{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Herschel Stripe 82 master catalogue\n", "\n", "This notebook presents the merge of the various pristine catalogues to produce HELP mater catalogue on Herschel Stripe 82." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "017bb1e (Mon Jun 18 14:58:59 2018 +0100)\n", "This notebook was executed on: \n", "2019-02-05 18:15:34.417063\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n", "import datetime\n", "print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/pyenv/versions/3.7.2/lib/python3.7/site-packages/matplotlib/__init__.py:855: MatplotlibDeprecationWarning: \n", "examples.directory is deprecated; in the future, examples will be found relative to the 'datapath' directory.\n", " \"found relative to the 'datapath' directory.\".format(key))\n", "/opt/pyenv/versions/3.7.2/lib/python3.7/site-packages/matplotlib/__init__.py:846: MatplotlibDeprecationWarning: \n", "The text.latex.unicode rcparam was deprecated in Matplotlib 2.2 and will be removed in 3.1.\n", " \"2.2\", name=key, obj_type=\"rcparam\", addendum=addendum)\n", "/opt/pyenv/versions/3.7.2/lib/python3.7/site-packages/seaborn/apionly.py:9: UserWarning: As seaborn no longer sets a default style on import, the seaborn.apionly module is deprecated. It will be removed in a future version.\n", " warnings.warn(msg, UserWarning)\n" ] } ], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "import os\n", "import time\n", "import gc\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table, join\n", "import numpy as np\n", "from pymoc import MOC\n", "\n", "from herschelhelp_internal.masterlist import merge_catalogues, nb_merge_dist_plot, specz_merge\n", "from herschelhelp_internal.utils import coords_to_hpidx, ebv, gen_help_id, inMoc" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "\n", "SUFFIX = os.environ.get('SUFFIX', time.strftime(\"_%Y%m%d\"))\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "\n", "try:\n", " os.makedirs(OUT_DIR)\n", "except FileExistsError:\n", " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## I - Reading the prepared pristine catalogues" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "hsc = Table.read(\"{}/HSC-SSP.fits\".format(TMP_DIR) )[\"hsc_id\", \"hsc_ra\", \"hsc_dec\",\n", " \"hsc_flag_gaia\", \"hsc_stellarity\"]\n", "#vhs = Table.read(\"{}/VISTA-VHS.fits\".format(TMP_DIR) )[\"vhs_id\", \"vhs_ra\", \"vhs_dec\", \n", "# \"vhs_stellarity\", \"vhs_flag_gaia\"]\n", "#vics82 = Table.read(\"{}/VICS82.fits\".format(TMP_DIR) )[\"vics82_id\", \"vics82_ra\", \"vics82_dec\", \n", "# \"vics82_stellarity\", \"vics82_flag_gaia\"]\n", "vista = Table.read(\"{}/vista_merged_catalogue_herschel-stripe-82.fits\".format(TMP_DIR) )[\n", " \"vics82_id\", \"vhs_id\", \"vista_intid\", \n", " \"vista_ra\", \"vista_dec\", \n", " \"vista_stellarity\", \"vista_flag_gaia\"]\n", "\n", "las = Table.read(\"{}/UKIDSS-LAS.fits\".format(TMP_DIR))[\"las_id\", \"las_ra\", \"las_dec\", \n", " \"las_stellarity\", \"las_flag_gaia\"]\n", " \n", "ps1 = Table.read(\"{}/PS1.fits\".format(TMP_DIR) )[\"ps1_id\", \"ps1_ra\", \"ps1_dec\",\n", " \"ps1_flag_gaia\"]\n", "#shela = Table.read(\"{}/SHELA.fits\".format(TMP_DIR) )[\"shela_intid\", \"shela_ra\", \"shela_dec\"]\n", "#spies = Table.read(\"{}/SpIES.fits\".format(TMP_DIR) )[\"spies_intid\", \"spies_ra\", \"spies_dec\", \"spies_stellarity_irac2\"]\n", "irac = Table.read(\"{}/irac_merged_catalogue_herschel-stripe-82.fits\".format(TMP_DIR) )[\n", " \"irac_intid\", \"irac_ra\", \"irac_dec\", \n", " \"irac_stellarity\", \"irac_flag_gaia\",\n", " \"shela_intid\", \"spies_intid\"]\n", "#decals = Table.read(\"{}/DECaLS.fits\".format(TMP_DIR) )[\"decals_id\", \"decals_ra\", \"decals_dec\", \n", "# \"decals_stellarity\", \"decals_flag_gaia\"]\n", "decam = Table.read(\"{}/decam_merged_catalogue_herschel-stripe-82.fits\".format(TMP_DIR) )[\n", " \"decam_intid\", \"des_id\", \"decals_id\", \n", " \"decam_ra\", \"decam_dec\", \n", " \"decam_stellarity\", \"decam_flag_gaia\"]\n", "rcs = Table.read(\"{}/RCSLenS.fits\".format(TMP_DIR) )[\"rcs_id\", \"rcs_ra\", \"rcs_dec\", \n", " \"rcs_stellarity\", \"rcs_flag_gaia\"]\n", "#We choose to use the official SDSS not IAC because it has greater coverage\n", "#SDSS-S82_IAC.fits\n", "#SDSS-S82.fits\n", "sdss = Table.read(\"{}/SDSS-S82.fits\".format(TMP_DIR) )[\"sdss_id\", \"sdss_ra\", \"sdss_dec\", \n", " \"sdss_stellarity\", \"sdss_flag_gaia\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## II - Merging tables\n", "\n", "We first merge the optical catalogues and then add the infrared ones: HSC, VHS, VICS82, UKIDSS-LAS, PanSTARRS, SHELA, SpIES.\n", "\n", "At every step, we look at the distribution of the distances separating the sources from one catalogue to the other (within a maximum radius) to determine the best cross-matching radius." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### HSC" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue = hsc\n", "master_catalogue['hsc_ra'].name = 'ra'\n", "master_catalogue['hsc_dec'].name = 'dec'\n", "del hsc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add VISTA (VHS and VICS82 pre-merge)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4nGd19/Hv0TLaRvtmWZItebfjJE4iZyUhBFIcQhMoBEIKhVIaaJuWtrR9Swu0TVsKtKWkTbqYJKRNyEJYggnZN7LakewseI1tWbIkL5K1SzPSbOf9Y2YcodjWWJrRzDxzPtelK7M8mjmy45/uuZ/7Po+oKsYYY5wlK9kFGGOMiT8Ld2OMcSALd2OMcSALd2OMcSALd2OMcSALd2OMcSALd2OMcSALd2OMcSALd2OMcaCcZL1xVVWVNjU1JevtjTEmLW3duvWYqlbPdFxM4S4iG4BbgGzgdlX9xgmO+Rjwt4ACb6jqDad6zaamJtra2mJ5e2OMMREi0hnLcTOGu4hkA7cBVwLdQKuIbFLVnVOOWQ58GbhEVQdFpGZ2ZRtjjImHWObczwf2qWq7qvqA+4Frpx3zu8BtqjoIoKq98S3TGGPM6Ygl3OuBrin3uyOPTbUCWCEiL4nI5sg0zjuIyI0i0iYibX19fbOr2BhjzIzitVomB1gOXA58AviuiJRNP0hVN6pqi6q2VFfPeD7AGGPMLMUS7j1A45T7DZHHpuoGNqmqX1UPAG8RDntjjDFJEEu4twLLRaRZRFzA9cCmacc8RHjUjohUEZ6maY9jncYYY07DjOGuqgHgJuBxYBfwA1XdISI3i8g1kcMeB/pFZCfwLPDnqtqfqKKNMcacmiTrMnstLS1q69yNMeb0iMhWVW2Z6ThrP2CMMQ6UtPYDqejeLQff8dgNFyxKQiXGGDM3NnI3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHykl2Acly75aDyS7BGGMSxkbuxhjjQDGFu4hsEJE9IrJPRP7yBM9/RkT6ROT1yNfn4l+qMcaYWM04LSMi2cBtwJVAN9AqIptUdee0Qx9Q1ZsSUKMxxpjTFMvI/Xxgn6q2q6oPuB+4NrFlGWOMmYtYwr0e6Jpyvzvy2HQfEZE3ReSHItIYl+qMMcbMSrxOqP4MaFLVs4Angf890UEicqOItIlIW19fX5ze2hhjzHSxhHsPMHUk3hB57DhV7VfVycjd24HzTvRCqrpRVVtUtaW6uno29RpjjIlBLOHeCiwXkWYRcQHXA5umHiAidVPuXgPsil+JxhhjTteMq2VUNSAiNwGPA9nAnaq6Q0RuBtpUdRPwRyJyDRAABoDPJLBmY4wxM4hph6qqPgI8Mu2xr025/WXgy/EtzRhjzGzZDlVjjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC/dphjw+nth5hP19Y8kuxRhjZi2ma6hmgr7RSZ7b08sb3UOEFI4MT7C02p3ssowxZlYs3CPufOkAHl+AC5dUcmjIy8C4L9klGWPMrNm0DDAZCDLs9XPFyho+eNZC6ssKGPT4UNVkl2aMMbNi4Q6MegMAlBTkAlBe5MIfVMYmA8ksyxhjZs3CHRiZ8ANvh3tFkQuAQZuaMcakKQt33g734vzwKYjywnC4D3j8SavJGGPmwsIdGIlOy+RHpmUi4T7osZG7MSY9WbgDoxN+XDlZ5OdmA+DKyaI4L8dWzBhj0lZM4S4iG0Rkj4jsE5G/PMVxHxERFZGW+JWYeMMTAUryf3VVaHmRy+bcjTFpa8ZwF5Fs4DbgKmAN8AkRWXOC44qBLwJb4l1koo16/cenZKIqilwM2LSMMSZNxTJyPx/Yp6rtquoD7geuPcFxfw98E5iIY33zYmTCf3ylTFR5YS7DHj/+YChJVRljzOzFEu71QNeU+92Rx44TkXOBRlX9eRxrmxeqyshE4PhKmaiKIhcKHBryJqcwY4yZgzmfUBWRLODbwJdiOPZGEWkTkba+vr65vnVceH1BgiF9x7RMdMVM14CFuzEm/cQS7j1A45T7DZHHooqBtcBzItIBXAhsOtFJVVXdqKotqtpSXV09+6rjaHjaBqao6EamrkHPvNdkjDFzFUu4twLLRaRZRFzA9cCm6JOqOqyqVarapKpNwGbgGlVtS0jFcTY6EV3j/qvTMiUFuWSLcHDAwt0Yk35mDHdVDQA3AY8Du4AfqOoOEblZRK5JdIGJNuKNjNynTctkiVBWmEuXhbsxJg3F1PJXVR8BHpn22NdOcuzlcy9r/kxvPTBVeZHLwt0Yk5YyfofqyESAQlc2Odnv/KOoKHTRNWgnVI0x6cfC/QQbmKLKi1wMjPus9a8xJu1kfLiPTgQoKTjx7NTxFTM2NWOMSTMZH+4jE6cYuReGH7cVM8aYdJPR4R4MKWMTAYpPEu42cjfGpKuMDvexyQAKJ52WKcjNpjgvh247qWqMSTMZHe6jEyde4x4lIjRUFNrI3RiTdjI63E+2gWmq2pI8ekcn56skY4yJi8wO90jrgeKTTMsAVLvzODZm4W6MSS+ZHe5eP1kC7ryTh3tVcTjcQyGdx8qMMWZuMjvcJwK483LIEjnpMdXuPPxBZTgyhWOMMekgo8N99ARXYJquujgPwKZmjDFpJaPDffgUrQeiqtzhcO+zk6rGmDSS0eE+eoLL600XHbn32cjdGJNGYmr560SBYAivP3jS3alR1TZyNyZj3bvl4Dseu+GCRUmo5PRl7Mjd6w8CUOjKPuVxJQU5uLKzbORujEkrGRvuHl843AtmCHcRocrt4tiobz7KMsaYuMjYaRlvJNwLc08d7hCed7eRuzHOdaLpl3SXueHuj23kDuFwPzQ0keiSjDEJdnRkgm8/+Rad/eNki1BfXsDCsgKq3Hmn3O+SjjI33KMjd9fMfwRV7jze6B5OdEnGmAQ4MjzBT17r4SevdfPW0TEAXNlZKIp/f3jn+YpaN791UZOjAj5jw90THbnHOC3TPzZJMKRkZznnL98Yp1JVnt97jH/8+U72Hh1DgcWVhVy1dgHNVUXUlRYA4VVwb/YM8dyePl7Z388ly6qSW3gcZWy4e30BBMjLnfmccpU7j5DCoMd3fFOTMSb1TAaC/GRbD3e8eIC9vWMU5+dw+cpqzl1UTuUJ/u0uKM2ntqSWw0MTPL7jCMtr3dQU5yeh8vjL3HD3B8nPzY7pY9jxjUyjkxbuxqSg/325g7bOQZ5/q49hr5+60nyuO6+BMxtKyck69QBORPjwufXc8tRefri1m89fttQRn9AzNtw9vmBMJ1PhV1sQrK5LZFXGmNPh9QW579WDfOeptxiZCLC4opDfOKeeZTVu5DTmz0vyc7l23ULub+3i+b19vGdlTQKrnh8ZG+5eX3DGDUxR1jzMmNQyOuHn3i0H+e4L7Rwb89FcVcR1LY0sqSo6rVCf6qyGMl47OMTL+/u5fEX1rF8nVWRuuPuDMZ1MhV+dljHGJE/XgIfvvdTBD9q6GJsMcOnyKv7wiuXs6x2Ly+ufsbCEPUdH6R2dpLYkvefeYwp3EdkA3AJkA7er6jemPf8F4A+AIDAG3KiqO+Nca1x5fUEqilwxHVvkyiY/N8tG7sYkQTCkPLu7l/tePcize3oBOLO+lEuWVdFQXhi3YAdYUu0GoL1vzPnhLiLZwG3AlUA30Coim6aF972q+t+R468Bvg1sSEC9cePxxT5yF5HwLlUbuRszb/7ruf20dQzQ1jnIsNdPcV4Oly2v5oIllZTOcB2G2aooclFWmMv+vnEuWpreyyJjGbmfD+xT1XYAEbkfuBY4Hu6qOjLl+CIgpa9JFwopE/7Y59whfFLVWhAYk1ihkPKLvX18f3MnT+/qRYFlNW6uPrOO1XUl87KKZWmVm52HRwippvWmpljCvR7omnK/G7hg+kEi8gfAnwIu4Iq4VJcgo5MBFCiIYXdqVLU7j85+T+KKMiaDDXv9PNjWxd2bO+ns91DlzuOyFdWsb6qIefo0XpZUF7H14CBHhidYWFYwr+8dT3E7oaqqtwG3icgNwFeAT08/RkRuBG4EWLQoeT2Rhz3h66HGOi0D4Qtlt3UOJqokYzJSe98Yd73cwf2vduELhlhcWcjH1zdyxsKSGdenJ0p03n1/35jjw70HaJxyvyHy2MncD/zXiZ5Q1Y3ARoCWlpakTd0MecPte09nWqbancegx4c/GCI3O2M7JRszZ6rK5vYBbn+hnad39+LKzmJtfSkXL61MiTAtLcilyu2ivW+cS5dXJ7ucWYsl3FuB5SLSTDjUrwdumHqAiCxX1b2Ru1cDe0lhw97ZjdxVYWDcl/Zn0Y1JhkAwxF8/tJ0X9x6jZ8hLoSubK1bVcEFzxYxXRJtvS6rdvN41lNb9pGYMd1UNiMhNwOOEl0Leqao7RORmoE1VNwE3icj7AD8wyAmmZFLJUHRa5jRH7hBe627hbkzsvL4gD27t4rsvtNM14KXKnceH1tVzzqKylP0UvKSqiFcPDNAz5GVRRWGyy5mVmObcVfUR4JFpj31tyu0vxrmuhBryziLc7ULZxpyW0Qk///dKJ3e+eID+cR/nLirj3ctrWFVXnPKrUKaud3d0uDvNsCc853460zJ2oWxjYjPs9XPHiwfY+Px+JvwhVtS6+ci5DTRVFSW7tJi583JYUJJPe984l69MdjWzk5nh7vWTmy2n9ZGwqji8HMvC3ZgTG5nwc+eLB7jjxQOMTgRYU1fCe1bWUF+e/JOks7GospA3u4dQ1bTsM5OR4T7k8cd0BaapCl05FLmyrQWBMdOMTvj5kwfe4MV9fUz4Q6ypK+G9q2uOXxAjXVW785jwhxj3BXHnpV9Upl/FcTDk9Z/WlEyUtSAw5m3ROfXvvtDOkMfPqgXFvHd1LfUpsJwxHird4U/r/WOTFu7pYtjrP62TqVFVbgt3YwbGfXzvpQPc9XIHoxMBLl9ZzZq6EhrK0/PE48lUFYXPs/WP+VhcmT7nC6IyM9w9sxu515TksfvwaAIqMib1dfaPc8eLB3iwrRuvP8iGMxbw++9ZylkNZdy75WCyy4u78iIXWZK+13HIyHAf8vpmNcqoLcnnF3v6ElCRMalJVdnaOcjtLxzg8Z1HyEI4u7GMS5dXUVuSz/aeEbb3jMz8QmkoO0soK3RxbNyX7FJmJTPD3eNnRc3pj9xrS/IZ9wUZnfCn3I46Y+LJHwzxlYe289K+Y3QPeinIzeay5dVctKSSkgS1201FVW4X/TZyTw8T/iCTgdCs5twXRHamHh2ZtHA3jjQ64eeB1i6+91IHPUNeqtwurjl7IecuKseVk5q7SROp0p1HxzFPWi6HzLhwH57F7tSompLwCZbekQmW1bjjWpcxydQ14OF/X+7ggdYuRicDXNBcwRWrali5IPV3kyZSVZELXzDE6GSAkjQb0GVcuA/Not1vVHTkfmRkIq41GZMMqkprxyA3P7yTHT3DiMDa+lIuXVadthuP4q3S/faKGQv3FBcduZ/uJiaAminTMsakq5EJPz99rYd7Nh9kz9FR8nOzuHR5FRcuqaSscH4vjJHqqo6H+yTNadQ+ATIw3IeifWVmMS3jzsvBnZfDURu5mzQTCimvtPfzYFsXj24/wmQgxNr6Er71kbPw+IIZOZ8ei9KCXLJFODaWfitmMi/cZ9HLfarakjwLd5M2Oo6N86Nt3fx4Ww89Q17yc7M4u7GMlsXl1JcVEAipBfspZGcJ5UUu+sfT79N6xoV79BJ7p3MVpqlqS/It3E1Km/AH+epD22ntGKSjfxwhfJHpj7c0smZhScr2UE9VVW5XWm5kyrxw9/rJzhLyYhytTN955/UFOXBsPBGlGTMn+3pHuWfzQX60rZvRiQCVRS7ev6aWdYvKKc2gtenxVuXOY1/vGCHVtFo5lHHhPuT1UVqQO+s1q8X5uYxOBAiFlKw0vfyWcQ5fIMQTO49wz+ZONrcP4MrO4qozF1DtzqO5qijt1manokq3i0BIGfH60+qEc+aFu8c/p1FMSUEOQVUGPL7jZ9KNmW89Q17u23KQ+1u7ODY2SXlhLu8/YwHnLS5Pyw6Gqawy2kBs3GfhnsqGvXMM98ha16MjExbuZl4FQ8pze3q5d8tBnt3TiwJXrKyhobyA5bWZvdkokaoirX+PjU2ytDp9Ni9mZLhXFM3+t2+0r0bvyCRnLIxXVcacXN/oJA+0HuS+V7voGfJSnJfDZSuqWb+4gvI5/L9sYlNSkEtOltCfZsshMy7chzx+lsxhM0JJfviPzHapmkR7s3uI2184wKPbD+MPKu9aVsW7V1Szuq6EbDvfM2+yRKgoSr8GYhkY7r45Tcu4I+FuyyFNIqgqz+7p5e8f3sWBY+Pk5WSxvqmCC5orqS62acBkqXLn0WfhnrqCIWV0MkDpHE6K5GRlUWS7VE2cqSpP7erllqffYnvPCKUFuVy1dgHrmyrIn+WGOxM/lW4Xe46OElJNdikxy6hwH53wo8qc1/yW5OdYfxkTF6rK3/1sJ0/sPMKhoQkqilx85NwG1jWW2dRLCikryCUYUsYnA8kuJWYZFe6Dkd2pFUW5eH2hWb9OSX6ujdzNnG3tHORbj+1my4EBygtz+ei5DZxtoZ6SSgvCn/ajjQfTQUaF+0DkclnlhS68vtmHc0lBju1SNbO29+go33p8D0/uPEqVO49rzl5IS1M5OVnWFiBVlRWGP+1HW4ang4wK98FIuFcUuTg0NIdwz8/l2JgPfzBkfTpMzLoHPdzy1F5+tK2bIlcOf/ZrK/jsu5p56LVDyS7NzCA6leu4kbuIbABuAbKB21X1G9Oe/1Pgc0AA6AM+q6qdca51zgY8b4/c5yK6kal3dJL6MruogTm13tEJbntmH/dE+hRdvDS8pLEoL8eCPU0UurLJzRZnhbuIZAO3AVcC3UCriGxS1Z1TDnsNaFFVj4j8HvAt4OOJKHguBqaM3OeiuODt5ZAW7uZk+scm2fh8O//3Sie+YIhzF5XxnpU1abWF3YSJCKUFucevB5EOYhm5nw/sU9V2ABG5H7gWOB7uqvrslOM3A5+MZ5HxMjjuw5WTNet2v1HHR+52UtWcwOC4jz9+4HVe2d+PPxji7MYy3ruq5vgl20x6KitwOWvkDtQDXVPudwMXnOL43wEenUtRiTIw7qOi0DXnTnnRFgRHhi3czduGPD5uf+EA33vpAB5fkDMbSrliVQ01xfnJLs3EQWlBLnt70+fffFxPqIrIJ4EW4N0nef5G4EaARYsWxfOtYzLo8cWlF0d0/u3oqK11NzA2GeCOFw5w+wvtjE4GuPqsOpZVu6ktsVB3ktLCcLtvXyCUFleviiXce4DGKfcbIo/9ChF5H/DXwLtV9YSpp6obgY0ALS0t877Va2DcR0XR3C9akCVCTXE+R23kntEmA0G+9IM3eHZ3L+O+IGvqSnjf6loWlFqoO1FZQS5K+FxbY0VhssuZUSzh3gosF5FmwqF+PXDD1ANE5Bzgf4ANqtob9yrjZNDjZ2GcToDWluRxdNTCPROpKo/vOMI/Pbqbzn4PS6qKeP8ZC9LiH7yZvehyyEND3rT4u54x3FU1ICI3AY8TXgp5p6ruEJGbgTZV3QT8M+AGHozMZx9U1WsSWPeshEfu8VmpUFuSz56jo3F5LZM+dhwa5uaf7WTLgQFW1Lr5zMVNLK9x2xWPMkBpZCPT4TT5xB7TnLuqPgI8Mu2xr025/b441xV3gWCIYa9/zmvcoxZVFPL07l6CIbXt4hlgyOPj83dv5dUDAxS4srl23UJaFlfY330GKYu0IOgZ8ia5kthkzA7VIW+0r0x8wr2pqghfIJQ2H9HM7ARDygOtXfzz47sZ9vq5cGkl71tVS8Ecl9Oa9OPKyaIgN5vDwxbuKWUwThuYopojF/zo6B+3cHeo17uG+NpPt/Nm9zDnN1dwQXMFdaW2aS2TlRXmzql1yXzKmHCP1+7UqGi4Hzg2zqXLq+PymiY1bHy+nSd2HGFr5yDu/Bw+1tLI2Q2lNq9uKC3I5ZBNy6SWwTj1lYmqKc6j0JVt3SEdxB8McfcrnXz7yT34AiEuWVbFFatq7GIZ5rjSglx2HR5JdhkxyZhwHxiP75y7iNBUWWTh7hDP7enlH36+i329YyyvcXP1WXW2s9S8Q1lBLiMTAcYnAxTlpXZ8pnZ1cRQduUf7MsdDc3URO3qG4/Z6Zv7t6x3jH36+k+f29LG4spCNnzqPvtFJm4IxJxS9ROfhYS/LaoqTXM2pZUy4D4z7KHJlx/UjdnNlEY9tP2J93dNQ/9gk33lqL9/f0okrJ4ur1i7goiWVHBvzWbCbk4puZOoZmrBwTxWD4/HpKzNVc1URwZDSNeBhSbU7rq9tEmMyEOSulzq49Zl9ePxB1jdV8N7VtbhT/CO2SQ3RT/6H0+Ckasb8Hz3gid/u1Kjm6rdXzFi4pzZV5SsPbefR7UcYGPexsraYq9YuoMaae5nTUJKfiwhpsWImY8J9cNwXt5UyUc2Vb4e7SV1vHR3lb366g1fa+6kpzuO3L25ieW1qf6Q2qSk7S6gtzudQGrQgyJhwH/D44j66Li9yUVaYa+GeosYmA9zy1Ft876UO3Pk5XHP2QtY3WcsAMzd1Zfk2ck8lg+Px6yszVVNlER39Fu6pRFV5bPsR/vZnO+gdneT69Y38+ftX8dj2I8kuzTjAwtICdqbBWveMCPfJQJCxyUBcerlPt6SqiM3t/XF/XTM7PUNefueuVnYfGaWuNJ8vXLaUxopCC3YTNwvL8nlq11FUNaVXVmVEuA95whuY4r1aBsINxH78Wg8T/qDtZEyiYEi56+UO/vWJPfiDIa5au4CLl1bZFIyJu4VlBUwGQhwb81FdnLrXxc2IcD/eVyYB0zJTG4itWlAS99c3M9veM8xf/eSXvNk9zHtWVtOyuCIhv8iNAWgoDzcK7BnyWrgnW7QjZCL+wR8P92MW7vNtbDLA5/+vjVfa+yl05XD9+kbOrLcGXyaxGsrDnUG7Bz2sayxLcjUnlxHhPuCJb0fIqZoi4d5uK2bmjary6PYj3PyznRwdmaClqYINZyywHutmXrwd7qm9YiYjwv34yD0B0zLuvByqi/PosHCfF+19Y/zNph28sPcYa+pK+NA59SyyfvpmHhXn51JWmEvXgCfZpZxSRoR7tCNkPJuGTdVcZd0hE+2ulzp4bk8vL+w9Rk628MGz6rigudJOmJqkaCgvsJF7Khj0+CjJz0lYc68lVUU8sTP1l0alI1Xl8R1H+c5TbzHk9XNOYxkb1i6gOD8xv6iNiUVDWSF7e0eTXcYpZUQrw4Hx+PeVmWptfSkD4z46+1P7Y1q66ewf57fvauUL92wlPzeb3710Cde1NFqwm6SLjtxVNdmlnFTGjNwTuTTu/OYKAFo7Bo6fYDWzNxkIsvEX7dz67D5ysoSvXL2avJxsm4IxKaOhPPXXumdEuA+M+1iQwO5/y6rdlBXm0toxwHUtjQl7n0zw8v5j/NF9r3NsbJIz60u5+sw6Cl0Z8b+pSSPRte7dgx4L92QaHPexui5xa9CzsoSWxRW0dgwm7D2cbnDcxz8+sosfbu2mosjFZy5uYoV1bjQpqrEiGu5ezllUnuRqTiwjwj0RvdynO7+5nKd2HaV3dMKuvXkaVJWHXu/h7x/exYjXz+9fvpTakny7spVJafVpsNbd8eHu9QWZ8Ifivsb93i0Hf+V+dLllW8cgHzizLq7v5VT/+ew+Hnq9h7eOjtFYXsAnL1jMglL7xWhSnzsvh/LCXLoGU3cRhePD/e3dqYldYbGwLJ/83CxaOwYs3GcQCinf39LJd57ei6rywbPquHBJJVm2jNSkkYbywpQeucf02VdENojIHhHZJyJ/eYLnLxORbSISEJGPxr/M2TsSuWJKok965GRlcU5jOa0dAwl9n3R3sN/DDbdv5qs/3cGi8kK++N4VXLy0yoLdpJ3wcsg0HrmLSDZwG3Al0A20isgmVd055bCDwGeAP0tEkXMR/cNvLE/8FvX1zRXc+sxeRif8thZ7mlBI+b9XOvjmY3vIyRK+8RtnEgzZpi+TvhrKC3hmd2/Kbl6MZVrmfGCfqrYDiMj9wLXA8XBX1Y7Ic6EE1Dgn0f4PDfMQ7uc3VRBS2HZwiHevqE74+6WL/X1jfPZ7rXQOeFhR6+ZD6+oJKSn5D8KYWDWUFzIZCNE3NpmSiyhimZapB7qm3O+OPHbaRORGEWkTkba+vr7ZvMRp6xrwUuXOm5eOgecsKiM7S2g9YFMzAP5giNue3cdVt7xA7+gkHz2vgU9f1ERZAhq4GTPfUr075LyeUFXVjcBGgJaWlnnZt9s16KGxomA+3oqivBzOWFjCqzbvTlvHAH/1k1/y1tExrlq7gHWNZTZVZRxl6lr3c1NwrXss4d4DTN122RB5LC10D3o5ex4b6q9vquDuzZ0ZO+/ePzbJ5+/eSlvnIGUFuXzqwsUJ3UBmTLLUl7190Y5UFMu0TCuwXESaRcQFXA9sSmxZ8REMKYeGvDSWz8/IHeCDZ9XhC4T46euH5u09U4E/GOJ7Lx3g8n95jm0HB3nXsiq++L7lFuzGsYrycqgoctE1kKbTMqoaEJGbgMeBbOBOVd0hIjcDbaq6SUTWAz8ByoFfF5G/U9UzElp5DA4PewmE9PjHp/mwrrGMNXUl3LO5k9+8YJHjTxqqKs/t6ePrj+xib+8Yly6v4txF5dQmsJePMakilZdDxjTnrqqPAI9Me+xrU263Ep6uSSnR36jzsQwySkT45IWL+auf/JJtB4c4b3HqzcXFy/aeYf7p0V28tK+fpspC/udT5/Fra2q579Wumb/ZGAdoKC9g9+HU7Ovu6AYe0a3B83VCNeradQtx5+Xw/S2d8/q+86W9b4w/vO81PvgfL/LawSE+eFZQg4UlAAANqklEQVQdn31XM/1jPgt2k1EaygvpHvISCqVeX3dHtx/oHvCQJVBXOr/hXpSXw4fPqeeBti6+evWahPaSn0/dgx5ufWYfD27tJi8ni8tXVnPpsmq7MLXJWI3lBfgCIY6OTsx7zszE2eE+6GVBST6unPn/gHLDBYu4e3MnP9rWzecuXTLv7x9Ph4e9/PH9r9PWMQgSvjjJ5SuqM3I1kDFTRdtS7z4yauE+n7oGPTTM48nUqVbXlXDe4nK+v+Ugn72kmaw0vIpQ96CH/3puPw+2dRMMKS1N5bx7RbVtQjImYvXC8GqwnYdGeM/KmiRX86ucHe4DXi5ZVjVv7ze9DfCK2mLue/Ug332hnc+/e+m81TFX7X1j/Pcv9vPjbT2IwHUtjdSXFcS9bbIx6a4kP5fGigJ2Hh5Jdinv4NhwnwwEOTo6Me8nU6dau7CEMxaW8C9P7OGSZVWsrS9NWi2x+GX3MF/+8ZvsODRCdpawvqmCy1ZUU1pg0y/GnMyauhJ2HbJwnzc9g15U53cZ5HQiwofX1fPdF9v54v2v8fAfXppyJx+DIeXpXUe586UDbG4fID83i8tWVHPx0kqbUzcmBmvqSnli51HGJwMU5aVOpKZOJXHWFWnmM58bmE6kMC+Hf71uHZ+8Ywtff2QXf/+htUmtJ2rI4+OHW7u5e3Mnnf0e6ssK+KsPrCInK4v83NT6BWRMKluzsATV8EnVVNrX4thwj+4aa5jH1gMn867lVXzuXc3c/uIB3Pk5/NmvrSQ7CSdYQyGlrXOQ+1sP8vCbh/EFQiyqKOT69Y2csbA0KTUZk+7WRE+qHh6xcJ8PXQNecrMlZbbB/7+rVuHxB/mv5/az+/AIt3ziHErmYdpDVdnXO8bP3jjET17voWvAS5Erm4+1NFBe6Eq55VvGpJuFpfmUFuSyM8Xm3Z0b7oPhqYZUGY3mZmfx9Q+fyZq6Ev520w4+dOtL/MWGVVy5pjbuNY5PBth2cJBf7OnjyV1H6ez3IMCyGjfXndfAGQtLk7L23xgnEhHW1JWk3IoZx4Z794An6fPtUVOXSGaJ8NuXNPPYjsN84Z6tNFcV8dl3NXPl6loWlJ7+p4zJQJC9R8fYdXiEnYdH2HZwiO09wwRDiis7i4uXVbKusYzVC0oosVUvxiTEmoXhZoGBYIic7NQYODk23LsGvbx/YWouPWyuKuLZL13OYzuOsPH5dr760Ha++tB2GsoLOG9xOY3lhVS5XVS688jJEgIhJRAKMezx0zc2ybFRH91DHnYcGmHY4yfa1SI3W6gvK+DS5VU0VRaxuKKQPDs5akzCrakrYTIQoqN/nGU1xckuB3BouI9PBhgY96XEydST+UFbNwAfb2nk0uXVdBwbp6N/nFcPDPCzNw5xsj5E2VlCRZGL+rICmiqLqFjkoqY4j4WlBVS4XWQ5vMWwMakoelJ1x6ERC/dEersbZGpMy5yKSHi0XV9WcHw3bUgVjy/I+GQAVciS8HROviubQle2BbgxKWZptRtXdhY7D41w7bpZXWI67hwZ7ls7BwFYU5cav0FPV5YI7rwc3Cm0IcIYc3KunCyW17pT6qRqasz8x9mzu3tprChgabU72aUYYzLEmroSdh4aQTU1ers7Ltwn/EFe3HeMK1bWOP4Sd8aY1LFmYQn94z6OjkwmuxTAgeH+Sns/E/4Q71mVWu03jTHOduGSSgAe33EkyZWEOS7cn93dS0Fu9vE/aGOMmQ+r60pYW1/CA62pcalJR4W7qvLM7l4uWVZpza+MMfPuYy2N7Dw8wvae4WSX4qxw39c7Rveg16ZkjDFJce3Z9bhysniwLfmjd0eF+zO7ewG4wsLdGJMEpYW5bDhjAQ+9fogJfzCptTgq3J/e3cvquhLrdGiMSZqPtTQy7PXz5M6jSa3DMeE+7PGztXOQK1ZVJ7sUY0wGu3hpJfVlBfwgyVMzjgh3VeXfnnqLYEh57+raZJdjjMlgWVnCdS0NvLjvGLuSuGM1pnAXkQ0iskdE9onIX57g+TwReSDy/BYRaYp3oady6zP7uOvlDj57STPnNJbN51sbY8w7fOL8RVS587jhu5t5s3soKTXMGO4ikg3cBlwFrAE+ISJrph32O8Cgqi4D/g34ZrwLPZl7Nnfyr0++xW+cU89Xrl5tu1KNMUlXW5LPg5+/iKK8HD6xcTOv7O+f9xpi6Ux1PrBPVdsBROR+4Fpg55RjrgX+NnL7h8CtIiKagCYLoZCy+8gor7T388r+Yzy9u5crVtXwzY+eRVaKXHXJGGOaqor44Rcu5lN3bOHT33uVK1fXcn5zBec3V7CytjjheRVLuNcDU88MdAMXnOwYVQ2IyDBQCRyLR5FT/fsze/nOU3sBaKos5NMXNfH/NqwiN0WufmKMMVELSvP5wecv4p8e3cWLe4/x818eBuCvP7Ca371sSULfe157yorIjcCNkbtjIrJnLq/XCfwC+LvZfXsVCfjlkwLs50o/Tv3ZHPlz/WYcXuPGb74dhLOwOJaDYgn3HqBxyv2GyGMnOqZbRHKAUuAdk0yquhHYGEthiSYibarakuw64s1+rvTj1J/NqT9XuohlLqMVWC4izSLiAq4HNk07ZhPw6cjtjwLPJGK+3RhjTGxmHLlH5tBvAh4HsoE7VXWHiNwMtKnqJuAO4G4R2QcMEP4FYIwxJklimnNX1UeAR6Y99rUptyeA6+JbWsKlxPRQAtjPlX6c+rM59edKC2KzJ8YY4zy2ftAYYxwo48J9plYK6UpE7hSRXhHZnuxa4klEGkXkWRHZKSI7ROSLya4pHkQkX0ReFZE3Ij/XLFf0piYRyRaR10Tk4WTXkqkyKtxjbKWQru4CNiS7iAQIAF9S1TXAhcAfOOTvbBK4QlXPBtYBG0TkwiTXFE9fBHYlu4hMllHhzpRWCqrqA6KtFNKeqj5PeKWSo6jqYVXdFrk9Sjgw6pNb1dxp2Fjkbm7kyxEnwESkAbgauD3ZtWSyTAv3E7VSSPugyBSRbqPnAFuSW0l8RKYuXgd6gSdV1RE/F/Ad4C+AULILyWSZFu4mTYmIG/gR8Meqmrwm2XGkqkFVXUd41/f5IrI22TXNlYh8EOhV1a3JriXTZVq4x9JKwaQYEcklHOzfV9UfJ7ueeFPVIeBZnHHO5BLgGhHpIDzteYWI3JPckjJTpoV7LK0UTAqRcIP+O4BdqvrtZNcTLyJSLSJlkdsFwJXA7uRWNXeq+mVVbVDVJsL/vp5R1U8muayMlFHhrqoBINpKYRfwA1Xdkdyq4kNE7gNeAVaKSLeI/E6ya4qTS4BPER4Bvh75+kCyi4qDOuBZEXmT8KDjSVW1ZYMmbmyHqjHGOFBGjdyNMSZTWLgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbibeSMiwcg69R2RVrdfEpGsyHMtIvLvp/jeJhG5Yf6qfcd7eyN9YFKCiHw80rba1sabE7JwN/PJq6rrVPUMwjsyrwL+BkBV21T1j07xvU1AUsI9Yn+kD0zMIi2mE0JVHwA+l6jXN+nPwt0khar2AjcCN0nY5dFRqIi8e8pu1NdEpBj4BnBp5LE/iYymXxCRbZGviyPfe7mIPCciPxSR3SLy/UgLA0RkvYi8HPnU8KqIFEc6M/6ziLSKyJsi8vlY6heRh0Rka+RTyI1THh8TkX8VkTeAi07ynmdEbr8eec/lke/95JTH/yf6yyFygZltkdd4Oo5/DcbJVNW+7GtevoCxEzw2BNQClwMPRx77GXBJ5Lab8IXcjz8febwQyI/cXg60RW5fDgwTbgqXRbglw7sAF9AOrI8cVxJ53RuBr0QeywPagOZpNTYB26c9VhH5bwGwHaiM3FfgY5HbJ3vP/wB+c8oxBcDqyM+dG3n8P4HfAqoJt6lunvq+U37Wh0/0Z21f9pVzmr8LjJkPLwHfFpHvAz9W1e7I4HuqXOBWEVkHBIEVU557VVW7ASLz5E2EA/+wqrYCaKRtsIj8GnCWiHw08r2lhH9ZHJihxj8SkQ9HbjdGvqc/UsuPIo+vPMl7vgL8deSiFj9W1b0i8l7gPKA18rMWEO7zfiHwvKoeiLyG4y7IYhLDwt0kjYgsIRyGvYRHrgCo6jdE5OfAB4CXROT9J/j2PwGOAmcTHqFPTHlucsrtIKf+/1yAP1TVx0+j7suB9wEXqapHRJ4D8iNPT6hq8FTfr6r3isgWwlcreiQyFSTA/6rql6e916/HWpcxU9mcu0kKEakG/hu4VVV12nNLVfWXqvpNwh0TVwGjQPGUw0oJj4pDhLtGznTycg9QJyLrI+9RLCI5hDuE/l6kZzwiskJEimZ4rVJgMBLsqwiPrmN+z8gvtXZV/Xfgp8BZwNPAR0WkJnJshYgsBjYDl4lIc/TxGWozBrCRu5lfBZFpklzCF76+GzhRj/Y/FpH3EL5M2w7g0cjtYORE5V2E56R/JCK/BTwGjJ/qjVXVJyIfB/4j0j/dS3j0fTvhaZttkROvfcCHZvg5HgO+ICK7CAf45tN8z48BnxIRP3AE+LqqDojIV4AnIstD/cAfqOrmyAnbH0ce7yW80siYU7KWv8bMQMLXbn1YVVPqMniR6aE/U9UPJrsWk3psWsaYmQWB0lTbxET408tgsmsxqclG7sYY40A2cjfGGAeycDfGGAeycDfGGAeycDfGGAeycDfGGAf6/7B8Fzt8kMuBAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(vista['vista_ra'], vista['vista_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, vista, \"vista_ra\", \"vista_dec\", radius=0.8*u.arcsec)\n", "del vista" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add LAS" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8XHd57/HPM6PZtIx2W94UO47jxCRAiLMRaAwN1NCUQMsWtvaW4C6kpUAXuoWWLi+4vbe3lxKWlOayXMJSSMGlgUBJcgMkDnYSSLziJV7kTZIta9/13D/mjDJWbGskjTTb9/166ZWZM0dznnHsr356zu/8jrk7IiJSWkL5LkBERHJP4S4iUoIU7iIiJUjhLiJSghTuIiIlSOEuIlKCFO4iIiVI4S4iUoIU7iIiJagiXwduamrylStX5uvwIiJF6Yknnuh09+bp9stbuK9cuZJt27bl6/AiIkXJzA5ls5/aMiIiJWjacDeze8ys3cy2T7PfNWY2ZmZvzF15IiIyG9mM3D8HbLzQDmYWBj4GfC8HNYmIyBxNG+7u/ghweprdfg/4BtCei6JERGRu5txzN7NlwBuAT829HBERyYVcnFD9J+BP3H1iuh3NbJOZbTOzbR0dHTk4tIiInEsupkKuB75iZgBNwGvNbMzdvzl1R3e/G7gbYP369boFlIjIPJlzuLv7qvRjM/sc8O1zBbuIiCycacPdzL4MbACazKwN+DAQAXD3T89rdSIiMivThru735btm7n7b8ypmjy69/HD59z+tutaF7gSEZG50xWqIiIlSOEuIlKCFO4iIiVI4S4iUoIU7iIiJUjhLiJSghTuIiIlSOEuIlKCFO4iIiVI4S4iUoIU7iIiJUjhLiJSghTuIiIlSOEuIlKCFO4iIiVI4S4iUoIU7iIiJUjhLiJSghTuIiIlSOEuIlKCFO4iIiVo2nA3s3vMrN3Mtp/n9beb2dNm9oyZPWpmL8p9mSIiMhPZjNw/B2y8wOvPAje5+5XA3wB356AuERGZg4rpdnD3R8xs5QVefzTj6RZg+dzLEhGRuch1z/3dwHdy/J4iIjJD047cs2VmryAV7i+7wD6bgE0Ara2tuTq0iIhMkZORu5m9EPgscKu7nzrffu5+t7uvd/f1zc3NuTi0iIicw5zD3cxagfuAd7r7z+dekoiIzNW0bRkz+zKwAWgyszbgw0AEwN0/DdwJNAKfNDOAMXdfP18Fi4jI9LKZLXPbNK/fDtyes4pERGTOdIWqiEgJUriLiJQghbuISAlSuIuIlCCFu4hICVK4i4iUIIW7iEgJUriLiJQghbuISAlSuIuIlCCFu4hICVK4i4iUIIW7iEgJUriLiJQghbuISAlSuIuIlCCF+xTuzsN72nl0f2e+SxERmTWF+xQ/3NvJ93ae5LH9573Pt4hIwVO4Z3jqcBff3XGCWEWIroERxiYm8l2SiMisKNwDe9t7+caTbVzcVMUvX7mECYfTfSP5LktEZFamvUF2uXhg+wkaqqK84/qL6OwbBpj8r4hIsZl25G5m95hZu5ltP8/rZmYfN7N9Zva0mb0k92XOv66BUVY3VxOPhGmqjgHQ0atwF5HilE1b5nPAxgu8/hpgTfC1CfjU3MtaWEOj4wyOjpNMRACIR8Ik4xV0qC0jIkVq2nB390eA0xfY5VbgC56yBagzsyW5KnAhpEfoyfhzXaqm6hgdvUP5KklEZE5ycUJ1GXAk43lbsK1onOxJhXhNPDK5rbkmRmffCO6er7JERGZtQU+omtkmUq0bWltbF/LQZ7n38cNnPX/maDcANVNG7oOj45zqH5nswYuIFItcjNyPAisyni8Ptj2Pu9/t7uvdfX1zc3MODp0bvUOjACSnjNwB9rf35aUmEZG5yEW4bwbeFcyauR7odvfjOXjfBdMzOEbYjMpoeHJbczBaP9DZn6+yRERmbdq2jJl9GdgANJlZG/BhIALg7p8G7gdeC+wDBoD/Nl/FzpfeoVFq4hWY2eS22soIFSHTyF1EitK04e7ut03zugPvzVlFedAThHumkBlN1TGN3EWkKGn5AaB3aGxyjnum5poY+zs0cheR4qNwJz1yf364N1XHOHJ6gOGx8TxUJSIye2Uf7iNjEwyNTpx1AVNac02MCYdDpwbyUJmIyOyVfbinp0Gea+Q+OWNGrRkRKTJlH+49Q2MA5xy5N9VEAdjfoZOqIlJcyj7cJ0fu5zihGqsI05KM66SqiBQdhfsFRu4AqxdVaeQuIkWn7MO9Z2iUipCRiITP+fqK+kqOnRlc4KpEROam7MO9d2jseVenZlqUjNPZN8zYuO6nKiLFo+zD/Xxz3NMWJ2O4Q6du3CEiRaTsw713cOy8/XaAxTVx4Lk130VEikHZh3vP0Og5Z8qkLU4q3EWk+JR1uA+PjTM8NkEydoGRezJ1IdNJ3SxbRIpIWYd7ehrkhUbujdUxQgbtGrmLSBFRuHP2HZimCodSS/+292jkLiLFo6zDvWdyXZkLL2u/OBnnZK9G7iJSPMo63HsHn3/v1HNZnIxxUiN3ESkiZR3uPUNjVISMeOTCfwyLknH13EWkqJR5uI+STETOe3Vq2uKaOKf6RxgZ01WqIlIcyjrc00sPTCc9HbKjT60ZESkOZR7uF156IE0XMolIsckq3M1so5ntMbN9Zvahc7zeamYPmdlTZva0mb0296XmXv/wONWxc68GmWlRMHJX311EisW04W5mYeAu4DXAOuA2M1s3Zbe/AL7m7lcBbwU+metCc23CnaHR8fMu9ZvpuZG72jIiUhyyGblfC+xz9wPuPgJ8Bbh1yj4OJIPHtcCx3JU4P4ZHJ3AgEZ2+595QGaUiZGrLiEjRmD7ZYBlwJON5G3DdlH3+Cviemf0eUAXcnJPq5tHg6DjAtCP3ex8/DEBVrIItB05x7+OHedt1rfNen4jIXOTqhOptwOfcfTnwWuCLZva89zazTWa2zcy2dXR05OjQszM4kgr3yuj0bRlI3YYvfTNtEZFCl024HwVWZDxfHmzL9G7gawDu/hgQB5qmvpG73+3u6919fXNz8+wqzpGB0VRQx7PouQPUxCP0BFe0iogUumzCfSuwxsxWmVmU1AnTzVP2OQz8IoCZXU4q3PM7NJ9GeuSeyHbknqiYXGhMRKTQTRvu7j4G3AE8AOwiNStmh5l9xMxeF+z2QeA9ZvYz4MvAb7i7z1fRuZDuuVdmOXJPxiMMjo4zqnupikgRyOaEKu5+P3D/lG13ZjzeCdyY29Lm10xH7umLnTR6F5FiULZXqA6OjlMRMiLh7P4I0vdZVd9dRIpB+Yb7yHjWo3Z47m5N6TXgRUQKWfmGe5ZXp6alR+5qy4hIMSjfcJ/hyD0RCVMRMo3cRaQolG+4z3DkbmbUxDUdUkSKQ/mG+8h41lenpulCJhEpFmUb7gMzHLmDliAQkeJRluE+PuGMjE0Qn+nIPRGhVz13ESkCZRnuM706Na02HmF4bIK+YY3eRaSwlWe4z/Dq1LRkIjUdUuu6i0ihK89wn1zLPavVFyallyA42a1wF5HCVp7hPpJqq8x05F4bhPsJjdxFpMCVZ7hneRemqWom2zK6l6qIFLbyDPdZ9txjFWFiFSH13EWk4JVluA/McuQOkExEOKGeu4gUuLIM96GRcWIVIcIhm/H31sYj6rmLSMEry3AfGJn51alpyUQF7Qp3ESlwZRnug6MzWxEyU008QnvvMBMTBX0XQREpc+Ub7rMeuUcYm3A6+zVjRkQKV3mG+wzXcs9UG9y0o13TIUWkgJVnuM9h5J6+SlUzZkSkkJVnuM9h5J5M6CpVESl8WYW7mW00sz1mts/MPnSefd5sZjvNbIeZ3ZvbMnNnaHScsQmf9ci9OlZByNCMGREpaNOunGVmYeAu4FVAG7DVzDa7+86MfdYAfwrc6O5dZrZovgqeq+7gTkqzHbmHQ0ZTdUwjdxEpaNmM3K8F9rn7AXcfAb4C3Dpln/cAd7l7F4C7t+e2zNw5MxCE+yxH7gAttXFO6ISqiBSwbMJ9GXAk43lbsC3TpcClZvZjM9tiZhvP9UZmtsnMtpnZto6OjtlVPEfpkXtldGbL/WZanIyrLSMiBS1XJ1QrgDXABuA24F/MrG7qTu5+t7uvd/f1zc3NOTr0zEy2ZeYyck/G1ZYRkYKWTbgfBVZkPF8ebMvUBmx291F3fxb4OamwLzhnBkaA2ffcARYnY5wZGGUoWIBMRKTQZBPuW4E1ZrbKzKLAW4HNU/b5JqlRO2bWRKpNcyCHdeZMLkbui5NxQBcyiUjhmjbc3X0MuAN4ANgFfM3dd5jZR8zsdcFuDwCnzGwn8BDwR+5+ar6KnovuwVEMiEVm35FqqU2Fu1ozIlKosjqr6O73A/dP2XZnxmMHPhB8FbTuwVHikTAhm/lyv2npkbvCXUQKVdldodo9ODqnfjtktmUU7iJSmMou3M8MjM6p3w6QjFeQiIS1voyIFKyyC/fuwVEq5zhyNzMWJ3WVqogUrrIM9/gcR+6QvpBJs2VEpDCVZbjPtecO6SUINHIXkcJUVuE+MeGptkwORu7pq1RTE4VERApLWYV779AY4xNOZWz268qkLatPMDI2QUefWjMiUnjKKty7gqUH5npCFWBFfSUAR04PzPm9RERyrSzDvSoX4d6QDvfBOb+XiEiulWW4z2W537Tl9QkADmvkLiIFqLzCvT+9lvvcR+7xSJjFyZjaMiJSkMor3HM4codU3/1Il8JdRApP2YV7OGTE57AiZKYVDZXquYtIQSqrcD/dP0p9ZQSbw4qQmVY0VHK8e5DR8YmcvJ+ISK6UVbifGRihvjKas/dbUZ9gwuHYGY3eRaSwlFW4n+7PcbgH0yE1Y0ZECk1ZhfuZgVHqqyI5e79WzXUXkQJVVuF+OsdtmcXJOJGwaeQuIgWnbMLd3VM996rchXs4ZCzXdEgRKUBlE+59w2OMjjv1lblry0DqStU2jdxFpMCUTbifGUhdnZrLtgykTqqqLSMihSarcDezjWa2x8z2mdmHLrDfr5mZm9n63JWYG6f7U1en5jrcWxsq6RoYpW94LKfvKyIyF9OGu5mFgbuA1wDrgNvMbN059qsB3gc8nusicyG99EAue+6gpX9FpDBlM3K/Ftjn7gfcfQT4CnDrOfb7G+BjQEHee+65tszce+73Pn548mvHsW4AvrTl0JzfV0QkV7IJ92XAkYznbcG2SWb2EmCFu//nhd7IzDaZ2TYz29bR0THjYudivtoyDcFvAqeDHx4iIoVgzidUzSwE/CPwwen2dfe73X29u69vbm6e66Fn5MzACCGDZCK3s2USkTCxitDkDw8RkUKQTbgfBVZkPF8ebEurAa4AHjazg8D1wOZCO6l6emCE2kSEcCg3i4almRkNVVG6FO4iUkCyCfetwBozW2VmUeCtwOb0i+7e7e5N7r7S3VcCW4DXufu2eal4lroGRnN+MjWtvjI6ecJWRKQQTBvu7j4G3AE8AOwCvubuO8zsI2b2uvkuMFe6crxoWKaGqlS4u/u8vL+IyExldUsid78fuH/KtjvPs++GuZeVe10DoyyrS8zLezdURRkdd453D7F0no4hIjITZXOFamrkntuTqWlLauMA7D7RMy/vLyIyU2UR7u5O18DI5LTFXFucTIX7ruO98/L+IiIzVRbhPjg6zvDYBHXz1HOPR8LUV0bYfULhLiKFoSzCvSu4wKghhzfqmKolGWf3cbVlRKQwlEe4B3PQ52vkDtBSm+BAZz9Do+PzdgwRkWyVR7gHc9Dnq+cO0FIbZ3zC2dfeN2/HEBHJVlmE+3PrysxfW2bJ5ElVtWZEJP/KItzn60YdmRqqoyQiYc2YEZGCUBbhnh651+Z40bBMITMubanRXHcRKQhlEe5ngkXDKsLz+3Evb6lh1/EeLUMgInlXFuHeNTA6r/32tMtaaugaGKW9d3jejyUiciFlEu4j8zoNMu3yJUlAJ1VFJP/KJtzncxpk2mUtqXDXlaoikm/lEe79o9QtQFumtjLC0lpdqSoi+Vce4T4wQsMCtGUg1ZrRdEgRybeSD/eh0XEGRsbn7S5MU122pIb9HX0Mj2kZAhHJn6xu1lHMjp4ZBGBpXXxBjveCpbWMTTg7jvXwktb6BTmmiMyfex8//Lxtb7uuNQ+VzEzJh3tbVyrcl9dXLsjxrr+4EYBH93Uq3EUKUM/QKG2nB+noG6Z7cJTuwVGiYePwqUEWJWNE5vl6mIVSBuE+AMDy+oW5/V1DVZQXLE3yo32d3PHKNQtyTBFJcXd6Bsc40jVAW9cgbcF/j54ZnHzeOzR23u8PGaxqquJNV68gOY9XtC+EMgj3QSJhY1HNwrRlAF52SRP/58cHGRgZozJa8n/EIgtqeGyctq5BDp8e4MjpAQ6fGkg97hqk7fQAvcNnh3e0IkR9ZYT6ytTAq74ySl1llJpYBZXRMIlomJGxCY51D3HszCCP7T/Fp/7fft51w0UsqS3eeyKXfPK0dQ2ytC5BOGQLdswbL2niM48cYOvBLm66tHnBjitSKvqGxzjY2c/BU/0c7OznUBDgh08PcKJniMwVPipCRn1VlIbKKC9YVjsZ5PVVUeoTERLRMGbT//tvrI5x5bJarlxWyxceO8hnHjnAW69ZMXn9SrHJKtzNbCPwv4Ew8Fl3/+iU1z8A3A6MAR3Ab7r7oRzXOittXQML1pJJu2ZlA9FwiB/v61S4i5yDu3OqfyQ18g5G34dODwSBPkBn39lLeNTEKmioitKSjLNuaZKGyigNVakAr4lVZBXe2Vpal+B3N1zCF7Yc5EtbDvP+V126IBdB5tq04W5mYeAu4FVAG7DVzDa7+86M3Z4C1rv7gJn9DvDfgbfMR8Ez1dY1yCvXLlrQYyaiYV5yUR0/2tu5oMcVKSQjYxMc6Rrg0KnnRt7pMD9yepDBKXctq4lX0FgVY2VjJVe31tFYHaOxOhXisYrwgtaeTER41/Ur+R/f28N/7TrJm9evWNDj50I2I/drgX3ufgDAzL4C3ApMhru7P5Sx/xbgHbkscraGRsfp6B1esJF75pSpmniELQdOc7p/YZY+EMmHsfEJ2roGefZUP8929PNs0Ep5trOfY2cGmchon0QrQjQE7ZKXtNal2ibpEXhllGhFYc1SSSYivHR1Ez/c28HL1zQVXf89m3BfBhzJeN4GXHeB/d8NfGcuReXKsWCO+/KGhf+fcklzNd/nJI/u7+SWFy5d8OOL5Iq709E7zLOdqdA+0NnPgY5+nu3s4/DpAUbHn0vweCREY1VqxL1mUQ1N1VEaq6I0VMeoyrL3XUhuurSZnxw8xfd3nuRdN6zMdzkzktMTqmb2DmA9cNN5Xt8EbAJobZ3/iwAWeo57pqV1CeKRVN9d4S6FbmBkjLauQY4ErZMjwePDpwc4dGrgrBZKOGQ0VkVpronx0tVNk48bizTALyQRDfMLa5r53s6THOzsZ2VTVb5Lylo24X4UyGw4LQ+2ncXMbgb+HLjJ3c+5oLm73w3cDbB+/fp5v6NFOtyX1S38yD0cMi5uquZH+9R3l8IwMDIWjLifa58cOpUK76knMCNhm2yZvKS1joaqKE3VMZqqY9RWRgiVUIBP56Wrm3hs/yke2HmCTS+/uGh+eGUT7luBNWa2ilSovxV4W+YOZnYV8Blgo7u357zKWWrrGqAiZCxOLtwc90yrF1XzHz87xrOd/awqop/4Urzcnc6+EfZ39LGvPfW1v6OP/e19HOseOmvf2kSEhqooFzVWclVr3WQ/vL4yQnWOZ6AUs2hFiJvWNvPtp49z9MxgXjoBszFtuLv7mJndATxAairkPe6+w8w+Amxz983APwDVwL8FfyEOu/vr5rHurORjjnumy1tq+M+n4RtPtPGHv7Q2LzVIaZqYcNq6BtnX0ZsR4v3sa++je3B0cr9oOERzTYxFyTjrltbSXBOjqTo1Ci+Vy+wXwlUr6vnu9hM8deRM6YQ7gLvfD9w/ZdudGY9vznFdOZGPOe6Z6iqjbFi7iK9tO8L7bl6jf0wyYyNjExw61T8Z4Ps6+th7si9YeXRicr+qWAWLamKsXVxDc00sFeg1MZKJ8mqhzJdENMxlLTU8feQMr71iSb7LyUpJX6Ha1jXIhrX5vYjotmtbec8XtvGDXe1svKIlr7VI4Ur3w/e2PzcS39vex6FTA4xnzCesS0RYlIyx/qJ6FtXEWZRMBbmWuZh/V7XWs/1YD3vbi+N+DSX7N2JodJz23uG8/wr1irXNtCTjfPknhxXuZS49pXB/Rz8HOvs40PHciDy9NDWkTsY3VKZmoLz8kqbJtkpzdazg5oKXkzWLq6mMhnnq8Jl8l5KVkg33yTnueWzLAFSEQ7z5mhX884N7OXJ6gBUNxdGvk9kbHhvn2c5+9rf3p05mdqSC/Ocne89qpUTCRnN1jKaaGJcvqaG5Js6imtQc8YqQQrzQVIRCvHB5LdsOdtEzNEoyXtirRpZsuOdzjvtUb7lmBZ94cC9f3XpEJ1ZLiHvqpOau4z3sPtHL7hM97DnRy8GprZTKCM3VMa5qraepOjUib65WP7wYvXhFPVsOnOa7z5zgzdcU9pIEZRDu+b9keFldgg1rF/FVnVgtWiNjE+xr72Pn8R52Huth5/Fudh7roSdjbfCGqiiLk3FevqaJxTXxYGaKWimlZEV9gsaqKPc91aZwz5d8z3Gf6m3XtnL7F7Zx35NtvOWawr9FVznr7Btm9/HUSHzn8R52He9lX3vv5GX2kbDRkoxzWUuSJXVxliTjLK6NL/jiVrLwzIwXt9bxg13tHD0zmJcLJLNVwuGe3znuU73yskWsv6iej35nN69e17JgN+yW8xsaHWdfe1+qpXK8hz0ne9l1vPesqzVr4hW0JOPccHEjS+oSLKmN01QdUzuljF21op4f7GrnWz89yu9uuCTf5ZxXCYd7fue4TxUKGX/7hiu45eM/4qPf2c3H3vjCfJdUNtydY91D7A564+ke+bOd/ZO98fRvea0NlVy7qoGWZJyW2jjVsZL9JyKz1FAV5eqL6vnmU0f5nZtWF+yVvCX7N7cQ5rjD8++cfsPqRr667QhvWr+c9Ssb8lRV6RocGQ9G4D3sDloqu070nHXfzPrKCIuTcX5hTRMttQkWJ2MajcuMvP6qZfzlN7ez63gv65YW5p2aSjLcC2WO+7n84mWLeaatmz//9+18+/dfppOrc9A9OMqOo908c7SbHcd62HGsm2c7+yfXEI9WhGhJxrl8SZKWZJwltXEWJ+PEI+qNy9zccuUS/nrzDr7506MK94W083gPABc3F95iXdGKEL/yoqV8ccsh7vzWdv7+DVcW7K91haR3aJTtR3t45ugZnm5LBfqhUwOTr9cmIiytjbNh7SKW1MZZUpugrsxWL5SFU1+VWlrkWz89yp9svKxgzu1lKslwf3h3OyGDl13SlO9SzunyJUne+4rV3PXQfmIVYT78K+sU8Bn6h8fYcayHp9vOsP1oN08f7eZAR//k6/WVEZbWJXj1usUsq0uwtC5BlXrjssBef9VS/mvXSbYcOMWNBZg1Jfkv4sE97Vx9UT11lYU7I+UPX72WwZEJ7vnxsySiYf74l9aWZcB39Y+w63hqyuEzR7vZHgR5+hKgZLyCZXUJbr48FeTL6hM6ySkF4ebLF1Mdq+DfnzqqcF8I7T1DbD/awx9vLOwrQc2Mv7zlcobHxvnUw/tp7xnmzlvWUVtZ2Jc0z9bgyDj7O/rY297LnhN97DnRw5OHz5y1PG26tfLKyxalRuT1iYK/xFvKVzwS5jVXtPCd7Sf4m1uvIBEtrHM5JRfuD+/pAOAVaxfluZILS8+iuXxJkg1rm/n3p9r44d4O/u4NV/KqdYvzXN3sdfWffaOIfcHjo12Dk6PxsBnNNam73C+pTaQuBKrViFyKz69dvZx/e6KNrz/Zxjuvvyjf5Zyl5P41Pbi7nSW1cS5rqcl3KVkJmfHqdS28YEktP9h9kvd8YRvXX9zAO66/iFevaynIS9fHJ5xjZwaDRbFSKxvuD+74c6p/ZHK/ipBNri1+WctzC2M1VccK8gSUyExdt6qBqy+q55MP7eNNVy8vqJlYJRXuI2MT/GhfJ6978dKi618vq0+w+Y6X8flHD/L5xw5yx71P0VwTY+MLWrhhdSPXrWqgsTq2YPUMjY5z7MzgWTdKPhjcd/PgqQFGMlY3TETCNNfEWNVUxbWrGlhUE6O5Jq7ZKlLyzIwPvOpS3v7Zx/nq1iP8+ktX5rukSSUV7lsPnqZveKzgWzLn8/Un2qiKVfDbN61m78lefnKwi69uPcIXtxwCYEVDgoubqlndXM3y+gSN1VGagxsWV0YrqIqGiVWECYeNsBlmMDbhjI87w+PjDI6MMzAyzsDIGN2Do5wZSH2d6h+ms3eEzr5hTvQMcaJ76KwROKRG4Q1VURqroly3soGmYATeXFN6d7wXmYmXrm7k2lUN3PXQPt5yzYqCGb2XVLg/tLudaEWIGy9pzHcpcxIyY21LkrUtScYnnKNdAxzo7Od49xA/P9nLo/s7Jxexys3xUrdpq45VkIxHWN1czVWtFdRXRqmrTN0wWcvTipybmfH+my/ltn/Zwr2PH+Y3X7Yq3yUBJRbuD+5p5/qLG0vqlmPhkNHaWEVr43MXZLk7gyPj9A6P0T88xsDIOKPjE4yMTzA27ky4p67SdCcUMkJmhENGNBwiUhEiVhEiEQmTiIapjISJR8MKbpE5uGF1Izdc3MgnH97Pbde2FsTMmZJJwUf3dXKgo7/gzljPBzOjMlZBpWaXiBSMD776Ut746cd4771P8sm3vyTv7ZmspmKY2UYz22Nm+8zsQ+d4PWZmXw1ef9zMVua60At58nAX7/nCNi5ZVM2vXrV8IQ8tIgLA+pUN/O3rr+DB3e381hefYGh0PK/1TBvuZhYG7gJeA6wDbjOzdVN2ezfQ5e6XAP8L+FiuCz2f7Ue7+Y17fkJTTYwv3X5dyV4EJCKF7x3XX8RHf/VKHtnbwe2f30ZH7/D03zRPsvm9/lpgn7sfADCzrwC3Ajsz9rkV+Kvg8deBT5iZuXvuzvplON49yBOHunjiUBfffOooNfEIX7r9uoK565KIlK+3XttKRTjEH339Z1z39//FjZd0poALAAAG9ElEQVQ0ccsLl3D5kiSN1TEaq6IL0rLJJtyXAUcynrcB151vH3cfM7NuoBHozEWRme57so0PfO1nAMQjIa6+qJ6/e/2VBbm8r4iUpzdevZwXLa/lWz89xuafHeNPvvHMWa//1k0X86evuXxea1jQM3JmtgnYFDztM7M9c33PPcC975nxtzUxDz94CkSpfrZS/Vygz1Z03j7H7/+zj8Gfzf7bs5o1kk24HwUyb/O9PNh2rn3azKwCqAVOTX0jd78buDubwuaTmW1z9/X5rmM+lOpnK9XPBfpsMj+ymS2zFVhjZqvMLAq8Fdg8ZZ/NwK8Hj98IPDhf/XYREZnetCP3oId+B/AAEAbucfcdZvYRYJu7bwb+Ffiime0DTpP6ASAiInmSVc/d3e8H7p+y7c6Mx0PAm3Jb2rzKe2toHpXqZyvVzwX6bDIPTN0TEZHSU3iLhYuIyJyVVbhPt4xCsTKze8ys3cy257uWXDOzFWb2kJntNLMdZva+fNeUK2YWN7OfmNnPgs/21/muKZfMLGxmT5nZt/NdSzkqm3DPchmFYvU5YGO+i5gnY8AH3X0dcD3w3hL6/zYMvNLdXwS8GNhoZtfnuaZceh+wK99FlKuyCXcyllFw9xEgvYxC0XP3R0jNUio57n7c3Z8MHveSCotl+a0qNzylL3gaCb5K4iSYmS0Hfhn4bL5rKVflFO7nWkahJEKiXASrjV4FPJ7fSnInaF38FGgHvu/upfLZ/gn4Y2Biuh1lfpRTuEsRM7Nq4BvAH7h7T77ryRV3H3f3F5O68vtaM7si3zXNlZndArS7+xP5rqWclVO4Z7OMghQgM4uQCvYvuft9+a5nPrj7GeAhSuPcyY3A68zsIKn25yvN7P/mt6TyU07hns0yClJgLHXn7X8Fdrn7P+a7nlwys2YzqwseJ4BXAbvzW9Xcufufuvtyd19J6t/Zg+7+jjyXVXbKJtzdfQxIL6OwC/iau+/Ib1W5YWZfBh4D1ppZm5m9O9815dCNwDtJjf5+Gny9Nt9F5cgS4CEze5rU4OP77q5pg5ITukJVRKQElc3IXUSknCjcRURKkMJdRKQEKdxFREqQwl1EpAQp3EVESpDCXRaMmY0H89R3BMvcftDMQsFr683s4xf43pVm9raFq/Z5xx4M1oApCGb2lmDpas2Ll3NSuMtCGnT3F7v7C0hdjfka4MMA7r7N3X//At+7EshLuAf2B2vAZC1YZnpeuPtXgdvn6/2l+CncJS/cvR3YBNxhKRvSo1AzuynjatSnzKwG+Cjw8mDb+4PR9A/N7Mng66XB924ws4fN7OtmttvMvhQsYYCZXWNmjwa/NfzEzGqCVRn/wcy2mtnTZvZb2dRvZt80syeC30I2ZWzvM7P/aWY/A244zzFfEDz+aXDMNcH3viNj+2fSPxyCm8w8GbzHD3L4v0FKmbvrS18L8gX0nWPbGWAxsAH4drDtP4Abg8fVpG7kPvl6sL0SiAeP1wDbgscbgG5SC8OFSC3L8DIgChwArgn2Swbvuwn4i2BbDNgGrJpS40pg+5RtDcF/E8B2oDF47sCbg8fnO+Y/A2/P2CcBXB587kiw/ZPAu4BmUktVr8o8bsZn/fa5/qz1pa+KGf4sEFkIPwb+0cy+BNzn7m3B4DtTBPiEmb0YGAcuzXjtJ+7eBhD0yVeSCvzj7r4VwINlg83s1cALzeyNwffWkvph8ew0Nf6+mb0heLwi+J5TQS3fCLavPc8xHwP+PLihxX3uvtfMfhG4GtgafNYEqTXerwcecfdng/coyZuySO4p3CVvzOxiUmHYTmrkCoC7f9TM/hN4LfBjM/ulc3z7+4GTwItIjdCHMl4bzng8zoX/nhvwe+7+wAzq3gDcDNzg7gNm9jAQD14ecvfxC32/u99rZo+TulPR/UEryIDPu/ufTjnWr2Rbl0gm9dwlL8ysGfg08Al39ymvrXb3Z9z9Y6RWS7wM6AVqMnarJTUqniC1auR0Jy/3AEvM7JrgGDVmVkFqldDfCdaMx8wuNbOqad6rFugKgv0yUqPrrI8Z/FA74O4fB74FvBD4AfBGM1sU7NtgZhcBW4BfMLNV6e3T1CYCaOQuCysRtEkipG58/UXgXGu0/4GZvYLULdp2AN8JHo8HJyo/R6on/Q0zexfwXaD/Qgd29xEzewvwz8Ha6YOkRt+fJdW2eTI48doBvH6az/Fd4LfNbBepAN8yw2O+GXinmY0CJ4C/d/fTZvYXwPeC6aGjwHvdfUtwwva+YHs7qZlGIhekJX9FpmGpe7d+290L6hZ4QXvoD939lnzXIoVHbRmR6Y0DtYV2EROp31668l2LFCaN3EVESpBG7iIiJUjhLiJSghTuIiIlSOEuIlKCFO4iIiXo/wP7vbyuO19jbwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(las['las_ra'], las['las_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, las, \"las_ra\", \"las_dec\", radius=0.8*u.arcsec)\n", "del las" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add PanSTARRS" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYZHdd5/H3t+59m5nuTGcyzD1xQrgYSDJJCEQSATUgFy8sRBBW1CfKAwuoi8rqA67PPj746OIKUTGLEUGCKGRxZINJFmG5LBkyickwkwsJmWQyuU333PpS3XX97h/nVE9Nz6Wru091VZ3zeT1PPV116nSdXwXy6W++53d+x9wdERGJl1SnByAiItFTuIuIxJDCXUQkhhTuIiIxpHAXEYkhhbuISAwp3EVEYkjhLiISQwp3EZEYynTqwGvXrvWtW7d26vAiIj3pnnvuGXf30YX261i4b926ld27d3fq8CIiPcnMnmhlP7VlRERiSOEuIhJDCncRkRhSuIuIxJDCXUQkhhTuIiIxpHAXEYkhhbuISAwp3EVEYqhjV6h2i1t2HThl29uu3NyBkYiIREeVu4hIDCncRURiSOEuIhJDCncRkRhSuIuIxJDCXUQkhhTuIiIxpHAXEYkhhbuISAwp3EVEYkjhLiISQwp3EZEYUriLiMSQwl1EJIYU7iIiMaRwFxGJIYW7iEgMKdxFRGJI4S4iEkMKdxGRGFK4i4jE0ILhbmabzOzrZvaAme0zs/efZh8zs4+b2aNmtsfMLm3PcEVEpBWZFvapAr/l7vea2RBwj5nd6e4PNO3zWmB7+LgS+Kvwp4iIdMCClbu7P+Pu94bPJ4EHgQ3zdnsT8BkP3AWsMbP1kY9WRERasqieu5ltBS4Bds17awPwZNPrg5z6B0BERFZIy+FuZoPAl4APuPvEUg5mZjeY2W4z2z02NraUjxARkRa0FO5mliUI9s+5+62n2eUpYFPT643htpO4+03uvsPdd4yOji5lvCIi0oJWZssY8DfAg+7+sTPsthN4Zzhr5mXAcXd/JsJxiojIIrQyW+YVwDuA75vZfeG2/wJsBnD3TwK3Aa8DHgWKwLuiH6qIiLRqwXB3928DtsA+DrwnqkGJiMjy6ApVEZEYUriLiMRQosP9Gw8fYvfjRzg0MUvdvdPDERGJTCsnVGPrg1/cw9hkCYBCNsVrXrCOl1+wtsOjEhFZvsRW7u7Okekyl20e5ucv3UhfNs2+p5d0bZaISNdJbLhPzFap1Z11qwtctmWYDcP9TM5WOz0sEZFIJDbcj06XARjIpQEYKmSYnK10ckgiIpFJbLgfKQbh3h+G+6pCllK1Trla7+SwREQikdhwb1Tu/bngnPJQIfip6l1E4iC54V4MQnwgf3K4T6jvLiIxkNxwnz65LTNUyAKq3EUkHhIb7keKZTIpI58J/hGsyjfaMqrcRaT3JTbcj06XGR7IEaxoDH25NOmUqXIXkVhIbrgXy4z05+Zem1k4HVKVu4j0vuSG+3SF4YHsSduG8gp3EYmHxIb7kWKZkYHcSduGClkm1JYRkRhIbLgfnS6zpn9+uKtyF5F4SGS41+t+Ss8dgsp9plJjtlLr0MhERKKRyHCfnK1Sdxie15ZZFV7I1FgGWESkVyVmPfdbdh2Yez4+FYT3Q89McMnm4bntjQuZDk2W2DTSv7IDFBGJUCIr92Ip6Ks31pVpGJqr3GdXfEwiIlFKZLhPl4Oe+kA+fdL2Rrg/N6G2jIj0tkSGezEM9/mV+0A+Q8rgkCp3EelxCQ33oC3TuFFHQ8qMwXyGQ6rcRaTHJTLcp0s10ikjlzn16w8VshzSbBkR6XGJDPdiuUp/Lj23aFizoUJG4S4iPS+h4V5jIHf6WaBDhSyHJtRzF5Helshwnw4r99MZKmQ4PF2mUtO9VEWkdyUy3IulGv35M1XuwfbGhU4iIr0okeF+tsp9VeMqVc2YEZEelrhwr7szU66dMg2yoVG566SqiPSyxIX7bKWGc+oFTA2N9WWe00lVEelhiQv3Yun0Sw80DOYzmKlyF5Helrhwny6fftGwhnTKOGcgp8XDRKSnJS7cT6wrc/rKHWB0qKATqiLS0xIY7o11Zc68lP3oUJ4xTYUUkR62YLib2c1mdsjM9p7h/WvN7LiZ3Rc+Phz9MKMzHfbc+8/QcwcY6c9ytFheqSGJiESulTsxfRq4EfjMWfb5lru/PpIRtVmxXCWTMnLpM/9dGx7IcXS6soKjEhGJ1oKVu7t/EziyAmNZEdPl2hkXDWsY6c8xVapSqupG2SLSm6LquV9lZveb2VfN7EURfWZbFMu1M86UaWjcOPtYUdW7iPSmKML9XmCLu78E+ATw5TPtaGY3mNluM9s9NjYWwaEXr1iqnrXfDjAShvuRafXdRaQ3LTvc3X3C3afC57cBWTNbe4Z9b3L3He6+Y3R0dLmHXpLpsyz32zDcH4T7UYW7iPSoZYe7mZ1nYQPbzK4IP/Pwcj+3XYpnWTSsoVG5H1VbRkR61IKzZczs88C1wFozOwh8BMgCuPsngTcD7zazKjADXO/u3rYRL4O7M1up0Zc9e7gPDwTryxzRdEgR6VELhru7/8IC799IMFWy61VqTt0hv1C4qy0jIj0uUVeoNqY25k9zY+xm2XSKoUJGJ1RFpGclKtzL1eDWeQuFOwTVu65SFZFelahwn11MuA/kVLmLSM9KVLjPtWUW6LmD1pcRkd6WqHAvVxZXuWt9GRHpVYkK91LYlsm1EO4j/WrLiEjvSlS4z4ZtmUJm4bbM8ECOmUqNmbIWDxOR3pOocF/MbJkTV6mqeheR3pOocG+0ZbItToUELR4mIr0pWeFeqZHLpEidZS33BlXuItLLkhXu1TqFFqp2gJFwfRktHiYivShx4Z5r4WQqaH0ZEeltCQv3WksnUwFW92UxU89dRHpTwsK93nK4Z9IpVvfpKlUR6U3JCvdKvaWlBxqGdSGTiPSoZIX7ItoyAMNaX0ZEelTCwr31tgwE0yGPaH0ZEelBiQr38iLDfbg/p9kyItKTEhPu1Xqdat0X1XMfGchxpFimS28JKyJyRokJ98Us99swPJCjXK1T1OJhItJjEhPupUUsGtYwovVlRKRHJSbcZ+dujr2IqZBaX0ZEelSm0wNYKYtZ7veWXQcAeOLwNAC33vsUe5+a4G1Xbm7fAEVEIpSYyn0pbZmBXPC3r1iutmVMIiLtkrhwzy1itkx/Pth3uqQTqiLSW5IT7pXGLfZa/8qFbBpDlbuI9J7khPtcW6b1yj1lRn8uzbSmQopIj0lQuAcBnVtE5Q7Qn8tQLKlyF5HekqBwr5NJGenUwrfYa9afV+UuIr0nOeG+yOV+GwZyGaZVuYtIj0lOuC9yud+GwbzCXUR6T4LCfXErQjYMFjIUyzVqdS0eJiK9Q+G+gMF8BgdV7yLSUxIU7rVFTYNsGCoEV6lOKdxFpIckJ9wrdfLZxX/doXwQ7pOzCncR6R2JCffF3oWpYbCQBVS5i0hvSUy4zy6xLTMYVu5Ts7qXqoj0jgXD3cxuNrNDZrb3DO+bmX3czB41sz1mdmn0w1yeWt2p1HxJlXsukyKfSTGpyl1Eekgrafdp4LqzvP9aYHv4uAH4q+UPK1rT4cJfSwl3CKp3tWVEpJcsmHbu/k3gyFl2eRPwGQ/cBawxs/VRDTAKjWmMS2nLQDDXXSdURaSXRNFz3wA82fT6YLjtFGZ2g5ntNrPdY2NjERy6NVNhMC9ltgwEM2amFO4i0kNW9ISqu9/k7jvcfcfo6OiKHXeqtMy2TEFtGRHpLVGE+1PApqbXG8NtXaNxJ6XcUtsy+SwzldrcssEiIt0uinDfCbwznDXzMuC4uz8TwedGZrmVe+Mq1fGpcmRjEhFpp8xCO5jZ54FrgbVmdhD4CJAFcPdPArcBrwMeBYrAu9o12KVqhHthCUv+wom57uOTJTas6YtsXCIi7bJguLv7LyzwvgPviWxEbdCYLbPYuzA1NCr3sclSZGMSEWmnRFyhuuwTqo3KfUrhLiK9IRHhPl2qkjYjs8hb7DU0wl2Vu4j0ikSE+1SpSi6Twmxp4Z5Jp+jLphlT5S4iPSIx4b7UC5gaBgsZtWVEpGckItynS9Ul99sbBvMZtWVEpGckItynStUlryvTMFRQuItI70hIuNeWXbkP5TO6iElEekYiwj2qtsxUqUqxrDVmRKT7JSjcl9eWadxub3xS1buIdL9EhPvU7PJny8xdpaoZMyLSA2If7u7OdDmatgzoQiYR6Q2xD/diuUbdl34XpobBgpYgEJHeEftwPz5TAaAvt7xwH8hlMFPlLiK9ITnhvsTlfhvSKWOkP6eeu4j0hOSE+zIrd4DRoTzjqtxFpAfEPtyPFaOp3CEId1XuItILYh/uExFW7msH8+q5i0hPiH24R9VzB1i/usBzE7PU6r7szxIRaadEhHs6Zcue5w6waaSfSs15dmI2gpGJiLRP7MP92EyZVYXMkm/U0WzzSD8ABw4Xl/1ZIiLtFPtwPz5TZXVfNpLPaoT7k0cU7iLS3RIQ7hVW9+ci+az1qwukU8YBhbuIdLlkhHtElXsmneJ5awo8eVThLiLdLfbhPhFhuEPQmlHlLiLdLvbhfqxYZnVfJrLP2zzSr567iHS9WIe7uzMxW2VNXzQ9d4CNw/2MT5WZLumOTCLSvWId7lOlKrW6R96WATh4dCayzxQRiVqsw71xdWo7wl19dxHpZrEO98aiYasU7iKSMLEO94k2VO5r+rMM5jM6qSoiXS3W4d5oy6zpjy7czYxNmg4pIl0uEeEeZeUOsHmkT5W7iHQ1hfsSNC5kctfSvyLSnWId7sdmKmRSRn8EN+potmmkn1K1rht3iEjXinW4N9aViWK532abNGNGRLpc/MM9wpOpDXNL/2oBMRHpUi2Fu5ldZ2YPm9mjZva7p3n/l8xszMzuCx+/Gv1QFy/qRcNu2XWAW3Yd4NuPjGPAV/Y8E9lni4hEacEVtcwsDfwF8BPAQeBuM9vp7g/M2/UL7v7eNoxxyY4VK5wzGN26Mg3ZdIqhQoaj0+XIP1tEJAqtVO5XAI+6+2PuXgb+AXhTe4cVjSjXcp9vZCDHEYW7iHSpVsJ9A/Bk0+uD4bb5ft7M9pjZF81sUySjW6bjMxXWKNxFJIGiOqH6L8BWd78YuBP4u9PtZGY3mNluM9s9NjYW0aFPr153JmbbV7mfM5hnYrbK5GylLZ8vIrIcrYT7U0BzJb4x3DbH3Q+7e2PS96eAy073Qe5+k7vvcPcdo6OjSxlvyyZLVdyjXTSs2YY1fQDsfWqiLZ8vIrIcrYT73cB2M9tmZjngemBn8w5mtr7p5RuBB6Mb4tIcL7bn6tSGRrjvOXisLZ8vIrIcC86Wcfeqmb0XuB1IAze7+z4z+0Ngt7vvBN5nZm8EqsAR4JfaOOaWtGvpgYaBfIbh/ix7njrels8XEVmOlm4u6u63AbfN2/bhpucfAj4U7dCW58SKkNFPhWzYsKZPlbuIdKXYXqHa7sodgvupPnlkRvPdRaTrxDbcj80EgdvOcN8wHPbd1ZoRkS4T23Bficq9cVL1+2rNiEiXiXW45zIpCtn2fcVCNs35awe4/6AqdxHpLrEN94k2Lfc738UbV/N9hbuIdJnYhns715Vp9qMb1/DsxCyHJmbbfiwRkVbFNtyPFVcm3F+ycTUAe1S9i0gXiW24r1Tl/sLnrSJlulJVRLpLrMO9XStCNuvPZbhw3ZCmQ4pIV4l1uLdr0bD5fnTDavYcPI67r8jxREQWEstwr9WdydnqirRlAC7bMsyR6TIPPTu5IscTEVlILMN9YgUuYGr26hesI2Xw1b3PrsjxREQWEstwf24ymJY4OpRfkeONDuW5YtsIX/2+bpgtIt0hluG+f2wagG1rB1bsmK/70fU8cmiKR55Ta0ZEOi+W4f7Y+MqH+0+96DxMrRkR6RKxDPf949OcO5RnIN/ScvWRWLeqwI4tw9ym1oyIdIFYhvvj49MrWrU3vPbF63no2UkeG5ta8WOLiDRbudJ2Be0fn+YnX7RuRY51y64Dc89nKzUAPvrVh7jpnTtW5PgiIqcTu8r9eLHC4elyRyr3Nf05Ng33sfdpXa0qIp0Vu3Dffzg4mbr1nJUPd4AXb1jN08dmeejZiY4cX0QEYhjuj4czZc4f7Uy4X7Z5mHwmxZ/d+YOOHF9EBGIY7o+NT5My2DTS35Hj9+czXL19Lbfve477n9RKkSLSGbEL9/3j02wY7iOfSXdsDFdfsJaRgRx/esfDHRuDiCRbDMN9im1rBzs6hnw2zbuvuYBvPTLOXY8d7uhYRCSZYhXu7s7j40XO78BMmfnecdUW1q3K86e3P6ylgEVkxcVqnvvYVImpUrUj0yDnK2TTvO/V2/m9/7WXW753gLdfuaXTQxJJBHdnplJjcrbK5GyFidnq3PPJ2SpTs1UmS8HP6VKVqXKVYqlKsVxjplKjXK2TThkpM1b1Zbh08zCXbx3h0i3D7Lzv6VOO97YrN3fgWy4sVuHeWDBsaxeEO8D1l2/mzgee4yP/vI/t5w5xxbaRTg9JpCu5O6VqPQjfMHinSkH4TpeD58VSbd62GlOzFaZLNSZLQXg3frdaP/t/LRuQy6TIZ1LkMmnymRTZdIpcxkinUtTqTjXsBHz3h4epO+TSKd700udxyebhlfmHskyxCvfHwznu3dCWaVy5+mM/Msrep47zrr/9Hnf85jVsWNPX4ZGJRKded6bKVSZmKmF13KiWK2FA15gqBQE8HVbHjYCean60EMgNuXQjlFMUskEw5zMpRgfzbBzuo5BJB9uzqbnnhWwq/JmmkEmRzaRImbV0vFKlxoEjRb7+8Bj/dM9B9o9P8/qLn0cu091d7ViF+2Pj0+TSKZ7XRQHal0vziy/bwl9944fc8JndfOHXrmJwBRc0E5mvXneKlRrFUqM6PnPgTpWCwG68N9nYb/bEfgsxIJ9Nkc+km6rl4PXaMJDzmSB082EQN++bDyvrXPhoNZSjks+m2b5uiPNHB/naQ8/xfx8e4+DRGX756m1d/e9y945sCfaPTbPlnH7SqZX9H38h5w4VeOvlm/j7u57g5/7yO/zPd+5gS4euoJXe5u5Ml2scn6kwMVM56efxmaC/fKKKDn5Ol0/0mYulKtPlWkvHaoRyIQzaRpVcyKRYM9wXBG9YCc9VxY0qOZOeC/Rs2rAVDuR2SKeMn3zheWw9Z4C/v+sJ/uHuA7zr5ds6Pawzile4j093Tb99vovOW8VnfvlK3vv5e3nDJ77NjW+7lFdeONrpYckKq9edyVL1RDDPVpiYqYY/T4TzRBjMc0FdOvF6oe5FPpOiLwzaIIBTDOQzjAzkTuoxB+F7okounLQ9PqEctQvXDfEzL93AF+89yB37nuUdV3XnZInYhHut7jxxpMirLjq300M5o6u3r2Xne67mhs/u5pf+9nu8/cotvO/V21fsdoASjdlK7aRq+XhTBd0czsG2MLhnKxwvVpgsVTnbzNi5ajmbDvvFwfNzBvJsWNNHIZumL3wUsmn6cumTtuWzK9+2SKJLtwzz5NEi33p0nK/seZrXX/y8Tg/pFLEJ9yePFClX610xDfJMGidZr798M1/d+wyf2/UEX7j7SX792gt418u3MjyQ6/AIk6NWdyZmKhybqXCsWObYTBC+c89P0/JoPGYr9bN+di6dopBNBcEbntALwrmfvmxQVTeH8lw459Id6SnL0vz0xet55vgsH/ynPfzIuYNcdN6qTg/pJNapC2x27Njhu3fvjuzz/mDnPj571xN87TevOW1rpnnd9W4xPlnijgeeZe/TE2TTxqsuOpefu3Qj11w4SiHbueUTekW97kzOVjk+U+HYTJljxVMr6eNNVXTjcawYtDjOptHaOKkyzqXpb96WO1ExN+/Xbed8pH0mZivc/O395LMpdr7n6hUp0MzsHndf8IYRsajcDxwu8rldT/CWHZu6tud+OmuH8rztyi1csnkNX7rnIF++72lu3/ccuUyKSzev4arz13LJ5jW8YP2qWLduGn3o48UKR8PK+VixzNHpMkfDwD5aDMI7qLCDfRbqP2dSdkrbolFB94fB3J8LQzuXoT+bppBTQEvrVhWy/PU7LuOtf30X7/38vfzdu64gk+6OKZKxCPc/+z8/IGXG+1+9vdNDWZJ/P3CM80cHef+rt/PDsSkePTTFY+NT7Nr/g7n+7NrBPNvPHWTzSD+bz+lnw5o+zh3Kc+6qAmsHc6wqZEmtcCDV6k6xHMxdbsxhbr7AZDqcNjc57wrBydKJXnRQRZ89pAvZFP25zFwYr+rLsm5VIQjk3InKee5n+DzbJf+SSbxdsnmY//azL+a3v7iHP7rtIT78hhd2ekhAi+FuZtcBfw6kgU+5+0fnvZ8HPgNcBhwG3uruj0c71NN78JkJvnzfU/zaKy/gvNWFlThk26RTxoXrhrhw3RAAM+UaTx+f4dnjszxzfJanjs3wyKEpxqdKp/yuGazuy7KqkGUgn2EgDLl8Y0paOkU6ZcFl1U1/BNyDyrnuTs2das2p1uuUq065VqdUqVGq1pkNf86El2jPlGuUa2fvPTfLhVPo8k1V9Jq+LOtXF+Ze9+cyYRV9oppWFS294C07NvHA0xPc/J39OM7vXHdRx1urC4a7maWBvwB+AjgI3G1mO939gabdfgU46u4/YmbXA38MvLUdA57vT25/mKF8hndfc8FKHG5F9eXSXDA6yAWjJ69yWarWmJg5sW5Go2qeqVSZrQSBfKRYpjxRp1Z3KjWnVq9Td6i7U/dgVkZDysDMMIO02dwfgUwquBQ7kzay6RRDhQwj/TmymRS5dIpsxsinU3OvT71IJZjpoZOEkgS//9MvAOBvv/M43/3hYf78+kt4/nlDHRtPK5X7FcCj7v4YgJn9A/AmoDnc3wT8Qfj8i8CNZmbeprO1B48WuWPfc9y+71l27T/C71x3Eav7s+04VFfKZ9KMDqVj3YcX6TWZdIo/eOOLuOb5o3zwn+7nDTd+m2svHOWKbSNcue0c1q8pMJDLUMimVuT6gVbCfQPwZNPrg8CVZ9rH3atmdhw4BxiPYpDNbr33IL/5j/cD8Px1Q/zGay7kl6/eGvVhRESW5Meffy7/+oFX8rE7f8C3HxnnjgeeO+n9lMG7r72AD/7URW0dx4qeUDWzG4AbwpdTZrasWxU9AdwBfKC13dfShj82XUTfr7fF+fvF+bvx9iX8zm9/FH576Yds6ZLYVsL9KWBT0+uN4bbT7XPQzDLAaoITqydx95uAm1oZWNTMbHcrc0N7lb5fb4vz94vzd+tmrcwVuxvYbmbbzCwHXA/snLfPTuA/hs/fDPxbu/rtIiKysAUr97CH/l7gdoKpkDe7+z4z+0Ngt7vvBP4G+KyZPQocIfgDICIiHdJSz93dbwNum7ftw03PZ4H/EO3QIteRdtAK0vfrbXH+fnH+bl2rY2vLiIhI++j6bBGRGIp9uJvZdWb2sJk9ama/2+nxRM3MbjazQ2a2t9NjiZqZbTKzr5vZA2a2z8ze3+kxRcnMCmb2PTO7P/x+/7XTY2oHM0ub2b+b2Vc6PZYkiXW4Ny2d8FrghcAvmFl3rOoTnU8D13V6EG1SBX7L3V8IvAx4T8z+9ysBr3L3lwAvBa4zs5d1eEzt8H7gwU4PImliHe40LZ3g7mWgsXRCbLj7NwlmKMWOuz/j7veGzycJAmJDZ0cVHQ9MhS+z4SNWJ8HMbCPw08CnOj2WpIl7uJ9u6YTYhEOSmNlW4BJgV2dHEq2wZXEfcAi4091j9f2A/0FwMWbrS4hKJOIe7hIDZjYIfAn4gLtPdHo8UXL3mru/lODK7yvM7MWdHlNUzOz1wCF3v6fTY0miuId7K0snSBczsyxBsH/O3W/t9Hjaxd2PAV8nXudPXgG80cweJ2iJvsrM/r6zQ0qOuId7K0snSJeyYF3UvwEedPePdXo8UTOzUTNbEz7vI7hnwkOdHVV03P1D7r7R3bcS/Lv3b+7+ix0eVmLEOtzdvQo0lk54EPhHd9/X2VFFy8w+D3wXeL6ZHTSzX+n0mCL0CuAdBBXffeHjdZ0eVITWA183sz0Ehcid7q7pghIJXaEqIhJDsa7cRUSSSuEuIhJDCncRkRhSuIuIxJDCXUQkhhTuIiIxpHCXFWNmtXCu+r5wmdvfMrNU+N4OM/v4WX53q5m9beVGe8qxZ8I1YLqCmb01XMZa8+LltBTuspJm3P2l7v4igqsxXwt8BMDdd7v7+87yu1uBjoR76IfhGjAtC5ecbgt3/wLwq+36fOl9CnfpCHc/BNwAvNcC1zaqUDO7pumK1H83syHgo8CPhdt+I6ymv2Vm94aPl4e/e62ZfcPMvmhmD5nZ58JlDDCzy83s/4X/1fA9MxsKV2X8EzO728z2mNmvtTJ+M/uymd0T/lfIDU3bp8zsv5vZ/cBVZzjmi8Ln94XH3B7+7i82bf/rxh+H8IYz94af8bUI/2eQOHN3PfRYkQcwdZptx4B1wLXAV8Jt/wK8Inw+SHAj97n3w+39QCF8vh3YHT6/FjhOsEhcimBphquBHPAYcHm436rwc28Afj/clgd2A9vmjXErsHfetpHwZx+wFzgnfO3AW8LnZzrmJ4C3N+3TB7wg/N7ZcPtfAu8ERgmWrd7WfNym7/qV0/2z1kOPzCL/FoishO8AHzOzzwG3uvvBsPhulgVuNLOXAjXgwqb3vufuBwHCPvlWgsB/xt3vBvBw6WAz+0ngYjN7c/i7qwn+WOxfYIzvM7OfDZ9vCn/ncDiWL4Xbn3+GY34X+L3wRha3uvsjZvZq4DLg7vC79hGs8f4y4Jvuvj/8jFjemEWip3CXjjGz8wnC8BBB5QqAu3/UzP438DrgO2b2U6f59d8AngNeQlChzza9V2p6XuPs/z834D+5++2LGPe1wGuAq9y9aGbfAArh27PuXjvb77v7LWa2i+AORbeFrSAD/s7dPzTvWG9odVwizdRzl44ws1Hgk8CN7u7z3rvA3b/v7n9MsFriRcAkMNS022qCqrhOsHLkQicvHwbWm9nl4TGGzCxDsGLou8N14zGzC81sYIHPWg0cDYP9IoLquuVjhn/UHnP3jwP/DFwMfA14s5kKeuZ3AAAA7klEQVSdG+47YmZbgLuAV5rZtsb2BcYmAqhyl5XVF7ZJsgQ3v/4scLp12j9gZj9OcGu2fcBXw+e18ETlpwl60l8ys3cC/wpMn+3A7l42s7cCnwjXTp8hqL4/RdC2uTc88ToG/MwC3+NfgV83swcJAvyuRR7zLcA7zKwCPAv8kbsfMbPfB+4Ip4dWgPe4+13hCdtbw+2HCGYaiZyVlvwVWYAF92/9irt31S3wwvbQf3b313d6LNJ91JYRWVgNWN1tFzER/NfL0U6PRbqTKncRkRhS5S4iEkMKdxGRGFK4i4jEkMJdRCSGFO4iIjH0/wGbj5MPH5HyLwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(ps1['ps1_ra'], ps1['ps1_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, ps1, \"ps1_ra\", \"ps1_dec\", radius=0.8*u.arcsec)\n", "del ps1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Add SDSS\n", "We are waiting for a new SDSS-82 catalogue, which does not suffer from the issue of multiple sources per object due to including all exposure extractions." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl0ZGd55/HvU5Jq0VJSae9udbfa+4o3ecOA7WBI2yR2CITFAZIJpEkOhBCYZIAwwJBzEkgmyQzEEHyIwyTBgEMcYojBScBg8Iblvdu9uPeWepG6W/takt75417JZVndKkm3VFW3fp9zdFyquqr7lN3+9avnvvd9zTmHiIiESyTfBYiISPAU7iIiIaRwFxEJIYW7iEgIKdxFREJI4S4iEkIKdxGREFK4i4iEkMJdRCSEyvN14sbGRtfe3p6v04uIFKUnn3zyuHOuabHj8hbu7e3tdHZ25uv0IiJFycwOZHOc2jIiIiGkcBcRCaFFw93M7jKzHjPbeorXf93MnjOz583sETO7JPgyRURkKbIZuX8N2Hya1/cB1zvnLgb+BLgzgLpERGQFFr2g6px7yMzaT/P6IxnfPga0rbwsERFZiaB77u8Fvn+qF81si5l1mllnb29vwKcWEZFZgYW7md2IF+7/41THOOfudM51OOc6mpoWnaYpIiLLFMg8dzN7FfBV4Gbn3Ikg3lNERJZvxSN3M9sA3Au82zm3a+UliYjISi06cjezbwA3AI1m1gV8GqgAcM79LfApoAH4kpkBTDnnOnJVcJDufvzggs/ffvWGVa5ERCRY2cyWeecir78PeF9gFYmIyIrpDlURkRBSuIuIhJDCXUQkhBTuIiIhpHAXEQkhhbuISAgp3EVEQkjhLiISQgp3EZEQUriLiISQwl1EJIQU7iIiIaRwFxEJIYW7iEgIKdxFREJI4S4iEkIKdxGREFK4i4iEkMJdRCSEFO4iIiGkcBcRCSGFu4hICCncRURCSOEuIhJCCncRkRBSuIuIhNCi4W5md5lZj5ltPcXrZmZfMLPdZvacmV0efJkiIrIU2YzcvwZsPs3rNwNn+19bgC+vvCwREVmJRcPdOfcQcPI0h9wG/IPzPAbUmdmaoApcLY/vO8ELhwfzXYaISCCC6LmvAw5lfN/lP/cKZrbFzDrNrLO3tzeAUwfj5Mgk3332MD/bXTg1iYisxKpeUHXO3emc63DOdTQ1Na3mqU/rJ7t6mHFeyIuIhEEQ4d4NrM/4vs1/rij0j07y1IF+omURBsenSE/P5LskEZEVCyLc7wPe48+auQYYcM4dCeB9V8VPdnmtmBvP9X6T0OhdRMKgfLEDzOwbwA1Ao5l1AZ8GKgCcc38L3A/cAuwGRoH/lqtigzYwlqbzQB+Xb6zjjKZq4JjCXURCYdFwd869c5HXHfCBwCpaRT99sRfnHNef00ys3Psl5oTCXURCYNFwD7Ot3QNcsCZJfVUU5xyx8ggnRybyXZaIyIqV7PIDzjlGJqapr4oBYGY0VEXVlhGRUCjZcB+dnGbaOSqjZXPP1VdFOTGscBeR4ley4d436oX4y8M9Rv9omukZl6+yREQCUbLh3j+aBl4e7g1VUaad43D/WL7KEhEJRMmHeyL60jXl+uooAAdPjualJhGRoJRsuC/Ulmmo8sL9wAmFu4gUt5IN9/4Fwj2ZqKAsYhw4OZKvskREAlGy4d4315Z5KdwjZqQqoxzUyF1EilzJhnv/aJpYeYTyyMv/FTRURdWWEZGiV8LhPvmyUfus+qooB0+O4q2qICJSnEo23PtGJ1/Wb59VXxVleGJKd6qKSFEr2XDvH0tTGX3l0jpzM2Y0HVJEiljphvto+pQjd0AXVUWkqJVsuPeNTpKoeGW4p6qimGmuu4gUt5IM9+kZx8Ap2jIVZRFak3HNdReRolaS4T40nsY5FmzLAKyvr+SQeu4iUsRKMtz7Flg0LFNLMk7vkDbtEJHiVaLh/sqlBzI1VccU7iJS1Eoy3AfmRu4L7zLYVBNjZHKa0cmp1SxLRCQwJRnui47ca7yt944P6UYmESlOJRrur1w0LNNsuPcOj69aTSIiQSrJcO8fnSRiEF9gnjt4PXdAfXcRKVolGu5pahMVRMwWfL2xxrtLVeEuIsWqJMO9b3SSusroKV9vqIoRMYW7iBSvkgz3/tE0dZUVp3y9LGLUV8XoHVa4i0hxyirczWyzme00s91m9rEFXt9gZg+a2dNm9pyZ3RJ8qcHpH5skdZqRO3gXVTVyF5FitWi4m1kZcAdwM3AB8E4zu2DeYZ8E7nHOXQa8A/hS0IUGqW/k9CN38MN9WFMhRaQ4ZTNyvwrY7Zzb65ybBL4J3DbvGAck/ce1wOHgSgxe/+gkdYlFRu7VMY5r5C4iRSqbcF8HHMr4vst/LtNngHeZWRdwP/B7C72RmW0xs04z6+zt7V1GuSs3OTXDyOQ0qUVG7o01UXqHJrTdnogUpaAuqL4T+Jpzrg24BfhHM3vFezvn7nTOdTjnOpqamgI69dL0j3mtlrqqxUfuk9MzDI5pCQIRKT7ZhHs3sD7j+zb/uUzvBe4BcM49CsSBxiAKDFq/f3dqXWLxnjvoLlURKU7ZhPsTwNlmtsnMongXTO+bd8xB4PUAZnY+Xrjnp++yiD5/4+tsZssA9KjvLiJFaNFwd85NAR8EHgC2482K2WZmnzWzW/3DPgr8tpk9C3wD+E1XoM3q/jF/5L5Iz725RksQiEjxWnjN23mcc/fjXSjNfO5TGY9fAK4LtrTc6PdXhEwt2nOPAwp3ESlOWYV7mPRl0XO/+/GDOOcoixgP7TpOZbSc26/esFolioisWMmE+92PHwTgkd0nKIsY33m6GzvFwmEAZkZ1rJzhifRqlSgiEpiSW1tmdHKKymjZaYN9Vk28nKFxTYUUkeJTguE+TeIU67jP543cFe4iUnxKMtxPtXfqfBq5i0ixKrlwH0tPnXLv1PmqYxWMTEwxU5izOkVETqnkwt0buWcZ7vFyHDCi1oyIFJmSC/exyelTbow9X03Ma9+o7y4ixaakwn1qZoapGXfKjbHnq4l74a6+u4gUm5IK98n0DACx8uw+dvXsyF3hLiJFpqTCfXxqNtyz77kDDKktIyJFpqTCfWJqGsh+5B4rLyNaHmF4XHepikhxKa1wn23LVGT/satj5Rq5i0jRKa1wX2JbBrwZM7qgKiLFpsTCfWltGfD67gp3ESk2JRbu3sg926mQADXxCq0MKSJFp7TCPb30kXsyXs54eoaxyelclSUiErjSCnd/5B5dUrh7m3r0DGmjbBEpHiUX7tGyCJEs1nKfNXuX6rFBbbcnIsWjpMJ9PD29pGmQADX+dnzHBjVyF5HiUVLhPjE1s6R+O0DSX4KgRxtli0gRKbFwn17SHHeARLSMsojRo5G7iBSREgv3mSW3ZcyMmni5Ru4iUlRKK9zTM0seuYM3Y0Y9dxEpJqUV7lPTxJfYcwc0cheRolNi4T6zpDnus2o0cheRIpNV0pnZZjPbaWa7zexjpzjmbWb2gpltM7O7gy0zGBNTM0taemBW0l9fRnepikixKF/sADMrA+4A3gB0AU+Y2X3OuRcyjjkb+DhwnXOuz8yac1Xwck1NzzA945Y8FRK8kTt4d6lubKgKujQRkcBlk3RXAbudc3udc5PAN4Hb5h3z28Adzrk+AOdcT7BlrtxLuzAtPdyTcc11F5Hikk3SrQMOZXzf5T+X6RzgHDN72MweM7PNQRUYlMllrOU+a3bkrr67iBSLRdsyS3ifs4EbgDbgITO72DnXn3mQmW0BtgBs2LAhoFNnZ3x2RcglznOHjJG71pcRkSKRTdJ1A+szvm/zn8vUBdznnEs75/YBu/DC/mWcc3c65zqccx1NTU3LrXlZlrML06xEtIxoWYRjWhlSRIpENuH+BHC2mW0ysyjwDuC+ecd8B2/Ujpk14rVp9gZY54otZxemWWZGU02MXo3cRaRILJp0zrkp4IPAA8B24B7n3DYz+6yZ3eof9gBwwsxeAB4E/tA5dyJXRS/H3Mh9GW0ZgJZkTCN3ESkaWfXcnXP3A/fPe+5TGY8d8BH/qyBNpJfflgForomzu3c4yJJERHKmZO5QnW3LLGf5AfBG7loZUkSKRQmFuzdyr1hmuDcn4wyOT83NuhERKWSlE+7paWLlS9tiL1NzTQzQdEgRKQ6lE+7L2IUpU0syDqCLqiJSFEom3MenlreW+6zmpEbuIlI8SibcJ6eWvjl2ppYaf+Sui6oiUgRKJtzH0ytry9RVVhAti2jxMBEpCiUT7pMrbMvM3qWq6ZAiUgxKJtzHp6ZXNHIHf667Ru4iUgRKJtwn0jPElrELU6bmmrh67iJSFEoi3J1zTAQwcm+tjXN0QOEuIoWvJMJ9YmqGGbf8pQdmtaUSDE1MMTCaDqgyEZHcKIlwH56YAlhxW6YtVQnAob7RFdckIpJLpRHu4364BzByBzh0UuEuIoWtNMJ9duS+gqmQAOvrvZF7V9/YimsSEcml0gr3FdyhClCbqCAZL1dbRkQKXmmEe0BtGfBG72rLiEihK4lwH5kMpi0DXt9dbRkRKXQlEe5D48G0ZQDWpyrp6hvD21lQRKQwlUS4j/g993gAI/f19ZWMpac5Pjy54vcSEcmVkgj34YkpDKgoW94uTJnmpkPqoqqIFLCSCfdYRQRb5hZ7mTQdUkSKQWmE+/hUIBdTQTcyiUhxKIlwH5mcCmQaJEBltJzG6ihdasuISAEriXAfGg8u3AHW+TNmREQKVXm+C1gNXs99ZW2Zux8/OPd4ZsbxwuFB7n78ILdfvWGl5YmIBC6r4ayZbTaznWa228w+dprj3mJmzsw6gitx5UYmgh2511dF6R9NM6O57iJSoBZNPDMrA+4AbgYuAN5pZhcscFwN8PvA40EXuVJBXlAFb7PsaecYHNO67iJSmLIZzl4F7HbO7XXOTQLfBG5b4Lg/AT4PFNxWRbNTIYNSXxkFoE+bdohIgcom8dYBhzK+7/Kfm2NmlwPrnXP/HmBtgXDOeeEeYFsmVTUb7rpLVUQK04oTz8wiwF8BH83i2C1m1mlmnb29vSs9dVbG0tP+FnsBtmUSFRjQN6JwF5HClE24dwPrM75v85+bVQNcBPzYzPYD1wD3LXRR1Tl3p3OuwznX0dTUtPyql6Dfb50kosGFe3lZhJp4udoyIlKwsgn3J4CzzWyTmUWBdwD3zb7onBtwzjU659qdc+3AY8CtzrnOnFS8RHPhvsKpkPOlqqJqy4hIwVo03J1zU8AHgQeA7cA9zrltZvZZM7s11wWuVP+YF8CVAY7cwbuoqraMiBSqrG5ics7dD9w/77lPneLYG1ZeVnAGctCWAW/k/syhfsbT08QD/q1ARGSlQr/8QL8/F70yGuzNuC3JOA7Y3TMc6PuKiAQh/OGeo557azIOwI6jQ4G+r4hIEMIf7mOTRMsjgWzUkamhOkp5xNh5dDDQ9xURCULow31gNO3NSw9go45METNaknGN3EWkIIU+3PtH09RVVuTkvRXuIlKowh/uY5PUJaI5ee/W2ji9QxOcGJ7IyfuLiCxX+MN9NE1tjkbusxdVd2r0LiIFJvThPjDm9dxzoSUZAzRjRkQKT+jDPZc995p4BY3VUXZoxoyIFJhQh/t4epqx9DR1lbnpuQOc21qjtoyIFJxQh/vsTkm1OWrLAJzbkmTXsWGmZ7TlnogUjlCH++zSA7lqywCct6aGsfQ0B0+O5uwcIiJLFe5w95ceyNVUSIDzWmsAdKeqiBSUkIe7tyRvLkfuZzfXYKYZMyJSWMId7qvQc09Ey9jUUMWOIwp3ESkcoQ732bXcczlyB3/GzDGFu4gUjlCHe//YJGURozoW7Fru853bWsP+EyOMTEzl9DwiItnKberlWX+OVoSc7/INKZyDzgN9XH/O6mz8LSKr7+7HDy74/O1Xb1jlShYX7nAfy926Mpk62lNUlBmP7jmhcBcpMs45jg1OsLd3mD3HR+gZHGdyaoaJqRnqq6L8xqvbc3rdLldCHe6za7nnWmW0nEva6nhs74mcn0tElsc5R8/QBDuPDrHr2BA7jw7xYs8w248MMjE1M3ecAWURoyxiTE7N8JWH9nLzha1cuqGOSI67AEEKdbj3j03SXBNflXNde2YDX/rxHoYnpnLe4xeR0xtPT7Pr2BA7jgyx/eggO44M8WxXP6OT03PHVMfKaU7GuGxDiuaaGI3VMRqroyQTFXMh3t03xn3PdvPtp7p48mAfv/nqdirKiuNSZahTqH80zTnNNatyrmvOaOCLP9rNE/tOcuN5zatyTpFSNzPj6O4fY8fRIXYeHWT70SF2HBlkb+8IswuCVJQZrck4F65N0pKM05qM05KMU5XFIGxdKsH7rz+Tx/ae4HvPHeHZQ/10tNfn9kMFJNThPpDDtdxnzV5gSU/PUBYx7vrZPo4MjBfkBRaRYjXbUplrpxwbZuexIV44MshkRkulvipKSzLOjec105qM01obp74quqJ2SsSMa89o4MkDffxs93Gu2JjK+SSNIIQ23NPTMwxNTOV06YFMFWUR1qcq2Xt8ZFXOJxJWg+Npdh4dmhuN7zo6zPPdA4ylX2qpVEXLaE7GuWJDyh+Jx2hJxolVlOWkJjPjNWc18s9PdrHr2DDntq5OR2AlQhvug6uwaNh8ZzRV8eCOHsYy+noisrCZGceBk6NsPzKY8TVEd//Y3DHxiggtNXEubqulpSZGs99Sycd1rYvbanlg21F+trtX4Z5Pq7Ei5HxnNFXxox2w/4RG7yKZ+kcn52ap7DjqtVO2dQ8yOe21VCIGjdUxWmvjXLQ2SUut1xuvXYX7VLJVHonw6jMb+cG2oxzuH2NtXSLfJZ1WVuFuZpuB/wuUAV91zn1u3usfAd4HTAG9wG855w4EXOuSzK0ImcONOuZbn6qkPGLs7R1etXOKFJLZWSrbjwyyw++N7zo2RM/QS5vIxysitCYTXLExxZraOGtqEzQnY0UxC+XK9np+tLOHn+0+zts61ue7nNNaNNzNrAy4A3gD0AU8YWb3OedeyDjsaaDDOTdqZr8L/Dnw9lwUnK25FSFX8eaDirIIG+rVd5fSMDSeZtvhQbZ2D8z9c3fP8MtmqTTXxGlLVXLFxhQtfkslGS8vmNH4UiWiZVy5McWje09w80Wt1MQL9+ambEbuVwG7nXN7Aczsm8BtwFy4O+cezDj+MeBdQRa5HP2rtGjYfGc0VfHD7T2cHJmkvmr1fmsQyaX+0cm5AN96eJBHdh/nxMjk3OvJeDlr6xLccG6zPxqPk1rhLJVCden6FA/vOcHe3hEuWV+X73JOKZtwXwccyvi+C7j6NMe/F/j+SooKwlzPfZVmy8w6rzXJf23v4d+fP8K7r9m4qucWCcLx4Qme7x5gW/cAW7sHeXzfCfr8wRJ4vw2vrUtw2YYU6+oSrK2LF/QINmhr6uLEyiPsO1H84Z41M3sX0AFcf4rXtwBbADZsyO088IHRScygJr6614zX1HrTsu59qkvhLgVvNsi3dg3wXPcAz3cNcHRwfO71TY1VtKUquWpTwgvy2jiVJX4HdsSMjQ2V7C/w9ms2/5W6gcwrB23+cy9jZjcBfwxc75ybmP86gHPuTuBOgI6OjpzuKN0/lqY2UUEksrq/FpoZl61P8YNtR9l3fIRNjVWren6RhTjnODIwzrbDg7xweJCthwfY2j3AkYGXgryxOsa6ujiXb6hjbSrB2toE8RzNGy92mxqqeODYsYJebiSbqp4AzjazTXih/g7g9swDzOwy4CvAZudcT+BVLkP/Ki0atpBL1tfxwAtH+denuvjIG8/NSw1SupxzHDw5ynNdA36PfIAXDg/OtVbMoKEqytq6BJeur/NbKwrypWj3B20HToxw4draPFezsEXD3Tk3ZWYfBB7Amwp5l3Num5l9Fuh0zt0H/AVQDfyzfxX8oHPu1hzWvShvud/8XNCsTVTwmrMauffpbj580zmr/tuDlJa+kUme6ern6YP9PHOon2cP9TPgX3MqixgtyRhnNlWzxm+rtNbGiZUryFdiXSpBecTYd7yIwx3AOXc/cP+85z6V8fimgOtasYHRyVWd4z7fmy9bx0fueZbOA31ctak4FhqSwjcwmmbbYW80/lyX93Xw5CjgLVXbkoxzdnM1balK2lLe/PHySOHPHy825RFv2nMh990Ls1kUgP6x9NyvTvnwixe2Uhndyr8+3aVwl2XpHZrw2iqz88gPD9DV99Kt+bWJCtanEmy+sJW2VIJ1qYRG5KuovdFbbmQ8XZjLjYQ33PPYcweoipWz+cJWvvfcET79yxeqnymndXJkkue6+nn+FLNWZnvkF65JsrYuwZq6RMFeyCsVmxqr+BFe370QhfJPx/SMY3A8fz33WW/taOPep7u5p/MQ77m2Pa+1SOEYnpji+a4BnvXD/Nmu/rkRueHPWkkluHyjN498TW1cg4MCtD5VSZkZ+46P5ruUBYUy3IfG0zi3uksPLOTaMxq4elM9X/jhbt56RRuV0VD+65bTGE9Ps/3IIM/5If7TF49zfGhi7hb9VGUF61KVXLS2lraUZq0Uk2h5hHWpRMEuFBjKtJmdu9tUE8tbDbObeFy2vo7H953kw998hjvf05G3eiT3hsbTbD8yxLbDL6218mLPMNMzXpQ3VkdpqIrxqrZa2uq8C57Z7AYkhWtTYxU/fbGX0cmpghu8FVY1Adnd463KeGZTdZ4rgQ0NVZzfWsNDL/bSn+cZPBKcgbE0W7sHvLs7/a/9J1769bwqWsa6VILXntXI2roEbalEQS1fK8Fob6jiJ7t6efpgP9ed1Zjvcl4mlOG+p3cYM28Rr0Lwhgtb+eIPX+TLP9nDx28+P9/lyBL1j06ytfuluzrnB3ldZQXr6hK84YIW1vpL2NYU8cqHkr0N9ZUY0Lm/T+G+Gvb0jtCWKpzeZWsyzqXr6/jaw/t5z7XtrCvwRf5LWc/QONu6B+fu7NzaPfiynYHqKitYW5vgjRe0sK7OW2+l1NdaKWWJaBktyTidB07mu5RXCOWfyj09wwXRksl00/kt7Do2xIe+8TTf3HJNUWxMEGbOOY4OjrO1e3BuBcTnuwdetqnE7PTDi9fVsqYuzrpaBbm80saGSp460MfU9AzlBfT/dej+pM7MOPYeH+baMxvyXcrLpKqi/NlbXsWHvvE0n/v+Dv7nL12Q75JKxuxenbMXOrcdHmRb98DceuSGd/F9XV2CK9vrvXnkmn4oWdrYUMXj+06y4+gQF60rnKUIQhfu3f1jjKdnOKu5sEbuALdespYn95/k7362jys2prjl4jX5Lil0BkbTbD86yM6jQ+w46m24vPPoEGP+XYQR827R39hQxavPbPCDPEG0vHBGXFJc2hsqAejcf1Lhnkt7egtnpsxC/vhNF/Bs1wB/9O3nOKOpivNak/kuqSg55zh0coxthwd44Yi3jO32I4MczljCNlFRRmttnMs21NGajLOmLkFLTaygfnWW4ldXGWVtbZwnDvTxm9dtync5c0IX7i9NgyyMmTKZZue+v/GCFvb0DvMrdzzMe65p5xNv0gya05meceztHZ67wLm121vCdmhiCvBG443VMdbUxnlVWx2ttXFak3HNWJFVc0V7PT/fdwLnXMH8mQtduO/pHSFVWUFDdf5uYFpMXWWU33ndmfz9I/u46+F9XLWpnpsuaMl3WQVhPD3NrmNDc5tKzI7Mx9MzgLfpcmsyzvlrk6yrTbCmztt0WReoJZ+ubE/x3WcP09U3xvr6ynyXA4Qy3AtvpsxCUlVRtrzuTP7h0f28/5+e5A9uOpstrzuzZHq/s7NVdhwZYrvfG99+ZJA9PcNzt+bHyiO01sa5fEOKtf6GEk3VMcq0Pr4UmI6N3sqvnQdOKtxzZW/vMK8/rzhGwdWxct77mk10Hujjf//HLr777BH+7C0Xc/mGVL5LC9TIxBQ7j3kXNnceHZpba2UsY6nUusoK1iTj3HBuE6213qYSqaookQL5FVfkdM5traEmVk7n/j7efFlbvssBQhbu/aOTHB+e5Mzmwuu3n0qsvIw7br+cN196jP/5b1t5y5cf4U0Xr+G3XrOp6EJ+Ymqavb0j7Do2xK5jQ+w8OsyuY0Nzm0mAt9hSazLOxetqaamNsybptVUSUU07lOJVFjEu25iic39fvkuZE6pwn50pU4jTIE9n9kLrlteewYM7e/mv7cf43nNHuGR9Hb92RRuvP7+ZNbWFc1fr2OQ0e3qH2dM7zO4eL8Bf7Blm//ER/DWyiBg0VMdoTca56fxmWpMJWmvj1FVWaDQuoXTlxhR/+Z+7GBhNU1uZ3xVpIWzh3uMtvVkMPfeFxCrK2HxRKzee10RZxPjaI/v55He28snvwAVrklx3VgOXrK/jkrY62lKJnF2Vd84xMJamq2+M7v4xDp0c5cCJUfafGGFv7wiHB8ZwGSFeXxWjuSbG9ec00ZyM01wTo6laUw6ltHS0e333R/ceZ/NF+b+HJVThvrt3mGh5hLZUYVzQWK7ZrdLee90meoYm5m7I+fuH9zPlD41rYuVsbKykvaGKdakEjVUxGmui1CYqSFSUUxktI1oewQwMw+GYSM8wMTXDWHqagbE0g2NpBsbS9A5NcHzY+zo2OMGRgbG52Smz4hURGqtjNFZHOW9NDc01cZpqYjRWRRXiIkBHe4qmmhjffrJb4R60PT3DnNFYFZrZFGZGi9+Tft05TUzNzHBsYIKu/lGODU5wcmSCR/acYGAsPbdm+HLEyiNUx8qpjpWTTFTQsbGeZLycusooqcooqcoKEtGygpm/K1KIKsoivPWKNu58aC/HBsdpScbzWk+4wr13mAvXFs7tv0Erj3g7v6xLvbz/7pxjYmqG4fEpRtPTpKdnSE/NMDXjyIz8iohRXhahosyIV5SRiJaRqCjTHHGRgLytYz1f/vEevv1kFx+48ay81hKacJ+YmubgyVFuvWRtvktZdWZeWGuhK5H82tRYxTVn1POtJw7xu9efSSSPXYTQDNmeOtDPjIMzi2ymjIiEyzuu3MDBk6M8tvdEXusIRbhPzzj+9P7ttCRj3HR+cdzAJCLhtPmiVpLxcr7xxKG81hGKcP/nzkM83z3AJ245XxuuGhcrAAAH2UlEQVQOi0hexSvK+NXL23hg61H6/D0D8iGrcDezzWa208x2m9nHFng9Zmbf8l9/3Mzagy70VAZG0/z5Azu5sj1Vkv12ESk8b79yPZPTM3z4W88w7K9eutoWDXczKwPuAG4GLgDeaWbztxF6L9DnnDsL+Gvg80EXeip//V+76B+d5DO3XqipeiJSEM5fk+Rzv3oxP9t9nLd/5VF6BscX/6GAZdPDuArY7ZzbC2Bm3wRuA17IOOY24DP+428Df2Nm5pxb/uTr0+gZGufh3cf56YvH+bdnDnP71RtCPQVSRIrPO67aQEttnA98/Sne/KVH+O3XbuLc1iTnttZQXxXN+fmzCfd1QOaVgS7g6lMd45ybMrMBoAE4HkSRmb7zdDcf/tYzAKQqK7jtkrX84RvPC/o0IiIrduO5zdzz/mv5nX96ks9896Xx8PtfdwYfvyW3m/Ss6tVHM9sCbPG/HTaznSt5vwPAM3h9oCw0koO/bAqIPl9x0+crYr++xOM/8Xn4xPJPtzGbg7IJ925gfcb3bf5zCx3TZWblQC3wikmezrk7gTuzKSxoZtbpnOvIx7lXgz5fcdPnk6BlM1vmCeBsM9tkZlHgHcB98465D/gN//FbgR/lqt8uIiKLW3Tk7vfQPwg8AJQBdznntpnZZ4FO59x9wN8B/2hmu4GTeH8BiIhInmTVc3fO3Q/cP++5T2U8Hgd+LdjSApeXdtAq0ucrbvp8EihT90REJHxCsfyAiIi8XOjDfbGlE4qdmd1lZj1mtjXftQTNzNab2YNm9oKZbTOz3893TUEys7iZ/dzMnvU/3//Kd025YGZlZva0mX0v37WUklCHe5ZLJxS7rwGb811EjkwBH3XOXQBcA3wgZP/9JoBfcM5dAlwKbDaza/JcUy78PrA930WUmlCHOxlLJzjnJoHZpRNCwzn3EN4MpdBxzh1xzj3lPx7CC4h1+a0qOM4z7H9b4X+F6iKYmbUBbwK+mu9aSk3Yw32hpRNCEw6lxF9p9DLg8fxWEiy/ZfEM0AP8p3MuVJ8P+D/AHwEzix0owQp7uEsImFk18C/Ah51zg/muJ0jOuWnn3KV4d35fZWYX5bumoJjZLwE9zrkn811LKQp7uGezdIIUMDOrwAv2rzvn7s13PbninOsHHiRc10+uA241s/14LdFfMLN/ym9JpSPs4Z7N0glSoMxboP/vgO3Oub/Kdz1BM7MmM6vzHyeANwA78ltVcJxzH3fOtTnn2vH+3/uRc+5deS6rZIQ63J1zU8Ds0gnbgXucc9vyW1WwzOwbwKPAuWbWZWbvzXdNAboOeDfeiO8Z/+uWfBcVoDXAg2b2HN5A5D+dc5ouKIHQHaoiIiEU6pG7iEipUriLiISQwl1EJIQU7iIiIaRwFxEJIYW7iEgIKdxl1ZjZtD9XfZu/zO1HzSziv9ZhZl84zc+2m9ntq1ftK8495q8BUxDM7O3+MtaaFy8LUrjLahpzzl3qnLsQ727Mm4FPAzjnOp1zHzrNz7YDeQl33x5/DZis+UtO54Rz7lvA+3L1/lL8FO6SF865HmAL8EHz3DA7CjWz6zPuSH3azGqAzwGv9Z/7A380/VMze8r/erX/szeY2Y/N7NtmtsPMvu4vY4CZXWlmj/i/NfzczGr8VRn/wsyeMLPnzOz92dRvZt8xsyf930K2ZDw/bGZ/aWbPAtee4pwX+o+f8c95tv+z78p4/iuzfzn4G8485b/HDwP8zyBh5pzTl75W5QsYXuC5fqAFuAH4nv/cd4Hr/MfVeBu5z73uP18JxP3HZwOd/uMbgAG8ReIieEszvAaIAnuBK/3jkv77bgE+6T8XAzqBTfNqbAe2znuu3v9nAtgKNPjfO+Bt/uNTnfOLwK9nHJMAzvc/d4X//JeA9wBNeMtWb8o8b8Zn/d5C/671pa/yJf5dILIaHgb+ysy+DtzrnOvyB9+ZKoC/MbNLgWngnIzXfu6c6wLw++TteIF/xDn3BIDzlw42szcCrzKzt/o/W4v3l8W+RWr8kJm92X+83v+ZE34t/+I/f+4pzvko8Mf+Rhb3OudeNLPXA1cAT/ifNYG3xvs1wEPOuX3+e4RyYxYJnsJd8sbMzsALwx68kSsAzrnPmdm/A7cAD5vZLy7w438AHAMuwRuhj2e8NpHxeJrT/zk34Peccw8soe4bgJuAa51zo2b2YyDuvzzunJs+3c875+42s8fxdii6328FGfD/nHMfn3euX862LpFM6rlLXphZE/C3wN8459y81850zj3vnPs83mqJ5wFDQE3GYbV4o+IZvJUjF7t4uRNYY2ZX+ueoMbNyvBVDf9dfNx4zO8fMqhZ5r1qgzw/28/BG11mf0/9Lba9z7gvAvwGvAn4IvNXMmv1j681sI/AY8Doz2zT7/CK1iQAaucvqSvhtkgq8za//EVhonfYPm9mNeFuzbQO+7z+e9i9Ufg2vJ/0vZvYe4AfAyOlO7JybNLO3A1/0104fwxt9fxWvbfOUf+G1F/iVRT7HD4DfMbPteAH+2BLP+Tbg3WaWBo4Cf+qcO2lmnwT+w58emgY+4Jx7zL9ge6//fA/eTCOR09KSvyKLMG//1u855wpqCzy/PfTfnXO/lO9apPCoLSOyuGmgttBuYsL77aUv37VIYdLIXUQkhDRyFxEJIYW7iEgIKdxFREJI4S4iEkIKdxGREPr/AOkwTClKywYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(sdss['sdss_ra'], sdss['sdss_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, sdss, \"sdss_ra\", \"sdss_dec\", radius=0.8*u.arcsec)\n", "del sdss" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Add DECam (DECaLS and DES)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmUXGd55/HvU2vve8u2JMtabPCGDUReQCQYgoPxOHY4YcJOICYmmUA2skAWM+PkzAmTM9lJiAccJ4AhJjCJY0QgEyAksmRLZvGKbO2LJfUuqbu6u5Z+5o97q12SWt3V3VVdXbd/n3PquOrW7bpvWfavHz33ve81d0dERKIlVusBiIhI5SncRUQiSOEuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQlanXgnp4eX79+fa0OLyJSlx5//PEBd++da7+ahfv69evZtWtXrQ4vIlKXzOxgOfupLSMiEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBNbtCtZYeePTQjNvfccO6JR6JiEh1qHIXEYkghbuISAQp3EVEIkjhLiISQQp3EZEImjPczew+M+szs6fm2O86M8ub2VsqNzwREVmIcir3+4FbZtvBzOLAx4GvV2BMIiKySHOGu7t/GxiaY7cPAV8C+ioxKBERWZxF99zNbA3wZuCvytj3LjPbZWa7+vv7F3toERE5j0qcUP0T4DfdfWquHd39Xnff7O6be3vnvL9r1WXzU0y513oYIiIVV4nlBzYDXzAzgB7gVjPLu/s/VuCzq2YyV+BP/+15Xra2nTddfVGthyMiUlGLDnd331B8bmb3Aw8v92AH+MbuPkbGc/Sfnqz1UEREKm7OcDezzwM3AT1mdgT4GJAEcPdPVnV0VdJ/epJH9gwCMDqZr/FoREQqb85wd/e3l/th7v7eRY1mCbg7Dz/xAom4sam7mROnVLmLSPSsuCtUv/7MCZ7vG+UNV1zAhW2NjE7mcZ1UFZGIWXHh/vGv/oBVrWlu3NhNa0OCwpQzkZtzoo+ISF1ZUeE+NeXsGxjjqtXtxGNGS0PQlTo9kavxyEREKmtFhXsmVwCgIRl87ZZ0GO46qSoiEbOiwn0sDPFUIvjarWG4a8aMiETNigr30xNBiDck4gC0NiQBGJ1QuItItKyocC9W7umwcm9IxojHbDr0RUSiYkWFe7H9kk4GlbuZ0ZJOqC0jIpGzMsM98eLXbm1IMDqp2TIiEi0rK9wnzg33lnRCbRkRiZwVFe5j2TPbMoDaMiISSSsq3Gdqy7Q0JBibzGtddxGJlEqs576sPfDooennj+4bImaQiNn0ttZ0gimHTLZQi+GJiFTFiqrcJ/NTpBNxwhuLANASznXXEgQiEiUrK9xzBdLJM79yi65SFZEIWlnhnp86o98OwVRI0FWqIhItKyzcC6QT8TO2FdeX0XRIEYmSFRbu51buqUSMZNzUlhGRSFnx4a4lCEQkiuYMdzO7z8z6zOyp87z/TjN7wsyeNLNHzOzayg+zMoITqvFztrc2JDVbRkQipZzK/X7gllne3w+81t1fBvwecG8FxlUVM1XuoKtURSR65gx3d/82MDTL+4+4+3D4cgewtkJjqyh3J3u+cG/Q+jIiEi2V7rnfCXy1wp9ZEdnCFA7nzJaBYMZMJlsgV9CNskUkGioW7mb2OoJw/81Z9rnLzHaZ2a7+/v5KHbosk7kguM++iAmYvlH20Fh2ScckIlItFQl3M7sG+BRwh7sPnm8/d7/X3Te7++be3t5KHLpsk/kw3M9TuQP0n55c0jGJiFTLosPdzNYBXwbe7e7PLX5I1TGZDxYGm7nnHqwvo3AXkaiYc1VIM/s8cBPQY2ZHgI8BSQB3/yRwN9AN/GW4IFfe3TdXa8ALNV25z9SWUeUuIhEzZ7i7+9vneP/9wPsrNqIqme65z9CWmQ73UYW7iETDirlCdba2TCoRI52IqXIXkchYQeFerNxn/sot6YQqdxGJjJUT7rli5X5uWwagOZ1gWFMhRSQiVk6456eIGSTjNuP7Tak4wxmtLyMi0bCiwj2ViJ1xi71STak4JzOq3EUkGlZQuBdoOE9LBqAplVDlLiKRsYLCPajcz6cpFWc8V2Ai7M2LiNSzlRPuuZlXhCxqTAVV/clxVe8iUv9WTrjnCzTMcKOOoqZUcCHTsPruIhIBKybcJ8poywCMqO8uIhGwYsI9m5+a9YRqY7IY7qrcRaT+rZhwn8wXSM2waFhRsXLXjBkRiYIVEe7uPucJ1WLPXW0ZEYmCFRHuuYLjMGtbJhk3UomY2jIiEgkrItwnwhUhZzuhamZ0NiU1W0ZEImFFhHs2XMu9YZaeO0BHY0ptGRGJhBUR7rPdP7VUR1NS4S4ikbAiwn1ilht1lOpsSqktIyKRsCLCPTufyl3LD4hIBMwZ7mZ2n5n1mdlT53nfzOzPzGyPmT1hZq+s/DAXZyJXXuXe0ZRiJJPF3ZdiWCIiVVNO5X4/cMss778JuCx83AX81eKHVVnTPfc5Tqh2NiXJFZyxrFaGFJH6Nme4u/u3gaFZdrkD+DsP7AA6zOyiSg2wEuZzQhW0BIGI1L9K9NzXAIdLXh8Jty0bk/kCxvlvsVfU0ZQCdJWqiNS/JT2hamZ3mdkuM9vV39+/ZMedzE+RTp7/FntFnWG4a8aMiNS7SoT7UeDiktdrw23ncPd73X2zu2/u7e2twKHLE6wrM3tLBkrbMqrcRaS+VSLcHwLeE86auRE46e7HKvC5FTOZL8w5UwbUcxeR6EjMtYOZfR64CegxsyPAx4AkgLt/EtgK3ArsATLA+6o12IWazM++ImRRR6N67iISDXOGu7u/fY73HfiFio2oCiZzBdKz3GKvKJWI0ZyKa013Eal7K+IK1XIrd3jxQiYRkXq2gsJ97sodtASBiETDCgn38k6oghYPE5FoiHy4l3OLvVJa9ldEoiDy4V68xd78wl2Vu4jUt8iHe7YQrCuTnEdb5uR4jqkprQwpIvUr8uGeC8M9FS9/tsyUw6kJtWZEpH5FPtyLN+qY7ebYpToatQSBiNS/yId7sXJPllm5dzYH4a4ZMyJSzyIf7sWee9mVu5b9FZEIiHy45/LBidFyK/fptsy4KncRqV+RD/fsPE+oTq/pPqbKXUTqV+TDPZcv9txnv1FHUVtjEjO0BIGI1LXIh/t8e+7xmNHWoAuZRKS+RT7c5ztbBqCzKallf0WkrkU+3LMLCHct+ysi9S7y4Z7LTxGPGfFYeT13gK7mFENjCncRqV+RD/dswcueKVPUrXAXkToX+XDP5afKPpla1N2SZnA0S3AHQRGR+lNW6pnZLWa228z2mNlHZnh/nZl908y+a2ZPmNmtlR/qwmQLU2VPgyzqaUmRLUxxejJfpVGJiFTXnDfINrM48AngZuAIsNPMHnL3Z0p2+x3gQXf/KzO7EtgKrK/CeOctV5gquy3zwKOHANh9/DQA9287QE9LmnfcsK5q4xMRqYZyUu96YI+773P3LPAF4I6z9nGgLXzeDrxQuSEuTlC5z68t05IOfueNqXIXkTo1Z+UOrAEOl7w+Atxw1j7/Hfi6mX0IaAbeUJHRVUAuP0VDsrybYxc1h+E+qnAXkTpVqROqbwfud/e1wK3AZ8zsnM82s7vMbJeZ7erv76/QoWe3mMpd4S4i9aqc1DsKXFzyem24rdSdwIMA7r4daAB6zv4gd7/X3Te7++be3t6FjXiecgWf92yZpnRQ6astIyL1qpzU2wlcZmYbzCwFvA146Kx9DgE/CmBmVxCE+9KU5nPI5uc/WyYRi9GYjDM6WajSqEREqmvOcHf3PPBB4GvAswSzYp42s3vM7PZwtw8DP2tm3wc+D7zXl8kk8fnMlinVnE6ocheRulXOCVXcfSvB9MbSbXeXPH8G2FLZoS2eu4eV+/zDvSUdV89dROpWpK9QzRamcMpf7reUKncRqWeRDvfxbNAzX1jlnlDlLiJ1K9rhngvCfaE99/FsgcLUsjh1ICIyL5EO90yxcl9AW6YlncCBTFbVu4jUn0iHe7Etk5rnVEh48SrVMU2HFJE6FO1wzy2ucgddpSoi9SnS4Z7JLqbnrqtURaR+RTrcFztbBlS5i0h9ina454JgXkjl3pCMEzNV7iJSn6Id7tkpYGE995gZzZrrLiJ1KtLhXpzGuJDKHYLWjCp3EalHkQ73ienZMvOfCgmocheRuhXpcM9kC8QsWMJ3IVrSCcaymucuIvUn0uE+nissaKZMUXNKK0OKSH2KdrhnCwtaEbKoJZ0gm5+anlIpIlIvIh3umewiK/dwrvvg2GSlhiQisiQiHe7jucKCZ8rAixcyDY5mKzUkEZElEe1wzxbmff/UUqrcRaReRTvcc4vvuQMMqHIXkToT6XCvWM9d4S4idaas5DOzW8xst5ntMbOPnGefnzKzZ8zsaTN7oLLDXJiJRVbuqUSMVDzG4KjaMiJSXxJz7WBmceATwM3AEWCnmT3k7s+U7HMZ8FFgi7sPm9mqag14PjLZPF3NqUV9RnM6zuCYKncRqS/llLXXA3vcfZ+7Z4EvAHectc/PAp9w92EAd++r7DAXZjy7uNkyEPTdB1S5i0idKSf51gCHS14fCbeVegnwEjPbZmY7zOyWmT7IzO4ys11mtqu/v39hI56HxZ5QhaDvrhOqIlJvKnVCNQFcBtwEvB34P2bWcfZO7n6vu2929829vb0VOvTMcoUpcgVf1FRIgLbGJMdPjldoVCIiS6OccD8KXFzyem24rdQR4CF3z7n7fuA5grCvmeL9UxfbluloTDKcyU0vHywiUg/KSb6dwGVmtsHMUsDbgIfO2ucfCap2zKyHoE2zr4LjnLfpW+wtsi3T0RSckH1hRNW7iNSPOZPP3fPAB4GvAc8CD7r702Z2j5ndHu72NWDQzJ4Bvgn8ursPVmvQ5RhfxM2xS3U0JgE4OjKx6DGJiCyVOadCArj7VmDrWdvuLnnuwK+Gj2Uhs4ibY5fqaArCXZW7iNSTyF6hOt1zX2RbprUhSTxmHB1WuItI/YhuuFeoco/HjAvbGlS5i0hdiW64V2i2DMDqjgaOKNxFpI5ENtyLUxcXO88dYE1Hoyp3EakrkQ33iQr13AFWdzRy/OQEhSlf9GeJiCyFyIZ7pWbLQBDu+Smn77SmQ4pIfYhsuFdqtgzAms5GQNMhRaR+RDfcswXMIBGrTM8ddCGTiNSPyIZ7JlugMRnHbPHhvroY7prrLiJ1IrLhPp4r0JSKV+SzWtIJ2huTasuISN2IbrhnCzQkKxPuEFTvRxXuIlInIh3ularcAdZ06CpVEakfkQ33TC7ouVfKGlXuIlJHIhvuE9kCjRWs3Fd3NHJ6Is+piVzFPlNEpFoiG+6ZXL6ilXtxxoxaMyJSDyIb7kHPvazl6suiC5lEpJ5EOtwrOVtmjea6i0gdiW64V3CeO0BvS5pk3HSVqojUhciGe6bCUyFjMeOids2YEZH6UFa4m9ktZrbbzPaY2Udm2e8nzczNbHPlhjh/hSlnMj9V0bYMBDftUM9dROrBnOFuZnHgE8CbgCuBt5vZlTPs1wr8EvBopQc5X8W13CtZuUMwY+bIcKainykiUg3lVO7XA3vcfZ+7Z4EvAHfMsN/vAR8Hat6ULq7lXql57g88eogHHj3E6ESeE6cmue8/91fkc0VEqqWccF8DHC55fSTcNs3MXglc7O5fme2DzOwuM9tlZrv6+/vnPdhyjU0Gt9hrruBUSIAL2hoAOHGq5r+/RERmtegTqmYWA/4I+PBc+7r7ve6+2d039/b2LvbQ5zWcyQLQ2Zys6OdeGIb7cYW7iCxz5YT7UeDiktdrw21FrcDVwLfM7ABwI/BQLU+qjowHSwS0N6Yq+rkdTUlSiZgqdxFZ9soJ953AZWa2wcxSwNuAh4pvuvtJd+9x9/Xuvh7YAdzu7ruqMuIynMwE4d7RVNnK3cy4oDXNiVOTFf1cEZFKmzPc3T0PfBD4GvAs8KC7P21m95jZ7dUe4EJMt2WaKlu5A1zY3sDxkxO4e8U/W0SkUso64+juW4GtZ227+zz73rT4YS3OSFi5tzVU9oQqBCdVdx4Ypu/05PQJVhGR5SaSV6ieHM/R1pAgEa/81yueVN19/HTFP1tEpFIiGe7DmSwdVWjJwIvTIRXuIrKcRTLcRzK5ip9MLWpOJ2hNJ9h9QuEuIstXNMN9PFe1yh3ggvYGVe4isqxFM9wzWToaq1O5A1zQmua5E6cpTGnGjIgsTxEN9+q1ZSCYDjmZn+LQkBYRE5HlKXLhXphyTk1UuS0zfVL1VNWOISKyGJEL91PjOdypaltmVWsDZrD7+GjVjiEishiRC/fiujLVbMukEjEu6Wpi9wlV7iKyPEUu3Ku59ECpl17Yyg80Y0ZElqnIhXtx0bD2KlbuAFdc1MaBgTFOTeSqehwRkYWIXLiPjAeVezV77gA3buxmyuHRfUNVPY6IyEJELtyHx4JKutptmVes66AhGWPbnoGqHkdEZCEiF+7FE6ptVa7c04k412/oVriLyLIUuXA/mcnS1pAgHrOqH2vLpm6e7xulT3dmEpFlJnLhPpzJ0dlc3ZZM0ZZLewDYtlfVu4gsL5W/m0WNjYznqn4ytejKi9roaEqybc8gb37F2iU5pohUh7szOJbl0FCGo8PjHBkeZ2B0klxhilzBaWtMcOdrNrCqtYEHHj10zs+/44Z1NRj1+UUu3E9WcS33s8Vixqs3dfPIngHcHbPqt4JEZOHyhSmOnZzg4GCGQ0MZDg6NcWgww8HBDAcHxxjLFs7YPxWPEY8Z8ZiRyea5f9sBbr7yAm7Y0L0krd/FiFy4D2dyrO9pXrLjbbm0h61PHmf/wBgbe1uW7Lgici53p390kiPD4xweynBkeJwjw0GQHxrK8MLIxBmrucZjRmdTiu7mFNes7aCrOUVXc4rO5hSdjUnSyfj0vgOnJ/nnJ17g4SeO8d1DI9z5mg00lLy/3JQV7mZ2C/CnQBz4lLv/wVnv/yrwfiAP9AM/4+4HKzzWslR7ud+zbdlU7LsPKtxFlkAmm+fw0DiHhjIcHnoxuA8PZTg8nGEiN3XG/s3pBF1NSTqbU2zqbaE7DO+uphRtjUliZf6Nu6c1zXtfvZ7vHR7hi48f4fGDw9Pn3ZajOcPdzOLAJ4CbgSPATjN7yN2fKdntu8Bmd8+Y2c8D/wt4azUGPJtgRcj8krVlAC7pbmJNRyPbnh/g3TdesmTHFYmqwpRz/NQEBwfHSsK7WIlnGBjNnrF/OhELqu2mFJsv6aKjKUlXU1h9N6VIJSo3b8TMeMW6Th7bP8T2fYO8alN32b8cllo5lfv1wB533wdgZl8A7gCmw93dv1my/w7gXZUcZLlOLsGiYUWlJ1QubG/g35/r57M7DvIuBbzInLL5KQ4PB33ug2HP+8Bg0P8+MjxOtvBi9R0zaG9M0tWcYn13M69c1zkd5t3NKRpT8SU/3/WqTd18YedhnjtxmssvbFvSY5ernHBfAxwueX0EuGGW/e8EvrqYQS3USLho2FKEe6nLL2zl8YPDPKeFxESmjU3mp1smhwaDk5fFED86PE7pjcyK1XdXc4obN3bR1Zyeft3emFx2Jy+vWt1OW8Mxtu8drOtwL5uZvQvYDLz2PO/fBdwFsG5d5acNvbjc79K1ZQAuv7CNlnSCxw5onRlZOYpTBw8MjHFg8MUqvNj/Hhw7s33SmIzT3RIE9qW9rfSEz7tb0jTXoPpejHjMuHFjN19/5gR9pyZYFd7AZzkpJ9yPAheXvF4bbjuDmb0B+G3gte4+OdMHufu9wL0AmzdvrvgNSKcr9yU8oQrBH/QPXdLJt5/r54WRcVZ3NC7p8UWqKZPNc2Agw/6BMfb1j7JvYIx9A2PsPn7qjJOXRvC35q7mFBt7m9l8SSddLWm6moIQb0wt35klC7F5fRff+EEf2/cNcsfL19R6OOcoJ9x3ApeZ2QaCUH8b8I7SHczsFcBfA7e4e1/FR1mmkUxtKneA69Z38e3n+vn7nYf5lZtfsuTHF1mMyXyBQ4MZ9g2MhZX4GPsHxjgwkOH4WctrtDcm6WlJce3aDnpa0vS0BNV3R1OSRCxyF72fV0s6wbVrO/jOoWF+7MoLaz2cc8wZ7u6eN7MPAl8jmAp5n7s/bWb3ALvc/SHgD4EW4IvhX60OufvtVRz3jIrh3rnEPXcg+KvmqhYe3HWYD73+UhLxlfMfudQHd6fv9CR7+0bZW6zC+8fYNzB6Tg+8KRWnpyXNRe0NXL2mnZ6WVBjk6YrOPql3123o4vFDw+w+sfzOt5XVc3f3rcDWs7bdXfL8DRUe14KMZLKYQWvD0oc7BNX7A48d4lu7+3nDlRfUZAwiY5P5oIVSEuD7B4LH6GR+er9UPDZddV+2qnU6wLub05FroVTL2s5GGpIx9vYvv/spR+oK1ZHxHG0NtTuzfsVFbfS2pnngsUMKd6m6obEsz504zfMnTrOnb5Q9/aPs7Rs7o41iFpyD6mlJ87I17fS2BtV3b2uatoZEXZ3EXI5iZmzsaWFv/+iyW4IkWuGeydWkJVMUjxlv3Xwxn/jWHvb0jXLpKl2xKovj7pw4Ncm+/lH29o+yp2+U506M8nzfKAOjL85baEkn6GhKclF7A9esbQ9aKK1puptTJNUirKpNq1p45tgpDg1luKR76ZY+mUukwn04k6W9BidTS713y3r+bvsBPvbQU3z2zhuW1W9yWb4mcgX2D4yxN6y+9/aPsm9glP39Zy5m1ZJO0NmU5JKuJq5b38kFbQ1c0NagKryGNvUGgb5tz6DCvVpOjueqfnu9ufS0pPn1N76U3/2np/nnJ45x+7WrazoeWV5OTeSCFspZj8NDGYrnM4tTCnta0lyztoOe1jS9aqUsW70twZ/Ltr0Dy2rZ30iF+0gmx8YlXBHyfN5xwyU8uOsIv//wM7zupb01O8ErtTE15Rw7NcG+/tFwbvgYe/pGeb7vNCdOvdhKScRsuv992eWr6G1NT/fE1UqpH2bGpt4Wtu8dZGrKiS2Tq2kjFe7DS7iW+2ziMeP3f+JqfuIvt/HH//o8d//4lbUeklTB8Fh2ekZKcTZK8TGZf/HinlQixqrWNKvbG3n52g5WtTWwqjVNZ3Nq2S46JfOzqbeF7x4e4QfHT3Pl6uWxHEFkwj1fmOL0RH7J15U5W+mCYtet7+Jvtu3HDH73NgV8PcoXpjg8PM7evqAH/mI/fIyhksvrYxZc69DTkua69V10h9MKe1vStKqVEnmbwskTj+wdULhX2qmJYP7uUi89MJs3XnkhBwbG+OyOg7z5FWu4ek17rYckMyje4CG4xD68vL4/qMgPDWXIFV68uqc5naC3JcWm3mZu3NA13Q/vaEotu8WtZOm0NybZ2NPMtj0DvP+HN9Z6OECEwn14ekXI2rdlihpTcd63ZQN//e97+en7HuOLP/cq3dCjRoprhB8azHCoZHXCAwPn3l4tFY9Nn9B89aYeesNphb0turhHzu/Vl3bzf79zlFxhalmcM4lMuD/zwimAJb3FXjnaG5P8zJYN3L/9AO/+9GN85s7rFfBVMjaZP2NVwtI79Bwcypxxe7WYEawH3hLcXq275PL6jqby784jUrRlUw+f3XGI7x0e4br1XbUeTnTCffu+QVrSCa5eJv2uUj2taf72fdfz7vse5bY//0/uueNqfvKVa9SHnSd3Z2gse87ysgcHxzg0dO4dehqS4RrhTSm2bOpe9muES33bclkPqXiMf3nquMK9knbsHeSGDV3LdsGuJ4+e5AM/sokHdx3m1774fT6z/QCffu919LSkaz20ZSWbn+KFkXEOD2c4PDR+xt16Dg1mOF2yNopx5h16fmhdJ53NKbrDEFcLRZZSW0OSH3lJL1954hi/fesVNZ8SGYlwP35ygn0DY8vqAoKZtDcmufM1G/jW7n6+8YMTvObj3+CdN1zCB35k47Jc7L8aJnIFjo6MT9+V/sjwOEfD50dHxuk7PYmXrE6YjNt0gF8Vrk5YrL67mlLL9pe5rEw/fu1F/L9nT7Dr4DDXb6ht9R6JcN++bwAI7mu43MXMeP3lq3jZmnYODo1x/yMH+MyOg9x8xQXc+rKLeN3lvTSl6vOPxd05OZ7j2MkJXhgZ54WRcY6OTIRhnuHocBDepWIWnATvaEyypqOJq1e309GUorM5Oe+704vU2huuuICGZIyHn3hB4V4Jj+wZpKMpyRXL9F6GMylejbihu5ltewf41nP9fOXJYyTjxg0bunnlug5eeUknV60OqtVa9+cz2TwDp7P0j07Qd2qSE6cmOHF6khMnJzh+aoLjJyc4dnKC8VzhjJ+Lm9HelKSzKcm6riauWdtOZ1Nwc+OOpqTCWyKlOZ3g9ZevYuuTx7j7titr+jfLSIT79n1Bv73WPa6F6G5Jc/u1a7jtmtUcGBzj6aOnGBrL8hff3DN984S2hgSbVrWwrquJC9sbuKitgd7WBjqakrQ3Bo/GVJymVJyGRPycfw/uTmHKmchPMZErMJ4tMJbNMzaZ5/REnlMTeU6N5zg5nmMkk2U4E/xzcCzL4GiWwdHJM6YKFsUs6DO2NSZpa0jwynUdtDcFJys7GpO0NyVpSScU3rKi3HbNarY+eZxH9w+x5dKemo2j7sP98FDQt/3ZZXLhwEIV14Xe2BNMk5zMFTgyMs6JUxP0n56k//Qk/zE4wMnx3BlT+s4nETPMgvndZew+LRk3mlIJGpPx6RUI13Y20ppO0NKQpLUhET6SNKXiCm6Rs7zupatoSsV5+IkXFO6LsX3vIFAf/fb5SCfjbOptYdNZc+LdnbFsgdHJPJlsnvFsgYncFNnCFLn8FLmpKdyDxauc4GYNMTNiBsl4jEQ8RipupBJx0okY6USMxmSchlScxmR8WVx8IVLPGlNxbr7yAr761HHuuePqmv0/Vf/hvm+QnpYUl62QG2OYGS3pBC3puv+jE4ms265ZzT997wW2PnmMO16+piZjKOtXipndYma7zWyPmX1khvfTZvb34fuPmtn6Sg90Ju7OI3sHuHFjd81POIqIFL32Jb1cs7ad3/iHJ9ixb7AmY5gz3M0sDnwCeBNwJfB2Mzt7icN7LJq/AAAHYklEQVQ7gWF3vxT4Y+DjlR7o2dydrz51nBOnJiPXkhGR+pZKxLj/fddzcVcTd96/k+8fHlnyMZRTuV8P7HH3fe6eBb4A3HHWPncAfxs+/wfgR62KpfR3Dw3ztnt38N8+9x029DTzxqsurNahREQWpKs5xWfvvIHO5hQ//TePcd9/7mf73kFOZnJLcvxyGrdrgMMlr48AN5xvH3fPm9lJoBsYqMQgS33p8SN8+Ivfp6clxe/dcRVvvW4dqYROAorI8nNhewOfe/8NvPdvdnLPw89Mb//Aazfy0TddUdVjL+lZOTO7C7grfDlqZrsX+lkHgff8Lrxn7l17qMIvmWUk6t8P9B2jItLf8Z3z2Pe3Pg6/tfBDXVLOTuWE+1Hg4pLXa8NtM+1zxMwSQDtwzlkEd78XuLecgVWKme1y981LecylFPXvB/qOUbESvuNyUk4/YydwmZltMLMU8DbgobP2eQj46fD5W4BvuPs8Lp0REZFKmrNyD3voHwS+BsSB+9z9aTO7B9jl7g8BnwY+Y2Z7gCGCXwAiIlIjZfXc3X0rsPWsbXeXPJ8A/mtlh1YxS9oGqoGofz/Qd4yKlfAdlw1T90REJHo0h1BEJIIiG+5zLZlQ78zsPjPrM7Onaj2WajGzi83sm2b2jJk9bWa/VOsxVZqZNZjZY2b2/fA7/o9aj6kazCxuZt81s4drPZaVIpLhXuaSCfXufuCWWg+iyvLAh939SuBG4Bci+Oc4Cbze3a8FXg7cYmY31nhM1fBLwLO1HsRKEslwp7wlE+qau3+bYGZSZLn7MXf/Tvj8NEE41GaJvSrxwGj4Mhk+InUizMzWAv8F+FStx7KSRDXcZ1oyIVKhsNKEK42+Ani0tiOpvLBl8T2gD/hXd4/ad/wT4DeAqVoPZCWJarhLhJhZC/Al4Jfd/VStx1Np7l5w95cTXP19vZldXesxVYqZ3Qb0ufvjtR7LShPVcC9nyQSpA2aWJAj2z7n7l2s9nmpy9xHgm0TrXMoW4HYzO0DQHn29mX22tkNaGaIa7uUsmSDLXLhs9KeBZ939j2o9nmows14z6wifNwI3Az+o7agqx90/6u5r3X09wf+H33D3d9V4WCtCJMPd3fNAccmEZ4EH3f3p2o6qsszs88B24KVmdsTM7qz1mKpgC/Bugmrve+Hj1loPqsIuAr5pZk8QFCX/6u6aLiiLpitURUQiKJKVu4jISqdwFxGJIIW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4y5Ixs0I4V/3pcInbD5tZLHxvs5n92Sw/u97M3rF0oz3n2OPh+i/Lgpm9NVzOWnPiZUYKd1lK4+7+cne/iuBKzDcBHwNw913u/ouz/Ox6oCbhHtobrv9StnDp6apw978H3l+tz5f6p3CXmnD3PuAu4IMWuKlYhZrZa0uuSP2umbUCfwD8cLjtV8Jq+j/M7Dvh49Xhz95kZt8ys38wsx+Y2efCZQwws+vM7JHwbw2PmVlruCLjH5rZTjN7wsw+UM74zewfzezx8G8hd5VsHzWz/21m3wdedZ5jXhU+/154zMvCn31Xyfa/Lv5yCG88853wM/6tgn8MEmXuroceS/IARmfYNgJcANwEPBxu+2dgS/i8heBG7tPvh9ubgIbw+WXArvD5TcBJgsXiYgRLNLwGSAH7gOvC/drCz70L+J1wWxrYBWw4a4zrgafO2tYV/rMReAroDl878FPh8/Md88+Bd5bs0whcEX7vZLj9L4H3AL0Ey1dvKD1uyXd9eKZ/13rokZjn7wKRpbAN+CMz+xzwZXc/EhbfpZLAX5jZy4EC8JKS9x5z9yMAYZ98PUHgH3P3nQAeLh1sZj8GXGNmbwl/tp3gl8X+Ocb4i2b25vD5xeHPDIZj+VK4/aXnOeZ24LfDm1h82d2fN7MfBX4I2Bl+10aC9d1vBL7t7vvDz4j0DVqkchTuUjNmtpEgDPsIKlcA3P0PzOwrwK3ANjN74ww//ivACeBaggp9ouS9yZLnBWb/79yAD7n71+Yx7puANwCvcveMmX0LaAjfnnD3wmw/7+4PmNmjBHcn2hq2ggz4W3f/6FnH+vFyxyVSSj13qQkz6wU+CfyFu/tZ721y9yfd/eMEKyVeDpwGWkt2ayeoiqcIVo6c6+TlbuAiM7suPEarmSUIVg79+XDdeMzsJWbWPMdntQPDYbBfTlBdl33M8JfaPnf/M+CfgGuAfwPeYmarwn27zOwSYAfwI2a2obh9jrGJAKrcZWk1hm2SJMHNrz8DzLRO+y+b2esIbsv2NPDV8HkhPFF5P0FP+ktm9h7gX4Cx2Q7s7lkzeyvw5+G66eME1fenCNo23wlPvPYDPzHH9/gX4OfM7FmCAN8xz2P+FPBuM8sBx4H/6e5DZvY7wNfD6aE54BfcfUd4wvbL4fY+gplGIrPSkr8ic7Dg/q0Pu/uyuv1d2B76NXe/rdZjkeVHbRmRuRWA9uV2ERPB316Gaz0WWZ5UuYuIRJAqdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiaD/D4qdnTpED6AkAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(decam['decam_ra'], decam['decam_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, decam, \"decam_ra\", \"decam_dec\", radius=0.8*u.arcsec)\n", "del decam" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Add RCSLenS" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl0nHd97/H3VzOakTTaF9vxIttxnISQJnHiLBB6CVsJtBBoKZAUWlrALQW63kvhlAu39N57yu1pS2nDkkO5AS4h0IbF0JSwhRsuWbDjsGSP41V2bK22JY00oxl97x/zjCzLsjSSZjSaZz6vc3Q8mnlmnt+wfPz19/k9v5+5OyIiEi415R6AiIgUn8JdRCSEFO4iIiGkcBcRCSGFu4hICCncRURCSOEuIhJCCncRkRBSuIuIhFC0XCfu7Oz0TZs2lev0IiIV6eGHH+539675jitbuG/atIndu3eX6/QiIhXJzA4WcpzaMiIiIaRwFxEJIYW7iEgIKdxFREJI4S4iEkLzhruZfdbMes3s0XmOu9rMMmb2huINT0REFqOQyv124Ma5DjCzCPBR4DtFGJOIiCzRvOHu7vcBg/Mc9l7gLqC3GIMSEZGlWXLP3czWAa8HPrn04YiISDEU4w7VjwF/4e6TZjbngWa2A9gB0N3dXYRTL94dDx2a9flbri3vuEREiqEY4b4duDMI9k7g1WaWcfevzzzQ3W8DbgPYvn27F+HcIiIyiyWHu7tvzj82s9uBb80W7CIisnzmDXcz+xJwA9BpZj3Ah4FaAHf/VElHJyIiizJvuLv7zYV+mLu/bUmjERGRotAdqiIiIaRwFxEJIYW7iEgIKdxFREJI4S4iEkIKdxGREFK4i4iEkMJdRCSEFO4iIiGkcBcRCSGFu4hICCncRURCSOEuIhJCVR3uzxwfpnd4vNzDEBEpuqoNd3fnzl2H+cGT2tNbRMKnasN9NJ1lbCLLwEi63EMRESm6qg33gZEUAIOjCncRCZ+qDff+INzHJrKMpbNlHo2ISHFVcbifrtgHk6reRSRcqjjcU9RY7rFaMyISNlUb7gMjabrbEwAMKdxFJGTmDXcz+6yZ9ZrZo+d4/bfM7Odm9gszu9/MLi/+MItrctIZGE2xrrWOhliEAYW7iIRMIZX77cCNc7y+H3ixu/8S8NfAbUUYV0kdOzXORNbpbIrTnoipcheR0Jk33N39PmBwjtfvd/eh4NcHgfVFGlvJ7O8fBaAjkQt3XVAVkbApds/97cB/FPkziy4f7p2NMdoTMU4k02QnvcyjEhEpnmixPsjMXkIu3F80xzE7gB0A3d3dxTr1gu3vH6U2YjTX19LeEGPS4eTYBO2JWNnGJCJSTEWp3M3sMuAzwE3uPnCu49z9Nnff7u7bu7q6inHqRTnQP0pHIk6NGe2NuUDXdEgRCZMlh7uZdQNfBd7q7k8vfUilt79/lI4g1Nsbcn8OjKbKOSQRkaKaty1jZl8CbgA6zawH+DBQC+DunwI+BHQAnzAzgIy7by/VgJcqk53k0GCS6y/oBKC5vpZIjWnGjIiEyrzh7u43z/P6O4B3FG1EJdYzNEZm0ukMKvcaM9oaYprrLiKhUnV3qJ6eKROfeq49UavKXURCperCfV9+jvsZ4Z6r3N01HVJEwqHqwv1A/yhNdVESscjUc+2JOKnMpJb+FZHQqLpw398/yvmdCYKLv8DpGTO6U1VEwqIqw31zZ+KM5zTXXUTCpqrC3d05dmqc81rrz3h+qnJXuItISFRVuKcyk2Qnncb4mTNAY9EaGuNRhbuIhEZVhftoKgNwxsXUvNaGWk6OTSz3kERESqKqwj0ZzIZpiJ9971ZDLDL1uohIpauqcB8JKveZbRmARCxKMp1Z7iGJiJREVYV7PrwT56jcR1W5i0hIVFW4j6Ry4T1bz70hHiWdmSSVUcCLSOWrqnBPpuau3AFOJHVRVUQqX1WF+8jUbJnZe+6gue4iEg5VFe5TUyHjs7Vlcs9pdUgRCYPqCvfggunsbZmgctf6MiISAtUV7qkMkRojHj37a+cvsg6p5y4iIVBV4Z5MZ2mIRc5YETIvX7mrLSMiYVBV4T6Sysx6AxMwVdHrgqqIhEFVhXsynZma8jibRDzKkHruIhIC84a7mX3WzHrN7NFzvG5m9nEz22tmPzezK4s/zOIYSWXPWblDbq67eu4iEgbnTrrTbgf+Gfj8OV5/FbA1+LkW+GTw54pwx0OHph4f7B8lUmNnPDddIhZVz11EQmHeyt3d7wMG5zjkJuDznvMg0Gpm5xVrgMWUykzOOlMmryEWUc9dREKhGD33dcDhab/3BM+tOOnsJLF5wl09dxEJg2W9oGpmO8xst5nt7uvrW85TA5CayBKPzn1BNZnOMj6hxcNEpLIVI9yPABum/b4+eO4s7n6bu2939+1dXV1FOPXCpLPztWVylyC0eJiIVLpihPtO4LeDWTPXASfd/bkifG5RZSediazP25YBLR4mIpVv3tkyZvYl4Aag08x6gA8DtQDu/ingbuDVwF4gCfxuqQa7FBPZSYC5K/f84mHqu4tIhZs33N395nled+DdRRtRiaQyuXCPzdVzzy9BoHAXkQpXNXeo5ndYmm8qJGh9GRGpfFUT7umpyn3+C6qDo7qgKiKVrWrCPd+Wmatyj9QYTXVaX0ZEKl/VhHshlTtAeyKmcBeRilc14X66537uC6oAbQ0xTYUUkYpXReFeWOXe1lCryl1EKl7VhHu6gJ47QFsixpAuqIpIhauacC+0cm9vUM9dRCpf1YR7OjNJbcSomWX/1OnaEjEtHiYiFa9qwj23lvvcF1Mhd0EVdJeqiFS2Kgr37LwtGYD2RC2gxcNEpLJVTbin59mFKS9fuWvZXxGpZFUT7qnM3Lsw5bUncuGuyl1EKlnVhHuhlXureu4iEgJVE+65yn3+C6qtDeq5i0jlq5pwT2eyBVXutZEamuui6rmLSEWrmnAvtOcOub67KncRqWRVEe7uXnDPHXJ9d4W7iFSyqgj3iazjQDxS2NftUOUuIhWuKsI9HWyOHaud/4IqQEejwl1EKltVhHsqWCem0Mq9PRFnYDRFbu9vEZHKU1DamdmNZvaUme01s/fP8nq3md1rZo+Y2c/N7NXFH+riFboiZF5nY4yJrHNqPFPKYYmIlMy8aWdmEeBW4FXAJcDNZnbJjMM+CHzF3bcBbwY+UeyBLkWha7nndTTqLlURqWyFpN01wF533+fuaeBO4KYZxzjQHDxuAY4Wb4hLV8jm2NO1J+IADIykSjYmEZFSihZwzDrg8LTfe4BrZxzz34DvmNl7gQTw8qKMrkgWfEE1WF+mf0SVu4hUpmJdUL0ZuN3d1wOvBr5gZmd9tpntMLPdZra7r6+vSKee30IvqHY2BpX7qCp3EalMhaTdEWDDtN/XB89N93bgKwDu/gBQB3TO/CB3v83dt7v79q6ursWNeBHylXuhbZm2/JruqtxFpEIVkna7gK1mttnMYuQumO6cccwh4GUAZvY8cuG+fKX5PBY6WyYejdBUF2VAF1RFpELNm3bungHeA9wDPEFuVsxjZvYRM3ttcNifA+80s58BXwLe5itokng6M0nEjGgBbZk7HjrEHQ8dIhap4eGDQ9zx0KFlGKGISHEVckEVd78buHvGcx+a9vhx4PriDq14Ct1ib7pEPMpoWvPcRaQyVcUdqgtZNCyvMR5lNKVwF5HKVBXhvpDlfvMS8SgjqWyJRiQiUlpVEe6LqdwT8QjJVIbJlXPpQESkYFUR7oup3BvjURwYS6t6F5HKUxXhnqvcC7s7NS8Rz11rHlHfXUQqUFWE+2JmyzQG4a4ZMyJSiaok3BfRc48F4a6LqiJSgaoi3Bd7QRXUlhGRyhT6cM9OOplJX3BbpiEWxUBz3UWkIoU+3E9v1LGwC6qRGqM+FlG4i0hFCn24pzK5nvlCK3fI38ikcBeRylMF4b6w5X6nyy1BoAuqIlJ5Qh/u6QUu9ztdQm0ZEalQoQ/31CJ77qC2jIhUrtCHe3oJPffGeJSxiSyZYCcnEZFKEfpwX0rPPb8EwWBSOzKJSGWpmnBf7GwZgAHtpSoiFSb04Z5e4mwZgEHtpSoiFSb04Z7KTGJAbQH7p86UiOUuwvaPpIo8KhGR0gp9uKczWWqjNdSYLfi9jWrLiEiFKijczexGM3vKzPaa2fvPccwbzexxM3vMzO4o7jAXbzErQubVxSLUmNoyIlJ5ovMdYGYR4FbgFUAPsMvMdrr749OO2Qp8ALje3YfMbFWpBrxQqcwksUW0ZABqzEjEogyMqi0jIpWlkNS7Btjr7vvcPQ3cCdw045h3Are6+xCAu/cWd5iLl85MEq9dfPcpEY/Sr7aMiFSYQlJvHXB42u89wXPTXQhcaGY/NrMHzezGYg1wqXKV+8LvTs1LxCMM6IKqiFSYedsyC/icrcANwHrgPjP7JXc/Mf0gM9sB7ADo7u4u0qnnls5maYrXLvr9jfEofQp3EakwhVTuR4AN035fHzw3XQ+w090n3H0/8DS5sD+Du9/m7tvdfXtXV9dix7wgqYnJRd3AlNdSH+PYyXEmJ72IoxIRKa1CUm8XsNXMNptZDHgzsHPGMV8nV7VjZp3k2jT7ijjORUtnFz9bBqC1oZaJrGuuu4hUlHlTz90zwHuAe4AngK+4+2Nm9hEze21w2D3AgJk9DtwL/Bd3HyjVoBdiKVMhAVrrcy2dIyfGijUkEZGSK6jn7u53A3fPeO5D0x478GfBz4oxOelMZCaJLWK537yWhly4P3dynG3FGpiISImF+g7VsYkszuLWlclrrY8BcFSVu4hUkFCH+2g6t9HGUi6o1tXWkIhF1JYRkYoS7nAP9j9dSuVuZqxtrVflLiIVJeThnqvclxLuAOe11vPcyfFiDElEZFlURbgv5YIqwLrWOlXuIlJRwh3u6eJU7mtb6ukfSTM+kS3GsERESi7c4Z5a/ObY053XWg+g1oyIVIyQh3uRKvfWOgCeU2tGRCpEuMM9nZ8ts9See65y13RIEakU4Q731NLnuQOsaclV7kdPqC0jIpUh3OGezhCtMSI1C98/dbp4NEJnY5znTqpyF5HKEO5wT2WWXLXnrWutU1tGRCpGqMM9mcou+WJqnu5SFZFKEupwH0lllnwxNe+8lnqOnhgntwCmiMjKFupwH00Xry2ztrWOsYksJ8cmivJ5IiKlFO5wL2JbRtMhRaSShDzci1e55+9S1XRIEakEoQ73ZLqYF1Tzc91VuYvIyhfqcB9JZZa8ImReZyJOLFLDUc11F5EKEOpwT6YzRavca2qMNS11asuISEUIbbinMlkmsl60cIdca0ZtGRGpBAUln5ndaGZPmdleM3v/HMf9hpm5mW0v3hAXJ1mk5X6nW9taz5EhhbuIrHzzJp+ZRYBbgVcBlwA3m9klsxzXBPwx8FCxB7kYI0Va7ne68zsTHDs1zvC45rqLyMpWSPJdA+x1933ungbuBG6a5bi/Bj4KrIimdDKdr9yLc0EV4MLVTQA80ztStM8UESmFQsJ9HXB42u89wXNTzOxKYIO7/3sRx7YkpajcL17TDMDTx4aL9pkiIqUQXeoHmFkN8PfA2wo4dgewA6C7u3upp57T1FrukaWH+x0PHQJg0p3aiLHzZ0eZdLjl2tJ+BxGRxSok+Y4AG6b9vj54Lq8JuBT4oZkdAK4Dds52UdXdb3P37e6+vaura/GjLkAyvzl2bfEq9xozVjfXcfzUiug8iYicUyHJtwvYamabzSwGvBnYmX/R3U+6e6e7b3L3TcCDwGvdfXdJRlygkVRxttibaXVTHcdPpYr6mSIixTZvuLt7BngPcA/wBPAVd3/MzD5iZq8t9QAXK1+5F3MqJMDq5jgjqcxUT19EZCUqqOfu7ncDd8947kPnOPaGpQ9r6UpxQRVgdXNujZletWZEZAUL7R2qyVSWGoPoEvdPnSkf7uq7i8hKFtpwH0llSMSjmBU33JvqotTXRtR3F5EVLbThnkxnSMSWPNPzLGbG6ua4KncRWdFCG+6jqSyJeHFnyuStbq7j+LD2UxWRlSu84Z7OtWVKYXVzHeMTkxxT9S4iK1R4wz1VmrYMnL6o+pSWIRCRFSrE4Z4tYeUeB+Dp4wp3EVmZwhvu6UzJeu4NsSjNdVGeOqbVIUVkZQpvuKdK13OHXGtGlbuIrFQhDvcsiVhpKnc4He7pzGTJziEislihDPfspDM2UbqeO8DGjgZSmUl+3nOiZOcQEVmsUIZ7ftGwUs2WAdjcmcAMfrx3oGTnEBFZrFCGe37RsFJW7g2xKJeubeHHz/aX7BwiIosVynDvH04D0NEYK+l5Xrilg0cODTEW7NcqIrJShDLce4dzd46uaoqX9DwvvKCTiayz68BgSc8jIrJQIQ333IqNq4I7SUvl6k1t1EaM+59V311EVpZwhnuwHG9XY2kr94ZYlG0b2rhffXcRWWFKd8WxjHqHx2lrqC36FnuzeeEFHfzj95/hZHKClobakp9PREprfCLLsZPjHDs1zvB47k73pngta1rq6GqKc8dDh2Z93y3Xdi/zSOcW0nBPsaqptC2ZvOsv6ORj33uGB/cP8Mrnr1mWc4rI4o2mMhweStIzOEbPUJKeoTF6hsY4ciL3MzianvV9NQav37aeqza2LfOIFye84d5c2pZM3uXrW6mvjXD/3n6Fu8gK4O4MjKY50D/KgYEkBwdGOTiQ5OBgksODybPCu662hqZ4La0NtWzpauSqjbW01NXSXF9LXW0N6cwkqcwkDzw7wF17ejgxlualF60q+i5vxRbKcO87Nc6Wro5lOVcsWsM1m9v5sS6qiiybdGaSoyfGODyU5PDgGIcGkxwaHOVAf5JDg8mpe10ADGhtqKU9EWNLV4KrN7bRlojR1hCjLREjEYsUFNRbVzfytT1H+P4TvZxMTvC6beuoWcEBX1C4m9mNwD8CEeAz7v43M17/M+AdQAboA37P3Q8WeawFcXf6RpavLQPwy1s7+e///gQH+kfZ1JlYtvOKhNVENhfehwZz4d0zlOTIiaB9MjQW7IR2+viIGW2JXIBfuq6FjkSMzsYYHYk4rYlaojVLv/4WranhDVetp6mulvue6ePSdS1cuLppyZ9bKvOGu5lFgFuBVwA9wC4z2+nuj0877BFgu7snzexdwP8C3lSKAc9nKDnBRNZLPscdmLqwksk6Bnx452N87veuKfl5RcJgeHyCgwO5VsnBwSQHB3LV98GBJEeGxpi+iWWNQUt9La0NMda21nPJ2mbaGmppS8Rob4jRXF+7LFW0mfHy561i14FB9hwaquxwB64B9rr7PgAzuxO4CZgKd3e/d9rxDwJvKeYgF6Jvao778vTcAZrra7loTRN7Dg6RyU4SjYRyhqnIgmSykzx3cpzDg8mgbZIMKvHcn0PJiTOOb4hFaE/EaE/E2LqqkfZEbNnDuxDRSA2XrW/h4YNDjE9kqast3eqzS1FIuK8DDk/7vQe4do7j3w78x2wvmNkOYAdAd3dppg2dvjt1+doyAFdvaufJYwf5wZO9/IourEqVyFffh6Yq79PhffTEGJnJ0/V3jTHV5966uon24HFHEOgrNSRnc2V3Gw/tH+TRIyfZvqm93MOZVVEvqJrZW4DtwItne93dbwNuA9i+fbvPdsxS5W9gWo62zHQXrm6iqS7Kl3cdVrhLqJxMTnBwMDfz5ED/aDALJdc+GZgx86StoZZEPEp7IsbmzsRUJd7WEKOlvpZIzcqovpdqfVs9nY0x9hw6UdHhfgTYMO339cFzZzCzlwN/CbzY3VPFGd7C5Zce6FrmcI/UGFd1t3HvU70cOznOmpbl/ZeDyGK5O33DqanwPhT0wA8NjHJwMMmJGe2TlvpaOhIxzu9KcPWm9qkAr7TqeynMjG3dbXz38eMMjqZpT5R2kcLFKCTcdwFbzWwzuVB/M3DL9APMbBvwaeBGd+8t+igXoHd4nEQsUtLlfs9l+6Z2fvh0H/+6+zDvfdnWZT+/yFxOJNPsCyrv/f2j7OsfZX9frgpPTlvZtMagtSHX675wddNU26SjMU5HIkatrikBsG1DK999/DiPHB7iZRevLvdwzjJvArp7xszeA9xDbirkZ939MTP7CLDb3XcCfws0Av8azBc95O6vLeG4zyl3A1N5qub2RIzrL+jgy7sP8+6XXEBNSP4JKpXj5NjEVNvkQH+SAwOjU4F+cux0BW5AWzBd8PINrXQGwd2RiNHaEAtN+6SUWhtinN+Z4JFDJ3jpRavKPZyzFFTeuvvdwN0znvvQtMcvL/K4Fq3vVGrZWzLT3XLNRt59xx6+9sgRfuOq9WUbh4RXMp1hf1B9H+g/Hd5PHhs+owI3cjO5OhtjXLSmic6g+u5sjNNWpLnf1W5bdxt37emhZ2is3EM5S+juUO0dHufSdS1lO/+rLl3D5Rta+ei3n+SVl66hsQztIal8mewkR06MTbVOcm2UEfb3jXL05PgZxzbXRelojPP8tc10JOK5m3ca47SrhVJyF63JzXN/tm+kzCM5W+iSZzkXDZtNTY3x4ddcwq9/4n4+ce9e3nfjxWUbi6xs7k7vcIpn+0ZylXgQ4vsHRjk8mGQie3pCWV1tDZ2NcVY113HJ2hY6G2N0BlX4cqx+KrNrjEdZ01yncC+1kVSGZDq7rDcwzebK7jZ+fds6PvOj/bz56m66OxrKOh4pr/GJLAcGRtnbO8KzvbkK/Nm+XBU+Oq2NEq2xXO+7McYLt3RO3T7f0RijMR5d8QtVVavzuxL8ZP8gqUyWeHTlzBYKVbj3nlqe7fUK8b4bL+bbjx3jf9z9OJ9+6/ZyD0dKbHLSOT48zv6+YBZK/yj7+kZ4tm+Uw0PJqXVQ8otYdTbGuWxDK11B9d3ZuLLuwpTCbelq5P5nB3jk0AmuO395FiwsRLjCPb/0QBnbMtMX8n/RBZ3c89hx/uLffs5H33BZ2cYkxeHu9I+kg4uZI+zvT7K/f4QD/UkODo4yPjE5dWxdbQ1tDbnWyQWrVtHVFJ8KcrVRwmVTRwIDHnh2QOFeKr1lWFdmLi/a2snTx4e5a08PN1/bzRUbWss9JCnAqfGJaRcxT88Lf/r4MKnM6QCPmAXzv2Ns35i7mUdVePWpj0VY21rPA88O8KevKPdoTgtXuK+gtgzklgi95dqNfPKHe3nn53ez8z3Xc15LfbmHJeT64IcGk1PBnQ/yfX2j9I+cvsF6ehtlW3fbGRcyw3Q7vSzNlq4ED+wbYCydpT62MvruoQr3vuEUsWgNLfUrZy/TxniUt75gE5/9f/t5x+d28+Xff4GmRy6T0VTmjJt58jvyHBpMcuzUmeuBJ2IROhvjbGxv4KqNbXQ1nr4jU6t8ynzO72rkvmf62X1wkF/e2lXu4QAhC/fe4RRdjfEVN6tgTXMdH7/5Ct75+Yd5wyfv5zO/s531bZpBUwwjqczpbdSCLdXylXi+TZfXFCxotaa5jkvWNtMZzETpSMRXTLUllWljRwPRGuP+ZwcU7qXQOzy+YvrtM7304tXc/rtX84df3MPrbv0xn37rVVy1cWWuJrfSnExO5CrwoAo/GDw+NJikf+TMVQk7EjES8Sjr2+q5fENrsCNPrgKPV8miVrL84tEIV2xo5f4VtN1muML9VIrzu1bmNnf5WTRvf9FmPv/AQd746Qd52cWr+PjN26pmJb25DI9PcKA/yf6B04tZ7Q/WSJltVcL8krJXBRcy8+uiKMClXF6wpYNb793LqfEJmuvK3xoOV7gPp1bUVKTZrGqq4w9fvIWvPnKE7zx+nFd+7D4++KuX8PLnrfzd1JfC3RkcTU/txjO9jXJgYPSsCjy/rOzWVU1n3MyjW+plpXrBlg7+6Qd7uX/vADdeWv49HUIT7uMTWU6OTayYmTJzaYhHect1G3mmd5gfPdPPOz+/m+evbeaWa7u56Yp1FXvBNZ3JrYdyxrZqA7m1wQ/P2JEeTq+JsqkjwVXdbblFrZq0rKxUpvza9t/82VGFezGVY+/Updq6qonzOxt5+OAQD+0f4C+/9ih/9c3HeeXz1/DiC7v4Txd2lvWGrJnGJ7IcOzke7EKf28S4J/g5PHT2DJT8zKX2hhi/tL6F9obTW6q1KcAlZGojNbzmsvP40q7DK6I1E5pwf+TwCQA2dzaWeSQLE6kxrtncztWb2jg8NMbuA4M88OwA3/zZUQDO70xw6boWLl3XzNbVTWxoa2B9W33R+vTuTjKdZXA0zeBomr7hFP0jKfqGUxwfHuf4qRTHT41z9MT4GfO/ITcHPL8j/ZrmOp53XvPUvpjtiRhNdVHdyCNV5fVXrudzDxzk2784xhuv3jD/G0ooNOF+18M9rG2pY/vGtnIPZVHMjO72BrrbG5h059jJcZ4+PkzP0Bj/9+k+dgZhn5evgNsTMVobaknEojTEI8SjESI1NhWqmewkE9lJ0tlJRlJZRlMZRsYznByb4OTYBEPJ9Bl3XU5XXxuhuT5Kc10tmzoauGJDCy31ufOFbU9MkWK4fH0LmzsTfPWRHoV7MfSeGudHz/Txrhu2hGL3oxoz1rbWs7b19N2sI6kMAyOpXIWdTDM8lmE0neH4qXEODIySzkySzkwyMem4O/lN5yNmRGpyP/FoDfFoDbFohIZYhHVt9VywqpFEPDq1NWFjPEpjXe5PtU1EFsbMeN0V6/iH7z3NkRNjrGst3x3poQj3b/z0KJMOv35leHc+agyCd2PHypzqKSI5r9u2ln/43tPs/OlR3nXDlrKNIxSl2V17erhiQytbuiqr3y4i4bOxI8GV3a187ZEefPoMg2VW8eH++NFTPHlsmN+4cl25hyIiAsDrt63j6eMj/OLIybKNoaBwN7MbzewpM9trZu+f5fW4mX05eP0hM9tU7IGey117eqiNGL922drlOqWIyJxec/la2hpq+f0vPMyB/tGyjGHecDezCHAr8CrgEuBmM7tkxmFvB4bc/QLgH4CPFnugs8lkJ/nGT4/y0otX0ZaILccpRUTm1doQ44vvuI5UZpI33fYA+8qwx2ohlfs1wF533+fuaeBO4KYZx9wEfC54/G/Ay6yE99IfHkzyse89zUv+7of0j6T4zavKO+VIRGSmS9Y286V3Xkcm67z5tgf5wgNTSQTiAAAG8UlEQVQH+Mn+QU6OTcz73mIoZLbMOuDwtN97gGvPdYy7Z8zsJNAB9BdjkNN9/ZEj/MmXf4oZXL+lk/e98mJe9rxVxT6NiMiSXbSmiTt3XMfb/vcu/us3Hpt6/g9evIX3v+rikp57WadCmtkOYEfw64iZPbWUzzsAfHH+wzopwV8yK0zYv2PYvx+E/zuG/fvxWws49gMfhQ8s/lQbCzmokHA/Akzve6wPnpvtmB4ziwItwFkLG7v7bcBthQysWMxst7tvX85zLrewf8ewfz8I/3cM+/dbiQrpue8CtprZZjOLAW8Gds44ZifwO8HjNwA/8HJO8BQRqXLzVu5BD/09wD1ABPisuz9mZh8Bdrv7TuBfgC+Y2V5gkNxfACIiUiYF9dzd/W7g7hnPfWja43HgN4s7tKJZ1jZQmYT9O4b9+0H4v2PYv9+KY+qeiIiET8UvPyAiImcLdbjPt2xCpTOzz5pZr5k9Wu6xlIKZbTCze83scTN7zMz+uNxjKiYzqzOzn5jZz4Lv91flHlOpmFnEzB4xs2+VeyzVIrThXuCyCZXuduDGcg+ihDLAn7v7JcB1wLtD9t9hCnipu18OXAHcaGbXlXlMpfLHwBPlHkQ1CW24U9iyCRXN3e8jNzsplNz9OXffEzweJhcOoVn+03Pyi47UBj+huwhmZuuBXwU+U+6xVJMwh/tsyyaEJhiqTbDS6DbgofKOpLiCdsVPgV7gu+4equ8X+BjwPmD2/RylJMIc7hISZtYI3AX8ibufKvd4isnds+5+Bbk7v68xs0vLPaZiMrNfA3rd/eFyj6XahDncC1k2QVY4M6slF+xfdPevlns8peLuJ4B7Cd81lOuB15rZAXKt0Zea2f8p75CqQ5jDvZBlE2QFC5aN/hfgCXf/+3KPp9jMrMvMWoPH9cArgCfLO6ricvcPuPt6d99E7v+DP3D3t5R5WFUhtOHu7hkgv2zCE8BX3P2xud9VWczsS8ADwEVm1mNmby/3mIrseuCt5Kq9nwY/ry73oIroPOBeM/s5uWLku+6uqYJSFLpDVUQkhEJbuYuIVDOFu4hICCncRURCSOEuIhJCCncRkRBSuIuIhJDCXZaNmWWDueqPBcvc/rmZ1QSvbTezj8/x3k1mdsvyjfasc48Fa8CsCGb2pmApa82Ll1kp3GU5jbn7Fe7+fHJ3Y74K+DCAu+929z+a472bgLKEe+DZYA2YggXLTpeEu38ZeEepPl8qn8JdysLde4EdwHss54Z8FWpmL552R+ojZtYE/A3wy8FzfxpU0z8ysz3BzwuD995gZj80s38zsyfN7IvBMgaY2dVmdn/wr4afmFlTsCrj35rZLjP7uZn9fiHjN7Ovm9nDwb9Cdkx7fsTM/s7Mfga84BznfH7w+KfBObcG733LtOc/nf/LIdh0Zk/wGd8v4n8NEmburh/9LMsPMDLLcyeA1cANwLeC574JXB88biS3kfvU68HzDUBd8HgrsDt4fANwktxCcTXklmd4ERAD9gFXB8c1B5+7A/hg8Fwc2A1snjHGTcCjM55rD/6sBx4FOoLfHXhj8Phc5/wn4LemHVMPPC/43rXB858AfhvoIrd09ebp5532Xb8123/W+tFPdIF/F4gshx8Df29mXwS+6u49QfE9XS3wz2Z2BZAFLpz22k/cvQcg6JNvIhf4z7n7LgAPlg42s18BLjOzNwTvbSH3l8X+ecb4R2b2+uDxhuA9A8FY7gqev+gc53wA+MtgE4uvuvszZvYy4CpgV/Bd68mt8X4dcJ+77w8+I7Sbs0hxKdylbMzsfHJh2EuucgXA3f/GzP4deDXwYzN75Sxv/1PgOHA5uQp9fNprqWmPs8z9v3MD3uvu9yxg3DcALwde4O5JM/shUBe8PO7u2bne7+53mNlD5HYnujtoBRnwOXf/wIxzvabQcYlMp567lIWZdQGfAv7Z3X3Ga1vc/Rfu/lFyqyVeDAwDTdMOayFXFU+SWzlyvouXTwHnmdnVwTmazCxKbtXQdwXrxmNmF5pZYp7PagGGgmC/mFx1XfA5g7/U9rn7x4FvAJcB3wfeYGargmPbzWwj8CDwn8xsc/75ecYmAqhyl+VVH7RJasltfv0FYLZ12v/EzF5Cblu2x4D/CB5ngwuVt5PrSd9lZr8NfBsYnevE7p42szcB/xSsnT5Grvr+DLm2zZ7gwmsf8Lp5vse3gT8wsyfIBfiDCzznG4G3mtkEcAz4n+4+aGYfBL4TTA+dAN7t7g8GF2y/GjzfS26mkcictOSvyDwst3/rt9x9RW2BF7SH/rO7/1q5xyIrj9oyIvPLAi0r7SYmcv96GSr3WGRlUuUuIhJCqtxFREJI4S4iEkIKdxGREFK4i4iEkMJdRCSE/j+zoVy1jJz0LAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(rcs['rcs_ra'], rcs['rcs_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, rcs, \"rcs_ra\", \"rcs_dec\", radius=0.8*u.arcsec)\n", "del rcs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Add IRAC (SHELA and SpIES)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4XHd97/H3d2Y0o21G+2bJW2J5TZzNJCwhBJoUh0LSlhZCSpencFP6kAKl7S085ebe0t42pffSUppC05RbWkgDhJCY4CSkZCObseIl8W55lbVL1r6MZvneP2bkTIRsjaWZObN8X8+jJzNnjuZ8x7E/+ul7fud3RFUxxhiTX1xOF2CMMSb1LNyNMSYPWbgbY0wesnA3xpg8ZOFujDF5yMLdGGPykIW7McbkIQt3Y4zJQxbuxhiThzxOHbi2tlZXrVrl1OGNMSYnvfrqqwOqWrfQfkmFu4hsBb4CuIH7VfWeOa//HfDu+NNSoF5VKy/0nqtWraKtrS2ZwxtjjIkTkVPJ7LdguIuIG7gXuBk4A+wUkW2qemB2H1X9w4T9/wC46qIrNsYYkzLJ9NyvBdpV9biqzgAPArddYP+PAP+ZiuKMMcYsTjLh3gx0JDw/E9/2c0RkJbAaeHrppRljjFmsVM+WuR14SFUj870oIneKSJuItPX396f40MYYY2YlE+6dwPKE5y3xbfO5nQu0ZFT1PlXdoqpb6uoWPNlrjDFmkZIJ951Aq4isFhEvsQDfNncnEVkPVAEvp7ZEY4wxF2vBcFfVMHAX8CRwEPiuqu4XkS+KyK0Ju94OPKh2aydjjHFcUvPcVXU7sH3OtrvnPP9fqSvLGGPMUtjyA8YYk4ccW34gWz2w4/TPbbvjuhUOVGKMMYtnI3djjMlDFu7GGJOHLNyNMSYPFWzPfb7e+qyD3aNUlhbRVFGSwYqMMSZ1bOQ+x8mBCb71yikee63b6VKMMWbRLNwTTIcifO/VDhQ4NTjB1My8S+QYY0zWs3BPsG1vFyNTId53WSNRhaN9Y06XZIwxi2LhHre3Y5g9HcO8e109b19TS6nXzaEeC3djTG6ycI/bvq+b5VUl3LiuHpcI6xr8HO4ZIxK1pXKMMbnHwh0IhiKMTYfZuKwCt0sAWN8UYCoUoePspMPVGWPMxbNwB4anQgBUlBSd29ZaX45L4FDPqFNlGWPMolm4AyPxcK9MCPfiIjera8us726MyUkW7rwR7hWlRW/avr4xQN9YkNOD1poxxuQWC3di4S5AoHhuuPsBePpQrwNVGWPM4lm4A8OTIfzFnnMnU2fVlPuoLffx/NEBhyozxpjFsXAHRqZm3nQyNVFLVQkHuuykqjEmt1i4E2vLVJR6532tMVBMz+g0I5OhDFdljDGLV/DhrqqMTIXeNFMmUWNFMWBTIo0xuaXgw31yJkIooudtyzQEYuF+uNemRBpjckfBh/vIPBcwJQoUe6goKeJgt4W7MSZ3JBXuIrJVRA6LSLuIfO48+3xIRA6IyH4ReSC1ZabPuQuYSucPdxFhXaOfw9aWMcbkkAXDXUTcwL3ALcBG4CMisnHOPq3A54F3qOom4DNpqDUthidngPOP3AE2NPo50jtO1BYRM8bkiGRG7tcC7ap6XFVngAeB2+bs89+Ae1V1CEBV+1JbZvqMTIVwi1DmO/8dB9c1BhgPhukcnspgZcYYs3jJhHsz0JHw/Ex8W6K1wFoReVFEXhGRrfO9kYjcKSJtItLW39+/uIpTbHgqRKDEg0vkvPusi1+pauvMGGNyRapOqHqAVuBG4CPAv4hI5dydVPU+Vd2iqlvq6upSdOilGZkKUXmeOe6zZsPd+u7GmFyRTLh3AssTnrfEtyU6A2xT1ZCqngCOEAv7rDcyGbpgvx2g3OdheXWJjdyNMTkjmXDfCbSKyGoR8QK3A9vm7PMIsVE7IlJLrE1zPIV1pkVUldHphcMdYF1DwMLdGJMzFgx3VQ0DdwFPAgeB76rqfhH5oojcGt/tSWBQRA4AzwB/oqqD6So6Vcamw0T1wjNlZq1v9HNiYIJgOJKByowxZmnOP0UkgapuB7bP2XZ3wmMFPhv/yhkLzXFPtL7JTySqtPeNs2lZRbpLM8aYJSnoK1STmeM+a3Zt90N2paoxJgcUdLi/cXu9C8+WAVhVU4bX47I1ZowxOaHgw93rdlFctPAfg8ftYk1duZ1UNcbkhIIP94rSIuQCFzAlWtfop91G7saYHJDUCdV8NTx5/nXcEz2w4zQA48EwXSPT/L8XT+DzuLnjuhXpLtEYYxbFRu5JhPusunIfAANjM+kqyRhjUqJgwz0SVcaDYQIXE+7+WLj3j0+nqyxjjEmJgg336VDsYqRSrzvp76kp9+IS6BsLpqssY4xJiYIP9+Ki5MPd43JRXeal38LdGJPlCjjcowCUXES4Q6zvbuFujMl2BRvuU4sYuQPU+YsZHJ8hYndlMsZksYIN9zfaMhf3R1Dn9xFRZWjSZswYY7KXhftFj9zjM2asNWOMyWIFH+6L6bmDhbsxJrsVbLhPhaII4PVc3B9BideN3+excDfGZLWCDffpUARfkeuCN8Y+nzq/j74xu5DJGJO9CjrcL7bfPqvO76N/PEjsHiXGGJN9CjrcL7bfPqvO72M6FGVg3GbMGGOyU8GG+1QouqSRO0B733gqSzLGmJQp2HBfUlsmPmPmWL+FuzEmOxV0uJdc5AVMsypKivC6XTZyN8ZkraTSTUS2ishhEWkXkc/N8/rviEi/iOyJf3089aWm1lQogm+RI3cRoc7vs5G7MSZrLXgnJhFxA/cCNwNngJ0isk1VD8zZ9Tuqelcaaky5aFSZCUcXfUIVYn33YzZyN8ZkqWRG7tcC7ap6XFVngAeB29JbVnqNBcMoF7/0QKJ6v4+ukWnGg+HUFWaMMSmSTLg3Ax0Jz8/Et831QRF5TUQeEpHlKakuTUanQgCL7rnDGzNmbPRujMlGqTqh+kNglapuBp4CvjnfTiJyp4i0iUhbf39/ig598UanY+G+tJF7MWDTIY0x2SmZcO8EEkfiLfFt56jqoKrOLrZyP3DNfG+kqvep6hZV3VJXV7eYelNibDrWSllKuFeXeSlyC0ct3I0xWSiZcN8JtIrIahHxArcD2xJ3EJGmhKe3AgdTV2LqzbZllhLubpewqqbMRu7GmKy04GwZVQ2LyF3Ak4Ab+Iaq7heRLwJtqroN+JSI3AqEgbPA76Sx5iUbjY/clzJbBqC1oZyD3WOpKMkYY1JqwXAHUNXtwPY52+5OePx54POpLS193hi5L+2Uw5q6cp7Y17Okq12NMSYdCvIK1dkTqj7P0gJ5TYOfqMLJwYlUlGWMMSlTkOE+Nh3G63Hhdl38Wu6J1tSVA3C01/ruxpjsUpDhPjoVWnK/HeCSujJcYtMhjTHZpzDDfTq05H47xGbbLK8utXA3xmSdwgz3qXDKToCuqSu3cDfGZJ2CDPexYGraMgBrGso5PjBOOBJNyfsZY0wqFGS4p3rkHooop89OpuT9jDEmFQoz3FPUcwdobfAD2DIExpisUnDhrqqMToVSNnK/tK4MsBkzxpjsUnDhPjETIapLX3pglr+4iKaKYlv61xiTVQou3MdSsNzvXGvqy60tY4zJKkmtLZNPRqeWvtzvrAd2nAYgElUO9YzyrVdO4RLhjutWLPm9jTFmKQpu5P7GjTpS99EbAsWEIsrQxEzK3tMYY5ai8ML93C32UteWaQzE7srUMzqdsvc0xpilKLhwT8VdmOZqCBQjWLgbY7JHwYV7Ku6fOpfX46KqzEvviIW7MSY7FF64p+hGHXM1BorpGQ0uvKMxxmRA4YX7dJjiIhceV4rDvaKYwfEgIVtjxhiTBQov3KdCBIqLUv6+DYFiFOiz0bsxJgsUXLiPTYcJlKQ+3G3GjDEmmxRcuI9OhwgUp/7arZpyLx6X0GvhbozJAkmFu4hsFZHDItIuIp+7wH4fFBEVkS2pKzG1RqdC+NPQlnGJUB/w2cjdGJMVFgx3EXED9wK3ABuBj4jIxnn28wOfBnakushUGk1TWwagMVBi0yGNMVkhmZH7tUC7qh5X1RngQeC2efb7C+BvgKxOt9gJ1fQsqdMY8DEWDDM4bidVjTHOSibcm4GOhOdn4tvOEZGrgeWq+qMU1pZyqpq2E6oADRWxk6qHe8bS8v7GGJOsJZ9QFREX8GXgj5LY904RaRORtv7+/qUe+qIFw1FmItG0TIWEN2bMHLJwN8Y4LJlw7wSWJzxviW+b5QcuA54VkZPAW4Ft851UVdX7VHWLqm6pq6tbfNWLNLv0QHma2jLlPg9lXreN3I0xjksm3HcCrSKyWkS8wO3AttkXVXVEVWtVdZWqrgJeAW5V1ba0VLwE4/FFw9LVcxcRGiqKOdRr4W6McdaC4a6qYeAu4EngIPBdVd0vIl8UkVvTXWAqjQdj4V7uS989ShoDxRzpGSMS1bQdwxhjFpJUyqnqdmD7nG13n2ffG5deVnrMjtzLfR56Sc+MlqaKEl4KDXJiYII19eVpOYYxxiykoK5QHYuP3MvSOHJvriwBYF/nSNqOYYwxCymocJ8dufvT1HMHqPP7KC5y8bqFuzHGQYUV7hnoubtdwoamgIW7McZRhRnuaRy5A1zeXMGBrlGidlLVGOOQggt3r9uFz5O6W+zN57LmCsaDYU4MTqT1OMYYcz6FFe7T4bSP2iE2cgc7qWqMcU5hhXswnNZ++6zW+nJ8Hhevn7FwN8Y4o6DCfWw6nNZpkLM8bpedVDXGOKqgwn08GMKfgXCHWGtmv51UNcY4pKDCfSIYyUjPHWLhPh4Mc9JOqhpjHFBQ4Z6pnjvEZswA1poxxjiioMJ9LEOzZQBaG8rx2klVY4xDMpN0WSJTPfcHdpwGoN7v4yeH+rikrpw7rluR9uMaY8ysghm5hyJRpkPRjMyWmdVcWULX8BRRtZOqxpjMKphwn8jAujJztVSVEAxHGRizG2YbYzKrYMI9U+vKJFpRXQbA6bOTGTumMcZAAYZ7pua5A9SWeyn1ujk1aOFujMmswgn36cyP3EWEldWlnDprc92NMZlVMOE+5kDPHWBFTRkD4zMMjlvf3RiTOQUT7on3T82kldWlALx6aiijxzXGFLbCCXcHTqgCNFeV4HaJhbsxJqMKJ9wdGrkXuV00V5bQZuFujMmgpMJdRLaKyGERaReRz83z+idE5HUR2SMiL4jIxtSXujSzI/cyb+Yvyl1ZXcrrZ0aYDkUyfmxjTGFaMNxFxA3cC9wCbAQ+Mk94P6Cql6vqlcCXgC+nvNIleGDHadpOnsXncfHgzo5zywNkyoqaUmYiUfZ32TozxpjMSGbkfi3QrqrHVXUGeBC4LXEHVR1NeFoGZN319sFwFJ/HmS7UivhJ1baT1poxxmRGMmnXDHQkPD8T3/YmIvJJETlGbOT+qfneSETuFJE2EWnr7+9fTL2LNh2O4itK742xz8dfXMSqmlLruxtjMiZlQ1lVvVdVLwX+FPjCefa5T1W3qOqWurq6VB06KcFQxLGRO8A1K6vZdWoItUXEjDEZkEzadQLLE563xLedz4PALy+lqHQIhqMUe5wZuQNsWVXF4MQMx/rtalVjTPolE+47gVYRWS0iXuB2YFviDiLSmvD0l4CjqSsxNYLhCL4i50bub7+0BoAX2wccq8EYUzgWTDtVDQN3AU8CB4Hvqup+EfmiiNwa3+0uEdkvInuAzwK/nbaKFykYiuJzcOS+sqaM5dUl/PSohbsxJv2SmvStqtuB7XO23Z3w+NMprivlph0euQNcv6aOH+7tIhSJUuQumOvHjDEOKIiEUVWCoSjFDp5QBXhnay3jwTB7O4YdrcMYk/8KItxDEUXB0bYMxPruLsFaM8aYtCuIcJ8Oxy77d7otU1nq5fKWSl6wk6rGmDTL/EIrDgiGooDzI3eAd66p5WvPHWN0OkSguMjpcowxF2m+5UvuuG6FA5VcWEGM3IPxkbvTPXeA61triUSVl48NOl2KMSaPFcbIPRwfuTu0/AC88dM+HI3idbv4xgsnGByfycqf+MYUqnAkyp6OYZ493M8PdncSDEdY3xjgsmUBWqpLcYk4XWLSCiPc40vtOrn8wCyPy8Xq2jLa+8adLsUYQ2w23f6uUX6wu5NH93QxMB7EJbC8qpTSUi8vHxvkhfYBWqpK+MS7Ls2ZgC+IcJ+eHblnQbgDrKkv53DvGEMTM06XYkzB6hye4tE9nTyyu5MjveO4RVjX6OemDfW01vsp8cZ+05+aifDy8QH+62Af7X3jrG3wO1x5cgoi3M+N3B1syyRa1+DnR693c7BndOGdjTEpMzIV4ol93Ty8q5MdJ84CsGVlFbdduYzLmysonedmPiVeNze01vFi+yCvnhqycM8msz33bDihClDr91Hv97G/y8LdmHQLRaI8f6Sfh3d18uT+HsJRpbbcy00b6rlyeRXVZd4F38PjdnHlikp+duIskzPheX8IZJvsrzAFguEobpfgyaJL/i9rruCZQ30MjAepLfc5XY4xeWW2j/7wrk627e1kYHyG6jIvW1ZVc9XySlqqSpCL7J1fs6KKl48NsvfMCG+7pCZNladOQYT7tMNruc9n07IATx/q46kDvXzkWpsxY0wq9I8FeWR3J//6wgl6Rqdxu4T1jX5uuayJtQ1+3K7FnwxdVllCU0Uxu04NWbhni2A4SnGW9NtnNQaKqS7z8sS+Hgt3Y5YgFIny9KE+vtd2hmcO9xGJKsurSrj1imVsbpm/j75Y16ys4rHXuukemaKpoiRl75sOhRHuWThyFxE2LQvw0rEBRqZCVJTY1arGXIz2vnG+29bBt3ecZiIYxl/s4R2X1nL1ykrq/cVpOeaVLZU8vq+HXaeG+KXNFu6Om3bw5tgXsmlZBT89OsDTh3r5latanC7HmKw3EQzzo9e7+c7ODl49NYTHJaxt8LNlVRWt9UtruySj1OdhQ1OA3R3D3HJ5U1bPeS+IcA+GI/h92TcybqkqoTFQzOOv91i4G3Meqsqrp4a45/FDvNY5wkw4Sm25j62bGrlqRSX+DK/RtLa+nH2dIwxNzFCTxZMhCiPcQ1Fqy7Nv5O4S4b2bGnhwZ0fOTK8yJlM6zk7y6J5OHt7VyfGBCbxuF5c1V7BlZRUra0overZLqszObhsYt3B3nNM3x76QrZc18c2XT/FfB/u49YplTpdjjKMGx4M8vq+HbXu6+NnJ2EVG166u5hM3XspEMJwVK7vW+mfDPcg6sveCpgIJd+dvsXc+162uprmyhO+1dVi4m4I0Nh3iyf29bNvbxYvtA0SiSl25j1/c2MAVLZVUlXkJRzQrgh2gzOumuMjFwHjQ6VIuKO/DPRSJEsqivxhzuVzCr13Twj88fZQzQ5O0VJU6XZIxaReKRHnmUB9f+clRDveMEY4qVaVFXL+mls0tFTQGih1ruyxERKgr99Fv4e6siWAYyJ5Fw+bz61ti4f7Qq2f4zE1rnS7HmLSZnb748K4zDIzPUObz8JZV1VyxvJLli7hq1Cm15T6OD0w4XcYFJRXuIrIV+ArgBu5X1XvmvP5Z4ONAGOgHfldVT6W41kUZm46Fe3GWtmUAWqpKuX5NLd9rO8On3tOKK83TuYzJpJlwlCf39/DtHad45fhZPC7hFzbU86Ety+kank779MV0qPX72N0xzEw4ijdLB44LhruIuIF7gZuBM8BOEdmmqgcSdtsNbFHVSRH5feBLwIfTUfDFGp0OAdlxi735zN7Eo7myhJ8eHeAvfnSA1nq/3cTD5Lz2vjG+s7OD7+/q5OzEDFWlRbx3UyNXx6cv9o4GczLYIXHGTJBlldl5MVMyI/drgXZVPQ4gIg8CtwHnwl1Vn0nY/xXgo6kscimGJ2PhXubL7g7UhqYAJUVu2k4O0VqfvWfgjbmQ4ckZHnutmx/s7jx3kdHNGxtoCBSzpr48qy/6uRi15bGVJHM93JuBjoTnZ4DrLrD/x4DHl1JUKg1Nxm6IUerNzpH7rCK3iyuXV/Kzk7ElRY3JFeFIlOeO9PPQq2f48YFeIlGl3u/cRUaZUFP2xsg9W6V0OCsiHwW2AO86z+t3AncCrFiRmbbD7N2Osj3cAbasquLl47EbAnz8nU5XY8yFHe8f58GdHTy8q5OB8SA1ZV6uW13NVSuqWFaRvbNdUsHrcVFZUsTAePbeTS2ZcO8Elic8b4lvexMRuQn4M+BdqjrvjzNVvQ+4D2DLli160dUuwlC8LVOSA+HeVFHC6toyXjo2SCgSpSiL1p83BmLXjDx1oJcHdpzmpWODuATWNQbYuqmRdY3pX9slm9SW+3J+5L4TaBWR1cRC/XbgjsQdROQq4J+Braral/Iql2Bocgafx4XHlRtBeUNrLd98+RQ/3NvFr15t682Y7NDeN8aDP+vg4d2xk6PNlSXcvLGBa1ZWEcjDtksyav1e9nQMo5qRcepFWzDcVTUsIncBTxKbCvkNVd0vIl8E2lR1G/C3QDnwvfivYqdV9dY01p20oYmZnGjJzFrb4Kch4OOfnzvOr1zVnNe/2prs1jc2zQ/3dvONF07QOTyFW4QNTX5uvWJZXp0cXazach/ToSjjwew8R5ZUz11VtwPb52y7O+HxTSmuK2WGJkM5tSCXiPDO1joeevUMzx7p593r6p0uyRSQkckQT+zvZtveLl4+NkhUY9N033d5E1cur6Q8y2edZVLiAmLZKO//Tw1PzlDmy52RO8DmlgpeODrAfc8dt3A3aRcMR3jmUD//8JOjHO4dIxJVqsu8vGttHVcsT9+NL3Jd4lz3bJT34X52cubctKVc4XG5+Nj1q/nf2w+yt2OYK5ZXOl2SyUP7u0b4XtsZHtnTyfBkiHKfh7euji0F0FyZO0sBOKWytAiPSyzcnTI8EcrJxbhuv3Y5//hMO//nx4f5j49d6LICY5I3Oh3i0d2dfO3ZY3SNxC7939gU4LYrqlhTX15Qs12WyiVCdZmXgTEL94wLRaKMBcM5dUJ1lr+4iD94zxr+8kcHef5IPzesrXO6JJOjZu9k9ODODh57rYvpUJSmimLevznWR8+lc1LZps7vo2/Uwj3jZq9OLcvBv7wP7DiN1+2iqrSIP/3+a3zy3Wv46FtXOl2WySF9o9Pc/eh+2k4NMTAexOtxcUVLJW9ZVWVtlxSpLfdxqHuMcCSKJ8uuS8m91LsIs+vK5OLIHcDjdvGLmxr5zs4O9pwetnA3C5qcCfPUgV6+v6uTF472E1VYWV3Ku65u5rLmiqxdQC9X1ZZ7iajSNTzNiprsav/mdbi/sfRA7n7Mzc0VvNg+wFMHe5kORSgusn+c5s1CkSgvHB3g0T2d/PhAL5MzEZorS/j9Gy+lyO2y2S5pVFkaW0Csc3jKwj2ThnJ85A6xee+3XNbEv/z0OF9/7pjdzMMAsT767o5hHt3dyQ9f6+bsxAwlRW4ua67giuUVrKopK/iLjDKhsiR2dW7X8JTDlfy8PA/33Fk07EJW15axuaWCe59p572bGtnQFHC6JOOQ04OT/PkP97OnY5jBiRk8LmFDU4D3XdbE2obyrOv75rtAPNw7Ldwz641wz/2P+YHNy+ganuKPv7eXRz75DltUrICMTIZ47PUufrCrk7ZTQwiwuq6MG9fVsWlZhbXqHFTkduH3eWzknmnDkyF8HlfW3gbrYpT5PPzlL1/OJ771Kv/0zDE+fVOr0yWZNJoJR3n2cB8P7+rk6UN9zESitNaX86db16Oq53q9xnkVpUU2cs+0sxMzVJflzz+CrZc1ctuVy/jq00e5aWM9m5ZVOF2SSaHZPvojuzv54d4uhiZDlPk8bFlVVRBrpOeqyhIL94wbnpzJuxHO//rAJl46Nsgnv72LRz95PRWlhbncar5QVQ73jrH9tW4e3dvFqcFJvB4XN29ooKbcS2t9Ya2RnosqS720nzqLqmbVD9+8DvehyRBVeRR+szfT/tWrmrn/pyf44Nde4rffvorffJvNf88lqsr+rlGe2NfD9n3dHO+fQIBL6sr44NUtbFoWsD56DqksLWI6FGVoMpRVnYL8DveJmbycWbKypozbrlzGw7s7eXxft4V7DlBV9nQM8+UfH2Ff1whDk6FzgX7blcvY2BTIy3uNFoLZ6ZCdQ1MW7pkyNDlDVVl+/oPZsqqa3tFpXjw2yAM7TnPHdZm5J61JXjSq7Do9xOP7enj89e7YQl0iXFpfxrvX1bOhKUCZrY+e8yoSLmS6vCV7zoPl7d+sSFQZmQpRlWc990RbL2uifzzInz3yOj6Piw9eY7flc9p0KMLLxwf52jPHONg9ylgwjNsltNaX8/Y1tWxoDOTE/XxN8qqy9EKmvA330akQUSXvTqgmcruEO65dyVMHe/jjh/bicsGvXGUBn2ndI1M8d7ifpw/18UL7AJMzEbxuF2sb/WxaFmBdg9966HmsxOumpMht4Z4psxcwVZcVMTUTdbia9PF6XNz/W2/hY9/cyR99dy+q2I210ywYjtB2cojnj/Tz7OF+DveOAVBRUsTlzRWsbwxwSV2ZXWhWIESEZZXFWTcdMo/DPbauTGWpl6mZaYerSa8f7O7kFzc20jM6zWe/u5fHXuvmPevrbRXJFDo9OMlzR/p49nA/Lx0bZCoUocgtbFlZzdZNjaxt9NPg92XVVDiTOcsqS2zkninD8ZF7VamX7uH8DneIjeB/522reGRPF08f6qNvLMgHr26x/u4iTQTDvHJ8kOeP9PP80QFODEwAUF3mZXNLBesa/KyuK7MldA0ALVUlPNU95nQZb5K34X52Yjbc83O2zHw8bhcfvLqZer+PJ/f38Ktfe4m/+/AVrG/Mv+mgqRYMR9jbMcJLxwZ4ZHcnHWeniKhS5BYuqS3n/ZubWNvgP3dTZGMSLasoYWA8mFXLcicV7iKyFfgK4AbuV9V75rx+A/D3wGbgdlV9KNWFXqzZG3VUZdG800wQEW5YW0dDwMePXu/mA199gc/ctJbfu+ESWzEwwdh0iN2nh2k7eZYdJ86yu2OYmXAUkdg/1HesqWVNfTkra0qtd24WtKyyBIDukWlW15Y5XE3MguEuIm7gXuBm4AywU0S2qeqBhN1OA78D/HE6ilyMocnYcqj+Ap1HvK4xwKdvWssXHnmdv33yME9w5XvpAAANvElEQVTu7+HP3reB6y6pcbq0jFNVTg1Osuv0ELtOD/HqqWEO94wSVRCgqbKYt6ysYnVtGatqy/JiFVGTWc1VsXDvGp7KnXAHrgXaVfU4gIg8CNwGnAt3VT0Zfy1rpqUMTc5QWVpU0Ce4ntjXwzsurSVQXMT217v58H2vcNOGev5063paG/xOl5cWqsqZoSn2dY6wr2uE187EvkamYr/J+TwulleVcuO6elbWlLK8qjRrfo02uas5PnLvHMqek6rJhHsz0JHw/Axw3WIOJiJ3AncCrFiR3isqhyby+wKmZIkIm1sqWd8Y4OVjA7x0bJCb/+55fmF9Pb97/WrefmlNzv4AnA5FaO8b52D3KAe7xzjQPcKBrlFGp8MAuAQaAsWsbSinpbKU5dWl1Ad8docik3INgWJEsuumHRn9/VNV7wPuA9iyZYum81hDkzMW7gm8HhfvWlfPX39wM//+8km+9copfuP+HaxtKOeXr2rmA5uXsbw6u+4BOSsYjnBqcJKjveMc6R3jaN8YR3rHOd4/TjT+t6jILTQGilnfGGBZZQnLKotpCBRbv9xkhNfjot7vy6rpkMmEeyewPOF5S3xbVhuanGFVTXb0vrLJE/t6qPcX8wfvaeW1MyPsPHmWLz1xmC89cZgrWip4Z2sdb19Tw9UrqjLarohGld6xaU70T3BicIIT/RMcH5jgeP84pwYnmR0JCLHpiPWBYt61tp7GimIaAj5qy21EbpzVXFmScyP3nUCriKwmFuq3A3ektaoUGJoMcdVyG7mfT5HbxTUrq7hmZRVDEzO83jnC/q4R/unZdv7xmXbcLmF9o58NTQHWN/pZWVNGc2UJzVUlBIo9F93KCYYjjEyG6BsL0j0yTc/IFGeGpjg5OMGpwUlODU4yFYok1CfUlPmoLfdy47p66vw+6v0+6vw+G42brLSssoR9nSNOl3HOguGuqmERuQt4kthUyG+o6n4R+SLQpqrbROQtwA+AKuADIvLnqroprZVfuGaGJ2cKbhrkYlWVeblhbR03rK1jOhTh5OAEJwcmUODZw/089OqZN+1f5BYqSrxUlHgoLnLj9bjOBW40qkRUCYaiTIUiTM6EGZ0Kvym4Z7ldQnWpl5pyL1evqKSmPDYCry33EigpspG4ySnNlSX8+EAv0ajiyoIbrCTVc1fV7cD2OdvuTni8k1i7JiuMB8OEIlpQFzClSnGRm/WNgXMXPt1yWRPjwTDDkzMMTYYYnpxhcibC5EyEqZkw4agyNh0mHFFEQARcIrFpqMUeqsu8lNS7KfG6KfW6KfN6qCwtIlBSRLnPYwFu8kZzVQkz4SgDE0Hq/cVOl5OfV6ieu4DJTqimRLnPQ7nPQ0uV05UYk71a4nPdTw9OZkW452XzcnZFSGvLGGMyZV38t91DPdmxxkxehvupwUkAllU6/9PTGFMYllUU4y/2cKhn1OlSgDwN9yO9Y7hdwqV15U6XYowpECKxGWaHbeSePod7xlhVY5eVG2Mya31jgEPdY6im9RrNpORnuPeO2TK3xpiMW9foZywYzoqLmfIu3Cdnwpw+O8naPF0YyxiTvTY0xXInG1ozeRfuR3vHUY39BDXGmEyaHVRmw4yZvAv32ZsVW7gbYzLNX1xES1UJB7udnzGTf+HeM0ZxkYsVWbrCoTEmv61vDFhbJh2O9I7RWu/HnQVrOxhjCs+GJj/HByaYnmc9pUzKu3A/1DNmLRljjGPWNfqJRJX2vnFH68ircD87MUP/WJB1NlPGGOOQ2WnYTrdm8ircZ/8wbeRujHHKqppSfB6X48sQ5FW4H7GZMsYYh3ncLlobyh2fDplX4X6oZ4zK0iLq/T6nSzHGFLD1jQEL91Q60jvG2gb/Rd8CzhhjUml9o5/+sSCD40HHasibcFdVjvSMsd5aMsYYh21sip1UfenYoGM15E24d41MMxYM25oyxhjHXXdJDZfUlfHVp48SjTqzQmTehPtPj/QD2MjdGOM4t0v4zE1rOdI7zmOvdztSQ16Ee/fIFH+1/SDXrKziqhV2o09jjPPef3kTaxvK+fv/OkI4Es348ZMKdxHZKiKHRaRdRD43z+s+EflO/PUdIrIq1YWeTzSq/Mn3XiMcVb78oSts2QFjTFZwuYQ/vGktx/sn2La3K/PHX2gHEXED9wK3ABuBj4jIxjm7fQwYUtU1wN8Bf5PqQs/n318+yQvtA3zhlzaysqYsU4c1xpgFvXdTIxubAnzlJ0cJZXj0nszI/VqgXVWPq+oM8CBw25x9bgO+GX/8EPALksb5iCOTIV44OsC9z7Tz148f4j3r6/nItcvTdThjjFkUl0v47M1rOTU4yQ1feoZ7Hj+UsWUJPEns0wx0JDw/A1x3vn1UNSwiI0ANMJCKIhN9/blj3PP4oXPPNzYFuOdXL7e57caYrHTTxga+/tFr+M7O0/zLT4/z9eeO8T/ev5GPXb86rcdNJtxTRkTuBO6MPx0XkcNLfc9TQMNnFtytljT8oMki9vlyX75/xrz+fL9xkft//G/g44s/3Mpkdkom3DuBxJ5HS3zbfPucEREPUAH83Ox9Vb0PuC+ZwlJJRNpUdUumj5sp9vlyX75/xnz/fNkomZ77TqBVRFaLiBe4Hdg2Z59twG/HH/8a8LSqOjNz3xhjzMIj93gP/S7gScANfENV94vIF4E2Vd0G/CvwHyLSDpwl9gPAGGOMQ5LquavqdmD7nG13JzyeBn49taWlVMZbQRlmny/35ftnzPfPl3XEuifGGJN/8mL5AWOMMW+W1+G+0LIJuU5EviEifSKyz+la0kFElovIMyJyQET2i8inna4plUSkWER+JiJ745/vz52uKR1ExC0iu0XkMadrKSR5G+5JLpuQ6/4N2Op0EWkUBv5IVTcCbwU+mWf/D4PAe1T1CuBKYKuIvNXhmtLh08BBp4soNHkb7iS3bEJOU9Xnic1Oykuq2q2qu+KPx4gFRLOzVaWOxozHnxbFv/LqJJiItAC/BNzvdC2FJp/Dfb5lE/ImGApNfKXRq4AdzlaSWvGWxR6gD3hKVfPq8wF/D/x3IPNr3ha4fA53kydEpBz4PvAZVR11up5UUtWIql5J7Mrva0XkMqdrShUReT/Qp6qvOl1LIcrncE9m2QST5USkiFiwf1tVH3a6nnRR1WHgGfLrHMo7gFtF5CSxtuh7RORbzpZUOPI53JNZNsFksfiy0f8KHFTVLztdT6qJSJ2IVMYflwA3A4cu/F25Q1U/r6otqrqK2L+/p1X1ow6XVTDyNtxVNQzMLptwEPiuqu53tqrUEpH/BF4G1onIGRH5mNM1pdg7gN8kNuLbE/96n9NFpVAT8IyIvEZsMPKUqtp0QZMSdoWqMcbkobwduRtjTCGzcDfGmDxk4W6MMXnIwt0YY/KQhbsxxuQhC3djjMlDFu4mY0QkEp+rvj++zO0fiYgr/toWEfmHC3zvKhG5I3PV/tyxp+JrwGQFEflwfClrmxdv5mXhbjJpSlWvVNVNxK7GvAX4nwCq2qaqn7rA964CHAn3uGPxNWCSFl92Oi1U9TvAx9P1/ib3WbgbR6hqH3AncJfE3Dg7ChWRdyVckbpbRPzAPcA749v+MD6a/qmI7Ip/vT3+vTeKyLMi8pCIHBKRb8eXMUBE3iIiL8V/a/iZiPjjqzL+rYjsFJHXROT3kqlfRB4RkVfjv4XcmbB9XET+r4jsBd52nmNuij/eEz9ma/x7P5qw/Z9nfzjEbzqzK/4eP0nh/waTz1TVvuwrI1/A+DzbhoEG4Ebgsfi2HwLviD8uJ3Yj93Ovx7eXAsXxx61AW/zxjcAIsYXiXMSWZ7ge8ALHgbfE9wvE3/dO4AvxbT6gDVg9p8ZVwL4526rj/y0B9gE18ecKfCj++HzH/CrwGwn7lAAb4p+7KL79n4DfAuqILV29OvG4CZ/1sfn+rO3LvjwX+bPAmEx4EfiyiHwbeFhVz8QH34mKgH8UkSuBCLA24bWfqeoZgHiffBWxwO9W1Z0AGl86WER+EdgsIr8W/94KYj8sTixQ46dE5Ffij5fHv2cwXsv349vXneeYLwN/Fr+RxcOqelREfgG4BtgZ/6wlxNZ4fyvwvKqeiL9H3t6cxaSWhbtxjIhcQiwM+4iNXAFQ1XtE5EfA+4AXReS983z7HwK9wBXERujTCa8FEx5HuPDfcwH+QFWfvIi6bwRuAt6mqpMi8ixQHH95WlUjF/p+VX1ARHYQu0PR9ngrSIBvqurn5xzrA8nWZUwi67kbR4hIHfB14B9VVee8dqmqvq6qf0NstcT1wBjgT9itgtioOEps5ciFTl4eBppE5C3xY/hFxENs1dDfj68bj4isFZGyBd6rAhiKB/t6YqPrpI8Z/6F2XFX/AXgU2Az8BPg1EamP71stIiuBV4AbRGT17PYFajMGsJG7yaySeJukiNjNr/8DmG+d9s+IyLuJ3ZptP/B4/HEkfqLy34j1pL8vIr8FPAFMXOjAqjojIh8GvhpfO32K2Oj7fmJtm13xE6/9wC8v8DmeAD4hIgeJBfgrF3nMDwG/KSIhoAf4K1U9KyJfAH4cnx4aAj6pqq/ET9g+HN/eR2ymkTEXZEv+GrMAid2/9TFVzapb4MXbQ3+squ93uhaTfawtY8zCIkBFtl3EROy3lyGnazHZyUbuxhiTh2zkbowxecjC3Rhj8pCFuzHG5CELd2OMyUMW7sYYk4f+PzbmSD4V4R28AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(irac['irac_ra'], irac['irac_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, irac, \"irac_ra\", \"irac_dec\", radius=1.5*u.arcsec)\n", "del irac" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cleaning\n", "\n", "When we merge the catalogues, astropy masks the non-existent values (e.g. when a row comes only from a catalogue and has no counterparts in the other, the columns from the latest are masked for that row). We indicate to use NaN for masked values for floats columns, False for flag columns and -1 for ID columns." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for col in master_catalogue.colnames:\n", " if (col.startswith(\"m_\") or col.startswith(\"merr_\") or col.startswith(\"f_\") or col.startswith(\"ferr_\")):\n", " master_catalogue[col] = master_catalogue[col].astype(float)\n", " master_catalogue[col].fill_value = np.nan\n", " if \"stellarity\" in col:\n", " master_catalogue[col].fill_value = np.nan\n", " elif \"flag\" in col:\n", " master_catalogue[col].fill_value = 0\n", " elif \"id\" in col:\n", " master_catalogue[col].fill_value = -1\n", " \n", "master_catalogue = master_catalogue.filled()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhsc_idradechsc_flag_gaiahsc_stellarityflag_mergedvics82_idvhs_idvista_intidvista_stellarityvista_flag_gaialas_idlas_stellaritylas_flag_gaiaps1_idps1_flag_gaiasdss_idsdss_stellaritysdss_flag_gaiadecam_intiddes_iddecals_iddecam_stellaritydecam_flag_gaiarcs_idrcs_stellarityrcs_flag_gaiairac_intidirac_stellarityirac_flag_gaiashela_intidspies_intid
degdeg
041618864458468676351.7078674102876-0.846745204726398521.0True0.0-1-1nan0-1nan0-10-1nan0-1-1-1nan00.0nan0-1nan0-1-1
141619564538122633350.64946504091785-0.4514271989231743420.0True0.0-1-1nan0-1nan0-10-1nan0-1-1-1nan00.0nan0-1nan0-1-1
241623687706742799352.65351552421663-0.278081367556757600.0False0.0-1-1nan0-1nan0-10-1nan0-1-1-1nan00.0nan0-1nan0-1-1
341619281070291584351.12786758280777-0.75210470610559420.0True0.0-1-1nan0-1nan0-10-1nan0-1-1-1nan00.0nan0-1nan0-1-1
442687997782543665351.089577824220160.319292152083524700.0True0.0-1-1nan0-1nan0-10-1nan0-1-1-1nan00.0nan0-1nan0-1-1
542692675001946330352.273605642252730.629668812881139500.0True0.0-1-1nan0-1nan0-10-1nan0-1-1-1nan00.0nan0-1nan0-1-1
641619156516240934351.326841113071-0.1406839069320142400.0False0.0-1-1nan0-1nan0-10-1nan0-1-1-1nan00.0nan0-1nan0-1-1
742687856048627738351.256215007419540.121516632424482600.0True0.0-1-1nan0-1nan0-10-1nan0-1-1-1nan00.0nan0-1nan0-1-1
841619152221266635351.37805431803594-0.4222442894379618300.0True0.0-1-1nan0-1nan0-10-1nan0-1-1-1nan00.0nan0-1nan0-1-1
941618731314478744351.79381153914903-0.698740557379481600.0False0.0-1-1nan0-1nan0-10-1nan0-1-1-1nan00.0nan0-1nan0-1-1
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "master_catalogue[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## III - Merging flags and stellarity\n", "\n", "Each pristine catalogue contains a flag indicating if the source was associated to a another nearby source that was removed during the cleaning process. We merge these flags in a single one.\n", "\n", "This now happens in the final merging loop" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each pristine catalogue contains a flag indicating the probability of a source being a Gaia object (0: not a Gaia object, 1: possibly, 2: probably, 3: definitely). We merge these flags taking the highest value." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true }, "outputs": [], "source": [ "flag_gaia_columns = [column for column in master_catalogue.colnames\n", " if 'flag_gaia' in column]\n", "\n", "master_catalogue.add_column(Column(\n", " data=np.max([master_catalogue[column] for column in flag_gaia_columns], axis=0),\n", " name=\"flag_gaia\"\n", "))\n", "master_catalogue.remove_columns(flag_gaia_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each prisitine catalogue may contain one or several stellarity columns indicating the probability (0 to 1) of each source being a star. We merge these columns taking the highest value." ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "hsc_stellarity, vista_stellarity, las_stellarity, sdss_stellarity, decam_stellarity, rcs_stellarity, irac_stellarity\n" ] } ], "source": [ "stellarity_columns = [column for column in master_catalogue.colnames\n", " if 'stellarity' in column]\n", "\n", "print(\", \".join(stellarity_columns))" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "# We create an masked array with all the stellarities and get the maximum value, as well as its\n", "# origin. Some sources may not have an associated stellarity.\n", "stellarity_array = np.array([master_catalogue[column] for column in stellarity_columns])\n", "stellarity_array = np.ma.masked_array(stellarity_array, np.isnan(stellarity_array))\n", "\n", "max_stellarity = np.max(stellarity_array, axis=0)\n", "max_stellarity.fill_value = np.nan\n", "\n", "no_stellarity_mask = max_stellarity.mask\n", "\n", "master_catalogue.add_column(Column(data=max_stellarity.filled(), name=\"stellarity\"))\n", "\n", "stellarity_origin = np.full(len(master_catalogue), \"NO_INFORMATION\", dtype=\"S20\")\n", "stellarity_origin[~no_stellarity_mask] = np.array(stellarity_columns)[np.argmax(stellarity_array, axis=0)[~no_stellarity_mask]]\n", "\n", "master_catalogue.add_column(Column(data=stellarity_origin, name=\"stellarity_origin\"))\n", "\n", "master_catalogue.remove_columns(stellarity_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IV - Adding E(B-V) column" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " ebv(master_catalogue['ra'], master_catalogue['dec'])\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## V - Adding HELP unique identifiers and field columns" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(gen_help_id(master_catalogue['ra'], master_catalogue['dec']),\n", " name=\"help_id\"))\n", "master_catalogue.add_column(Column(np.full(len(master_catalogue), \"Herschel-Stripe-82\", dtype='" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(specz['ra'] , specz['dec'] )\n", ")" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue = specz_merge(master_catalogue, specz, radius=1. * u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VII.a Wavelength domain coverage\n", "\n", "We add a binary `flag_optnir_obs` indicating that a source was observed in a given wavelength domain:\n", "\n", "- 1 for observation in optical;\n", "- 2 for observation in near-infrared;\n", "- 4 for observation in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source observed both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: The observation flag is based on the creation of multi-order coverage maps from the catalogues, this may not be accurate, especially on the edges of the coverage.*\n", "\n", "*Note 2: Being on the observation coverage does not mean having fluxes in that wavelength domain. For sources observed in one domain but having no flux in it, one must take into consideration de different depths in the catalogue we are using.*" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true }, "outputs": [], "source": [ "hsc_moc = MOC(filename=\"../../dmu0/dmu0_HSC/data/HSC-PDR1_deep_Herschel-Stripe-82_MOC.fits\")\n", "vhs_moc = MOC(filename=\"../../dmu0/dmu0_VISTA-VHS/data/VHS_Herschel-Stripe-82_MOC.fits\")\n", "vics82_moc = MOC(filename=\"../../dmu0/dmu0_VICS82/data/VICS82_FULL_SDSS_FEB2017_K22_HELP-coverage_intIDs_MOC.fits\")\n", "las_moc = MOC(filename=\"../../dmu0/dmu0_UKIDSS-LAS/data/UKIDSS-LAS_Herschel-Stripe-82_MOC.fits\")\n", "ps1_moc = MOC(filename=\"../../dmu0/dmu0_PanSTARRS1-3SS/data/PanSTARRS1-3SS_Herschel-Stripe-82_v2_MOC.fits\")\n", "shela_moc = MOC(filename=\"../../dmu0/dmu0_SHELA/data/shela_irac_v1.3_flux_cat_MOC.fits\")\n", "spies_moc = MOC(filename=\"../../dmu0/dmu0_SpIES/data/SpIES_ch1andch2_HELP-coverage_MOC.fits\")\n", "decals_moc = MOC(filename=\"../../dmu0/dmu0_DECaLS/data/DECaLS_Herschel-Stripe-82_MOC.fits\")\n", "des_moc = MOC(filename=\"../../dmu0/dmu0_DES/data/DES-DR1_Herschel-Stripe-82_MOC.fits\")\n", "decam_moc = decals_moc + des_moc\n", "rcs_moc = MOC(filename=\"../../dmu0/dmu0_RCSLenS/data/RCSLenS_Herschel-Stripe-82_MOC.fits\")\n", "sdss_moc = MOC(filename=\"../../dmu0/dmu0_SDSS-S82/data/dmu0_SDSS-S82_MOC.fits\")\n", "#sdss_moc = MOC(filename=\"../../dmu0/dmu0_IAC_Stripe82_Legacy_Project/data/dmu0_IAC_Stripe82_Legacy_Project_MOC.fits\")" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true }, "outputs": [], "source": [ "was_observed_optical = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " hsc_moc + ps1_moc + decam_moc + rcs_moc + sdss_moc) \n", "\n", "was_observed_nir = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " las_moc + vics82_moc + vhs_moc\n", ")\n", "\n", "was_observed_mir = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " shela_moc + spies_moc\n", ")" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " Column(\n", " 1 * was_observed_optical + 2 * was_observed_nir + 4 * was_observed_mir,\n", " name=\"flag_optnir_obs\")\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VII.b Wavelength domain detection\n", "\n", "We add a binary `flag_optnir_det` indicating that a source was detected in a given wavelength domain:\n", "\n", "- 1 for detection in optical;\n", "- 2 for detection in near-infrared;\n", "- 4 for detection in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source detected both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: We use the total flux columns to know if the source has flux, in some catalogues, we may have aperture flux and no total flux.*\n", "\n", "To get rid of artefacts (chip edges, star flares, etc.) we consider that a source is detected in one wavelength domain when it has a flux value in **at least two bands**. That means that good sources will be excluded from this flag when they are on the coverage of only one band.\n", "\n", "This now takes place at the end of the notebook when teh photometry is folded in." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VIII - Cross-identification table\n", "\n", "We are producing a table associating to each HELP identifier, the identifiers of the sources in the pristine catalogue. This can be used to easily get additional information from them." ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "7885 master list rows had multiple associations.\n" ] } ], "source": [ "#\n", "# Addind SDSS ids\n", "#\n", "sdss_dr13 = Table.read(\"../../dmu0/dmu0_SDSS-DR13/data/SDSS-DR13_Herschel-Stripe-82.fits\")['objID', 'ra', 'dec']\n", "sdss_dr13_coords = SkyCoord(sdss_dr13['ra'] * u.deg, sdss_dr13['dec'] * u.deg)\n", "idx_ml, d2d, _ = sdss_dr13_coords.match_to_catalog_sky(SkyCoord(master_catalogue['ra'], master_catalogue['dec']))\n", "idx_sdss_dr13 = np.arange(len(sdss_dr13))\n", "\n", "# Limit the cross-match to 1 arcsec\n", "mask = d2d <= 1. * u.arcsec\n", "idx_ml = idx_ml[mask]\n", "idx_sdss_dr13 = idx_sdss_dr13[mask]\n", "d2d = d2d[mask]\n", "nb_orig_matches = len(idx_ml)\n", "\n", "# In case of multiple associations of one master list object to an SDSS object, we keep only the\n", "# association to the nearest one.\n", "sort_idx = np.argsort(d2d)\n", "idx_ml = idx_ml[sort_idx]\n", "idx_sdss_dr13 = idx_sdss_dr13[sort_idx]\n", "_, unique_idx = np.unique(idx_ml, return_index=True)\n", "idx_ml = idx_ml[unique_idx]\n", "idx_sdss_dr13 = idx_sdss_dr13[unique_idx]\n", "print(\"{} master list rows had multiple associations.\".format(nb_orig_matches - len(idx_ml)))\n", "\n", "# Adding the ObjID to the master list\n", "master_catalogue.add_column(Column(data=np.full(len(master_catalogue), -1, dtype='>i8'), name=\"sdss_dr13_id\"))\n", "master_catalogue['sdss_dr13_id'][idx_ml] = sdss_dr13['objID'][idx_sdss_dr13]" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['hsc_id', 'vics82_id', 'vhs_id', 'vista_intid', 'las_id', 'ps1_id', 'sdss_id', 'decam_intid', 'des_id', 'decals_id', 'rcs_id', 'irac_intid', 'shela_intid', 'spies_intid', 'help_id', 'specz_id', 'sdss_dr13_id']\n" ] } ], "source": [ "\n", "id_names = []\n", "for col in master_catalogue.colnames:\n", " if '_id' in col:\n", " id_names += [col]\n", " if '_intid' in col:\n", " id_names += [col]\n", " \n", "print(id_names)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue[id_names].write(\n", " \"{}/master_list_cross_ident_herschel-stripe-82{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)\n", "id_names.remove('help_id')\n", "old_id_names =[\"shela_intid\",\"spies_intid\",\"decals_id\",\"des_id\",\"vhs_id\", \"vics82_id\"] \n", "#id_names.remove(old_id_names)\n", "master_catalogue.remove_columns(old_id_names)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IX - Adding HEALPix index\n", "\n", "We are adding a column with a HEALPix index at order 13 associated with each source." ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(\n", " data=coords_to_hpidx(master_catalogue['ra'], master_catalogue['dec'], order=13),\n", " name=\"hp_idx\"\n", "))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## X - Saving the catalogue" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": true }, "outputs": [], "source": [ "columns = [\"help_id\", \"field\", \"ra\", \"dec\", \"hp_idx\"]\n", "\n", "bands = [column[5:] for column in master_catalogue.colnames if 'f_ap' in column]\n", "for band in bands:\n", " columns += [\"f_ap_{}\".format(band), \"ferr_ap_{}\".format(band),\n", " \"m_ap_{}\".format(band), \"merr_ap_{}\".format(band),\n", " \"f_{}\".format(band), \"ferr_{}\".format(band),\n", " \"m_{}\".format(band), \"merr_{}\".format(band),\n", " \"flag_{}\".format(band)] \n", " \n", "columns += [\"stellarity\", \"flag_cleaned\", \"flag_merged\", \"flag_gaia\", \"flag_optnir_obs\", \"ebv\"] #\"flag_gaia\",\"flag_optnir_det\"," ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Missing columns: {'irac_intid', 'rcs_id', 'specz_id', 'ps1_id', 'las_id', 'stellarity_origin', 'decam_intid', 'zspec_association_flag', 'sdss_dr13_id', 'zspec', 'hsc_id', 'vista_intid', 'sdss_id', 'zspec_qual'}\n" ] } ], "source": [ "# We check for columns in the master catalogue that we will not save to disk.\n", "print(\"Missing columns: {}\".format(set(master_catalogue.colnames) - set(columns)))" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.write(\"{}/temp_{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## XI - folding in the photometry\n", "On HS82 there is too much data to load all in to memory at once so we perform the cross matching without photometry columns. Only now do we fold in the photometry data by first cutting the catalogue up in to manageable sizes." ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "502\n" ] } ], "source": [ "split_length = 100000 #number of sources to include in every sub catalogue\n", "num_files = int(np.ceil(len(master_catalogue)/split_length))\n", "print(num_files)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true }, "outputs": [], "source": [ "surveys = [\n", " ['hsc', \"HSC-SSP.fits\" , Table.read(\"{}/HSC-SSP.fits\".format(TMP_DIR) ), \"hsc_id\"], \n", " \n", " # ['vhs', \"VISTA-VHS.fits\" , Table.read(\"{}/VISTA-VHS.fits\".format(TMP_DIR) ), \"vhs_id\"], \n", " # ['vics82', \"VICS82.fits\" , Table.read(\"{}/VICS82.fits\".format(TMP_DIR) ), \"vics82_id\"], \n", " ['vista', \n", " \"vista_merged_catalogue_herschel-stripe-82.fits\" , \n", " Table.read(\"{}/vista_merged_catalogue_herschel-stripe-82.fits\".format(TMP_DIR) ), \"vista_intid\"],\n", " \n", " ['las', \"UKIDSS-LAS.fits\" , Table.read(\"{}/UKIDSS-LAS.fits\".format(TMP_DIR)), \"las_id\"], \n", " \n", " ['ps1', \"PS1.fits\" , Table.read(\"{}/PS1.fits\".format(TMP_DIR) ), \"ps1_id\"], \n", " \n", " #['shela', \"SHELA.fits\" , Table.read(\"{}/SHELA.fits\".format(TMP_DIR) ), \"shela_intid\"], \n", " #['spies', \"SpIES.fits\" , Table.read(\"{}/SpIES.fits\".format(TMP_DIR) ), \"spies_intid\"], \n", " ['irac', \n", " \"irac_merged_catalogue_herschel-stripe-82.fits\" , \n", " Table.read(\"{}/irac_merged_catalogue_herschel-stripe-82.fits\".format(TMP_DIR) ), \n", " \"irac_intid\"], \n", " \n", " #['decals', \"DECaLS.fits\" , Table.read(\"{}/DECaLS.fits\".format(TMP_DIR) ), \"decals_id\"], \n", " ['decam', \n", " \"decam_merged_catalogue_herschel-stripe-82.fits\" , \n", " Table.read(\"{}/decam_merged_catalogue_herschel-stripe-82.fits\".format(TMP_DIR) ), \n", " \"decam_intid\"], \n", " \n", " ['rcs', \"RCSLenS.fits\" , Table.read(\"{}/RCSLenS.fits\".format(TMP_DIR) ), \"rcs_id\"], \n", " \n", " ['sdss', \"SDSS-S82.fits\" , Table.read(\"{}/SDSS-S82.fits\".format(TMP_DIR) ), \"sdss_id\"], \n", " #['sdss', \"SDSS-S82_IAC.fits\" , Table.read(\"{}/SDSS-S82_IAC.fits\".format(TMP_DIR) ), \"sdss_id\"],\n", "]" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Sort catalogue by HELP id so that it is split up in RA strips\n", "master_catalogue.sort('help_id')" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n=0\n", "for sub_file in range(num_files):\n", " # the following used to have a -1 which was wrong as it left out objects\n", " sub_catalogue = master_catalogue[n*split_length:(n+1)*split_length].copy()\n", " #print(n)\n", " for survey in surveys:\n", " #print(survey[0])\n", " sub_catalogue = join(sub_catalogue, \n", " survey[2], #Table.read(\"{}/{}\".format(TMP_DIR, survey[1])),\n", " join_type='left',\n", " metadata_conflicts='silent',\n", " keys=survey[3]\n", " )\n", " #print('Finished join')\n", " \n", " # Combine merge flags\n", " \n", " sub_catalogue['flag_merged'].name = 'flag_merged_tmp'\n", " flag_merged_columns = [column for column in sub_catalogue.colnames\n", " if 'flag_merged' in column]\n", " \n", " flag_merged_column = np.zeros(len(sub_catalogue), dtype=bool)\n", " for column in flag_merged_columns:\n", " flag_merged_column |= sub_catalogue[column]\n", " \n", " sub_catalogue.add_column(Column(data=flag_merged_column, name=\"flag_merged\"))\n", " sub_catalogue.remove_columns(flag_merged_columns)\n", " \n", " #flag cleaned\n", " flag_cleaned_columns = [column for column in sub_catalogue.colnames\n", " if 'flag_cleaned' in column]\n", "\n", " flag_column = np.zeros(len(sub_catalogue), dtype=bool)\n", " for column in flag_cleaned_columns:\n", " flag_column |= sub_catalogue[column]\n", " \n", " sub_catalogue.add_column(Column(data=flag_column, name=\"flag_cleaned\"))\n", " sub_catalogue.remove_columns(flag_cleaned_columns)\n", "\n", " #Remove stellarity and gaia flag columns which have been added back in\n", " sub_catalogue.remove_columns(flag_gaia_columns)\n", " sub_catalogue.remove_columns(stellarity_columns)\n", " #sub_catalogue.remove_columns(flag_cleaned_columns)\n", " \n", " #Add flag fill values\n", " \n", " for col in sub_catalogue.colnames:\n", " if (col.startswith(\"m_\") or col.startswith(\"merr_\") or col.startswith(\"f_\") or col.startswith(\"ferr_\")):\n", " sub_catalogue[col] = sub_catalogue[col].astype(float)\n", " sub_catalogue[col].fill_value = np.nan\n", " if \"stellarity\" in col:\n", " sub_catalogue[col].fill_value = np.nan\n", " elif \"flag\" in col:\n", " sub_catalogue[col].fill_value = 0\n", " elif col.endswith(\"id\"):\n", " sub_catalogue[col].fill_value = -1\n", " #Remove residual ra decs from join\n", " if col.endswith('_ra'):\n", " sub_catalogue.remove_column(col)\n", " if col.endswith('_dec'):\n", " sub_catalogue.remove_column(col)\n", " \n", " sub_catalogue = sub_catalogue.filled()\n", " \n", " #Adding detection flag\n", " \n", " nb_optical_flux = (\n", " 1 * ~np.isnan(sub_catalogue['f_sdss_u']) +\n", " 1 * ~np.isnan(sub_catalogue['f_sdss_g']) +\n", " 1 * ~np.isnan(sub_catalogue['f_sdss_r']) +\n", " 1 * ~np.isnan(sub_catalogue['f_sdss_i']) +\n", " 1 * ~np.isnan(sub_catalogue['f_sdss_z']) +\n", " 1 * ~np.isnan(sub_catalogue['f_suprime_g']) +\n", " 1 * ~np.isnan(sub_catalogue['f_suprime_r']) +\n", " 1 * ~np.isnan(sub_catalogue['f_suprime_i']) +\n", " 1 * ~np.isnan(sub_catalogue['f_suprime_z']) +\n", " 1 * ~np.isnan(sub_catalogue['f_suprime_y']) +\n", " 1 * ~np.isnan(sub_catalogue['f_suprime_n921']) +\n", " 1 * ~np.isnan(sub_catalogue['f_suprime_n816']) +\n", " 1 * ~np.isnan(sub_catalogue['f_gpc1_g']) +\n", " 1 * ~np.isnan(sub_catalogue['f_gpc1_r']) +\n", " 1 * ~np.isnan(sub_catalogue['f_gpc1_i']) +\n", " 1 * ~np.isnan(sub_catalogue['f_gpc1_z']) +\n", " 1 * ~np.isnan(sub_catalogue['f_gpc1_y']) +\n", " 1 * ~np.isnan(sub_catalogue['f_decam_g']) +\n", " 1 * ~np.isnan(sub_catalogue['f_decam_r']) +\n", " 1 * ~np.isnan(sub_catalogue['f_decam_i']) +\n", " 1 * ~np.isnan(sub_catalogue['f_decam_z']) +\n", " 1 * ~np.isnan(sub_catalogue['f_decam_y']) \n", " )\n", "\n", " nb_nir_flux = (\n", " #1 * ~np.isnan(sub_catalogue['f_ukidss_y']) +\n", " 1 * ~np.isnan(sub_catalogue['f_ukidss_j']) +\n", " 1 * ~np.isnan(sub_catalogue['f_ukidss_h']) +\n", " 1 * ~np.isnan(sub_catalogue['f_ukidss_k']) +\n", " \n", " 1 * ~np.isnan(sub_catalogue['f_vista_j']) +\n", " 1 * ~np.isnan(sub_catalogue['f_vista_h']) +\n", " 1 * ~np.isnan(sub_catalogue['f_vista_ks']) \n", " )\n", "\n", " nb_mir_flux = (\n", " 1 * ~np.isnan(sub_catalogue['f_irac_i1']) +\n", " 1 * ~np.isnan(sub_catalogue['f_irac_i2']) \n", " )\n", "\n", "\n", " has_optical_flux = nb_optical_flux >= 2\n", " has_nir_flux = nb_nir_flux >= 2\n", " has_mir_flux = nb_mir_flux >= 2\n", "\n", " sub_catalogue.add_column(\n", " Column(\n", " 1 * has_optical_flux + 2 * has_nir_flux + 4 * has_mir_flux,\n", " name=\"flag_optnir_det\")\n", " )\n", " \n", " \n", " # Remove id names and write file\n", " sub_catalogue.remove_columns(id_names)\n", " \n", " sub_catalogue.write(\"{}/tiles/sub_catalogue_herschel-stripe-82{}_{}.fits\".format(OUT_DIR, SUFFIX, n), overwrite=True)\n", " \n", " del sub_catalogue\n", " del flag_column\n", " del flag_merged_column\n", " gc.collect()\n", " time.sleep(10)\n", " \n", " n += 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## How to generate final catalogue\n", "After this notebook has been run there will be a set of sub catalogues in data/tiles/\n", "\n", "These need to be stacked using stilts:\n", "\n", "
\n",
    "suffix=20180111\n",
    "\n",
    "ls ./data/tiles/sub_catalogue_herschel-stripe-82_$suffix_*.fits > ./data/tiles/fits_list_$suffix.lis\n",
    "\n",
    "stilts tcat in=@./data/tiles/fits_list_$suffix.lis out=./data/master_catalogue_herschel-stripe-82_$suffix.fits\n",
    "
\n", "\n", "For many purposes this file may be too large. In order to run checks and diagnostics we typically take a subset using something like:\n", "\n", "
\n",
    "stilts tpipe cmd='every 10' ./data/master_catalogue_herschel-stripe-82_$suffix.fits omode=out out=./data/master_catalogue_herschel-stripe-82_RANDOM10PCSAMPLE_$suffix.fits\n",
    "
" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2" } }, "nbformat": 4, "nbformat_minor": 2 }