Lockman SWIRE master catalogue

Preparation of Spitzer datafusion SWIRE data

The Spitzer catalogues were produced by the datafusion team are available in dmu0_DataFusion-Spitzer. Lucia told that the magnitudes are aperture corrected.

In the catalouge, we keep:

We keep:

  • The internal identifier (this one is only in HeDaM data);
  • The position;
  • The fluxes in aperture 2 (1.9 arcsec) for IRAC bands.
  • The Kron flux;
  • The stellarity in each band

A query of the position in the Spitzer heritage archive show that the ELAIS-N1 images were observed in 2004. Let's take this as epoch.

We do not use the MIPS fluxes as they will be extracted on MIPS maps using XID+.

In [1]:
from herschelhelp_internal import git_version
print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version()))
This notebook was run with herschelhelp_internal version: 
44f1ae0 (Thu Nov 30 18:27:54 2017 +0000)
In [2]:
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))

from collections import OrderedDict
import os

from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.table import Column, Table
import numpy as np

from herschelhelp_internal.flagging import  gaia_flag_column
from herschelhelp_internal.masterlist import nb_astcor_diag_plot, remove_duplicates
from herschelhelp_internal.utils import astrometric_correction, flux_to_mag
In [3]:
OUT_DIR =  os.environ.get('TMP_DIR', "./data_tmp")
try:
    os.makedirs(OUT_DIR)
except FileExistsError:
    pass

RA_COL = "swire_ra"
DEC_COL = "swire_dec"

I - Column selection

In [4]:
imported_columns = OrderedDict({
        'internal_id': "swire_intid",
        'ra_spitzer': "swire_ra",
        'dec_spitzer': "swire_dec",
        'flux_ap2_36': "f_ap_swire_irac1",
        'uncf_ap2_36': "ferr_ap_swire_irac1",
        'flux_kr_36': "f_swire_irac1",
        'uncf_kr_36': "ferr_swire_irac1",
        'stell_36': "swire_stellarity_irac1",
        'flux_ap2_45': "f_ap_swire_irac2",
        'uncf_ap2_45': "ferr_ap_swire_irac2",
        'flux_kr_45': "f_swire_irac2",
        'uncf_kr_45': "ferr_swire_irac2",
        'stell_45': "swire_stellarity_irac2",
        'flux_ap2_58': "f_ap_irac_i3",
        'uncf_ap2_58': "ferr_ap_irac_i3",
        'flux_kr_58': "f_irac_i3",
        'uncf_kr_58': "ferr_irac_i3",
        'stell_58': "swire_stellarity_irac3",
        'flux_ap2_80': "f_ap_irac_i4",
        'uncf_ap2_80': "ferr_ap_irac_i4",
        'flux_kr_80': "f_irac_i4",
        'uncf_kr_80': "ferr_irac_i4",
        'stell_80': "swire_stellarity_irac4",
    })


catalogue = Table.read("../../dmu0/dmu0_DataFusion-Spitzer/data/DF-SWIRE_Lockman-SWIRE.fits")[list(imported_columns)]
for column in imported_columns:
    catalogue[column].name = imported_columns[column]

epoch = 2004

# Clean table metadata
catalogue.meta = None
In [5]:
# Adding magnitude and band-flag columns
for col in catalogue.colnames:
    if col.startswith('f_'):
        errcol = "ferr{}".format(col[1:])
        
        magnitude, error = flux_to_mag(
            np.array(catalogue[col])/1.e6, np.array(catalogue[errcol])/1.e6)
        # Note that some fluxes are 0.
        
        catalogue.add_column(Column(magnitude, name="m{}".format(col[1:])))
        catalogue.add_column(Column(error, name="m{}".format(errcol[1:])))
        
        # Band-flag column
        if "ap" not in col:
            catalogue.add_column(Column(np.zeros(len(catalogue), dtype=bool), name="flag{}".format(col[1:])))
/opt/herschelhelp_internal/herschelhelp_internal/utils.py:76: RuntimeWarning: invalid value encountered in log10
  magnitudes = 2.5 * (23 - np.log10(fluxes)) - 48.6
In [6]:
catalogue[:10].show_in_notebook()
Out[6]:
<Table masked=True length=10>
idxswire_intidswire_raswire_decf_ap_swire_irac1ferr_ap_swire_irac1f_swire_irac1ferr_swire_irac1swire_stellarity_irac1f_ap_swire_irac2ferr_ap_swire_irac2f_swire_irac2ferr_swire_irac2swire_stellarity_irac2f_ap_irac_i3ferr_ap_irac_i3f_irac_i3ferr_irac_i3swire_stellarity_irac3f_ap_irac_i4ferr_ap_irac_i4f_irac_i4ferr_irac_i4swire_stellarity_irac4m_ap_swire_irac1merr_ap_swire_irac1m_swire_irac1merr_swire_irac1flag_swire_irac1m_ap_swire_irac2merr_ap_swire_irac2m_swire_irac2merr_swire_irac2flag_swire_irac2m_ap_irac_i3merr_ap_irac_i3m_irac_i3merr_irac_i3flag_irac_i3m_ap_irac_i4merr_ap_irac_i4m_irac_i4merr_irac_i4flag_irac_i4
degdeguJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJy
02340449161.00731260.416528nannannannannan12.911.399.71.120.58nannannannannannannannannannannannannannanFalse21.12268439430.11689956038821.43307066430.125363355601FalsenannannannanFalsenannannannanFalse
12340443161.00721260.414578nannannannannan13.591.412.991.410.47nannannannannannannannannannannannannannanFalse21.06695135820.11184920431721.11597712230.117851273958FalsenannannannanFalsenannannannanFalse
22340450160.98959260.411318nannannannannan68.718.62201.5112.170.03nannannannannannannannannannannannannannanFalse19.30745012860.13621082935518.13925849250.0655719796135FalsenannannannanFalsenannannannanFalse
32340388161.02098260.410408nannannannannan19.181.4614.071.130.63nannannannannannannannannannannannannannanFalse20.69287849290.082647281488421.02926475640.0871984300907FalsenannannannanFalsenannannannanFalse
42340428161.01449260.412348nannannannannan31.811.6231.461.940.63nannannannannannannannannannannannannannanFalse20.14359082720.055293701719820.15560320430.0669525822387FalsenannannannanFalsenannannannanFalse
52340395161.01747260.409728nannannannannan70.052.0159.911.990.96nannannannannannannannannannannannannannanFalse19.28647965090.031153886817519.4562517010.0360643473121FalsenannannannanFalsenannannannanFalse
62340367161.02465260.409488nannannannannan20.241.4820.61.940.66nannannannannannannannannannannannannannanFalse20.63447372960.079391777818320.61533194910.102248943555FalsenannannannanFalsenannannannanFalse
72340278161.02873260.405258nannannannannan34.821.6633.81.660.95nannannannannannannannannannannannannannanFalse20.0454280830.051761117171120.07770824930.0533231390503FalsenannannannanFalsenannannannanFalse
82340381161.01614260.406638nannannannannan16.141.4314.871.590.55nannannannannannannannannannannannannannanFalse20.8802411740.09619595866220.96922257870.116094187328FalsenannannannanFalsenannannannanFalse
92340407161.01123260.407538nannannannannan9.781.346.960.950.5nannannannannannannannannannannannannannanFalse21.4241528630.14876140228821.7934769010.148196752086FalsenannannannanFalsenannannannanFalse

II - Removal of duplicated sources

We remove duplicated objects from the input catalogues.

In [7]:
SORT_COLS = ['ferr_ap_swire_irac1', 'ferr_ap_swire_irac2', 'ferr_ap_irac_i3', 'ferr_ap_irac_i4']
FLAG_NAME = "swire_flag_cleaned"

nb_orig_sources = len(catalogue)

catalogue = remove_duplicates(catalogue, RA_COL, DEC_COL, sort_col=SORT_COLS,flag_name=FLAG_NAME)

nb_sources = len(catalogue)

print("The initial catalogue had {} sources.".format(nb_orig_sources))
print("The cleaned catalogue has {} sources ({} removed).".format(nb_sources, nb_orig_sources - nb_sources))
print("The cleaned catalogue has {} sources flagged as having been cleaned".format(np.sum(catalogue[FLAG_NAME])))
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/astropy/table/column.py:1096: MaskedArrayFutureWarning: setting an item on a masked array which has a shared mask will not copy the mask and also change the original mask array in the future.
Check the NumPy 1.11 release notes for more information.
  ma.MaskedArray.__setitem__(self, index, value)
The initial catalogue had 659974 sources.
The cleaned catalogue has 659925 sources (49 removed).
The cleaned catalogue has 49 sources flagged as having been cleaned

III - Astrometry correction

We match the astrometry to the Gaia one. We limit the Gaia catalogue to sources with a g band flux between the 30th and the 70th percentile. Some quick tests show that this give the lower dispersion in the results.

In [8]:
gaia = Table.read("../../dmu0/dmu0_GAIA/data/GAIA_Lockman-SWIRE.fits")
gaia_coords = SkyCoord(gaia['ra'], gaia['dec'])
In [9]:
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], 
                    gaia_coords.ra, gaia_coords.dec)
In [10]:
delta_ra, delta_dec =  astrometric_correction(
    SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]),
    gaia_coords
)

print("RA correction: {}".format(delta_ra))
print("Dec correction: {}".format(delta_dec))
RA correction: -0.04179821406751216 arcsec
Dec correction: -0.11961620856055788 arcsec
In [11]:
catalogue[RA_COL] +=  delta_ra.to(u.deg)
catalogue[DEC_COL] += delta_dec.to(u.deg)
In [12]:
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], 
                    gaia_coords.ra, gaia_coords.dec)

IV - Flagging Gaia objects

In [13]:
catalogue.add_column(
    gaia_flag_column(SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), epoch, gaia)
)
In [14]:
GAIA_FLAG_NAME = "swire_flag_gaia"

catalogue['flag_gaia'].name = GAIA_FLAG_NAME
print("{} sources flagged.".format(np.sum(catalogue[GAIA_FLAG_NAME] > 0)))
29668 sources flagged.

V - Flagging objects near bright stars

VI - Saving to disk

In [15]:
catalogue.write("{}/SWIRE.fits".format(OUT_DIR), overwrite=True)