SA13 master catalogue

Preparation of UKIRT Hemisphere Survey (UHS) data

The catalogue comes from dmu0_UHS. This is a J band only survey documented in https://arxiv.org/pdf/1707.09975.pdf

In the catalogue, we keep:

  • The identifier (it's unique in the catalogue);
  • The position;
  • The stellarity;
  • The magnitude for each band in aperture 4 (2 arcsec aperture corrected).
  • The kron magnitude to be used as total magnitude (no “auto” magnitude is provided).

We don't know when the maps have been observed. We will use the year of the reference paper.

In [1]:
from herschelhelp_internal import git_version
print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version()))
This notebook was run with herschelhelp_internal version: 
04829ed (Thu Nov 2 16:57:19 2017 +0000)
In [2]:
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))

from collections import OrderedDict
import os

from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.table import Column, Table
import numpy as np

from herschelhelp_internal.flagging import  gaia_flag_column
from herschelhelp_internal.masterlist import nb_astcor_diag_plot, remove_duplicates
from herschelhelp_internal.utils import astrometric_correction, mag_to_flux
In [3]:
OUT_DIR =  os.environ.get('TMP_DIR', "./data_tmp")
try:
    os.makedirs(OUT_DIR)
except FileExistsError:
    pass

RA_COL = "uhs_ra"
DEC_COL = "uhs_dec"

I - Column selection

In [4]:
imported_columns = OrderedDict({
        'SOURCEID': "uhs_id",
        'RA': "uhs_ra",
        'DEC': "uhs_dec",
        'PSTAR':  "uhs_stellarity",
        'JPETROMAG': "m_wfcam_j", 
        'JPETROMAGERR': "merr_wfcam_j", 
        'JAPERMAG4': "m_ap_wfcam_j", 
        'JAPERMAG4ERR': "merr_ap_wfcam_j", 

    })


catalogue = Table.read("../../dmu0/dmu0_UHS/data/UHS-DR1_SA13.fits")[list(imported_columns)]
for column in imported_columns:
    catalogue[column].name = imported_columns[column]

epoch = 2011

# Clean table metadata
catalogue.meta = None
In [5]:
#Vega to AB
#Vega ZPT (1548.66 Jy) from http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=UKIRT/WFCAM.J

vega_to_ab = {
    "j": -2.5*np.log10(1548.66 / 3631)
}
print(vega_to_ab["j"])
0.925175419285
In [6]:
# Adding flux and band-flag columns
for col in catalogue.colnames:
    if col.startswith('m_'):
        
        errcol = "merr{}".format(col[1:])
        
        # Some object have a magnitude to 0, we suppose this means missing value
        catalogue[col][catalogue[col] <= 0] = np.nan
        catalogue[errcol][catalogue[errcol] <= 0] = np.nan  
        
        # Convert magnitude from Vega to AB
        catalogue[col] += vega_to_ab[col[-1]]

        flux, error = mag_to_flux(np.array(catalogue[col]), np.array(catalogue[errcol]))
        
        # Fluxes are added in µJy
        catalogue.add_column(Column(flux * 1.e6, name="f{}".format(col[1:])))
        catalogue.add_column(Column(error * 1.e6, name="f{}".format(errcol[1:])))
        
        # Band-flag column
        if "ap" not in col:
            catalogue.add_column(Column(np.zeros(len(catalogue), dtype=bool), name="flag{}".format(col[1:])))
        
# TODO: Set to True the flag columns for fluxes that should not be used for SED fitting.
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/astropy/table/column.py:1096: MaskedArrayFutureWarning: setting an item on a masked array which has a shared mask will not copy the mask and also change the original mask array in the future.
Check the NumPy 1.11 release notes for more information.
  ma.MaskedArray.__setitem__(self, index, value)
In [7]:
catalogue[:10].show_in_notebook()
Out[7]:
<Table masked=True length=10>
idxuhs_iduhs_rauhs_decuhs_stellaritym_wfcam_jmerr_wfcam_jm_ap_wfcam_jmerr_ap_wfcam_jf_wfcam_jferr_wfcam_jflag_wfcam_jf_ap_wfcam_jferr_ap_wfcam_j
degdeg
0459663644456198.25541269242.48242237370.0030674919.80650.16417419.78250.14447843.39036.56103False44.36275.9033
1459663644470198.25112008342.48309605690.0030674919.17190.20615119.67320.13080777.843314.7803False49.0585.91038
2459663644475198.2458960142.4805071920.0030674919.15510.17294419.5410.11585179.06112.5934False55.41015.91241
3459663644479198.24193657842.48365173330.0030674919.42740.20166219.86430.15537361.52111.4268False41.14155.8875
4459663644482198.23912891342.47976280270.0030674920.53220.41998820.34440.24004222.24028.60301False26.43885.84526
5459663644485198.23718802942.48130119910.99386518.48190.06662518.49720.0456044146.989.01927False144.9186.08704
6459663644498198.22621360542.50142110020.0030674917.99490.074221618.18540.0350844230.16315.7341False193.1186.24041
7459663644504198.2215268842.50025165410.0030674920.48970.45632320.0770.19018723.12629.71967False33.82285.9247
8459663644510198.21644997442.47900172160.0030674920.12210.32258520.07470.18804732.44729.64045False33.89495.87051
9459663644517198.21247101342.48475203340.0030674919.62510.25898519.64860.12812751.283512.2329False50.18465.92227

II - Removal of duplicated sources

We remove duplicated objects from the input catalogues.

In [8]:
SORT_COLS = ['merr_ap_wfcam_j']
FLAG_NAME = 'uhs_flag_cleaned'

nb_orig_sources = len(catalogue)

catalogue = remove_duplicates(catalogue, RA_COL, DEC_COL, sort_col=SORT_COLS,flag_name=FLAG_NAME)

nb_sources = len(catalogue)

print("The initial catalogue had {} sources.".format(nb_orig_sources))
print("The cleaned catalogue has {} sources ({} removed).".format(nb_sources, nb_orig_sources - nb_sources))
print("The cleaned catalogue has {} sources flagged as having been cleaned".format(np.sum(catalogue[FLAG_NAME])))
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/astropy/table/column.py:1096: MaskedArrayFutureWarning: setting an item on a masked array which has a shared mask will not copy the mask and also change the original mask array in the future.
Check the NumPy 1.11 release notes for more information.
  ma.MaskedArray.__setitem__(self, index, value)
The initial catalogue had 2339 sources.
The cleaned catalogue has 2095 sources (244 removed).
The cleaned catalogue has 233 sources flagged as having been cleaned

III - Astrometry correction

We match the astrometry to the Gaia one. We limit the Gaia catalogue to sources with a g band flux between the 30th and the 70th percentile. Some quick tests show that this give the lower dispersion in the results.

In [9]:
gaia = Table.read("../../dmu0/dmu0_GAIA/data/GAIA_SA13.fits")
gaia_coords = SkyCoord(gaia['ra'], gaia['dec'])
In [10]:
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], 
                    gaia_coords.ra, gaia_coords.dec)
In [11]:
delta_ra, delta_dec =  astrometric_correction(
    SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]),
    gaia_coords
)

print("RA correction: {}".format(delta_ra))
print("Dec correction: {}".format(delta_dec))
RA correction: -0.015172659647078035 arcsec
Dec correction: -0.1216899151941675 arcsec
In [12]:
catalogue[RA_COL] +=  delta_ra.to(u.deg)
catalogue[DEC_COL] += delta_dec.to(u.deg)
In [13]:
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], 
                    gaia_coords.ra, gaia_coords.dec)

IV - Flagging Gaia objects

In [14]:
catalogue.add_column(
    gaia_flag_column(SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), epoch, gaia)
)
In [15]:
GAIA_FLAG_NAME = "uhs_flag_gaia"

catalogue['flag_gaia'].name = GAIA_FLAG_NAME
print("{} sources flagged.".format(np.sum(catalogue[GAIA_FLAG_NAME] > 0)))
649 sources flagged.

V - Saving to disk

In [16]:
catalogue.write("{}/UHS.fits".format(OUT_DIR), overwrite=True)