/ETWMXBHQtLne9JIu8w82Sb/vvf2E5fBi20lI0vtf/n9hA7npX+VEmixARcO5YI95ctgtnijy8P9XoIA3gAvA1hc7rPXmnJe/VWf2vwdetEhfnqRjOALGP/RKoFDoeeNc/57ufvJP8/HzDokWLxr711lun586d29HbdQL4sv3Ck+h6C4CnlX+cQaC55QDa2oowbtwT0Gp7dE4cNOSkCwmMSSAlEK3Z2oz82nzck3UPAKCpw46IIF3Ao6U73fUiJGi7WPKt276EJiICxsxMtGzejLj/XdbnPN5a8iBC+TG5y96nL+bjf16b12U8s4to21OJ4O8lQHBa+oJ2QHe9M4XO47K2vtauV7XinYru+qFuyavsrqcLMPCuP4s7UAxGP/mGhgbtzTffPHbDhg0np06davH0OkOFPs0WInpP+f8gER3o/u/8LZFTV/dfEOmQEO99h7ZAIiid2Nxd9kfqjkBkoqsmfZPZjnCT9/nq3tJpycsOaOeePGMMbXt2I3jGDIRccQXs5eWwV1b2OQ8RoaGyHfu3lKL+XGfJ3tozrXh56X/R2iB/lt3d9fs+L3WNc9/3NxfW49wf96D5i9No++pc50UEbedNQh9426DG2WrW5rW7XkadPXn5f1Xc9QHWeGj825N3VbzjDWrOO+e7n3xoaKiYmJho27FjR4g31xkq9GfJP6D8/8PzsRBO33R0nEJQUMqQyI13h7qIvCzkZ1rPAABGh8sld1vMdoQHBV7kBRJg0prk6HoQHMqXpbXkOMTaOgTPnAFjRgYAoGPffoTfcL2ydoaGSpe3D6Kd4cPVB2Bps+Obj05h4S8nYvTEGJzYL9dpqiyRt+6cIl1d2tJlHU3VHRAO1qB1Z7m8rjA9pBYbzEcbEHZVqrJYLURFxPryHDij5M9bnrwKqtq5Bj8nOg978qRWgxo1o+uJeO16Dzif/eQBQKfTsS1btpzMzc1NCwkJkZYuXdrQ23VuvPHG1kC+bl/pU+QZY+XKwwoAFsYYI6IxAMYB+Pf5WBxHpqPj9KDXqe8N2V2PLvvyle2V0P5/9r48Pqry7v48z72zZDKTHRICSVjDvi8KogKKBeqC4oKir4oW0erb1triXl+VKkWxtbjQn0VtXYpAFQQqLyKbqAjIZsIiIjshkD2Z9d77/P64y8wks9yZ3BkT3zmfD0wyc5cnycw993yX86W8Zk5T6/Qhz27MEJposPJWgDFIAYV3TV/IE5HTx4wB37EjqN0O544dsP1sMratPII9n56ARHxAvnyM8i2n4W5iuPimXti74SS++eQYug3Kg8miVNV75ZsHSamu37M+OGLJ3IJG8ACQ91/94Pq2Cg2bT4IJEghPm+XkQ5OZGGPhXbw5eXVzI5Q8JQQUrXe8S2a4nrH4jHe0UbNx+RqHWRLlUkpeB5I5T15FRkaGtHbt2sPjxo0rtdvtUllZmbX5eRL7U8cPPeXAWwBcQgjJBLAJcmX9dAD/lciFpSCDMRFO5zHk5o77sZfSAiREuL7KVYW8tDztwlnn8qF7h+REIAgIwKAU3ikkv3UrzD16wNSpEwAgbehQOHfuwJ5Pj2PPpy1TiifLzqOnxY2Bl1yKplovvll7DDUVTTheLkcFBZ9C8mHI2blXtqnlMs3Imd4H5i4O+M46AYnBV+kEn5sm+wvAX7gXCrG20PFxmuEY6XgHyGreCO/6pCh5QC7yi+NUkiiBUGporQmltF3l5H9MJGuefOCx8/LyxG+//Xa/+lqo87RF6LkNpYwxJ+SRswsZY1cBMG58WAoR4XafAmNepNvCej38aPAreb+1bZW7CrnWXO37BrcPDr2tZa0EJVRW8kzOyUseD5zbtyN9zBhtG9uIEfAe/h7fbjyJ4v65uGPeRbhkeqn2ukQ4WPZuRu0HH6DvmE6w2HisW1yOM4frAABNNXKNTziSb9gi5947PXIBLN0y5XVZ5Juhypd34fTTXwKUgwi5hiBc736sOfl4K9u1nHxMe4UHT4kBhXdJcrwD4g7ZS5JoWGW9CsJx7aqFLoX2AT1XX0oIGQngFij+8TDumpBCFDQ5ZY+HtDYZrm+p5Ktd1ehg66A8z9DoEeCwJj4nL6+HAB7Z1rZh9x44nZlgHg/Sx4zWtrGNGA6PORNN9T4MKs1CeqYFXOAwFEaQVZyHc395GT2mTMGQy4uxbaX8NyCUoPJYA5ANVNWF7vkPRRnEEvBxERm85wl8uAjAcTAWOmTsJ3l9P7tK8rGPmjVayRs0oCYJZjiAkhqIY39JFA2rrFdBKdVy/SkkF//X58k/COB/AKxmjH1LCOkOOYSfQhLgdMpRpvQ2SfKqkvd/Bs67zqNPTh8AgEeQ4BNZUpU8E0VIIKhZtx6NJ7NBrFakX3ihto1QVIqtY/4IAOjSJxtMkjRDG0DmlsKZN6PunhU498oryJx4l/bauBm9se49ubHk4A85sALoO6YTSi8owIqXZH8oBiDrmh7B62r283vPMUgBTXSiKILng7dRC+/0ttCZ4jTDMXKePKCG61t5kKSY4QScKw4wMaXkf0r4Kc+TjxquZ4x9xhibwhibS2S5cZYxdl8S1pYCALf7NChNg8mUG33jJMOv5OXCO4lJqHHXIDdNXmu9Ww7jOyyJJ/nzx48i/xQnF1OBwF1Tg0Mr/w3b6NGgaX7VXXnCpX3tWfAHHBgwEOeefy7gSAT2fr2QddONqPnnO8g6V4YewzrilqcugDXdBL/ElMmhQ4kDJrP/Yp82OA/20YVBazMVBNckiHVMc5oDgGeffRbbt28P3kbtk4+xuj7mnLzqeGeQdOYJaX3hXRJy8urxWZxG+5IkGtY+p4JSmrK1TcFw6JlC9w8A9wMQAOwAkEcIeZ4xtiDRi0sBEMUm8Lwj4WYy8aC5kncLbghMQIZZduRrdMvkn6hwvcfpxDdrVqDu3FmUb/4MQyUedb0IKEQg3YntGYWwXzgcxZCJQxIYairkdrkLdzyDRmclMq+5BrVVwR8Dk4VD/sMPw73vW1Q//juM+9f7sBakw5ZhDqBCmRzsOZagfVmIlipioqDpPKQm+ffhqxEhkmDFtm3bNowcOVL7Pl7v+nhb6AxV8q11vEtCdb2/8C5OkhfFqO6IsYJSmlLyKRgOPRJrIGOsnhByC+TWud9DJvsUyScBougExxlqD20YCJXfPpKi5J2CEwA0j/oGjeSNVfKMMZw/cQy7167C3k8/AQAUDxiM49/uAWFAgacCHCcb2VQ65dbVXf97HF9++L12jIHL3gRjDJZu3eDeewb49yLl4AQmKwdqMqPLq6/gh2uvw9lnnkXxP96GxWYCmNrgLj+YzXxw/jgMOXEOs0by7h/cLUiea6YKRcZAoT9Xrubu47G1JYhzml7IdbS+8A4SEm+G09rCO1EyPlxPuVR1fQqGQ9cUOiJLtmsAfMQY8wJRXTlTMAii6ATPtS0THBXNC+9cghwKb07ydoPD9TtXf4R//O5+7P30EwyeOBm/XbIKNzwxF+40uR/KKvrbXo/tlXPlh74O7nYxd+0KSze5zoHy/o8BoQSc8r0pPx95s++Bc/t2uL8tAwBcOUvucmCKkieUBLfB8aE/UiQgpA+BQURkkvcxpjtUD8gkbYpDRUswTsUDrSd51YUuWUo+Xtc7loDqesrRVJ98CoZDD8m/AeA4gGwAmwghxQAaI++SglEQhaa2q+SbmeE0J/lGj5KTNyhc73W78N3XX2DrkncAAD1HjsbYm28PWBBA1RGwWfkYO/2/0Fhdhb0b9qPqlN/VbvbCcUHHpQEsZzJzQao2c+pUEIsFdR99BADIyw8OzzcnI5oZ/Lq29uPBZlgSgr9vrqR9jOkuulMRT4+6HDEwjlBbreRV0k1WC128OfkEVNeTVJ98zHjwwQcLn3zyyfwfex1tGXoG1LwE4CX1e0LICQATwu+RgpEQRSdM5uwfexktwHw+OLd+CTgAX8UZwDGgBcnXGxyuX/KHh1F59HvYMrMw88+L4MjNC16THHeWe+UvvxO5XeTzbnp3NygvXwesdpOm1FUEWpPy5uALN5eRAcdll6F+1Sp0nPN7EK1gTlWcwWsMRxn2sZ2D/OsZCTbZap6LFRnT3T6nwkTjy8kbq+Rb6V3PkkPyhGudkpckKQGFdynHuxSMR9irLyHkZsbY+4SQ/w6zycsJWlMKARDEJli5Lj/2MlrgzB+eQnX5MuC/gdOPP4LsxWPChutbS/KfvbUIu/7zsfb9RTfe2oLgATVdTtDEp4Om54I3OZVX/OrouoeGRTyXydzywp059RrUr1mDps8/B+lbDAAoLnLi3CF5QE2gCmdhuCnryu6wDe0I5zdn0bj1NBg8APyq/0yzoTk+KbZwPRBf0ZvcrWa0ko9/f3X8a8ILTVuZk2cJKLwjlLYr7/rqZYeKfBVNhoYZTQXpzpzrSyNOt5szZ07BkiVL8goLC725ubm+oUOHOsvKyiyzZ88urq6u5q1Wq/TGG28cGzp0qPvEiRP8zJkzS44fP24BgIULFx6bOHFi0+WXX97jzJkzZo/HQ2fPnn32oYceOg8ANptt6O233165efPmjMzMTHHu3Lkn58yZU3T69GnzvHnzjs+YMaMu1Jpuuummkj179qQDwNmzZ00zZ86sfPHFF8NPwkoiIr1LVfnYIcy/FJIAUWx74XrvyZOo+/BDZEyYCAAQmxrQ8NlncPkUkjcp4XoDcvL7t2wIIvj07Bz0H3dZyG1lJQ8IxASfKIEzy5bWajrBYuORXdCyviGQUEgIWZs+ejRoZiYa1v6vpuTtdqnFvvK5wpOGubMdjgnFsI/JByP1YbcD5Ciy3sp6FaY4QuUSDFbylLRunnyylLyWk49v/0Q43lEupeSjYcuWLbYPP/wwZ9++feWrVq06rBLr3XffXfLqq68eLysr2z9//vyT9957bzEAzJ49u/jiiy9uOHjwYHlZWVn5sGHD3ADw7rvvHi0rK9u/e/fu8kWLFuVXVFRwAOByuej48eMbysrK9qenp4uPP/545y1bthxaunTp4WeeeaZzuHUtWbLk2IEDB8pXrlx5OCsrS7jnnnuqkvH70INIA2peVR6fSN5yfoJgDDjxtRxGLhwGcLERXlusrnd+vR1gDI7LLgfO/gdchxzUrfwYrv5TAQQqeR/STBz4OCd1iYIPny/5J/K798T0//kTTh0sR1H/geFzoYqSZ0T2rudN6twKWR15nCHHRQeBhhg4QkwmOCZMQMOnnyLrl7cBACRFshNKgog9Gr1x6SZk/bwb2M6WW1ZXVyMnJwdA7IV3gGyIE6vjnciM65EHDCi8U3Pkxorklmh1dX0CzHDaWU4+muJOBDZs2GCfMmVKrcPhkADgiiuuqHW73XTXrl32G264QXOh8nq9BAC++OILx7Jly34AAJ7nkZubKwLAvHnz8levXp0FABUVFaaysjJrQUFBk8lkYtdff309APTv399lsVgki8XCRo0a5Tp16lTESVtOp5NMmzatx0svvXS8tLTUG2nbZEJPn3wx5D75roHbM8auS9yyfkI4sBpYMkP+esoLwODp8teW6OOHGWMKybet6nrX7t2gGRkwFxYBZwHb2NFoeuET+Cplj3gbL9+UNHoE2FsRqv96xTLUn6vExLt/Cd5sRsnAIVH3YSCQCCcreZNS8Kco+U49M0PuE6jGaRhZ67hiIuo+/BDOXXuV86j7Brdaezw6lBjhABBQRiEFtNK9/PLLeOqppwCoOfk4lHys3vWMGSqaW114x5JTXd9673rJeFvblJLXhebRM0mS4HA4BL2OdatWrXJs2rTJsWPHjgMOh0MaNWpUb3WePM/zTE3DUEphsVgYIHe/iKIY8U152223lVx11VU1U6dObVMjZ/XcL68EUAHg/wF4JeBfCnqw+z3Ang9kFgPffwY81wV47SJduzLmBWMC+Dag5JkgaBcg1+7dSBs0CJSTSdQ6ZBDAGPh9hwAEKHmPEHM+3llfh20ffoClzzyGLz54Fz1GXIiuQ4br2peKAAjAKAefyDSS9zV9jGGTinH1f4e+SQi8ZoQj+fSLLgJNT0fjlq8AACxAyQfu73VHjxaAUkgg4EN8/NxuuSAvHiUfT3W93EJnpJJvZeGdynFtvIVOEkV5BryBICkznKiYMGFC4+rVq7MaGxtJTU0NXbduXZbNZpO6dOniXbx4cTYgk/6XX36ZBgAXXXRRw/z58zsAgCAIqK6uprW1tVxmZqbocDikXbt2WdWQf2vw3HPPdWhsbOT++Mc/trnJdHquwN6Uu12caKoCvlsLXHgv4K4D9i2Tn689pmt3UZQLx5IZrmeMwfPdd7D07KldxISaGhydPh1iTS2sffrAc+gQHJN+pvXJ83ly+QaprAK6BLTQuYWY8vHH9u7GRy88A8Hj0Z4bdc003funNRE0gECiPCRJCgjXA/Ysc4vKeQ2BSj7MfHBqNsM+fjxqt34O/Oxnfi6iBFLADb6gsyWLgcrtfs24rKKiAl27doUQRwtdXDl5xsAZHq6Pf3+tTz7hhXfKY5wtdInwrper69tPuP7HwNixY53XXntt9YABA/p37tzZM2rUqEYAeP/994/84he/KJk3b14nQRDItddeWz169GjXa6+9dvyOO+4oKS0tzaOUYuHChcemTZtW97e//a1DaWlpvx49ergHDx7cFO280bBw4cICk8nE+vTp0w8AZs6cee73v//9udYe1wjouQL/lRDyOIC1ALSrL2Nsb8JW9VPBN28DkgAMmg5U7ge++UdMuwuCSvLJC9dXL34TlfPnI/eee9DxN78GANR+sBS+Y8cBAM6vvwax2ZB13XXwEKXQ1GoGMZtBaurBFXEwUVlBN3n0k/zBLz/Hqj8/j9wuxZh076/x7mMPAgAKS/vG9gMQgBAKn8iQlpGhPc3rbNWPFCZ2/OwKVP/nPwAClXz4mfCRwAgBx8KThMBYzIV3PCXwxSgERYNt4o3rkzdmPeGgKfl4bW0lERxvrMmTPE8+peSjYd68eRXz5s1roZi3bNnyXfPnioqKhPXr13/f/PnNmze32BYAnE7nLvXrBQsWnA73WnOcOnVqX7R1/1jQ8y4tBXA3gMnwB9MYgEsStaifBGqPA5vnA6WTgIIBQHpAy5c1S9chRFG+wUyWkmeMofaDDwAA1W+/jZz/ug18bi7q16xB2pAhKHxhPqjFAiaKMBUUwNukeiKJ4HJzwdU2wMJZNBXW6BFQlB597YLXi1V/fh4AcN3DTyGjQ8dW/BQETlsumCjBbPUPpuFM4S+eNChcH55d7JdcAj5DrqVo2Ps9gB5xK04JBBwLfy6fFHvVu5kQ+GIsFxdhbE7e1Np58kmqrjei8I43hzY+iheE4yB620y9Vgo/Eegh+RsBdGWMeaJumYIfax+TH6fMlx8dBcCQGcAPm4H6U4AkAVFyeskK1zd9+SWq3vg7HBMvh/fYMeTcNRPVb76Fqr8vhv2SS+A5eBD5jz4Kc5fgfv1AW1vOng7q8sDE+SVzg1uIOoHuRNlefPySTPBjbpihEfywKdf4C+diASEgHA+foog6lQ7BmUO7wek8FI1ALtRiQe6NVwJ1PohON5AGwOMG4D+4XspgoKAh5KqqLONpoYsrJ89gaLieaye2tmh1Tt547/rUPPm2j+XLl2c89thjQRfCoqIiz7p161pEC9oK9JD8XgAOBITqU4iCUzuB/SuBcY8AWcX+56e+CnzxV+B/Hwe8jYA1I/wxEKjkExeuF2pqcOrXv4FYV4emrVsBADn/dTvE8+dRvXgxqhcvhqmoCJlTr2mxLyEyuTEmgKTZwLkbtVA9ADR5I1fXuxrqsfqvL8CSno4pDzyEkkFDtdfG3/6L+H4gQkADqswLeg7FmUO7QWmEi3kAmTb3kG+O3OunAH9fAXNRAZznAd/JE0BR95iXKSnV9eEQbwudO8Ycs2RwdX08dQHNFiQ/JjgnT1pra5uAPvlU4V3bx7Rp0+qnTZvWrubO6yH5XAAHCCHbEJyTT7XQhcOGPwK2PGD0L1u+ZlXauNx1OkheVvI8nziSr3p9EcSGBmReczXqVqyEuXt3mPI7Iv+RRwDKgcvMRN69s8FltFxroJKnaWmgVT6YqE15jqHRLSA9jJI/Ub4PH/zPI6Ach2vnLkB+tx4ht4sF1R19MEG+WHoF9WKpXIhJeIVEApRsmjny71q9WaBZDuA84Dt+DOYi/9r1K3kCitAkwUQJPlGCJUZ/AT6ucL2x1fUcQetGzaq7tvFwPUuAdz3luHbleJdC+4Aekp+b8FX8lCBJwLEvgGG3h+6FDyR5FEU8VKLD9a5936L6vfeQed21yP/d7yC53Mi64Qb5nFlZKHzujxH3VwfUSEwAtdnAnfaBV8bPegQJgsSCCu9OHdyPT994BeePH9WeG3PjrYYQPAAcK3WjZ5Uc9lSVPFGIlEQanBjApdHCxKrjHVHc9HxHj8Ic2BGpk5wkUJAwSr529RG4xHqkl+ir3VARj4o2ekCNiZB4xTEAvxlOmCYHw9Bq73pRNNy7npDUFLoUjIcekv8CgJsxxgghPQD0hjxXPoVQaDgD+JxAXs/QrweRfGQICQ7XVy54EVxWJvIfeghcZia6vPyXmPb3K3kBNC0NvEfQwvWNnmBLW8YY1r72EmrO+AtW+196GS6YeoMRPwoApU8eshe7oOTkmUak+hRSuD55DZIEAglMYSGx+nxQGxwJ16bXDCxMuJ4xhh8aX0BjwUR0cMX2dzdRAm8c3vVG2tpycdQFBIElJ1zfejMc473rKZeaJ5+C8dDzLt0CII0Q0gnAJgD3Alic0FW1Z1Qr9Re5YUjeooS9PZG9y4HEKnnviRNwfvkVcmbMAJcVm2JU4R81K4LY0sB5xKD2OcBP8me//w41Z05j6OSrAACFvfth0n2/ae2PEQSqXLAppfAqipCpb3EW/uIZOKAlKskzCQRM4wapri4uPpJAQir5yspK1BSsgwQO8EZ/jwQiXu96o3PyogGFd4beeYRArCtl8AAAIABJREFU681wjC+8IzSl5JOFBx54oHNBQcEgm802NPrW7Rt6SJ4yxpwApgFYyBi7CsCgxC6rHaPqsPwYjuRjUPJ+kk+LsmXscH69HQDgmDgx7mMEKXmzGZwoaSSvTqBTc/JfLn8f5jQbxtwwA7c8+yKue/ipVqw+DJTrI0eppuSh9aLru3hGqq6XjyeCgGmCU6qtCX5ZJ8FJIFoqIRCffPIJiGiBAA5ifU2IPcMjvnnyxlbXx7OGICTLDIcYoOQTMKAmlZNPDqZOnVq7bdu2/T/2OpIBXSRPCBkJ4BYAq5TnjH13/5RQ9T3AWwFHYejX1R55XSTfBErTNDI1Eq7du0AzM2Hu1i3uY2hKXhIBngcVJC0nryp5h5XH0d07ceSb7bjg2hthTbejU6/esNiMj06UZ8rpDRIwCU0N1zPmi/BzBCj5qCQvK3mVGlqSvL61MtCwVXpUtEAED0qaUP+pPndEIL4eddm73tgWutYoeb+VoCHLCY9W5uQTUniXUvK68Lvf/a5Tt27d+o8ZM6bXVVdd1e3JJ5/MHzVqVO+ZM2cWDR06tE+vXr36b9iwwQYAdXV19Prrr+9aWlrar7S0tN9bb72VBQCXXXZZU0lJSfiLgoKamhrauXPngR6PhwBAdXV10PftAXpy8g8C+B8Aqxlj3xJCukMO4acQClXfAzk9wvfAqxX1ekheaEqIigcA546dSBsyuFX+24FKnphMoKKk9cmrOXkbB6x/83Vkd+qMYVNatuEZif5V8o0DpdCq6zWSj3DxDB5QE+X3oZJ8gJIPUp06OUMKo57T7VUQzfWQQCHaj6P+fzsi4/ISXcc0kdhz8szgnLyJtk7JsyTl5LUCy7hHzUrGF97R9pWT/+ijj4oqKysNvVvv2LGjc+rUqWGn223evNn28ccfZ+/bt6/c5/ORIUOG9Bs6dKgTAJxOJ921a9eB//znP/ZZs2Z1++6778oefvjhThkZGeKhQ4fKAeDcuXMx/dGys7Ol0aNHN3zwwQeZt912W+3ixYtzpkyZUqMOrmkPiHqFZ4x9xhibwhibq3x/hDF2X+KX1k5RdRjIjVAtzpkAU7o+kpfcCSF536lT8P7wA+xjxrTqOIEtdMRkAieyFoV3Dd/tQW3FGVxy60zw8ZjbxIB+lXLFO6EMgkLqkkLyoi/CTXtg4VzUwjsxOCdfWwMW0LYWS7i+uXG93X4ew4atAQAI4EEhwZum3/46rup6GFtdzxE5BRCvXawWrk9wTt6QFro4RyiHQ0rJR8fGjRvtkydPrrXb7Sw7O1uaOHFirfraLbfcUg0AkydPbmxsbKTnz5/nNm/enPGb3/ymUt2mQ4cOMd9FzZo169xbb72VCwDvvPNO3qxZs84b8bMkC3pGzfaErOa7InjU7BU69p0E4C+Qw/tvMMaeD7Pd9QCWAhjJGNuha+VtEaIA1PwA9L0y8nbWTMBdG3kbAJLkAaXGWmcCQOPnsulN+tixrToOIQSEcIqSt4JKgFl5i6gkf+7bHbBlZqH7sBGtW7QOmBTjdkKZf1CMpJC8EClc7/9af7heISNJhNQUMN9Cd7ietNi2uCRgHAS1gZMEnBz+Arr5rgExRRcgfBwqWjRaySu/TJHJE+lihuZd38YL7xJQXU/aWXV9JMWdKES6eWxex0EIAWOs1fUdV1xxRdMDDzxgWb16tV0URTJy5Eh3qw6YZOh5ly4DsB/AswCeCPgXEUSWea9A9rzvB+BmQki/ENs5APw3gG36l91GcXafPJCmY4sfMxjWDF1KXpK8iSH5zz4D36kTzN1jd2prDpnkRRBlAoxZUc4ur3yxqj9zAvndehievwwF6pVJnlJotraSRvI6RsBCX3U9VcL1as88c/s/83opI5SS93r9URvGpYODBJ/tLNxHqnUdM5558pLBOXnVpS/ekH3yptC11rteAknl5JOOcePGNa5duzbT6XSSuro6+umnn2qtQe+//342AKxdu9bucDjE3Nxccdy4cfULFizQhmHEGq5XMX369Ko777yz+6233tquVDygj+QlxthfGWNfMMa2qf907DcKwGElvO8F8C8AoZKyzwD4E4B2dXcUEt99Kj92Hx95O2sm4I7eHmW0kmdeLyr//Gc0btqErGnTDLmQEsJrOXkAsEjyZ6jJI5O8p6Ee6dm5rT6PHlCffE5CJfgUJS8p0+IiK3n/x0BvCx2DPwLAXC7/yzrITbYubXkewSf/rZ0110FgQIcsOZ1SdXpr1GMCMsn7GIspVC7Pk9e9eVTwmpKPN1yvPLZ1JZ+IUbMcTVXXR8Gll17qnDRpUl2/fv36T5kypcegQYOaMjMzRQDIzs4Whw4d2uf+++8vWbRo0VEAeO65587U1tZyvXr16t+7d+9+a9ascQDA7Nmzu+Tn5w9yu900Pz9/0IMPPhimUlrGXXfdVVVfX8/fdddd+u642xD0FN6tIITMAvAhgm1to7FUZwCB4ZyTAC4I3IAQMhRAEWNsFSHkoXAHUs4/CwCKi4vDbfbj4/A6oHAoYO8QeTtrJtBYGXkbqEreHHW7UBDr63HiF7Ng6lyIwhdeQPXb/0DtkiXwHj2KzGuuRu6sOL3hm0FT8iZVycsXPqdPgJmjEH0+8Ob4foZYwftUtzR/Tp4J8sVcEiL0yQcQStTBKAGFd+q2UoCS1yPlA0m4j1CIA7xsEEQIgyhy2LkvHeJ4hkxHN6CaQ637K3TB1KjHNVE5thBLqFx2vDMu7GyUkk+arW2b8q7nUt71OvCHP/yhYsGCBacbGhro6NGje//+978/u2TJktybbrqp5pVXXjkVuG1mZqb073//+2jzY7z++usnX3/99ZN6z7l+/XrHpEmTavLy8trdXZgekr9beQwM0TMA0dg21KdU+0QRWT69BOCOaAtgjP0NwN8AYMSIEW2zqtFZDZzcDlwc9l7FD2smcD7kOOMgSJIHPB/CGlcH6j7+GK49e+DaswdpQ4aict48gOfRae6zyJo2La5jhgIhJkhMADHJbyWLQvIurwibhYPg8yaN5DUlT2QlzxiDKClErPPiGTUnL4kgkKvSW6fkZc/8sUJfFEsd8L/mPSBUgqREQnwSg4nyMElZ8Lj1Fd+ZAgiW11lMZ/g8eeVgcQ+pYcmxtdU8kuJQ8kySAMYS00LXjnLyPxZuvfXWku+++y7N4/GQ6dOnV40dO9aZyPPdfvvtRRs2bMhctWpV9It2G0RUkmeMRTZYD4+TCDZn7wLgdMD3DgADAGxUwsYFAFYSQq5ud8V3B/8DrPxvgElA70nRt7ckPifftOVzgOMAUcTZP/4RXHY2em3aqHmuGwV/4Z2i5EX56tnkEWHjKUSvL+FV9QDABAGcknZXCUKQGCRByZtHIvmgefI6zXDA/Eo+gOQbXALe2HIEPTvaMa53x9CHUAlQTuz7i/iIBMYoGAABMmFauM5w8T9A8oqgUSxzVRUdC8FKjBk6oEaNIMRN8skqvCNEJvo4SF4NqaeU/I+Djz/++Ifmz3399dcHW3vcOXPmFKxYsSIn8Llrrrmm+u233z6B4Kh0u4IeJQ9CSB/IxXNW9TnG2HtRdtsOoBchpBuAUwCmQzbUUfevA5AXcI6NAB5qdwTvrgdWPiBPnZv6GtB5ePR9TGmAEH1yr5yTj52UJY8HTdu2Ifumm9C0dSu8x44h8+qrDCd4IES4XpFILp8Am4mAMQm82fjiweZgXi84RbWDyBduQWQQNZKPMIUuFltbSZC96xnAqXldtxvqR2P1vtNYvV/+25Y//TPYzC0/YtqFXDlVriRHaygVFZKXX+AJgcM6ABXSBxBqnDDnR47qmGjsofJE5eSFeIV8subJA/KNRDwkL6q1H0Z718uFd0ZUhKcQO+bNm1cxb968ih97HUYj6ruUEPI45FD565Ar5f8M4Ppo+zHGBAD3A1gLuTr/A8ZYGSHkaULI1a1adVvC5wuApnPA1FeAXpfr24e3AEL0OsN4Sd61cyeYy4X0i8ci/7FHYRs5EjkzZ8Z8HD0ghIfT14CznioAgFmpZnd6RTgUAc8lQ8kHkDxRJtX4JAmiYHS4PqDwTlPy/mih2yvhsj6ygl+yPfTNv7YWhYztyg2C1dqIbHMJJDXk7XYj3dETjBPgrDoade0awcZAXEZPoYtnDUFI0jx5+RQkrnC9pHRuJMK7HkCQ70IKKbQWem5FbwIwHsAZxthtAAZDZwSAMbaGMVbKGOsRYKbzJGNsZYhtx7U7Fc8YsOtdoO9V+hS8Ct4qD0wRI7d1xVtd37jlcxCTCemjRsF+ySUo+ec/YMrPj/k4ekAIh/XH1uH5XS8AAEyin+RtnHwB5U2Jz8lLXi84jR/kL3yCBEn5FettTYrueBeQkw8Rri/IsOLvd4zEoC6ZWLH7dOhDhFHaHOdDWm5HjFb8CwSvF7aMrgAAZ8PxqGs3K8TojUHJG52TN8WRMgiC+mdKtBkOEL+ST1C4Xs3xqzcRKaRgBPSQvIsxJgIQlJ72CgCtb7D+KaDqe6CpEuhxWWz78QpxR1Hz8ebkndu3I23IEND0xIyoBQBREjFn8xycbDwNjgCCcr0zKS1rTq+AdIV1OXNylTyofJEUJAZRnUYX0dY24GtdhXdyTl69IQjsky/MklX5iJIcHKiohxiCRPyFd8GvUSqCclaUdFccEwUBtgy5vtXtjl4IHE/RmwRjc/JcK0k+aX3ykF314iq8U8L1RhfeaUo+1UaXgoHQQ/K7CCFZkMfL7gDwNYBvErqq9oLjX8iPJRfFth+vlDZEycvHE64XG5vgLi+HbWRiHOYEScDRuqN4ZMsjWPPDGnhEARQBJC+qJC/CxitK/kfKyftECaLSHh85XB9DTj5gCh2hBMRiCaqutys5+P6FGXD7JByubGxxiHBroVQCpRbwFvn9IQk+WO2dAYnCLYaOCgRCq66PgbgkZuy0qVYreXW/RFfXA63OySdiCp18/JSST8E4RAy7E/l2+inGWC2AVwghawFkMMZSJA8Ax76UC+7yesW2nw4lzxiLK1zv2rULkCTYRhhP8k2+JsxcOxPlVeUAgBl9Z6CDexWqGiphMdsANMKsEK3LKyKNyBerpFTXe72gTFXy8kVYEFUlT6IU3vm/jl54p5K8XF1PbTaITn9OPl2pgL+wh2wAtP7AWfQuCC6Y84frQyh5agZvlf/mzOcFNZlg8uTAYzkTeV2Ir7re+Cl08mPcffJisgvvYt9NDdeTBHjXA/pTSykADz74YKHdbheffvrpsz/2WtoqIr5LmXw1WhXw/eEUwQfg2Fag+MLYi4Q0JR+J5AUALGaSd+7YAfA80oYMiW1NOrBw10KUV5Xj1r634q1Jb+HhUQ8jJy0PRfZCCMrVnVdIvskjII2qJJ/4nDzzePwkD8VtzyvA3eAFISSyko/Ju16UbW2hKPk0K5jHq73ssMo3NJ2z0jC4SybW729peuRfSzOSJ6Ks5JXIh+j1gRACk6cDPCw6yZviMKIRwYztkw/wro8LmpJPQrietrLwzuhwvarkU+H6FAyEngK6rwkhw1Lk3gw1x4DaY8AFs2PfV1Py4cP1kiS/Fmu43rljB6z9+4EaOK/dI3rw//b+P7yz/x1M7z0dc0bN0V4jhAcF4CFyhRuvXJ9cPhEWNSefDJIPCNcz5eaiqd6nhNX1e4JHz8lLmpKnlIBarBA9/ps1U0Ak4MLuuXhz61G4fSKsAQNm/Dn54DURKpO8pDT6i175PWDydoST7Iu6dq2FLuZwvXGEGs8aWiwISArJt7lwfTtT8uX75xQ1NR4ydNRsur3U2a/vvIg96XPmzClYsmRJXmFhoTc3N9c3dOhQZ1lZmWX27NnF1dXVvNVqld54441jQ4cOdZ84cYKfOXNmyfHjxy0AsHDhwmMTJ05suvzyy3ucOXPG7PF46OzZs88+9NBD5wHAZrMNvf322ys3b96ckZmZKc6dO/fknDlzik6fPm2eN2/e8RkzZoQ0OBk+fHjvv/71r8fHjBnjAoBhw4b1ee21145dcMEFrlDbJxNhlTwhRL0BGAuZ6A8SQr4hhOwihKQI/4AS4NBjftMcOpS8n+T1K3nv0aNw7dqF9NGjY19TCDDGsOrIKly34jos2rsIV3W/Cr8d8dugbQjhQAmDWyF5k0TgFWTHOatCYslwvJM8/nA9U9IEPs0Bj+pvodNthiMHcJor+UARPawkG15RQtnp4OtCqHD91Z4R4HkGSs2aEve55euD2dcRPloNUYxcwxGPkpcMnkLHaUo+3sI7+TEphXdxKnmWQDMcAO1qEl2ysWXLFtuHH36Ys2/fvvJVq1Yd3rNnTzoA3H333SWvvvrq8bKysv3z588/ee+99xYDwOzZs4svvvjihoMHD5aXlZWVDxs2zA0A77777tGysrL9u3fvLl+0aFF+RUUFBwAul4uOHz++oaysbH96err4+OOPd96yZcuhpUuXHn7mmWc6h1vXHXfccf6NN97IA4C9e/davF4vaQsED0RW8l8DGAboMM3+v4j9q4D8AUBOHI0GqpIXvWE3iZXkvSdP4ocbbwJNT0f2jTfGvqZmECQBL+18Cf8o/wcA4P4h9+Oewfe02I4SHhQMXjU0L/on0JmJKDu3JYHkmdcLTiN5pU/e5zctiVxdH4sZTnDhHbVYwbweQP0RA8hteEk2AGDnsRoML/EbaYWqrh/yzM+wYbOs5D3KMdyN8ghbsyi3P7rdp5CeHv79FldOHsbm5FvfQtd+lLzhZjjtTMlHU9yJwIYNG+xTpkypdTgcEgBcccUVtW63m+7atct+ww039FC383q9BAC++OILx7Jly34AAJ7nkZubKwLAvHnz8levXp0FABUVFaaysjJrQUFBk8lkYtdff309APTv399lsVgki8XCRo0a5Tp16lTYC9kdd9xRM3/+/E4ej+fk66+/nnfLLbe0mWl1kUieAABj7PskraX9oLESOP4lcOmc6NuGgi4lL98AUKKPIGuXLYPU1IRu/14OU2HEgUpRcc55Dr9c/0vsr96PyV0n457B96BHVo+Q2xJqAgXTqut5SR5OAwAWIsGJ5JnhEDVcr+Tk1Ul0hOgP1+vJyQcW3hGrBZLbT/KB3JZnt6Brrg07jtZg1iX+50ORPFMiIZRatFB3Y30dRFEMIPmTEUk+nlC5bIZjHLg4ogmB8A+oMWpF4UEo0Qr9YoH69zPcu55LKXk9aB7lkSQJDodDOHDgQLme/VetWuXYtGmTY8eOHQccDoc0atSo3i6XiwIAz/NMvdmilMJisTAA4DgOoiiGvTg4HA7p4osvrn/vvfeyVq5cmbNz505da0kGIn2UOhBCHgz3L2krbGuo2Ae8daX8db9Qk3N1IJacPKdPyTu3fY20AQNg7d07vjUp2F25GxOWTsDh2sP40yV/wrxL5oUleACgxAQKSSN5TpTb5wDApJBtUgrvvJ4W4XpBUCu1I4frA68ZfBR/eFXJAwyEANSaBsnjCXg5mDSGl+Tgm+M1QQY46tcEDN90tKHToxf4b+qoWQt1S14vmpqaYFFI3hWlVz6eCXByuN5IJS8/xj9qVvbzT4qta5ze9SxBOXk1MpDyrw+PCRMmNK5evTqrsbGR1NTU0HXr1mXZbDapS5cu3sWLF2cD8u/vyy+/TAOAiy66qGH+/PkdAEAQBFRXV9Pa2louMzNTdDgc0q5du6xqyL+1mD179vk5c+YUDR48uCk/P7/N3KlFInkOgB3yIJlQ//5v4pNHAFc1MGMpkN8vvmMYnJOX3G64vv0WaSNicN1rhipXFV7f8zru+/Q+AMDfJv4Nk7tNjnqxJdQExnwQlHcSLzItXM8r/eocr8sgsVVgXq/G1qoqFgJy8hENRgiQfX4Yss+NBMfrcbyTc/JUUfJiQE5e8AafZ3hJNs43enGsyt9mpylBMIiMgMswgzGfslZeI2nKGCorK8GzHBDGw+2KHB01x+VdzxKSk/e1pro+GaF6AIi3ul7NyRvuXS/fNKTMcMJj7NixzmuvvbZ6wIAB/a+88soeo0aNagSA999//8ibb76Z17t37369evXqv3z58iwAeO21145v2rTJUVpa2m/AgAH9vvnmm7Rp06bVCYJASktL+z366KOFgwcPbjJibRdffLEzPT1dvPPOO9tMqB6IHK4/wxh7OmkraQ9oOi+3zV38ENBrYvzH0WGG41d20UnetXcv4PPBNjy+3niv6MW9n96L/dX7kWnJxL+u/Bf65/bXta+s5P3hek5gcPuCSd5oxRMKktcLphCMpIXrlbB4tJw8CHjBDkBPTl4K7pO3WIPmyXvdLUkekPPyXfPSlUMo62JMU/WqXzkhnJbPpkzCqVOn0I9mw+TroF/JxxSuh6He9WrKIP7CO5acHnkonRStycmnlPyPgnCDZLZs2dJiFGxRUZGwfv36FinnzZs3hxwb63Q6d6lfL1iw4HS410Lh6NGjJsYYufbaa+sjbZdsRLoVTY1Bao6Da+Ty375Xte44OsxwNCWvIyfv2rkTAGAbNjTmpXx15itMXTEV+6v348VLX8RnN3ymm+ABgFAeNs4CZS4NOEbg9ilFeOoI1SSQPPN4wVQveaXwLihcr9NFTL/jnTwpjFgtkLx+Je9zB88j6NXRDoeVx45jNf5DBITr1Wpy2TkaIKAaSVPGsGHDBoASmL0d4XZFJvl4it4klpg++Xhz8pCQlOE0AAAuzpx8ggbU0FR1fbvFwoULcy+88MK+Tz755CkuCde7WBBJycdoyP5/APs/BrKKgYKBrTtOLEpeR07euWMnLL16gcvKimkZ64+vx283/hYiE3Fbv9twRdcrYtofUG9CBC1cT8UQSt7gsGYoMK9X6y+XoITrg5R85HC9CpMlSmpBErXNCZVz8swbkJNvpgwpJRhWnI1vAkjeH66XQip5X4CSJ4SAcBQmbwc0uiMKCW2We0xmOAbn5OOp8A+ClLxwPeEomC921ewP1yfKuz6l5Nsqli9fnvHYY491CXyuqKjIs27duu/vv//+qh9rXZEQ9orGGKtO5kLaPFy1wJGNwKhZrVcaupS8vnC92NgI544dyLo+6vRfDT7Jh+e3PY+PDn+E7lndMf+S+eieGd/MIUJ5MEmAqIbrJQZXC5JPhpL3tAjXC4JCpjH0yduzo9xUaVPoJC0nT7yh++RVjCjJxoJPD6HO5UNmmimoul7NCcsOhzLJq6Hu3j17QjryHUAJTN4c+HxVEa2O1VB5rC10CSH5OM1w5HC9YcuJDErA4vCJZwmbJ59S8m0d06ZNq582bVqbqZzXg2R9nNo/Dq6R+9r7X9v6Y8VSeBchXC82NuKHa68D83iQ8fMpuk5d467Brz77FT449AEuK74Mr0x4BT2yesRdzUyIXHgXOABOVfJq5Dsp4XqfF1AK/ETIRWyC3px8LD+6JIIQaLa21GoFCTx2CG4bXJQFxoD9Z+RUnareqdJvrxxYWQunFa1lpKejoaEBIAy8V/bC93jCW3SbFHb06iRYxpii5HVtrgvtSsnHmZMXFRI2uqA0peRTSARSJK8X3/4byCyObW58OFBejvXqsrUNrywb1q6F78QJFDz1FGzDhkU9rVtw4/7192PLqS24uc/N+NOlf0Ine6fY1x8ASk2yCiUEAgWoKGkkT6HmLpMTrodJvuj6zXD0kXxMLM8kULWFjhIQqzX45RDk1k0puDt6Xi7i9RfeBYbrFfVGqEaQmfZ0SJIEJ7wweWQzHbc7vIe92r6ml2C10e0Glt/wMa6hOVgSST7unLwg30QaTfJUK7xLKfkUjEOK5PXAWQ0c2QD0n2pMURAhsprXo+Qj5OSdX38NrkMesm6K7nC379w+/PzfP8fe83vRN6cvHh71cOzrDgFZycuhZpHKffJq4R2nFt4lIf4qeTxgiumOVl0v+Ek+Yp98TCdSw/Vy4R1tRvKhUJiVBjNH8UMzkqeQAsL1arsfpxXeZdnliv96oQm8QvIeT4uiYg18jGY4alqAN7RPXlXycR4gmdX1XJxKXlCMi3hjTZ7UtFZKyadgJBLfwPxTwJGNgCQAfa827pi8RVfhHRdBybsPHoK1b9+oofaKpgrMWjcL6aZ0PHHhE7i217WgBhEv1UjeBLGZkufAQChNirEJ8/oA5aIrKoV3PkEChXzxVAvbWn8iJVzPGCgFiKWZkg9BGhwl6Jpnw/6KBnmbgMI6lQy1wjv4W+gK82UTnPPeWmS55FY8dwSSj7W6Xj23kZzKtTZczwxeUATE63inknyiwvWpnHwKRiKl5PXg+JeAyQYUGji+VaeSJ2Fy8szrhef776M63PkkHx79/FH4JB/enPQmbux9I0zUOAVCqHyh4yAreaIU3vGUyKHtJLWTMK8XTM3JMwGE+Avv5EEk+kbNRoVaXa9611stsHhqYaMAz4c/0EU98/DVkSo4vULQFDpNycNv3OMP19tBCEGT6AIRLKDUCp83fAFvrANqpAQo+dbm5JPZJw+OxjUTV/QlKFzPpZR8PDh69Khp0qRJYSuHz58/zz3//PMdkrmmtoQUyevB8S+BLiMAzsDwXFQlH3nUrOeHo4DPB0vvPmGPUdFUgetXXo/tFdvx8KiHUeQoatWSQ4ES+XfCEUDkVCUvwWriIIliUirrAbm6Xs3J+5gPFp5CEP3V/YapI1XJB+TkKRMx1kHRuWNayOp6ABjbMw9eQcL+M/XB1fXaQLqWLXRmjoPdbkeT4AaRALM5D15veDMtQgh4oj9crxKxsY538mOrRs0mieMJF+XmLwz84foEKflUTj4mdO3a1ffJJ58cCfd6VVUV9/e//71jMtfUlpAK10eDuw6o+Db+YTThEFXJe0GpOWyo23PwAADA2ie0knf6nLj9P7fjdNNp3DngTlxfqr/FLhYQJSpgAoVIRRBRgssnwmqiYKKYVCUPTn47CxBg5qhfyXNcFO/6GFhFqa6Xvev9OXn58kzCpgVUt7tjVU705NXqerFFTh6Eau1nJkoYSeEUAAAgAElEQVTgcDjQ1OgCExkslo5ockaeF2UiRLeSV0WskS106o1Gq7zrk2hrG4+SVwvveIMHL2ktdO1Eyf96//GiA01uQ+fJ90m3Ov/ctzisf/O9997buaSkxPvwww+fA4AHH3yw0OFwiO+9917ed999V7Zjxw7rnXfe2c3n8xFJkrB8+fLvH3nkkc4nTpyw9OnTp9+ll15a/6c//en0pEmTetbV1XGCIJAnn3zy9K233lob6ny/+tWvCvPy8oQnnniiEgAeeOCBzvn5+b7HH3+80sifO5FIKfloOLEdAANKjJnRrkGHkg8XqgcA94GDIGYzzF27hnz9L9/8BaebTuPXw36NB4cnbp6QquR5qoTrRQkenygreUlKSvscILfQqeF6r+iFxcRB8KnTwqJV18dyIkkrvAvMyRP1vzCc0SU7DZQAR6uczZR8s8I7+JU8TxSS9zkBicFu7weX61jE5fGE6A6Vi5qSN5ZUTYTEXXiXVFvbOKvrE1V4p7XQpXLyYXHrrbdWL1++XJvbvGLFiuwLL7xQ857/61//2uG+++47e+DAgfK9e/fu79atm/fFF188WVRU5Dlw4ED5okWLTtpsNmn16tWHy8vL92/atOnQo48+2iXcjdV99913/v33388F5NbJjz76KPvuu+9uk6Y34ZBS8tFwYhtAOKBzfL7wYaEjJx+pfc5z8CAsPXuChAgZLj20FO8deA/X9boOdw28y5DlhoOm5AmFoJC8W5BJnkliUtzuAEDyeAG7PDepuZKnXDTv+lhOFByup2kqyZNIHA8Lz6EwKw2HKxswPk/+nXCS2NLWNsC73qSQ/DHfUTCJwWLOgyA0aFGeUDBRons4jAjjc/KAfNPQHgrv4p0nrxXeJcjWVmwnJB9JcScKF110kauqqoo/evSo6cyZM3xmZqbYvXt3zY1q9OjRTS+88EKnkydPmqdPn14zcODAFkpKkiTy61//ustXX31lp5SisrLSfPLkSb64uFhovm3v3r29WVlZwtatW9POnDlj6t+/v7OgoKB9/IEUpJR8NNQcBTK7ABa7scfVoeTDVdYzSYJ7/35Y+rTMx28+uRnPfvUsRuSPwO9H/t6w5YYDJfJNBk8g+9cLIlxeEWlaTj45bzG58E6+SHolLywmClEj+cjh+thOJCp0LhfeBSp5Ikv8sLte1CMPWw6dh1ebjsdCttAJmpIHHA4H3IIHguSDySwb4vh8NSGODmUfotttLhHV9YCq5Nt+n7yck4/Hu14A5TjDHe/UQj5JaME1KQTgqquuqnnnnXey33333Zxp06YFObPOnj27esWKFYfT0tKkyZMnl65cubLFxNRFixblVFVV8fv27dt/4MCB8tzcXJ86Tz4U7rzzzvNvvPFG3ptvvpl35513tisVD6SUfHTUn5JJ3mjwVsDTEPZlSfKG7ZGvX70GYnU1bCNHBj2/59wePLTpIfTO7o1XLnsFNpOh6bKQIFq4nkDkCJggKIV38lCYpIXrPR4w5VyCJCt50eNX8kKA9WwLxOx4xwNMnSdv0Q5BCInE8biktAOW7DiBijp57GyQd32A452guNARQpCRkQEAcDIPck1ylNLrPQ+LJT/kOUyEwKuzXTAR1fVAK5V8MqvrlZy86nmgF6IgGF50B/gL+VItdJFx2223Vf/iF7/oWlNTw2/atOmg2+3W/njl5eXmvn37evr371955MgRy+7du9NGjRrlbGpq0ki8rq6Oy8vL81ksFvbxxx87Tp8+HXEK2G233VY7d+7czoIgkGnTpoUt8GurSJF8NNSfArqMjL5drNCh5ENZ2jZu2YLTv/sduJwcOCaM154/23QWD6x/ALnWXLx6+atJIXjAX/3PQVXyAtyCCLuFh+RKcuEd76+uTzdxkJrUKXRc1FGzuiEJsgEQmOxdn5amHEP+L5TjnYqeHeVo0LkGt7KP5B9ow/wtdD6Jae1wmZmZAIBG4kahqRiAbG3rcISeFGii+vPhWnW9vs11Q15De6iuV677EmL6JYiCz/D2OcCv5MWUko+IESNGuJuammh+fr63pKTEd/DgQe1C+c9//jNn6dKluTzPsw4dOviee+650/n5+eLw4cMbe/Xq1X/ChAl1Tz31VMXkyZN7DhgwoG///v2d3bp1C583BWC1WtmYMWPqs7KyRD4Bf/dEo/2tOJlgDKg/DWQUGn/sKDl5UXSBci2Juvof/wTfqRO6LVsKTiEAAHjqy6dQ46nBaxNfQ15anvHrDQOihev9St7lFZFnt0BqTGILndcLRjmAyErewlFIotLPzEUZUBOTkhdACZFTxxwFtahKXjlIBG4rybWBED/Jc5C08L5Wla+E61V1nZ0tm+A0EDesJrkLKJohjn7HO/nR6MI7jsQ/apaJDMSUpCyi2u8nSUAMN6OSIIAzuOgOCFTyKZKPhkOHDmlDYnr37u397rvvygDgueeeq3juuedafEA+/vjjHwK/37179wG95xJFEd9884196dKlkVtb2ihSOflIcFbJQ2kyOht/7ChKXpSc4Li0oOeY1wvn9u1wTJgAPjdXe/5042l8fupzXNn9yphmwRsBqhTe8YRBpAATBHgESSm8S54ZjuT1AkpO3if5YDFRSIqkpVxkJR8TyYs+JbTLQLlg7/poIV+riUO33HRU1LrkdYFpSj5wnrzA/Eo+IyMDBAQNxAWezwVAI1vbtpHq+jiK1gFAngqXzAE1QMwV9okK16eUfNvDzp07rSUlJQMvvvji+lBFfO0BKSUfCXUn5cdEKHnOEkXJO2Ey5QQ95z54CMzthm2Ef0gOYwwv7HgBAHDv4HuNX2cUqEqeIwQSJWCioBTeUUiiaHhxUjj4lbyk5eQlUSZiykU2w4mtul6QyZwpJE8pfJSXnyOhbW0DMaZnLsq+OYJsqgzwUaP1CC68U4mX4zjYrelobHKDShwslo5RJtHF0ifvL/AzEnwM0YQWEJnsKZ8McPGTfCLC9ZRLFd79WKioqODGjRvXwnRk48aNB0+ePLnvx1iTUUiRfCTUn5YfE6LkrZGVvNhSybv27gEApA0erD336fFPse7YOtzU+yYUZxQbv84oIEpOngcgcgTwCVoLnSQl1/GOcRRgkqbkmcRAeWrsFDpJACFUC9cDgFcJ3aojaCPhwu652LNdBGhwTp41c7wzBajZzDQHGpxOuY3Okg+PO0K4nuonWCFB4XqekLjNcJLdJw8g5jY6URDAcQlQ8krUK6Xkk4+CggLxwIED7WpOvF6kwvWRUH9KfkxYuD5yTp5rlpN37dkDvkMH8J3k8bBH647isc8fQ/fM7nhk1CPGr1EH/La2/nC9WzHDkR3vkjBmVpJkW1tOVtSCJMgkKTJwitqONKAmJo4TfVDN66lCEh7lRocgcnU9APQvzNQiB3J1vfIzKJP8oBTeBVa8Z9ocaCBuQCV5rzFKXkpQuJ6PYQ0tIDLZWSkZUMP1MZK8lKDCO0LlG9JUTj4FI5Ei+UioPy3Pfk9PwGwD3ipPtgvzgQ5H8mlDBiutWgxztshWu/MumQcuSYq5ObQBNUqfvNpCl5ZExzvmkSMijJcL7xgYzDzRlDyNNmo2JiXvU5R8AMnzSnFvlD55ACjJscGixMdpQJ+86opDCR+UkweATFsGnPDA5/XBYimIOFM+lpx8IrzrY11DczBRSp6SV1NJceXkjS+8AwCON6WUfAqGIqEkTwiZRAg5SAg5TAhpMcCcEPIgIaScELKXELKeEFKSyPXEjPpTgKMQSERemVd64MWWIXvGGESxCRz1h+t9ZyvhO3YcaUPkSXjbKrahvKocD414CH1ywg+pSTQ0JQ85XK/mE9PMyRtQI7mViAjlNIIw8QyQApS8UWY4og+EcgCRSV6UGDycouR1cBOlBIWZVgCsmZJXawZoy3B9ugMgQH1dHSyWAohiIwShMeTx4wnXG90n3xqSh8iMv+sIA6Ll5GN7byQqJw/IxXepnHwKRiJhJE8I4QC8AmAygH4AbiaE9Gu22S4AIxhjgwAsA/CnRK0nLiSqfQ6QR9cCgNfZ4iV5Ah0LUvJ1K1YAANLHjoUgCZi/fT4K0wtxdQ8DZ9zHAdUMh4IFk7zqeJdMJc/5Z9fznASI/py8YY53kgiifGwopXD7RHjV0b2EQI8PTVG2FYw196735+Q9EoMlgHiz7HKrZE1tLayWAgAIW3wXC8FKUAflGN9C16pRs0kuvIs1Jy8lkOQpx6WUfAqGIpFKfhSAw4yxI4wxL4B/AbgmcAPG2AbGmMpyXwFIgLVcK1B/GsjolJhjqza53paud6Io/0pUknft24dzL78M+4QJsPbujSUHl+BQzSH8dsRvYeWtLfZPJtQWOo4wSBSQfH6SZ5KUlOp6ySW3pDGO85M8L1euc0q43jAlL/mUn0lW8m6fCB/vV/Isaukd0DlLtcINUPIB8+S9kgRzoJK3y653tXW1mtNduDY6MyXwxhiuN7q63kQJhDh/3UxMoq1t3C10voS00AGykk+RfAqh4PP54tovkVfgzgACBxicVJ4Lh7sA/CeB64kdngbAmhl9u3hgVkje0zLsKooyaakkX7tsOajZjMLnn4PT58RfvvkLxhSOwcSSiYlZWwxQB9RQACIlYMob0WpWquuTqeSpX8mbeAYiQWtzi0byhBJ0LGlhc90Sog8EFEwJ17sFCR7OX12vg+ORncZD7riTb0QYY0He9V6JwRxwc+RIt4MyglolXA+EJ/lYvOsTZYbTunC95HeiSzRUJd9GWugAebJdqvAuMp566qn8Xr169e/Vq1f/p59+uuPBgwfN3bp163/TTTeV9OrVq//VV1/d7aOPPnIMGzasT0lJyYANGzbYAKC+vp7ecMMNXQcMGNC3b9++/d55550sAGhoaKBTpkzpXlpa2u/nP/9590GDBvXZvHmzDQBmzJhRPGDAgL49e/bs/5vf/EYL627atMk2dOjQPr179+43cODAvjU1NfTgwYPm4cOH9+7Xr1/ffv369V23bl06AKxatcoxcuTI3lOmTOnetWvXAffdd1/n1157LWfgwIF9S0tL+5WVlYWdRDZt2rSud999d5cLLrig9L777otLBCeyhS7UlSPkp4kQciuAEQAuDfP6LACzAKC4OIltYj4nYEpPzLE1JR+K5OXJiRyXBsYYGjdtQvpFY8BlZOBf3y6GS3Bh1qBZsRWMJQhU65OXw/XqmMw0E4e6JA2oYUpOnnH+nLyFZ7JTKSUgNHKfPADc+8o4fSeTBKWY0K/kvZzqqhm9uh6QSZ2nFISooXpohXdQwvWZARXmlOdgZ1bUNvhJPpzrXTx98m2qhS6JffLqzUSsOXlJEMAZPEteBce3n3D975btKTpU0WCof3ZpgcM5//rBYafbbdmyxfbee+/l7ty5cz9jDMOHD+972WWXNZw4ccK6ZMmSI8OHDz82aNCgvu+++27ujh07Drz33ntZc+fO7TR+/PjvH3300U7jx4+vX7p06dHz589zI0aM6Hv11VfXv/DCCx2ysrLEQ4cOlW/fvt06evRozVFswYIFp/Lz80VBEDBmzJje27ZtSxs8eLB7xowZPd59993vL730Umd1dTW12+0Sz/PCli1bDtlsNrZv3z7LzTff3P3bb7/dDwAHDhxIW7Zs2ZGOHTsKJSUlAy0Wy/l9+/btf+aZZzq++OKLHRcvXhz2Z/7++++tW7duPRSvpW4iSf4kgKKA77sAON18I0LI5QAeA3ApYyxk4zhj7G8A/gYAI0aMiFMixAjGAG8TYE6QB7xZUY2hlLzkV/KegwchVFQg/f5fYt7X8/DO/ncwrss4DOs4LDHrihHqzHuOMEhErq4HlHB9knLyauEdI0S78bGaVZKPPmoWiKHCXhKUFi8Gyik5+SAlH/3tyRiDiaOykkczJQ8KL5Ngpv6PJqEEdpaG2vo6cJwVJlO2ITl5MYHV9XG30ElJLLxT8hRMr9m/AjFBtraAbIiTUvLhsXHjRvuUKVNqMzIyJAD4+c9/XrNhwwZH586dPaNGjXIBQGlpqWvChAn1lFIMGzbM+eyzzxYq+2asXbs26+WXXy4AAI/HQw4fPmz+4osv7L/61a8qAWDkyJHu0tJSrVDq7bffznnrrbfyBEEg586dM+3Zs8dKCEHHjh19l156qRMAcnJyJACor68nd911V0l5eXkapRTHjh3TFPrAgQObSkpKfABQXFzsmTx5ch0ADB482LVp06aIIcTrrruupjWe+Ykk+e0AehFCugE4BWA6gFsCNyCEDAWwCMAkxlhlAtcSOwQ3AOYvkDMaOnPyjRs3AQC+LPHinfJ3MK3XNDw04qE2oeIBgCpkpBbeQauul4vdklldzyjVlLzZBHAMYARRW+higugDIXKrHqGA2ydBUm4EmcB0KXlJktvEqJKHr6x1B02hk8P1AX9fSuBgVpyol6dqWiwF8IRpozNRAm87ra5nEgMYkjeFTomWsBgLCBIbrm8/OflIijtRCDcAymw2ay9QSmG1WhkgGwyJokjUfZctW3Z48ODBQWIy3DEPHDhgXrhwYf7OnTv3d+jQQZw2bVpXt9tNlamFLXaaO3dufseOHX3Lly//QZIkpKWladakFosl5Poopdr6wsFut7fq4pWwWCqT3T3uB7AWwH4AHzDGygghTxNC1JLw+QDsAJYSQnYTQlYmaj0xQ616NycqXB9eyUsBOfnGjRthHTAAfzv1Afrl9sMTFz4Bu9ng2fatANFa6GQzHChhcatSXZ+Mwjvm9ufkKZHPZ+YlUBBZ3UeZQhcTJB9AlBsXyuDxieiQ1Q0AIJxt0pOSl29+CECJfDH/946TmhmOSvKWgN+bUOWCg6XB6XXD4/HIvfIRwvWxKnlqOMnHWV2vhs2TZIZD1PPESPJSggvvUi104TFhwoTGNWvWZDU0NND6+nq6Zs2a7PHjx4ef2R2A8ePH17/44ov56g3/1q1b0wBgzJgxjf/617+yAdmr/tChQ2kAUFNTw6WlpUk5OTniiRMn+I0bN2YCwODBg91nz541b9q0yaZsR30+H+rq6rhOnTr5OI7Dq6++miu2kZHBCbW1ZYytAbCm2XNPBnx9eSLP3yr45Lx4wpS8OXxOXlBy8qzRC9eePai++TJ8X7cRT1z4xI9mehMOqnc9VUieCMHV9ckJ17vUxQT0ySvjbwmUwjuDPnCioLTQiaCUwC2IqFbeK9YeWcD+6qiHYIyB/n/2zjw8iird/99TVb13Z18JJKAmJEAIAUVBFALqBdyHmdEBvO6KXhd+3HHcZhxGxxlxRGcUHWVGLrOAcgV3UUa9LA4oCkbABEgCAgkh+9J7d3XV+f1R1U0Ssqerkw7n8zw8SXedrnOq0/S33uW8L+HAQxX5vVWYP7ZN4h1tb8lTv4wYqtRMaGpqgtGYDrv9u07P3ZeYvFbZ9UIf2t22JZjlHrFiOEL/YvKa75Nn7voumTFjhnvhwoWNkydPzgOAm266qT4pKalX/7mfeeaZ6rvuuiszNzd3HKWUjBw50rd169aKhx56qP6nP/3p6JycnHETJkxwjx071hMfHy/l5+f7JkyY4M7Ozh6fmZnpmzJlihNQWs+uW7fuyAMPPJDp9Xo5o9Eo79ixo2zp0qV1CxYsOPfdd9+NnzFjhsNkMoXJshgYrHZ9V/hVkdcsJt91dn3Qkndt2QZQipW2LzE5ZTJ+lP0jbdYyAAghIEQXctcTKQBQqhTDiVR2vWrJy4S0s+R5CkiEhtddL6vFcCABhMIrygioIQui5/rmrlct+doWD35osCvnIBx8sgx9G+vacF4cYqnyOWxsbITFmgZRbIYkecHz7bdQGjgCXy+vNXgzoAuzJd+XdrdtoafT/cO6nq4IFcPpV0xeq33y0eOuHyyWL19eu3z58nZJKcFWswCwadOmY8Hf27ahtVqtdP369cc7ns9sNstvv/32D2azmZaUlBiuuOKKnOzsbH/Hc7Vl5syZ7n379rVrV5ufn+9r2wL35ZdfPgkAV111leOqq64KeRu+/vrrw8HfOx7rSFfz9wUm8l0RdNdrlV3PC4Bg6jYmb//f93H0PCtq0/R45dIVELih+efiOB14IirueihWvSnkro/EFjq14h0hoWx+nZpdLwHhrXgnBxCKcnGqyKuJd5DlLuN77U4hy+AIAada8klmA/ZXNiM/FgDOdNfrks2IUUW+qakJiYlK7QafrwZm8+h25zbyHAIUEOX2VfM6I2jJ9zSurxg4rtc3Gu1Qbwwill3fz5i8rGlZWwGir+ueFozw43A4uEsuuWSsKIqEUooXXnjheDBmPhwYmqoxFAi667WKyQNK8p2va5GXK+uw6RoeT05/BmmWNO3WMUA4zgCB+EMiz8tSKCYfiQY1smrJBygNdfISOBkcBQJQrGMAAy/OI8vKVjc1REE4wOuVEVBrBZhMSg97Z7MX1viuixQp7noCXrXk5+Qko7LJifzYrhLvAB14WPRmNDY2YsKE4Da6U2eIvEm9Pq8sQ9fDDVYwQU9Hwvs3MnIE3n6IfNBtHrF98kM08U4ODI1Y7tlCfHy8HNzqNlg8/PDDae+991673uLXXntt04oVK7puOdlLmMh3RSjxTiN3PaC47DsthuMGKIEPQNqceZiTNUe7NYQBjjNBT+zwq9/NOirBIHCQAqJmW43aIns9ACGQ24q8QCGAQAINWfeyLIMfiMhLfuWnmnhHCIVXlBBQ244a1QRf0df9l3RHd/2kkbH4/LCEYGmJjjH5YFH8eGOMGpNX+hd01nLWyJ8WeRu6F/mQJR9mw9nIcfDISsnePu0CCbrrIxyT70sCgSxLoFTWpNUsAPC8ACnQv8pmjOhlxYoVNeEQ9M5gXei6IpR4p7El30ninVe0g/opTqTxeOCin2s3f5jgeBP0BJA45cvSIij71ZVuXdrfR1KvD8RkgiRJCO4n5YgMDkrcOdgJTx5o8l2wmZBqyYMA3oAEKRhGUROmevLYK+7604l349NiwXMyKOVCJWkNbazrYCJanNGGxsZGGAyKu97rO6PsBEzqWHcvksmCcXMhzKJqUm80fH2MywctaqKLVHZ9MCbfe0s+4Fdu9Hi9voeR/YPX6ZjIM8IKE/muiIglb+vUkv+25itwPmDkxOlD2k0fhHAGGAhFQDUcrepPLRt5tIX6vOAMBkiSFLLkAxAhUMUqDlryA47LBzqKfIfEO/Umoqe4vCzL4HgOHFHGmwUOqTYeASqcdqF3FF4OiDPGwO12w++n0OkSOt0rbwy563sW2KAlr9fAXa+soW/vNxVVkY9kP3nSt+x6Ua3JoDNo0zNC0BtCNxIMRjhgIt8VosaJd4BqyZ8Zk291nQLnBbJyp2o3dxghxAg9BwTUT5OJV4ROlqSIiLzscoMzmxVLXnWjilIAAhSRJ2EWedImJu8TJUAtcUol1QLrjSXP8eCgjJclGWk2EW7RCK8qOPqOIk8I4g1Ko5rgNrrOLHmzakV7eiFcfo220PXlRqMtIZGPlCVPCIjA9cmSD4q83qiVyOsR8HVa+JPB6BdM5LtC6y10gFIQp4Mlf6z1GHjRC+IjEJKStJs7nHAG6AmFpBaBsvAI7fWNRExecjnBWa2KJS8olrwoiiAgcEtyu5j8gOhoyQPwihKITnXdSr235HmeCyXeSRJFgskPp2jCSbuyfdLYIXeAcARxagGlxsZGGA0j4PWeKfLGNol3PV6OTCGQPpT07SVt8wL6QqTd9QAAnutTTD6Y+a6VJa8zGCD6mcgzwgcT+a4Q3QAIoGUrV/2ZMfmd1TthpgDxA0JydIg85fQwECAQjMlzCO31jURMXna6wFmtCAQC0Knb2URREdxWfyCMlnxwq157d31oO1XAr87T/WkkSVIteeU9kgMUVgNFQBZQUqt8HswdM8wJQaza76CpqQkGoyLyHW8oTH2w5EVKw75HHjh9o9GbNbQl4u56KHH5vljy/pC7vsvGYQNC0OshiWL4tnwyznqYyHeF361sn9OyRnwnlnxZcxmsHAfOi+ix5IkeegKIqsibhdMiHxF3vdMJzmppl3gn+pT5W31iaK/+gL84z0i8o/AG2lrywcS73sTk+dOWfECGxcBBphwO1ivhG3PHXQAcIIBDbGysYskbR0CSXAgE2od7gol3nl5cq0h73kvfH07H5Id24l1wruDNRW8IWfJGkybrEfTKzQOLyzPCBRP5rvA7tStpG0RvVbL45dPdyPbV7YNFB3B2Aj4xUdv5w4RMdDBwFAHVXR+rI6H625ESed6iuOt1qlUdUC35Zl8gFCIfcHZ90F2Ptpa8BE6NyRM1K7onS/50TF5ZjyxRCByFwPM40qTkglj4M931lFIkJCSoMXmltbXXe7LduNOu8p4FVpRp2JvTAH0LGbRlUCx5PQ/q7/3nQlRLKOs0iskHPQTMZc8IF2yffFeIbm3j8UD7nvLGGFQ5q3CktQK6DAm8g4OQkND964cIMnSqJa98ScfoSGgbUCTc9W1j8iFLXhV5EcCeE60Awpd4R9vF5GWlt7iIUAe+nix5SZLAG43tLHnKSdDzAmqafUCCsVN3PWSKxMREfP/99zAalAZXPl8NbLa80DBTH1zlIqVhz6wH2ljyfXXXD4Ilz+l5yH0ReTUpTjt3fdCSjwKRf/e/RqGuNLxfkinj3Lju5W672y1fvjx13bp1SYBSu/6GG25omTt3bvbUqVOd3377rTUvL8992223NTz55JMZjY2Nwtq1a48WFRW57XY7d/vtt2cePHjQJEkSefzxx6sXL17c4nA4uBtuuGF0RUWFMTs721tZWalftWrViUsvvdS9aNGizH379lm8Xi939dVXN7/wwgvVALB9+3bz0qVLM91uN6fX6+mOHTsO19XVCQsXLhzj8Xg4APjTn/504vLLL3d9+OGHtt/85jcjkpOTxdLSUvP8+fOb8/PzPa+88kqqz+cj77zzzpHx48d3+gdfsGDB6Kuuuqr11ltvbQYAs9lc6BWoJFcAACAASURBVHa7i/vyljKR7wq/W9vMeqB9kxpjDBx+B8wcAI5CCJhBIiCQ4UAmOvAEoLwibrZ27voIFMNRY/KS1wM9r7jORVGZPwCKTcXVuBxKFvuACCXeqe7/kCWvzEmDMfk+Z9dTgMrQCQLqPX4AnYi80sIeiYmJ8Hq9kOU4AErVu7aE4uG9uKHxyRRGDUrI9jvxbjAseQMP6u/HFjqt3PVBS55l2HfKF198YV6/fn3i3r17D1JKMWXKlLw5c+Y4KisrjRs2bDg6ZcqU4xMnTsxbt25d4p49ew6tX78+7umnn04vKio68thjj6UXFRXZ33rrrWMNDQ38+eefn3fNNdfYn3vuueS4uDiprKys9JtvvjFOmzZtfHC+559//mRqaqoUCAQwffr0sbt37zYVFBR4Fy1adO66deuOzJw5093U1MRZrVZZEITAF198UWY2m+mBAwcMP/vZz84JVtI7dOiQaePGjUdTUlICWVlZ+QaDoeHAgQMHn3rqqZSVK1emrFmzRrO2vdGhIoOB6NK2pC3Qpt2sEld1iS7YuGAVsjht5w4jklpZTdYTABQ2nkbMXU8DAVCPB8Rihux2QRAECJwA0adsoQsQgA+VtQ1TMZy27vqADEGvA0ABUXXX9yYmLwghS16WZFDI0AsCWlSrsqPIE0JAZcVdDwAOBwHAwdeh5WxfEu+8styuRn646PcWusGIyet5yK7eF58Jueu1yq4PWvLRIPI9WNxasG3bNuv8+fNbYmJiZAC48sorm7du3WrLyMjwTZ061QMAOTk5ntmzZ9s5jsPkyZPdv/3tb0eor43ZsmVL3IsvvpgGAD6fj1RUVOh37dplffDBB+sA4IILLvDm5OS4g/P97W9/S1i7dm1SIBAg9fX1un379hkJIUhJSRFnzpzpBoCEhAQZAOx2O7n99tuzSktLTRzH4fjx4yF3T35+visrK0sEgMzMTN+8efNaAaCgoMCzfft2m5bvGRP5rvBHwF1vjFV+elqUHwEPbKo1rNdFRzweAALgwQOggg6AD1ZIEcuul13qVkerFaivB8/zMPJGiKIi8r++bjx+t0Fp+hSuLXRUvamhkOETJQg6HYBAKLu+J1NeSbwTQmVtpQAFpRIMgi60af1MS/60ux4AmppaYTCknFEQpy+FaHwyhUHDxLveeBPaEkqAi2hMnuufu96oXXY9wBLvuqKrG2i9Xh86wHEcgg1meJ6HJEkk+NqNGzdWFBQUtLuD6uqchw4d0q9atSp17969B5OTk6UFCxaM9nq9nFqu+YwXPf3006kpKSnipk2bfpBlGSaTaUrwmMFg6HR9HMeF1tcZgiDQYF96WZYhimKf/8OyxLuuECPgrremKD9ddQAAt+gOWfIGY4q2c4eRQLBGuk4RdBuRQjF5rWp8B5Gd6u4Ek+I+FQQBRsEIv18R0LyRsZiUGQ8gfFvoCFGL31DFXa8PttMVlS/mnqZRKvMJ4NTvCVmSQakMg04XarNq6diilyMABeLi4kAIUbbRGdLh7WDJc4TAyBF4pJ6taJ8sn7EfPxwEvQl9jsmLMqCWRI4UnJ4H7aHXQFtEnxeCTg9Oo+6Kp931rBNdZ8yePdu5efPmOIfDwdntdm7z5s3xRUVFXbZqbUtRUZF95cqVqcGb/Z07d5oAYPr06c4333wzHgD27t1rLCsrMwFAc3MzbzKZ5ISEBKmyslLYtm1bLAAUFBR4a2tr9du3bzer4zhRFNHa2sqnp6eLPM/jlVdeSQyK80DIysry79271wwA69atiwsEAkzkw4bfpb0lb01VfjqV1sjugBsxqiVvsGVoO3cYEanqDlfj7+YIWvKSU7HkqUn5W/E8DwNvgKhaZ4KOR5xFca1+vubVgU0WLHXMKdaWJAXgFWXkONQiOKGYfC8seY5DUMelgAxQCUadAMoTEJzeCheEEIDKFIIgICEhAbW1tUrVO2/VGec3clyvLXmjBpZ88AbF1dcciIAMImjfmrgtSnZ93/bJCxpl1gOAQf0c+9WwAKM9M2bMcC9cuLBx8uTJeVOmTMm76aab6pOSknqlps8880x1IBAgubm547Kzs8f/8pe/zACAhx56qL6xsVHIyckZ9/TTT6eNHTvWEx8fL02bNs0zYcIEd3Z29vibbrpp9JQpU5wAYDQa6bp164488MADmWPHjh03a9asHLfbzS1durTujTfeSCwoKMgtKyszmkymARc7uP/+++t37dply8/Pz/vqq68s/Tknc9d3hejWfgudJVmpjepQRV50I55SQAL08dEj8v6gpgmK+JmpGLGYvOxUbuKp+bTIG3kjJNX1K+g4JFgNcAOoKj0wsMnUpkUEys2MJElweEWco3oNEHSx9moLHRdqwytLFBQSjDodiMBBoJ1UoeNIKAyQkZGBo0eP4qJpeair2wxRbIZOFx8aauK5XrnKvbKMWA0SI00cAU8AZz8s+YhWu4Pirqei1OuOeQGfV7PMegAwWBTvoS8YhmKcwfLly2uXL19e2/a58vLykuDvmzZtOhb8fezYsf7gMavVStevX3+84/nMZrP89ttv/2A2m2lJSYnhiiuuyMnOzvZ3PFdbZs6c6d63b9+hts/l5+f7ysrKSoOPX3755ZMAcNVVVzmuuuqqkLfh66+/Phz8veOxjowaNSrQdp7gOfsCE/muCBbD0RKOB8xJ7Sz5BErB2QFdYrK2c4cRT6gPuCLyJjkQsWI4gcZG5ZcYJXeF4zgYBENonzyv42A26ODu6gR9wa9WQVT7x/v8Ilx+CSdTDMio84WqF/aurC0PThBAQNXsegqO42E06zrfZ69uoQMUkd+/fz90wmQAQGtrMZKSZoeGWngOzl5UcdMqJk8IgY3n4ehjX3TZL4HoIyvynIEHqHqDoe/ZiyB6vdBrlFkPAAazsuPG5zqzcRVDGxwOB3fJJZeMFUWRUErxwgsvHA/GzIcDTOQ7g1LFatPakgcAW+ppkRfdiOcA3kEg5EZJtTsALjX2FBR5oyxGbAud1NQEAKA2pXmLTqeDkTdCFtXmKzoOZmOY1iAqN35EVoTI6VEb1hh4UNEO6nYDQs9b6JSythzA68FxMqSADJ5KIOAgmAVInbiPCXe6yE5GhuLlaW2NByE6tLTsaSfysQIPey8E1i3Jofh5uLEKHBx9jElSbwCcMbJfSUFhpz4J6IXIe11O6M3afS/ojUYQwsHLLPmIER8fLwe3ug0WDz/8cNp7773XrjDKtdde2xSOHvNM5Dsj4FO+UbWOyQNKXL6NJT+KBzh7FJW0xenYq17NDNdLIlwRKoYTaFAseWpun3gnqZYsr+NgsYVph0owhKPmILi8intezxGAI5CddiBOiZ13R9BdD14PjsiQAxQcZGX/vZ6H5Owks5qcdtenpaWB4zhUVzcgIWESmpu/bDc0RuDRpNYJ6A5nQIKtY4JfmLDxfK+8CW2RvZJiWUcQziSocwfA23ruEe+xtyImJVWz9RCOg8Figc/NLPmziRUrVtSEQ9A7gyXedUawA53W2fWAKvKns+vNBhl8SxR1oAPQolqNNh1FgHAQAn4EM0u1d9c3gI+NRVDSdDodDLwBsrr1WdBxiI2P7/L1fULdVimrO15CIk84EI5AttsB9D7xDrwAnpMgSTL8/ibwnAEBAfC7Awh0jGdzp931giAgLS0NJ0+eRHzCdNgdByCKraGhvbHkKaVwSBJsGiW62YR+uOu9AZAIW/IhkXf3fFMEAG6HHSZbrJZLUkSeWfKMMMFEvjPECLSZDRK05GUZPrEVegMF38yDi9X2iyScuCU/XDIHGy/Dz+tAfb6IJd5JjU3gk5IgqoVodDodjIIRsgRwHAHHc0hICFNhIXVbZbAmjtuniLyOI8rWt9ZmZVg3W7IopaGYfNCSlwIiRLERRmMWPASgfgk19vZbqAhH2nkI0tPTUVNTg/i46QAompu/Ch2LFXi09iCwXpkiQAGrVu56nut74p1XAmeMsCVvVkI5srvngjiUUnjsdphjYjRdk8Fsgc/NRJ4RHpjId0Zwq1QkYvLWVEAOAJ5mcJISXzb4YiO6V3iguEQXPFSHWEGEKAigXl/EatcHGhshJCSERF4QBBh5I6iouOoBIC4uTDdMfhegMyHglwEQeFRLXgeA8ByMTScAAPaGrrc/BdSbH0EQAF4Hnkigavc6DzFBAkB8Mk42dziHwIEG2ou81+sFpVngeQuamneFjgVFvjuPglP1tFg1tOR7kxfQFnkQYvKcufeWvN/jhiwFYLJpK/JGi5XF5Blhg4l8ZwTd9Vpn1wNK4h0AOGuhl5TKdwYaPZn1gBJmEIkZMTofJJ0O1OcNVezSPPGuoQF8UmJIPHU6HSw6C4ifh0H9AreZwrQGnx0wxkD0BcCBg8+veg8IARF4EHq6gl1XtPU4gDeAIwEEJOW9apaV/dfEL6Gqg8grLVFPi+aIEUoXuqqqU4iLm4rm5p2hY7E6ARJVEuu6Ihgvt2lkySfpBDSIvS8XS2UK6pdAIm3J98Fd77YrIRFTTCTc9SwmzwgPTOQ7w1Gt/LSlaz9XqCBODYxUiekahQjMG0ZcARdEzoJYnRuSToDs9cHjULZ+Gi1Wzealsgyxpga6NMWqBQCDwYAYQwwEvwEGi/IFbtbxaNCHoUywpwUwxkH0SeAIH3LXCxwBBB4Eyq7I7hrhtL0Zgd4CPeeFqJ6nVVa3ZokyTra0F3muQ9/ztLQ0WCwWlJWVISHhYrjdP8DrVT63sap13tKNJR3MfLdqlHiXatDBHpC7vdFoi+wWAQrwFu0bGrWFGAWAALKn5xsSjyryZo1F3mixwuvsVRE3Rj+5//77M9LS0iaazebCwV6L1jCR74xmtV5CXKb2c8WPUX7WH4aZukFcgCFppPbzhhG36IYIK2INDgT0HKjXC6/TDoPFAk4jEQGAQE0NqM8HfVYWfGpNcaPRCIsrHqOb89FYpXhkOI6gzjISVDfASmXeFsAUD9ErgeN4uDw+JFkN4CjAGZTMbI4AUjclZduGFWCwwcC54Pcqa2+RlSIrCQKPqub2O/uJnm8n8hzHITs7G+Xl5YiNuRAAQi77eJ3ynneXYd+segXidBqJvF4R6zp/76x52amGd3qR4R5OCEfAmYVeNalxq4mVWlvy1oQkuFpbEOiDJ4TRN6677rqW3bt393nbnBiFfxO2ha4zWo4DhhjAFKas7O6ISQdiMoCqPYgxeyDUEejSosuSd4tueGkqBE4CjSeQvV54HA7NY5f+E0oMXD86C16XC4QQ6PV66JvPnFfgedBOq8z0EkoVS96kWPKCSQ+vz4cRcUZQvwTOrLraqawUt+mCdu56vRUGONGi3qA0y4rAjTAZzrDkO7rrASAnJwffffcdGhuN0OkS0dy0CyPSf4wR6g3HSa+I/C52D9b4lHWkGbSxnFMNyldLrU/EaFPPFeIkhxreibDIAwAfa4DU0nPXN0eDsgvGGp/Qw8iBEZeaBlAKe30dEkYM3cqXv9r5q1EVzRVhTVw6L/4891MXP9Vtd7uHHnoofePGjQnp6en+xMTEQGFhofuTTz6JmzBhgru4uNjidDr51atX/1BUVORubW3lbr/99sz9+/ebAeCxxx6rvuWWW1rmzJnT66SHBQsWjI6Pjw8cOHDAPHHiRPdf/vKXM2tJD2GYyHdG83EgLkvZmxwJMqYAJ/cgfqwIoYFAl6vdPtxwI8kS7H473FIuIABiGoFU1QSv0wGTVWORP6Z4XPSZmXDt2QOz2QxCCCwmExrRXmgFgeu5Sk23kzkBKgHGOPi9AegFPQI+H9JHGCEe8cBckATOYgFHA5C72R/ezl1vsEEPOwKiEn9tCBhAAIy2GVF6srXd60gHdz0AnHfeeTAYDNi9ezfyJ16MpuZdoJRipFr8p8rXdSezWtXCTtFrJPLqeWt6ackHGpWbGj5eu7rwXcHHGUPzd0dD5XEYLBZYNBb52JQ0AEBrXc2QFvnBYMeOHeYPPvgg/sCBA6WiKJJJkyaNKywsdAOA2+3miouLD3388cfWu+66a0x5eXnJI488kh4TEyMFy83W19f3y3V15MgR486dO8sEjROJtSD6VhwJWk4AiedGbr6R50Ms/wAxukQINTyEmWmRm3uAtPhaIFEJVa4MXBALyOeI8BXXo/rwQYwcN0HTuX1HjoAYjRDS0tDa2opYdduhxWAG4IIh4fRNmlGv67k9XHe46gEAfn0yAn4ZBoMR1OXCiFgjqM8DzqyDLisTRAr0ypJX3PVWGGgriPEoAKDcb8Rokx45yQK2HDgFu1dEjCrYRMefIfJ6vR4zZszA559/jry88+D3vw+XqxxJlmyYOIJKb9ciX+MTESNwZ7a0DRMjjYpFftzTu5apYo0bxMCDj428JS/EGeA70tJj/fqGE8eRNGq05jtf4lRPXnN1FcZMmtLD6MGjJ4tbC7Zt22adN29ei9VqpQDo5Zdf3hI8tnDhwiYAmDdvntPpdHINDQ38jh07Yt58882jwTHJycn9ag33ox/9qDkaBR5gMfkzoVRx10ciHh8kYwpaYnQgBNBXEOjSoseSb/A0AADK6uNg95tB07wo1xOIPi9a62p7ePXA8Hz7LUwTJ4JwHFpaWhAXp+yHN3PKroi4+afj2lajDp0Xhe8lrYqHzs0pX8CcTg8dAshJtABUKW1rGj8BVBTRUNV10lQ7d70hBgZiBzgXAhDwfw4TJsdYMHVMAmQK7D3eHHod0XOAREE7eAmmTZuG2NhYfPmlMrapeScIIRhp1KOyG4Gt9Ysha1sLbAKPkUYdDjp7101NrHVDl2oelK2jQrIJ1CdBau3aZS/LEupPHENy1mjN12OJi4c1IRGnKso0nyva6G5baMfPDiGk142HesJqtQ64o9xgwUS+I64GpehJXFbk5hxRiOZ4IyBR6I8RCKnRI/InnUpTpOO1RlR6E8EneOAwKdbY+JlzNJtXcrrgPXgQ5vOnQJbldpZ8HK+4U2t81aHxVpMeHCikHkrOdklQ5KFsb5Q4HayQcNFOxcLnjDxMhYXwC1a4mrpuhxNMENTr9YAtHXrigmCwoxT5AIDxVhMmZ8ZDxxPsPtoUel1XRVsEQcD111+P2toAZDkJzU1K8l2uxYQDXQgspRT7HR6cZ9bWNT7OYkKJs+e+6JRSBOpc0KVGYMtqJ+gylB0g3oNNXY5pOHEcoteDtHNzIrKmEdm5qC471PPAs4xZs2Y5t2zZEut2u0lrayv32WefhSpdvfHGG/EAsGXLFqvNZpMSExOlWbNm2Z9//vmU4Jj+uuujGSbyHWlRM+vjIyjyegsaUxNhqgbkuDhwJu26XIWb43bl/fJ5ElAZsEBn8oJmBJCakYmp1/5Ys3mdn38GyDLMF12EhoYGBAIBpKo3R0RW7tyrPafzY2zqjUe9vZ99uusOApwOdq+SZ+AgeoBIkJqUeLphTCysl8xASkMxZE/XFqFD3Vpos9mAmBGw8Q3QWevxBrkZAHBdShxMeh4TR8ZhZ0VD6HWcurVMcp4Z4x49ejRmzJiB2poENDZ+CVkWMSXGjEqvHyc7cdkf8fhQ6fVjZkKYavp3wdRYC8rcXpS5uhd6scYN2RWAbpR22y27Q5em3Fw4d1V3Oebjl58HAKSMPicia0rPyYW9vhaOxoaeB59FzJw50z137tzWcePGjZ8/f/65EydOdMXGxkoAEB8fLxUWFubed999Wa+99toxAPj9739/qqWlhc/Ozh4/duzYcZs3b7YBwJIlS0ampqZO9Hq9XGpq6sRly5aNGMTL0hRNRZ4QMpcQcpgQUkEIeaST4wZCyAb1+G5CyGgt19MrgiIfQUve662GW3BBd5jAmEAHliAWYb6r2w9OSkBuSiqq9AYEZB6Wi+2I1bDnNvX70bjmf6A/5xyYL7gAJ9Qs+2B3NqeaKf29Y3/IvRejinxlN1Z2t/ywHRg1FfVVHgh6Dl83KKG9VqKcT5dqgZCcDEt6ArySDu5vv+30NA6HQym9azQC8VmIs1SgLqsJJzAKAgFGqLHs+fnpOHCyFXuOKdZlcP94V1u9Zs2aBSAXFB5s3vwK5sQrwrW6sv6MsdualBuNIo1F/ob0BOgIwd+ruxeq5o2KW9o0Lgy1DPoBp+dhzE1AoN4DsZNqhV6XEw0njgEAEkdFJox37vnKtsh3//BUROaLJn7961/XHDt27PtPPvnkyNGjR40XXnihGwBuuOGG5uLi4kPl5eUlRUVFbgCIjY2V33777WPl5eUlhw8fLr355ptbAODVV1+tqq2t3S/L8t7a2tr9zz//fJd3eJs2bTp26623Nnd1fKijmcgTQngALwOYB2AcgJ8RQsZ1GHY7gGZK6XkAXgCwQqv19JqmH5SfEYrJy7IPBw89BplyMG7XIdF2Anj3XqDxSETmHwiHG45j64lt8Nlz8PNLRyD3UAyq9yQgZowLsTlfw+k83GOzlt4i1tTAs28fnP/eicr77oPv8GEk/7+lkGUZ33zzDVJSUpCUlASvS0TZ17UQUgL4wV+BXdWK+zpVFbQduw/0ffLv1oNW74N/1DzU7auHy8rjZodyvmquvYvXfMH5AIAD9/wSJx/6BVxffgnapuXqsWPHEBMXh4/rW9EoBHDNRc9jOXkGALD1gtzQuBsuGIURsUY8vGk/jje6QglpDa9/3+kSBUHA1df8ApQCdXXbsW7lH5AvefFaVT3m7y3D+lONaBYDKHN6sep4HcZZjMjqxda2gZCs1+HalDj8taoBq46fmZ8hewOoeuzfEE86oR9lA2+NfNJdkJjLlP/vtc/tgVjnBhWVssCUUrx8240AgGsf+hU4LjLe3vi0EcjIHY+6H47graceh8fpAB1I4ugwYvHixVm5ubnjJk6cmHf11Vc3z5gxo5937mcHJFxfwmecmJBpAJZTSv9DffwoAFBKf99mzBZ1zJeEEAFADYBk2s2izj//fLpnz54+r6e5+Ss0NG5T5kWbRIzaUsDbrCRl+RxAQwVgigOm3AoEt2FRCoCChrZltbe2ledPPxd6HHp9++ckyQ3R3wRRbEGrswKEuqHfxEP/tR7n//pa8N++BsgiYE1TwgbmRMBgU2rp83pAMCil1UCUbX5TbgXiRoXWU17rwDvFJ9FV+Dl4HQSkzTWdMej01VIKqj6WZIpi5z9Q6y9HxvEanHPKgjQxEVArdDVbfbhksh9CThXAA4JkhTUhD4IuFjxvBs+bQIhOTYbhQAgH2emC73C5ksCmvo2EKu87pRRSUxPE6urT76egg7+wEI06AS63G36/H1kZ58BVw8Fj94MCGD0pAVvtW9Dia0GqORXTky9E+bZdqCxLRuOkOxGbMRo6nkOL24+yWofyl6FUec8oYPXWY1bjUYyUPDCIXsTppiGVb78l8GNdMU7yTcgcNQrjJ0zAhRdeiOYaF9Yv3w0AuOjAczA3/gAhORm7LpmBSp0e2eO2o8achd9bl7Y717w9Djxy8I+IH1sY6n5Y1ezGRwdOQZaBxMQYXJc6DwDw1TlmlI9ssz25zcd5nO7/gYoi9u2bD7fkw9+mz+/0z/tyXiYWpGm7FQxQ9skX7CoBAIy1GFFgM2FZYiLMb1XAX3k6QTHjtxeDCIMbPWx+pxyu3ae7ffr1Prx7+EVQKOL63xs+jOh6fG4XVt16Q7vnfvKr3yFzwsR+nY8QspdSev5A1rRv375jBQUFwzKGoGVPd63Zt29fUkFBwejOjmm5JyADQNstFlUALuxqDKU0QAhpBZAIoN2HiBByF4C7ACAzs38WtsNRiqqqfwDtRI0Ckni6SIqBACNNABcATvwFyrcnUdeAdo8BogrV6cfqWts8Jh2eV37neRN0ugTodHGgurEg/6gA35KOzNW/Al84HZixBDj8MXDqO6C1UtnS57MDogeQ/EDArzS1CV7L2PntRP6HBhdW7zgKLriWHpJLg4dph8dcm6xUQpTneY6AS24FbxSRwGXh3NgEZI0ag6SsMcgYNwF/PPlXJIy4EmlvfYIm/9eQCqygiQRe70lIkguS5AalsvqeKz+pFACN9YIqun/metMB5HOn31sigdJvYKUUVpuaRYuDMI0AzCOUxbr8wAVGCtkgA/QknM3vIr0AsDck4rMaH2pOnoAoUUi082Q8Ah2SXONAAwHInIwc3oxU1YjzxxsQn5eIayxp2NH0HVpbW0OtdePTLLjwmnOw+/2jSFz1OhJq98P+0UcQXS4kyQ7EBZqQVleNWd5CbEuaCQD4n989jqqRd+DIqdEY8/WGUH0GE4AfqzcerioznvjpFfiJg+DA8RZsqFQKs3S8HZ47eiwuHrET/+s+D1ZJRNGuL7Fj4hRIFl27ug9V3shU7ko16PDlhXlYXVWP4x4fNte3YklKIoQqBziLDqbxiYi5LGvQBR4A4q/PBijg+lr5Tpf0EjjCQSbAf73+RsTXYzBbcPerf8f6x/8bjkYl7NJ8qqrfIs/oHi17ug8mWlryPwHwH5TSO9THNwGYSim9v82YEnVMlfr4iDqmsavz9teSZzAAhG1LTbjn8Tj8MIWh2psk+cBx+jPmbvQHkKhX7uldkgSLhuWGu8MZkGAV+Ij9HQZKtKyzNzBLfvjSnSWv5e1zFYBRbR6PBNAxuSE0RnXXxwLoeh8LgzFAIvWF3dd5wiHwAMDzhk7nDgo8gEETeOB0a9toEc5oWSeD0RVaivw3ALIJIWMIIXoANwJ4v8OY9wHcrP7+YwD/1108nsFgMBgMRu/RLCavxtjvA7AFAA9gDaW0hBDyJIA9lNL3AbwO4B+EkAooFvyNWq2HwWAwGIyzDU2L8VJKNwPY3OG5J9r87gXwEy3XwGAwGAxGW+6///6Mt956K9Fut/Nut7t4sNejJYOf0spgMBgMRgTpbz/5aCQ62+owGAwGY1CpfuzxUb7y8rD2kzdkZ7tH/O7pIdVPvqSkxLBw4cIxkiSRyy67rHX16tWp0WT9M0uewWAwGFFB237yH3300ZH9QAZLAAAAHctJREFU+/eHuhoF+8m/+OKLx++6664xANC2n3xZWVnplVde2XWLyC647777Rt17771133///cERI0ZEpsBEGGGWPIPBYDD6TE8WtxYMRj/54uJi67/+9a8KALjjjjsaly9fPjIMlxIxok7k9+7d20AIOd7Pl8cCaA3nejRiKKwzUmvQcp5wnjsc5xroOZLQoRokY9AZCv9Xe0sEW2tqw2D1k49mok7kKaXJ/X0tIWQ1pfSucK5HC4bCOiO1Bi3nCee5w3GugZ6DELJnoBXLGOFlKPxfPZuYNWuW85577slyu92nRFEkn332Wdx//ud/1gNKP/mrr77a0Vk/+TVr1lQCSj/5vlrzkyZNcq5duzb+zjvvbF6zZo32DR/CzNkWk/9gsBfQS4bCOiO1Bi3nCee5w3GuofB3ZYQX9jeNIIPRT/6ll16qfOmll1Lz8/PzTp06pbNarX12+Q8mmtWuZzAY4YVZ8ozBZijUrm9tbeViY2Nlh8PBTZs2beyrr756fNmyZaOee+65yksvvTTsbWcdDgdnsVhkjuOwevXq+A0bNiR8/vnnQ6oX+GB1oWMwGOFl9WAvgMEYbBYvXpxVXl5u8vl85MYbb2zUup/8zp07zQ8++GAmpRQxMTHS2rVrj2k5X7hhljyDwWAwesVQsOS1Yrj2k2ciz2AwGIxeMZxFPpoZrFazDAaDwWAwBhEm8r2AEJJHCHmVELKREHLPYK+nK6JlneHgbLpWxvCDEGIhhOwlhFw12GthDG+iRuQJIUZCyNeEkH2EkBJCyG8GcK41hJA6Qsj3nRybSwg5TAipIIQ8AgCU0oOU0iUAfgqgV9nNhBCeEFJMCPlwKK9zoBBC4lShPUQIOUgImdbP8wz5ax1qMKHoP4SQUYSQrepntoQQ8uAAztWnz67KwwD+t79zMhi9JWpEHoAPwGxKaQGASQDmEkIuajuAEJJCCLF1eO68Ts61FsDcjk8SQngALwOYB2AcgJ8RQsapx64B8G8An/dyvQ8C6LTL0RBb50D5E4BPKKW5AArQ4ZqH2bVqSldiwYRCEwIA/ptSmgfgIgD/FfxcBdHqs0sIuQxAKYDacFwIg9EdUSPyVMGpPtSp/zpmDc4E8B4hxAgAhJA7AbzYybl2AGjqZJqpACoopUcppX4AbwK4Vn3N+5TS6QAW9bRWQshIAFcC+GsXQ4bEOgcKISQGwKUAXlfn9lNKWzoMGxbXGiHWooNYMKHQBkrpKUrpt+rvDig3pxkdhmn12S2CcmOxEMCdhJCo+R4eaixbtmzEE088kTrY69ixY4f5lltuGTXY6+iMqNonr37h7QVwHoCXKaW72x6nlL5FCBkD4E1CyFsAbgNweR+myADQtulCFYALCSGzAPwIgAHA5l6c548AfgHA1tnBIbTOgXIOgHoA/0MIKYDyt3mQUhpq4ziMrlVzKKU7CCGjOzwdEgoAIIQEhcIKwAJF+D2EkM2UUjmCyx02qO95IYCIfJ9QSu9T570FQAP7u0U/l156qVuLQjzhIKpEnlIqAZhECIkD8A4hZAKl9PsOY55Vvwj/DODcNtZ/b+iskwGllG4DsK1XJ1Dio3WU0r2qEHXKYK8zTAgAJgO4n1K6mxDyJwCPAPhVh4UNh2sdLJhQaAghxApgE4CllFJ7x+NafHbbnHttH5c7pPj87wdHNZ10hrWffEKG1T3nP/O67W738MMPp23YsCFpxIgR/sTERLGwsNBdUlJiWLJkSWZTU5NgNBrlv/71r8cLCwu9lZWVwm233ZZ14sQJAwCsWrXq+OWXX+667LLLzj116pTe5/NxS5Ysqf35z3/eAABms7nw5ptvrtuxY0dMbGys9PTTT1c9/PDDo6qrq/UrVqw4sWjRok6bEX344Ye2lStXpm7durUinO9HOIhKN5HqEt6GzuNglwCYAOAdAL/u46mrALR1uYwEUN3Hc1wM4BpCyDEo7rnZhJB/DsF1hoMqAFVtPCoboYh+O4bJtQ4WPQoFpbTfyZ1nM4QQHRSBX0cpfbuLMeyzO4T44osvzO+8807CgQMHSj/88MOKffv2WQDgjjvuyHrllVdOlJSUHPzDH/5Qdc8992QCwJIlSzIvueQSx+HDh0tLSkpKJ0+e7AWAdevWHSspKTn43Xfflb722mupNTU1PAB4PB6uqKjIUVJSctBisUi//OUvM7744ouyt956q+Kpp57qGM6JCqLGkieEJAMQKaUthBATgMsArOgwphDAX6DEw38A8E9CyG8ppb/s5TTfAMhWXXQnAdwIJW7WayiljwJ4VF3PLAA/p5QuHmrrDAeU0hpCSCUhZCyl9DCAOVDixCGGy7UOIkwoNIAQQqDkkhyklD7fxRj22e2GnixuLdi6dat1/vz5LTabTQaAK664osXr9XLFxcXWn/zkJ+cGx/n9fgIAu3btsm3cuPEHABAEAYmJiRIArFixIvWjjz6KA4CamhpdSUmJMS0tzaXT6eiPf/xjOwCMHz/eYzAYZIPBQKdOneo5efKkPtLXGw6iyZJPB7CVELIfyn+eTzuxYMwAfkIpPaK6L28GcEbveULIGwC+BDCWEFJFCLkdACilAQD3AdgCJRHnfymlJRpcS7SsszfcD2Cd+neZBOB3HY4Pp2sdDEJCQQjRQxGK9wd5TcOBiwHcBMXT9p36b36HMeyzOwQhHfrDy7IMm80WOHToUGnw39GjR7t8nz/88EPb9u3bbXv27Dl0+PDh0ry8PI/H4+EAQBAEynGKLHIcB4PBQAGA53lIkhSVjemjxpKnlO6HkhzT3ZidHR6LUO7EO477WTfn2IwwJXJ1FTceauscCJTS79DNPvXhdK1ao4rFLABJhJAqAL+mlL5OCAkKBQ9gDROKgUMp/Tc6D4W0HcM+u0OM2bNnO2+77bbRTz311ClRFMmnn34ad/PNN9ePHDnSv2bNmvjbbrutWZZl7N692zRt2jTPxRdf7PjDH/6Q/MQTT9QFAgHY7XaupaWFj42NlWw2m1xcXGwMuvyHK1Ej8gzGcKcrsWBCwWAozJgxw3399dc3TZgwYXxGRoZv6tSpTgB44403jt55551ZK1asSA8EAuT6669vmjZtmufPf/7ziVtuuSUrJycnieM4rFq16viCBQtaV69enZyTkzPu3HPP9RYUFLh6mjeaYQ1qGAwGg9ErWIOaoQlrUMNgMBgMxlkIc9czGAwGg9ELNm3aFPP444+PbPvcqFGjfJ9++umRwVpTTzCRZzAYDAajFyxYsMC+YMGC0p5HDh2Yu57BYDAYjGEKE3kGg8FgMIYpTOQZDAaDwRimMJFnMBgMBmOYwkSewRgmEEJeIoR8Swi5YLDXwmBEgqHST34ow0SewRgGEEIsAFIA3A3gqkFeDoNx1iKK4mAvoR1sCx0j6iCEvADgOKX0j+rjLQAqKaV3qI9XAjjZVXexfs7ppJRaw3i+OAALKaWvqI9HA/iQUjqhF681AfgEwGxKqQQAlFIXISQdSq+ETLWZzWfqmEC41s1gBNny5z+Oaqg8HtZ+8kmjstz/cc/SqOsn/+KLLyZ+/PHHsT6fj3O73dxXX31VFs73ZSAwS54RjewCMB0ACCEcgCQA49scnw5gZyevG0rEAbi3n6+9DcDbQYEHAEJIIpSuaQ4AEqXUD+BzADcMdKEMxlBhKPeT//bbb61vvPHGD0NJ4AFmyTOik50AXlB/Hw/gewDphJB4AG4AeQCKCSHvQunFbgTwJ0rpagAghKyA4gkIWtHLoYhjLYAHAOgB7AZwb1shVccu7myMaol/DODfUG4yTgK4llLqIYT8CsAiAJUAGgDshdK571xCyHcAPgXwMgCeEPKXjq/v5PoX4cy+5L8E8ByAOwGMg3Ij9C6A3wNY1+M7ymD0kZ4sbi0Yyv3kL7nkEntqaqrU3ZjBgFnyjKiDUloNIEAIyYQiiF9CEdxpUMRzv2rJ3kYpnaI+94Bq7QLAm2hv4f4UwB71uYsppZMASFDENAQhJK+HMdkAXqaUjgfQAmABIeR8AAugtEn+EU635X0EwBFK6SRK6UNdvb7jtatu+HMopcfaPDdafR82QOlbHvRqfA+AJeExhhVDtZ+82WyWB3ptWsBEnhGt7IQibEGR/7LN413qmAcIIfsAfAXFos8GAEppMYAUQsgIQkgBgGYA+QCmAPhGta7nADinw5xzehjzA6X0O/X3vQBGA5gB4D1KqYdS6gDwQTfX1NnrO5IE5QagLb8F8CRVWkqGRF71QvgJIbZu5mQwoobZs2c7P/roozin00mam5u5Tz/9NM5sNsvBfvKAIvpffvmlCQCC/eQBIBAIoKmpifWTZzCihGBcPh+KxVoJ4L8B2AGsIYTMAnAZgGmUUjchZBsUt32QjQB+DCANimVPAPyNUvpoN3P2NMbX5ncJgEl9TW/p7PUd8aDNdRBCJkHxEMwghLysHjvQZrwBgLcPa2Awhiysn3zfYf3kGVGJKm5vAzhKKb1MfW4vgAwAEwBcDOAOSunVhJBcAN8BmEsp3aaOHQ/gL1As45kA4gG8B8UVX0cISQBgo5QeV8c7AUztakzH7HhCyM8BWAF8BOA1KDckAhQL/S8A/gfAt5TSLHV8p6+nlC7v5NorAWRTSr3qzoJnKaWfq8dSARRTSkeo4Yl/U0rzBvRmMxgqrJ/80IT1k2cMRw5AEeivOjzXSiltgLLFTCCE7AfwVIdxoJSWALBB2Wp3ilJaCiV57V/qaz4FkN7hNT2O6Qil9BsA7wPYB+WmZI+6xkYAOwkh3xNC/tDHa/8XFMt9NgBLUODV+WoBWNQbkCIAm/t4bgaDMYxgljyDoTGEECul1EkIMQPYAeAuSum3AzhfIYBllNKbehj3NoBHKaWH+zsXg9GWs92SH6r95Luz5FlMnsHQntWEkHFQ4uV/G4jAA0riICFkKyGE77jFL4iahf8uE3gGI3xEYz95JvIMhsZQSjvuaQ/HOdf0cNwP4O/hnpfBYEQXLCbPYDAYDMYwhYk8g8FgMBjDFCbyDAaDwWAMU5jIMxgMBiNqOXbsmG7u3Lkdq1OGaGho4J955pnk/pz78OHD+uzs7PE9jxy6MJFnMBgMRtQyevRo8ZNPPjna1fHGxkb+9ddfT4nkmoYSLLuewWAwGH2maWPZKLHGFdZ+8ro0izvhxzlddre75557MrKysvyPPPJIPQAsW7ZshM1mk9avX59UXl5esmfPHuOtt946RhRFIssyNm3adOTRRx/NqKysNOTm5o6bOXOm/dlnn62eO3fuea2trXwgECBPPPFE9eLFizv2gwghSRJuvPHGrD179lhTU1P9W7ZsqbBarVFTYIZZ8gwGg8GIChYvXty0adOmhODj9957L/6iiy4K1Z5/6aWXku+9997aQ4cOle7fv//gmDFj/CtXrqwaNWqU79ChQ6WvvfZaldlslj/66KOK0tLSg9u3by977LHHRspy1w3kTpw4YXzggQfqKioqSmJjY6W///3v8RpfZlhhljyDwWAw+kx3FrdWXHzxxZ7Gxkbh2LFjulOnTgmxsbHSOeec4w8enzZtmuu5555Lr6qq0t94443N+fn5vo7nkGWZLF26dORXX31l5TgOdXV1+qqqKiEzMzPQ2ZwZGRm+6dOnewCgsLDQfezYMYN2Vxh+mCXPYDAYjKjh6quvbv7nP/8Zv27duoQFCxY0tT22ZMmSpvfee6/CZDLJ8+bNy3n//ffPaLP82muvJTQ2NgoHDhw4eOjQodLExEQx2E++M/R6fcg1z/M8DQQCfeksOegwS57BYDAYUcNNN93UdOedd45ubm4Wtm/fftjr9YZEt7S0VJ+Xl+cbP3583dGjRw3fffedaerUqW6XyxUS8dbWVj4pKUk0GAz0gw8+sFVXV+sH50oiA7PkGQwGgxE1nH/++V6Xy8Wlpqb6s7KyxLbH/vGPfyTk5OSMz83NHVdeXm68++67G9PS0qQpU6Y4s7Ozx999990j77jjjqZ9+/ZZJkyYkPfPf/4zYcyYMd7BupZIwLrQMRgMBqNXnO1d6IYqrJ88g8FgMBhnISwmz2AwGIyzmpqaGn7WrFljOz6/bdu2w2lpaZ22c44WmMgzGAwG46wmLS1NOnToUFT1ie8tzF3PYDAYDMYwhYk8g8FgMBjDFCbyDAaDwWAMU5jIMxgMBoMxTGEiz2AwGIyzivvvvz8jLS1totlsLuxp7LPPPpu8atWqxEisSwtYdj2DwWAwziquu+66lp///Od1eXl5E3oa+4tf/KI+EmvSCibyDAaDwegz77777qi6urqw9pNPSUlxX3fddd12t3vooYfSN27cmJCenu5PTEwMFBYWuj/55JO4CRMmuIuLiy1Op5NfvXr1D0VFRe7W1lbu9ttvz9y/f78ZAB577LHqW265pWXOnDmu7uZoy7Jly0ZYrVbpySefrB3o9Q0GTOQZDAaDERXs2LHD/MEHH8QfOHCgVBRFMmnSpHGFhYVuAHC73VxxcfGhjz/+2HrXXXeNKS8vL3nkkUfSY2JipLKyslIAqK+v5wf3CiIPE3kGg8Fg9JmeLG4t2LZtm3XevHktVquVAqCXX355S/DYwoULmwBg3rx5TqfTyTU0NPA7duyIefPNN48GxyQnJ0d19br+wBLvGAwGgxEVdNdQjRByxmNK6RnPn20wkWcwGAxGVDBr1iznli1bYt1uN2ltbeU+++yzuOCxN954Ix4AtmzZYrXZbFJiYqI0a9Ys+/PPP58SHHM2uuuZyDMYDAYjKpg5c6Z77ty5rePGjRs/f/78cydOnOiKjY2VACA+Pl4qLCzMve+++7Jee+21YwDw+9///lRLSwufnZ09fuzYseM2b95sA4AlS5aMTE1Nnej1ernU1NSJy5YtGzGIl6UprJ88g8FgMHrFUOgn39raysXGxsoOh4ObNm3a2FdfffX4smXLRj333HOVl156qXsw1zZYdNdPniXeMRgMBiNqWLx4cVZ5ebnJ5/ORG2+8sXHGjBlnpbD3FibyDAaDwYgaPvjggx86Pvf1118fHuh5H3744bT33nsvoe1z1157bdOKFStqBnruwYS56xkMBoPRK4aCu55xJt2561niHYPBYDAYwxQm8gwGg8FgDFOYyDMYDAaDMUxhIs9gMBgMxjCFiTyDwWAwGMMUtoWOwWAwGH2m9ODDo1zOsrC2mrVYc9zj8lZ02/hm+fLlqevWrUsCgJtuuqn+hhtuaJk7d2721KlTnd9++601Ly/PfdtttzU8+eSTGY2NjcLatWuPFhUVue12O3f77bdnHjx40CRJEnn88cerFy9e3OJwOLgbbrhhdEVFhTE7O9tbWVmpX7Vq1YlLL73UvWjRosx9+/ZZvF4vd/XVVze/8MIL1QCwfft289KlSzPdbjen1+vpjh07DtfV1QkLFy4c4/F4OAD405/+dOLyyy93ffjhh7bf/OY3I5KTk8XS0lLz/Pnzm/Pz8z2vvPJKqs/nI++8886R8ePH+zq71pKSEsPChQvHSJJELrvsstbVq1enut3u4r68p0zkGQwGgxEVfPHFF+b169cn7t279yClFFOmTMmbM2eOo7Ky0rhhw4ajU6ZMOT5x4sS8devWJe7Zs+fQ+vXr455++un0oqKiI4899lh6UVGR/a233jrW0NDAn3/++XnXXHON/bnnnkuOi4uTysrKSr/55hvjtGnTxgfne/7550+mpqZKgUAA06dPH7t7925TQUGBd9GiReeuW7fuyMyZM91NTU2c1WqVBUEIfPHFF2Vms5keOHDA8LOf/eyc77///iAAHDp0yLRx48ajKSkpgaysrHyDwdBw4MCBg0899VTKypUrU9asWdPpjc1999036t577627++67m5599tnk/rxnTOQZDAaD0Wd6sri1YNu2bdb58+e3xMTEyABw5ZVXNm/dutWWkZHhmzp1qgcAcnJyPLNnz7ZzHIfJkye7f/vb345QXxuzZcuWuBdffDENAHw+H6moqNDv2rXL+uCDD9YBwAUXXODNyckJVdD729/+lrB27dqkQCBA6uvrdfv27TMSQpCSkiLOnDnTDQAJCQkyANjtdnL77bdnlZaWmjiOw/Hjxw3B8+Tn57uysrJEAMjMzPTNmzevFQAKCgo827dvt3V1vcXFxdZ//etfFQBwxx13NC5fvnxkX98zJvIMBoPBiAq6Kt6m1+tDBziOg9FopADA8zwkSSLB127cuLGioKCgnWu8q3MeOnRIv2rVqtS9e/ceTE5OlhYsWDDa6/VyavvaM1709NNPp6akpIibNm36QZZlmEymKcFjBoOh0/VxHBdan1awxDsGg8FgRAWzZ892bt68Oc7hcHB2u53bvHlzfFFRkaM3ry0qKrKvXLkyVZZlAMDOnTtNADB9+nTnm2++GQ8Ae/fuNZaVlZkAoLm5mTeZTHJCQoJUWVkpbNu2LRYACgoKvLW1tfrt27eb1XGcKIpobW3l09PTRZ7n8corryRKkjTg6500aZJz7dq18QCwZs2ahJ7Gdwaz5BkMBoMRFcyYMcO9cOHCxsmTJ+cBSuJdUlJSr9T0mWeeqb7rrrsyc3Nzx1FKyciRI31bt26teOihh+p/+tOfjs7JyRk3YcIE99ixYz3x8fFSfn6+b8KECe7s7OzxmZmZvilTpjgBwGg00nXr1h154IEHMr1eL2c0GuUdO3aULV26tG7BggXnvvvuu/EzZsxwmEwmeaDX+9JLL1UuWrRozIsvvph2xRVXtFit1j7fObDa9QwGg8HoFcOxdn0gEIDf7ydms5mWlJQYrrjiipwjR458H3SpDyYOh4OzWCwyx3FYvXp1/IYNGxI+//zzIx3HsVazDAaDwWB0gsPh4C655JKxoigSSileeOGF40NB4AFg586d5gcffDCTUoqYmBhp7dq1x/p6DibyDAaDwThriY+Pl4Nb3QaL7trcHj58uHQg52buegaDwWD0iuHorh8OsFazDAaDwWCchTCRZzAYDAZjmMJEnsFgMBiMYQoTeQaDwWAwhilM5BkMBoMRtRw7dkw3d+7cc7o63tDQwD/zzDP9au4CAIWFhbn9fe1QgIk8g8FgMKKW0aNHi5988snRro43Njbyr7/+ekp/z19cXHyov68dCrB98gwGg8HoM0sPnhh1yOUNaz/5XIvR/ce8zC67291zzz0ZWVlZ/kceeaQeAJYtWzbCZrNJ69evTyovLy/Zs2eP8dZbbx0jiiKRZRmbNm068uijj2ZUVlYacnNzx82cOdP+7LPPVs+dO/e8/9/e/fukEYdxHAdBKLSGiDZeE38UE6kIDlVjMC6uDk4uDrhhMLo4O/gX6ORE0k0cHdD4B7AxqpjjWo1hIHhCgJKUgnpcuxTTmEAwrQLn+7XBc3DfC8PnngPuKRQKBkVR9FtbWymfz/e91j6tVuvnp85wbyV08gCAtuDz+XIHBwcPN40Jh8PdXq+3WH28u7v7fm1t7UaSJPHs7CzucDjudnZ2kgMDA7eSJInBYDBptVrV4+PjS1EU45FI5Nvm5mZ/dWiNFtHJAwCerF7H/VxmZ2dL2WzWmEgkOq+vr402m60yPDx8V63PzMwUt7e3PySTSdPS0lJ+fHz89vF7qKqq39jY6I9Go+86Ojp06XTalEwmjYODg8rLHs3LoJMHALSNhYWFfCgU6t7f37cvLi7m/q6trq7mwuHwpcViUefn552Hh4ddj18fDAbt2WzWGIvF4pIkiT09PfelUkmzWUgnDwBoG8vLy7mVlZWP+XzeGIlEvpbLZX21JoqiyeVy3brd7vTV1ZX55OTEMj09/bNYLD6EeKFQMPT29t6bzeZfR0dHXalUytScI3kZmj17AQBoz9TUVLlYLHb09fXdDQ0N3f9d29vbszudTvfo6OjYxcXFm0AgkBUEoTI5OfljZGTEHQgE+v1+f+709PStx+NxhUIhu8PhKNfbn16vr1dueQyoAQA05LUNqJFl2TAxMTGWSqVizV5LPQyoAQDgCRKJRKfX63Wtr6/fNHst/4Lv5AEAr5osy4a5ublPj5+PRqNxQRAqzVjT/0LIAwBeNUEQKpIkic1ex3Pgcj0AoFGqqqrt/Us0jfnzedS8mw8hDwBo1Hkmk7ER9K1BVVV9JpOx6XS681rbcLkeANAQRVH8six/kWXZo6NJbAWqTqc7VxTFX2sD/kIHAIBGcSYGAIBGEfIAAGgUIQ8AgEYR8gAAaBQhDwCARv0GIT+Vcuy8W9kAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for b in bands:\n", " plt.plot(Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Wavelength']\n", " ,Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Transmission']\n", " , label=b)\n", "plt.xlabel('Wavelength ($\\AA$)')\n", "plt.ylabel('Transmission')\n", "plt.xscale('log')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.title('Passbands on {}'.format(FIELD))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### IV.a - Depth overview\n", "Then we plot the mean depths available across the area a given band is available" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "omegacam_z: mean flux error: 4.371576376225572, 3sigma in AB mag (Aperture): 21.105601687223874\n", "omegacam_u: mean flux error: 1.8050078185529712, 3sigma in AB mag (Aperture): 22.065999144622886\n", "omegacam_g: mean flux error: 0.4252830111144532, 3sigma in AB mag (Aperture): 23.63550177772199\n", "omegacam_r: mean flux error: 0.6163829980340969, 3sigma in AB mag (Aperture): 23.232570236015654\n", "omegacam_i: mean flux error: 1.1522080353669744, 3sigma in AB mag (Aperture): 22.55336961414813\n", "gpc1_g: mean flux error: 3042.0990698882947, 3sigma in AB mag (Aperture): 13.999263479929745\n", "gpc1_r: mean flux error: 286.0777558985285, 3sigma in AB mag (Aperture): 16.56598663730086\n", "gpc1_i: mean flux error: 1573.068357923074, 3sigma in AB mag (Aperture): 14.715327874786716\n", "gpc1_z: mean flux error: 1068.0520435262904, 3sigma in AB mag (Aperture): 15.135715824948896\n", "gpc1_y: mean flux error: 26.663614747217615, 3sigma in AB mag (Aperture): 19.14239929886022\n", "vista_z: mean flux error: 0.6972098081078645, 3sigma in AB mag (Aperture): 23.09878814323489\n", "vista_y: mean flux error: 19.454614005169027, 3sigma in AB mag (Aperture): 19.484640316997307\n", "vista_j: mean flux error: 1.5820209520587147, 3sigma in AB mag (Aperture): 22.209166285866807\n", "vista_h: mean flux error: 2.5079183807712555, 3sigma in AB mag (Aperture): 21.708913367091874\n", "vista_ks: mean flux error: 2.661991148736425, 3sigma in AB mag (Aperture): 21.644180345479406\n", "decam_g: mean flux error: 0.124224331925782, 3sigma in AB mag (Aperture): 24.971680188693476\n", "decam_r: mean flux error: 0.150145578830792, 3sigma in AB mag (Aperture): 24.76591549185435\n", "decam_i: mean flux error: 0.24752542081217208, 3sigma in AB mag (Aperture): 24.223147344405426\n", "decam_z: mean flux error: 0.4605319044892942, 3sigma in AB mag (Aperture): 23.549047557196126\n", "decam_y: mean flux error: 1.2816168530215408, 3sigma in AB mag (Aperture): 22.43780133902886\n", "omegacam_z: mean flux error: 7.828921615169762, 3sigma in AB mag (Total): 20.47294200110671\n", "omegacam_u: mean flux error: 2.526222121199103, 3sigma in AB mag (Total): 21.701018028759044\n", "omegacam_g: mean flux error: 0.6949648691854694, 3sigma in AB mag (Total): 23.10228973483533\n", "omegacam_r: mean flux error: 1.1147778583662524, 3sigma in AB mag (Total): 22.58922602769413\n", "omegacam_i: mean flux error: 2.119050717925087, 3sigma in AB mag (Total): 21.89184348481296\n", "gpc1_g: mean flux error: 8175.586739622989, 3sigma in AB mag (Total): 12.925899536739585\n", "gpc1_r: mean flux error: 673.6994630490384, 3sigma in AB mag (Total): 15.636031360170684\n", "gpc1_i: mean flux error: 5038.75144097764, 3sigma in AB mag (Total): 13.451389524800156\n", "gpc1_z: mean flux error: 411.2514377631323, 3sigma in AB mag (Total): 16.171928289991165\n", "gpc1_y: mean flux error: 721.3267183344645, 3sigma in AB mag (Total): 15.561866815720556\n", "vista_z: mean flux error: 1.7752544174226499, 3sigma in AB mag (Total): 22.084045358223214\n", "vista_y: mean flux error: 21.986426734319004, 3sigma in AB mag (Total): 19.351810230870406\n", "vista_j: mean flux error: 4.140983388477638, 3sigma in AB mag (Total): 21.164438142358428\n", "vista_h: mean flux error: 6.8396231146263835, 3sigma in AB mag (Total): 20.619616434831705\n", "vista_ks: mean flux error: 7.419563568490817, 3sigma in AB mag (Total): 20.53125096299876\n", "decam_g: mean flux error: 0.19240155714180482, 3sigma in AB mag (Total): 24.496675406844524\n", "decam_r: mean flux error: 0.2401067926721679, 3sigma in AB mag (Total): 24.256185746915925\n", "decam_i: mean flux error: 0.4537345119898178, 3sigma in AB mag (Total): 23.565192328543084\n", "decam_z: mean flux error: 0.9118401918483625, 3sigma in AB mag (Total): 22.807400035690883\n", "decam_y: mean flux error: 2.6129670262505997, 3sigma in AB mag (Total): 21.664362039999794\n" ] } ], "source": [ "average_depths = []\n", "for b in ap_bands:\n", " \n", " mean_err = np.nanmean(depths['ferr_ap_{}_mean'.format(b)])\n", " print(\"{}: mean flux error: {}, 3sigma in AB mag (Aperture): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n", " average_depths += [('ap_' + b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n", " flux_to_mag(3.0*mean_err*1.e-6)[0], \n", " flux_to_mag(5.0*mean_err*1.e-6)[0])]\n", " \n", "for b in tot_bands:\n", " \n", " mean_err = np.nanmean(depths['ferr_{}_mean'.format(b)])\n", " print(\"{}: mean flux error: {}, 3sigma in AB mag (Total): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n", " average_depths += [(b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n", " flux_to_mag(3.0*mean_err*1.e-6)[0], \n", " flux_to_mag(5.0*mean_err*1.e-6)[0])]\n", " \n", "average_depths = np.array(average_depths, dtype=[('band', \"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dat in data:\n", " wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n", " depth = average_depths['5s'][average_depths['band'] == dat[0]]\n", " #print(depth)\n", " plt.plot([wav_deets[0],wav_deets[1]], [depth,depth], label=dat[0])\n", " \n", "plt.xlabel('Wavelength ($\\AA$)')\n", "plt.ylabel('Depth')\n", "plt.xscale('log')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.title('Depths on {}'.format(FIELD))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### IV.c - Depth vs coverage comparison\n", "\n", "How best to do this? Colour/intensity plot over area? Percentage coverage vs mean depth?" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "Text(0.5,1,'Depths (5 $\\\\sigma$) vs coverage on SGP')" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAKfCAYAAAD6lGsVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xlck1feN/7PCYKABkQ2QQh7WBKJCgZ3rUi1tXbccGpVXCqtdnywjnrraH/P87t73221Q9Xhpn3ULqKO2trW1kqrnakz4FahVIGyhFgQQTYDAkYEBHKeP5JQVmUP4Pf9euUluZLrXN8rQfLNOd/rHMY5ByGEEEKInsDQARBCCCGkf6HkgBBCCCHNUHJACCGEkGYoOSCEEEJIM5QcEEIIIaQZSg4IIYQQ0gwlB4QQQghphpIDQgghhDRDyQHpEMZYLmNsdg+19S5j7I2eaKuNthMZY5LeaJsQQp4WlBwMULoP62rGmJoxVsEYu8oYW88Y65H3tCeTgRbt2gIIA3CwybY4xlgNY+yB7pbVjUNEAniru3GS3sEYm6r7Xa1kjN1jjF1hjE1o8vhLjLEExlgVY+yu7ufXGWOsyXP0v/sPGGMljLHDjLHhhjkjQgYnSg4GtvmccyEAFwC7AWwH8IlhQ3qi1QC+55xXt9i+kXM+XHfz7kb73wJ4hjHm0I02+jXG2BBDx9AVjDELALEA/gfASACjAfwngFrd41sA/A3AXwGMAmAPYD2AKQBMWjQ3n3M+HMB4ABMAvNkHp0DIU4OSg0GAc17JOf8WwB8BrGKMSQGAMebIGPuKMaZijN1ijEXo99F9+/oLYyyDMVau+/ZlqnvsGAARgLO6b2f/odttLGMsVfet73P983X7bGeMFeh6MrIYY8HthPscgPiunitjzJgx9rYu/jrGGNfdUnSvRQ2AXwA828a+OxhjX7bY9jfGWFQnzwGMMWfG2Gnda1vGGIvWbffV9YRUMMbSGWMvduTYuvtPer+2M8ZSAVQxxobo2szWxZvBGFvY5PnjGWM3dI99oXu//rsjx2rjXNs8pyZxbW3v96IFMQBwzk9yzhs459Wc839wzlMZY5bQ9vi8zjn/knOu5lo3OOfLOee1bTXIOS8AcA6AtL34CSFdwDmn2wC8AcgFMLuN7XkANkCb+P0C4H9D+63LHUAOgDlN9k8D4Aztt7grAP67vfZ19xMBOOqenwlgve4xbwD5ABx1910BeLQTtwrAhBbb4nTbS3VxzHzMee8BcE0X9zAAPwI4DcC9yXOiAOxtY18XAA8BWOjuGwEoAjCxk+dgBCAFwD5dDKYApgIwBvAbgJ2613wWALWu7XaPrbvfkfcrWXfeZrptobr3QwBtYlgFwEG3/20Am3QxLQLwSP/+PulYLc613XN60u9FG21ZACgDcATaJNGqyWNzAdQDGNKZ333d65EO4L8M/X+SbnQbTDfqORh8CqH9Iz0BgC3n/C3O+SPOeQ6AjwC81OS50ZzzfM75PQBvA1j2hLajOOeFuuefBTBWt70BwFAAfowxY855Luc8u502RkD74dLUdmg/oEYDOARtj4VHyx0ZY0IAEQBW6uKuAvAVgJG689NT647TDOf8NoDrABboNs0C8JBzfq2T5yCH9sNwG+e8inNewzm/DG2SMRzAbt1r/i9ou9GXPeHYQMferyjdeVfrzucL3fuh4Zx/DuCmLraJAIbonl/HOT8N7Qc4OnEsvXbPqUVcbf1eNMM5vw9tEsV1x1Mxxr5ljNkDsAFQyjmv1z9fV5tQoasvmN6iuW8YYxUALkPbE/VOW8ckhHQNJQeDz2gA96D9puqo++NaoftDuhPacVy9/CY/34b2A+9xipv8/BDaDw1wzn8D8AaA/x/AXcbYZ4yx9toqByBsuoFznsC13ci1nPMj0PYePN/GvtMB5HDObzbZZtUiLujar2jn+Cfw+wfby7r7nT0HZwC3m36Q6TgCyOeca5psuw3te9LusXU6+36BMRbGGEtu8nwptB+yjgAKOOe8nX07cqyOnhPQzu9FWzjnmZzz1ZxzJ128jgD2Q9ujYNO0noJzPplzPkL3WMu/VQs45yM45y6c89d56xoWQkg3UHIwiDBt1fdoaL9N5QO4pfsDqr8JOedNP3Sdm/wsgrbXQa/pB8sTcc5PcM6nQvvBw6Ht/m9LKnRjz49rDgBrY7sttMkFAIAxxgAshPabbFO+0Hb7t+ULADMZY066fRs/oDtxDvkARG0UBhYCcGbNrxgRASh40rHRsfer8T1hjLlA++17IwBr3YdoGrSvWxGA0brXR6/pe92RY3X0nLqMc64AEANtkvATtIWJf+huu4SQ7qPkYBBgjFkwxl4A8BmAv3POf4W2G/m+rojNjDFmxBiTsiaXjQH4E2PMiTE2Etpvjp83eawE2q7+jhzfmzE2izE2FEANgGpou+nb8j2AGU32HcEYm8MYM9UV2S2Htofghzb2TQMwnjE2ljFmBuBdaD8wP2/S3lAAAQD+2dbBOecqaGscDkP7AZnZhXNIhPYDeDdjbJgu9ikAEqAd9/8Ppi2cnAlgPrTvS7vHbtLmk96vpobpzl2li38Nfi/K+0kX+0bda/oHaIcbunKsx55TZzDGfBhjW3TJERhjztD2pFzjnFdAe+XCh4yxJYyx4YwxAWNsrO5cCSF9iJKDge0sY0wN7TfBXQD2AlgDAJzzBmj/iI8FcAvaYr+PAVg22f8EgH9AW4yWA+C/mzz2LoA3dd3OW58Qx1BoL6UshbaL2Q7aZKMtRwE8r/twB7QFb/+N3wsS/xe0Xcat5jrgnCdBWxvxvS7eUQCe55zXNXnaiwDiOOeFLfdv4gSA2Wj+zb3D59DktfWEtgD0DoA/cs4f6Y7/nK6dDwGE6b4hP+7YHX2/mj4/A8D70CYCJQDGQDscA10ciwC8Au3wygpoe1dqO3usDp5TR6kBBAFIYIxVQVtYmgZgi+5Y7wH4M4D/AHBXd14Hoa1JudqF4xFCuog1H5YkTwvGWC6AdZzzHw1w7HcA3OWc7++FthMAvMI5T+vptgcy3etygHN+2NCxEEL6vwE5mQoZ2Djn7fUq9ETbQb3V9kDCGJsBIAvab/vLAfgDOG/QoAghAwYlB4QMTt4ATkF75UA2gCWc8yLDhkQIGShoWIEQQgghzVBBIiGEEEKaoeSAEEIIIc0MiJoDGxsb7urqaugwCCFkQPnll19KOee23djfbsiQIR9DO4cGfZkcXDQA0urr69cFBATcbfnggEgOXF1dkZSUZOgwCCFkQGGM3e7O/kOGDPl41KhRvra2tuUCgYAK1AYRjUbDVCqVX3Fx8cfQzmXSDGWChBBC2iO1tbW9T4nB4CMQCLitrW0l2lnunJIDQggh7RFQYjB46d7bNvMASg4IIYQQ0gwlB4QQQrot8ocs+x8zS5otx/5jZokw8oestpYCJ/0cJQfEoBLPfIm8tNRm2/LSUpF45ksDRUQI6YqxohEP/3wq2V2fIPyYWSL886lk97GiEQ8NHRvpPEoOiEGN8hAjdv/uxgQhLy0Vsft3Y5SH2MCREUI6Y7avvXrv0rE5fz6V7P6fZ9Md/3wq2X3v0rE5s33t1d1ue/ZsD4lE4uvp6SmJjIy0AQBzc/Nx4eHhTn5+fr6TJk0SFxYWtnv13dWrV81kMpmPWCz2CwkJ8VCpVEYAIJfLvV955RXnwMBAb3d3d0l8fLz5s88+6+Hi4iKNiIhw1O//4YcfjhwzZoyvj4+P38svv+xSX18PANi3b5+Nq6urVC6Xe7/00ksuYWFhIgA4ceKEpb+/v4+vr6/f5MmTxfn5+UMAoLKyUrBkyRJXsVjsJxaL/WJiYkYAwPLly0VSqdTX09NTsnnz5sbjjh49eszGjRtHjx071kcqlfpevnzZfOrUqV7Ozs7S9957r91LVN944w1HHx8fPx8fHz87Ozv/JUuWuHb2NafkgBiUSOqPF97Ygdj9u3Hl1N8Ru383XnhjB0RSf0OHRgjppNm+9urF451Uh6/kOiwe76TqicQAAI4fP56bnp6emZycnHHw4EH74uJio+rqasH48eMfZmRkZE6ZMkW9Y8cOx/b2X716tds777xzR6lUZkgkkurt27c3PtfExESTlJSUtWbNGlVoaKjnRx99lKdQKNI///xzm+LiYqPr16+bfvnllyOTkpIUCoUiQyAQ8AMHDljn5uYaR0ZGOiQkJGReunRJefPmTVN9myEhIQ+Sk5MVmZmZGUuWLLn31ltvjQKAHTt2OFhYWDQolcoMpVKZMW/ePDUA7N27tyAtLS1ToVCkX7lyRZiQkKBf0h7Ozs6PkpOTFUFBQQ/Wrl3revbs2eyEhATF7t272z3f/fv3FyoUiowrV65kjRgxon7Tpk2t5jF4kgExzwEZ3ERSf8iefR7XvvoMExe/RIkBIQPUj5klwq+u37FdM8W16Kvrd2yneNqoeyJB2LNnj/133303AgCKi4uN09PTTQUCAdatW3cPANauXVu2aNEiz7b2LSsrM1Kr1Ubz5s17AADh4eFloaGh7vrHFy5cWAEAMpms2tPTs9rFxaUOAJydnWtzcnJM4uLihqelpZnLZDJfAKipqRHY2dnVX7p0aVhQUJDa3t6+QddOuVKpNAWAW7dumSxYsMBJpVIZP3r0SODs7FwLABcvXrT47LPPcvTHtrW1bQCAI0eOjIyJibGpr69nKpXKOCUlxTQoKKgaAJYuXVoBAGPGjHlYVVUlsLKy0lhZWWmGDh2qKS0tNbKxsWlo67w1Gg2WLFni9qc//alk2rRpnR7aoZ4DYnB5n/+MO/9OxsTFLyHlH98jLy0VNdkVUMfnGzo0QkgH6WsM9i4dm/N/5ksK9UMMLYsUOys2NlYYHx8vTEpKUmRlZWX4+vpWV1dXt/rsYox1qX1TU1MOAAKBAEOHDm28bFMgEKC+vp5xzlloaGiZQqHIUCgUGbm5uWl79+4tfNyihRs3bhS9/vrrd5VKZUZ0dPTt2tpaAQBwzlvFqVAoTKKjo+3j4+OVSqUyY9asWZU1NTWN59c0PhMTk2bx1dXVtXvSW7ZscXRwcHi0adOmss6/KpQcEAPLS0vFT3GfY7LdAgQEvIAX3tiBnz44CtXRNBg7detvCiGkDyXnVZg3rTHQ1yAk51WYd6fdiooKI0tLywahUKi5ceOGaUpKyjBA+8348OHDVgAQExNjLZfL2+yhsLa2brCwsGg4f/78cAD45JNPrCdNmvSgo8efO3fu/djYWKuCgoIhAFBSUmKkVCpNpk2bVpWQkCBUqVRGdXV1OHPmjJV+H7VabSQSier0sem3z5w58/7evXvt9PdVKpVReXm5kZmZmWbkyJEN+fn5Q+Li4iw79wq1dvLkScu4uDiLTz/9tMvfsGhYgRhUcbYSk/4UBlszEe6dyIRlkAMm2y1AmUcZnD1GGDo8QkgHbZ3jXdJy22xf+24PKyxevLjy0KFDtmKx2M/Dw6NGJpNVAYCZmZkmPT3dTCKRjBIKhQ2nT5/Oaa+Nw4cP39qwYYNLRESEQCQS1Z48eTK3o8cPCAioefPNNwuCg4PFGo0GxsbGPCoqKi84OLhq8+bNRRMmTPC1s7OrE4vF1ZaWlg0AsGvXrsJly5Z52NvbPwoMDKzKy8sbCgDvvvtu0Zo1a0ReXl4SgUDAd+7cWbhq1aoKqVT60MvLSyISiWoDAgI6nLi0Z//+/fZ37941Hjt2rC8AzJ07t2L//v2FnWmDPa5rpDsYY84AjgIYBe0CD4c4539r8vhWAH8FYMs5L31cW4GBgZzWVhj8Kv+RC/W/8iGc5QzLZ10NHQ4hAx5j7BfOeWBX909JScmVyWSP/ftsKObm5uMePnx4w5AxVFZWCiwtLTV1dXWYM2eO5+rVq0vDwsIqDBlTZ6WkpNjIZDLXltt7c1ihHsAWzrkvgIkA/sQY8wMaE4cQAHm9eHwyAOjnOajJrkBVQhGEs5yRc+EnXD38d0OHRgghj7Vt2zZHHx8fP7FYLBGJRLUrVqwYUInB4/TasALnvAhAke5nNWMsE8BoABkA9gH4DwBneuv4ZGAY5SHG2fffxWS7F+H76nO4W52Hq3e/xWS8iJrsCpjS0AIhpA1t9RqsXLlS9PPPPw9vum3Dhg0lXS3Ke5JDhw7d6Y12OyoxMdEsLCzMrek2ExMTTWpqqqK7bfdJzQFjzBXAOAAJjLEXARRwzlMeV13KGHsVwKsAIBKJ+iBKYggiqT9mh7yCH//5CR7+0oCUf3yP+Vv+AjszEeruqCk5IIR02LFjx56q3mi5XF6tUCgyeqPtXk8OGGPDAXwF4A1ohxp2AXj2Sftxzg8BOARoaw56M0ZiWN4vz0bpkOJW8xxQYkAIIYbRq5cyMsaMoU0MjnPOTwPwAOAGIIUxlgvACcB1xtio3oyD9G80zwEhhPQvvdZzwLRjBp8AyOSc7wUAzvmvAOyaPCcXQOCTrlYgg9d3nx3H/X9fx9RRC2EbIIWznz+u/M8RTLKZj1Frxxo6PEIIeSr1Zs/BFAArAcxijCXrbs/34vHIADSk5iHy7YaiIcQa905kgmdoMMHqeeQ7FtCwAiGEGEhvXq1wGcBj57PknLv21vHJwDBndTjEt27h1BdfYI69HNbX64Hx1pi2NNjQoRFCOuPCf9nDKfAhvJ/7fdKjrHNC3EkyR/D/12qCJNK/0fTJxODc3NwwzX0CzHMaUObeAOOsatRkD5rLhQl5OjgFPsTX692RdU4773nWOSG+Xu8Op8BOL/pDDI+SA2JwuZczYfsLR2mgAD9UJOLRMyNw70QmJQiEDCTez6mx8EAOvl7vjnM7HPH1encsPJDTrCehi2bPnu0hkUh8PT09JZGRkTaAdobE8PBwJz8/P99JkyaJCwsL2+0Jv3r1qplMJvMRi8V+ISEhHiqVyggA5HK59yuvvOIcGBjo7e7uLomPjzd/9tlnPVxcXKQRERGNSyJ/+OGHI8eMGePr4+Pj9/LLL7vU19cDAPbt22fj6uoqlcvl3i+99JJLWFiYCABOnDhh6e/v7+Pr6+s3efJkcX5+/hBAO6PikiVLXMVisZ9YLPaLiYkZAQDLly8XSaVSX09PT8nmzZsbjzt69OgxGzduHD127FgfqVTqe/nyZfOpU6d6OTs7S9977z3b9s43NjZW+MwzzzSuUhkWFiaKioqybu/5baHkgBjUrVu38OuFXzBkngMmLXkGoaGhOHX1LB49MwJ1d3pkKXhCSF/xfk4N2TIVEv6vA2TLVD2RGADA8ePHc9PT0zOTk5MzDh48aF9cXGxUXV0tGD9+/MOMjIzMKVOmqHfs2OHY3v6rV692e+edd+4olcoMiURSvX379sbnmpiYaJKSkrLWrFmjCg0N9fzoo4/yFApF+ueff25TXFxsdP36ddMvv/xyZFJSkkKhUGQIBAJ+4MAB69zcXOPIyEiHhISEzEuXLilv3rxpqm8zJCTkQXJysiIzMzNjyZIl9956661RALBjxw4HCwuLBqVSmaFUKjPmzZunBoC9e/cWpKWlZSoUivQrV64IExISzPRtOTs7P0pOTlYEBQU9WLt2revZs2ezExISFLt37273fHsCLbxEDKqgoADSsClwddNO8uXm5obQ0FDcKSiA6wxfA0dHCOmUrHNCpJy0RdCGIqSctIX7DHVPJAh79uyx/+6770YAQHFxsXF6erqpQCDAunXr7gHA2rVryxYtWuTZ1r5lZWVGarXaaN68eQ8AIDw8vCw0NNRd//jChQsrAEAmk1V7enpWu7i41AGAs7NzbU5OjklcXNzwtLQ0c5lM5gsANTU1Ajs7u/pLly4NCwoKUtvb2zfo2ilXKpWmAHDr1i2TBQsWOKlUKuNHjx4JnJ2dawHg4sWLFp999lnjAlG2trYNAHDkyJGRMTExNvX19UylUhmnpKSYBgUFVQPA0qVLKwBgzJgxD6uqqgRWVlYaKysrzdChQzWlpaVGNjY2Dd19fdtCyQExqKlTp7ba5ubmBjc3tzaeTQjpt/Q1BvqhBPcZ6p4YWoiNjRXGx8cLk5KSFEKhUCOXy72rq6tb9Xo/bsbdxzE1NeUAIBAIMHTo0MYJ9wQCAerr6xnnnIWGhpZ98MEHBU33O3r0aLuXU23cuFG0adOm4uXLl1fGxsYK33rrLUcA4Jy3ilOhUJhER0fb//LLL5m2trYNixcvdq2pqWk8v6bxmZiYNIuvrq6uzZM2NjbmGo2m8X5tbW2nXxwaViCEENJ9d5LMmyUC+hqEO0nm3Wm2oqLCyNLSskEoFGpu3LhhmpKSMgwANBoNDh8+bAUAMTEx1nK5vM0ExNrausHCwqLh/PnzwwHgk08+sZ40aVKHl0WeO3fu/djYWKuCgoIhAFBSUmKkVCpNpk2bVpWQkCBUqVRGdXV1OHPmjJV+H7VabSQSier0sem3z5w58/7evXsb5/pRqVRG5eXlRmZmZpqRI0c25OfnD4mLi7Ps3CvUmoeHR+1vv/1mVl1dzcrKyowuX75s0dk2qOeAEEIM4NO0TyG1lkLuIG/clliUiLSyNKyVrjVgZF3U1uWK3s91e1hh8eLFlYcOHbIVi8V+Hh4eNTKZrAoAzMzMNOnp6WYSiWSUUChsOH36dE57bRw+fPjWhg0bXCIiIgQikaj25MmTuR09fkBAQM2bb75ZEBwcLNZoNDA2NuZRUVF5wcHBVZs3by6aMGGCr52dXZ1YLK62tLRsAIBdu3YVLlu2zMPe3v5RYGBgVV5e3lAAePfdd4vWrFkj8vLykggEAr5z587CVatWVUil0odeXl4SkUhUGxAQ0OHEpT2enp518+fPL/f19ZW4ubnVSCSSTl8xwjjv/8sWBAYG8qSkJEOHQQghPSaxKBFb47cickYk5A7yVvd7AmPsF855YFf3T0lJyZXJZP1yBltzc/Nxba3M2JcqKysFlpaWmrq6OsyZM8dz9erVpWFhYQPqMquUlBQbmUzm2nI7DSsQg4qNfR8pqbHNtqWkxiI29n0DRURI35A7yBE5IxJb47ci+kZ0jycGpPdt27bN0cfHx08sFktEIlHtihUrBlRi8Dg0rEAMylnkjdizVwAAMv8XtInB2St4Yf4UA0dGSO+TO8ix1HspDqYexGv+r1Fi0Alt9RqsXLlS9PPPPw9vum3Dhg0lmzZtKuuNGA4dOnSnN9rtqMTERLOwsLBm1dsmJiaa1NRURXfbpuSAGJTM/wUAQOzZK/jtt1+hyLyPF+ZPadxOyGCWWJSIU1mn8Jr/aziVdQryUXJKELrh2LFjeYaOoS/J5fJqhUKR0Rtt07ACMTiZ/wvw8bXAr6m18PG1oMSAPBWa1hhsHLexcYghsSjR0KERQskBMbyU1FgoMu9jjP9QKDLvt6pBIGQwSitLa1ZjoK9BSCtLM3BkhFByQAysaY3B4kV/wQvzpyD27BVKEMigt1a6Fh7fpaLqWkLjNrmDHH98IEHZxx8bMDJCKDkgBpafl9WsxkDm/wJemD8F+XlZBo6MkN5nKh2Dgs2bGxOEqmsJKNi8GabSMQaOjDztKDkgBvXCC1ta1RjI/F/ACy9sMVBEpLcciM/G1ezml8xfzS7FgfhsA0VkWJ+mfYp0F4bR+/ahYPNmqKKicP6v/wv/evNZDJsYZOjwOi3qepR9XH6csOm2uPw4YdT1KHtDxUS6jpIDQkif8HeyxMYTNxoThKvZpdh44gb8nbo9W+yAJLWWYmv8VqS7MFgtewlxsQew7wWO8eOfN3RoXeJv6/9w1+Vd7voEIS4/Trjr8i53f1v/Ts/ORwyPkgNCSJ+Y7GGD6JfHYeOJG9j7jyxsPHED0S+Pw2QPG0OHZhD6AsQtFzbhw5tH8Ldlw7A5lkFyu//PWtuWmc4z1W9PfTtn1+Vd7rsTdzvuurzL/e2pb+fMdJ7Z7VUZZ8+e7SGRSHw9PT0lkZGRNoB2hsTw8HAnPz8/30mTJokLCwvbvTT/6tWrZjKZzEcsFvuFhIR4qFQqIwCQy+Xer7zyinNgYKC3u7u7JD4+3vzZZ5/1cHFxkUZERDQuifzhhx+OHDNmjK+Pj4/fyy+/7FJfXw8A2Ldvn42rq6tULpd7v/TSSy5hYWEiADhx4oSlv7+/j6+vr9/kyZPF+fn5QwDtjIpLlixxFYvFfmKx2C8mJmYEACxfvlwklUp9PT09JZs3b2487ujRo8ds3Lhx9NixY32kUqnv5cuXzadOnerl7Owsfe+992zbO9+GhgasWLFC5OnpKXnmmWc8Z8yY4alfh6KjKDkghPSZyR42WBEkQtS/fsOKINFTmxjoSW5zzE54hC8DH+Glsaswd9v/NKtBGGhmOs9Uz/eYrzqeedxhvsd8VU8kBgBw/Pjx3PT09Mzk5OSMgwcP2hcXFxtVV1cLxo8f/zAjIyNzypQp6h07dji2t//q1avd3nnnnTtKpTJDIpFUb9++vfG5JiYmmqSkpKw1a9aoQkNDPT/66KM8hUKR/vnnn9sUFxcbXb9+3fTLL78cmZSUpFAoFBkCgYAfOHDAOjc31zgyMtIhISEh89KlS8qbN2+a6tsMCQl5kJycrMjMzMxYsmTJvbfeemsUAOzYscPBwsKiQalUZiiVyox58+apAWDv3r0FaWlpmQqFIv3KlSvChIQEM31bzs7Oj5KTkxVBQUEP1q5d63r27NnshIQExe7du9s936NHj1rl5+ebZGVlpR85ciT3xo0bw9t7bntoEiRCSJ+5ml2KvyfkIWKWJ/6ekIeJHtZPdYLwU/r3+DHIBK9J1mgnQZohh2TfPtSk/Tog6w7i8uOEZ7PP2i73XV50Nvus7USHieqeSBD27Nlj/913340AgOLiYuP09HRTgUCAdevW3QOAtWvXli1atMizrX3LysqM1Gq10bx58x4AQHh4eFloaKi7/vGFCxdWAIBMJqv29PSsdnFxqQMAZ2fn2pycHJO4uLjhaWlp5jKZzBcAampqBHZ2dvWXLl0aFhQUpLa3t2/QtVOuVCpNAeDWrVsmCxYscFKpVMaPHj0SODs71wLAxYsXLT777LPGBaJsbW0bAODIkSMjY2JibOrr65lKpTJOSUkxDQoKqgaApUuXVgDAmDFjHlZVVQmsrKw0VlZWmqFDh2pKS0uNbGxsGlqe86VLl4YicYVJAAAgAElEQVQvWrSo3MjICCKRqH7ixImdfg+o54AY1O3bB3Gv/Kdm2+6V/4Tbtw8aKCLSW/Q1BtEvj8Ofn/VuHGJoWaT4tEgsSsRbw/6N94P/1mwSpHQXBut16wwdXqfpawzenvp2zg75jkL9EEPLIsXOio2NFcbHxwuTkpIUWVlZGb6+vtXV1dWtPrsYY11q39TUlAOAQCDA0KFDG8d0BAIB6uvrGeechYaGlikUigyFQpGRm5ubtnfv3sLHLVq4ceNG0euvv35XqVRmREdH366trRUAAOe8VZwKhcIkOjraPj4+XqlUKjNmzZpVWVNT03h+TeMzMTFpFl9dXV2bJ90TCypSckAMSmjhj7S0iMYE4V75T0hLi4DQwt/AkZGelnqnslmNgb4GIfVOpYEjM4zBNglSqirVvGmNgb4GIVWVat6ddisqKowsLS0bhEKh5saNG6YpKSnDAECj0UA/jh4TE2Mtl8vb/HZsbW3dYGFh0XD+/PnhAPDJJ59YT5o0qcPLIs+dO/d+bGysVUFBwRAAKCkpMVIqlSbTpk2rSkhIEKpUKqO6ujqcOXOmcUxfrVYbiUSiOn1s+u0zZ868v3fvXjv9fZVKZVReXm5kZmamGTlyZEN+fv6QuLi4blfoTps27cE333xj1dDQgPz8/CEJCQmdTtBoWIEY1EirSZBKo5CWFoHRo19GQcEJSKVRGGk1ydChkR62foZHq22TPWye2mGFtdK1rbbJHQbu2goR4yNKWm6b6Tyz28MKixcvrjx06JCtWCz28/DwqJHJZFUAYGZmpklPTzeTSCSjhEJhw+nTp3Paa+Pw4cO3NmzY4BIRESEQiUS1J0+ezO3o8QMCAmrefPPNguDgYLFGo4GxsTGPiorKCw4Ortq8eXPRhAkTfO3s7OrEYnG1paVlAwDs2rWrcNmyZR729vaPAgMDq/Ly8oYCwLvvvlu0Zs0akZeXl0QgEPCdO3cWrlq1qkIqlT708vKSiESi2oCAgA4nLu1ZtWpV+Y8//igUi8USNze3GplMVjVixIhWww+Pw3qi+6G3BQYG8qSkJEOHQXpRds4+5OZGw9V1IzzcNxs6HEIGBcbYL5zzwK7un5KSkiuTyfrluI+5ufm4tlZm7EuVlZUCS0tLTV1dHebMmeO5evXq0rCwsH6xbLM+tuLiYqMJEyb4XrlyRSESiepbPi8lJcVGJpO5ttzeaz0HjDFnAEcBjAKgAXCIc/43xthfAcwH8AhANoA1nPN+8WISw7hX/hMKCk7A1XUjCgpOwMpqIvUckKdC2ccfI7/GDjYh0+Dkre2VrrqWgOJ/J6Jy/IsYP8fFwBGSx9m2bZvjxYsXLWpra9mMGTPur1ixot98loWEhHjdv3/fqK6ujm3btq2orcTgcXpzWKEewBbO+XXGmBDAL4yxfwL4J4C/cM7rGWN7APwFwPZejIP0Y/oaA/1QgpXVxGb3CRnMTKVjYBrxBn5KKsGkvyyBVbkS+RFv4Fe/tZi0yMLQ4fVrbfUarFy5UvTzzz83u2xvw4YNJZs2bSrrjRgOHTp0pzfa7ajExESzsLAwt6bbTExMNKmpqYrExMRuzUHfa8kB57wIQJHuZzVjLBPAaM75P5o87RqAJb0VA+n/zt++CieXPY2JwEirSYDLHpy/fRUvU3JABrlhE4PgHLUfiHgDGVuzMLrwEjLGrMOkvyxp7EkgHXfs2LE8Q8fQl+RyebVCocjojbb75GoFxpgrgHEAWs7ssRbAuXb2eZUxlsQYS1KpVL0bIDEYkcurWJ9ni8vl2pqly+VqrM+zhcjlVQNHRkjfGDYxCNYrlsH55ne4bTMFokXBlBgQg+v15IAxNhzAVwDe4Jzfb7J9F7RDD8fb2o9zfohzHsg5D7S1bXeWSDLATbUS4pDEFa+m52JPThFeTc/FIYkrplp169JoQgaMqmsJKPv7SeR7zYNL6RXknb6AO1nlhg6LPOV6NTlgjBlDmxgc55yfbrJ9FYAXACznA+FyCdKrploJscrRBvtul2CVow0lBuSpUXUtobHGwC9yF1w/iMKYjE/x07tfUoJADKrXkgOmnQbqEwCZnPO9TbbPhbYA8UXOOa3WRXC5XI0jhaXY7GKPI4WljUMM5OnyadqnSCxKbLYtsSgRn6Z9aqCIel9N2q+oCftLY42BvgZhvHcN7ubef3IDhPSS3uw5mAJgJYBZjLFk3e15ANEAhAD+qdt2oBdjIP3c5XJ141DCdneHxiEGShCePvoljPUJQmJRIrbGb4XUWmrgyHqP9bp1GLvxxWY1BsMmBsHjL/9rwF3GeHf/fnv1v//drNtP/e9/C+/u329vqJgIoF9BsrN6LTngnF/mnDPOuT/nfKzu9j3n3JNz7txk2/reioH0f8n3HzarMdDXICTfp06lweRAfHarNRSuZpfiQHx243399MFb47ci+kY0tsZvbTa98FPl8n7g1sXm225d1G7vp8xksoeF23e46xME9b//LSzcvsPdTCbr9n9mWrK5c0s2x8bGCoOCgsTz58938/b2lnTlNae1FYhBbXSxb1VjMNVKiI0u9GVjMPF3smy2yJJ+ESZ/p+bTyMsd5FjqvRQHUw9iqffSpzMxAIDR44EvVv+eINy6qL0/erwho3os4TPPqB337M4p3L7DvfiddxwLt+9wd9yzO0f4zDPd7gakJZs7t2QzAKSmpg7761//WpCdnZ3eldec1lYghPQ6/SJLG0/cwIogEf6ekNdsESa9xKJEnMo6hdf8X9MuYTxq4K410C1u04HQGG1CEPgKkPSJ9r7bdAMH9njCZ55RWy74g6r86DEHq7CVRT2RGAC0ZDPQuSWbAcDf37/Kx8fnUVdfc+o5IIT0ickeNlgRJELUv37DiiBRm4mBfiih6RLGLYsUB5vrP9xudWXCnaxyXFe6aBODi+9p/+3niQGgHUqo/OaMrVXYyqLKb87YtqxB6ApasrnzSzYDgLm5uabzr8bvKDkghPSJq9ml+HtCHiJmeeLvCXmtahAG2xLGHWXnaoEfPkprTBDuZJXjh4/SYDf0lrbHYPp/aP9tWYPQz+hrDBz37M4ZtXNnoX6IobsJAi3ZbBg0rEAI6XX6GgP9UMJED+tm94HBt4RxRzl5W2FOuBQ/fJQG6fTRSLtYgDkvNMApce3vQwlu07RDDP14aKE6JcW8aY2BvgahOiXFvDvDC7Rks2HQks2EkCcq+/hjmErHYNjEoMZtVdcSUJP2K6zXrXvi/gfis+HvZNlsKOFqdilS71Ri/QyPXol5oEn4NgdJ3+cicEwJgpyvAWMW/54I3LoIpH0FWLkBU9/ocJu0ZHPv6s9LNndUe0s207ACMajo2yWt5jS4XK5G9O0SA0VE2nKTe+PXN6NQdU27PErVtQT8+mYUbnLvDu2/foZHqxqDyR42lBjo3MkqR9rFAgQ+74q03+xx54by9wf1VypIF3cqMSC9b9u2bY4+Pj5+YrFYIhKJavvTks3dRcMKxKDGWpg3W0+h6aRIpP9wmi7F+bRXgDej4PFiELK/TUCa5BXMnT54JyjqK/oagznhUjh5W2G0txV+OLANc46+C6dplwbMlQp9jZZsfvySzd1tm4YViMHpE4JVjjY4UlhKCy/1U3eyynE+6mc4ZP8DRR7PYm7EBFo9sAdc/+E27Fwtmr2Wd7LKcffCNxh/9w1tQeKsXV1qezAPK5CeQcMKpN+ihZcGBqtyJRwLLiHX9Xk4FlyCVbnyyTuRJxo/x6VVkuVk8ivGP/ivAXOlAhl8KDkgBkcLL/V/+hqDQpdnEPi8KwpdnmlWg0B6kL7GIDRG22OgnwyJEgTShyg5IAZFCy8NDLev3tTWGLw+DkEvumPu6+OQJnkFt6/eNHRog0/B9eY1BvrZEguuGzIq8pShgkRiUI9beImGF/qPGsk0zJ33+7i4k7cV5r4+Dndz6WqDHtfWFQlu06kgkfQpSg6IQbW1wNJUKyElBv1MW8sHO3lbUUEiIYMUDSsQQvrUp2mftlovIbEoEZ+mfWqgiEhPuHYm2/5WammzrP5Waqnw2plsWmK1j+Xm5hrPnTvX/cnPbB8lB4SQPiW1ljZbUEm/4JLUemDOmXAgPrvVOhFXs0txID7bQBEZhr2b5cMLMRnu+gThVmqp8EJMhru9m+VDQ8f2tHF1da07f/58u9NJdwQlB4SQPqVfUGlr/FZE34huXIlxoK6h4O9kiY0nbjQmCPp1JPyd+sX6OX3Gzd9GHbzaL+dCTIb7pVNKxwsxGe7Bq/1y3Pxtul1dPHv2bA+JROLr6ekpiYyMtAG00yeHh4c7+fn5+U6aNElcWFjY7jD51atXzWQymY9YLPYLCQnxUKlURgAgl8u9X3nlFefAwEBvd3d3SXx8vPmzzz7r4eLiIo2IiHDU7//hhx+OHDNmjK+Pj4/fyy+/7FJfXw8A2Ldvn42rq6tULpd7v/TSSy5hYWEiADhx4oSlv7+/j6+vr9/kyZPF+fn5QwDtdMtLlixxFYvFfmKx2C8mJmYEACxfvlwklUp9PT09JZs3b2487ujRo8ds3Lhx9NixY32kUqnv5cuXzadOnerl7Owsfe+992zbO9+srCwTLy8vSXdec0oOCCF9Tu4gx1LvpTiYehBLvZcO2MQA0E4DHf3yOGw8cQN7/5HVakGpp4mbv43ae+IoVeq/7jh4Txyl6onEAACOHz+em56enpmcnJxx8OBB++LiYqPq6mrB+PHjH2ZkZGROmTJFvWPHDsf29l+9erXbO++8c0epVGZIJJLq7du3Nz7XxMREk5SUlLVmzRpVaGio50cffZSnUCjSP//8c5vi4mKj69evm3755Zcjk5KSFAqFIkMgEPADBw5Y5+bmGkdGRjokJCRkXrp0SXnz5k1TfZshISEPkpOTFZmZmRlLliy599Zbb40CgB07djhYWFg0KJXKDKVSmTFv3jw1AOzdu7cgLS0tU6FQpF+5ckWYkJBgpm/L2dn5UXJysiIoKOjB2rVrXc+ePZudkJCg2L17d7vn2xOoIJEQ0ucSixJxKusUXvN/DaeyTkE+amCvvjjZwwYrgkSI+tdviJjl+VQmBoB2KCHrWrGt/yynoqxrxbZOPiPVPZEg7Nmzx/67774bAQDFxcXG6enppgKBAOvWrbsHAGvXri1btGiRZ1v7lpWVGanVaqN58+Y9AIDw8PCy0NDQxvH4hQsXVgCATCar9vT0rHZxcakDAGdn59qcnByTuLi44WlpaeYymcwXAGpqagR2dnb1ly5dGhYUFKS2t7dv0LVTrlQqTQHg1q1bJgsWLHBSqVTGjx49Ejg7O9cCwMWLFy0+++yzxu5+W1vbBgA4cuTIyJiYGJv6+nqmUqmMU1JSTIOCgqoBYOnSpRUAMGbMmIdVVVUCKysrjZWVlWbo0KGa0tJSIxsbm4buvr5toZ4DQkif0tcYRM6IxMZxGxuHGFoWKQ4kV7NL8feEPETM8sTfE/Ja1SA8DfQ1BsGr/XKmLRUX6ocYWhYpdlZsbKwwPj5emJSUpMjKysrw9fWtrq6ubvXZxRjrUvumpqYcAAQCAYYOHdq4noBAIEB9fT3jnLPQ0NAyhUKRoVAoMnJzc9P27t1b+LilBzZu3Ch6/fXX7yqVyozo6OjbtbW1AgDgnLeKU6FQmERHR9vHx8crlUplxqxZsypramoaz69pfCYmJs3iq6ur69pJdwAlB4SQPpVWltasxkBfg5BWlmbgyLpGX2MQ/fI4/PlZ78YhhqctQSi5VWnetMZAX4NQcqvSvDvtVlRUGFlaWjYIhULNjRs3TFNSUoYBgEajweHDh60AICYmxloul7fZQ2Ftbd1gYWHRcP78+eEA8Mknn1hPmjTpQUePP3fu3PuxsbFWBQUFQwCgpKTESKlUmkybNq0qISFBqFKpjOrq6nDmzJnG63rVarWRSCSq08em3z5z5sz7e/futdPfV6lURuXl5UZmZmaakSNHNuTn5w+Ji4vrF8UqNKxACOlTa6VrW22TOwzcYYXUO5XNagz0NQipdyqfquGFiX/waLXOupu/TbeHFRYvXlx56NAhW7FY7Ofh4VEjk8mqAMDMzEyTnp5uJpFIRgmFwobTp0+3W51/+PDhWxs2bHCJiIgQiESi2pMnT+Z29PgBAQE1b775ZkFwcLBYo9HA2NiYR0VF5QUHB1dt3ry5aMKECb52dnZ1YrG42tLSsgEAdu3aVbhs2TIPe3v7R4GBgVV5eXlDAeDdd98tWrNmjcjLy0siEAj4zp07C1etWlUhlUofenl5SUQiUW1AQECHE5feRKsyEkLIIDWYV2U0Nzcf19ayzX2psrJSYGlpqamrq8OcOXM8V69eXRoWFlZhyJg6i1ZlJIS0qezjj1stoFR1LQFlH39soIgIGRi2bdvm6OPj4ycWiyUikah2xYoVAyoxeJxeG1ZgjDkDOApgFAANgEOc878xxkYC+ByAK4BcAEs55+W9FQchT6PrP9yGnatFs+mN72SV427u/VZTIZtKx6Bg82aM3rcPwyYGoepaQuN9QvqrtnoNVq5cKfr555+HN922YcOGkk2bNpX1RgyHDh260xvtdlRiYqJZWFiYW9NtJiYmmtTUVEV32+7NmoN6AFs459cZY0IAvzDG/glgNYALnPPdjLEdAHYA2N6LcRDy1LFztcAPH6VhTrgUTt5WuJNV3ni/pWETgzB63z4UbN4Mq2UvofzkZ42JAnmyA/HZ8HeybFZfcDW7FKl3KrF+Bi1M1ZeOHTuWZ+gY+pJcLq9WKBQZvdF2rw0rcM6LOOfXdT+rAWQCGA3gDwCO6J52BMCC3oqBkKeVk7cV5oRL8cNHaUj4NqdZotCWYRODYLXsJZR++H9htewlSgw6gWZIJINRn9QcMMZcAYwDkADAnnNeBGgTCAB27ezzKmMsiTGWpFKp+iJMQgYVJ28rSKePRtL3uZBOH/3YFRSrriWg/ORnsHl9A8pPftaqBoG0j2ZIJINRrycHjLHhAL4C8Abn/H5H9+OcH+KcB3LOA21t251CmhDSjjtZ5Ui7WIDA512RdrEAd7LaLu1pWmNgGxHROMRACULHNZ0hcUWQiBIDMuD1anLAGDOGNjE4zjk/rdtcwhhz0D3uAOBub8ZAyNOoaY1B0IvujUMMbSUINWm/Nqsx0Ncg1KT92tdhD1g0QyIZbHotOWDaOSI/AZDJOd/b5KFvAazS/bwKwJneioGQp9Xd3PvNagz0NQh3c1t33lmvW9eqxmDYxCBYr1vXJ7EOdDRDotblz47aZ/+S2Gyq5OxfEoWXPztqb6iYetq5c+eG+/n5+Q4ZMiRAPzvjYNWbPQdTAKwEMIsxlqy7PQ9gN4AQxthNACG6+4SQHjR+jkurGgMnb6tWlzGS7nvcDIlPEwcvn4fnPnjfXZ8gZP+SKDz3wfvuDl4+Dw0dW09xd3d/dPjw4dz58+f3yqWR/UmvXcrIOb8MoL1FIYJ767iEENKX2rpccbKHzVNXd+ARIFc/96ctOec+eN9dMj1YlX7xgu1zf9qS4xHQ9poHnTF79myPoqIik9raWsH69etLtm7dWmpubj5u+fLlqitXrggtLS0bvvrqqxxHR8f6tvaPj483Dw8PdzU3N9cEBQU9+Ne//mV58+bN9KioKOszZ86MePTokSA/P3/o4sWLy95///0iAIiOjraOioqyZ4zB19e3+ptvvrnl7e39CNAuevQkDQ0NWLVqlejatWtCZ2fnWo1Gg9WrV5etWbNmQMzrQzMkEkII6REeAXK1ZHqw6vq5bx0k04NVPZEYAMDx48dz09PTM5OTkzMOHjxoX1xcbFRdXS0YP378w4yMjMwpU6aod+zY4dje/uvWrXP74IMPbicnJyuMjIyarRmQmpo67IsvvshJS0tL//bbb0devHjRPCkpyTQyMtIhPj5emZWVlXHw4MFOz59w9OhRq/z8fJOsrKz0I0eO5N64cWP4k/fqPyg5IIQQ0iOyf0kUpl+8YDv+uReL0i9esG1Zg9BVe/bssff29vYLCAjwLS4uNk5PTzcVCARYt27dPQBYu3ZtWWJiYpsfvqWlpUZVVVWCkJCQKgBYtWrVvaaPT5069f6oUaMahg8fzufNm1ceFxc3/IcffrCYP39+uYODQz0A2NvbN3Q25kuXLg1ftGhRuZGREUQiUf3EiRN7JFHqK7QqIyGEkG7T1xjohxJEY8aqm97varuxsbHC+Ph4YVJSkkIoFGrkcrl3dXV1qy+22hr41p60uGDL/Rhj4JyDMdatVQkHwqKGj0M9B4QQQrqt6KbCvGkioK9BKLqpMO9OuxUVFUaWlpYNQqFQc+PGDdOUlJRhAKDRaKC/YiAmJsZaLm87AbG1tW0YNmyY5sKFC8MA4NixYyObPn758mWLkpISowcPHrDvv/9+xIwZMx7MnTv3/rfffjuyuLjYCABKSkqMOhv3tGnTHnzzzTdWDQ0NyM/PH5KQkNAjvSh9hXoOCCGEdNvUl8JKWm7zCJCru1t3sHjx4spDhw7ZisViPw8PjxqZTFYFAGZmZpr09HQziUQySigUNpw+fTqnvTYOHjyYu379ehdzc3PNlClT1EKhsHGYIDAw8MEf//hHt9zcXNPFixeXTZ8+/SEAbNmypWjatGk+AoGAS6XSh1999VVufHy8+dKlSz3v379vdOHChRFvv/2242+//Zbe1jFXrVpV/uOPPwrFYrHEzc2tRiaTVY0YMaLTwxOGwgZC10dgYCBPSkoydBiEEDKgMMZ+4ZwHdnX/lJSUXJlM1i8nbDA3Nx/X1sqMbamsrBRYWlpqAGDnzp2jioqKjA8fPpwfFRVlnZSUNOzo0aO9smCT/rjFxcVGEyZM8L1y5YpCJBK1eUWFoaSkpNjIZDLXltup54AQQsigdurUKcv333/foaGhgY0ePbr2xIkTuX1x3JCQEK/79+8b1dXVsW3bthX1t8TgcSg5IIQQMuC01WuwcuVK0c8//9zsqoUNGzaUbNq0qSw8PLzV/AIRERFlALo1oVFiYqJZWFiYW9NtJiYmmtTUVEViYmJWd9o2pA4lB4yxoQAWA3Btug/n/K3eCYsQ0q9c3g+MHg+4Tf99262LQMF1YOobhouLkCaOHTvWK8MDjyOXy6sVCkVGXx+3t3X0aoUzAP4AoB5AVZMbIeRpMHo88MVqbUIAaP/9YrV2OyFk0OnosIIT53xur0ZCCOm/3KYDoTHahCDwFSDpE+39pj0JhJBBo6M9B1cZY2N6NRJCiOFd3v9774DerYva7W7TtYnBxfe0/1JiQMig9djkgDH2K2MsFcBUANcZY1mMsdQm2wkhg8njhg9uXdT2GEz/D+2/LZMI8lSr/CHXvjqzrNlEP9WZZcLKH3IHzZLNT5Mn9Ry8AGA+gOcAeAJ4Vndfv50QMpg0HT7419vaf0NjtI/pf5616/fnUIJAdExEwof3Tind9QlCdWaZ8N4ppbuJSDholmw+d+7ccD8/P98hQ4YE6GdnHKwemxxwzm9zzm8D+G/9z0239U2InRd9uwSXy5tPynW5XI3o260m8CKEtNTW8EHB9eY1BvokouC6ISMl/YiZr7V65FJxzr1TSveKs9mO904p3UcuFeeY+VoPqAWHHsfd3f3R4cOHc+fPn9+pyx/r6wfM9AaNOlpzIGl6hzFmBCCg58PpGWMtzPFqem5jgnC5XI1X03Mx1qJbU3wT8nRoa/hg6hutawzcptNljKQZM19r9bDxdqoHVwodho23U/VUYjB79mwPiUTi6+npKYmMjLQBtDMkhoeHO/n5+flOmjRJXFhY2G6BfXx8vLlYLPYbO3asz2uvvebk5eUlAYCoqCjr4OBgj2nTpnm5urpKt2zZ4qDfJzo62losFvt5e3v7LViwwA0AvL29HwUFBVULBE/+6IyNjRUGBQWJ58+f7+bt7S154g79zGOvVmCM/QXATgBmjLH7APTLVz0CcKiXY+uyqVZCHJK44tX0XKxytMGRwlIckrhiqtWAWveCkL6nrzHQ9xK4TWt+n5DHqM4sE1Zdv2s7fIpjUdX1u7ZDPUeoeyJBOH78eK69vX3DgwcP2Lhx4/xWrFhRXl1dLRg/fvzDjz766M7WrVsdduzY4djeNMjr1q1z+/DDD3NDQkKqXn/99dFNH0tNTR3266+/pg8fPlwzbtw4vz/84Q+V5ubmmsjISIeffvpJ4eDgUN+VhZf0bd+4cSPdx8fnUVf2N6QnDSu8yzkXAvgr59yCcy7U3aw553/poxi7ZKqVEKscbbDvdglWOdpQYkBIR9DwAekifY3ByKXinBHzPQr1QwwtixS7Ys+ePfbe3t5+AQEBvsXFxcbp6emmAoEA69atuwcAa9euLUtMTBze1r6lpaVGVVVVgpCQkCoAWLVq1b2mj0+dOvX+qFGjGoYPH87nzZtXHhcXN/yHH36wmD9/frmDg0M9ANjb23dpwSR/f/+qgZgYAB2f52AnY2wRtFctcACXOOff9F5Y3Xe5XI0jhaXY7GKPI4WlmGI1nBIEQp6krWECt+nUa0Ce6FGe2rxpjYG+BuFRntq8O70HsbGxwvj4eGFSUpJCKBRq5HK5d3V1dasvtoyxtnbHkxYXbLkfYwycczDGur0qobm5uaa7bRhKR2sOPgCwHsCvANIArGeMfdBrUXWTvsbgkMQV290dGocYWhYpEkII6RmWc1xLWiYBZr7Wass5rt2qBK+oqDCytLRsEAqFmhs3bpimpKQMAwCNRgP9FQMxMTHWcnnbS0Pb2to2DBs2THPhwoVhAHDs2LGRTR+/fPmyRUlJidGDBw/Y999/P2LGjBkP5s6de//bb78dWVxcbAQAXR1WGMg62nMwA4CU61IwxtgRaBOFfin5/sNmNQb6GoTk+w+p94AQQgaQxYsXVx46dMhWLBb7eXh41MhksioAMDMz06Snp5tJJJJRQqGw4fTp0znttXHw4MHc9evXu5ibm2umTJmiFgqFjcMEgcxBzSUAACAASURBVIGBD/74xz+65ebmmi5evLhs+vTpDwFgy5YtRdOmTfMRCARcKpU+/Oqrr3Lj4+PNly5d6nn//n2jCxcujHj77bcdf/vtt/TefxX6HntSlwsAMMZOA9isu4QRjDEXALs558t6OT4AQGBgIE9KSuqLQxFCyKDBGPuFcx7Y1f1TUlJyZTJZaU/G1FPMzc3HtbUyY1sqKysFlpaWGgDYuXPnqKKiIuPDhw/nR0VFWSclJQ1rr5DxaZCSkmIjk8lcW27vaM+BNYBMxlii7v4EAD8xxr4FAM75iz0SJSGEENLDTp06Zfn+++87NDQ0sNGjR9eeOHEi19Ax9XcdTQ7+d2cbZox9Cu1Minc551LdtrEADgAwhXaFx9c554ntt0IIIYS01lavwcqVK0U///xzs6sWNmzYULJp06ay8PDw8pbPj4iIKAPQqQmNWkpMTDQLCwtza7rNxMREk5qaquhOu4bWoeSAcx6vG0rw4pz/yBgzAzCEc/64Cr8YANEAjjbZ9h6A/+Scn2OMPa+7P7NLkRNCCCFNHDt2rM+HB+RyebVCocjo6+P2tg5drcAYCwfwJYCDuk1OAB57KSPn/CKAey03A7DQ/WwJoLDDkRJCCCGkT3R0WOFPAOQAEgCAc36TMWbXheO9AeAHxlgktInJ5C60QQghhJBe1NF5Dmo5542zPDHGhkDbC9BZG6C96sEZwGYAn7T3RMbYq4yxJMZYkkql6sKhCCGEENIVHU0O4hlj+jUWQgB8AeBsF463CsBp3c9fQNsb0SbO+SHOeSDnPNDW1rYLhyKEENJXLly4YJ+VldVsIpmsrCzhhQsX7A0VU0/rzJLNubm5xnPnznXvq9h6WkeTgx0AVNBOfPQagO8BvNmF4xVCO6ESAMwCcLMLbRBCCOlnnJycHn799dfu+gQhKytL+PXXX7s7OTk9NHRsPaUzSza7urrWnT9/vt2Jmfq7DiUHnHMNtAWIr3POl3DOP+JPmD2JMXYSwE8AvBljdxhjrwAIB/A+YywFwDsAXu1e+IQQQvoDb29v9cKFC3O+/vpr93Pnzjl+/fXX7gsXLszx9vbu9rz1A3HJ5qysLBP9cQaiJy3ZzAD8HwAboV2umTHGGgD8D+f8rcft+5jZEwO6EighhJD+zdvbWy2TyVQJCQkOQUFBRT2RGAADd8nmgexJ6c8bAKYAmKBbpnkkgCAAUxhjm3s9OkIIIQNGVlaWMCUlxTYoKKgoJSXFtmUNQlcN1CWbB7InJQdhAJZxzm/pN3DOcwCs0D1GCCGENNYYLFy4MOe5554r1A8xdDdBaLpkc1ZWVoavr2/1QFmyeSB7UnJgzDlvtegG51wFwLh3QiKEEDLQ3Llzx7xpjYG+BuHOnTvm3WmXlmw2jCdNgvSoi48RQgh5igQHB5e03Obt7a3ubt0BLdlsGI9dsllXfFjV1kMATDnnfdJ7QEs2E0JI59GSzVq0ZHP7urRkM+f8qetKIYQQMrjQks2d19G1FQghhJB+g5Zs7l2UHBBCCBkUaMnmntPR6ZMJIYQQ8pSg5IAQQgghzVByQAghhJBmKDkghBBCSDOUHBBCCOm27Oz37VWlF5pNlawqvSDMzn7f3lAx9bRz584N9/Pz8x0yZEiAfnbGwYqSA0IIId1mYTn2YUbGVnd9gqAqvSDMyNjqbmE59qGhY+sp7u7ujw4fPpw7f/78bl3+OBBQckAIIaTbbG2C1X5+kTkZGVvdlcr/cszI2Oru5xeZY2sT3O1lm2fPnu0hkUh8PT09JZGRkTaAdobE8PBwJz8/P99JkyaJCwsL2700Pz4+3lwsFvuNHTvW57XXXnPy8vKSAEBUVJR1cHCwx7Rp07xcXV2lW7ZscdDvEx0dbS0Wi/28vb39FixY4AYA3t7ej4KC/h979x4XdZn2D/xzDx5g5CtxChBUDjLDzACjwI7xaAdNy9Z1QydTU9QUK2vNSv09bNtT2+m38Utdl6etB3dLAi3PWnlYLSvMRwtBGZwZTqkTKocAYRicUYG5f3/AuICDogwD4vV+vXwl3+M1oznX3Pf1va+xFpHo5h+dL7300rCIiAh5RESE/N57741+4okngrv7PjgTrXNACCHEIXx9HjYF+M+oOnc+PWB40MJyRyQGALBp0yaDn59fc0NDAxszZox83rx5tRaLRRQTE2P+xz/+cX7lypUBycnJwzpbBjkpKSnkww8/NEyePPnS888/H9h2X35+/pBTp07p3N3drWPGjJE//vjjRrFYbF29enXAsWPHCgMCAppup/HSunXrygCU1dTUuMTHx0uXL1/+622+/F5BIweEEEIcoqr6kFBesdN3eNDC8vKKnb4daxBuV0pKip9UKpXHxsbKKioqBup0OleRSISkpKSLALBo0aKa7Oxsd3vnVldXu1y6dEk0efLkSwCwYMGCi233jx8/vt7f37/Z3d2dT506tfb77793P3DgwNBp06bVBgQENAGAn59fs71r34zVasUTTzwR8sILL1Tef//9d9T0Co0cEEII6TZbjYFtKsHT6z9Mjpha2LNnj5CVlSXk5OQUCoJgValUUovFct0XW8aY3fNv1FzQ3nmMMXDOwRi78YldsGLFimEBAQFXly9ffsfVKNDIASGEkG6rN+aJ2yYCthqEemOeuDvXraurc/Hw8GgWBMF68uRJV41GMwRo+VZue2IgPT3dW6VS2U1AfH19m4cMGWI9dOjQEADIzMz0arv/yJEjQysrK10aGhrYvn377nnwwQcbpkyZUv/ll196VVRUuADA7UwrfP755x7ff//90E8++eTcrZ7bF9DIASGEkG4LC1tR2XGbr8/Dpu7WHajVauP69et9JRKJPCws7LJSqbwEAG5ubladTuemUCj8BUFo3rlz55nOrpGWlmZ47rnnRorFYuu4ceNMgiBcmyaIi4trmDVrVojBYHBVq9U1DzzwgBkAVqxYUX7//fdHiEQiHhkZad6xY4chKytL/OSTT46qr693OXTo0D3vvvvusJ9//lln757r1q3z+/XXXweOHj1aBgBTpkypa61DuCOwmw259AVxcXE8Jyent8MghJA7CmMsl3Med7vnazQag1KprHZkTI4iFovH2OvMaI/RaBR5eHhYAeDVV1/1Ly8vH7hhw4Zzqamp3jk5OUM6K2S8G2g0Gh+lUhnccTuNHBBCCOnXtm7d6rFmzZqA5uZmFhgYeOWzzz4z9HZMfR0lB4QQQu449kYNEhMTRxw/frzdUwtLly6tXL58ec2SJUtqOx7/4osv1gDoVrFgdna22/z580Pabhs0aJA1Pz+/sDvX7W2UHBBCCOkXMjMznT49oFKpLIWFhXpn37en9djTCoyxTxhjvzLGtB22L2OMFTHGdIyx/9dT9wcAU9Y5XD5d127b5dN1MGXdkcWjhBBCiFP05KOM6QCmtN3AGJsA4HEA0ZxzBYDVPXh/DAwScPGzgmsJwuXTdbj4WQEGBjlkXQ5CCCGkX+qxaQXO+WHGWHCHzUsBvMc5v9J6TI8uJ+kadg+8npLh4mcFGDI2AJd+KofXUzK4ht3Tk7clhBBC7mjOXgRJAuB+xthPjLEsxthvevqGrmH3YMjYAJi+PYchYwMoMSCEEEJuwtnJwQAAngDuA7AKwFbWyZqXjLFnGGM5jLGcqqqq277h5dN1uPRTOYSJw3Hpp/LrahAIIYR031/OlPsdrDa2m7M9WG0U/nKm3K+3YnK0/fv3u8vlctmAAQNibasz9lfOTg7OA9jJW2QDsALwsXcg53w95zyOcx7n6+t7Wzez1Rh4PSWDxyPB16YYKEEghBDHih0qNi8rKA21JQgHq43CsoLS0Nih4juq4dCNhIaGXt2wYYNh2rRpd1yvhFvl7ORgN4CJAMAYkwAYBKDHVt9qPG9qV2Ngq0FoPO+QLqKEEEJaPeLjYfpv2YgzywpKQ/+r5PywZQWlof8tG3HmER+Pbv+DO2nSpDCFQiEbNWqUYvXq1T5AywqJS5YsCZLL5bL4+HhJWVlZpzV0WVlZYolEIh89enTEs88+GxQeHq4AgNTUVO+HH3447P777w8PDg6OXLFiRYDtnA8++MBbIpHIpVKpPCEhIQQApFLp1bFjx1pEopt/dCYkJIRs3Ljx2jz273//+5BNmzZ5dONtcKqefJTxcwDHAEgZY+cZY4sBfAIgtPXxxs0AFvAeWr/5l1/S0Bh9vl2NwcXaY6gcsAXCg8N74paEEHJXe8THw/Skv2fVP85XBzzp71nliMQAADZt2mTQ6XQFeXl5+rS0NL+KigoXi8UiiomJMev1+oJx48aZkpOTh3V2flJSUsjf//73X/Ly8gpdXFzafebk5+cP2bZt2xmtVqv78ssvvQ4fPizOyclxXb16dUBWVlZxUVGRPi0t7ZbXT1iyZElVenq6NwDU1NS45Obmuj/55JPGW3/1vaPHkgPO+RzOeQDnfCDnPIhz/jHn/CrnfB7nPJJzHsM5/7an7i8MjYZW+yIu1h4D0JIYaLUvQhga3VO3JISQu9rBaqOwtaLWd0mQT/nWilrfjjUItyslJcVPKpXKY2NjZRUVFQN1Op2rSCRCUlLSRQBYtGhRTXZ2tru9c6urq10uXbokmjx58iUAWLBgwcW2+8ePH1/v7+/f7O7uzqdOnVr7/fffux84cGDotGnTagMCApoAwM/Pr9netW9k6tSpDb/88ovrhQsXBnz88cdeU6dOrR04cOCtv/he0m9XSPTyjEdkZCq02hcRGPgULlz4DJGRqfDyjO/t0AghpN+x1RjYphLu9xRMjpha2LNnj5CVlSXk5OQUCoJgValUUovFct0X205q23GzwemO5zHGwDkHY6zbo9pPPvlkzT//+U+vHTt2eH3yySeG7l7PmZxdc+BUXp7xCAx8CgbDBwgMfIoSA0II6SG59WZx20TAVoOQW28Wd+e6dXV1Lh4eHs2CIFhPnjzpqtFohgCA1WqF7YmB9PR0b5VKZTcB8fX1bR4yZIj10KFDQwAgMzPTq+3+I0eODK2srHRpaGhg+/btu+fBBx9smDJlSv2XX37pVVFR4QIAlZWVLrcT+3PPPVedlpbmBwBxcXGXb+cavaXfjhwALVMJFy58huDgP+DChc/g6XkfJQiEENID/hgaUNlx2yM+Hqbu1h2o1Wrj+vXrfSUSiTwsLOyyUqm8BABubm5WnU7nplAo/AVBaN65c+eZzq6RlpZmeO6550aKxWLruHHjTIIgXJsmiIuLa5g1a1aIwWBwVavVNQ888IAZAFasWFF+//33R4hEIh4ZGWnesWOHISsrS/zkk0+Oqq+vdzl06NA977777rCff/5Z19l9hw8f3hQWFnZ52rRpd9wjcv02ObDVGNimEjw972v3MyGEkL7Pzc2NHz58uMTevr/97W9lAMpudo3Y2FhLcXGxHgBeffVVf1uCAQA+Pj5NGRkZ1xUcLlu2rGbZsmXtHll88MEHzZWVlfldjd1kMokMBsPgxYsXX7z50X1Lv51WMNXnt0sEbDUIpvou/7kSQgjpB7Zu3eoREREhDw8PVxw9etT93XffLe/pe+7evVuQSCSKJUuW/Ort7X3LBY29jfXQk4QOFRcXx3Nycno7DEIIuaMwxnI553G3e75GozEolcoeW4vG0RITE0ccP3683VMLS5curVy+fHmPLVqUnZ3tNn/+/JC22wYNGmTNz88v7Kl7OpJGo/FRKpXBHbf322kFQgghd5fMzMxbXo+gu1QqlaWwsFDv7Pv2tH47rQAApqxz1y2VfPl0HUxZ53opIkIIIaTv67fJwQe/VOK4z4B2vRS+1ZVjbVYJBgY5ZF0OQgghpF/qt8nB6KFi/KG2GoUzgnHxswIc+LoEz1+owH1jg6htMyGEEHID/TY5GO8pYL0iGH+orcY/4+/BcqsJf2PumKgIuPnJhBBCyF2s3yYHQEuCMM/NHR+6XMFTLm6I+rGa2jUTQkgPWH2gyO+bgsp2c7bfFFQKqw8U+fVWTDcza9askbm5ua6d7U9NTfU2GAx3TkMEB+rXycG3unJk1NThxaEe2OzadG2KgRIEQghxrNEj7jG/sjUv1JYgfFNQKbyyNS909Ih7zL0dW2e2bNnyS2xsbKfLGm/cuNGntLSUkoP+5EitCS/8+is+DPTHq7Eh16YYCmcEo/G8Q7qIEkIIaTVJ5mda++ToM69szQt98yvdsFe25oWufXL0mUkyv27/gztp0qQwhUIhGzVqlGL16tU+ACAWi8csWbIkSC6Xy+Lj4yVlZWV2H80/ceKEa1RUlMz2c1FR0SCJRCIHAJVKJT18+LC4qakJarU6ODw8XCGRSORvvvnmvRs2bPDUarXi+fPnh0ZERMgbGhrYypUrAyIjI2Xh4eGKOXPmjLRarXbjNRgMAyMiIuS2Xy4uLrHFxcWDuvs+OFO/TQ7y6s34x+jQazUGthoEvbsIwoPDezk6QgjpfybJ/EzqmKCqDf9rCFDHBFU5IjEAgE2bNhl0Ol1BXl6ePi0tza+iosLFYrGIYmJizHq9vmDcuHGm5OTkYfbOjYmJudzY2Mj0ev0gAMjIyPBKSEiobXvMsWPHxOXl5QNLSkp0xcXF+hdeeKHm6aefro2MjDRnZGScKSws1Lu7u/NVq1b9qtVqC0pKSnQWi0W0efNmD3v3DA4ObiwsLNQXFhbqFyxYUPXoo4/WSiSSq454L5yl3yYH07AbcmjbbZNDi2nY3UsREUJI//ZNQaWw48R536fHBZfvOHHet2MNwu1KSUnxk0ql8tjYWFlFRcVAnU7nKhKJkJSUdBEAFi1aVJOdne3e2fkJCQkXN27c6AUAu3bt8kxMTGzX6yAiIuLKuXPnBi9YsGD49u3bh3p6etpd7nj//v1CdHR0hEQikR89elTQarVuN4r74MGDQzIyMnw///xzw62+5t7Wb5MDYWg0tNoXcbH2GIB/N2IShkb3cmSEENL/2GoM1j45+swb0xRltimG7iYIe/bsEbKysoScnJzCoqIivUwms1gslus+uxhjnV4jMTGxdvfu3Z75+fmDGWOIioq60na/r69vs1ar1U+YMMH04Ycf3jt79uzgjtcwm81sxYoVI3fu3Hm6uLhYP2/evOrLly93+hn6yy+/DHz22WeDt2zZctrDw8P+/EMf1m+TA1ujJa32RZw+81fqyEgIIT0or7RO3LbGwFaDkFdaJ+7Odevq6lw8PDyaBUGwnjx50lWj0QwBAKvVig0bNngCQHp6urdKpep0CkOhUFwRiUR4/fXXh02fPv26Donl5eUDmpubsXDhwrp33nnnwqlTp8QA4O7u3mw0Gl0AwGw2iwDA39+/yWg0ir766ivPzu535coVNmPGjNC33377QnR09JXOjuvL+nVvBS/PeAQGPgWD4QMEB/+BEgNCCOkhKx+VVnbcNknmZ+pu3YFarTauX7/eVyKRyMPCwi7b2i27ublZdTqdm0Kh8BcEoXnnzp1nbnSdGTNmXHz77beDUlJSLnTcZzAYBi5evDjYarUyAHjrrbfOA8D8+fOrly1bNnLVqlXWnJycgrlz51bJ5XJFUFDQ1bZtnzv65ptvhmi12iHvvPPOsHfeeWcYAPzrX/8qCQ4ObuzOe+FM/boro20qITDwKVy48BmNHBBC7ir9uSujWCweYzabT/Z2HHe6zroy9ttpBVtiEBmZirDQl69NMdhqEAghhBBiX7+dVjDV57cbKbDVIJjq82n0gBBC7nD2Rg0SExNHHD9+vN1TC0uXLq1cvnx5TU/F0Rv3dIZ+mxyMHPlsu5+PHDmCwMBAhIT8OzE4e/YsLly4gPHjxzs7PEIIIQ6WmZlZejfc0xn67bRCR4GBgdi2bRvOnj0LoCUx2LZtGwIDA3s5MkIIIaRv6bHkgDH2CWPsV8aY1s6+lYwxzhjz6an7dxQSEoKZM2di27Zt+Pbbb7Ft2zbMnDkTISEhzgqBEEIIuSP05MhBOoApHTcyxoYDmAzA6UMxISEhiIuLw+HDhxEXF0eJASGEEGJHjyUHnPPDAK5bbALAXwH8HwBOf4by7NmzyMnJwQMPPICcnJxrUwyEEEII+Ten1hwwxn4P4ALnXNOFY59hjOUwxnKqqqq6fW9bjcHMmTMxceLEa1MMlCAQQogDHHrbD0X72y+VXLRfwKG3/XopopuaNWvWyNzcXNfO9qempnobDAZq2dyTGGNiAH8C8HpXjuecr+ecx3HO43x9fbt9/wsXLrSrMbDVIFy4cN1iWYQQQm5VUJwZu54LvZYgFO0XsOu5UATFmXs5sk5t2bLll9jY2Mud7d+4caNPaWkpJQc9LAxACAANY8wAIAjACcaYvzNuPn78+OtqDEJCQugxRkIIcQTpYyZM/58z2PVcKPYnD8Ou50Ix/X/OQPpYt9s2T5o0KUyhUMhGjRqlWL16tQ/QskLikiVLguRyuSw+Pl5SVlZm99H8EydOuEZFRclsPxcVFQ2SSCRyAFCpVNLDhw+Lm5qaoFarg8PDwxUSiUT+5ptv3rthwwZPrVYrnj9/fmhERIS8oaGBrVy5MiAyMlIWHh6umDNnzkir1X4/JZ1ON1gul1+756lTpwYrFAqZ3YP7KKclB5zzU5zzeznnwZzzYADnAcRwziucFQMhhJAeJH3MBOWcKvz0UQCUc6ockRgAwKZNmww6na4gLy9Pn5aW5ldRUeFisVhEMTExZr1eXzBu3DhTcnLyMHvnxsTEXG5sbGR6vX4QAGRkZHglJCTUtj3m2LFj4vLy8oElJSW64uJi/QsvvFDz9NNP10ZGRpozMjLOFBYW6t3d3fmqVat+1Wq1BSUlJTqLxSLavHmzh717KhSKK4IgNB89etQNANLS0nyeeuqpO2pRpJ58lPFzAMcASBlj5xlji3vqXoQQQvqAov0CNJ/7YuzScmg+972uBuE2paSk+EmlUnlsbKysoqJioE6ncxWJREhKSroIAIsWLarJzs527+z8hISEixs3bvQCgF27dnkmJia2K5aPiIi4cu7cucELFiwYvn379qGenp7N9q6zf/9+ITo6OkIikciPHj0qaLVat87uuXDhwup//OMfPk1NTfjiiy88Fy9eTMkBAHDO53DOAzjnAznnQZzzjzvsD+ac98mGHoQQQm6RrcZg+v+cwWPvlV2bYuhmgrBnzx4hKytLyMnJKSwqKtLLZDKLxWK57rOLMdbpNRITE2t3797tmZ+fP5gxhqioqHZtlH19fZu1Wq1+woQJpg8//PDe2bNnB3e8htlsZitWrBi5c+fO08XFxfp58+ZVX758udPP0AULFtR+9913Hps3b74nKirK7O/vbzfh6Kv65QqJ2V9sR6k2v922Um0+sr/Y3ksREUJIP3c+R9yuxsBWg3A+R9ydy9bV1bl4eHg0C4JgPXnypKtGoxkCAFarFRs2bPAEgPT0dG+VStXpFIZCobgiEonw+uuvD5s+ffp1j9iXl5cPaG5uxsKFC+veeeedC6dOnRIDgLu7e7PRaHQBALPZLAIAf3//JqPRKPrqq688bxS3WCzmDz74oPGVV14ZsXDhwjvui3C/TA78wyTYs+69awlCqTYfe9a9B/8wSS9HRggh/dTD/1V5XY2B9DETHv6vyu5cVq1WG5uamphEIpG/+uqrw5RK5SUAcHNzs+p0OjeFQiE7fPiw8Je//KX8RteZMWPGxS+++MIrMTGxtuM+g8EwcPz48dKIiAj5okWLQt56663zADB//vzqZcuWjYyIiJC7urpa586dWyWXyxWPPfbYKFscNzJ//vyLrfeuv71X33sY505fi+iWxcXF8ZycnFs6x5YQKB/5LTQH9+F3LyVjRGR0D0VICCF9D2Msl3Med7vnazQag1Kp7JPfesVi8Rh7nRn7ktdff93PaDS6/O1vfyvr7Vg6o9FofJRKZXDH7f22K+OIyGgoH/ktftyxGfepZ1NiQAghxGkmT54c9ssvvwzOysoq7u1Ybke/TQ5KtfnQHNyH+9SzoTm4D8Pl0ZQgEEJIP2Fv1CAxMXHE8ePH2z21sHTp0srly5f32JMCnd3z66+/Pt1T93SGfpkc2KYUbFMJw+XR7X4mhBDS/2RmZjq9oV9v3NMZ+mVBYsXp4naJwIjIaPzupWRUnL4jR3cIIYQQp+qXIweqx5+4btuISJpWIIQQQrqiX44cEEIIIeT23TXJwZEjR65rz3z27FkcOXKklyIihBBC+qa7JjkIDAzEtm3briUIZ8+exbZt2xAYGNjLkRFCyJ0v9USq3/fnvm+3VPL3574XUk+k+vVWTDcza9askbm5ua6d7U9NTfU2GAy31bL5pZdeGrZ7926H9JboDXdNchASEoKZM2di27Zt+Pbbb7Ft2zbMnDnzujbOhBBCbl20b7T5T0f+FGpLEL4/973wpyN/Co32jTb3dmyd2bJlyy+xsbGXO9u/ceNGn9LS0ttKDtatW1eWkJDgkK6UveGuSQ6AlgQhLi4Ohw8fRlxcHCUGhBDiIA8Nf8j07vh3z/zpyJ9C38t+b9ifjvwp9N3x7555aPhD3f6AnDRpUphCoZCNGjVKsXr1ah+gZYXEJUuWBMnlcll8fLykrKzMboH9iRMnXKOiomS2n4uKigZJJBI5AKhUKunhw4fFTU1NUKvVweHh4QqJRCJ/8803792wYYOnVqsVz58/PzQiIkLe0NDAVq5cGRAZGSkLDw9XzJkzZ6TVau00ZrVaHWzr/XAnuquSg7NnzyInJwcPPPAAcnJyrqtBIIQQcvseGv6QaVrYtKpNBZsCpoVNq3JEYgAAmzZtMuh0uoK8vDx9WlqaX0VFhYvFYhHFxMSY9Xp9wbhx40zJycnD7J0bExNzubGxken1+kEAkJGR4ZWQkNCuv8KxY8fE5eXlA0tKSnTFxcX6F154oebpp5+ujYyMNGdkZJwpLCzUu7u781WrVv2q1WoLSkpKdBaLRbR582YPR7y+vuiuSQ5sNQYzZ87ExIkTr00xz9hyeAAAIABJREFUUIJACCGO8f2574WvTn/lO1c2t/yr01/5dqxBuF0pKSl+UqlUHhsbK6uoqBio0+lcRSIRkpKSLgLAokWLarKzs907Oz8hIeHixo0bvQBg165dnomJie06M0ZERFw5d+7c4AULFgzfvn37UE9PT7vtlffv3y9ER0dHSCQS+dGjRwWtVuvmiNfXF901ycGFCxfa1RjYahAuXLjQy5ERQsidz1Zj8O74d88kq5LLbFMM3U0Q9uzZI2RlZQk5OTmFRUVFeplMZrFYLNd9djHGOr1GYmJi7e7duz3z8/MHM8YQFRV1pe1+X1/fZq1Wq58wYYLpww8/vHf27NnBHa9hNpvZihUrRu7cufN0cXGxft68edWXL1/ut5+h/faFdTR+/PjragxCQkIwfvz4XoqIEEL6j/yqfHHbGgNbDUJ+Vb64O9etq6tz8fDwaBYEwXry5ElXjUYzBACsVitsc/rp6eneKpWq0ykMhUJxRSQS4fXXXx82ffr0ix33l5eXD2hubsbChQvr3nnnnQunTp0SA4C7u3uz0Wh0AQCz2SwCAH9//yaj0Sj66quv7th6gq7olyskEkIIca4XY16s7LjtoeEPmbpbd6BWq43r16/3lUgk8rCwsMtKpfISALi5uVl1Op2bQqHwFwSheefOnWdudJ0ZM2ZcfPvtt4NSUlKuGy42GAwDFy9eHGy1WhkAvPXWW+cBYP78+dXLli0buWrVKmtOTk7B3Llzq+RyuSIoKOiqLY4bYYzx23vVvY9x3vdjj4uL4zk5OV0+PvuL7fAPk7RbLrlUm4+K08V2l1YmhJD+iDGWyzmPu93zNRqNQalUVjsyJkcRi8Vj7HVm7CsmTpw46uWXX66cNm1an36cUaPR+CiVyuCO2/vltIJ/mAR71r2HUm0+gH93afQPk/RyZIQQQvq7mTNnBlssFtEjjzzS0Nux3K5+Oa1g68K4Z917UD7yW2gO7qN2zYQQ0o/YGzVITEwccfz48XZPLSxdurRy+fLlNT0VR2/c0xn6ZXIAtCQIykd+ix93bMZ96tmUGBBCSD+XmZlZejfc0xn65bQC0DKVoDm4D/epZ0NzcN+1KQZCCCGE3Fi/TA5sNQa/eykZ456cd22KgRIEQggh5OZ6LDlgjH3CGPuVMaZts+19xlghYyyfMbaLMXZPT9y74nRxuxoDWw1CxeninrgdIYQQ0q/05MhBOoApHbZ9DSCScx4NoBjAH3vixqrHn7iuxmBEZDQ9xkgIIYR0QY8lB5zzwwAudth2kHPe1PrjjwCCeur+hBBCnOfXdev8TN99126pZNN33wm/rlvn11sx3cysWbNG5ubmuna2PzU11dtgMNxWy2Zbx8fbj6539WbNwSIA+zvbyRh7hjGWwxjLqaqqcmJYhBBCbpWbUmku+8/kUFuCYPruO6HsP5ND3ZRKc2/H1pktW7b8Ehsbe7mz/Rs3bvQpLS29reTgTtcryQFj7E8AmgBs6uwYzvl6znkc5zzO19fXecERQgi5ZcKECaZhKe+dKfvP5NCK//t/h5X9Z3LosJT3zggTJnR7hcBJkyaFKRQK2ahRoxSrV6/2AVpWSFyyZEmQXC6XxcfHS8rKyuw+mn/ixAnXqKgome3noqKiQRKJRA78+9t9U1MT1Gp1cHh4uEIikcjffPPNezds2OCp1WrF8+fPD42IiJA3NDSwlStXBkRGRsrCw8MVc+bMGWm1Wm8Y9+eff+4ZFRUlCw4OjvzXv/7VadfIvsjpyQFjbAGA3wGYy++EtZsJIYR0iTBhgskj4fGq2ozMAI+Ex6sckRgAwKZNmww6na4gLy9Pn5aW5ldRUeFisVhEMTExZr1eXzBu3DhTcnLyMHvnxsTEXG5sbGR6vX4QAGRkZHglJCTUtj3m2LFj4vLy8oElJSW64uJi/QsvvFDz9NNP10ZGRpozMjLOFBYW6t3d3fmqVat+1Wq1BSUlJTqLxSLavHmzx43ibmpqYqdOnSpISUk599Zbb9mNr69yanLAGJsC4D8B/J5z3meHmgghhNw603ffCcbdX/h6zk8sN+7+wrdjDcLtSklJ8ZNKpfLY2FhZRUXFQJ1O5yoSiZCUlHQRABYtWlSTnZ3d6TfzhISEixs3bvQCgF27dnkmJia2q4eLiIi4cu7cucELFiwYvn379qGenp7N9q6zf/9+ITo6OkIikciPHj0qaLVatxvFPXPmzFoA+I//+I9L58+fH3Srr7s39dgKiYyxzwE8BMCHMXYewBtoeTphMICvW3tv/8g5f+5m18rNza1mjP3SU7HeAh8AfbIJSQcUp+PcCTECFKej9Zc4RzorEFuNgW0qYUh8vMkRUwt79uwRsrKyhJycnEJBEKwqlUpqsViu+2Lb+pliV2JiYu3MmTNDZ8+eXcsYQ1RU1JW2+319fZu1Wq1+165dQz/88MN7t2zZ4rVt2zZD22PMZjNbsWLFyJ9++kk/atSoxldeeWXY5cuXb/gF29XVlQPAgAED0Nzc3HmAfVCPJQec8zl2Nn98m9fqE0UHjLGc7nQ4cxaK03HuhBgBitPRKM5bZ9FoxG0TAVsNgkWjEXcnOairq3Px8PBoFgTBevLkSVeNRjMEAKxWKzZs2OD5zDPP1Kanp3urVKpO76FQKK6IRCK8/vrrw6ZPn36x4/7y8vIBgwcPti5cuLBOIpFcWbRoUQgAuLu7NxuNRhcAMJvNIgDw9/dvMhqNoq+++spz2rRptR2v1V/0294KhBBCnOfel16q7LhNmDDB1N26A7VabVy/fr2vRCKRh4WFXVYqlZcAwM3NzarT6dwUCoW/IAjNO3fuPHOj68yYMePi22+/HZSSknKh4z6DwTBw8eLFwVarlQHAW2+9dR4A5s+fX71s2bKRq1atsubk5BTMnTu3Si6XK4KCgq7a4uivGNUEdl1fytJvhOJ0nDshRoDidDSKs4VGozEolco+Ob0iFovH2OvMSG6NRqPxUSqVwR2398veCj1ofW8H0EUUp+PcCTECFKejUZzkrkYjB4QQQuzqyyMH9iQmJo44fvx4u6cWli5dWrl8+fKa/nRPR+ps5IBqDgghhPQLmZmZpXfDPZ2BphUIIYQQ0g4lBx0wxqYwxooYYz8zxpLt7H+OMXaKMZbHGDvCGJP3xTjbHPcEY4wzxnqluKoL7+dCxlhV6/uZxxhL6otxth7zJGNMzxjTMcY+c3aMrTHc7P38a5v3spgxVtdH4xzBGPuOMXaytYX7b/tonCMZY4daY/yeMeb0ZnGMsU8YY78yxrSd7GeMsdTW15DPGItxdoyk/6HkoA3GmAuAvwN4DIAcwBw7H/6fcc6jOOejAfw/AGudHGZX4wRjTADwIoCfnBvhtft3KU4AWzjno1t//dOpQaJrcTLGwtGyiNc4zrkCwEt9MU7O+cu29xLAfwPY2RfjBPAagK2c8zEAZgP40LlRdjnO1QAyWtvMvwXgL86NEgCQDmDKDfY/BiC89dczAD5yQkykn6PkoD0VgJ8552c451cBbAbweNsDOOf1bX4cAqA3KjpvGmert9GSwHTadayHdTXO3taVOJcA+DvnvBYAOOe/OjlG4NbfzzkAPndKZO11JU4OYGjr7z0AlDkxPpuuxCkHcKj199/Z2d/jOOeHAVy3cE8bj6MlgeGc8x8B3MMYC3BOdKS/ouSgvUAA59r8fL51WzuMsRcYY6fR8sH7opNia+umcTLGxgAYzjnf48zAOujS+wlA3Tocup0xNtw5obXTlTglACSMsf9ljP3Y2ifE2br6foIxNhJACIBvnRBXR12J888A5rUurb4PwDLnhNZOV+LUAFC3/n46AIEx5u2E2G5Fl/9e9KQfvzjtdza/ul0vhbP51cKPX5z2c3YsXTVr1qyRubm5rp3tT01N9TYYDLfVstnW8fH2o+tdlBy0Z2/t6+tGBjjnf+ech6GlidRrPR7V9W4YJ2NMBOCvAFY4LSL7uvJ+fgUguHXY9hsAn/Z4VNfrSpwD0DJs+xBavpH/kzF2Tw/H1VGX/n62mg1gO+fcbgOZHtaVOOcASOecBwH4LYDM1r+3ztSVOFcCeJAxdhLAgwAuoKXdfF9yK38veoxfiIf5ULo+1JYgnM2vFg6l60P9Qjz6bJO9LVu2/BIbG9vpyOrGjRt9SktLbys5uNNRctDeeQBtv7kG4cbDnZsBJPRoRPbdLE4BQCSA7xljBgD3AfiyF4oSb/p+cs5rOOe2Jij/ABDrpNja6sqf+3kAX3DOGznnZwEUoSVZcKZb+fs5G70zpQB0Lc7FALYCAOf8GABXtDQRcqau/P0s45zPaK2N+FPrNqPzQuySW/13q0eERPuYHl4oP3MoXR/6w9biYYfS9aEPL5SfCYn26Xbb5kmTJoUpFArZqFGjFKtXr/YBWlZIXLJkSZBcLpfFx8dLysrK7D6af+LECdeoqCiZ7eeioqJBEolEDvz7231TUxPUanVweHi4QiKRyN988817N2zY4KnVasXz588PjYiIkDc0NLCVK1cGREZGysLDwxVz5swZabVabxp7c3MzZsyYEfziiy8Os3ef7r43PYWSg/aOAwhnjIUwxgah5R/YL9se0FqYZjMVQIkT47O5YZyccyPn3IdzHsw5DwbwI1raZOf0pTgBoMPc6O8BFDgxPpubxglgN4AJAMAY80HLNMMN13LvAV2JE4wxKQBPAMecHJ9NV+IsBfAwADDGZGhJDqqcGmXX/n76tBnR+COAT5wcY1d8CWB+61ML9wEwcs7LeyOQkGgfk/Q+/6r8b88HSO/zr3JEYgAAmzZtMuh0uoK8vDx9WlqaX0VFhYvFYhHFxMSY9Xp9wbhx40zJycnD7J0bExNzubGxken1+kEAkJGR4ZWQkNCuYdKxY8fE5eXlA0tKSnTFxcX6F154oebpp5+ujYyMNGdkZJwpLCzUu7u781WrVv2q1WoLSkpKdBaLRbR582aPG8Xd2NjIEhISQsLDwy+npqaW2buPI96fnkDJQRuc8yYAfwBwAC0fUls55zrG2FuMsd+3HvaH1kfZ8gC8AmBBH42z13Uxzhdb308NWuo3FvbROA8AqGGM6dFSmLaKc+7U/7Fv4c99DoDNvJeWP+1inCsALGn9c/8cwEJnx9vFOB8CUMQYKwbgB+BdZ8YIAIyxz9GS6EkZY+cZY4tZyyPVtnb3+9CSqP6MltG3550do83Z/Gqh6McK3+iJQeVFP1b4dqxBuF0pKSl+UqlUHhsbK6uoqBio0+lcRSIRkpKSLgLAokWLarKzs907Oz8hIeHixo0bvQBg165dnomJie0KPCMiIq6cO3du8IIFC4Zv3759qKenp93puP379wvR0dEREolEfvToUUGr1brdKO7nn39+pFwut6SkpFTcyn36AlohsQPO+T60/M/WdtvrbX6/3OlB2XGzODtsf8gZMXVy75u9n39EyzeyXtWFODlaksFXnBxaO135c+ec/9mZMdnThfdTD2Ccs+PqqAtxbgew3dlxtcU5n3OT/RzAC04Kp1O2GgPbVEJQhJfJEVMLe/bsEbKysoScnJxCQRCsKpVKarFYrvtiy5i90osWiYmJtTNnzgydPXt2LWMMUVFRV9ru9/X1bdZqtfpdu3YN/fDDD+/dsmWL17Zt2wxtjzGbzWzFihUjf/rpJ/2oUaMaX3nllWGXL1++4RfsuLi4hh9++GGo2WyuFIvFvCv36Sto5IAQQki3VZ41itsmArYahMqzxm5V7NfV1bl4eHg0C4JgPXnypKtGoxkCAFarFRs2bPAEgPT0dG+VStVpAqJQKK6IRCK8/vrrw6ZPn37dY6Hl5eUDmpubsXDhwrp33nnnwqlTp8QA4O7u3mw0Gl0AwGw2iwDA39+/yWg0ir766ivPm8X+7LPPVj/yyCPG3/3ud2GNjY2d3qcvopEDQggh3Xbf42GVHbeFRPuYult3oFarjevXr/eVSCTysLCwy0ql8hIAuLm5WXU6nZtCofAXBKF5586dN6wBmjFjxsW33347KCUl5ULHfQaDYeDixYuDrVYrA4C33nrrPADMnz+/etmyZSNXrVplzcnJKZg7d26VXC5XBAUFXbXFcTN//vOfK19++WWXGTNmhLz66qsV9u7TF1FXRkIIIXb15a6MYrF4jNlsPtnbcdzpOuvKSNMKhBBCCGmHphUIIYTcceyNGiQmJo44fvx4u6cWli5dWrl8+fIee7KoN+7pDJQckLsCY8wfwDoAvwFwBYABwEuc8+LejIsQ4jiZmZmld8M9nYGmFUi/x1qecdoF4HvOeRjnXA7gVbQ8t+7oe7k4+pqEEOJslByQu8EEAI2c8/+xbeCc5wE4whh7nzGmZYydYozNAgDG2BbG2G9txzLG0hljasaYS+vxx1sbRT3buv8hxth3jLHPAJxq3babMZbbusDTM22utZgxVswY+54x9g/G2Aet230ZYztar32cMdbrawAQQu5eNK1A7gaRAHLtbJ8BYDQAJVrW9T/OGDuMlp4ZswDsa11W92EAS9HSD8DIOf8NY2wwgP9ljB1svZYKQGRr3wUAWMQ5v8gYc2u97g4AgwH8F4AYACa0dEzUtB7/NwB/5ZwfYYyNQMuqfdfWgyeEEGei5IDczcYD+Ly1c2ElYywLLTUJ+wGktiYAUwAc5pxbGGOPAIhmjD3Rer4HWpovXQWQ3SYxAFqWhZ7e+vvhrcf5A8jinF8EAMbYNrT0aACASQDkbVZ5G8oYEzjnDlmbnhBCbgVNK5C7gQ72uz3aXW+Vc34ZwPcAHkXLCMLmNscv45yPbv0Vwjm3jRxcWxCFMfYQWj7s4znnSgAn0dJYqPP1XVv+X4xvc+1ASgzIneTI5gy/07nZ7XopnM7NFo5sznB4bU93FBUVDQoPD1f0dhx9HSUH5G7wLYDBjLEltg2Msd8AqAUwq7WWwBfAAwCyWw/ZDOBpAPejZYgfrf9dyhgb2HoNCWNsiJ37eQCo5ZybGWMRaGmZjdZrP8gY82SMDQCgbnPOQbQ0AbLFN7pbr5gQJwsIjzDv//uaUFuCcDo3W9j/9zWhAeER5t6Ojdw6Sg5Iv9famGY6gMmMsdOMMR2APwP4DEA+Wub9vwXwfzjnFa2nHURLsvAN5/xq67Z/AtADOMEY0wJIg/2puX8BGMAYywfwNlpaZoNzfgHA/wXwE4BvWq9lbD3nRQBxrYWOegDPXXdVQvqwsFiV6bEXVpzZ//c1od+lrx+2/+9rQh97YcWZsNjOex501aRJk8IUCoVs1KhRitWrV/sALSskLlmyJEgul8vi4+MlZWVlnU6T//DDD2KpVCofPXp0xNq1a++1bW9qasKzzz4bFBkZKZNIJPL333/fx7bvtdde85NIJHKpVCp//vnnAwFgzZo1PpGRkTKpVCp/9NFHw0wmkwgA1Gp18Ny5c0eMHTtWEhQUFLV37173mTNnBoeGhirUanXwjV7bX//6V5/g4OBIlUolnT179sj58+eP6Obb5RCUHJC7Aue8jHP+ZOujjArO+VTOeQnnfBXnPJJzHsU539Lm+EbOuTfn/Ok226yc81dbj43knE/gnBs5599zzn/X5rgrnPPHOOfRnPOZnPOHOOfft+7+jHMuQcu0QxCAnNZzqjnns1rPkXPOKTkgd5ywWJVJ8cDDVSf2fxmgeODhKkckBgCwadMmg06nK8jLy9OnpaX5VVRUuFgsFlFMTIxZr9cXjBs3zpScnDyss/MXL14cvHbt2tK8vLzCttvXrVvn4+Hh0azVags0Gk3Bp59+6ltYWDho69atQ/fu3euZm5tbWFRUpH/jjTcqAGDu3Lm1Wq22oKioSC+VSi2pqanXkgmj0Tjg2LFjxe+99965WbNmha9ataqypKREV1hY6Hb06FG7rZ0NBsPA1atXB/z0008FP/zwQ3FJSYmrI94vR6DkgBDn+jNjLA+AFsBZALt7OR5CHOZ0bragO3zIN+ax35frDh/y7ViDcLtSUlL8pFKpPDY2VlZRUTFQp9O5ikQiJCUlXQSARYsW1WRnZ7vbO7empsbFZDK5TJ06tcF2rG3fN998M3Tr1q3eERER8jFjxshqa2sH6PV616+//nrovHnzqgVBsAKAn59fMwDk5ua6xcbGSiUSiXzHjh3eOp3u2of51KlT60QiEWJiYsze3t6NKpXK4uLiAolEYjl9+vRge7H98MMPQ8aOHWvy8/NrHjx4MJ8+fXqtI94vR6CnFQhxIs75yt6OgZCeYKsxsE0ljIgabXLE1MKePXuErKwsIScnp1AQBKtKpZJaLJbrvti2edKnHc75jfaxNWvWlKrV6vq22/ft2zfU3jnPPPNMyPbt23+Oj4+3pKamemdlZV1LflxdXTkAuLi4YNCgQdc6GopEIjQ1NXVW/Gw3rr6ARg4IIYR0W3lJobhtImCrQSgvKRR357p1dXUuHh4ezYIgWE+ePOmq0WiGAIDVasWGDRs8ASA9Pd1bpbKfgPj4+DS7u7s3HzhwwL31WC/bvsmTJxs/+ugj3ytXrjAAyM/PH1xfXy+aMmVKfWZmpo+tpqCystIFAMxms2jEiBGNV65cYZs3b/ayd79bcf/991/66aefhKqqKpfGxkZ88cUXnt29pqPQyAEhhJBuGz97fmXHbWGxKlN36w7UarVx/fr1vhKJRB4WFnZZqVReAgA3NzerTqdzUygU/oIgNO/cufNMZ9f4+OOPDUlJScFubm7WiRMnXhslePnll6sNBsPgqKgoGeeceXl5Ne7bt+/0E088UX/ixAnx6NGjZQMHDuSTJk0yfvDBBxeSk5PLVCqVLDAw8KpMJjM3NDR0a7n0kJCQxpdffrn8N7/5jezee+9tlEgkFg8Pj+buXNNRWF8e1iCEENJ7NBqNQalUVvd2HPaIxeIx9joz3mmMRqPIw8PD2tjYiEcffXTUwoULq+fPn1/nrPtrNBofpVIZ3HE7TSsQQgghvWTVqlXDIiIi5BKJRDFixIgr8+bNc1picCM0rUAIIeSOY2/UIDExccTx48fbPbWwdOnSyuXLl9d0PNbZoqOjI65evdruC3lGRsbZ9evXn++tmG6EkgNCCCH9QmZmZmlvx9CZ/Pz8wpsf1XfQtAIhhBBC2qHkgBBCCCHtUHJACCGEkHYoOSCEEEJIO5QcEEII6TbjAYOfpaCmXS8FS0GNYDxg8OutmOwpKioaFB4erujtOPo6Sg4IIYR026ARgvni1uJQW4JgKagRLm4tDh00QjD3dmx3iqampt4O4RpKDgghhHSbm8zb5PWk5MzFrcWhdV+dHnZxa3Go15OSM24y7263bZ40aVKYQqGQjRo1SrF69WofoGWFxCVLlgTJ5XJZfHy8pKysrNNH83/44QexVCqVjx49OmLt2rX32rY3NTXh2WefDYqMjJRJJBL5+++/f60F82uvveYnkUjkUqlU/vzzzwcCwJo1a3wiIyNlUqlU/uijj4bZei+o1erguXPnjhg7dqwkKCgoau/eve4zZ84MDg0NVajV6uAbvTaxWDzmpZdeGhYdHR1x6NAhu50lewMlB4QQQhzCTeZtGhJzb1XD/5YFDIm5t8oRiQEAbNq0yaDT6Qry8vL0aWlpfhUVFS4Wi0UUExNj1uv1BePGjTMlJycP6+z8xYsXB69du7Y0Ly+v3VoD69at8/Hw8GjWarUFGo2m4NNPP/UtLCwctHXr1qF79+71zM3NLSwqKtK/8cYbFQAwd+7cWq1WW1BUVKSXSqWW1NTUa8mE0WgccOzYseL33nvv3KxZs8JXrVpVWVJSoissLHQ7evSoW2exWSwWUWRkpCU/P7/w0UcfbXDE++UIlBwQQghxCEtBjXDpxK++7uOGlV868atvxxqE25WSkuInlUrlsbGxsoqKioE6nc5VJBIhKSnpIgAsWrSoJjs72+637pqaGheTyeQyderUBtuxtn3ffPPN0K1bt3pHRETIx4wZI6utrR2g1+tdv/7666Hz5s2rFgTBCgB+fn7NAJCbm+sWGxsrlUgk8h07dnjrdDpX27WmTp1aJxKJEBMTY/b29m5UqVQWFxcXSCQSy+nTpwd39tpcXFywcOHCWke8T45EKyQSQgjpNluNgW0qYfCoe0yOmFrYs2ePkJWVJeTk5BQKgmBVqVRSi8Vy3Rdbxpjd8znnN9rH1qxZU6pWq+vbbt+3b99Qe+c888wzIdu3b/85Pj7ekpqa6p2VlXUt+XF1deVAy4f9oEGDrnU0FIlEaGpqsh8AgEGDBlkHDOh7H8U0ckAIIaTbrpaaxG0TAVsNwtVSk7g7162rq3Px8PBoFgTBevLkSVeNRjMEAKxWKzZs2OAJAOnp6d4qlf3W0D4+Ps3u7u7NBw4ccG891su2b/LkycaPPvrI98qVKwwA8vPzB9fX14umTJlSn5mZ6WOrKaisrHQBALPZLBoxYkTjlStX2ObNm73s3a+/6HvpCiGEkDuOx6PBlR23ucm8Td2tO1Cr1cb169f7SiQSeVhY2GWlUnkJANzc3Kw6nc5NoVD4C4LQvHPnzjOdXePjjz82JCUlBbu5uVknTpx4bZTg5ZdfrjYYDIOjoqJknHPm5eXVuG/fvtNPPPFE/YkTJ8SjR4+WDRw4kE+aNMn4wQcfXEhOTi5TqVSywMDAqzKZzNzQ0ODSndfWlzHO+c2PIoQQctfRaDQGpVJZ3dtx2CMWi8fY68xIbo1Go/FRKpXBHbfTtAIhhBBC2qFpBUIIIXcce6MGiYmJI44fP97uqYWlS5dWLl++vKbjsc4WHR0dcfXq1XZfyDMyMs6qVCpLb8V0I5QcEEII6RcyMzNLezuGzuTn5xfe/Ki+g6YVCCGEENIOJQeEEEIIaYeSA0IIIYS0Q8kBIYSQbjt06JBfUVFRu+WSi4qKhEOHDvWpls2kayg5IIQQ0m1BQUHmXbt2hdoShKKiImHXrl2hQUFBfaplc1FR0aDw8HBFb8dh8+CDD46qrq7uc4sp0dMKhBBCuk3BmDGUAAAgAElEQVQqlZqmT59+ZteuXaFKpbJKo9H4Tp8+/YxUKnVIZ8b+Kisr6+fejsEeGjkghBDiEFKp1KRUKqt++umnAKVSWeWoxGDSpElhCoVCNmrUKMXq1at9gJYVEpcsWRIkl8tl8fHxkrKysk6/7P7www9iqVQqHz16dMTatWvvtW1vamrCs88+GxQZGSmTSCTy999//1oL5tdee81PIpHIpVKp/Pnnnw8EgDVr1vhERkbKpFKp/NFHHw2z9V5Qq9XBc+fOHTF27FhJUFBQ1N69e91nzpwZHBoaqlCr1cE3em2BgYFR5eXlfe6LOiUHhBBCHKKoqEjQaDS+Y8eOLddoNL4daxBu16ZNmww6na4gLy9Pn5aW5ldRUeFisVhEMTExZr1eXzBu3DhTcnLysM7OX7x4cfDatWtL8/Ly2q01sG7dOh8PD49mrVZboNFoCj799FPfwsLCQVu3bh26d+9ez9zc3MKioiL9G2+8UQEAc+fOrdVqtQVFRUV6qVRqSU1NvZZMGI3GAceOHSt+7733zs2aNSt81apVlSUlJbrCwkK3o0ePujnifXAmSg4IIYR0m63GYPr06Wcee+yxMtsUgyMShJSUFD+pVCqPjY2VVVRUDNTpdK4ikQhJSUkXAWDRokU12dnZ7vbOrampcTGZTC5Tp05tsB1r2/fNN98M3bp1q3dERIR8zJgxstra2gF6vd7166+/Hjpv3rxqQRCsAODn59cMALm5uW6xsbFSiUQi37Fjh7dOp3O1XWvq1Kl1IpEIMTExZm9v70aVSmVxcXGBRCKxnD59enB33wNn63NDGYQQQu4858+fF7etMbDVIJw/f17cnemFPXv2CFlZWUJOTk6hIAhWlUoltVgs132xZYzZPZ9zfqN9bM2aNaVqtbq+7fZ9+/YNtXfOM888E7J9+/af4+PjLampqd5ZWVnXEh9XV1cOAC4uLhg0aNC1joYikQhNTU32A+jDaOSAEEJItz388MOVHZMAqVRqevjhh69r5Xwr6urqXDw8PJoFQbCePHnSVaPRDAEAq9WKDRs2eAJAenq6t0qlspuA+Pj4NLu7uzcfOHDAvfVYL9u+yZMnGz/66CPfK1euMADIz88fXF9fL5oyZUp9Zmamj62moLKy0gUAzGazaMSIEY1Xrlxhmzdv9rJ3v/6CRg4IIYT0WWq12rh+/XpfiUQiDwsLu6xUKi8BgJubm1Wn07kpFAp/QRCad+7ceaaza3z88ceGpKSkYDc3N+vEiROvjRK8/PLL1QaDYXBUVJSMc868vLwa9+3bd/qJJ56oP3HihHj06NGygQMH8kmTJhk/+OCDC8nJyWUqlUoWGBh4VSaTmRsaGvrcI4iOwjjnNz+KEELIXUej0RiUSmV1b8dhj1gsHmOvMyO5NRqNxkepVAZ33E7TCoQQQghph6YVCCGE3HHsjRokJiaOOH78eLunFpYuXVq5fPnymo7HOlt0dHTE1atX230hz8jIOKtSqSy9FdONUHJACCGkX8jMzCzt7Rg6k5+fX3jzo/oOmlYghBBCSDuUHBBCCCGkHUoOCCGEENIOJQeEEEK67fTpNX5V1YfaLZVcVX1IOH16jV9vxWRPX2vZ3FdRckAIIaTbhnqMNuv1K0NtCUJV9SFBr18ZOtRjtLm3YyO3jpIDQggh3ebr87BJLl99Rq9fGVpc/PYwvX5lqFy++oyvz8PdbtvcX1s2b9q0ySMiIkIeEREhDw4OjgwMDIzq7nvlKJQcEEIIcQhfn4dNAf4zqs6dTw8I8J9R5YjEAOi/LZvnzp1rLCws1BcWFurlcrn5D3/4Q4Uj3i9HoOSAEEKIQ1RVHxLKK3b6Dg9aWF5esdO3Yw3C7ervLZtfe+01P1dXV+sf//jHqu6/W45BiyARQgjpNluNgW0qwdPrP0yOmFro7y2bv/jiC2H37t1eP/74Y59aJIlGDgghhHRbvTFP3DYRsNUg1BvzxN25bn9u2VxcXDxo+fLlI7dv337a3d29T3VBpJEDQggh3RYWtqKy4zZfn4dN3a076M8tm9PS0ryNRqNLQkLCKADw8/O7mpWV9XN3ruko1LKZEEKIXdSyuf+jls2EEEII6RKaViCEEHLHoZbNPYuSA0IIIf0CtWx2HJpWIIQQQkg7lBwQQgghpB1KDgghhBDSDiUHhBBCCGmHkgNCCCHd9pcz5X4Hq43teikcrDYKfzlT7tdbMdlTVFQ0KDw8XNHbcfR1lBwQQgjpttihYvOygtJQW4JwsNooLCsoDY0dKjb3dmzk1lFyQAghpNse8fEw/bdsxJllBaWh/1VyftiygtLQ/5aNOPOIj0e32zZPmjQpTKFQyEaNGqVYvXq1D9CyQuKSJUuC5HK5LD4+XlJWVtbpo/k//PCDWCqVykePHh2xdu3ae23bm5qa8OyzzwZFRkbKJBKJ/P3337/Wgvm1117zk0gkcqlUKn/++ecDAWDNmjU+kZGRMqlUKn/00UfDbL0X1Gp18Ny5c0eMHTtWEhQUFLV37173mTNnBoeGhirUanVwZ3H99a9/9Vm8ePFw289r1qzxSUpKCurWm+UglBwQQghxiEd8PExP+ntW/eN8dcCT/p5VjkgMAGDTpk0GnU5XkJeXp09LS/OrqKhwsVgsopiYGLNery8YN26cKTk5eVhn5y9evDh47dq1pXl5ee3WGli3bp2Ph4dHs1arLdBoNAWffvqpb2Fh4aCtW7cO3bt3r2dubm5hUVGR/o033qgAgLlz59ZqtdqCoqIivVQqtaSmpl5LJoxG44Bjx44Vv/fee+dmzZoVvmrVqsqSkhJdYWGh29GjR906ieviwYMHPWyNnzZu3OjzzDPP9PqCTQAlB4QQQhzkYLVR2FpR67skyKd8a0Wtb8cahNuVkpLiJ5VK5bGxsbKKioqBOp3OVSQSISkp6SIALFq0qCY7O9vd3rk1NTUuJpPJZerUqQ22Y237vvnmm6Fbt271joiIkI8ZM0ZWW1s7QK/Xu3799ddD582bVy0IghUA/Pz8mgEgNzfXLTY2ViqRSOQ7duzw1ul0rrZrTZ06tU4kEiEmJsbs7e3dqFKpLC4uLpBIJJbTp08Pthfb0KFDrePGjTNt2bLF4+TJk66NjY2sr6yYSCskEkII6TZbjYFtKuF+T8HkiKmFPXv2CFlZWUJOTk6hIAhWlUoltVgs132xZYzZPZ9zfqN9bM2aNaVqtbq+7fZ9+/YNtXfOM888E7J9+/af4+PjLampqd5ZWVnXkh9XV1cOAC4uLhg0aNC1joYikQhNTU32A2i5ZvW7777rL5FILs+bN6/PNLmikQNCCCHdlltvFrdNBGw1CLn1ZnF3rltXV+fi4eHRLAiC9eTJk64ajWYIAFitVmzYsMETANLT071VKpXdBMTHx6fZ3d29+cCBA+6tx3rZ9k2ePNn40Ucf+dqG9fPz8wfX19eLpkyZUp+ZmeljqymorKx0AQCz2SwaMWJE45UrV9jmzZu97N3vVk2cOPFSeXn5oF27dnkvXrz4oiOu6Qg0ckAIIaTb/hgaUNlx2yM+Hqbu1h2o1Wrj+vXrfSUSiTwsLOyyUqm8BABubm5WnU7nplAo/AVBaN65c+eZzq7x8ccfG5KSkoLd3NysEydOvDZK8PLLL1cbDIbBUVFRMs458/Lyaty3b9/pJ554ov7EiRPi0aNHywYOHMgnTZpk/OCDDy4kJyeXqVQqWWBg4FWZTGZuaGhw6c5rs0lISKjNz88X+/r6Njvieo7AOOc3P4oQQshdR6PRGJRKZZ8Z6m5LLBaPsdeZ8U40YcKEUS+99FLl448/7pACzluh0Wh8lEplcMftNK1ACCGE9ILq6mqX4ODgSFdXV2tvJAY3QtMKhBBC7jj2Rg0SExNHHD9+vN1TC0uXLq1cvnx5rz8eGB0dHXH16tV2X8gzMjLOGgwGbW/FdCOUHBBCCOkXMjMzS3s7hs7k5+cX3vyo/8/evYc1deV7A/8lICGRAAFCuMklmoRcIAJKBVEBrSM4ah2m1nqZtx1bq46tlh7Hvjqn9a31VVuwc7RTi+fUsVNQW/UoxeuxvlysjrZSBEpIUBALAyjXEAjXJO8fbRyi0KobB5Tv53n6PM3eyV5r88/+utba6zd8YFoBAAAAbCAcAAAAgA2EAwAAALCBcAAAAAA2EA4AAICxlDM60Velt2xqKXxVeoufckYnGqo+wcNDOAAAAMbG+7sak7+4KrYGhK9Kb/GTv7gqHu/vahzqvsGDQzgAAADGZshFhh0Lxlckf3FV/H+ySnySv7gq3rFgfMUMuYjx5j6bNm0SSSQSpUQiUb7zzjueOp3OISgoSPncc88FSCQS5dy5c4OOHTvGDw8PDw4ICFBlZ2fziIhaW1vZzz77bKBKpZLL5XJFenq6KxGRwWBgJyYmiqVSqWL27Nni0NDQ4Ly8PB4R0eLFi/1VKpV83Lhxytdff/1OGejc3FxeWFhYsEwmU4SEhMibm5vZOp3OISIiQqZQKOQKhUJ+9uzZ0UQ/FouaOHGiLDExURwYGKhatWqV7+7du91CQkLkUqlUUVJS0m+VRiKi4OBghfU/R0fH8BMnTvRbbfJRwz4HAAAwKGbIRYakcL/6v16o9H5xcmDtYASD8+fP8/bv3++en59farFYKCIiQj59+nRDVVWV4+eff14RERFxMzQ0VJ6RkeF+5coV7f79+123bNniHRcXV75hwwbvuLi41kOHDlU2NDTYTZgwQT537tzWlJQUoaurq6msrEzz7bffOkZFRSmt7e3YseMfIpHI1NvbS9HR0bLLly9z1Wp15+LFi8dmZGSUT5s2zdjU1MR2cnIy29vb954/f76Mx+NZiouLOc8//7z4+++/LyUi0mq13MOHD1d4enr2BgQEhHA4nIbi4uLSzZs3e6ampnru3bu3qr/71Wq1GiKi/fv3u6SmpnrNmDGjnenf8GEgHAAAwKD4qvQW/8h31cIXJwfWHvmuWjh5nIeBaUDIyclxSkxMbHF2djYTEc2ePbs5Ozub7+vr2xUZGdlBRCSVSjvi4+Nb2Ww2hYeHG999912fn37rfObMGdedO3d6ERF1dXWxrl+/7nDx4kWnNWvW3CYimjhxYqdUKr0z9fHpp5+67du3z6O3t5dVX18/qrCw0JHFYpGnp2fPtGnTjEREbm5uZiKi1tZW1rJlywI0Gg2XzWbTzZs374wIhISEtAcEBPQQEfn7+3clJCToiYjUanVH31LP/SkuLuZs3LjRLzs7u4zD4QxJASSEAwAAYMy6xsA6lTB5nIdhMKYWBioO6ODgcOcEm80mR0dHCxGRnZ0dmUwmlvW3hw8fvq5Wq7vu55pardbhww8/FOXn55cKhUJTUlJSYGdnJ9tisRCLxbrnR1u2bBF5enr2HDly5IbZbCYulxthPdf3od63f2w2+07/+tPa2spesGDB2N27d98MDAzsGeh7jxrWHAAAAGNXf2jh9Q0C1jUIV39o4TG5bnx8fNvJkyddDQYDu7W1lX3y5ElBXFzcfYWNuLi41tTUVJHZbCYiogsXLnCJiKKjo9sOHjwoICLKz893LCsr4xIRNTc323G5XLObm5upqqrKPicnx4WISK1Wd966dcshNzeX99P32D09PaTX6+28vb177Ozs6KOPPnI3mZhXXF64cGHg4sWLG2bNmtXG+GIMYOQAAAAY+7dfyW7dfWyGXMR4WiEmJsa4aNGixvDwcDkR0dKlS+s9PDzu6ym8bdu2muXLl/sHBwcrLBYLy8/Prys7O/v6unXr6hcsWBAolUoVKpXKKJPJOgQCgSkkJKRLpVIZJRKJ0t/fvysiIqKNiMjR0dGSkZFR/tprr/l3dnayHR0dzXl5eWVr1669nZSUNPbYsWOCmJgYA5fLNTO517KyMofTp08LKioqHNPT0z2IiPbs2VM5derUf/kbH6yBhlcAAGBkKywsrFSr1Q1D3Y/B1tvbS93d3Swej2cpKSnhzJw5U1peXv69deh/JCksLPRQq9WBdx/HyAEAAIwoBoOBPWXKFFlPTw/LYrHQBx98cHMkBoOfg3AAAAAjikAgMFtfORwq69ev98rMzHTre2zevHlN27dvrxuqPvWFaQUAAOjXkzqtAP800LQC3lYAAAAAGwgHAAAAYAPhAAAAAGwgHAAAAIANhAMAAGDu3GYR6U7Z1gzQneLTuc2iIeoRMIBwAAAAzPlNMNLRFeI7AUF3ik9HV4jJb8K/fHc/YA7hAAAAmJMlGGj+xxV0dIWYTr3pQ0dXiGn+xxUkS2BctnnTpk0iiUSilEgkynfeecdTp9M5BAUFKZ977rkAiUSinDt3btCxY8f44eHhwQEBAars7Gwe0Y9FjJ599tlAlUoll8vlivT0dFeiHzdBSkxMFEulUsXs2bPFoaGhwXl5eTwiosWLF/urVCr5uHHjlK+//rqPtQ+5ubm8sLCwYJlMpggJCZE3NzezdTqdQ0REhEyhUMgVCoX87Nmzo4mIjh8/zp84caIsMTFRHBgYqFq1apXv7t273UJCQuRSqVRRUlLC6e8+iYiSkpIC//rXvwqsn3k8XhjTv9/DwCZIAAAwOGQJBlI/X0+Xd3vTUytrByMYnD9/nrd//373/Pz8UovFQhEREfLp06cbqqqqHD///POKiIiIm6GhofKMjAz3K1euaPfv3++6ZcsW77i4uPINGzZ4x8XFtR46dKiyoaHBbsKECfK5c+e2pqSkCF1dXU1lZWWab7/91jEqKkppbW/Hjh3/EIlEpt7eXoqOjpZdvnyZq1arOxcvXjw2IyOjfNq0acampia2k5OT2d7evvf8+fNlPB7PUlxczHn++efF1s2VtFot9/DhwxWenp69AQEBIRwOp6G4uLh08+bNnqmpqZ579+6tYvq3eZQQDgAAYHDoTvGp8ICQnlpZS4UHhCSeZmAaEHJycpwSExNbnJ2dzUREs2fPbs7Ozub7+vp2RUZGdhARSaXSjvj4+FY2m03h4eHGd9991+en3zqfOXPGdefOnV5ERF1dXazr1687XLx40WnNmjW3iYgmTpzYKZVK70x9fPrpp2779u3z6O3tZdXX148qLCx0ZLFY5Onp2TNt2jQjEZGbm5uZiKi1tZW1bNmyAI1Gw2Wz2XTz5s07IwIhISHtAQEBPURE/v7+XQkJCXoiIrVa3ZGbm2u7NmMYQjgAAADmrGsMrFMJ4mmGwZhaGGgXXwcHhzsn2Gw2WWsj2NnZkclkYll/e/jw4etqtbrrfq6p1WodPvzwQ1F+fn6pUCg0JSUlBXZ2drItFguxWKx7frRlyxaRp6dnz5EjR26YzWbicrkR1nMcDqff/rHZ7Dv964+9vb3FWvrZbDZTT0/PgN99lLDmAAAAmKu+wrMJAtY1CNVXeEwuGx8f33by5ElXg8HAbm1tZZ88eVIQFxd3X2EjLi6uNTU1VWQ2/1hJ+cKFC1wioujo6LaDBw8KiIjy8/Mdy8rKuEREzc3Ndlwu1+zm5maqqqqyz8nJcSEiUqvVnbdu3XLIzc3l/fQ9dk9PD+n1ejtvb+8eOzs7+uijj9ytD3UmAgICuvPz83lERBkZGa69vb1DEg4wcgAAAMxN//db9xyTJTCeVoiJiTEuWrSoMTw8XE5EtHTp0noPD4/7egpv27atZvny5f7BwcEKi8XC8vPz68rOzr6+bt26+gULFgRKpVKFSqUyymSyDoFAYAoJCelSqVRGiUSi9Pf374qIiGgjInJ0dLRkZGSUv/baa/6dnZ1sR0dHc15eXtnatWtvJyUljT127JggJibGwOVyzUzulYjo1Vdfrf/1r389LiQkRD516tTWwbjmw0DhJQAA6NeTWnipt7eXuru7WTwez1JSUsKZOXOmtLy8/PuRWLZ5oMJLGDkAAIARxWAwsKdMmSLr6elhWSwW+uCDD26OxGDwcxAOAABgRBEIBGbrK4dDZf369V6ZmZlufY/Nmzevafv27XVD1ae+MK0AAAD9elKnFeCfBppWwNsKAAAAYAPhAAAAAGwgHAAAAIANhAMAAACwgXAAAACM7fxupyinKsemZkBOVQ5/53c7RUPVJ3h4CAcAAMBYqDDUuPHrjWJrQMipyuFv/HqjOFQYavyl38Lwg3AAAACMxY6JNWyJ2VKx8euN4m3fbPPZ+PVG8ZaYLRWxY2IZl23etGmTSCKRKCUSifKdd97x1Ol0DkFBQcrnnnsuQCKRKOfOnRt07Ngxfnh4eHBAQIAqOzubR0TU2trKfvbZZwNVKpVcLpcr0tPTXYl+3AQpMTFRLJVKFbNnzxaHhoYG5+Xl8YiIFi9e7K9SqeTjxo1Tvv766z7WPuTm5vLCwsKCZTKZIiQkRN7c3MzW6XQOERERMoVCIVcoFPKzZ8+OJiI6fvw4f+LEibLExERxYGCgatWqVb67d+92CwkJkUulUkVJSQmnv/skIiopKeGo1epglUolX7t2rQ+Pxwtj+vd7GNgECQAABkXsmFjDnLFz6jNKM7wXyxfXDkYwOH/+PG///v3u+fn5pRaLhSIiIuTTp083VFVVOX7++ecVERERN0NDQ+UZGRnuV65c0e7fv991y5Yt3nFxceUbNmzwjouLaz106FBlQ0OD3YQJE+Rz585tTUlJEbq6uprKyso03377rWNUVJTS2t6OHTv+IRKJTL29vRQdHS27fPkyV61Wdy5evHhsRkZG+bRp04xNTU1sJycns729fe/58+fLeDyepbi4mPP888+LrZsrabVa7uHDhys8PT17AwICQjgcTkNxcXHp5s2bPVNTUz337t1b1d/9rl69esyqVatuv/LKK03vvfeekOnf72Fh5AAAAAZFTlUOP6s8S7hYvrg2qzxLePcahIe6Zk6OU2JiYouzs7PZxcXFPHv27Obs7Gy+r69vV2RkZIednR1JpdKO+Pj4VjabTeHh4cbq6mrOT791/uCDD7yDg4MVMTExsq6uLtb169cdLl686PT88883ERFNnDixUyqV3pn6+PTTT91+GglQXLt2zbGwsNCxqKjI0dPTs2fatGlGIiI3NzfzqFGjqLu7m7Vo0aJAqVSqePbZZ8eWl5c7Wq8TEhLSHhAQ0MPlci3+/v5dCQkJeiIitVrd8cMPPzgMdL8FBQVOv//975uIiF566aVGpn+/h4WRAwAAYMy6xsA6lTDJe5JhMKYWBtrF18HB4c4JNptN1toIdnZ2ZDKZWNbfHj58+Lpare66n2tqtVqHDz/8UJSfn18qFApNSUlJgZ2dnWyLxUIsFuueH23ZskXk6enZc+TIkRtms5m4XG6E9RyHw+m3f2w2+07/hjOMHAAAAGNF9UW8vkHAugahqL6Ix+S68fHxbSdPnnQ1GAzs1tZW9smTJwVxcXH3FTbi4uJaU1NTRWbzj1WPL1y4wCUiio6Objt48KCAiCg/P9+xrKyMS0TU3Nxsx+VyzW5ubqaqqir7nJwcFyIitVrdeevWLYfc3FzeT99j9/T0kF6vt/P29u6xs7Ojjz76yN1kuq9K0j9r/Pjxbfv27RMQEe3du9ftl77/qGDkAAAAGHst/LVbdx+LHRNrYLruICYmxrho0aLG8PBwORHR0qVL6z08PO7rKbxt27aa5cuX+wcHByssFgvLz8+vKzs7+/q6devqFyxYECiVShUqlcook8k6BAKBKSQkpEulUhklEonS39+/KyIioo2IyNHR0ZKRkVH+2muv+Xd2drIdHR3NeXl5ZWvXrr2dlJQ09tixY4KYmBgDl8s1M7lXIqJdu3ZVLV68OGjnzp1eM2fObHFycmKeOB4CCi8BAEC/ntTCS729vdTd3c3i8XiWkpISzsyZM6Xl5eXfD4eyzQaDgT169Ggzm82mPXv2CD7//HO3c+fOlT+q9gYqvISRAwAAGFEMBgN7ypQpsp6eHpbFYqEPPvjg5nAIBkREFy5c4K1Zs8bfYrGQs7Ozad++fZVD0Q+EAwAAGFEEAoHZ+srhUFm/fr1XZmamzZqCefPmNW3fvr1Op9NphqpfVphWAACAfj2p0wrwTwNNK+BtBQAAALCBcAAAAAA2EA4AAADABsIBAAAA2EA4AAAAxm7/+c8iQ3a2TS0FQ3Y2//af/ywaqj497np6eoasbYQDAABgjKtWG2vWvym2BgRDdja/Zv2bYq5abfyl3/6SkVSyOSkpKfCll17ye+qpp6SrVq3yY/q3e1jY5wAAABjjx8UZfLZvq6hZ/6bY5Zl59fpjmUKf7dsq+PdZB2EgI61kMxFReXm544ULF8rs7YfuEY1wAAAAg4IfF2dweWZeffPfPvMW/G5pLdNgQGRbspmI6O6SzUR0T8nmd9991+en3zqfOXPGdefOnV5ERH1LNq9Zs+Y2Uf8lm/ft2+fR29vLqq+vH1VYWOjIYrHo7pLNREStra2sZcuWBWg0Gi6bzaabN2/eGRGwlmwmIrq7ZHNubu7PlrL+zW9+0zyUwYAI4QAAAAaJITubrz+WKRT8bmmt/limcHRUlIFpQBiJJZudnJwYF3BiCmsOAACAMesaA5/t2yq8NmyosU4x3L1I8UGNtJLNwwVGDgAAgLGOwkJe3zUG1jUIHYWFPCajByOtZPNwgdoKAADQrye1tsJwLtn8r4aSzQAAADS8SzYPFwgHAAAwogz3ks1D1ae+MK0AAAD9elKnFeCfULIZAAAA7gvCAQAAANhAOAAAAAAbCAcAAABgA+EAAAAAbCAcAAAAY5cyy0U3ihpstkq+UdTAv5RZLhqqPj2O3nvvPeGHH37oPtT9QDgAAADGREEuxnP7NGJrQLhR1MA/t08jFgW5GH/pt/BPf/zjH+tXr17dONT9QDgAAADGgkI9DNNfUFSc26cRn/+izOfcPo14+guKiqBQD8Zlmzdt2iSSSCRKiUSifOeddzx1Op1DUFCQ8rnnnguQSCTKuXPnBh07dowfHh4eHBAQoMrOzuYREbW2trKfffbZQJVKJZfL5Yr09HRXoh93SIATc6UAACAASURBVExMTBRLpVLF7NmzxaGhocF5eXk8IqLFixf7q1Qq+bhx45Svv/66j7UPubm5vLCwsGCZTKYICQmRNzc3s3U6nUNERIRMoVDIFQqF/OzZs6OJiI4fP86fOHGiLDExURwYGKhatWqV7+7du91CQkLkUqlUUVJSwunvPomIkpOTfd56660hH23BDokAADAogkI9DLJJXvVF/6/aOzTer3YwgsH58+d5+/fvd8/Pzy+1WCwUEREhnz59uqGqqsrx888/r4iIiLgZGhoqz8jIcL9y5Yp2//79rlu2bPGOi4sr37Bhg3dcXFzroUOHKhsaGuwmTJggnzt3bmtKSorQ1dXVVFZWpvn2228do6KilNb2duzY8Q+RSGTq7e2l6Oho2eXLl7lqtbpz8eLFYzMyMsqnTZtmbGpqYjs5OZnt7e17z58/X8bj8SzFxcWc559/XmzdeVGr1XIPHz5c4enp2RsQEBDC4XAaiouLSzdv3uyZmprquXfv3iqmf5tHCeEAAAAGxY2iBr7uUp0wNN6vVnepTugX7GZgGhBycnKcEhMTW5ydnc1ERLNnz27Ozs7m+/r6dkVGRnYQEUml0o74+PhWNptN4eHhxnfffdfnp986nzlzxnXnzp1eRERdXV2s69evO1y8eNFpzZo1t4mIJk6c2CmVSu9MfXz66adu+/bt8+jt7WXV19ePKiwsdGSxWOTp6dkzbdo0IxGRm5ubmYiotbWVtWzZsgCNRsNls9l08+bNOyMCISEh7QEBAT1ERP7+/l0JCQl6IiK1Wt2Rm5vLqIz1vwLCAQAAMGZdY2CdSvALdjMMxtTCQFv8Ozg43DnBZrPJWjjJzs6OTCYTy/rbw4cPX1er1V33c02tVuvw4YcfivLz80uFQqEpKSkpsLOzk22xWIjFYt3zoy1btog8PT17jhw5csNsNhOXy42wnuNwOP32j81m3+nfcIY1BwAAwNitG3pe3yBgXYNw64aex+S68fHxbSdPnnQ1GAzs1tZW9smTJwVxcXH3FTbi4uJaU1NTRWazmYiILly4wCUiio6Objt48KCAiCg/P9+xrKyMS0TU3Nxsx+VyzW5ubqaqqir7nJwcFyIitVrdeevWLYfc3FzeT99j9/T0kF6vt/P29u6xs7Ojjz76yN1kMjG51WEFIwcAAMDYpHljb919LCjUg/G0QkxMjHHRokWN4eHhciKipUuX1nt4eNzXU3jbtm01y5cv9w8ODlZYLBaWn59fV3Z29vV169bVL1iwIFAqlSpUKpVRJpN1CAQCU0hISJdKpTJKJBKlv79/V0RERBsRkaOjoyUjI6P8tdde8+/s7GQ7Ojqa8/LyytauXXs7KSlp7LFjxwQxMTEGLpdrZnKvwwmqMgIAQL+e1KqMvb291N3dzeLxeJaSkhLOzJkzpeXl5d9bh/5HkoGqMmLkAAAARhSDwcCeMmWKrKenh2WxWOiDDz64ORKDwc9BOAAAgBFFIBCYra8cDpX169d7ZWZmuvU9Nm/evKbt27fXDVWf+sK0AgAA9OtJnVaAfxpoWgFvKwAAAIANhAMAAACwgXAAAAAANhAOAAAAwAbCAQAAMPb1wb+JyvO/sakZUJ7/Df/rg38b8gqDRESvvvqqr5eXVyiPxwsb6r48DhAOAACAMW9JsPHUX1LF1oBQnv8N/9RfUsXekmDjL/32X+GZZ55puXz58pC+vvg4wT4HAADA2NiISEPCH96oOPWXVLFy6vT6krxzwoQ/vFExNiKScdnmdevWeR8+fNjN29u7293dvTcsLMx4+vRpV5VKZSwoKBjd1tZmt2fPnhtxcXFGvV7PXrZsmX9RURGPiGjDhg01L7zwQsv06dPb77e9kpISzqJFi4JMJhNrxowZ+j179oiMRmMB0/t4nGDkAAAABsXYiEiDcur0+u9OfemtnDq9fjCCQV5eHi8rK0tQXFysOXHiRHlRUdFo6zmj0cguKCjQ7ty58+by5cuDiIjefPNNb2dnZ1NZWZmmrKxMM3v27Afuw+rVq8esWrXq9vfff1/q4+PTw/QeHkcIBwAAMCjK87/hl+SdE4YnzK0tyTsnvHsNwsPIyclxSkhIaHFycrIIBALz008/3WI9t2jRoiYiooSEhLa2tjZ2Q0ODXV5envPrr79+2/odoVD4wKUSCwoKnH7/+983ERG99NJLjUzv4XGEcAAAAIxZ1xgk/OGNirgXltdYpxiYBoSf28WXxWLd89lisdxzHB4cwgEAADBWe03L67vGwLoGofaalsfkurGxsW1nzpxxMRqNLL1ez/7qq69crecOHDggICI6c+aME5/PN7m7u5tiY2Nbd+zY4Wn9Tn19vd2Dtjl+/Pi2ffv2CYiI9u7d6/ZL338SIRwAAABjMQt/d+vuNQZjIyINMQt/d4vJdadNm2acNWuWXqFQKBMTE8eGhoa2u7i4mIiIBAKBKSwsLHj16tUBaWlplUREW7durW1pabGTSCRKmUymOHnyJJ+IaMWKFX4ikSi0s7OTLRKJQpOTk30GanPXrl1Vu3btEoWEhMhra2tHOTk5PfDUxOMOhZcAAKBfw6Xwkl6vZ7u4uJgNBgM7KipK9vHHH99MTk4ek5KSUjV16tRBf1XSYDCwR48ebWaz2bRnzx7B559/7nbu3LnywW5nOBio8BJeZQQAgGFtyZIlAdeuXeN2dXWxFi5c2BgTE/NI9064cOECb82aNf4Wi4WcnZ1N+/btq3yU7Q1HCAcAADCsZWVl3bj72DfffKNjet3169d7ZWZm2qwpmDdvXtP27dvrdDqdhun1H2eYVgAAgH4Nl2kFeHQGmlbAgkQAAACwgXAAAAAANhAOAAAAwAbCAQAAANhAOAAAAMb0ZypFHaWNNlsld5Q28vVnKkVD1ae+Xn31VV8vL69QHo8XNtR9eRwgHAAAAGMO/nxj0xdlYmtA6Cht5Dd9USZ28Oc/0j0J7tczzzzTcvny5dIH/V1Pz4gsyoh9DgAAgDmu3N3gtkBa0fRFmXh0uGd9+3e3hW4LpBVcuTvjss3r1q3zPnz4sJu3t3e3u7t7b1hYmPH06dOuKpXKWFBQMLqtrc1uz549N+Li4ox6vZ69bNky/6KiIh4R0YYNG2peeOGFlunTp7ffb3tJSUmBAoGgt7i4mBcaGmr8z//8z2qm9/C4QTgAAIBBwZW7G0aHe9a3XajxdprsUzsYwSAvL4+XlZUlKC4u1vT09LDGjx+vCAsLMxIRGY1GdkFBgfbUqVNOy5cvD7p27VrJm2++6e3s7GwqKyvTED1c4SUiovLycscLFy6U2duPzMfkyLxrAAAYdB2ljfz2724LnSb71LZ/d1vIGedqYBoQcnJynBISElqcnJwsRGR5+umnW6znFi1a1ERElJCQ0NbW1sZuaGiwy8vLcz548GCF9TtCofChiib95je/aR6pwYAIaw4AAGAQWNcYuC2QVrjOGVtjnWK4e5Hig/q5XXxZLNY9ny0Wyz3HH4aTk5OZ8UUeYwgHAADAWPcPBl7fNQbWNQjdPxh4TK4bGxvbdubMGRej0cjS6/Xsr776ytV67sCBAwIiojNnzjjx+XyTu7u7KTY2tnXHjh2e1u887LTCSIdwAAAAjLn8KvDW3VMIXLm7weVXgbeYXHfatGnGWbNm6RUKhTIxMXFsaGhou4uLi4mISCAQmMLCwoJXr14dkJaWVklEtHXr1tqWlhY7iUSilMlkipMnT/KJiFasWOEnEolCOzs72SKRKDQ5OdmHSb+edCi8BAAA/RouhZf0ej3bxcXFbDAY2FFRUbKPP/74ZnJy8piUlJSqqVOnDotXJR9XAxVeGrmrLQAA4LGwZMmSgGvXrnG7urpYCxcubIyJiUEgeMQQDgAAYFjLysq6cfexb775Rsf0uuvXr/fKzMx063ts3rx5Tdu3b69jeu3HHaYVAACgX8NlWgEenYGmFbAgEQAAAGwgHAAAAIANhAMAAACwgXAAAAAANhAOAACAsXPnzol0Op3NVsk6nY5/7tw50VD1qa9XX33V18vLK5TH44X90nffe+894Ycffuj+r+jXcIVwAAAAjPn5+RmPHj0qtgYEnU7HP3r0qNjPz29Y7EnwzDPPtFy+fLn0fr77xz/+sX716tWNj7pPwxn2OQAAAMZkMplh/vz5FUePHhWr1er6wsJC4fz58ytkMhnjss3r1q3zPnz4sJu3t3e3u7t7b1hYmPH06dOuKpXKWFBQMLqtrc1uz549N+Li4ox6vZ69bNky/6KiIh4R0YYNG2peeOGFlunTp7ffb3vJyck+Tk5OpnfeeYfR1s+PM4QDAAAYFDKZzKBWq+svX77s/dRTT9UORjDIy8vjZWVlCYqLizU9PT2s8ePHK8LCwoxEREajkV1QUKA9deqU0/Lly4OuXbtW8uabb3o7OzubysrKNEQovPSwMK0AAACDQqfT8QsLC4VPPfVUbWFhofDuNQgPIycnxykhIaHFycnJIhAIzE8//XSL9dyiRYuaiIgSEhLa2tra2A0NDXZ5eXnOr7/++m3rd4RCoYlpH0YihAMAAGDMusZg/vz5FQkJCTXWKQamAeHndvFlsVj3fLZYLPcchweHcAAAAIxVV1fz+q4xsK5BqK6u5jG5bmxsbNuZM2dcjEYjS6/Xs7/66itX67kDBw4IiIjOnDnjxOfzTe7u7qbY2NjWHTt2eFq/g2mFh4NwAAAAjE2fPv3W3WsMZDKZYfr06YwW9U2bNs04a9YsvUKhUCYmJo4NDQ1td3FxMRERCQQCU1hYWPDq1asD0tLSKomItm7dWtvS0mInkUiUMplMcfLkST4R0YoVK/xEIlFoZ2cnWyQShSYnJ/sw6deTDoWXAACgX8Ol8JJer2e7uLiYDQYDOyoqSvbxxx/fTE5OHpOSklI1derUYfGq5ONqoMJLeFsBAACGtSVLlgRcu3aN29XVxVq4cGFjTEwMAsEjhnAAAADDWlZW1o27j33zzTc6ptddv369V2ZmplvfY/PmzWvavn17HdNrP+4wrQAAAP0aLtMK8OgMNK2ABYkAAABgA+EAAAAAbCAcAAAAgA2EAwAAYKy8PFVU33DOZjfE+oZz/PLy1MeuZDMgHAAAwCBwdhlv1Gj+TWwNCPUN5/gazb+JnV3GD4vXDh+kZDPgVUYAABgEQo/pBoUipUKj+Text9dv6mvr/luoUKRUCD2mP3Ylm4ODgxXW/6+srHQ8cuRI2ezZs9uY3sfjBOEAAAAGhdBjusHb6zf1VdX7vMf4vVA7GMFgKEo2a7VaDRHR/v37XVJTU71mzJhx38HiSYFwAAAAg6K+4Ry/tu6/hWP8XqitrftvocAt2sA0IPQt2UxElvsp2Xzw4MEK63cetmRzcXExZ+PGjX7Z2dllHA5nxG0IhDUHAADAmHWNgUKRUiGV/nuNdYrh7kWKD2ooSja3trayFyxYMHb37t03AwMDexhd7DGFcAAAAIy16q/y+q4xsK5BaNVffexKNi9cuDBw8eLFDbNmzRpR6wz6QjgAAADGxo5949bdUwhCj+mGsWPfeKxKNpeVlTmcPn1akJ6e7hEcHKwIDg5W5OXlMQo4jyPUVgAAgH4Nl9oKKNn86KBkMwAAPJZQsvlfD+EAAACGNZRs/tfDtAIAAPRruEwrwKODks0AAABwXxAOAAAAwAbCAQAAANhAOAAAAAAbCAcAAMDY1opa0f806G22Sv6fBj1/a0WtaKj61Nerr77q6+XlFcrj8cKGui+PA4QDAABgLMKZZ3y19AexNSD8T4Oe/2rpD+IIZ96w2JPgmWeeabl8+XLpUPfjcYFwAAAAjM30cDHskvtXvFr6g/jfr1X7vFr6g3iX3L9ipocL47LN69at8w4KClJGR0dL5syZE/TWW2+JIiMjZb///e/HhIWFBUskEmV2djaP6MfdFH/7298GSqVShVQqVezbt8+ViGj69OntAQEBv1hEqbm5me3r6xvS1dXFIiJqamqy+TxSYBMkAAAYFDM9XAwLvAT1/1nd4P2yn0ftYASDvLw8XlZWlqC4uFjT09PDGj9+vCIsLMxIRGQ0GtkFBQXaU6dOOS1fvjzo2rVrJW+++aa3s7OzqaysTEP04IWXBAKBOSoqyvDFF1+4LF26tGXv3r1uiYmJzSOtbDNGDgAAYFD8T4Oe/0Vds/BlP4/aL+qahXevQXgYOTk5TgkJCS1OTk4WgUBgfvrpp1us5xYtWtRERJSQkNDW1tbGbmhosMvLy3N+/fXXb1u/IxQKTQ/a5vLly+v37dvnTkSUnp7usXz58hG3ERTCAQAAMGZdY7BL7l+xWeJXY51iYBoQfm4XXxaLdc9ni8Vyz/EHNXPmzPbq6mrOiRMnnEwmE2vixImdjC74GEI4AAAAxvJbjby+awysaxDyW42Myh3Hxsa2nTlzxsVoNLL0ej37q6++crWeO3DggICI6MyZM058Pt/k7u5uio2Nbd2xY4en9TsPOq1gtXDhwsYXX3xRvGTJkhE3akCEcAAAAIPgf4u9b929xmCmh4vhf4u9bzG57rRp04yzZs3SKxQKZWJi4tjQ0NB2FxcXExGRQCAwhYWFBa9evTogLS2tkoho69attS0tLXYSiUQpk8kUJ0+e5BMRrVixwk8kEoV2dnayRSJRaHJyss/Ptbts2bLG1tZW+2XLljUx6f/jCoWXAACgX8Ol8JJer2e7uLiYDQYDOyoqSvbxxx/fTE5OHpOSklI1derUR/Kq5F//+ldBZmam67Fjx+6pCPkkGajwEt5WAACAYW3JkiUB165d43Z1dbEWLlzYGBMT80j3Tvhf/+t/jcnOznY5fvz4tUfZznCGcAAAAMNaVlbWPf96/+abb3RMr7t+/XqvzMxMt77H5s2b1/Tpp59WEVEV0+s/zjCtAAAA/Rou0wrw6Aw0rYAFiQAAAGAD4QAAAABsIBwAAACADYQDAAAAsIFwAAAAjKWc0Ym+Kr1ls1XyV6W3+ClndKLBbquysnLUrFmzxAOdb2hosNu2bZtwsNsdSRAOAACAsfH+rsbkL66KrQHhq9Jb/OQvrorH+7sO+p4EgYGBPadPn64Y6HxjY6PdJ5984jnQefhlCAcAAMDYDLnIsGPB+IrkL66K/09WiU/yF1fFOxaMr5ghFzEq27xy5UrfvqMAycnJPm+//bZIIpEoiYiuXLniGBISIg8ODlZIpVJFcXEx54033vCrqqriBAcHK1555RU/vV7PjoqKkioUCrlUKlWkp6e7DtTee++9JwwODlYEBwcrfH19Q5566ikpk/4/rhAOAABgUMyQiwxJ4X71f71Q6Z0U7lfPNBgQES1ZsqTpyJEjdzYqyszMFEyaNKnd+nnXrl3CVatW3dJqtZqioqLSoKCg7tTU1OoxY8Z0abVaTVpaWjWPxzOfOHHiukajKc3NzS3bsGGDn9ls7re9P/7xj/VarVZTWFhY6uXl1b1mzRpGtSEeV9ghEQAABsVXpbf4R76rFr44ObD2yHfVwsnjPAxMA8LkyZM7Ghsb7SsrK0fV1tbau7i4mMRicbf1fFRUVHtKSop3dXW1w8KFC5tDQkK67r6G2WxmrV271u/SpUtObDabbt++7VBdXW3v7+/fO1C7y5YtGzN16lTDokWL9Ez6/7jCyAEAADBmXWOwY8H4irfnKGusUwx3L1J8GHPmzGlOT08XZGRkuCUlJdlUSVyxYkVTZmbmdS6Xa05ISJB++eWX97SXlpbm1tjYaF9cXFyq1Wo17u7uPR0dHQM+/3bu3OleXV3tkJKSUsO0748rjBwAAABjV39o4fVdY2Bdg3D1hxYe09GDpUuXNr388suBzc3N9rm5ubrOzk6W9ZxGo3GQy+VdSqXydkVFBefq1avcyMhIY3t7+52Hv16vt/Pw8OjhcDiWrKwsfk1NjcNAbZ0/f563a9cur4sXL2rt7OyYdPuxhnAAAACM/duvZPfMzc+QixhPKxARTZgwobO9vZ0tEom6AwICenQ63Z2H+2effeZ26NAhd3t7e4tQKOzZunVrjUgkMkVERLRJJBJlfHy8ftOmTXUJCQnjVCqVXKlUGoOCgjoHaus//uM/PPV6vd2UKVNkRERqtbr9888/v8n0Hh43KLwEAAD9QuGlJx8KLwEAAMB9wbQCAACMOHV1dXaxsbGyu4/n5OTovLy8TEPRp+EE4QAAAEYcLy8vk1ar1Qx1P4YrTCsAAACADYQDAAAAsIFwAAAAADYQDgAAAMAGwgEAADB3brOIdKdsty7WneLTuc2iwW6qsrJy1KxZs8QDnW9oaLDrW8kRHhzCAQAAMOc3wUhHV4jvBATdKT4dXSEmvwnGwW4qMDCw5/Tp0xUDnW9sbLT75JNPPAe73ZEE4QAAAJiTJRho/scVdHSFmE696UNHV4hp/scVJEtgtH3yypUrffuOAiQnJ/u8/fbbIolEoiQiunLlimNISIg8ODhYIZVKFcXFxZw33njDr6qqihMcHKx45ZVX/PR6PTsqKkqqUCjkUqlUkZ6e7jpQe2vWrPHZvHnznWDx6quv+r777rsjLmggHAAAwOCQJRhI/Xw9Xd7tTern65kGAyKiJUuWNB05csTN+jkzM1MwadKkduvnXbt2CVetWnVLq9VqioqKSoOCgrpTU1Orx4wZ06XVajVpaWnVPB7PfOLEiesajaY0Nze3bMOGDX5ms7nf9latWtVw4MABdyIik8lEx44dE7z00kuNTO/jcYNNkAAAYHDoTvGp8ICQnlpZS4UHhCSeZmAaECZPntzR2NhoX1lZOaq2ttbexcXFJBaLu63no6Ki2lNSUryrq6sdFi5c2BwSEtJ19zXMZjNr7dq1fpcuXXJis9l0+/Zth+rqant/f//eu78rk8m6XV1dey9cuMCtra0dpVQqjSNxx0SEAwAAYM66xsA6lSCeZhisqYU5c+Y0p6enC+rq6kYlJSU19T23YsWKpilTprQfPXrUJSEhQfrRRx9VymQym4CQlpbm1tjYaF9cXFzK4XAsvr6+IR0dHQOOnL/44osN//Vf/+Vx+/btUS+++OKIGzUgQjgAAIDBUH2FZxMErGsQqq/wmIaDpUuXNr388suBzc3N9rm5ubrOzk6W9ZxGo3GQy+VdSqXydkVFBefq1avcyMhIY3t7+52Hv16vt/Pw8OjhcDiWrKwsfk1NjUP/Ld1pr2XLli2+vb29rKSkpAEXPj7JEA4AAIC56f9+655jsgTG0wpERBMmTOhsb29ni0Si7oCAgB6dTnfn4f7ZZ5+5HTp0yN3e3t4iFAp7tm7dWiMSiUwRERFtEolEGR8fr9+0aVNdQkLCOJVKJVcqlcagoKDOn2vP0dHREh0d3erq6mqytx+Zj0mWxWIZ6j4AAMAwVFhYWKlWqxuGuh//aiaTiZRKpeLQoUPl/a1heJIUFhZ6qNXqwLuP420FAACAn+Tn5zsGBASETJkypfVJDwY/Z2SOlwAAwIhWV1dnFxsbK7v7eE5Ojq66urp4KPo0nCAcAADAiOPl5WXSarWaoe7HcIVpBQAAALCBcAAAAAA2EA4AAADABsIBAAAA2EA4AAAAxnZ+t1OUU5XD73sspyqHv/O7naLBbquysnLUrFmzxAOdb2hosOtbyfFBhYWFBT/sb58UCAcAAMBYqDDUuPHrjWJrQMipyuFv/HqjOFQYahzstgIDA3tOnz494LbGjY2Ndp988slDl1kuKCjQPuxvnxQIBwAAwFjsmFjDlpgtFRu/3ije9s02n41fbxRvidlSETsmltH2yStXrvTtOwqQnJzs8/bbb4skEomSiOjKlSuOISEh8uDgYIVUKlUUFxdz3njjDb+qqipOcHCw4pVXXvHT6/XsqKgoqUKhkEulUkV6errrz7XJ4/HCmPT5SYBwAAAAgyJ2TKxhztg59RmlGd5zxs6pZxoMiIiWLFnSdOTIETfr58zMTMGkSZParZ937dolXLVq1S2tVqspKioqDQoK6k5NTa0eM2ZMl1ar1aSlpVXzeDzziRMnrms0mtLc3NyyDRs2+JnNZqZde6JhEyQAABgUOVU5/KzyLOFi+eLarPIs4STvSQamAWHy5MkdjY2N9pWVlaNqa2vtXVxcTGKxuNt6Pioqqj0lJcW7urraYeHChc39bXlsNptZa9eu9bt06ZITm82m27dvO1RXV9v7+/v3MunbkwwjBwAAwJh1jcGWmC0Vb0a+WWOdYrh7keLDmDNnTnN6erogIyPDLSkpqanvuRUrVjRlZmZe53K55oSEBOmXX355T3tpaWlujY2N9sXFxaVarVbj7u7e09HRgeffz8DIAQAAMFZUX8Tru8bAugahqL6Ix3T0YOnSpU0vv/xyYHNzs31ubq6us7OTZT2n0Wgc5HJ5l1KpvF1RUcG5evUqNzIy0tje3n7n4a/X6+08PDx6OByOJSsri19TU+PQf0tghXAAAACMvRb+2q27j8WOiWU8rUBENGHChM729na2SCTqDggI6NHpdHce7p999pnboUOH3O3t7S1CobBn69atNSKRyBQREdEmkUiU8fHx+k2bNtUlJCSMU6lUcqVSaQwKCur8ufZYLNbPnR4RWBaLZaj7AAAAw1BhYWGlWq1uGOp+/CvV1dXZhYeHK2pqakZEZcbCwkIPtVodePdxzLkAAADQj5srTZo0Sf6HP/zhnlGQkQbTCgAAMOLU1dXZxcbGyu4+funSpVIvLy/TUPRpOEE4AACAEcfLy8uk1Wo1Q92P4QrTCgAAAGAD4QAAAABsIBwAAACADYQDAAAAsIFwAAAAjN3+859Fhuxsm62LDdnZ/Nt//rNosNuqrKwcNWvWLPFA5xsaGuz6VnJ8EDqdzsFa8XEkQzgAAADGuGq1sWb9m2JrQDBkZ/Nr1r8p5qrVxsFuKzAwsOf06dMVA51vbGy0++STTzwHu92RBOEAAAAY48fFGXy2b6uoWf+muO7//l+fmvVvin22b6vgx8Ux2j555cqVvn1HD9gH0AAAGaFJREFUAZKTk33efvttkfVf91euXHEMCQmRBwcHK6RSqaK4uJjzxhtv+FVVVXGCg4MVr7zyip9er2dHRUVJFQqFXCqVKtLT011/rk2TyUQLFy4MGDdunHLy5MmStra2EbefMsIBAAAMCn5cnMHlmXn1zX/7zNvlmXn1TIMBEdGSJUuajhw54mb9nJmZKZg0aVK79fOuXbuEq1atuqXVajVFRUWlQUFB3ampqdVjxozp0mq1mrS0tGoej2c+ceLEdY1GU5qbm1u2YcMGP7PZPGCbP/zwg+Nrr712+/r16yUuLi6mv/3tbwKm9/G4wSZIAAAwKAzZ2Xz9sUyh4HdLa/XHMoWjo6IMTAPC5MmTOxobG+0rKytH1dbW2ru4uJjEYnG39XxUVFR7SkqKd3V1tcPChQubQ0JCuu6+htlsZq1du9bv0qVLTmw2m27fvu1QXV1t7+/v39tfm76+vl3R0dEdRERhYWHGyspKDpN7eBxh5AAAABizrjHw2b6twmvDhhrrFMPdixQfxpw5c5rT09MFGRkZbklJSU19z61YsaIpMzPzOpfLNSckJEi//PLLe9pLS0tza2xstC8uLi7VarUad3f3no6OjgGffw4ODncqEtrZ2Vl6e3tH3LQCRg4AAICxjsJCXt81BtY1CB2FhTymowdLly5tevnllwObm5vtc3NzdZ2dnXce1hqNxkEul3cplcrbFRUVnKtXr3IjIyON7e3tdx7+er3ezsPDo4fD4ViysrL4NTU1Dv23BFYIBwAAwJjn2rX3VDLkx8UxnlYgIpowYUJne3s7WyQSdQcEBPTodLo7D/fPPvvM7dChQ+729vYWoVDYs3Xr1hqRSGSKiIhok0gkyvj4eP2mTZvqEhISxqlUKrlSqTQGBQV1Mu3Tk45lsVh++VsAADDiFBYWVqrV6oah7gc8OoWFhR5qtTrw7uNYcwAAAAA2MK0AAAAjTl1dnV1sbKzs7uM5OTk6Ly8v01D0aThBOAAAgBHHy8vLpNVqNUPdj+EK0woAAABgA+EAAAAAbCAcAAAAgA2EAwAAALCBcAAAAIxdyiwX3ShqsNm6+EZRA/9SZrlosNuqrKwcNWvWLPFA5xsaGuz6VnJ8EDqdzsFa8XEkQzgAAADGREEuxnP7NGJrQLhR1MA/t08jFgW5GAe7rcDAwJ7Tp09XDHS+sbHR7pNPPvEc7HZHEoQDAABgLCjUwzD9BUXFuX0a8fkvynzO7dOIp7+gqAgK9WC0ffLKlSt9+44CJCcn+7z99tsi67/ur1y54hgSEiIPDg5WSKVSRXFxMeeNN97wq6qq4gQHByteeeUVP71ez46KipIqFAq5VCpVpKenu95P2z/VbVDk5uby+muHyX0NdwgHAAAwKIJCPQyySV71Rf+v2ls2yaueaTAgIlqyZEnTkSNH3KyfMzMzBZMmTWq3ft61a5dw1apVt7RaraaoqKg0KCioOzU1tXrMmDFdWq1Wk5aWVs3j8cwnTpy4rtFoSnNzc8s2bNjgZzabf7bdwsJCTlJS0rhPPvnkxrRp04z9tcP03oYzbIIEAACD4kZRA193qU4YGu9Xq7tUJ/QLdjMwDQiTJ0/uaGxstK+srBxVW1tr7+LiYhKLxXcezFFRUe0pKSne1dXVDgsXLmwOCQnpuvsaZrOZtXbtWr9Lly45sdlsun37tkN1dbW9v79/b39tNjU12T/zzDPjDh06VD5hwoTO+23nSYKRAwAAYMy6xmD6C4qKKQukNdYphrsXKT6MOXPmNKenpwsyMjLckpKSmvqeW7FiRVNmZuZ1LpdrTkhIkH755Zf3tJeWlubW2NhoX1xcXKrVajXu7u49HR0dAz7/+Hy+ydvbuzsnJ8fpQdp5kmDkAAAAGLt1Q8/ru8bAugbh1g09j+nowdKlS5tefvnlwObmZvvc3FxdZ2cny3rup3UBXUql8nZFRQXn6tWr3MjISGN7e/udh79er7fz8PDo4XA4lqysLH5NTY1D/y39aNSoUZbTp0+Xx8XFSZycnMwrVqxo6q+duXPnMp42Ga4QDgAAgLFJ88beuvtYUKgH42kFIqIJEyZ0tre3s0UiUXdAQECPTqe783D/7LPP3A4dOuRub29vEQqFPVu3bq0RiUSmiIiINolEooyPj9dv2rSpLiEhYZxKpZIrlUpjUFBQ5y+16ezsbD5z5sz12NhYqZOTk7mkpMTx7naY3tdwxrJYLEPdBwAAGIYKCwsr1Wp1w1D3Ax6dwsJCD7VaHXj3caw5AAAAABuYVgAAgBGnrq7OLjY2Vnb38ZycHJ2Xl5dpKPo0nCAcAADAiOPl5WXSarWaoe7HcIVpBQAAALCBcAAAAAA2EA4AAADABsIBAAAA2EA4AAAAxr4++DdRef43NlsKl+d/w//64N9Eg9lOcnKyz1tvvTWo14R7IRwAAABj3pJg46m/pIqtAaE8/xv+qb+kir0lwcah7hs8OIQDAABgbGxEpCHhD29UnPpLqjh73x6fU39JFSf84Y2KsRGRjLdPXr9+vVdgYKAqOjpaeu3aNQ4RUUlJCWfKlCkSpVIpj4iIkBUUFDgSEVVVVdk//fTTY2UymUImkynOnj07mohoxowZY5VKpXzcuHHKlJQUD+u1eTxe2MqVK32VSqU8Ojpamp2dzYuMjJT5+fmFZGRkuAzUJ4PBwE5MTBRLpVLF7NmzxaGhocF5eXk8pvc6XCAcAADAoBgbEWlQTp1e/92pL72VU6fXD0YwOH/+PO/o0aNuxcXFmuPHj18vLCwcTUT00ksvBXz00Uc/lJSUlL7//vvVK1eu9CciWrFihf+UKVMMOp1OU1JSogkPD+8kIsrIyKgsKSkpvXr1qiYtLU1UV1dnR0TU0dHBjouLM5SUlJSOHj3a9Kc//cn3/PnzZYcOHbq+efNm34H69f777wtdXV1NZWVlmk2bNtVoNJrRTO91OMEmSAAAMCjK87/hl+SdE4YnzK0tyTsn9A8Zb2AaELKzs50SExNb+Hy+mYho5syZLZ2dneyCggKnZ599dqz1e93d3SwioosXL/IPHz58g4jI3t6e3N3dTURE27dvF504ccKViKiurm5USUmJo5eXV/uoUaMsv/3tb1uJiJRKZQeHwzFzOBxLZGRkxz/+8Y8BqzdevHjRac2aNbeJiCZOnNgplUqfqOkThAMAAGDMusbAOpXgHzLeMFhTCywWy+az2WwmPp/fe787HB4/fpyfm5vLv3LlipbP55sjIyNlHR0dbCIie3t7C5v94yA6m80mDodjISKys7Mjk8nEGuiaT3rRQkwrAAAAY7XXtLy+QcC6BqH2mpbRPHx8fHzbiRMnXNva2ljNzc3ss2fPuvJ4PLOfn1/33r17BUQ/hoW///3vXCKiyZMnG95//30hEVFvby81NTWxW1pa7FxcXEx8Pt9cUFDgaJ2aYCI6Orrt4MGDAiKi/Px8x7KyMi7Taw4nGDkAAADGYhb+7tbdx8ZGRDKeVoiJiTHOnz+/SaVSKX19fbsiIyPbiIgOHDhQ8fLLLwds377du7e3lzV//vymqKiojt27d//wwgsvBEilUg82m00ffvjhzaSkJP2ePXuEUqlUMXbs2E61Wt3OpE9EROvWratfsGBBoFQqVahUKqNMJusQCARPTMEm1pM+NAIAAA+nsLCwUq1WNwx1P4aj3t5e6u7uZvF4PEtJSQln5syZ0vLy8u8dHR0fq4dqYWGhh1qtDrz7OEYOAAAAHpDBYGBPmTJF1tPTw7JYLPTBBx/cfNyCwc9BOAAAABjAkSNHnDdu3OjX99iYMWO6zp49W/7999+XDlW/HjWEAwAAgAEkJSW1JiUl3ddbEU8SvK0AAAAANhAOAAAAwAbCAQAAANhAOAAAAAAbCAcAAMCY/kylqKO0kd/3WEdpI19/plI0mO0kJyf7vPXWW4N6TbgXwgEAADDm4M83Nn1RJrYGhI7SRn7TF2ViB3/+E1WQqD89PT1D3YVBh3AAAACMceXuBrcF0oqmL8rELVnlPk1flIndFkgruHJ3xmWb169f7xUYGKiKjo6WXrt2jUNEVFJSwpkyZYpEqVTKIyIiZAUFBY5ERFVVVfZPP/30WJlMppDJZIqzZ8+OJiKaMWPGWKVSKR83bpwyJSXFw3ptHo8XtnLlSl+lUimPjo6WZmdn8yIjI2V+fn4hGRkZLgP1aefOne4JCQni+Pj4cVOmTJEyvcfhBuEAAAAGBVfubhgd7lnfdqHGe3S4Z/1gBIPz58/zjh496lZcXKw5fvz4dWvRpJdeeingo48++qGkpKT0/fffr165cqU/EdGKFSv8p0yZYtDpdJqSkhJNeHh4JxFRRkZGZUlJSenVq1c1aWlporq6Ojsioo6ODnZcXJyhpKSkdPTo0aY//elPvufPny87dOjQ9c2bN/v+XN++++47pwMHDty4dOlSGdP7HG6wCRIAAAyKjtJGfvt3t4VOk31q27+7LeSMczUwDQjZ2dlOiYmJLXw+30xENHPmzJbOzk52QUGB07PPPjvW+r3u7m4WEdHFixf5hw8fvkFEZG9vT+7u7iYiou3bt4tOnDjhSkRUV1c3qqSkxNHLy6t91KhRlt/+9retRERKpbKDw+GYORyOJTIysuMf//iHw8/1bcqUKa0ikeiJKbbUF8IBAAAwZl1jYJ1K4IxzNQzW1AKLxbL5bDabic/n92q12vvaufD48eP83Nxc/pUrV7R8Pt8cGRkp6+joYBMR2dvbW9jsHwfR2Ww2cTgcCxGRnZ0dmUwm1s9clng8nvlh7udxgGkFAABgrPsHA69vELCuQej+wcBjct34+Pi2EydOuLa1tbGam5vZZ8+edeXxeGY/P7/uvXv3Coh+DAt///vfuUREkydPNrz//vtCoh8rJzY1NbFbWlrsXFxcTHw+31xQUOBonZqAgSEcAAAAYy6/Crx19wgBV+5ucPlV4C0m142JiTHOnz+/SaVSKX/961+PjYyMbCMiOnDgQMVf//pXD5lMppBIJMojR464EhHt3r37h9zcXL5UKlWoVCrFd999x01KStL39vaypFKpYsOGDT5qtbqdSZ9GApbF8sRUmAQAgEFUWFhYqVarG4a6H/DoFBYWeqjV6sC7j2PkAAAAAGxgQSIAAMAAjhw54rxx40a/vsfGjBnTdfbs2fKh6tO/AsIBAADAAJKSklqTkpLu662IJwmmFQAAAMAGwgEAAADYQDgAAAAAGwgHAAAAYAPhAAAAGDt37pxIp9Px+x7T6XT8c+fOiQazneTkZJ+33nprUK/5MPLy8ngvvPDCmKHux6OCcAAAAIz5+fkZjx49KrYGBJ1Oxz969KjYz8/PONR9exSmTp1q3LdvX9VQ9+NRQTgAAADGZDKZYf78+RVHjx4Vnzp1yufo0aPi+fPnV8hkMsZlm9evX+8VGBioio6Oll67do1DRFRSUsKZMmWKRKlUyiMiImQFBQWORERVVVX2Tz/99FiZTKaQyWSKs2fPjiYimjFjxlilUikfN26cMiUlxcN6bR6PF7Zy5UpfpVIpj46OlmZnZ/MiIyNlfn5+IRkZGS4D9en48eP8/9/e/Yc0tfdxAP/sh3c5O05zw1nTYuam2x7OfRRmmIPM8g8pqFY3CAIDH1KofyqImz7+IxS2Lv1xo5In6vnHopsmhP7TCBHBCMy57Ey9pdfHFBfb9deWM9nOnj96Bk5adDsrl8/79d85Z3z5HPzn7fl8z/mUlZVtF3pviQrhAAAA4kKv1/tYlvU8e/Ysi2VZTzyCQU9Pj7y9vX3T4OCgq6Oj43VkaFJ1dfXW69evT3AcN2Sz2SZra2tziIhqampyLBaLb2RkxMVxnKuwsHCJiKilpWWc47ihgYEBV3Nzc6bb7ZYQEQUCAXFZWZmP47ihlJSUUH19/Zaenp7fHzx48LqxsXGL0Pq/V/gIEgAAxMXIyAjjdDpVxcXF006nU6XVan1CA0JXV9fGysrKOYZheCKiioqKuaWlJbHD4dh45MiR3MjvlpeXRUREvb29TGtr6x9ERFKplDIyMkJERE1NTZmdnZ1pRERutzuJ47gNarX6XVJSUvjw4cMLRERGozEgk8l4mUwWNpvNgampqR+E1P49QzgAAADBInsMIq0ErVbri1drQSQSRR3zPE8MwwSHh4c/68uFHR0dTHd3N9PX1zfMMAxvNpv1gUBATEQklUrDYvGHh+hisZhkMlmYiEgikVAoFBJ9Ytl1DW0FAAAQbHJyUr4yCET2IExOTsqFrLt7925/Z2dnmt/vF83OzortdnuaXC7nNRrN8u3bt9OJPoSFp0+fJhMR7dy502ez2VRERMFgkGZmZsRzc3MShUIRYhiGdzgcGyKtCYgN4QAAAAQrLy9/u/oJgV6v95WXl78Vsm5paeniwYMHZ0wmk3Hfvn25ZrPZT0R07969sTt37ij1er0hLy/P2NbWlkZEdOPGjYnu7m5Gp9MZTCaTob+/P9lqtc4Hg0GRTqczXLhwYTPLsu+E1PT/QBQOh9e6BgAASEBOp3OcZVnvWtcBX4/T6VSyLLtt9Xk8OQAAAIAo2JAIAAAQQ1tbW2pdXZ1m5bns7Oz3drt9dK1q+hYQDgAAAGKwWq0LVqv1s96KWE/QVgAAAIAoCAcAAAAQBeEAAAAAoiAcAACAYKOjv2R6vE+iRjZ7vE+Y0dFf1ny8Mvx1CAcAACBYquLHRZfrnDYSEDzeJ4zLdU6bqvgxriObz5w5s7mhoQGB4yvD2woAACCYSlnuMxiujLlc57RZ6kOeafdDlcFwZUylLBc8mRG+PTw5AACAuFApy31Z6kOeN5P/zspSH/LEKxicP39evW3bNlNJSYnu1atXMiIijuNkFoslz2g0FhQVFekdDscGIqI3b95I9+7dm6vX6w16vd5gt9tTiIj27NmTazQaC7Zv3268cuWKMrK2XC7/e21t7Raj0VhQUlKi6+rqkpvNZr1Go/lbS0uLIlZNR48e3Zqfn2/Iz883pKens2fPns2Kx70mCoQDAACIC4/3CTPtfqjK1lRNT7sfqlbvQfgSPT098vb29k2Dg4Oujo6O15GhSdXV1VuvX78+wXHckM1mm6ytrc0hIqqpqcmxWCy+kZERF8dxrsLCwiUiopaWlnGO44YGBgZczc3NmW63W0JEFAgExGVlZT6O44ZSUlJC9fX1W3p6en5/8ODB68bGxi2x6rp///5/hoeHXY8ePXqdlpYWPHny5J9C7zWRoK0AAACCRfYYRFoJ6ZtKfCuPv3Tdrq6ujZWVlXMMw/BERBUVFXNLS0tih8Ox8ciRI7mR3y0vL4uIiHp7e5nW1tY/iIikUillZGSEiIiampoyOzs704iI3G53EsdxG9Rq9bukpKTw4cOHF4iIjEZjQCaT8TKZLGw2mwNTU1M/fKq2xcVFkdVqzb169eqETqdb/tJ7TEQIBwAAINjC/IB8ZRCI7EFYmB+QC20viESiqGOe54lhmODw8PBnfbmwo6OD6e7uZvr6+oYZhuHNZrM+EAiIiYikUmlYLP7wEF0sFpNMJgsTEUkkEgqFQqJPLEvHjx/fun///tkDBw6su30VaCsAAIBgubln364OASpluS8396ygkc27d+/2d3Z2pvn9ftHs7KzYbrenyeVyXqPRLN++fTud6ENYePr0aTIR0c6dO302m01FRBQMBmlmZkY8NzcnUSgUIYZheIfDsSHSmhDi0qVLKr/fL7l48aJb6FqJCOEAAAASVmlp6eLBgwdnTCaTcd++fblms9lPRHTv3r2xO3fuKPV6vSEvL8/Y1taWRkR048aNie7ubkan0xlMJpOhv78/2Wq1zgeDQZFOpzNcuHBhM8uy74TWde3aNfXIyEhyZFPi5cuXVULXTCSicDi81jUAAEACcjqd4yzLete6Dvh6nE6nkmXZbavP48kBAAAARMGGRAAAgBja2tpS6+rqNCvPZWdnv7fb7aNrVdO3gHAAAAAQg9VqXbBarZ/1VsR6grYCAAAAREE4AAAAgCgIBwAAABAF4QAAAAS7NDad+dg7HzVL4bF3nrk0Nh3X8coY2fxtIBwAAIBgRanyxdNDE9pIQHjsnWdOD01oi1Lli2tdG/x1CAcAACBYhVLh+7UgZ+z00IT2n68mN58emtD+WpAzVqFUCJ47kIgjm4uKivS9vb3JkePCwsL8Z8+eJcf6/fcG4QAAAOKiQqnw/aRO9/xr0pv1kzrdE49gkKgjm6uqqry3bt1SEhG9ePFCtry8LCouLg4Ivd9Ege8cAABAXDz2zjO/uWdV/9Aop39zz6os6YxPaEBI1JHNVVVVszabLev9+/eTN2/eVB47dmxdfWYa4QAAAASL7DGItBIs6YwvXq2FRBzZzDAMb7FYFu7evZv26NGjTc+fP19XH0pCWwEAAAR7vrAoXxkEInsQni8syoWsm6gjm4mIampqvOfPn89mWfZdZmZmKB5rJgqEAwAAEOxnbdbb1U8IKpQK38/arLdC1k3Ukc1ERBaLZTElJSV04sSJddVSIMLIZgAAiAEjmz9tfHw8adeuXfrR0dGXEolkrcv5IhjZDAAAECfXrl3L2LFjR0FDQ8PU9xoMPgUbEgEAAGL41MjmU6dO/blWdX1tCAcAAAAxYGQzAABANJ7n+Ziv88H37X9/W/5j1xAOAAAglpcej0eBgLD+8Dwv8ng8CiJ6+bHraCsAAMBHBYPBarfbfcvtdpsI/0yuNzwRvQwGg9Ufu4hXGQEAACAKkiAAAABEQTgAAACAKAgHAAAAEAXhAAAAAKIgHAAAAECU/wLrB+pSZeMf9QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dat in data:\n", " wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n", " depth = average_depths['5s'][average_depths['band'] == dat[0]]\n", " #print(depth)\n", " coverage = np.sum(~np.isnan(depths['ferr_{}_mean'.format(dat[0])]))/len(depths)\n", " plt.plot(coverage, depth, 'x', label=dat[0])\n", " \n", "plt.xlabel('Coverage')\n", "plt.ylabel('Depth')\n", "#plt.xscale('log')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.title('Depths (5 $\\sigma$) vs coverage on {}'.format(FIELD))" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }