This catalogue comes from dmu0_HSC
.
In the catalogue, we keep:
object_id
as unique object identifier;TODO: Check that the aperture magnitudes are aperture corrected and that all the magnitudes are AB.
TODO: Check for stellarity.
We don't know when the maps have been observed. We will use the year of the reference paper.
from herschelhelp_internal import git_version
print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version()))
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'
import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))
from collections import OrderedDict
import os
from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.table import Column, Table
import numpy as np
from herschelhelp_internal.flagging import gaia_flag_column
from herschelhelp_internal.masterlist import nb_astcor_diag_plot, remove_duplicates
from herschelhelp_internal.utils import astrometric_correction, mag_to_flux
OUT_DIR = os.environ.get('TMP_DIR', "./data_tmp")
try:
os.makedirs(OUT_DIR)
except FileExistsError:
pass
RA_COL = "hsc_ra"
DEC_COL = "hsc_dec"
imported_columns = OrderedDict({
"object_id": "hsc_id",
"ra": "hsc_ra",
"dec": "hsc_dec",
"gmag_aperture30": "m_ap_suprime_g",
"gmag_aperture30_err": "merr_ap_suprime_g",
"gmag_kron": "m_suprime_g",
"gmag_kron_err": "merr_suprime_g",
"rmag_aperture30": "m_ap_suprime_r",
"rmag_aperture30_err": "merr_ap_suprime_r",
"rmag_kron": "m_suprime_r",
"rmag_kron_err": "merr_suprime_r",
"imag_aperture30": "m_ap_suprime_i",
"imag_aperture30_err": "merr_ap_suprime_i",
"imag_kron": "m_suprime_i",
"imag_kron_err": "merr_suprime_i",
"zmag_aperture30": "m_ap_suprime_z",
"zmag_aperture30_err": "merr_ap_suprime_z",
"zmag_kron": "m_suprime_z",
"zmag_kron_err": "merr_suprime_z",
"ymag_aperture30": "m_ap_suprime_y",
"ymag_aperture30_err": "merr_ap_suprime_y",
"ymag_kron": "m_suprime_y",
"ymag_kron_err": "merr_suprime_y",
"n816mag_aperture30": "m_ap_suprime_n816",
"n816mag_aperture30_err": "merr_ap_suprime_n816",
"n816mag_kron": "m_suprime_n816",
"n816mag_kron_err": "merr_suprime_n816",
"n921mag_aperture30": "m_ap_suprime_n921",
"n921mag_aperture30_err": "merr_ap_suprime_n921",
"n921mag_kron": "m_suprime_n921",
"n921mag_kron_err": "merr_suprime_n921",
})
catalogue = Table.read("../../dmu0/dmu0_HSC/data/HSC-PDR1_deep_Herschel-Stripe-82.fits")[list(imported_columns)]
for column in imported_columns:
catalogue[column].name = imported_columns[column]
epoch = 2017
# Clean table metadata
catalogue.meta = None
# Adding flux and band-flag columns
for col in catalogue.colnames:
if col.startswith('m_'):
errcol = "merr{}".format(col[1:])
flux, error = mag_to_flux(np.array(catalogue[col]), np.array(catalogue[errcol]))
# Fluxes are added in µJy
catalogue.add_column(Column(flux * 1.e6, name="f{}".format(col[1:])))
catalogue.add_column(Column(error * 1.e6, name="f{}".format(errcol[1:])))
# Band-flag column
if 'ap' not in col:
catalogue.add_column(Column(np.zeros(len(catalogue), dtype=bool), name="flag{}".format(col[1:])))
# TODO: Set to True the flag columns for fluxes that should not be used for SED fitting.
catalogue[:10].show_in_notebook()
We remove duplicated objects from the input catalogues.
SORT_COLS = [
'merr_ap_suprime_i', 'merr_ap_suprime_r', 'merr_ap_suprime_z',
'merr_ap_suprime_y', 'merr_ap_suprime_g']
FLAG_NAME = 'hsc_flag_cleaned'
nb_orig_sources = len(catalogue)
catalogue = remove_duplicates(
catalogue, RA_COL, DEC_COL,
sort_col= SORT_COLS,
flag_name=FLAG_NAME)
nb_sources = len(catalogue)
print("The initial catalogue had {} sources.".format(nb_orig_sources))
print("The cleaned catalogue has {} sources ({} removed).".format(nb_sources, nb_orig_sources - nb_sources))
print("The cleaned catalogue has {} sources flagged as having been cleaned".format(np.sum(catalogue[FLAG_NAME])))
We match the astrometry to the Gaia one. We limit the Gaia catalogue to sources with a g band flux between the 30th and the 70th percentile. Some quick tests show that this give the lower dispersion in the results.
gaia = Table.read("../../dmu0/dmu0_GAIA/data/GAIA_Herschel-Stripe-82.fits")
gaia_coords = SkyCoord(gaia['ra'], gaia['dec'])
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL],
gaia_coords.ra, gaia_coords.dec, near_ra0=True)
delta_ra, delta_dec = astrometric_correction(
SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]),
gaia_coords, near_ra0=True
)
print("RA correction: {}".format(delta_ra))
print("Dec correction: {}".format(delta_dec))
catalogue[RA_COL] += delta_ra.to(u.deg)
catalogue[DEC_COL] += delta_dec.to(u.deg)
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL],
gaia_coords.ra, gaia_coords.dec, near_ra0=True)
catalogue.add_column(
gaia_flag_column(SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), epoch, gaia)
)
GAIA_FLAG_NAME = "hsc_flag_gaia"
catalogue['flag_gaia'].name = GAIA_FLAG_NAME
print("{} sources flagged.".format(np.sum(catalogue[GAIA_FLAG_NAME] > 0)))
catalogue.write("{}/HSC-SSP.fits".format(OUT_DIR), overwrite=True)