Lockman SWIRE master catalogue

Checks and diagnostics

In [1]:
from herschelhelp_internal import git_version
print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version()))
This notebook was run with herschelhelp_internal version: 
44f1ae0 (Thu Nov 30 18:27:54 2017 +0000)
In [2]:
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))
plt.style.use('ggplot')

import locale
locale.setlocale(locale.LC_ALL, 'en_GB')

import os
import time
import itertools

from astropy.coordinates import SkyCoord
from astropy.table import Table
from astropy import units as u
from astropy import visualization as vis
import numpy as np
from matplotlib_venn import venn3

from herschelhelp_internal.masterlist import (nb_compare_mags, nb_ccplots, nb_histograms, find_last_ml_suffix,
                                              quick_checks)
In [3]:
OUT_DIR = os.environ.get('OUT_DIR', "./data")
SUFFIX = find_last_ml_suffix()
#SUFFIX = "20170710"

master_catalogue_filename = "master_catalogue_lockman-swire_{}.fits".format(SUFFIX)
master_catalogue = Table.read("{}/{}".format(OUT_DIR, master_catalogue_filename))

print("Diagnostics done using: {}".format(master_catalogue_filename))
Diagnostics done using: master_catalogue_lockman-swire_20171201.fits

0 - Quick checks

In [4]:
quick_checks(master_catalogue).show_in_notebook()
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/numpy/core/numeric.py:301: FutureWarning: in the future, full(168, False) will return an array of dtype('bool')
  format(shape, fill_value, array(fill_value).dtype), FutureWarning)
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/numpy/core/numeric.py:301: FutureWarning: in the future, full(168, 0) will return an array of dtype('int64')
  format(shape, fill_value, array(fill_value).dtype), FutureWarning)
Table shows only problematic columns.
Out[4]:
<Table length=32>
idxColumnAll nan#Measurements#Zeros#NegativeMinimum value
0ferr_ap_gpc1_g0.0408845.0123.00.00.0
1m_ap_gpc1_g0.0408845.00.02.0-0.24098700285
2merr_ap_gpc1_g0.0408845.0123.00.00.0
3ferr_gpc1_g0.0410931.0262.00.00.0
4m_gpc1_g0.0410931.00.03.0-0.934671998024
5merr_gpc1_g0.0410931.0262.00.00.0
6ferr_ap_gpc1_r0.0426799.049.00.00.0
7merr_ap_gpc1_r0.0426799.049.00.00.0
8ferr_gpc1_r0.0426481.044.00.00.0
9merr_gpc1_r0.0426481.044.00.00.0
10ferr_ap_gpc1_i0.0427724.073.00.00.0
11merr_ap_gpc1_i0.0427724.073.00.00.0
12ferr_gpc1_i0.0428089.045.00.00.0
13merr_gpc1_i0.0428089.045.00.00.0
14ferr_ap_gpc1_z0.0422818.0110.00.00.0
15merr_ap_gpc1_z0.0422818.0110.00.00.0
16ferr_gpc1_z0.0421464.083.00.00.0
17merr_gpc1_z0.0421464.083.00.00.0
18ferr_ap_gpc1_y0.0414590.0626.00.00.0
19m_ap_gpc1_y0.0414590.00.01.0-0.782118022442
20merr_ap_gpc1_y0.0414590.0626.00.00.0
21ferr_gpc1_y0.0411800.0234.00.00.0
22m_gpc1_y0.0411800.00.01.0-0.674474000931
23merr_gpc1_y0.0411800.0234.00.00.0
24f_ap_irac_i10.01020884.00.01885.0-9.76021327491
25merr_ap_irac_i10.01020884.00.01885.0-7642.05535678
26f_irac_i10.01020718.00.04025.0-564.7663247
27merr_irac_i10.01020718.00.04025.0-4156.57718906
28f_ap_irac_i20.0976928.00.011553.0-13.0778589205
29merr_ap_irac_i20.0976928.00.011553.0-11894.8261316
30f_irac_i20.0976872.00.05433.0-48.7146286758
31merr_irac_i20.0976872.00.05433.0-4842.10404629

I - Summary of wavelength domains

In [5]:
flag_obs = master_catalogue['flag_optnir_obs']
flag_det = master_catalogue['flag_optnir_det']
In [6]:
venn3(
    [
        np.sum(flag_obs == 4),
        np.sum(flag_obs == 2),
        np.sum(flag_obs == 6),
        np.sum(flag_obs == 1),
        np.sum(flag_obs == 5),
        np.sum(flag_obs == 3),
        np.sum(flag_obs == 7)
    ],
    set_labels=('mid-IR', 'near-IR', 'Optical'),
    subset_label_formatter=lambda x: "{}%".format(int(100*x/len(flag_obs)))
)
plt.title("Wavelength domain observations");
In [7]:
venn3(
    [
        np.sum(flag_det[flag_obs == 7] == 4),
        np.sum(flag_det[flag_obs == 7] == 2),
        np.sum(flag_det[flag_obs == 7] == 6),
        np.sum(flag_det[flag_obs == 7] == 1),
        np.sum(flag_det[flag_obs == 7] == 5),
        np.sum(flag_det[flag_obs == 7] == 3),
        np.sum(flag_det[flag_obs == 7] == 7)
    ],
    set_labels=('mid-IR', 'near-IR', 'Optical'),
    subset_label_formatter=lambda x: "{}%".format(int(100*x/np.sum(flag_det != 0)))
)
plt.title("Detection of the {} sources detected\n in any wavelength domains "
          "(among {} sources)".format(
              locale.format('%d', np.sum(flag_det != 0), grouping=True),
              locale.format('%d', len(flag_det), grouping=True)));

II - Comparing magnitudes in similar filters

The master list if composed of several catalogues containing magnitudes in similar filters on different instruments. We are comparing the magnitudes in these corresponding filters.

In [8]:
u_bands = ["WFC u", "Megacam u"]
g_bands = ["WFC g", "Megacam g",  "GPC1 g"]
r_bands = ["WFC r", "Megacam r",  "GPC1 r"]
i_bands = ["WFC i", "Megacam i",  "GPC1 i"]
z_bands = ["WFC z", "Megacam z",  "GPC1 z"]
y_bands = [         "Megacam y",  "GPC1 y"]

II.a - Comparing depths

We compare the histograms of the total aperture magnitudes of similar bands.

In [9]:
for bands in [u_bands, g_bands, r_bands, i_bands, z_bands, y_bands]:
    colnames = ["m_{}".format(band.replace(" ", "_").lower()) for band in bands]
    nb_histograms(master_catalogue, colnames, bands)

II.b - Comparing magnitudes

We compare one to one each magnitude in similar bands.

In [10]:
for band_of_a_kind in [u_bands, g_bands, r_bands, i_bands, z_bands, y_bands]:
    for band1, band2 in itertools.combinations(band_of_a_kind, 2):
        
        basecol1, basecol2 = band1.replace(" ", "_").lower(), band2.replace(" ", "_").lower()
        
        # RCS has no aperture magnitudes
        if ('megacam_i' not in basecol1 
            and 'megacam_i' not in basecol2 
            and 'megacam_y' not in basecol1
            and'megacam_y' not in basecol1):
            col1, col2 = "m_ap_{}".format(basecol1), "m_ap_{}".format(basecol2)
            nb_compare_mags(master_catalogue[col1], master_catalogue[col2], 
                            labels=("{} (aperture)".format(band1), "{} (aperture)".format(band2)))
        
        col1, col2 = "m_{}".format(basecol1), "m_{}".format(basecol2)
        nb_compare_mags(master_catalogue[col1], master_catalogue[col2], 
                        labels=("{} (total)".format(band1), "{} (total)".format(band2)))
Megacam u (aperture) - WFC u (aperture):
- Median: -0.06
- Median Absolute Deviation: 0.25
- 1% percentile: -0.9491949844360351
- 99% percentile: 3.2663552665710673
Megacam u (total) - WFC u (total):
- Median: -0.27
- Median Absolute Deviation: 0.21
- 1% percentile: -1.6218692207336425
- 99% percentile: 2.0539311504363935
Megacam g (aperture) - WFC g (aperture):
- Median: 0.11
- Median Absolute Deviation: 0.14
- 1% percentile: -0.5078629302978516
- 99% percentile: 0.8724484062194824
Megacam g (total) - WFC g (total):
- Median: -0.05
- Median Absolute Deviation: 0.15
- 1% percentile: -0.9023867797851562
- 99% percentile: 1.4200260162353513
GPC1 g (aperture) - WFC g (aperture):
- Median: -0.14
- Median Absolute Deviation: 0.27
- 1% percentile: -2.033579864501953
- 99% percentile: 2.2427005767822266
GPC1 g (total) - WFC g (total):
- Median: -0.03
- Median Absolute Deviation: 0.24
- 1% percentile: -2.5378850173950194
- 99% percentile: 1.7712992477417002
GPC1 g (aperture) - Megacam g (aperture):
- Median: -0.33
- Median Absolute Deviation: 0.38
- 1% percentile: -2.9429248237609866
- 99% percentile: 2.1852089309692397
GPC1 g (total) - Megacam g (total):
- Median: 0.02
- Median Absolute Deviation: 0.28
- 1% percentile: -3.185884475708008
- 99% percentile: 1.8667194366455089
Megacam r (aperture) - WFC r (aperture):
- Median: 0.13
- Median Absolute Deviation: 0.15
- 1% percentile: -0.545387954711914
- 99% percentile: 1.148755531311045
Megacam r (total) - WFC r (total):
- Median: -0.08
- Median Absolute Deviation: 0.14
- 1% percentile: -0.9950507736206055
- 99% percentile: 1.6092028617858827
GPC1 r (aperture) - WFC r (aperture):
- Median: -0.10
- Median Absolute Deviation: 0.15
- 1% percentile: -1.2963315582275392
- 99% percentile: 1.1390761566162118
GPC1 r (total) - WFC r (total):
- Median: -0.01
- Median Absolute Deviation: 0.14
- 1% percentile: -1.7165836334228515
- 99% percentile: 0.9766998291015625
GPC1 r (aperture) - Megacam r (aperture):
- Median: -0.26
- Median Absolute Deviation: 0.25
- 1% percentile: -2.3193286895751952
- 99% percentile: 1.125625000000003
GPC1 r (total) - Megacam r (total):
- Median: 0.08
- Median Absolute Deviation: 0.14
- 1% percentile: -2.285899467468262
- 99% percentile: 1.0307445526123051
Megacam i (total) - WFC i (total):
- Median: -0.08
- Median Absolute Deviation: 0.20
- 1% percentile: -0.9779530334472656
- 99% percentile: 1.4092513275146472
GPC1 i (aperture) - WFC i (aperture):
- Median: -0.03
- Median Absolute Deviation: 0.14
- 1% percentile: -1.025598430633545
- 99% percentile: 0.9575976371765118
GPC1 i (total) - WFC i (total):
- Median: 0.06
- Median Absolute Deviation: 0.15
- 1% percentile: -1.102666082382202
- 99% percentile: 0.9996103668212877
GPC1 i (total) - Megacam i (total):
- Median: 0.17
- Median Absolute Deviation: 0.12
- 1% percentile: -1.6147754669189454
- 99% percentile: 0.8306443786621096
Megacam z (aperture) - WFC z (aperture):
- Median: 0.14
- Median Absolute Deviation: 0.17
- 1% percentile: -0.6397380828857422
- 99% percentile: 3.043675384521484
Megacam z (total) - WFC z (total):
- Median: -0.04
- Median Absolute Deviation: 0.22
- 1% percentile: -0.9952455520629883
- 99% percentile: 2.1356584072113094
GPC1 z (aperture) - WFC z (aperture):
- Median: 0.01
- Median Absolute Deviation: 0.15
- 1% percentile: -0.9230419921874999
- 99% percentile: 1.1071548843383785
GPC1 z (total) - WFC z (total):
- Median: 0.09
- Median Absolute Deviation: 0.19
- 1% percentile: -0.9829817771911621
- 99% percentile: 1.4533742713928244
GPC1 z (aperture) - Megacam z (aperture):
- Median: -0.22
- Median Absolute Deviation: 0.26
- 1% percentile: -2.777841310501098
- 99% percentile: 1.4052535629272451
GPC1 z (total) - Megacam z (total):
- Median: 0.13
- Median Absolute Deviation: 0.17
- 1% percentile: -2.225839080810547
- 99% percentile: 1.3188536834716849
GPC1 y (total) - Megacam y (total):
- Median: -0.57
- Median Absolute Deviation: 0.41
- 1% percentile: -3.220444412231445
- 99% percentile: 1.1729692840576167

III - Comparing magnitudes to reference bands

Cross-match the master list to SDSS and 2MASS to compare its magnitudes to SDSS and 2MASS ones.

In [11]:
master_catalogue_coords = SkyCoord(master_catalogue['ra'], master_catalogue['dec'])

III.a - Comparing u, g, r, i, and z bands to SDSS

The catalogue is cross-matched to SDSS-DR13 withing 0.2 arcsecond.

We compare the u, g, r, i, and z magnitudes to those from SDSS using fiberMag for the aperture magnitude and petroMag for the total magnitude.

In [12]:
sdss = Table.read("../../dmu0/dmu0_SDSS-DR13/data/SDSS-DR13_Lockman-SWIRE.fits")
sdss_coords = SkyCoord(sdss['ra'] * u.deg, sdss['dec'] * u.deg)

idx, d2d, _ = sdss_coords.match_to_catalog_sky(master_catalogue_coords)
mask = (d2d < 0.2 * u.arcsec)

sdss = sdss[mask]
ml_sdss_idx = idx[mask]
In [13]:
for band_of_a_kind in [u_bands, g_bands, r_bands, i_bands, z_bands]:
    for band in band_of_a_kind:
        
        sdss_mag_ap_colname = "fiberMag_{}".format(band[-1])
        sdss_mag_tot_colname = "petroMag_{}".format(band[-1])
        master_cat_mag_ap_colname = "m_ap_{}".format(band.replace(" ", "_").lower())
        master_cat_mag_tot_colname = "m_{}".format(band.replace(" ", "_").lower())
        
        # Set SDSS magnitudes to NaN when the magnitude  is negative as SDSS uses large
        # negative numbers for missing magnitudes
        sdss[sdss_mag_ap_colname][sdss[sdss_mag_ap_colname] < 0.] = np.nan
        sdss[sdss_mag_tot_colname][sdss[sdss_mag_tot_colname] < 0.] = np.nan
  
        if not 'megacam_i' in master_cat_mag_ap_colname:
            sdss_mag_ap = sdss[sdss_mag_ap_colname]
            master_cat_mag_ap = master_catalogue[master_cat_mag_ap_colname][ml_sdss_idx]
    
            nb_compare_mags(sdss_mag_ap, master_cat_mag_ap,
                            labels=("SDSS {} (fiberMag)".format(band[-1]), "{} (aperture)".format(band)))
    
        sdss_mag_tot = sdss[sdss_mag_tot_colname]
        master_cat_mag_tot = master_catalogue[master_cat_mag_tot_colname][ml_sdss_idx]
        
        nb_compare_mags(sdss_mag_tot, master_cat_mag_tot,
                        labels=("SDSS {} (petroMag)".format(band[-1]), "{} (total)".format(band)))
WFC u (aperture) - SDSS u (fiberMag):
- Median: -0.31
- Median Absolute Deviation: 0.18
- 1% percentile: -1.5710824012756348
- 99% percentile: 0.7945964813232422
WFC u (total) - SDSS u (petroMag):
- Median: 0.07
- Median Absolute Deviation: 0.36
- 1% percentile: -3.809451866149902
- 99% percentile: 1.9933301925659166
Megacam u (aperture) - SDSS u (fiberMag):
- Median: 0.01
- Median Absolute Deviation: 0.52
- 1% percentile: -1.7239515686035158
- 99% percentile: 3.037174682617188
Megacam u (total) - SDSS u (petroMag):
- Median: 0.09
- Median Absolute Deviation: 0.83
- 1% percentile: -4.138626194000244
- 99% percentile: 4.583783168792724
WFC g (aperture) - SDSS g (fiberMag):
- Median: -0.45
- Median Absolute Deviation: 0.12
- 1% percentile: -1.153176498413086
- 99% percentile: 0.4261890411376952
WFC g (total) - SDSS g (petroMag):
- Median: -0.08
- Median Absolute Deviation: 0.23
- 1% percentile: -3.3376033782958983
- 99% percentile: 1.32151603698731
Megacam g (aperture) - SDSS g (fiberMag):
- Median: -0.29
- Median Absolute Deviation: 0.18
- 1% percentile: -1.0998111724853517
- 99% percentile: 1.262142181396477
Megacam g (total) - SDSS g (petroMag):
- Median: -0.15
- Median Absolute Deviation: 0.26
- 1% percentile: -3.540327453613281
- 99% percentile: 2.118810653686525
GPC1 g (aperture) - SDSS g (fiberMag):
- Median: -0.56
- Median Absolute Deviation: 0.26
- 1% percentile: -2.496891307830811
- 99% percentile: 1.7368188095092725
GPC1 g (total) - SDSS g (petroMag):
- Median: -0.10
- Median Absolute Deviation: 0.27
- 1% percentile: -4.111917877197266
- 99% percentile: 1.7278203964233376
WFC r (aperture) - SDSS r (fiberMag):
- Median: -0.35
- Median Absolute Deviation: 0.07
- 1% percentile: -0.9245659255981445
- 99% percentile: 0.3214846229553226
WFC r (total) - SDSS r (petroMag):
- Median: 0.04
- Median Absolute Deviation: 0.15
- 1% percentile: -2.676791229248047
- 99% percentile: 1.1676996612548833
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/ipykernel/__main__.py:11: RuntimeWarning: invalid value encountered in less
Megacam r (aperture) - SDSS r (fiberMag):
- Median: -0.21
- Median Absolute Deviation: 0.14
- 1% percentile: -0.8575413894653321
- 99% percentile: 2.322139625549326
Megacam r (total) - SDSS r (petroMag):
- Median: -0.06
- Median Absolute Deviation: 0.15
- 1% percentile: -2.867800807952881
- 99% percentile: 1.969779825210568
GPC1 r (aperture) - SDSS r (fiberMag):
- Median: -0.43
- Median Absolute Deviation: 0.14
- 1% percentile: -1.5779515075683594
- 99% percentile: 0.6068578338623037
GPC1 r (total) - SDSS r (petroMag):
- Median: 0.04
- Median Absolute Deviation: 0.14
- 1% percentile: -2.5192892456054685
- 99% percentile: 1.1319837570190423
WFC i (aperture) - SDSS i (fiberMag):
- Median: -0.41
- Median Absolute Deviation: 0.08
- 1% percentile: -0.9962218856811523
- 99% percentile: 0.35475969314575084
WFC i (total) - SDSS i (petroMag):
- Median: -0.02
- Median Absolute Deviation: 0.18
- 1% percentile: -3.216203365325928
- 99% percentile: 1.130485744476317
Megacam i (total) - SDSS i (petroMag):
- Median: -0.13
- Median Absolute Deviation: 0.17
- 1% percentile: -3.6602382850646973
- 99% percentile: 1.091551609039307
GPC1 i (aperture) - SDSS i (fiberMag):
- Median: -0.41
- Median Absolute Deviation: 0.12
- 1% percentile: -1.1483927154541016
- 99% percentile: 0.3729707336425758
GPC1 i (total) - SDSS i (petroMag):
- Median: 0.05
- Median Absolute Deviation: 0.13
- 1% percentile: -2.7237721443176266
- 99% percentile: 0.9462432289123528
WFC z (aperture) - SDSS z (fiberMag):
- Median: -0.35
- Median Absolute Deviation: 0.12
- 1% percentile: -1.2592236328125
- 99% percentile: 0.6335509490966799
WFC z (total) - SDSS z (petroMag):
- Median: 0.00
- Median Absolute Deviation: 0.30
- 1% percentile: -4.017242908477783
- 99% percentile: 1.5223383903503418
Megacam z (aperture) - SDSS z (fiberMag):
- Median: -0.14
- Median Absolute Deviation: 0.20
- 1% percentile: -1.1127138900756837
- 99% percentile: 2.7650779533386163
Megacam z (total) - SDSS z (petroMag):
- Median: -0.02
- Median Absolute Deviation: 0.37
- 1% percentile: -3.9964558029174806
- 99% percentile: 2.1697754859924325
GPC1 z (aperture) - SDSS z (fiberMag):
- Median: -0.32
- Median Absolute Deviation: 0.17
- 1% percentile: -1.417550163269043
- 99% percentile: 1.0491362571716336
GPC1 z (total) - SDSS z (petroMag):
- Median: 0.11
- Median Absolute Deviation: 0.29
- 1% percentile: -3.821057033538818
- 99% percentile: 1.7081263542175282

III.b - Comparing J and K bands to 2MASS

The catalogue is cross-matched to 2MASS-PSC withing 0.2 arcsecond. We compare the UKIDSS total J and K magnitudes to those from 2MASS.

The 2MASS magnitudes are “Vega-like” and we have to convert them to AB magnitudes using the zero points provided on this page:

Band Fν - 0 mag (Jy)
J 1594
H 1024
Ks 666.7

In addition, UKIDSS uses a K band whereas 2MASS uses a Ks (“short”) band, this page give a correction to convert the K band in a Ks band with the formula:

$$K_{s(2MASS)} = K_{UKIRT} + 0.003 + 0.004 * (J−K)_{UKIRT}$$
In [14]:
# The AB zero point is 3631 Jy
j_2mass_to_ab = 2.5 * np.log10(3631/1595)
k_2mass_to_ab = 2.5 * np.log10(3631/666.7)
In [15]:
twomass = Table.read("../../dmu0/dmu0_2MASS-point-sources/data/2MASS-PSC_Lockman-SWIRE.fits")
twomass_coords = SkyCoord(twomass['raj2000'], twomass['dej2000'])

idx, d2d, _ = twomass_coords.match_to_catalog_sky(master_catalogue_coords)
mask = (d2d < 0.2 * u.arcsec)

twomass = twomass[mask]
ml_twomass_idx = idx[mask]
In [16]:
nb_compare_mags(twomass['jmag'] + j_2mass_to_ab, master_catalogue['m_wfcam_j'][ml_twomass_idx],
                labels=("2MASS J", "WFCAM J (total)"))
WFCAM J (total) - 2MASS J:
- Median: 0.02
- Median Absolute Deviation: 0.05
- 1% percentile: -0.9130657836820437
- 99% percentile: 0.575751805124098
In [17]:
wfcam_ks_like = master_catalogue['m_wfcam_k'] + 0.003 + 0.004 * (
    master_catalogue['m_wfcam_j'] - master_catalogue['m_wfcam_k'])
nb_compare_mags(twomass['kmag'] + k_2mass_to_ab, wfcam_ks_like[ml_twomass_idx],
                labels=("2MASS Ks", "WFCAM Ks-like (total)"))
WFCAM Ks-like (total) - 2MASS Ks:
- Median: 0.07
- Median Absolute Deviation: 0.08
- 1% percentile: -0.8240238957842398
- 99% percentile: 0.9100533730451055

Keeping only sources with good signal to noise ratio

From here, we are only comparing sources with a signal to noise ratio above 3, i.e. roughly we a magnitude error below 0.3.

To make it easier, we are setting to NaN in the catalogue the magnitudes associated with an error above 0.3 so we can't use these magnitudes after the next cell.

In [18]:
for error_column in [_ for _ in master_catalogue.colnames if _.startswith('merr_')]:
    column = error_column.replace("merr", "m")
    keep_mask = np.isfinite(master_catalogue[error_column])
    keep_mask[keep_mask] &= master_catalogue[keep_mask][error_column] <= 0.3
    master_catalogue[column][~keep_mask] = np.nan

IV - Comparing aperture magnitudes to total ones.

In [19]:
nb_ccplots(
    master_catalogue['m_megacam_r'],
    master_catalogue['m_ap_megacam_r'] - master_catalogue['m_megacam_r'],
    "r total magnitude (CFHT)", "r aperture mag - total mag (CFHT)",
    master_catalogue["stellarity"],
    invert_x=True
)
Number of source used: 2456999 / 4366298 (56.27%)

V - Color-color and magnitude-color plots

In [20]:
nb_ccplots(
    master_catalogue['m_wfc_g'] - master_catalogue['m_wfc_i'],
    master_catalogue['m_wfcam_j'] - master_catalogue['m_wfcam_k'],
    "g - i (WFC)", "J - K (UKIDSS)",
    master_catalogue["stellarity"]
)
Number of source used: 85805 / 4366298 (1.97%)
In [21]:
nb_ccplots(
    master_catalogue['m_wfc_i'] - master_catalogue['m_irac_i1'],
    master_catalogue['m_wfc_g'] - master_catalogue['m_wfc_i'],
    "WFC i - IRAC1", "g - i (WFC)",
    master_catalogue["stellarity"]
)
Number of source used: 129379 / 4366298 (2.96%)
In [22]:
nb_ccplots(
    master_catalogue['m_megacam_u'] - master_catalogue['m_megacam_g'],
    master_catalogue['m_megacam_g'] - master_catalogue['m_megacam_r'],
    "u - g (CFHT)", "g - r (CFHT)",
    master_catalogue["stellarity"]
)
Number of source used: 2072647 / 4366298 (47.47%)
In [23]:
nb_ccplots(
    master_catalogue['m_wfcam_j'] - master_catalogue['m_wfcam_k'],
    master_catalogue['m_wfc_g'] - master_catalogue['m_wfcam_j'],
    "J - K (WFCAM)", "g - J (WFC, WFCAM)",
    master_catalogue["stellarity"]
)
Number of source used: 108739 / 4366298 (2.49%)
In [24]:
nb_ccplots(
    master_catalogue['m_wfc_i'] - master_catalogue['m_wfc_g'],
    master_catalogue['m_wfc_r'] - master_catalogue['m_wfcam_j'],
    "i - g (WFC)", "r - J (WFC, WFCAM)",
    master_catalogue["stellarity"]
)
Number of source used: 107975 / 4366298 (2.47%)
In [25]:
nb_ccplots(
    master_catalogue['m_irac_i3'] - master_catalogue['m_irac_i4'],
    master_catalogue['m_irac_i1'] - master_catalogue['m_irac_i2'],
    "IRAC3 - IRAC4", "IRAC1 - IRAC2",
    master_catalogue["stellarity"]
)
Number of source used: 38805 / 4366298 (0.89%)