{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# HDF-N Selection Functions\n", "## Depth maps and selection functions\n", "\n", "The simplest selection function available is the field MOC which specifies the area for which there is Herschel data. Each pristine catalogue also has a MOC defining the area for which that data is available.\n", "\n", "The next stage is to provide mean flux standard deviations which act as a proxy for the catalogue's 5$\\sigma$ depth" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "017bb1e (Mon Jun 18 14:58:59 2018 +0100)\n", "This notebook was executed on: \n", "2018-06-25 14:02:34.870374\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n", "import datetime\n", "print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "import os\n", "import time\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table, join\n", "import numpy as np\n", "from pymoc import MOC\n", "import healpy as hp\n", "#import pandas as pd #Astropy has group_by function so apandas isn't required.\n", "import seaborn as sns\n", "\n", "import warnings\n", "#We ignore warnings - this is a little dangerous but a huge number of warnings are generated by empty cells later\n", "warnings.filterwarnings('ignore')\n", "\n", "from herschelhelp_internal.utils import inMoc, coords_to_hpidx, flux_to_mag\n", "from herschelhelp_internal.masterlist import find_last_ml_suffix, nb_ccplots\n", "\n", "from astropy.io.votable import parse_single_table" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "FIELD = 'HDF-N'\n", "#FILTERS_DIR = \"/Users/rs548/GitHub/herschelhelp_python/database_builder/filters/\"\n", "FILTERS_DIR = \"/opt/herschelhelp_python/database_builder/filters/\"" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Depth maps produced using: master_catalogue_hdf-n_20180427.fits\n" ] } ], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "SUFFIX = find_last_ml_suffix()\n", "#SUFFIX = \"20171016\"\n", "\n", "master_catalogue_filename = \"master_catalogue_{}_{}.fits\".format(FIELD.lower(), SUFFIX)\n", "master_catalogue = Table.read(\"{}/{}\".format(OUT_DIR, master_catalogue_filename))\n", "\n", "print(\"Depth maps produced using: {}\".format(master_catalogue_filename))\n", "\n", "ORDER = 10\n", "#TODO write code to decide on appropriate order\n", "\n", "field_moc = MOC(filename=\"../../dmu2/dmu2_field_coverages/{}_MOC.fits\".format(FIELD))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Remove sources whose signal to noise ratio is less than five as these will have been selected using forced \n", "# photometry and so the errors will not refelct the RMS of the map \n", "for n,col in enumerate(master_catalogue.colnames):\n", " if col.startswith(\"f_\"):\n", " err_col = \"ferr{}\".format(col[1:])\n", " errs = master_catalogue[err_col]\n", " fluxes = master_catalogue[col]\n", " mask = fluxes/errs < 5.0\n", " master_catalogue[col][mask] = np.nan\n", " master_catalogue[err_col][mask] = np.nan" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## I - Group masterlist objects by healpix cell and calculate depths\n", "We add a column to the masterlist catalogue for the target order healpix cell per object." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#Add a column to the catalogue with the order=ORDER hp_idx\n", "master_catalogue.add_column(Column(data=coords_to_hpidx(master_catalogue['ra'],\n", " master_catalogue['dec'],\n", " ORDER), \n", " name=\"hp_idx_O_{}\".format(str(ORDER))\n", " )\n", " )" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Convert catalogue to pandas and group by the order=ORDER pixel\n", "\n", "group = master_catalogue.group_by([\"hp_idx_O_{}\".format(str(ORDER))])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#Downgrade the groups from order=ORDER to order=13 and then fill out the appropriate cells\n", "#hp.pixelfunc.ud_grade([2599293, 2599294], nside_out=hp.order2nside(13))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## II Create a table of all Order=13 healpix cells in the field and populate it\n", "We create a table with every order=13 healpix cell in the field MOC. We then calculate the healpix cell at lower order that the order=13 cell is in. We then fill in the depth at every order=13 cell as calculated for the lower order cell that that the order=13 cell is inside." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "depths = Table()\n", "depths['hp_idx_O_13'] = list(field_moc.flattened(13))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhp_idx_O_13
0184352768
1184352769
2184352770
3184352771
4184352772
5184352773
6184352774
7184352775
8184352776
9184352777
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "depths[:10].show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "depths.add_column(Column(data=hp.pixelfunc.ang2pix(2**ORDER,\n", " hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[0],\n", " hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[1],\n", " nest = True),\n", " name=\"hp_idx_O_{}\".format(str(ORDER))\n", " )\n", " )" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false, "deletable": true, "editable": true, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhp_idx_O_13hp_idx_O_10
01843527682880512
11843527692880512
21843527702880512
31843527712880512
41843527722880512
51843527732880512
61843527742880512
71843527752880512
81843527762880512
91843527772880512
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "depths[:10].show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "Table masked=True length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhp_idx_O_13hp_idx_O_10ferr_ap_gpc1_g_meanf_ap_gpc1_g_p90ferr_gpc1_g_meanf_gpc1_g_p90ferr_ap_gpc1_r_meanf_ap_gpc1_r_p90ferr_gpc1_r_meanf_gpc1_r_p90ferr_ap_gpc1_i_meanf_ap_gpc1_i_p90ferr_gpc1_i_meanf_gpc1_i_p90ferr_ap_gpc1_z_meanf_ap_gpc1_z_p90ferr_gpc1_z_meanf_gpc1_z_p90ferr_ap_gpc1_y_meanf_ap_gpc1_y_p90ferr_gpc1_y_meanf_gpc1_y_p90ferr_acs_f435w_meanf_acs_f435w_p90ferr_acs_f606w_meanf_acs_f606w_p90ferr_acs_f775w_meanf_acs_f775w_p90ferr_acs_f814w_meanf_acs_f814w_p90ferr_acs_f850lp_meanf_acs_f850lp_p90ferr_wfc3_f105w_meanf_wfc3_f105w_p90ferr_wfc3_f125w_meanf_wfc3_f125w_p90ferr_wfc3_f140w_meanf_wfc3_f140w_p90ferr_wfc3_f160w_meanf_wfc3_f160w_p90ferr_moircs_k_meanf_moircs_k_p90ferr_ap_mosaic_u_meanf_ap_mosaic_u_p90ferr_mosaic_u_meanf_mosaic_u_p90ferr_ap_suprime_b_meanf_ap_suprime_b_p90ferr_suprime_b_meanf_suprime_b_p90ferr_ap_suprime_v_meanf_ap_suprime_v_p90ferr_suprime_v_meanf_suprime_v_p90ferr_ap_suprime_r_meanf_ap_suprime_r_p90ferr_suprime_r_meanf_suprime_r_p90ferr_ap_suprime_ip_meanf_ap_suprime_ip_p90ferr_suprime_ip_meanf_suprime_ip_p90ferr_ap_suprime_zp_meanf_ap_suprime_zp_p90ferr_suprime_zp_meanf_suprime_zp_p90ferr_ap_quirc_hk_meanf_ap_quirc_hk_p90ferr_quirc_hk_meanf_quirc_hk_p90ferr_wircam_ks_meanf_wircam_ks_p90ferr_irac_i1_meanf_irac_i1_p90ferr_irac_i2_meanf_irac_i2_p90ferr_irac_i3_meanf_irac_i3_p90ferr_irac_i4_meanf_irac_i4_p90
018395915128743611.445335671831408845.55414486359340.881452205359988936.004901273951550.972095507365602959.044055710873380.823154004199446251.454952888511042.211029759605186101.941694735836762.802394650138773112.120984890030192.612206892230367252.01200046970822.3234836982805764179.284979055584733.807055748818949296.32907921355363.5941999878521016349.5281534846389nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
118395916228743611.445335671831408845.55414486359340.881452205359988936.004901273951550.972095507365602959.044055710873380.823154004199446251.454952888511042.211029759605186101.941694735836762.802394650138773112.120984890030192.612206892230367252.01200046970822.3234836982805764179.284979055584733.807055748818949296.32907921355363.5941999878521016349.5281534846389nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
218395916328743611.445335671831408845.55414486359340.881452205359988936.004901273951550.972095507365602959.044055710873380.823154004199446251.454952888511042.211029759605186101.941694735836762.802394650138773112.120984890030192.612206892230367252.01200046970822.3234836982805764179.284979055584733.807055748818949296.32907921355363.5941999878521016349.5281534846389nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
318395916128743611.445335671831408845.55414486359340.881452205359988936.004901273951550.972095507365602959.044055710873380.823154004199446251.454952888511042.211029759605186101.941694735836762.802394650138773112.120984890030192.612206892230367252.01200046970822.3234836982805764179.284979055584733.807055748818949296.32907921355363.5941999878521016349.5281534846389nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
418395916428743611.445335671831408845.55414486359340.881452205359988936.004901273951550.972095507365602959.044055710873380.823154004199446251.454952888511042.211029759605186101.941694735836762.802394650138773112.120984890030192.612206892230367252.01200046970822.3234836982805764179.284979055584733.807055748818949296.32907921355363.5941999878521016349.5281534846389nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
518395916728743611.445335671831408845.55414486359340.881452205359988936.004901273951550.972095507365602959.044055710873380.823154004199446251.454952888511042.211029759605186101.941694735836762.802394650138773112.120984890030192.612206892230367252.01200046970822.3234836982805764179.284979055584733.807055748818949296.32907921355363.5941999878521016349.5281534846389nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
618395916028743611.445335671831408845.55414486359340.881452205359988936.004901273951550.972095507365602959.044055710873380.823154004199446251.454952888511042.211029759605186101.941694735836762.802394650138773112.120984890030192.612206892230367252.01200046970822.3234836982805764179.284979055584733.807055748818949296.32907921355363.5941999878521016349.5281534846389nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
718395916528743611.445335671831408845.55414486359340.881452205359988936.004901273951550.972095507365602959.044055710873380.823154004199446251.454952888511042.211029759605186101.941694735836762.802394650138773112.120984890030192.612206892230367252.01200046970822.3234836982805764179.284979055584733.807055748818949296.32907921355363.5941999878521016349.5281534846389nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
818395916628743611.445335671831408845.55414486359340.881452205359988936.004901273951550.972095507365602959.044055710873380.823154004199446251.454952888511042.211029759605186101.941694735836762.802394650138773112.120984890030192.612206892230367252.01200046970822.3234836982805764179.284979055584733.807055748818949296.32907921355363.5941999878521016349.5281534846389nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
918395922528743621.466275073358624145.265080463726241.4621490838942262189.010471858257521.2722945295687382197.16587340653951.7335534702054656260.62618675725721.9019057862713948270.74479715235461.8649730239728977364.215263077144.0462013620889845357.48705473324052.782678432632852458.01496604138595.736357932356259458.726245274445437.244018094409498711.5087956483816nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for col in master_catalogue.colnames:\n", " if col.startswith(\"f_\"):\n", " errcol = \"ferr{}\".format(col[1:])\n", " depths = join(depths, \n", " group[\"hp_idx_O_{}\".format(str(ORDER)), errcol].groups.aggregate(np.nanmean),\n", " join_type='left')\n", " depths[errcol].name = errcol + \"_mean\"\n", " depths = join(depths, \n", " group[\"hp_idx_O_{}\".format(str(ORDER)), col].groups.aggregate(lambda x: np.nanpercentile(x, 90.)),\n", " join_type='left')\n", " depths[col].name = col + \"_p90\"\n", "\n", "depths[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## III - Save the depth map table" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "depths.write(\"{}/depths_{}_{}.fits\".format(OUT_DIR, FIELD.lower(), SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## IV - Overview plots\n", "\n", "### IV.a - Filters\n", "First we simply plot all the filters available on this field to give an overview of coverage." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "{'acs_f435w',\n", " 'acs_f606w',\n", " 'acs_f775w',\n", " 'acs_f814w',\n", " 'acs_f850lp',\n", " 'gpc1_g',\n", " 'gpc1_i',\n", " 'gpc1_r',\n", " 'gpc1_y',\n", " 'gpc1_z',\n", " 'irac_i1',\n", " 'irac_i2',\n", " 'irac_i3',\n", " 'irac_i4',\n", " 'moircs_k',\n", " 'mosaic_u',\n", " 'quirc_hk',\n", " 'suprime_b',\n", " 'suprime_ip',\n", " 'suprime_r',\n", " 'suprime_v',\n", " 'suprime_zp',\n", " 'wfc3_f105w',\n", " 'wfc3_f125w',\n", " 'wfc3_f140w',\n", " 'wfc3_f160w',\n", " 'wircam_ks'}" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tot_bands = [column[2:] for column in master_catalogue.colnames \n", " if (column.startswith('f_') & ~column.startswith('f_ap_'))]\n", "ap_bands = [column[5:] for column in master_catalogue.colnames \n", " if column.startswith('f_ap_') ]\n", "bands = set(tot_bands) | set(ap_bands)\n", "bands" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "Text(0.5,1,'Passbands on HDF-N')" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAHOCAYAAABjKYsGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXl4FFXW/7+nqpek052VJCQkhD0hQDSgbDICggiOuI7rq47zc0YZB1xwHR23cY2v8irKDDKMOjouzDCugOK4QBQQBMK+E7bs+9Lpver+/qiq7uqkO+kACUvu53l4rL51q+p22alvnXPPPYcYY+BwOBwOh3NmIpzqAXA4HA6Hwzl+uJBzOBwOh3MGw4Wcw+FwOJwzGC7kHA6Hw+GcwXAh53A4HA7nDIYLOYfD4XA4ZzBcyDlnPET0FBH982y7FofD4UQCF3JOl0BEh4nISUR2IqokoreJyHqqx3WmQ0T9iIgRkaFV+ztE9GyrPnbd/V9GRBe3Okb//0j7lx7muquIyEVEmbq2qUR0uAu+JofD6QRcyDldyUzGmBXASADnA/jTKR5PTyNevf/nAPgvgE+I6LZWfWYyxqy6f2XtnK8FwONdNFYOh3OccCHndDmMsVIAXwIYDgBE9Bsi2k1EzURUTER3an2JqJdqPTYQUR0R/UBEgrrvYSIqVY/bS0RTdJeJIqIl6r7NRHSO7pyPENFBdd8uIrpKt+82IvqRiF4monoiOkREM3T7+xPRavXY/wLopdsXRUT/JKJadbw/E1FqqHtARENVq7aBiHYS0eW6fe8Q0QIiWq5eZz0RDTyRe66HMVbBGHsNwFMACrT7eRzMB3AjEQ06WWPjcDgnDhdyTpejumMvBVCkNlUBuAxALIDfAPg/Ihqp7rsfQAmAZACpAB4FwIgoG8BsAOczxmwALgFwWHeZKwD8G0AigA8AfEpERnXfQQC/ABAH4GkA/ySiNN2xYwDshSLSLwH4OxGRuu8DAJvUfc8A+LXuuF+r58wEkARgFgBniO9vBPAFgK8BpACYA+B99Ttp3KiOLQHAAQDPtT7PSeBj9frZHXUMQymAv0F5IeBwOKcJXMg5XcmnRNQA4EcAqwE8DwCMseWMsYNMYTUUgfuFeowXQBqALMaYlzH2A1MKAkgAzAByicjIGDvMGDuou9YmxthSxpgXwDwAUQDGqtf7N2OsjDEmM8aWANgPYLTu2COMsb8xxiQA/1Cvn0pEfaFMCTzOGHMzxgqhCLKGF4qAD2KMSYyxTYyxphD3YSwAK4AXGWMexth3AJZBEW+NjxljGxhjPgDvAzi3g3tbo1r3Deo9vqmD/gCguc0TdW2f6s7zaQTneAHATCIaFkFfDofTDXAh53QlVzLG4hljWYyxuxhjTgAgohlE9JPqOm+AYq1rLuv/hWKRfq263R8BAMbYAQD3QrEGq4joo1aBWce0DcaYDMWqT1evdysRbdGJ3nDd9QCgQnesQ920qsfXM8ZadH2P6LbfA7ASwEdEVEZEL+m8AHrSARxTx6U/T59QYwDgUK/fHr3UexvPGIuH4jnoCO16dbq2K3XnuRIAiGihLvjtUf0JGGPVAN4A8OcIrsfhcLoBLuScboWIzAD+A+BlAKmqCK0AQADAGGtmjN3PGBsAYCaAudpcOGPsA8bYBABZABiAAt2p9dHUAoAMAGVElAXFHTwbQJJ6vR3a9TqgHEACEcXo2vpqG6rH4GnGWC6A8VCmC24NcZ4yAJmt5qb7QnFVdydXQZnW2NteJ8bYLF3w2/MhuvwvgMkARnXBGDkcTifhQs7pbkxQXOTVAHxqYNk0bScRXUZEg9Q56iYoLnWJiLKJ6CL1RcAFZS5a0p13FBFdTcqyrHsBuAH8BCAGiuhXq+f/DdSgu45gjB0BsBHA00RkIqIJUF4utLFOJqIRRCSqY/W2GpPGeigR3w8RkZGIJqnn+SiScZwoRJRKRLMBPAngj608A52GMdYA4BUAD52M8XE4nBODCzmnW2GMNQO4G8C/ANRDmdv9XNdlMIBvANgBrAPwF8bYKiji/yKAGihu6BQogXAanwG4Xj3nLQCuVi3mXVBEZx2ASgAjAKzpxJBvghIMVwdFCN/V7esNYCkUEd8NJQ6gTbIYxpgHwOUAZqjj/wuAWxljezoxjuOhgYhaAGyHMn1xLWPsrZN07tcQ+qWFw+F0M6TEEXE4HA6HwzkT4RY5h8PhcDhnMFzIORwOh8M5g+FCzuFwOBzOGQwXcg6Hw+FwzmAMHXc5vejVqxfr16/fqR4Gh8PhnFFs2rSphjGWfILnSDEYDIuhLOHkhmD3IAPY4fP5fjtq1KiqUB3OOCHv168fNm7ceKqHweFwOGcURHSk417tYzAYFvfu3XtocnJyvSAIfMlTNyDLMlVXV+dWVFQshrKMtQ38jYrD4XA4kTI8OTm5iYt49yEIAktOTm5EO4msuJBzOBwOJ1IELuLdj3rPw+o1F3IOh8PhcM5guJBzOBwOh3MGw4Wcw+FwOD2KOXPm9Ondu3eexWLJ76jvSy+9lPzGG28kdce4jpcuE3IieouIqohoR5j9RETziegAEW0jopFdNRYOh8PhcDSuvPLKhvXr1++OpO9DDz1UPXv27NquHtOJ0JXLz94B8AaCq0XpmQGl0tVgKNWl/qr+l8PhcDinOQ8u3Zq5r6LZcjLPOaS3zfG/vzrnWLvXffDBtKVLlyampaV5kpKSfPn5+Y6vvvoqfvjw4Y6ioqIYu90uLlq06NDkyZMdjY2Nwu23395327ZtFgB49NFHy2677baGKVOmtEQ6prlz56ZbrVbpz3/+c+WJfr+uossscsZYIZTSj+G4AsC7TOEnAPFElNZV4zndkFq8aF59DEw6dQGgJbt2oLL4QNj9bocX27/ai8bly8P2Kdq2F598/rX/sywzvPfTEbi8vMIlh8M5uRQWFlq++OKLhO3bt+9avnz5wW3btsVo+xwOh1BUVLRn/vz5R+64447+APDII4+kxcbGSvv27du1b9++Xb/85S+bT93ou45TmRCmDwD9m1eJ2lbeuiMR3QHgDgDo27dvtwyuq6lZvB3e8ha4DzWh123DTskYljz9CADg/iXLQu7/7r09KC6qRnL1HlgPp2PGXeeCiNDQ0ACbzQZRFPHdc/crnS+fBgBYubMCj3+6A0t+Poplc37RLd+Dw+F0Px1Zzl3BqlWrrDNmzGiwWq0MALv44osbtH033XRTHQDMmDHDbrfbhZqaGrGwsDD2o48+Ktb6JCcnn5UWxqkMdqMQbSHNU8bYIsbYeYyx85KTTyjD4GmDt1zx7Lj2tOe0OHUwmaG4qBoAUJ2cj0Pb61FxsBE1NTV49dVX8d133wX193i8AIDaFg8AYEdpEzw+uXsHzeFwzmoYC+/BJKI2nxljbdrPRk6lkJcAyNR9zgBQdorG0qN55/672rQ1VjvbtK37eD/27t0LAFizZg0kKfByW7RdaU+Pj/K3vf7d/pM91LMOt6cGa9dNgSS5T/VQOJzTnkmTJtlXrlwZ53A4qLGxUfjmm2/itX0ffvhhAgCsXLnSarPZpKSkJGnSpElN8+bNS9H6VFdXi6di3F3NqRTyzwHcqkavjwXQyBhr41bvKZQ9tx5N3x7ttuvp32xrS9peVwphTZcXN+PIfzb5Px86dMi/3dTYrJ430P/DDd3ueTvj2L79D3A6D6Noy8349ruBqKlddaqHxOGctkycONExffr0xtzc3GGXXnrpwLy8vJa4uDgJABISEqT8/Pyc2bNnZ7355puHAeCFF14ob2hoEAcPHjwsOzs7d8WKFTYAmDVrVkZqamqey+USUlNT8+bOnZt+Cr/WCdNlc+RE9CGASQB6EVEJgCcBGAGAMbYQwAoAlwI4AMAB4DddNZbTHdkjQW72oOm/RxA7JbIYgPIDe/H1wvmYeOtv0S+vw6WQbbDXt7+aoqostMu/uSkTY6cNwebNm7Fz505/e+mxErjcHhyqCQSD1ti5lRkOp/MYoqL6QCDlT7CxcTMAYOvW25GT8zyqq76C01WGcWNXnsphcjinHU8++WTFvHnzypqbm4Vx48ZlP/TQQ5VLlixJuv766+sXLFhQqu8bFxcnf/zxx4dbn2PhwoUlCxcuLInkevPmzTvtPcVdJuSMsRs72M8A/KGrrn8mUfHihk71l2UJ3/ztL6g5dgQ//ecj9MvLh6vFjqgY60kb03d/Dx3NTrKM4cOHw+l0YteuXTCp7bUr/oEFK/4Bxy0vnbQxnK3U1v6ALVtvQ0bGr1Hf8FOb/Xv2POrf3r5jDuLjRiEz87ZuHCGHc/py8803Z+3fvz/a7XbTDTfcUDthwgTHqR7TqeaMK2N6NiI7fBH3ddqb8cP7b6Pq8EFYk3qh8uB+HNu5Df965jHMuOs+5F54UUTnoVaxhj6PBwaTIss+X2A8GSWrUJIxCb/48SH8MOElJDXtQZ8+V8PlcmHrli1+IdeoaHJhQK8Y9I6LwtqDtZBlBkE4+4NNOkOzfRcAwN68C0QiGAsfSFtVtQJVVSu4kHM4Kl988cWh1m0bNmzYe6Lnffjhh3t/9tlnifq2K664oq6goKDiRM/d1XAhP4PweTxY+uyfUHW4GEN/MRn988/Divn/i43LPgEYw96ffoxcyIXg8IiaY0dQvHkDXHY70kZO9Lf3KSvEkAP/BgCYXXUQY5NAROjfvz+iTK1lHKhodKF3XBSuODcdaw/W4midA/16xbTpxwEaGn8O+pyZ+RscO/b2KRoNh9OzKSgoqDgTRDsUXMjPIL57501UHS7G5fc/isHnj0NdmTIdVLxZEYSmquNPPLTj+6+x9b9fAgCOVkgAcgAAZrd/mSYMPid80UpUuiiKyOybhYpt6/z7fSSiotGFMf0T0TdREe/SBicX8lb4fE1BnzP63ILs7KcAgAs5h8PpNLxoyhmCx+nA7sLvkTflEgw+fxwAIKF3GgzGgFXcVFPV4XneffhuvHL9ZWBycFS6JuIA4HQprt78La/CoFsWZfA54W5yweeVwBhDv8HBiWxc6blocnoRZzEiLU4R/IpGVye/6dmPz9sY9NlqG+rfTk2d2d3D4XA4ZzhcyM8Qyvbvhc/rwZAxE/xtJAhIzFCW4vfJyYXH6YTb0X4K4erDSpKjAxvXh+3jkZSfhcEXLMIGyQmHJRVvzlmN7atKQaT0c2YMhCMqHkzywe7xwWo2IN5iBAA0ubyd/KZnP95WFrklup9/Oy3tV/7t/HOVMgWiyD0aHA4nPFzITyNMfW1h99WXK270pMzg5WnTf38vxlx1Pc6ZOgMA0FxTHdG19v30Y9h9XlV7RV9wUhiDzwmPOQ4A8NNnB8FkZdE4U0PnmCyDMcBqNiDGrMzaPP3FrojG05Pw+ZoQrRPvhIRArSCjIda/nZh4Afr2/W27wXAcDofDhfwUEDbNYDvR3fXlpTBGRSMmPiGoPTmrPybccAtiU3oDAJrrIqy2106qQ1lWRNggKUJunTxZ+awT9syhiZChuOdFgwFEAJMVwYkxG2AU+U8rHD5vI6KjFU9KQsK4oH022/Cgz6JohSy7IMuRr2zgcM5m8vPzc7rq3O+//37co48+2hsAvvzyS2tubu5Qg8Ew6u23307o6NhTCQ92OwXUvrMzZDuJ7Ql5GRLS0sPmDbYlKXXvm2tDW+SMMexY9V//Z1kOnQedCSLAFLe4weeEITkZhl7KuU0eu7+f5JX8FrkpygIPMchqylarao1bzQbI7bww9FS8viZER/fF5El7/dMTGkQCUpJnIDbuHACAKCgxEIx5wP9cORygqKhoT+s2n88Hg+HE/z7+53/+pxFAIwAMGDDA8/bbbx9+8cUXU0/4xF0MfzJ0M75aJ1x760PvbM8iLytB70HZYfdbE5JAJKC5tibk/vL9Sia4wOc2fwsAANloAskiBMkDgcno968lqJ7/OgDA6A1UADyyow7DhiuliA3mKHgBQH050NzqvxqVgY83R5Q8qUfh8zXBYLBBEEL/+Y0Y8YZ/m1Qhl2UPRPGkln7mcE6MT/+QiapdJ/dHmZLrwJUL2s3tbLFY8h0OR9GyZctszzzzTFpKSop3165dloMHD+6cOnXqwPLycpPb7RZmzZpV+cADD9QAwNKlS2OfeOKJPpIkUWJiom/dunX7Qp17/vz5SRs3box59913j2ZnZ3sAQBBOf+8iF/JupGVzJer/FfL3AwCgMO5on9eLxuoqDP1F+DXigigiJiEBzTWhhdzrDg5ck6XQ866y0QwDM/jd6Ma0NAjR0cq2NziQjvbtBgAYjGYlvYzfta7UJUiJNaPJ5YPTIyHadFbWKjguZNkNQYzquCMAQTCrx3i6ckgczhnJtm3bYoqKinbm5OR4AOD9998/nJqaKtntdsrPz8+9+eab62VZptmzZ/dbtWrVnpycHE9lZeVZ9zDiQt6NuPc3tGmzTsyAfbVqtYZxQzdUlAGMITGt/bz+tqReYV3rkcKMJhATYYAXcVdeCQBInnsf6j/4IEjIY+yloOKDAACjOQpELCDkJuVnlWJTxKqq2YWsJB55rcGYF0SR/ekJFLDIOZzTig4s5+4gLy+vRRNxACgoKEhdvnx5PABUVFQYd+7cGVVZWWkYPXp0s9YvNTX1rIsePf19BmcRvvrQa6qjhiVBBoPXFzqgqa5MEfrEPpkh92vYkpLDutYjrckrm8wQZMUiJy35i1XJ4Z7YsBe9arbB4qiExxQL8evlAACDWbEawTTXuvLCmxqrtFc28eIpehiT/MVSOkIQuJBzOOGwWCz+YJ9ly5bZVq9ebdu4ceOevXv37ho6dKjT6XQKPaEmORfyboR5QweY9bolFz/E78M/y7+C19t23XVdifLim5ie0e75bUlJaK6tCR8VH8kYjSaIkgmizwXBHHD/imowXd6ON5FauRFekw1MDdQymqIAIgiqRW42aEKuHF/ZxJPCaDDGwJgEImNE/f1CzriQczjt0dDQIMbFxUk2m00uKiqK2rp1awwATJ48uWX9+vW2PXv2mADgbHStcyHvRnx1AUHbIR7FCmMRfLIEWZax31WCFtmF8vK2JdlrS4/B1isZxqj251VtScnwedxwtdhD7I3QIjcYIUpW1McN9lvkADBw5UoMXrsGAGD2KFMEHqNiqZvMUWBEIHW9s9mo/KxSbVzIW8OY8qJGYQLdWqMJOeMWOYfTLtdcc02jz+ejIUOG5D766KPp55xzTgsApKen++bPn3/4qquuGpSdnZ171VVXDYjkfKtXr7akpqbmrVixIuG+++7LGjRo0LCOjzo18DnybkJ2+cCciutchoyfjPsBAMcayyFVBxLBlJeXo2/f4KQvdWUlHVrjAGC2KPPQHocD0dbWyWUis9KZoFiKtuYjEKKi/e2iNQaAcn4t/7rXpHw2GIwACKS61s2i8sIbG22A2SCgqpm71jUYU34DkbrWibvWOZwgHA5HEQBcdtllzZdddpl/KU10dDQrLCzcH+qY6667rum6667rMDvV3XffXQugFgAmTpzoqKys3HaSht2lcIu8m5BdgfiKUqHOv13lrUNpaan/c2NjcB5uJsuoKytBUgfz40BgrtrnOT7hZACYQTlHSlURhChzyH6akGsWuWgyARQQcpNB+VkREVJjo7hFrkNL7BKxa90f7MZfhjgcTmi4Rd5NME9AyPeJ5YiOjoZZMKLO5ICntBQmMiJKMLUR8ubaGvjcbiT26dgiN6pC7nUHP/Qlnw/rP1nS8SAF0R9NLchekM4i1+O3yI1WAA6Ya6pCCjmgBLxxIQ9wvK51bpFzOCeP1157Lemvf/1rUKKX888/3/7ee+8dPVVjOhG4kHcTzu01WG3chXqzA7VSE84fcT7sdjsqKirQ2NiIFHMCZJ+E5ubmoOPqy8sAAAlpkQi5MiftayXkO1d9g6M7OvYQMYMBxBQRFmQfhOi2c/J933kbEASs+VsdPKprPWbZJ2Ap8TAyBoNAEHWJbVJio7C7vKnNeXoqmmudyIBaZy1e2PAC/jTmT4iPig/Znwe7cTgnn3vuuaf2nnvuiTCf9ekPd613E0e3HMB+sRw1vkYwxnDeeechOTkZdXV1qKioQKo5ESYywt1KhBurlRrjcSkpHV7DYFIt8laudWdzZEIqG4yAX8i9IHNbIY8ZOxYxo0cjSvTAa1Bc62RWotYJMkytstOl2qJQxZef+dFc6wIZsWjbIqw8vBJvbHkjbH9ukXM4nI7gQt5NVCUpmdJGjhyJadOmISUlBcnJyf79qeZEGEmExxP8wG6uqQKRAGtirw6vobnWW1vkPm94Ebj5hVfxy7sfBAAw0ajWMVOEXIiOgiQzvPXjIazcWRF0nDXJAo9RTfJiNoNIADEZplbR8SmxZtjdPtjdvOgHoHOtkwHrytcBAH4s/THskkEetc7hcDqCu9a7iZKaMsTK0bj88sv9bSk6K7uPJQWHGkraCHljdRWsiUkQIygIYDApD/3WFnnrOXM9qQMGwdZLfaEQhCDXepMsYtLz36DGroxp9uRB2FPRhL/deh5is1JQeyQG8ALirp0Qz8uHzBgMkgzZI0FQU7L2siovF3V2j7+YSk9Gc63LJOBY0zEkRiWi1F6KffX7kJ2YjcKSQkQbonF+7/MBKFHrO5wikp11SDuVA+dwOKct3CLvBhhjKGuuQiqLC2pPTk5GXl4eJkyYgCijGSYY2gh5S30drImJEV1HNCqR0JIvOKmMq9W8e2u0rEdK5bOAa/2lVYdQY/cgM1EJenvj+wP4ZncVjtU5FYvcrNTOliFAgACCDCNT4gE0EmOUMdW2cPc6AH9t8TqXHT7mw405NwIAHi58GJ8f/Bx/+PYPeLjwYb+Fvr5iKxbXmPE/P8wPe04Oh9Oz4ULexcgeCRXbj8BFXqTKwQFNRISrr74aU6dOBQgwQITX6w0qMepsbkJ0bFzr04ZEEBWLV1ZTvUo+H165/jLsXP1Nu8dppTSZKOosci+2VLpgizJg9QOTgwqzrT9UC2u8Gdra9AMDr/K75M1EcO0PVHdLjFEt8hbuGtZT61aS9uQm5QIADjYexGM/PgYAqHZWY1etsuR1Veka/zE/lv6I2766DS4fXwXA4ZwIc+bM6dO7d+88i8WSf6rHcjLgQt7F1H20F7uXrAcApMrtCDIRTOpMh94qdzY3IdoWG9G1BDURi+RTrb7SyGoakBCwyEl9hxBkH1wGE/Iy4iC0CmD7+XAdomyBddB2W1+YXS4ADFEGEc4t1WjZoMypJ1oUdz8XcgWmLtFr8CgFaBKjEjEnf45//6uTXoWBDPj6yNcAgKKqwGqD33/ze2yq3IQjTUe6ccQcztnHlVde2bB+/frdp3ocJws+adnFuHbVosLQCBMzIJ6FrwBGAsHAFCH2eDyIiooCYwzO5iZYIrTIRYMirrKkWOT71q+N6Dh/QQFBRLSjj9YIl2jyVy0jIn91ts1HG4BtDcjwx2cRjC4DwID4XtFAOdCwvBiW81KRaOVCHoxy01yScj9ijDG4ffjtWFG8AkMSh2BK1hSMTB2JtWVrcfuI21HcWIycKAl7XIH00PXuMPXsOZxu5PE1j2ceqD9wUuuRD0oY5HjmgmfatUAefPDBtKVLlyampaV5kpKSfPn5+Y6vvvoqfvjw4Y6ioqIYu90uLlq06NDkyZMdjY2Nwu23395327ZtFgB49NFHy2677baGKVOmtLR3DT07d+4033TTTf0lSaKpU6c2Llq0KFXLLne6wC3ybqBSaECqHOd3P4eEAFF1a0tqrXCvywnJ643cIjdoFrki5D/950P/vqSMviGPAXSudUGAKCl/l0avHW7R6Leo9RyosmOFy45A2lcCmAACQ3SsGQnXDAZzS/CWtyDGJMJkELiQqzAoFrlTFfJoQzREQcSnV36Kly58CQAwNm0s9tTtwbdHvgUDw4RW2XY9Er+XnJ5JYWGh5YsvvkjYvn37ruXLlx/ctm2b3zpyOBxCUVHRnvnz5x+54447+gPAI488khYbGyvt27dv1759+3b98pe/bD9gKASzZ8/OvOuuu6p27NixOz09vW1Vq9MAbpF3IXa7HfXUgkbBgSHeNCRcNyR8Z4EgqLqoCbm2/jtSIRe1OXKp7VKvdguuaK51UYTbWAqLezCindVwG0zYWqJkcdNeQc7JjMfWYw2wC8AnMW5c1qLsFVSBMooCzIMTAADuQ40w9bEi0WLiQq6hejVcsvI8iDa0zZ43pe8UzC+ajyfWPgEDGTAkiiHFHIMqt2JEuCUeOMg59XRkOXcFq1atss6YMaPBarUyAOziiy9u0PbddNNNdQAwY8YMu91uF2pqasTCwsLYjz76qFjrk5yc3Ola5EVFRdavv/76AAD89re/rX3qqac6zs7VzXCLvIuQJAnz58/Hf8w/AQD6yIkw9Aqd8hRQXOsCgi1yZ5Mq5LGRCTkJAkAEWZJweFuw50cLhNNz3RPPo1UnECOASfAJImQSYIsKPm5YemAspCvEYna0gMBgFAUY4s0Q483wHFHGnxjDhTyAcs/c6soCi6GtZ3JAfKA4k9VkRbQowGoIeEa4kHN6Ku2VaG5dc5yI0BNqkQNcyLuMkpLAmvBkORZJzAYytHO7CRCY8oPTotY7a5ETEURRhOzz4efP/xO0TxTbluDNHJYHADAY1aQjggDIipB71CposycPVs+tHGMSA9+BdFsyGUAAjKLSauoXC/fhJjDGkGQ1oYYLOQCAqULulDwwCAYYxdDFU16Z+AoAYMGUBQAINW6Hf5/bx4Wc0zOZNGmSfeXKlXEOh4MaGxuFb775xr8U6MMPP0wAgJUrV1ptNpuUlJQkTZo0qWnevHn+hB3V1dWdrkV+7rnn2t95550EAHjrrbciWwvczXAh7yK0imaXekZiuudcEKgDISe/kB+vax0ABIMRks8Hc7SlVXvAsjaYzPjN/72pu7QqySQo8/hMglcQcfjFXyI3PfjaRpHQO1Zx02cmKB4GYj7IahEQo+qmN/eLhdzsgVTvRlKMCXV8HbkCC8yRh3Kra0zrNw3bf70decl5IBLw3PDJ/n3cIuf0VCZOnOiYPn16Y25u7rBLL710YF5eXktcXJwEAAkJCVJ+fn7O7Nmzs958883DAPDCCy+UNzQ0iIMHDx6AFZnzAAAgAElEQVSWnZ2du2LFChsAzJo1KyM1NTXP5XIJqampeXPnzk0Pd83XX3/92Ouvv546YsSIoeXl5Uar1dpp93xXw+fIu4i6ujpEmaOQ7krwt7Un5CQQhFbBbn4hjzBqHQAEQcCBn39Cr75Zwe06i3zYxClITO/T5lhGAogRBCbB16o6lxKoxyAKAj66Yyz2VTbj62XKEikmGOGOSgJYNbSvaExVYlB81Q4kWc2otXOLXEF1rXcg5MEQ0qJj8OMNP2LCRxMgM7njQzics5Qnn3yyYt68eWXNzc3CuHHjsh966KHKJUuWJF1//fX1CxYsKNX3jYuLkz/++OPDrc+xcOHCkoULF5ZEcr1+/fp5t2zZskcQBCxatChhxIgREUe8dxddKuRENB3AawBEAIsZYy+22t8XwD8AxKt9HmGMrejKMXUXdXV1iDe3Cjdub6qGoAS7UUDIXfZmEAltrOv2cDta4Ha0oLEqODe6fo587NXXhxkDARBgIIbkRGvIsRtFQr9eMejXKwbrvw2c021OAFyAQVCU3JCoVmKrdyHJaoLDI8Hh8cFi6tnvjkxnkYeaHw8FkQAwQCR1VQI77QwCDqfbuPnmm7P2798f7Xa76YYbbqidMGGCo+Ojjp81a9ZY7rnnnr6MMcTGxkrvvPPO4a683vHQZU9VIhIBLABwMYASAD8T0eeMsV26bn8C8C/G2F+JKBfACgD9umpM3UltbS3SLclBbSS2o+QCQZAJEANz5K6WFphjYpQgthNEP0eupXJtDRMCFrmxVQlTLcjEoBuLxaRtEzSlN6qXEWwmwEDw1bnQK1nJ7lZr98CS2LOFXMPVSYucQYagLhPkQs7pyXzxxReHWrdt2LBh74me9+GHH+792WefBc2BX3HFFXUFBQUVe/fu3RXuuNOBrnyqjgZwgDFWDABE9BGAKwDobwgDoE3CxgEo68LxdBterxeNjY0YljIIACDEmhA/cyDEWHP4gwRSIsYRsMjdDkXITwb6OfKwkZ+kFE0hJoFMwevHfbIq5LqXEbNBgBtAmuBDheSGD4GgCxIIhoQoSLUuJPVXvkNtiweZiSc1f8QZh2aRu3weRBsi/X9LAJNhUKc7JJkLOYdzsikoKKgoKCio6Ljn6UdXBrv1AaBfZ1iitul5CsDNRFQCxRqfgxAQ0R1EtJGINlZXV3fFWE8q9fVK5q2EWGV+vNdtw2AZ0X4ZUgoR7OZuscNsOX4hH3T+WAwYqVTR0s+RG0JY5AwABAEAQWA+UKs+mvYbdOlaTaqoG4xmSGq5zY9W7wlcJzEKvjoXkqyaRc6DtAKZ3dyINkZmkRMJYGDcIudwOCHpSiEP5UdubQreCOAdxlgGgEsBvEdamjH9QYwtYoydxxg7T1/D+3Slrq4OAJAQpcyRC1EROD50y8/0FnlUJyzy1lXPYuIT/GlbBdGAe9//BLfPXwxTqDl3NXKdIIBkCWQK7X436JafaVtGECAoLwpXNQc8XKIm5FoFNB7w5s/s5pMlmIS2WfNCQRAAJvvnyHmwG4fD0dOVQl4CIFP3OQNtXee3A/gXADDG1gGIAtC+6XoGoAl5rKDmKW9v2ZkGAWIbi7wFZou1vaOCWHz374I+R8fG+V3qokGEaDAiPrV3yGO9v7hJ2WACBOaDYAotMnqLXHtVM+iapsQFXiYMiVFgbglaU2mDM+LvctaiirCPSX5XeYcQgUFJbCGQAJ/cNnMfh8PpuXSlkP8MYDAR9SciE4AbAHzeqs9RAFMAgIiGQhHy09933gG1tbWIjo6G57/lAAAytBeurkKB5Wf+YLdOzpHba2uCPjubm/1u9FCZ3fT40pX0sQRSLHJjaCHXV0ITVAeLiRSXPAAkrVjq369lsjNWKwL+2rf7I/0qZz0Sk2GgSENUlKV/gBK5zi1yDoejp8uEnDHmAzAbwEoAu6FEp+8koj8T0eVqt/sB/I6ItgL4EMBtrL0cfGcIdXV1SExMBBmV20uRuNYBCAhlkR//HPm4a27wW+T6YLdQyJImDgIE2dcm2E1D1KU7JG3enABNyB05I/z7zQOU9e/eGm6Ja2jBbj5ZgihElmRKWX6mHCeSyOfIOZyTTH5+fs6pHsOJ0KVrgdQ14StatT2h294F4IKuHMOpoK6uDn0z+4IdVB6+JHRskRMhKNe6LEnwupwnFLWuzJGrrvUQKVr1MLXQCmlCHmaJmv6raOlGjTpxl3RZ6ASzAWQUILd4MSk7GfU8TSs0y1rSzXl3jOCfWxcFLuQczsnC5/PBYDCgqKhoT8e9Txyv1wtjmGfricAX9UbIpwc+xeNrHgcAbLt1W9hE/NrSs4Tc+JD7w0IUZJG7HUryoM7MkYdCjNQil33KawQTIMjesBZ50NdWLXJBt47c+vNaeA4fhqlfP6W/UQDzyogxG3C0rkvzNpwR+IPdOjFHrqTNVW62QAJffsY5LSh79LFM9/79J3U9qXnwYEf688+FrarW1NQkXH755QPKy8tNsizTQw89VPbUU09lbNy4cXdaWpqvsLDQ8sADD2Ru2LBh79y5c9OLi4vNFRUVxvLyctPdd99dcf/999csW7bM9swzz6SlpKR4d+3aZTl48OBOi8WS73A4ipYtW2Z7+umn05OTk727du2yXHrppfUjRoxw/uUvf0l1u930ySefHBw2bJi7rKzM8Jvf/CartLTUBADz5s07Om3atJAZ3+bOnZteXl5uPHr0qCkxMdEXah38icKFPAIa3Y1+EQeA0e+Pxs83/xyyb21tLQCgV1wCgBYYM20h+4VCE3JZluFuUX4TkUStM8bw6v9cFXqnughAi14PhyxLqj9AALXjWte/wDB1Lj9aCAg5CDg4fQaG7tmtfDSKYF4ZNrMBdhcP0tIEWZLlTge7Ady1zunZfPzxx7G9e/f2rlq16gAA1NbWik899VTY/rt3747etGnT7ubmZjE/Pz/3mmuuaQSAbdu2xRQVFe3Myclp4ybcs2dP9NKlS4tTUlJ8WVlZI8xmc8327dt3P/PMMymvvPJKyltvvXXszjvvzJw7d27lJZdcYt+/f7/pkksuGVxcXLwz3Di2bdtmWb9+/R61/OpJhwt5BFQ7guPvXJIrfF91nXusMwpAC2wXts1pHhLS8pkrwuy3yCMQ8q3//TJkDXI9QkeuddXKIwgQpPAWuaAXclVczIK+LRjFIpdgizOgyeUFR3Ot+yK3yFvNkfNgN87pQHuWc1cxcuRI52OPPZb5+9//vs8VV1zROH36dHt7/bXa5Var1Tdu3LimH374ISYhIUHKy8trCSXiADBixIiWrKwsLwD07dvXPWPGjEYAOOecc5yrV6+2AcCaNWti9+/f708EYbfbxfr6eiEhISHkH+f06dMbukrEAS7kEbFo26KI+1ZXV4OIQCurAQiQnRFaoUR+IZdlGa4W5fdpju5YyA/8vC78TtUC7CjNq2ZdAwIEyQcyhs5CJ4RwrZPOtd4azbWeEGOGyyvD6ZEQbep0JcGzBu3lx9epOXIKzJFzi5zTg8nLy3Nv3rx513/+85+4xx57rM8333zTJIoi85d+djqDHnShapQDgMViCfs2bDab/YIrCAKioqKYti1JEgGKsbVx48bdkYpzTExMl7598zKmEfDl4S/btDW4GkL2raioQFJSEkT11hp7RZhPmwJSyBiDx6VEehuj2z/e63HjyLaids5L2knbPU9AyEUIkhdCq1zrGnqLXPYfE2hriBsQfHmjAOaTkWhRLPx6Rw8PeFOtaUnuxDpy3Z+pKIh8jpzTYzl8+LDRZrPJd911V929995buWXLFktGRoZnzZo1FgD417/+laDv/+WXX8Y7HA6qqKgQf/rpJ9uECRNOSuWyCRMmNBUUFPjrnK9duzbSwgldAhfyDgj30Fyyd0mbNlmWcfToUfTt29ffZh4QedAbgUBEkGUZPpfivjeaQwuqxsbPPw76nJzVP+izVjnN42w/0ExvkRPzgaJC/y4pRNS6NnoAaLIp5VPd+9U14wIBEkNCjCLkdT0+cl1zrUsRW+RE5F+2JpDALXJOj2XTpk3R55577tCcnJzcgoKCtCeeeKL8iSeeKHvooYf6jho1KlsUxSCLJT8/v2XKlCmDx4wZM/SBBx4o79ev30mZ31u0aNGxzZs3xwwZMiR34MCBw954441TmnKUu9Y74P7V9/u3t926DXnv5gEA3tjyBu48586gvlVVVXC5XMjKygLWNnXqOppACoIAWZbh9Si/N2NUO4VWAP9cuoY2F65luo1Wl4M5mhrbPU9g+b4AQZYgRIV+gQhyVWlueyI0x0uIdgJQRUZ2KC8OJBKkZg8SopRgu55ukTPGwJiy/MwoRLoMhQDVtW4QDFzIOT2Wa665pumaa65pU4ns8OHDO0L1Hzx4sOvDDz88om+77LLLmi+77LJmfZvD4SgKtU9fVU2/Ly0tzbd8+fLiSMY8b968Li8Gxi3yDvj26Lf+bSLCtUOuDdv36NGjAKBY5CLBNjGjE1ci/zUYY/C6lAIj7Vnkx3Ztx6blnwa1iQYjEvtkYtai9wAAvQcpGdtS+w9q9+pMlgEGEImKRR7Wta47xi/+BJf6viGLygZTE8x4y1vgq3JCXKtkueMWuTbbjU4mhOHLzzgcTmi4RR4hD5z3AADg2iHX4t/7/h2yz7Fjx2Cz2RAXG4cWifkzu0VEa4vcrbnWQ1vkn7z0ZxRv2tCmXTQaQUSwxCpZ1XoPHIzfvfEWbL3a9/worltlEIpFHtq1HhS1rlnkIDBV4SXVyvSp0fuyQwn2M+9UluX19KQwDDIkfyW5yOfIGU/RyuF0iu6whPW89tprSX/9619T9W3nn3++/b333jva1dfmQh4hqTHK/5+hSUPD9qmoqEBaWhp8Zaq7O5JiKRraMmzNIne7IIhi2PXfoUQcUBLABOa7FWKTU0L21cMYA9SiLQLzgcxh1pHrj5ED01FM3ePKzQMOLkPpPfcgVl1LDgA2EIi4RQ7GoNnTEc+Rq/XIAfX30WaRH4fDOdXcc889tffcc0/tqbg2d61HyCVZl/i3ow1trVVJklBbW4vk5GRULdgCAHAfDB3ZHhpVRFWL3Od2h3WrN9fVhGwHFIucHYfFxmRZKZcJqGVMI0gIA51FrqWXtSWEPE4EIcFiQl1PnyOHDLmzFrlOvAUI3CLncDhBcCFvhx9KfvBv6wVser/pSLEEW7n19fWQZRm9EgNVWG2TMhExmmudAq71cG71b/62oO3hanCbwWiCLB3HHCqTgy3yCHKt+5e0EYGp90dux8pMsBhR39LDk8LoLPJIq58pL1iBqPWzoK4Qh8M5iXAhb4e7vr0LABBnjgtq31CxAVWOKpTby/1tWka3OHfAijaldz5PesC17oYxTOR4XIia4r95dSEm3vz/YDCZdeu7I4cxFmSRh6tHHjRHLmsWOfwBXLIv/LUTY0zctQ4GWX1hitwiF/xeFiLiUescDicILuQR8PLEl4M+l9pLAQA3LL/B31ZTo7i7k2IDrmUyR57BLLD8jPwWucEU2iKPS05t05bQOx3nzbwaJAht5sgBgEkS3MXhc/UrUesRWORBvxj9HLmyg/kYBEvoOgoJFhNffsbkwBx5hFHr0BVNEUmEDO5a53A4AbiQR8DYtLEh2+tcdYHtujpYrVYYvYFbGkn50kBnbfmZoC4/c4WdI/d5wouhIAhBrvW6Dz7AsTtnYc+w4Si+9FK4i0MvfWQswjlyhIlaV5tlnwTbxVOD9mtwixxQLHJlK/Jc6wTtpUnz2HA4nLa89dZbCQMGDBg2ZsyYIeH6XHfddVnZ2dm5Q4YMyZ0+ffqAxsbGsDpYVlZmyMvLyxk6dGjuV199ZZ0zZ06f3r1751kslnx9v6eeeip14MCBw4YMGZI7bty4Ifv27fM/QEVRHJWTk5Obk5OTe9FFF7W/Dvg44VHrx8Gsc2Zh4daFQW1NTU2IjY2Fr15ZNma7qBPz40Db5WceN0xhloBJvvDzzCSKfovcV1ODyj8/E9gpGFD3752QmsoQe3EWYvVz+K2j1sNY5BRmHbnszxPP4Ni8CQDgLSkJOjbWx1Dv8Chu/DBlYM92GOROz5Hr65HzYDfO6cK37+7OrCu1n9Qypol9rI4ptw497mIsb7/9dq/XXnvt6MyZM5vD9Vm4cOGxxMREGQB++9vfZhQUFKQ8//zzFaH6Llu2zDZo0CDXxx9/fBgAjEYje+CBB6qGDh06XN9v1KhRjvvvv3+3zWaTCwoKku+7774MLWGM2WyW9+zZ0yaJzcmEW+RhaPaE/R1gcuZkAMCYtDH+Nk3IZbcEGAhx0/od13X1KVpDBbsdKtqI2pLA7zzaFovzZl7t/yyornVvWRnq3n1Pa0Ti//t/MPa9AFJ9PCAxNH11GL46F3z19QBUi5x1bJGHWkcOALLmWpdkJN97DwDAvW9f0Hq1eIMIr8TQ7O7B5UwZOm+RIzhFK7fIOT2VP/3pT6nPPvtsCgDcfvvtmWPHjh0CAJ999plNEIRRmzZtss6ZMyfrzjvvzPD5fLjjjjsyhgwZkjtkyJDc5557LgUANBGXZRlOp1MIZ1SsXbs2+sknn8z4/vvv43JycnLtdjtNmTLFXxlNz8yZM5ttNpsMABMmTLCXl5eHfoCqfP/995Zp06YNBIB//vOf8VFRUSNdLhc5HA7KyMgY0dn7wi3yMBxtCr+Gf2ji0KD/AoqQ9+/fH8zlg2A+jtuq/pgEfbBbCNf6xy8+FfT5mseeQWr/gYHTqBZ98VVXQ25U0rIOWL4M5v794S75u9JJlABJRN0/C1H7l3vQZ94r6hxsJFHroVO0atLCpIAlXjJ7DmxXvunvnmRTXkzqWzyIjYo0PenZhtzpdeRaTXlAfdHjc+Sc04ATsZyPl8mTJ9tffvnlVABVW7ZssXg8HsHtdlNhYaG1oKDgyL///e+kl19++diFF17oKCgoSD5y5Ih5586du4xGIyorK/1/cL/61a/6ff/993GDBg1yLly4sCTUtcaPH+/84x//WLZx48aYd999N+KkLm+++Wby1KlT/TmxPR6PMHz48KGiKLIHHnig4pZbbmmYMGGCY+fOnRYAKCwstA4aNMhZWFho8Xq9lJ+f325p1lBwizwMe+uVFLu/zv11m33aG9w7O98BALjdbrjdbsUid0kQoo6jTKc/IUxg+ZkhzPIzjWmz7g4ScUATcskv4gBgTE8HAAgxqfBV70bzf34PMc4H91GlwlrTl18CTAaLyCIPbOtd69ryMybLiB45CgBgHjQoqEB5vFG5Lz15npyBQepk1Lo+IYxA3LXO6blMmDDBsX379pj6+nrBbDaz8847z/7DDz9Y1q1bZ7vooouCBPC7776LnTVrVrVRNUpSU1P9wUNLly49XFlZuXXw4MGut956K3Tyi+PgL3/5S+LWrVstTz/9tN9Vf+DAgW07duzY/eGHHxY/8sgjmTt37jQbjUZkZWW5Nm/eHLV58+aYOXPmVH7//fe21atX2y644AIu5CeLJ9c+CQBw+NqvGgYAzc2KGz42NhbOrdXw1bqO+7qCoFjkPq8HBmN470xMQiJGTJ4GQBFP5vWCMQaprBys1TpywWxWloqRDXKTkrVQbjgAMiSCTFY4t2wFdMFu7VnkCLGOnED+JVVMBmLGjFbGOH4c4q8KxHbEGxQh79GR60zudK51JSFMYI6cu9Y5PRWz2cwyMjLcCxYs6DV69Gj7hRdeaP/mm29sR44cMefn5wc9eNVYnLB/LAaDATfeeGPdp59+elKE/NNPP7W9/PLLaStWrDgQHR3tv65WcS03N9czduzY5g0bNlgAYPz48fbPP/88zmg0spkzZzatW7fOum7dOuuUKVPCz+uGgQt5B4zuPbrDPna78gIVY4k5/gu1Sggj+yQIhmCLbe2/P/BvS77APHPpPfdi7+gxqH71NTR/+SVkdZ9t+nT0efVVAEDD5wcBWfALuX21Uv7UetmT8FVXw+RqAaAIi3Bcc+QBixwAjH37wlddA+uYNKTeOxIAEC8qP7e6HpwURrHIle1Iq58pL1iBaQxukXN6MuPHj7cvWLAgddKkSc1Tp05t/sc//pGcm5vrEILXxmLq1KlNCxcuTPZ6ledNZWWlKMsyduzYYQaUOfLPPvssfvDgwcdveamsWbMmes6cOVmfffbZgT59+vgfztXV1aLT6SQAKC8vN2zcuNGal5fnBIBJkybZ33zzzZTzzz/fnp6e7quvrzcUFxdHjRo1qtPj4ULeARdmXBiyfUrfKRgUr1ibDrVkZ7RJmdOOGd02YUtHaMu6tGA3WfJBVEuS2uvrUPjBO1i3NCDkUAVTampC83//C+Z0ovbNN0EskInbdvEN8FZnwtfoRstPSvKa3k/MgbFvX8gNhyE17QDkOIi9cmBtaQQ013qEc+T65WcBIVf2eY8eRdOKFcp+Ned8vGqB9ujCKUxX/awTc+TavRZI4HPknB7NxIkTm6urq40XXXRRS2Zmps9sNrNQ7uj77ruvOiMjw5OTkzMsOzs79+9//3siYwy33npr/yFDhuRmZ2cPq6ioML744osRF1eZNWtWRmpqap7L5RJSU1Pz5s6dmw4ADz74YKbD4RCvvfbagfplZlu2bIk655xzhmZnZ+dOnDhxyL333luhCfWkSZPstbW1xkmTJtkBIDc315mdne1s/UISCRFN0hFRbwB99f0ZY2s7fbUzkChD6LXcP5b+CLfkhszkgJAbzWgBYEw7Dsu81fIzSQpY5P9d9DqKN/8c1F2Ta/e+faFOA5hj0fyDB0CtvwqbdXw6rBcMhDE9Hd6jRyFajwIYDjFpIIxeN2SDJuQyyBD6pxF6jjyQ2U1fSAUAZJcLZFLOawFgFAm1PVnIdRZ55NXPAO0O83XknJ7OFVdc0ezz+TZrn/W1yPX1w41GIxYvXlwCICiYbfPmzXsivdbdd99dC8BfCGXhwoUloYLj1q5du691GwBcfPHFLfv27Qu59MxqtTKPx+P/Hq3rpneGDqWfiJ4HsAHAswAeV//96XgveKYhUOhb5JaUeuGN7kY4nUrQWJRai5tMJxLsRkpCF8YgisqDXu9G96M+y90HDgAAYiYqngNSH/LGvuP9XR1b1JKibmXuXIyPV8Y7oB/EpCiICVkw+DwI/BzCW3wUao6cAhY5GCBLsn88nuJiv0UOH1Oyu/VgIWeQ/fcq4upnuhStfB05h8NpTSQ2/DUAhjDGpjHGZqj/Lu3qgZ1KOmPxuHwuOBwOGI1GiJJq0XamDrmfgGtdm2fWLPJQrhZtjK49eyDYbIgZM9Z/FgLB2O8XMPWPDRqLoKaMtV6oiGzMBeNh6h0DIT4DRskTyOzWzvCD11wG3Piyrk2SGFIfeggA4N6/H6RGqzcXlijZ3Xp0sFsgs1u4l8S2BBdN4ULO4ZxcHn744d5a9jXt38MPP9z5OdJTRCS+vUPoYXPpXlkJjmhdLEXPfaPuw/9t+j94ZA8cDgeio6MhNysCJdrazQUQGl2wm0+19gV1jpzamTNx7z8Ac/YQRJ97jtKXAXGmZIgxyYgZlQrfgHg0f3sUQqwJ1vHKMrT4q69C3OUzQQYD3EeKQaY4GJp1Fnn4QM9Wc+SBgQc86gyyT4apb18AQO3ixYi9/HKlT5MHicncItduVaRCriw/U7d5PXIO56RTUFBQUVBQEDK725lAJELeDKCIiL4B4NYaGWNzu2xUp5hNlUqK0fSY9LB9Mm1KelO35IbT6YTFYoHsUF4AhJjjT3YiCARJdYELogGMsTbz4wrKw9xTXAzbxRfDMnIkBqxYjrIXnkGcpJRSNWXaYBmVithJmW28BNocuBhrAglGRMlAk5YQpl0h142Ayf4gPVkn8JKPgSzaywwFWfEJMSbsLm/q+EacreiCESO2yEng9cg5HE5YIhHyr9R/PQaPpFiMo1JHhe0jqNZrk7sJDodDEXKnMpctWI4js5ugK5oiq3PZBgO87tArERgDJHsLpPp6mLIU69c8YABEqxXxrlQwJsGQFK2IqDF8XnMxThFcKzOjJpDfpZ1h6pU8kO9FW0cOMEhqKVPrlCnwHgtO/pTYw+fIgeOIWgfAXescDiccHSoOY+zvRGQAoGX2OMAYO6uTZc/bNA8AMK3ftLB9jjQrAYaFpYUwOo2Ii4uD7FCFPLrzQq7JoD/YDYBgEEMHukEth1mjBLEZevXyt0dHp6KPeTQYkwJBZu0gWBUhN4nRMLnd6hgiG7O++Il+jlyWlE+GxEQ4t24NOiYhxoQGpxeSzCB2pjrcWQKDrMUIRu5aJyE4sJALOYfD0RFJ1PovABwA8HcAbwHYR0QXdPXATiXFjUqpT6fXGbbPRZkXAQCGJAwJWOQOL8gkgsTjCCnQzZH7LXLRAJ/HHbI7kyT41BrooirkjV8fRh95IgDA27w15HGt0V46RMEM5l8OFdkcOXSCol91JvnU2tlJiZDq6sBkGeZB8XD3iYFXVDTJ3lMLp+jWkUce7BbI7CaSyIWcw+EEEcmT5P8AXMoYu4AxNh7ALwG8FsnJiWg6Ee0logNE9EiYPtcR0S4i2klEH4Tqc6rITcoNu89qsgIA7G47nE4noqOj4atxQrSdWDEQQW+Ri2LY2uOyLMNXq9RDNyQlAQCavwu4sd2NGyK7XpQq5KIZpKlxe6513S9GSwcDABLautYNiUmALENqaAAEwn67E/PLFC9Ck7NnZndj6LyQk+7PlAe7cTgnnzvvvDNj0KBBw+68884MAFi8eHHCwIEDhw0aNGjYzJkz+2v9Xn/99aSsrKzhWVlZw19//fUkrd3lctGNN96Y1a9fv+H9+/cf9s4778R35/gj8QGbGGP+Be2Msd1E1GFYNhGJABYAuBjKgvyfiehz/bmIaDCAPwK4gDFWT0Qpnf4GXUisOTbsPqtREfLF2xdjAibAYrHAV++CofdxpmklXWY3Vcibaqrw7dtvhuzOZBlSYwMAQIyLg+wJ5FevcUCdZ9cAACAASURBVJUgYfy4iC6rFXgRBDMEv8K0018ftS7L8Eet6/poQi7GK1H/UmMjSCCIDGCqu7/J1TOFHIz5XeuRZ3YLLmPKLXLO6cDKv76aWXPsyEmtR94rM8txye/v7faqau+//35ydXX1lujoaLZ9+3bzK6+8kvbTTz/tSU5OlkpLSw2AkuK1oKAgfdOmTbsEQUB+fn7uDTfc0JCcnCz98Y9/TEtOTvYePnx4hyRJqKqq6tbKopGYBJuJ6E0imqD++yuAogiOGw1lPr2YMeYB8BGAK1r1+R2ABYyxegBgjFV1ZvBdTXsWk1lN/lLnVqxis9kMqd4NQ3z7FcvConOta+lXf/jgH3A1h4/wlpuUfWJcHKR6JSjOMcyH78o/QNw110R2WdUiN4pmZQhMCja7Qw+z7Vh0y880nRGsNmWf3Q4IBFEGoAp5s6uHutZ1y8/C1UFuCwE8ap3DAQBMnTp14LBhw4YOGjRo2Msvv9wLAJYuXRqbm5s7NDs7O3fcuHFDAGD58uVWbU340KFDc+vr60M+2C666KJBTqdTyM/PH/q3v/0tYcGCBcm/+93vqpKTkyUA0HKnf/rpp3EXXnhhU2pqqpScnCxdeOGFTR9//HEcAHz44Ye9nn322QoAEEURaWlpPp/Ph4yMjBGyLKOmpkYUBGHUl19+aQWAUaNGZWs5308Gkbw1zAJwN4CHoDxRCgG8HsFxfQDo36xKAIxp1WcIABDRGigVO55ijLWJkCeiOwDcAQB91fXJXU17S88A5SGcEp2CkYkjgYOAEQYwrwwxIXRK10jRW+TtMXzyNEiNTYDRCIqOhu+w8kLB4lT3rRzZw54EAplFGHwmJTUrk4PXmIUYnx/GwDTXOtO1qSanaFO8FnJzM0hMUCxyNYK+Z7vWO5nZDQGLnKdo5ZwunArLGQDef//9w6mpqZLdbqf8/Pzc66+/vmH27Nn9Vq1atScnJ8ej1R1/5ZVXes+fP//ItGnTWhobGwWLxRLyofjdd98dsFgs+Xv27NkFAEuWLEkEgJEjR+ZIkoTHH3+87Fe/+lVTaWmpMSMjwz/X2adPH09paamxpqZGBIC5c+emr1271paVleVetGjR0czMTF///v1dmzdvjtq/f785NzfXsWrVKuukSZNaKioqTMOHDw8dAHUcdGiRM8ZcjLGXGGOXM8ZmMsb+lzEWSXWWUGrQ+glkADAYwCQANwJYTERt5hYYY4sYY+cxxs5LTk6O4NLHj09WLMUrB13ZYV+zwewPiDN61BrTJ2qRC4Fgt3Dc+tLruPh3f4DU1AQxPhHVC7eh9l11xsKmiAOLUMgBJeObgYwgpuRZZ+1Y5G1yraufJRYs8AAgxCpTE+79+wECDIz5LfKmnmqRs85HrSup9njRFA4HAAoKClKzs7NzR40aNbSiosI4f/785NGjRzfn5OR4gEDd8bFjx9ofeOCBzGeffTalpqZGNIYrzdwKSZLo4MGD5nXr1u1dsmRJ8R/+8Id+NTU1YqgXaCKC1+ulyspK44QJE+y7du3aPWbMmJY5c+ZkAsD48eObv/32W9vq1attDz74YPm6detshYWFMeecc07Lybsj7Qg5EX2o/reIiDa3/hfBuUsAZOo+ZwBoXWWmBMBnjDEvY+wQgL1QhP2U0ehuBADER3Ucq2AWzXD5lHcag/puJR6vkOtTtLZjkY++8lokZ/WHIIqQm5tgzBwLz5GA+52i1DnrDl4Ggq5sFCCQCGKkWOTtuHyFVilaA3PkTG1h2swAxDhljrzyhRdBAkFgADMo/e09dI6cAccR7EaBlyM+R87pwSxbtsy2evVq28aNG/fs3bt319ChQ53nnnuuI9Q01fPPP1+xePHiI06nUxg/fvzQoqKiiNylaWlpnpkzZzaYzWaWk5PjGTBggGvnzp3mjIwMb0lJiT8+rLS01JSenu5NTU31RUVFybfccksDANx88811O3bssABKhbMff/zRunnz5phrr722sampSfz2229tEyZM6HTN8fZo70nyoPrfXwG4NsS/jvgZwGAi6q8Gx90A4PNWfT4FMBkAiKgXFFd7ccSj7wL8Qm7upJCrK9WOV8i13yGB2nWL/+LGX/u3paZmiCnnQbAG3jRJ7LxFDoMAASLACMSkDizy1pa36lr3Xy7gWjekpgIALGPGKHPkDHyOnMmdX36mi1RX3Ozctc7pmTQ0NIhxcXGSzWaTi4qKorZu3RrjdruF9evX2/bs2WMClKA0ANi5c6d59OjRzueee65ixIgRLTt27IhIyK+++uqGVatW2QClhvihQ4eisrOz3VdeeWXj6tWrY6urq8Xq6ur/z96Xx7dRnlufd2a0Wt7ixLETZydOyHodQlhuIGQhEAgkEMpWWuDSy36BhpSl0JJCL23akhZa1vajF2gvLYVQIKHATZuNEAhZwCHO4izO4iWLN0mWrWXm/f54Z0YjaSTNjCU7i87vl9iSZnktW/PMeZ7znIdfs2ZNwfz589s5jsPMmTPbV6xYkQ8AH374YcHIkSOVmeMdW7Zs8XAcR91uNx07dmzg9ddf7zd9+vSEsavdQdIaOaVUGdXWAKCLUkoJISMAjALwSboDU0ojhJB7AXwMVv9+lVK6nRDyJIBNlNL35ddmE0JqAIgAfkApbU5+1OxjT5s8TcyWXn3uElzwdbIbK74LAE/AuS22n6liNwIxFDKkQhT9HRBK+iHv7DKAAPYBHtR37QVgLpATGwee8IZS6yQ+ta6sRbuRpGxL4BwzBsTpiAZyjsAhcKdvH7mmecy4sxtBztkthxyABQsWtL/yyiv9Kisrx4wYMaJr4sSJHaWlpZHnnnuu7qqrrjpDkiSUlJSEP/vss9pf/OIXpZ999lkBx3G0srKy85prrmk3co6rr77a+9FHHxWMGDFiLM/z9MknnzxUVlYmAsAPfvCDhrPOOutMAHjooYcalDT+0qVLD994443DFi1axJeUlERef/31OgBwuVy0rKwsNHny5A4AuOCCC/zvv/9+nylTpiQ3KbEAI2K3dQAuJIQUAlgDpli/HsB30+1IKf0QwIdxz/1Y8z0FsFD+d0JgYxPrv3by6W/e3DY3johHAAB8AIDHDmLZrSxq0RoJBWHkdoCGnSCEg608D+4JTDvAbd0PwGRqXeDAgZMnp4mgKVLriYE8TuymYeQAwPfpA7GlNRrIAeQ7badtjZw5uyme9tZS67k+8hxOV7hcLrp27dpavdeuvfbamLnfr732mmExXiAQUDuxOI7TnWMOAA888EDzAw88kEA2KysrQ5s2bdoV/zwAbN68WX3+zjvvbLnzzjtbjK7LKIxcSThKaQBsnOnvKKVXAJiQ6YWcKBicz1Txo0tGp902T8hDl8hS63yHBK7AwtQzBarYLXrRTgcK1t5lK49mD5TgIIlWGLlcIzeaWgfUyC5qlixpbN744mKILS2QOECQny5wCvCdpjVy5uxmLpCzoSmyah05i9YccsghFkYYOUcIORvAjZBbwMBS5ackfGGWKlcMX1LBbXOjS+qC3W6H5AtDKHF1+/wJgRLAoLETcGh7dcxzlFIQ5AGgMeclnFIjN8fIebVGLoGmyCrEGsJoUusaRq4ljHxBAcL19ZBCXeDlGxSPUzhtU+vUcmqdIZdazyEHa9i4caPru9/97jDtc3a7Xaqurt7ZW2vKFIwE8oUAfgJgBaX0G0LIcLB0+ymJl75+CYAxtuQSXAhKQTgcDkiBCPgh3bBnlYMnC46xjHz+Dx7Hni8/j5mEJnUEAN4FcFJMOl+ZXW66Rq6k1qXUYjftfQaRVesUNNYQRpNRIA4m/gsd2gWeMvFbvlPoWbEbpcDaXwG8AEz9fuLrYhhoPQD0PQP4/EXAfwSYtThLa5HU3nujhjAJqfWc2C2HHExjypQpnUqv+KkGI9PP/gXgXwBA2JXnCKX07mwv7GQARziEEILdbgdti4A4u5+o2PnpGpC4CzUn2DDmwhkxz4ltrSD2PBB73La8+dQ6OMLGshpoP9MTu4mAGpzY89FtihZcjZZXX4UY8IJTArnDhmO+jIo29REKAHtWQmraAW7t0+y5lYuB2f8NnH8v0LAV0kcPI9S8Dc6OAJqGD0XZvjr2M4y7GqQsGxUk84YwTLUeNYQ51frI248FYHMIcHenNJVDDqcxjEw/e50QUkAIcQPYDmA/IeSEEadlGmf1PwuT+082tO3rNa8DACKOCGhYUgeQWALRfIkjXLyQeFyxtRXE7gHniA0GllLrylcKECpCMtN+Rggi2oOAxqTcBdnAR/I2R2vkLgHeziwz8tU/B54uB976Dri1T+NwcFz0tU8eY19fmQ7u4BdwdgQAQA3iANC84YdZWRYFY+QExAQj1xjCnGIWrW1HAvjTjz7HHx/6NJdpyCEHizCithlPKfUCmA/WdlYB4JZsLqo3seXIFoRE/Ylj8VB6zTnZ5MTKHHIFsZf02Aua3gU/uHs3iM0FLj+2b52Tg7Cpi716fHOGMFROrUegYeQ0lpFz+fkgTidEXyuIKnazZXdoSlc7sPpn6sPj3Hh80v4gtjgeBNzy7Paa9wFQNJe4sXHKAGwdV4CgneCLSUUIODlIjUY8jyxAtrU1PsIUp/TQlIY9ber3xw5m1CMjhxxOGxi5mtgJIQLYwJO/ywNQTp0rSRwoKI53Hje07aNTHgUAEF4O5N1i5HLdlCIhta6H1v99E8TuglCUH/M8Z8UQhsh1WBBwVEwjdtM8kNcZAdWk1uNq5ISAdnUhvPpdVSFZ4LIhEBIRNpP+TwdJBN68AXj5QtBfVgIA9ndNxp+P/Q5/b3sanVIRNh2ZhpoBcop9+QMAgJqRThRX3ozQ4In49NwS+D0C/B4BHl8XJCnzNxuKnsBUINd8TDnCQaTGsy0nOo4fjpZYjh7IBfIccrACI1eTPwA4CKAYwBpCyGAAPVDg7HkoAWjG4BlptmRwCqzXXLkmk24w8mhqPY7SJkHo0CFweQUg9vjUulIjN3+xJ7KzG1IEGYLY1DoBiTWDiUutJ4BStMqMMqOCt9r/A3Z9CDR+DSK3BP6j7RG0iQMRDERQ2M+FcJeIdevlG58AawUN2Tm4XUNwzpTlKC29DADg9Qhwd4roat1uuBXQOFgew7hiPXZoCke4xIkFJzGOH/KhbHghHG4hJqjnkENPIn4eOQD88Y9/LCaEnLV27Vo3AKxatcqtTFMbNWrUmNdff121/xw4cOD4ysrKMaNHjx4zbty4M3t6/UbEbr8G8GvlMSHkEABjke4kQ1BkhuklrpI0WzIopjGUyBfZDIjdQNnIyqjVis4mlMqjQYWkgdwMI6dy1RYgIFLq9rOEGE8Qm1pHYuzzTJ8O/6pVANid48tHmmEHm4DWJy8DAqeW/cCb1wEAqjvmoDkyFJ1SIYgggEbYYoZX9cPWTw4iQqNGP6EzZwPYArud/b7tNvnr4BlA3XK4fzsNxwcPAb3iV+jXb3b31wmAyqp14yNMIWdrZIvWU0jsRilF82E/Rp1TBl4gOH4ox8hPJrS8vXtQuKkjo/PIbWV5gT7XVPbqPHIAaG1t5Z5//vnSCRMmqMNNJk+e3LVt27Yam82GAwcO2KqqqsbccMMNbcowljVr1uwuLy/vlb7aVENTbpC/3qf9B+C/wEabnnLwhxkjMNJDDgB2XglCshCphxi51BFgM8spD2KL/RWqNXJTgTy6CDNe64wlymI3zdHiRUuOykp5e8rq5LKmIGN18mOsDfRwcBzW+W6Ha9p/Yn/wHJx5Xrm6yfCq6NS8rR3zAAC+i5gtgt3O6uaDB38Pgwbdir5TnsSxEva77XvwAHZsvgM+f6ZaTZlq3QwjP1UtWgPtIYS6RBSX56GkwoPmw/4YM6EcctBDtueRA8CDDz448MEHH2xyOBzqH2R+fr6kBO3Ozk6S7ma8vr5eGDt27JkAsGHDBhch5Kza2lo7AAwaNGicz+czU19LiVSRp1j+mt25oScQfCHZDMZuLJDbZCNVtTWoOzVypbcYJG2NXPLLzIWShEAeVa2bu9gT+XgcTW3RGlsjZ19EUM0+FPFxpuubb9h2x3aAwxRE5DV3V7keqqvDkV/+CrYZE1AGYJ3vexDsHM6dPwJDJ/RFSYUHLQ0daNzbjtLB+Rh1ThnKRhRi04d3oHnoIxgr7QAA2GQm7nJVoHLk46CUYsPYAhR4wzj7q3YMqQ+jcedzyJ/8QrfWC0AWu5mrkRNN7zgn33tTSs2x+hMQx2QGXlTmBm/jEAlL8B7rRFH/jJK8HLKE3mDOQPbnka9fv95VX19vv+GGG9p//etfl8Vtm3f77bcPbWhosL/00kv7taNRZ86cOZIQgltvvfXYokWLjg8cODASDAa5lpYWbtWqVZ6xY8cGVq5c6aGU+ktKSiL5+fkZuyNPNTTlBfnrjzJ1shMdjf5GAEC+LT/NlgxEkkd4yuKjbqXWNe1baRm5zwdwNgAkIbXOWaiRRz3TubTObjE18hjVevzxoujctg0AEGncCkKnaGaSW2fkzQ1+7HzwN+iz/Z/Iq/0IOB8YNaUcAy+YBAAoG85GqF5821gEAxFwPIdZt44BAOz+ogm7Pm/C0H8/CgBqal39GQl7L3z5AqjgwJBDPoiH/4zQhKcStjULCguqdcSm1gHWlWCO1Z94OLLfC0KAsmGFsMs3wccO+XKBPIeUWLJkSf8VK1YUAYCReeTXXnttyw033NA6YsSItIFTFEV8//vfH/zGG2/s13t9xowZHXv27Nm+ZcsW58033zzsmmuuaXe73XT9+vU7hw4dGq6vrxdmzJhROXbs2K45c+b4J0+e7F+5cqXn008/zX/ooYcaP/roo0JKKc4999yMCkKM9JEPJoT8ghDyFiFkmfIvk4s4UdASZF72fZUWpTRwUNb6FaRBpvy2W7+wqmNMKXPxsjn0x6H6Qj4cb2sA5LR+IiO3WiMHWI3c/NAUUd5XPVpcerR0IbMdIM4iFpLk1Hp7p7VALoVCqPvbv8AdZpPqOMqY/aQ5w9B/WEHMtvl9nOhbEZthsck3XHt3rAAACEJiBubfJv4BAwfdAhQPBwDwFGhr22RpvXGrN61aJ5pArnrpnwJ18rYjAeT3dcHm4NF3kAfuQju2rT6c6yfPISmyPY+8ra2Nr62tdc6YMWPUwIEDx3/99dd511xzzRmK4E3BpEmTutxut7hp0yYXAAwdOjQMAAMHDoxcfvnlbRs2bMgDgKlTp/rXrl2bf/jwYfu3v/3ttu3bt7s+/fRTz7Rp03psHrmC9wE0Afg9gOc1/045dISYrqG/u7+h7YmosKMIiIPvZqqTRP+nFITjMG76bJx/7bfVLY53HsecZXNw3yf3gPAspUME/UBuqkauXjhJ2jGmsYYwUA1hYhl57D5FV1+lvsBRADZlJrmxQB5/YT/y30/D/eLDKGpnI1sJJ79uODgScHY/BM+OpFuUlEzDqMofgzijNwZe71cGj58C1LxqPb6PnB3m5A12Rw94QSlF29EAimX2zfMcxl04EI172tG4px3HD/vRtM/Q1MkcTiNkex55SUmJ2Nra+nV9ff22+vr6bRMnTux4++2391x44YWBnTt32sNhds3avXu3ff/+/c6RI0eGvF4vp9TfvV4vt2rVqoIJEyZ0AsDFF1/se+edd/oMGzYsyPM8ioqKIqtWrSqcNWtWz8wj1yBEKV2ayZOeqNh0hDEuo2I3ReUlSmL3esiBqNiNMsEb4Thccud9MZv8Y/8/0B5sxwAJgFwLV3rYFUT7yI2n1plkLZpaT20Io3lAmdloJEZjn1gaIHY7qKcINNDM7hx5AkKMtZ9RSULdtddB9HlR8eyzsA0YgLa//U1/Y4OBvE+5G02y+cjQIXel3njI+cChLyBxHA4dfh1DhtwOm6049T4pQCFBMqla1zq7KaWNk1XwdmB7M5b/9mtMu3EU2o4EMHBk9L0cf1EFNi7fj4baVnzxPsts3v3i9JNeC5BD5tAT88iT4Z///Kdn7ty55YIgUI7j6DPPPHOwvLw8UlNTY7/qqqvOAABRFMmCBQuar7nmGi8AjBo1KgQAF1xwgQ8AzjvvPH9jY6O9X79+GTWDMBJ9fksIeRzAxwCCypOU0urku5yc+KjuIwCAg9dPa8dDCrGLqSgz8m4hzmiF4xKPt699H4ocRTi77zCA1LEn4+rZllTralBgqnXJoLObsg/zWlePBr1T05L+kALNTLVOCDyO5INTqFLf5ziE9u5VxXL1Tz6No+4zUBR3gqgxnbFAPunSIajZ+DkAwJM/JvXGF/4A+PTXCPbpD0nqQs2ORzBxwsuGzqMLK4wcJCp2U1LrJ2kgP1TDylcHth1HJCShoF90cp8zz4aSAR4crImOaw60h5BXZOzzmMOpj56YR67Fxo0b1Vni99xzT8s999yTMEt8zJgxoV27diUdxtLY2LhN+f7nP/95089//vMmo+syCiOBvBLA9wDMQdTRjQK4MNOL6W3MGjwLnzV8ZpgBhEIhcBKHiBjuNiMXRU2lmVKVWWuxv30/hhUOw/DwYLB2/kRGbqVGLlFWI6ckPSMncTccqthNeYEmSftyBOKxnRBECbDxCBB9sVuktRV7L54Nye+Hc8IE5E05GwDgufRS+D7+BC7bLrQWVWL/sMswdWg9Au/+TWMWbyyQuzx2uPLljEa66pI9DxgxA47OFgCH0eHfbegcyWBJ7EY0XutKav0kdYXxtTCznoZaZs3qKY4N0v2HF6BmXYP6uLnBnwvkOeSQBkaiz7UAhlJKg2m3PMlxwHcA/fOM1ccBFsh5yiNCxW6bwVBRw04pBeEEzUN20d7fvh8XDboIQzsHqKn1BEZuwaKVHZ6l1rl0qvWYPnKqGsLEptZ1zpHPUqj9W46ibUA5wrx+ar1r2zZmdgOgq7oaXdXV4EtKEDlvDshHH8ER8oK/+hbc8KP/BMdz2PGuJs1uRkCmuPEZ2Yfw4MBh8KDbcPDQ/8Ohw2+gYuCNIFZU49SK2A1Q7qFP9tR6l5/dvIW62I1rfp/YsmVRv1jFenN9BwaP6V6nQA45ALl55NUA8qFJq5/K8Aa9hrcNBoMskIshkPzuMXJVbkYVwRnQFemCU3Dih5/+EMv3LQcADC8cjqJjAiJyICBcErGbifYzST47Y+SpDWHiV01AZK91zbM6jDx8weXgqzegb1sLdg0oB2ycrtgtdIhlGpzjx8M5biy6vtmOvnfcjr2hIVB42eg75qvjWit+91v4l/4He8FUIFfWaCSQcwCV4HAyg5nduxfD6RyAfn1nGj5fFFbEbtyJn1rftwbY9hZw5e9SZnQ6fbEDieIDeWFpNNXucAvwHu/M7DpzOG1xWs8jB1ACYCch5AvE1sivztqqegldkS6cU36O4e2DwSAEKiBIQwnjRM1CuVArzm6NoaP4/urv45lpz6hBHAAuqLgA9j2bEFECQZLUutkauTz2hd1EGBUXyUw+Xuym584lFjNWdeHmz7B+zFhQgdM1hAkfOgzidGLoW3+NYf/t/7sL3vHfwXkzS2Arjzq2Oc88E36TqXUA4DilL9t4IHc6B6hPBbuslbkUsZv5PvLoPHLgBAvkkgi8fiX7fvy1wPBpSTft9IfhcAsIBtjv3pEXewkqlGvmeYV2uArsaio+hxxySA4jV5P/BnAdgKU4xdvPfCEf8u3GzGAAFsht1IYAAt10dYsKzoZOmASAIsSJ+LT+U6yrXwcAeGTKI/h4wccYXjgcDsoDnMLI9cVu5mrk8mAOQkwGchYMw4hmFGiSoSlSSSkAYPZn/2JP2IhujTzc0ADbgAEJOoVgZwRto6ej7513xO6gzR6YqjsnfJNiWzmQOzSBPNho/FxayKJ+833kDCcEI+/yAjXvRbsT2jWaot0fJd1NkiiCHWFUjIoq1eN/z8VlboybNhDzvl+F/D5O+JpzgTyHHNLBSPT5DEAXpZQSQkYAGAU2l/yUAqUU/pDfdCC3EzsC6Oo2I1dC4X7vfhBKQeXr/JMbngRHOMwbMU+1juVFGq3PJgRy9ryp1Dql8h2dnFo33O6jpNaBdAGR2p3gCgdjex/GuBgjD6Jr124cf/FFDPjZ0+BcLoSbmmArK0vYPxISYdMz3OE406p1tpsJRs4lMvKuYHcYuckxpprecSUl36tit1+OAMQQ0LcSOL4buP7N6GufvwBMewhwJbbohQIRUAqUn1EET7ETw6sSjZc4nsO0G0YBYGn3wztbTwk72hxyyCaMXE3WAXARQsoBrAFwF4BXs7qqXkBnpBMRGjHeQw4WyB1woJMPdlvsJsnsptHfCFAKiQB5tjx4Q15cNuyyGP93EpEA+YIez8hV1boJxkZjauQmGDmY2C0MpPRaBwCJAFx+Gfq0y90bAgdfMIIjS5fC99FH8P3zX6CiiFBdHWwVFQn7h4MibA6dP1dCWPM9YLJGrizSeGrdZuuD0n5zAABBi4HcUo1cvUmSej+1HvSzIA6wIA4AX8uB/N9uYl9fnKq/q1xKsbsETL12JAaMTN2Pn1/iRDgoItjRKwOlcjiNUFVVNTpbx164cOGAH//4x8ZV1BZg5MrHUUoDABYA+B2l9AoAE7K5qN6AMvnMDCMPhUJwEAe6SLDbqXU1+hEAlMJpc+H3F/8ed0+8G0+c90TspmIkmlLmE4Mu4TiTqnV5jKmB9rP4/ZAgdkucfgawQM+5itGnvZWNSrVxoBTwBZjsomHRItRddz0krxfusycn7B8JiRB0GDnhOE37mQmTFVOqdRbICSEYP/53KC29zHIgp5QxcnOGMETel6pDU3otkHsbEp/b8T4gOIG5sm9UOABseAEIxLbchoMsS2QzmL0qKGHZm7ajAYjhE0gTkMMpg0iE3SRu3br1pFauG4k+HCHkbAA3Arhdfu7kntagA2XymenUOmdHOxfpPiOXA2+RoxBhegTDi8/A+H7jMb7f+MSNI5GkjBxgLWhmxG5KHzkA2RDG4I5ybT0+ta7XRk4JQFx9fhHYVAAAIABJREFUYBMjKPa1o93GvOLbjrZAaS7q+uYb8CUlKLj00oT9w0EJTo/O7HKOi55Zx0QnGYgZFk84JuiS4XSU4/jxVRZTvhSUmhxjSqKMvNctWn1yIJ//ItCyD9jxARsjWzQYEBzABYuAdb8CPn6UvX75r9Rd1UBu8LPSfzizx/3wpW3o9IYw996JGDIu14p2ouDvf//7oKNHj2Z0wk1paWlg/vz5SY1cvF4vd+WVVw5vbGy0S5JEHnrooYbFixdXbNq0aUd5eXlk7dq17kWLFg3auHHjroULFw7Yt2+fo6mpydbY2Gi/7777mh588MHjy5cvz3/qqafKS0tLwzU1Ne69e/dud7vdVYFAYOvy5cvzf/KTnwzo169fuKamxn3ZZZe1jh8/vvOFF17oHwwGybvvvrt37NixwYaGBuHWW28dUl9fbweApUuXHpw9e3ZHsnVXV1e7zz333ErtOjL5vhkJ5AsB/ATACkrpN4SQ4WDp9lMKlgO524YgCYE4usfID/kOogRAuWcADtFdyHMkT/HTiKiOK42vkQOMpZqffibvazW1rnlOL8hIYENTAKCkvQ1tDlYHb2/1oXz4cIT27QMAeC64AEQzGlBBJCzCZk+WWle+N99+ltYQBmA3TRoG7HCUQZI6EYl4YbMVGj4nAFY2ASCYErsp20ZvHHplaMrx2igjH3QO8G83Ap1tLJAXDGTPl0+Mbh+ObR0LB9ktn1FGnlfogM3Jo9PLUvmNe9tygfw0x7JlywrKysrCq1ev3gMAzc3N/OLFi5Nuv2PHDtfmzZt3+Hw+vqqqasyCBQvaAaC6ujpv69at25WJaVrs3LnT9fbbb+8rLS2NDBkyZLzD4Ti+bdu2HU899VTpM888U/rqq68euuOOOwYtXLjwyCWXXOKvra21X3LJJSP37du33cw6lEErmUDa6EMp/ReAf2ke7wNwd6YWcKJAnUVutkaeZ0eIdJ+RH2g/gBIMQYmrDw7JQ1OSgUYiatCKd3YDmHLdlGpd0z5GqATRhGpdYeTaGrmuIQwATh5AUuxtB8qZcCxQUIyhf/kjOr+uxqH//E8UzJ2rfyqJ6v6ssal1C33kJlLrChxOdhMSDDaZDuQU5ueRQ5ta7y3VevVbwLL/jD4ukIV/g88Fvvw9UCpb3ZZrqm6uophDRIJszUYDOQDMvWcCPv3bHhw76Mu1op1gSMWcs4VJkyZ1PvbYY4PuuuuugfPmzWu/9NJLUw4fmTNnTpvH46Eejydy3nnnedetW5dXXFwsTpgwoUMviAPA+PHjO4YMGRIGgMGDBwfnzJnTDgATJ07sXLNmTT4ArF+/vqC2tlY1PfD7/XxraytXXFys+8HUW8fQoUPbrL4P8UgbyAkhZ4Cx8qHa7SmlszO1iBMBSo28wF6QZssoFNV6mAt3u0Ze76vHJAyB25YHIF0gD6up9WSM3EwgJ50iBHAARBAqwlBLFlsJon3kylNJ2s8IQBzsvZ1YW4OuEIfdKEGociz4ggJ4LpiKyk2bwHvydM8kSVTH5x0AIaz3HrDUfkaM/KxxgdwpZxO6go3weEYZPycANsaUmms/09wkaevlPYrmPdHvXcWATb6GjZkHBH3A+GvY46Ih0e3iBveYZeQAMGBkMa794dl4e8kmlZnncPpiwoQJwS1bttS88847hY899tjAlStXenmep0opsbOzM+aDFV/6Uh673e6kF0iHw6F+uDiOg9PppMr3oijKLtoUmzZt2uHxeAx9EJOtI1MwcjV5G8AOAD8F8CPNv1MKKiO3G2PklFKEQiE4YUeEiKDdtINu6mDiKZ7jZYvWFBe7iJh0+hnAWtDM1MiFDratk0B1lTMEubbOxphqVOtJGDlxsLLFjZ98gEf/zAaPhAZHHROTBXGAxVE9PQAsMnKOUwxWjLefKbDZ+gAAwqFWw+dTQZnXuhXVOqVS7zHyjmPR7/OjbXjgbcDkWwH5dwtCgLNl5i7FZg7Nit20cLgEBDszOjAqh5MQdXV1tvz8fOnuu+9ueeCBB4589dVX7oqKitD69evdAPDWW2/FtEL84x//KAoEAqSpqYn//PPP86dOnZq0jm0GU6dO9S5ZsqRUefzZZ5+5Um2frXUoMEIjJUrpbzN50hMRrV3solzoMJYqDYfDoJTCASbAiggSdKRYhtHSdgQAS7mSdKl1UWOjmoyRm6iRtw/k4G4WQaDUyA1mF2Rnt7AmNU9Jkho5AcA7IBIOPJWQJ9dPO0uMdWVQieoGctLNGrmZ9jMFPM8+s6Jk3j6UgppWrUd/Lk1qvSdq5OEuoLOFpdG1avXCxPbAGFz+K6ZkF2MDeagbgdzuFuDNmcOc9ti8ebPr0UcfreA4DoIg0BdeeOFAIBDg7rzzzqFLliwJn3XWWTEBsqqqqmPmzJkjGxoa7IsWLWocOnRo2Mhc8nR45ZVXDn3ve98bXFlZOUYURXLOOef4zj///IPJttdbR3fXoIWRK/Z7hJDbAbyLWItW46bkJwH8YT+cvNPwCNNgkL0VDupggi/Oeq9rR7gD4zfZgApZoExprGNZPCQRVB6qoqta5zhTjFxU7T8hG8Ikis30QQHCauQcl5qRq8GL4wBRQsDNgmFXv/LEjfXORPUDuVVDGGUfM+1nCnieCXUl0UJgoRIoNddHTjTZDuUGoEdS629cBRz8DHj4ANBeH33eYUAQygmAFPuZUBm5nrFPGjhcAoKBjF77cjgJsWDBAu+CBQsS/NLr6uq+0dt+5MiRXW+++eYB7XNz5871zZ0716d9ThljGv+adoyp9rXy8vLIihUr9hlZ89KlS3V6NjMLI1e+74Gl0rcA2C7/033T4kEIuZQQsosQsocQ8kiK7a4hhFBCSGIDcQ9hxb4V6DJxYVYCuVNiQS8oWp8pU9deh+iYSiW1noqRS6B8qj5y3vQYU4D9MRAqadLkaaBJrXNclDXqBRkSYDfKPAXa8zy4/ufPAwKB3+jsd4nqJR/k1LqFGrliCGOh/Yzj2A29VUZuWuymaTnr0T7yg5+xr7+fDhzZBpwxi6nTz783/b5JArng4PVvyNLA4RYQ7Iz0XttdDjmcwDCiWh9k5cCEeYg+D+BiAIcBfEkIeZ9SWhO3XT6A+wB8YeU8mcKxzmPpN9JADeSiHeC7F8jX1q9VG/OJLN5KFcghiuxCiWR95Bwkyez0M8b7CCRQw9dZCoBDBACvrJdS6GV9B7zyPFB5I0B4tBQwNTMVOF2/dd0zJamRx6SozZisqGI38+1nHGcDIQJE0cpkLgsWrZp9e7RGztuZi1uLTDyGXgDc9I7BfW0JqfVwl2gprQ4wNzgpQiGGJV1joBxyiEdPMGEtnn322ZIXX3wxplZ49tln+994442kKfdMwVAxlBAyGsAYAGptgVL6v2l2mwJgj9yuBkLIXwDMAxCfFnkKwC8ALDK45hMCoRBT0DolVhkPieYUtX/Y9gdUFleiubMZL339Eu6mrG0nmiVOfrGKqZFnwNlNpBIAXlMjNz79jBCmWuc064hnTVIwCKGFuXy1FRSpKnMqEHg7jQVyKUmNXEmtU3CGtfYAQIhJRh4XODnOCclCIGfObiZV6zp95Fn3Wg93Ra1YFYyYYXx/zpYoduuKwG4xkDtc7FIV7IzkAnkOJyTuv//+5vvvv7+5N85tpP3scQCzAYwG8DGASwB8CiBdIB8IQNtneBhAzIxQQkgVgEGU0uWEkKSBXK7R3w4AgwcPTrdkSxjoGYjyPGP1WkBTIw/bACdMpeUPeA/g2S3Pqo/7uvoiofk6VTCVRIBP7uxGTKrWJSWQE5OBXF5zDCOHlFAjl3w+1e7N4clHQbuc/bCZYeRUU4fXQFWtm0vXqhathtvPYn8onndbSq0DbNqcFWc3SiU1tS7SLCu4u+QW18ufASbfxh7rDEJJCl4AxMTUulFXt3jY3exSFeqMIK+wmy0iOeRwisEILbgOwHQAjZTS7wCYCGNMXu8KqV4NCVMZ/RrAg+kORCl9hVI6mVI6uV+/fgZObQ1leYlTt5JBCeSukHlG/kVjbBVh2ZXL1DeG0PT1XipKampdr3DMDGGMX+hFKC5nxNz0M40hjBrIdVTrUiCgBsLI6DFwdbGbHipwOOAzdgOUTLWuUboZW7O6m1lGHvt+8rzTsthNglmxW6JqPeu14k45kDuL2HtsJogDMYw8EmLvXagbqXWHS9aiBHIDVHLIIR5GAnknpVQEEJHr2U0AhhvY7zAAbX29AoC2ZpEPYByA1YSQOgDnAni/twRvnZFOuISUrYAxUAN5kF1guiLGL+r72/fHPC52FiOekRM+xa9GivaRJwvkkmiWkUOTWje6J0v1ikitWpc6OqAUzl0CD1dI1hPYCJr8xrQFLJAnPk8IkWO5SQEVUW5eDAQWLjG1znMuiGLA3DkhjzE1y8h7w9lNYeRmA7gCuUbua+nCy/etQc36BoSDIuwWjZMc7mhqPYcccoiFkU/VVkJIEdjo0k0AvGAK9nT4EsBIQsgwAPUArgcbvAIAoJS2A1AHEhNCVgNYRCndZHj1GYTVQO4Omlet13nrMKRgCLxBL+6ceGfMa1FGnjwwMUbOQ9SMtYw5BsebY+RUCWpmVevsi1a1TqlOjVzDyPO6AggC6NvajDaBB4mkZ5aUspuDpGpnjmg8zwxCCeRGsg96NXLeBVGywsgpc3ZLJWZMOH/0JqlHAjmlQKdsdhNns2oYnABIItqOsJud7esaupdal2vkoRwjzyGHBKS8mhB2lVtMKW2jlD4P4HIAd1BKv5vuwJTSCIB7werqOwC8RSndTgh5khByZQbWnjGExBA6I52mR5hyHAeXxOp1Zmvko/uMxprr1uDGM9m9jSpeUoJqqpSvyBi5yOlfzM2L3VjQ59Q+cqN7Kql1Cp7n1efiLVqljo5ojfzcCwEAxT4vYOMghSVIOpauMWeRX9atkQOmyTiA6PQzC4YwbH8BVDLf16wYwljpI6eaG7esit3+MAt483r2vdNiIJfLEWKEvW/hrghCXRHrqXWZke/ZfNTaenI4LTBt2rQzjh8/3qtqyClTpoxau3ZtRqfCpUNKRk4ppYSQ5QDOkh/vSbW9zv4fAvgw7rkfJ9n2IjPHziQCYcYaTA9MsdvhCLMaeTBijJGHxBDq/fW4bNhlsWxQjlbqBTolI2eBPJm7F2s/M99HrjByo2NMCY2m1nltaj0+kAcCUOi7UMgCQ0GHDyWF5WgH4O0Ko8id3BdPOV4y9mwltU6IgRsmdWO9QM5ZC6ZUstxHjp5KrddrkmJWU+scD0SCkET2HnX6wxAjEuwWpwS689nfx76vzLWJ5nB6Yc2aNQkxSpIkUKolG6cejHyqNhJCJlFKjaTTT0p0Rpj62Gxq3S7YYTdpCHPIdwgSlTC0cGjM81Gxm/w1lde6XCOXSDJGbjK1jtgauZl+bEBWrWtmZsczbKmrS71R4TzMAregowPu/gLaAbR0hIwF8iSxj6XcrdXILTNycKAWlOMULLVu1dmtRw1hCG+dkXMCQEX1d9flDwPE+CzyhKVwBANGFpnSfuSQXdTseHhQh393RplnnqcyMObMJUmnqj3++OP9nU4nffzxx4/edtttg7Zv3+76/PPPd7/33nv5r776at9NmzZ5Nm3atMPr9XJz5swZef755/s2b97see+99/ZUV1c7f/zjHw8URZH06dMnsmHDht2rVq1yL1y4cHBXVxfndDql//mf/9k/ceLE4HPPPVfy/vvvF0mSRHbt2uW65557mkKhEPfXv/61xG63S5988klt//79U14ARFHEt771raEVFRWhpUuXNlx33XVDq6ur8wgh9Nvf/vbxJ554ImPppaRXMUJUw+2pYMF8FyFkCyFkKyHklArqnaLFQG6zw0FZADIqdmMubsCwgmG6rysBOJVynNXIOYhJArlZi9ZYsZtogmdStY885m43Xu0milDEbryHTUAr6PAhX657tqax3pTUQJ6sRq6s3jiIOjTFRI1c+3MRDhRWWsAkiN0Qu2XdolXbMuYsSG0VnAqEB6SIysgBANSaz7oCwc7FHi+H0w7Tp0/3r1+/3gMAX331lbujo4MPBoNk7dq1nqlTp8bYrtbV1TlvvfXW5h07dtR4PB7p3nvvHbps2bK9u3btqvn73/++FwAmTpzYtXHjxp07duyoeeKJJ+ofeughdZDA7t27Xe+8886+L7/8csfPfvazgW63W9qxY0fN5MmTO15++eWSVOsMh8Nk/vz5w0aOHNn13HPPNWzYsMHd2Nhoq62t3b579+6ae+65J6P95qkY+UYAkwDMz+QJT0QojNwpGPfSDwaDsPM204x8v5cp1ocUDIl7hV2g1ACcro+cpE6tixHjoiBRCeRqH7nBizdljnBKal0pDkhxQYaGI2oQjAZyPwpkFt4WSN26l65GzgxhrKXWjbWf8dGFyL8XQnhLwZRSatoQRlfslq2hKSHNtdDEzWACOB6QErMzdouMnB2SS6unyKHnkIo5ZwtTp04N3HzzzXmtra2cw+GgEyZM8K9bt869YcOG/N/+9rcHf/Ob36jblpeXh2bOnNkBAKtXr86bMmWKT5lBrrDplpYW/rrrrhtWV1fnJITQcDisXkjOP/98X3FxsVRcXCx5PB7xW9/6VhsAjB8/PlBdXZ0yE3H33XcPmT9/fsuSJUuaAGD06NHBQ4cOOW6++eZBV1xxRftVV12V0Vklqa4mytzVvXr/MrmI3obCps0w8lAoBDtvgwAeHDjDYrddLbsw0DMwYVyqcnmiBgK5wshTpdYlE9PPxPj2MxOcXPFa5zklmCbWyKkY9cjmBAEdThcK/D4Uy73B6Rh5uho5e6+y2H6m1qij7zcBSegtNwamwOdTlU7iT49o2SLrNfKw5u/YgphPBccDVExIhXeHkfM8gWigyyGHUxcOh4NWVFQEn3/++b5TpkzxX3jhhf6VK1fmHzhwwFFVVRVzEdbOHNdms7R4+OGHB06bNs1XW1u7/YMPPtgTCoXUmGi325POJY9EIikvOJMnT/avW7euIBAIEADo16+f+M0339RMnz7d98ILL5Ref/31Q62+B3pIFcj7EUIWJvuXyUX0Nva0Mn2EnTc+iDQYDMLO2UBA4OAdhsRuYTGMr499jdF9Ruu8Kv/NKIE8jdc6IXzS1LpZ1bo2tR5fC04JDSNX2DLVG5oSYRPLAYCjgLO4GPOcHPrkGWTk6VLr3RK7GUmtE2Uhmud4WX9uEhYsWpWPKaXRJruspda1g07C5vvkVeil1gHYLPaRAwDHk1yNPAecf/75/ueff77/RRdd5Js1a5bvtdde6zdmzJhAqpbO6dOnd3zxxRf5O3futAPAkSNHeADwer18RUVFCABefvnlvkkPYBJ33HHH8dmzZ7fPnTt3RDgcRmNjoyCKIm655Za2n/70p/Xbtm3LqLYg1dWEB+ABM27R+3fK4Kdf/BRAtH5tBMFgEDY55eoUHIYY+Vu730JjRyOuGH5FwmvKhVmpkacKMFQUAcIlT62bHWMqByg5XOiOIU2ykmiNnBA54NGE9CeNiNG2OgB5xUUoCvhR4raBgondUkE5XtLPaTcCuWGxGxDLyAkHaoEVWzKEIT3IyLWB3OiAFD1wPCCJiYG8G4ycEzhIOUZ+2mPatGm+Y8eO2WbMmNExaNCgiMPhoP/+7//uT7XPgAEDIs8991zdVVdddcaoUaPGXHXVVcMB4OGHH25avHhxxaRJk0aLJrKYRrB48eIjEydODFx99dXD6urqbFOnTh01evToMf/xH/8x7MknnzycyXOluj1upJQ+mcmTnai4pvIavL37bcwaMsvwPsFgEPZ89vY5eKehGvn249vR390fM4fMTLqNGtBTBSZJBIRUjNzcGFNRuXmQz2wUhLK0r8LI1Qa6uFNTDSMHBfiiIoitbSh12AEbh4Y0Nq3K8ZIxcpMi++jiYaL9TLsQKLapVhi5+Rq5dkKbatGarT5ypdvh6j+wsaVWQeTUetxNXXd80vkcI88BwLx583yRSEQVXGtnkdfX128DgPLyctTW1m7X7nfttdd6r7322pihXbNmzerQ7v/ss882AMB9993XDEAVpCnH1XstHtoZ5r/+9a9VN9OampodRn9Gs0hbIz8dUOwoBk94FNgLDG1PKUU4HIYAARA4OAWnodT63va9OKPojGRHBQA48/LYwxQzm6kopWfkJu4uJa3YDSL0gnmR24aygngxILvdEKG0n8k18nixmxiJYeRCeRnC9fUotQugdg5H/OnEbulU68S82E1978wEcjHmOavtZ6LJ9jN1Xxo1hMk6IzdRw9cFJzCxWxwjL+hrXFCacEieg5hTreeQQwJSMfLktPEUQyASgFtwG6uXgvUHUkohUA6cg4ODT59al6iE/e37cVblWbqv2z1M/BZl0inWIoogHAeR6AcSa2NMo2fUq79uefxinT2ZiptZtEaDabzYjdXIJeXgcAwbhvZ3lqGoqxPUwaE5jd+6IUMY43Z0DJxJi1a2EM05rarWWXufKbGbyt57oI9cDeTWa9lsf06ukbN1eoodECPdmyVOOJL4t5VDDr2E73znO4O//PLLGNXyXXfddaQ3Rpkm/bRSSlt6ciG9iY5wB9w249qDcJipeQWRgDgEOARH2tR6g78BnZFODC9MMm9GDrxKnSZlH7kkAYRXjVziQThz9duo2I0wpqpzrdRt/dKk1lmNnD2ZwMgjIiQ1GAJcoWwK09UJ2Hk0etPcBKWpkVtJrRM5OU2MMGMl6Ma8pwRWUuvKe21O7KYZY9pTNfLuBnI5ta4E3qsWTTJTtdE/JKdzk5hDDr2EN95442Bvr0FBNz+tpwYC4YClQM6LHDgHDyfvTGsIs699HwBgRNEI3dcVcZqk1ChTRSdZ7JYskHO82fYz2WsdgKw7N7QfUVPrVA6ySdrPIhFIvEZ5zbM/uwIOoA4O3mPpauTpVetmU+umnd2AGEMYYjG1LsnvrTmxW5SRZz+1Lv9M3WbkbGiKkgrP7+M0nPFKBsIRnBRxPBIEXrsS6GwBurxAuBMYdSkw6ydAQXlvry6HUxC5QA6gI9KBPCHP8PahEKvpCiIH4uRh5+3oCHek3GdPG2txS8bIFbW6EoBTXa+oKIKQ5Kl1q85uINrasQFo289IckMYiJFohoECxMb+7PpzBNTBg4gUHcEI8pL4cKcTu1lRrZuefqZdCOT+cwupdVHJLpgSu0Vb+3jZcDFrhjAZq5HLjFyk4DjS7SAOyH9jJ3okP7wZ+MOMxOer/woUDARmPdHza8rhlIdF/8VTC53hTouMnKiMPFVqXaIS3q19F/1c/VDoKNTfRmXk8oU0xYWeSgojz0yNPCLFMnIzAUodmqIVu+m0n1E+ymqJYucqiijNZyrm4ynq5KrYLakhDEzXyAkxI3bT6yMnlixaJXkfS+1nPWHRmsnUutx+xvGZ0c2e0DXyPSuBDc8DH/+QPb5gEfDIQeCGvwA/bASGXQjs/qh315jDKYtcIIdcIxcsBPIwAXHwcAiOlKn1r499jTpvHeYMm5N0GyVNK8pe1ykvV6LEDGEg6V7QOZPtZzGGMEQyEcijqnWOEJV1x+9OIxFQLsrIIQjq8wVu5u52zJfiRkhUauQnUPsZ4S31kSvZCmtDU6SeE7vxtu4dR+kjlyhIhgI5x5MT06I1EgL+tIAF8UOfA1c8C8z8EeAsBEbNAexuYPD5wNEaYOkYYOeH6Y+ZQw4mkAvkkFXrVhh5GOCcQlpGftDLNBHXjbou6TYqIxcN1MgVRk4k3Qs6Md1+pukjJ8Y7lIkclFgfuXo0XYtWiVNq5ABRA7mIYg9j5KkCucrIkwWEnqqRaybKESRORDMCpUPAjGpdq17IvthNtmXtdo1csWjNICNnCZ/sZSOsYvuy6PcDzwKqvpu4TcVk9tVbD/yf7iTnHHoQ//Vf/zWwrKxsgtvtrurttWQCuUCObojdQgCx82nbz+r99SAgKMsr0329uf5Qgtgt1WWaihIIYV7ryQK5OUMY7dAUmGLkSm2aU1LrehfacDSQQ6JqIEckjH5KIE+RWlennyW1WiemFdGESKDUYO2W6KjWCbFk0SpZqJFrU/tqaj3bhjDdrZErFq0STZpJMX1IxQb4RGLl794FvHsH0HcU8MA24KZl+u0VAzVtp821QGtdjy0xh0TMnz+/7YsvvsiaQUtPIyd2A2PkZsRuaiCPEHAuuf0shSFMvb8e/dz9knq5f/LSc1AikRLIU8ZSjWpdpCJsiE2DmhW7KTOyCaUAZ5bxyIGcYy1zVMfilYpiNJBTAHKNnIoiSj3sPTmeipGr9vPJInn0hsI4qPG6eiZT6xZU63rObid8+5lq0SqB4zPDF6KBHDAy6yarCLQAf5gJtLBuFMz+KVA0OPn27j7A7avZ+/rSBcBXbwLTH+2JlWYND+w4OGhnR1dGPcNH5zkDvzlzcMqpaj/4wQ/K33777T7l5eWhkpKSSFVVVeCjjz4qGjduXGDr1q15fr+ff+WVV/ZPnz490N7ezt12222DlWllP/zhDxtuueWWNmUqWjq0trZy48aNG7tv375vHA4HbWlp4caPH68+zsTPnAmc9oxclER0RqyJ3QTKg/PY4OSdCEmhpBfXBn8DKjwVuq8BmpYzRGvkqaefiakZOc/HHDMdqMTCCwea8rwJ56FUTWlzUTuZJO1nGsGWwG48aDiCPnYbc3dLGcjTtZ+ZZ3zETPDXCeSwaNFqrY9cPj2N1shPeLEbJwCgqmo9E1COk9AV0RvY+gYL4iUjgUV7gMrZ6fcZUAWUjQdGzAC2/slS18PpjrVr17o/+OCD4m3bttWsWLFib3V1tcrAAoEAt3Xr1p3PPffcgdtvv30YADzyyCPlBQUF4u7du2t2795dc/nll/uSHz0RxcXF0nnnned76623CgHg1Vdf7XPZZZe1nkhBHMgxcnUWeZ7NPCMXwIPPs8FBWXo4KAZ1R6E2+Bswqf9OStabAAAgAElEQVSkpMcjhKgXZkmuf6di1FSS289kRh4PzmRqncoTuQgoaKqpa4l7qrGQtZ8lUVSLkehxKUAEhZFHUGTjQR2pTWHSBXJCKKhZZzcz+2RwaIpaIzfDyHu0jzyDqnUAYkTMYI38BEqt7/4EKJ8I3LHW/L7jrgbeuwc4sh0oG5f5tfUQ0jHnbGD16tWeOXPmtHk8HgqAXnzxxW3KazfeeGMLAMyZM8fv9/u548eP82vXri34y1/+sk/Zpl+/fqZbTW6//fZjS5YsKfvOd77T9qc//anv73//+7pM/CyZxGnPyAMRNqrRzCzyaCDnwLltcArMP1ovvR6WwmgKNKE8L50RhBzIRZF5h6e6WxclEGSuRk5plJFTkubc2vNAw8g1088SU+sSJE3blFojF0UU24S0jFxhYCmnn5kN5KAA5Yz9rHqGMOimIYypGrRSF9c4u2WtjzxThjDyOkUpg+1n7GuvB3JKgaZtwMDJ1vYfIfeZ7/1n5tZ0miDV5zVe76IQpO56GMyePbvj8OHDjhUrVnhEUSRnn312+lGXPYzTPpArRi5mGLliCMODA5cnwMEzRq4neGvyN0GiEgblD0p5TOXP0ygjV2rkEe3YSRlmnd2oxGRbHGRrWKMpPwqV1UaDbGJqHaIYYwgDPtp+ViTwgINP6bee1mvd2Gpj9yESC/5GflR17RrVOuFhxXPUktgN0bKEOv0s66n1DIjdwG7iMtlHDlhqFsgsWuuAYDtLk1tBwQCgdAywJxfIzeKiiy7yf/zxx4WBQIC0t7dzK1euLFJee/PNN4sB4OOPP/bk5+eLJSUl4kUXXeRdunRpqbLNsWPHLP1hX3/99c233nrr8Jtuuul493+KzOO0D+TtwXYAQL7d+Ij1cDgMgRdAQMDl2dRArteCdsjHsk8V+clr5AxRRs680q0zck4Wkxmuk1OJcWtKQdVxpIZ2VAM0UfvIdbzWJQkSFw1GRLFrFUU5tc6hrSOU9Gc24uxmOqwRuZhgipHHqdatpNZhPbWubT/Tu4HLCNRA3t0+ctmBTpSS/97MHlKpkfcmIw/6gD9/i31fPsH6cUbMAA5uAEKGNFc5yJg2bVrg0ksvbR8zZszYyy67bMSECRM6CgsLRQAoLi4Wq6qqRt97771DXn755ToA+NnPftbY1tbGjxw5cuyoUaPGfPjhh/kAcOedd1b0799/QldXF9e/f/8JCxcuHJDqvLfddluz1+sVbrvtthNyBslpXyP3hrwAgCJHUZotowiHw7DJFyrOFU2t65nCfNrwKQAYYORKjTwCEJKakYsiQAhEol8j52UxmRiJgDMwbYpKkszI5Rq50dS6ZjtOtUlNTK1DFCFqGbnC9kQJxYIAaucRESm8nREUuhMDiBGvdeupdQOb6gxNYUpyC2NMqRVGru6s3gCc8DVy+T3Limq9J0RikRDQuh+w5wGF8k348T2sZ7y5lj3ub5GRA8AZM4ENvwMOfs6+z8EwnnjiiaalS5c2+Hw+7rzzzhv10EMPHfnrX/9act1117U+//zz9dptCwsLpWXLltXFH+Oll146/NJLLx02es5//vOf+Zdeemlr3759zX/oewCnfSAPhFmN3KzYTSA8iEsA4UlSRt7S1YI3d76JYYXD0N/dP/kBNdclSRKBdO1josgYOdIw8kgEsDvS/jyUsuDLYrG5gKjUyInGojU+OlJJUuMsq5HHi93Yhf6Yv0s3kEenn6UaY2pq2axljXaHkVsbY2pF7KYdmiLIAVbvBi4jyFSNXLnhECk4UwLKFIdU2+mzHMglEfjjHKB+E3t856estezlCwFlpsJNywBBv53UEMpkNn+8NhfITeKmm24aUltb6woGg+T6669vnjp1aiCb57v55psHrVq1qnD58uW12TxPd3DaB3IrNfJwOKwq1gHAyctit7hA/vXRrxGRInj8nMdTCi605h6SJMmK6OQXKzbGlAVyfUYuX+wjBtOvlDFyoqbKzYjdGDiCpBatiO8jV81hJBQIPCBnDY75QjijFAlQnd2SxgPz9iiK0t1QLNYdmkK6JXazNjRFUm8Asp9az8DQFCiMPDOXGaXWrlj2Zg3b32VBfNg0YP8a4LUrgM7W6Otjr+5+8HWXAI6CaB96DobxwQcf7I9/buPGjbu6e9yHH3647L333uujfW7evHktr7322iEAPa7QN4PTPpD7w34AFgI55cC52dvnEPQZ+QHvAQDAqD6jUh7PU1yifi+KEYOMnCS1aFVS65LBQB5VrQMRE6p1xATyFH3kUlS1rh2aQkURPCEoyLOhC8BRn74YVK2RpxyaYnDJmrUDBodwJDGEsdZHzs4nmGK8UdX8yZdapxDsGRa7ZSu1Tin7Ha96GigdC3zn78BXfwI+kgehnHkFkD8AOPeu7p+LECC/HPAf6f6xcsgIlixZ0rRkyZKm3l6HFZz2gVxJrZsdmiJQDlw8I49rPzvgO4BiR3HSiWcK8vv2Zd8QllpPJ3ZjrWVM7KbbR26CkVPKUuEqI+eMK8eYXbmSWodG7Ba3oSiCKuIpCs30MxaM+uQ70ACgqT1ZIDdQIzfttS4Zr5HrptYV9bhkbPCKDNFKjVxzk6S0rUVolhi5mCGvdeWGQ8qgal3tI8/I4WLhbQD+MIvNDu9sAa7+A8scTfouMPYq9vu2G7/ZNwR3CRBozuwxczgtcdqr1v/v4P8BMNfXGw6HIYishxxA0vazA94DGFIwJO3xqCTB6cln6mvZ7CUlI49EGCOHpLsdzytmHOkv9sr+CiNXbFaNIbolS/+y1jU91brIRVll1KKVra+f2w7exqExSSBPWyMHtcDImde6KUYuxabWAZhWrltxdtPOI+cIx373Jpz7TCFjfeSaGnmGxG5ZVa3XvMcGmnTKouSRF0dfc+RnPogDzLY1F8hzyABO+0BuRq2uIBwOgxc1jFzQr5EfaD+AwQUp/JdlUImCcBwAAlEUQfjkjFxh0ABJwciV1Ho47bnVQE5l21JiQrUeYwgDxhz10tyiqDGEQUyNHAD62ARwLgH1bZ2650lbIzfR+q7uQphq3VgfebLUOmA2va5sbW0eeXRyWvbEbpmqkSvtZyfJ0JTDX0a/dxYCLvPXBdNwlwAdJ2Rbcg4nGU771LqDd2BsyVhT+4RCIRRQJ/g8QT0GENt+FggHcLTzKIYVDkt7PCrJU60IINFIakMY1eiFJLVoVcVuBkxhlG0kKEJua17rqmqd6ji7JfSRR2vkAFBiEyA5OTS2Jwnk6QxhrKTWlRq5VdU6oql1M5AspNajQ1Pk+joRssjIIywt3k03LLX0kMkxpmpSJxuBfBMwZh5QOAgYMT3zx9dDXl/GyNlddM+cM4dTElll5ISQSwkhuwghewghj+i8vpAQUkMIqSaE/JMQkj4PnWEEwgFTQjcACIcUsVtsal3LyOu8dQBgLLVOJZmRKwYayQO5Yr2ayhBGCeRGxG4xqXUim52ZuE5GU+vK94mp9Zg+cklbI5cDuV1AyM6hsS2N2C0ps7OQWpdV64bStEm81hmspdZNMfK4ND7P8dmrkUuR7qfVAZXRixLNmCFM1mrkkgi0HwL6VgKX/DdwxqwMnyAJ3CUAFYGutvTb5pBVVFVVje7tNXQHWQvkhOUenwcwB8AYADcQQsbEbbYVwGRK6QQAbwP4RbbWkwwd4Q5Tk8+AaPsZcbKLlWoIo6mRf1z3MTjCYVxJ+qEIrEWHl41g0ojdYhi5qJ9a5xWxW/rUusLIGT+FhfYzDSPXmr5oQCVt+5m2Rq6k1nlITgHNHSF0hRN/nnQ1ciupdcCMRWsqsZs5ZmzFaz1eTMcTPnuMnIoZCuSyDa9IwWeIkWetRt7Zyn63eTq9j9mEU07fd+YCeW8hIpOdrVu37uzlpXQL2UytTwGwh1K6DwAIIX8BMA9AjbIBpXSVZvvPAdyUxfXooiPcYYqRU0oRjoTBg1dd0zjCwcbZYlTry/cux0UVF6Hck25YCiCJEXA8D0KYsxvhheSMXFQYOYFEaGpGbiC1Hq2Rs5BM09nDxu8vf+U4QCQc9FXr0dQ6pVCzD4qwqsQmgMo3RY3tXRjWN/b3kVa1DlgzhOlGal2pkZtN8yot0OYYuXx6+d0WOCG7hjDdrY8DGtU6Bcm413qGA3nHMfY1r29mj5sOSh3+JGXkP3j760G7m3wZnUdeWZYf+OU1E5P2bHu9Xu7KK68c3tjYaJckiTz00EMNixcvrti0adOO8vLyyNq1a92LFi0atHHjxl0LFy4csG/fPkdTU5OtsbHRft999zU9+OCDx5cvX57/1FNPlZeWloZramrce/fu3e52u6sCgcDW5cuX5//kJz8Z0K9fv3BNTY37sssuax0/fnznCy+80D8YDJJ3331379ixY4MNDQ3CrbfeOqS+vt4OAEuXLj04e/ZsXb/dadOmnXHkyBE7ANTX19uffvrpQ5RSvPfee0WhUIg7dOiQY8GCBc3PPPNMo9X3LZuBfCBim+gPAzgnxfa3AfiH3guEkNsB3A4AgwenF4+ZQSASQJ5gPJCLoghKKWyUB3FEL3hO3qmm1lu6WnC082jK0aVaSKLIWLTMyDnOgUjSGnlEDSwiEXWZmZn2s1hGTk31ZHOgqkkpTwiUIyWq1jWMHEhg5CU2AZADeUNbZ2IgTyN2Y8I1Y2uOQgI13X6mGZqi1uTN5XlZepw32X4WO32NJ1kWu2UikCuqdQkZtGhlXzMeyP1H2de8fpk9bjrkGLlpLFu2rKCsrCy8evXqPQDQ3NzML168OOn2O3bscG3evHmHz+fjq6qqxixYsKAdAKqrq/O2bt26ffTo0aH4fXbu3Ol6++2395WWlkaGDBky3uFwHN+2bduOp556qvSZZ54pffXVVw/dcccdgxYuXHjkkksu8dfW1tovueSSkfv27duut4Y1a9bsAYB169a5b7vttqE33nhj25///Oei6urqvG3btm33eDxSVVXVmHnz5rVfeOGFllzqshnI9W7DdT+BhJCbAEwGME3vdUrpKwBeAYDJkydn9FPcEe5AnonWEu0IU6LxMXcIDnW2eW0rc/IbWTTS0DElUWQ2lpzcR87zqWvk6ijL1IzcfPsZATUYYJT9JNl7VUnLU716tShB4jgW8jRiN8jtZ33sAqiLPaenXE9rCAOYn0cup9YNBQUdr3WrqXVRE4yNIv6mgSNcdtvPMlgjz4pqPdNiN5WR93AgdxWzrycpI0/FnLOFSZMmdT722GOD7rrrroHz5s1rv/TSS/2ptldml3s8nsh5553nXbduXV5xcbE4YcKEDr0gDgDjx4/vGDJkSBgABg8eHJwzZ047AEycOLFzzZo1+QCwfv36gtraWnX2td/v51tbW7ni4mLdC3djY6Nwyy23DPvLX/6yt6SkRASAqVOnesvKykQAuPzyy1tXr17tORED+WEA2kkhFQAa4jcihMwC8BiAaZTS5LMss4CwFEZQDJpi5MoIUwE8OA0jdwtuNZDvbGHllso+lYaO2drUwJTrnMzIeT654lwUYxl5CkMYI+1n6nmoYuqi7Q5PDiUAKm1lWq/1RNU6E7tRhe3rMHI1ta4jeEtfIzd/YWcWrd2ZRy7/DGZmxVGqbm9uaEp0+hmQ7dR6RE2LdwtEy8gzXCPPtEWr0gLW44FcYeStqbfLQcWECROCW7ZsqXnnnXcKH3vssYErV6708jxPFWLR2dkZ88HSm1EOAG63O2kqzeFwqH9gHMfB6XRS5XtRFAnAPsubNm3a4fF40v4xRiIRLFiwYPjDDz/coJ1lnmxtVpBN1fqXAEYSQoYRQuwArgfwvnYDQkgVgJcBXEkpPZrFtejC6sAUABAoH8PIXYILgQg73s6WnSh1laKvK33NTYyEcfxgHVoaDgOEWbRyvJA0kFNRil4kM9B+pmXk6tAUA8FNVBi5/FjtI1cOFrsxJI6HRMAYeVyNvI9NADgCt0tAgy4jT10jlw9rClS1aDWwcVwfd+xzZgKq1M0+8iibz57XeoYZuZTiBswksjaPvOMo+0wpDLmnkEutm0ZdXZ0tPz9fuvvuu1seeOCBI1999ZW7oqIitH79ejcAvPXWWzG/xH/84x9FgUCANDU18Z9//nn+1KlTMzI3durUqd4lS5ao6sjPPvvMlWzbe+65p2LMmDGB22+/PeaO7dNPPy04cuQI7/f7yYcfflg0bdq0lNmFVMgaI6eURggh9wL4GAAP4FVK6XZCyJMANlFK3wfwSwAeAH+T70YOUkqvzNaa4mFlYIrCyG2IrZG7bW50hlkQqj5WjbF9jfWmx6S/5Ro5L6Rg5JKoXtiTe60bbz9LUK0bFIAp/dCiYgjDyap1KunWyEWOxLa2CYLKyN08BxfHweWxo0Gnl1ytkSeNB9S87TmRU+vdFrsZPzGlIpRMvinVusbZTdk3a4ycZlbsRrPByLORWs/rGzUq6inYXABvP2lT672BzZs3ux599NEKjuMgCAJ94YUXDgQCAe7OO+8cumTJkvBZZ50VE6irqqo6Zs6cObKhocG+aNGixqFDh4a/+eYbZ3fX8corrxz63ve+N7iysnKMKIrknHPO8Z1//vkHk2zb/4wzzugaPXp0AQD86Ec/qgeAyZMn+6+77rphdXV1zgULFjRbTasDWTaEoZR+CODDuOd+rPm+hxo29aEEcjPtZ9rUOrFFP/huwY32YDuOdx7HQd9BXDvqWkPHi1GWK6l1wZaCkYtqEJEg6YvdTLSfRRk5Yakdjqi96kb2k9QGNEBVyukxcsKxLVXhGqfWyAGgxM5DSMrI5aOn9Fo3CyoHcgOb6k4/M28IQ6moyWCYCRpxzm7ZbD/LmNhNAKWMkWdMta72kWchtd7TaXWA3Zk6i3KM3AQWLFjgXbBgQU3883V1dd/obT9y5MiuN99884D2ublz5/rmzp3r0z4XCAS26r2mnaqmfa28vDyyYsUKQ6PrKKWb45977rnnSvr27Rt5/fXXdYO/WZzWFq1WR5gCgM1mi6lpuG1udEQ6sOXIFgBAVWmVoeNpAzkhBKIUAZ8itR5bI0/NyM2o1kHVjnCDgTzKyAUwlqSOMdVZs8hxrEau5pZ5lZEDrE5OXDwa2roSGT1NnVrXbXlLA6UH3hQj1wZP9XdvkZGbEbtp5pEDPVAjz1BqXZJ1BJnqI8+aar3jGDNn6Q24inOMPIdu47S2aPWF2I2Xx+YxvI/CyO02e8zzebY8dIQ7UH2sGnbOjjP7nGnoeNqgSUFBqQROECAFQ2xyVFy6j4qimgJMViOPit2MW7RSEDZjm4PJQM7uBtlDfUauDE2hmmI24biYwFhiE9Di5NEZFtEaCKNPXvT9laTUqXUTHjbRNUEEKGewRq7HyK2k1iV1mVYYOdUy8qz2kWfgskA4UPk9ylz7WZZq5EEfGynaG3DlGHm2sHTp0gRxdTbx7LPPlrz44ov9tc+dffbZ/jfeeCOBdd93333NADI2Mee0DuQtXWzSUboxo1qogdyeGMgD4QAO+g5icMFg2HiboeNpWbNE5Au1IABIEsjDkfSM3EpqnUaV5yknr6n7sUAiyklmNsdFMxhFC1GUU+uIBlxBANXcaJTYBWxzsJ9r//GOmEBOJcrmsSQtklMLF3czqvXE9jMrFq2URiDJQdmKRasCnstmal3MjGqdEyBRdpxMWbRmzdkt1JGd6WZG4CwCfJZ9QHI4gXD//fc333///b0yzu60Tq37w0wkaGYCmhrIHbGB3C24EYgEcNB7EBWeCsPHo5oLMv3/7J15eFTl+fe/zzmzZ0/IRlYIZCMkRiQgooKkgrVUBMUFq7ZaRV75oYhV0V/1lbY2fcVWLCBU0Wqx1SKVFi21igiyqOyQEMIaIBtJyDaZ/Zzn/ePMTCbJJJlJJoTA/bkuriQzZ3lmmDPfc+9M+V1UKzcBXt3rHg1heppH7nOyG2+fte6TRe78LpWYYptypWUbvFrkTte6EiJvs8g9X/sQtQotOuWL+mRt++RNLvckBhz+muSMBapFqx9CDtn9vvk1NMUdsmizyPu313pgGsLIbos8wDHyQCe7DaSQ68PJtU70mStayF11372JkXcU8iB1EGQuo8JYgcQQ34XcFSNPyBzlFuXuyse4w8Mih3eLXHDNI/e5/IwpeuZOJvLHIlcaycjc2RXOa2c32Zm17iGcogh0iJFbtCJUIsPJutYO+3c/eIOB+90Qxl1+1us68l40hOGSuxOeyi/3defys/7ttR6YrHWXRR648jPlZ29i5JxztDgkWL19tgfaIjc3Dcy5icuGK9q13mpvhYqpoBZ8c4MDHuVnem27x103AxbJggid7/WoLiG/auqtkLe6hLxri5w7JLdbV2ay13pixhhElcr3oSlcEXL3KFWfhFz56XBKmszRdQ9VSYLEOsfI21nkGqWWfGiEvpNFLvMeJmgxtLkIfMaZtd7LOvK2eeT+NISR3L3WNaKm+43bnb59spsoiLBJXptS9Z1+SHYL3BhT/7LWJc7R7JDwYdUFvFtZh9Nm5T2bGRuB5VnJyuddcgCSFfBzAmLA0EcA1qbA9bgnrkiuaCFvtDYiTBvmV0cdm80GNVQQDe3F39Oq98fCdwm5IIrgcJa2deNa5w67R4tW7xY5AKg0WjhsPTfKk2UZDILTPlVi5NwHa8+1jQNwutbdz7TTNu6sQZKEjjFyEfCMkauVj2JchB4najtb5N0bdb3ttd6HeeRuN69/WesO5+n8uXl0J7u5hqYwFcyy99ntfSaADWHcFnnAp5/1vO33Ta1YcOQMTpqVa2B8WBDmxEdhX7MJ62saoBMYfj0yEXpn5cqAutYBwNIEGCIHZg3EoOeKdq03WZsQqg31ax+bzabMIte1v3v2FO8QTYjPx2sTcpW771f3MfK2ZCSpixg5AKi1WjisPQu5JElgzuEhjCnub+6lqUundbti5HBlrbt6vHZIdnN+6yoWeZtrnQliB4tcec2REXqU17fC4eF29yVG3qsxphB8s+68Dk1xtU313cXNueRMDmR+utZd51d+9GtDGNnRtWfFH5gI2WknBD5rvev/sya7A8+WncNte4/hpNmKeK0av0wbin/kj8D8lFi8lZOK+4dG4YOqC1h9tlZxqwMD61oHqE2rH/Tn7PC1a9eGLV68OM7zsXfeeSeCMTZm69atAZ30FkiuaIu82daMUI1/Qm632qDmIgR9+7fOU8j9KWdrE3IBdpfF1a1F3uaCczBH1xa5Vgu7D0Iuy7JShgW0q+/iXPZwH3vbzxkjZwwCUyxb5q0OzPkaOia7QRTaxciHaJT3MyhUA7vEca7BjFTnFLSeYuTKRj2+1E47cF8bwngZmsK8ZLL3eEanRa7y04XKOtSs93v5marPja8AQYTEXULev1nrnHMcaDEjXqvG4mPn8GltE3JD9PggN839uXIfgzH8LiMJZ8w2vHKqCtykxhPAwAm5ywqnEjSf8TY73OFwQKXqu5zNmTOnCYA7aaGhoUFYvnx5TG5ubkBau/YXV7aQW5t96ofuidViVQamBHftWu+VRS6IcKVCqZw16l251plbyL0PTQEAtcY3IZckSakfh2JlMmfSGlemXXSzn/Jl6kBbiFr0UkfO21nkaLPIRZVSE+8kRqNSHMhByvt6ss7YJuScd9Oe1Zmq57dJ3rcWrR1ru33BJeRqv13X7Vu0qgRVP/ZaD1SMXNXWEEbVvxb56nO1ePF4W8nwU6mxeHpY93XhTw2Lw5aGFvy2xo771GEYMmCudWc+zWC0yD/5P0k4XxJYKzUm24QZy7udquY5O7zjXPHCwsK0qqoqjdVqFebOnVuzaNGiOgBYt25d6C9/+csESZJYZGSkY+fOnWXejr1s2bKo3bt3B7k6rj311FMJTz31VPXvf//7OG/bXypc0ULeYmvB8PDhfu1js1ihhgghqL2Qe7Z59StGLre51l0Z0N1Z5IprXflvs/dgkfsaI3dZ5MxpNbse785udMVrHWAQXBPT3GrrYaE7X4PD3dnNmewmCu7nAEArCIjRqGDWKV/6J2tbcZPTgdazRd4b17oEcHXvW7S6vRX+lZ9JHFD7m9TUIdluUMwjZyJkrnyOA5fspvx03XwZHRIOtJjwenkNRgfrcWdcBCLVKsyI6TnZdGxYED67eiR+uPcYdoZdhekk5IOSjnPF165dezo2NlYyGo0sPz8/+7777muQZZk9/vjjqVu2bCnNzMy01dTU+PQB3759u76iokJzzz33NJGQX8I025oRovbdegYUi1zNRYgdhNxzFKo/x3R1XxNEwR0jV2m6s8jbLCaJSV0KuVqr890i54I75u1q1NpTCZrLvWmDq/wMcDU+dR5Iseydtex2UXTG312F1GKnc8RrNWgQOCKDNDjhkbku855KmPxvCMMh92KMaR/ryLkDDjA/E9084/EeQ1P6rfxM7ocWrQGyyN3lkUpOxpyDJ/Ftk+Lx/CA3CVeF+mccpgcpIYTT+qGAxvdwWEBxC/mFgTl/X+jBcr4YdJwrXlRUFPvpp5+GA0B1dbW6uLhYV1NToyooKGhxbRcbG9vjxSNJEp588snk999//1T/rT5wXLHJbjKX0WJr8TvZzWyxQAt1J4u8XYzcjy+FNou8zcrqXsjbYuR2SF26WFU+Jru1qyMHAO4UjR6E3OG8AbExp0XOeYcYu3JEl/vcIYrgAoO7/qqDRQ4AcVoVqq12DB8S1C5zXens1k0dOeuta93fZDfPOnL/XevgvbXI299IqJgKdrnn0sJeETCLXOi3GLlNlrH4WIVbxJ9MifVbxAEgWCUijEmo0sYAfgxOCiiU7NYnPOeKb9y4MeTrr78O2b17d+nRo0dLsrKyzGazWWjL3/GdxsZG8dixY7qbbropIyEhYfSBAweC7rjjjhGXasLbFSvkRrsRHNzvZDerzQIt7yzknq713iW7qdwZ0L7HyLt2rSsxcovX5zxR6siFNiF3JxR1L1CutdmcrnVZRrtkN5fmcRTRq9UAACAASURBVLvTInfOI3fPFu8QIweAWI0aNTY7hkcH4WRHIe/qk8o9PAB+ITktch829TI0pVeudXeym38Wr+Aemaq8l1pRC6vU801ar5AdgWvR6qojD3CM/O8w492KOtwVF4mqSXl4Znjv+6RHMQfq1WEDl+wmqgBtGAl5AGhsbBTDwsKkkJAQed++fboDBw4EAcDkyZNbv/3225DS0lINAPjiWo+KipIaGhoOVFRUHKqoqDiUl5fXum7duuN9GTXan1yxrvV6s9IS16/mLbIMi90GDVQQOtSRC0yASlCBc+5zn3UAkJ2jPAVRdLvW1d1Y5J7lZ90lu6m0Wth9iJE7HA4AqrZhHvDRIrd7CjnrECP3yE53NqVxiAJksc0iV8aYdrTI1bhgl5A8JBh1xnNoMtsRpld3HyPnbb3i/YFzyQ+LvHNDGPSisxvnEhzwt4YcYEzZXubKe6lVaWFx9HyT1isCWkeurFtUBS5GzgH8W7RicmQIXs9K7vMxo2BDvTp84FzrgFJLbhqErvVLjFmzZjWtXr06Oj09PTstLc2Sl5fXCgBDhw51LFu27PTtt98+QpZlREVF2Xfs2HFsoNcbSK5YIXcNTInW+z6H2Gq1goNDp9Z6FRYVU4Ez/xRFdpZgCYLgFuXuhFxxrSv/bY4eYuS+uNYdDgc4RLcQuuKxPfVpdzitU86UOeaya2gK72CRO1+DXVApMXL3HM/OMfJYrbOWPFyJXZ6sNSI/OQKy3E2M3PX6/e7spsTIfeu13vXQFO6HK0Dp7Mb8zlp3CTl3hlF0oq4fLfIAtmjth85udaECahnHD6N9H3TUHUO4GafUEYBmAD2mhkiyyP2gq9nher2eb9261atAz549u3n27Nmd5ph3pKupZJ5zyS9FrljXeqNVqdv0Z2CKxaJYQXqt9zpbgQl+TrXyiJGrVJCdX9RqjdL+1dXX3RNP17rUXfmZjzFyxSJvc62LTgV2eDl3u3U7XONPBQiMOduoinC71p3C6kp2cwiCEn53u9bFThZ5orN/vSZY+elyr3OZdy0GLovc72Q3p0Xey2Q35qVJTI/ndLrWNX5a5IJT+GUP17rEpf6Jk0s2wA+PUpcIKo8YeWC+ZgTGcDJWWduNEf4lqXZFlGxGvSY8MLXzvUUfQUJO9Ikr1iJvsio1//6MMDWblbaYOr3e6/OMMXcSlK+4LF9BECE5v6h1QYp14E3IIbVZTFxA9y1a7TZwWVbc2F3gcDgALsI1KVvkSr/1nkrXXBa5zBgEQSn/YqKqTew6xMhtogiZMXBXExhRBLe17xeepFME3KYToBEFlNW0OF+y3LUYOG9+etPZjfdhHnmba93/8jN/Y+RKPJ6BO13rOqfoWB1WqDUBEF1PJBsganvericEwaOzW+As8pNxagyVBSTrA7BGAFGSERfUic4+fwOEPgJoKB+os1+R+DM7fDBwxQu5Pxa5S8gNhi6EHP4LucWolFlpg4IgOS0sfZASr7PZOg/G4Pa28jNZ4F1b5Drly95us0Kj875ewOla52JbMrksAAIg9WCRu2LkHAKYoJSVCao2IXdbulKbRQ7G3LlhTBA6JbsN1anBAFTaHciIC0FxZbPyOh1y12LgUG44/C2r5lwC5ABY5H651h1wAND0wuIVBDW48/OhdQqtRbIgGAGO7Uo2wI+BLt0eCspxAtUQxibLKI9Ro9AeuOEiQxzNkFQiGh0SItUD9HWojxic5WeDmIGcHd4fXNGudZWggl7Vtch1xCXk+mDvGa4yl/2KmQKAqbkRgihCFxTsLiXrTshlqwXM2RBGFnmX2eVavWLVW03ddxZUhFxw516LsiKYDi/n9kTysMgZEyBx1xz09slnLte6TRAhC2hvkXdYu1YQEKdV46zFhpyEUByqaALnHLLEuxYDSRE3bvfTt96brHXPuwXWi2Q32Q4HZ1AL/gslY+p2rnUA/RMnl2yAKjBCLgdYyEtbLbCrGEYFUMij7MoNfb2tnzrl+YI+UmnR6ss0GILwwhUr5BcsFxCuDfervtBscgp5iPfEGJnLfsctzc1N0IeEggmC0yJnUGs0UKvV3mPkVhvgHHPKBAYH9/4FpAtRYoiWlhavz7tQXOsqt0Uu+CrkkssiZ1CJAuwOGYLY2SLnzli63VVH7hEj51LntSfpNE4hD0OT2Y5zDWZIjm5i5E4xk23+meTcVUfe63nkYttxfESWrbBz+HXz6D4fU3l1rQcUzgNqkduhvE6VJjBfM2ctymcyNoCaG2WpAwDU2QdSyCMAcMBC/daJ3nHFCvnZlrNIDvGvfMXYoIhiUKT32nOJS7BJNt/EwYnNbIbGGXOXZDtUggqMMajVau+udYsFTK1YZCqVussyJH2wIuRmH4ScyaI71i7KykfCYe9eyF3Z9jIEqNUMVocEQaUCc1qo7lC5s/zMzgRAYOBuH77YbmiKi2SdBqfNVuQMVXIXDlc0Qe4uRu5Q1skl7rb+fYL70dnN69AU/2PksmyDVW7fc8BXGFO5s9Y9XesBxendCEiyGwAHlBsOlTpAQu6cJx7tCNzX1hBLDYABtsgNUcpPKkEjeskVK+T15nq/B6a01DdCy1XQxXR2rbuscQ4Oo93oZW/v2K0WqJxZ8JJsh+jMaNZoNN5d6zYrmEYPphGgVXXdGETnFHKLsbnb87tc6674K3NazD1Z5A6naHLGoNIIsDpkiCq10qSVc486cmeMXFSBiR4WuSC0a7DiYoRBi0qrHUnRBqgEhkMVTZAk3nUtsuQScgbuQ5a+Cw6Hs47ch4291ZF7TYDrHlm2wsoZDH40DHIhCGp3HblOdFrkgXatu44XiGQ3AA5oIQjd3IT5yTmrDVo7h97vUsOuiTJVAwDqB9IiD3IJ+WUTsiUuMlekkHPOcd50HtEG32vIAaC5qRkGroUqsrNr1FO8G/1wkdmtVqidQu7gDojO+HdXQs4tLiEXu60ndrnWe7LI7XY7mNwm5G6LvIesdclpTXMwqDQqp5C7koUkdw6Y7HwNDpVKscg968i9WOQjDMp7ccbmQHpsCA6ea+o+2c35+rnM3OfyBc4l3y1ywNmNxMMi70VDGEmywMaBoF4IOWPqtjpyp2vd7DD7fZxucVvkgXGtO7gOajFwPeHPWmwIN8v+NNPrkXCnkDfa+6l3vS+4LHJKeOtXvM0aDxQFBQUZA9m+9YrMWm+2NcPkMCEhOMGv/YytRhighRjW2WJptrZZvvWWeiSFJvl0TLvVAq1BsfAlDyHX6/Xu5DpPuNUCptYpQq7Sdfllrg9W3P8WY/dCbrPZAFnl/hJ3xcht5u47Ebpc65wx6LUqGI1WiCo1FKmR3ENVuEURWqtaDSZ5dHbrIkaeHazcJB1pNeOq5HD8a38lfiCFdG3VuZLdZIDbfMtPUDwGNnBJ7btB3VHIe5G1bnaYwMGgV/nfDlQQVG6L3FVp4c8No084vRuBSnZzcC1UQuAs3XMWGyLM3LdufD6iM9dBzx244E9YJtAYyCK/GHScNe7CbrdDrQ5wGedF5ooU8upW5S48xhDj135GiwlDVRGKi7gDzbY2Ia9qrcJVuMqnY9otFgRHKBeyQ7ZBhBqccxgMBtTV1XXaXrbawNQ6CBqh257bKo0GKq0W5pbuXetWqxWMC4Ck3BCouEvIu7f2rE43toapodeIsNpliDrnx4nLsFntAHTgzn7vFo0WsHq0RBUFrzHyFL0GeoGhxGjGVUnh+ODbM6iFA4ldudYdbRY596ElLQBwrgiWLKn9sMhFd826gv8x8gZnyWOEzr+QDgAIghayrLy+KL3yeXF1JwwYruS5gCW7aSEG2CIfZZHBxQAJuWQH7CZEMvulYZEPMiH/3+3/m3S84XhArdARESNMS65b0uVUtaNHj2qmTZs2sqCgwLh3797grKws089+9rO6l19+OaG+vl717rvvnszOzrbOmTMn9cyZM1q9Xi+vXr26fNy4cWbPWeOzZs1KjYiIcBw6dMiQm5trevXVVysfeuih5IMHDxoAYPHixZX33Xdf41133ZV68ODBIMYYnzNnTt2LL754vrv1S5KEO++8MzUxMdG2bNmyykC+N91xRQp5hbECABAX5LuXRZZlmBxmBAclen3eVZcOtN0o+ILDZnXXfNvsFmgELSApQm4ydbaKucUCBGvdFrnR1nU8Pig8AsYLXX85cM5htVqh4iIEu3IuQdBAVKlg7cEid3e5E1TQqkRYHTLUapcASGhpakVUfAhkp0Vu02gAmYHbFOFjggjuJUYuMoarQg34+oIRP0kZCgAod9hRoO3io+pyrUusU4OZrpBlZ1xdVvluUGsMgK3tPWlr0eq7ANQ5u3fF+vG5cyEIesjO5LYQTQhUTNUPQu5MngtQlzOrHAStKjDd55rsDjQ7ZERaOORASYdV8VaFMxkNAxkjVxuU93yQCflAcfbsWd2HH354csyYMeW5ublZa9eujdq9e3fpBx98EP7rX/86PiEhwZaXl2f64osvTvzzn/8MeeCBB4aVlpZ2as964sQJ3fbt28tUKhUee+yxhNDQUKmsrKwEAGpra8WdO3caqqqq1MeOHSsGgLq6um7rHu12O5sxY8aw7Oxsc1FRke8iEACuSCE/2nAUDAwjw0f6vI/ZbIYMjuAg7/FNl0VuUBlQ1Vrl83EdNpu7JavNZoZBCAa3SW4hl2UZgkdnNtlqgRiqdcfI66TOVruL8Nh4NNZ0vRa73a4MeZFVUFmcNyKiGhqdHjYvNxGe2JwWeZBKA61KgNUhQXQ21OBcQkujs72q0yK3qjXgXAS3OhQrWCUCDu8iOCs2EouOnkWdliFEq8JZuwNqbRfXUDvXuq9C7hJ/PyxyTTBga6vJd08/86NCoc6ifFH76wkCAFHUQ5KdN1tMQKQuEvWWAH/xW503hdrAtD+1SMHQ6QKTWX/Oqvw/R1oArguQRe78zEeIQGMXn8WLAmOKVT7IhLw7y7k/SUhIsBYUFJgBID093XzTTTc1C4KAq6++2vSrX/1qaEVFhfbjjz8+DgA//vGPWx555BFVfX19py+QmTNnNqiceT1bt24N/dvf/nbS9Vx0dLQEwHr27FntAw88kDR9+vSm22+/vVv35rx581JmzJhx4WKLOHCFJrsdvXAUKaEpfpUBNTYq8cjQEO+lZy6LPCE4AeXNvrdbdNhtEJ3xGavNBI2ghWyTERoaCs45jMb2Frfc3AKoFCHvaQpWRPxQNFZXdSlWbve4LEC0XADnMpgmCGqtFjZLD651p0U+RKN3CrnsEWeS0Nqi7C+7Y+QaQCMCXGneoljk3t3SM2MjEK4S8U5FPUYNDUU1k7oWcotybUl2oRcWuRqy5I+Qe+YbuOaR+2GRO2Pa/lZLAE4h9yg3i9RH4kKgk6NceR4BmgRmlQ3QqQKTWe8qPYuwct//z3rC+f6Fq4SBtcgBIGgI0FIzsGsYJGg0mrapy4IAnU65sxNFEZIkMW/fd4x1nmYVHBzs/gLyNrM8OjpaOnz4cMnkyZNbVqxYEXP33Xendreua665xrht27ZQk8kUmJ7EfnBFCnnphVJkRGb4tc/5s8pN1pAY71/CLiFPj0zH0Qu+DcqRJQl2i6XNtW4xQSPowG0SoqKUuFl9ffu7dEd9PZhogBiiRrg2HA3WroctRMQNhdXUClOT96Qos9kMcAY1RGhsRjBmg6ALh1qt6THZzeYU6DiDHjq1CJNNamtgwy0wtSiiIzc3gavVsKnV7hg6tzicMXLvImgQBdwbH4XP6hoRHaZDo8C7FnKnFSNZBUhG38r+2ixyFawmH7/AtcFtFis8Xeu+x8gvWFsgwr/RuS5EQQ9Zbru5itRFotZc6/dxusUWOIuccw6TIxR6sftkS1854/y8Rdm4X30ausWohDsjtTpcGMgYOQBEpAINpwZ2DZcJ48ePb3nnnXeiAGDjxo0hERERjsjIyG4v1EmTJjW/9tprbldZbW2tWFVVpZIkCQ8++GDjr371q4pDhw51a/k9+uijdTfffHPTj370ozSvczL6kStOyJttzagwViAzMtOv/WpOVYJxhthM7zHy6tZqhGvDkR2ZjXpLPY419DzutrmuFrIkITw2HnabFQ6HDRpRD26VMGSIcsNQVdXmGueSBKmpBYAGYqgW0fpotNhaurTK40cqr/FM8UHv529uhigpWeI66wUwjQymC4dGpe7Rtd7coriZUyNCER2ihc0h49T2LwEADvMuNDqb5zgaGyGHhQGMQWtwtpa1SBAMBsitrV1+KT+YEAXOgZNwwCIA9q6SSk114EyEbGeQvCQHesNud+UzBMFi8vGC0wS1c62jF671eqsJYWo1BOb/ZSeIekhSm5CnhqaiuL7Y3So3ILgakuj6PiLU0mqHXdYiVAyMl/G02YYQUUAoBDhsAao/MyoWcLjOgEaHI3A3CL0hcrgyOMVLJQfhH0VFRZV79+41pKenZz///PMJ7777bo93SK+88kpVY2OjOHLkyFEZGRnZn332Wcjp06fVEydOzMjMzMz+2c9+Nuzll18+19NxXnrppZq8vDzTzJkzh3kbQ91f9GuMnDE2DcDrAEQAb3HOf9vheS2A9wCMgTID9i7O+en+XNM/jv0DAPwW8oqKCoQjCLpE76718uZyJAQnoCC+AADw6clP8cSYJ7o9ZmO1ktQYEae4wAEgWBUG+3kTQpNiERUVheLiYlx77bVgjMFx/jwEXSQAQAzTul20teZaJIV0LneLTRsBfUgoSr/Zgqzrbuz0fP35RuhN8QCAoNYqCMEqCIYoqAUB1h5c66YWE9QQkJsahaow5WYgfuI0mD57G0wVjfNnG8A5h1RbB3u4YoHqnHPGpQYLVNHR4DYb5KYmiOGdB9ck67W4JToM/66phgZAY1dpJi3VzqxfBvv5bhNK3Vhtyhe4yIbAavRRyIOigfpd7j8F54xwWfYtBsw5x5FWI4YHRfp2vg6o1WGw2y+AcwmMie4eCHvP78XYuLG9OmYnWpw3jSHxfT5UQ5Vy0xPGAjNM6rjJgmF6LQwhEswtvvcL6JbmSoAJiA0Og1RjRo3NgTjtAJUhRQ4HZLtilQ/xPXfnSiMjI8PmSj4DgI8//vi0t+e+/PLLEx339Zw17rkfAISFhcnr168/3XGfkpKSI76sy3Ne+e9///uLlq3uot8scqZkAy0HcAuAbAD3MMayO2z2EIAGzvkIAL8HUNRf65G5jD/u+yNe3f0qAKAgrsDnfS1GMyqMNRgWlgDmpZ75u6rvsPf8XlwVcxUyIzMRpg3D24ffxldnvkKduQ4l9SUw2U0403wGzbZmmB1m1JpqUXdWiaWHx8WjoVK52Qs1RMN6THGXT5gwARUVFdjwj3+Ac46mz76BJn0aAECTGuq+GXn70NtosHR2sQuCiGumz8TJvd/juw3r3I+bmm3Y8vcy7F7bBL0pAZEXDiEsVIZ+1FAIIXGItcWjtb4BtqoqWE+cwIUPPoC9RhE/7pBhOduM8NM7IEJG1lWxSIlSPE4V3HmTo9XBfAF4belS7LBYcCQqBgxAXFIYwICWr8+BaRSrz17VdTJe0chExDq/WJdU18DcsVxNloGz34LF50KMHgLL4WIvR+lMS/NhAIDBkIjas0bfLLGYbKDprHvcpEoVClEMhsnsm1CtOfQWGhwyro3x7wbShV6XBFm2wWZTQgmzM2YDAP53+/+6h+30Gs4BYy1wZicQltyrOvLz5c04X96MlgsWnC9vxrHvlZuqWMtWRTB7gUPmaHVIKDdb8W1TKwrCg2AI06C5zgy7TYKl1Q6buRevXZYBuwWo3AdEpCLdOQTpiNEMaaCs8tTrlZ973wPsZqVCwtKs/LO2KGEdWytZ7IRX+tMiLwBwnHN+EgAYY38DcBsAzzKA2wC85Px9HYA/MsYY7wcf15JdS7CuTBGz393wO2j8qJVtPlKDDMdQ5FzrvTb8oc8fgshE3DHyDgDAk1c/iZd2voT/+ep/ujxm7pBc3Px1BGKGpSEoIhIhUdHILZyG2Ogs2E4Ycebnj0H/zdcYnZUJYe8+HH3p/8Iw+VdQJ0+AfvQQqIfokckzkRqaio+PfYzRQ0ZjVvqsTue55ke3o6GqEtEpw9yPVRxtQPGX51CqlpBdvhH5DXsxbO1foIpLRMvmExiuvx5H60qxf9pUhDizhe0VFYh9+mnIrXacWrYDgrNuSx8XjFGcY3RCGDYeKsdPAJh5FYaox0F9Zic0jY34y+Qf4QdRoQgN0YJPTkLL5rNgBgOYTgfbmbPQZWV5fY8qvqnG/f9twgfpwSgTZHxZ34wfxXhY71teAeqPAxMXInTqaTT85S9oXP8PhM+8vcv3vbJqHU6Xr0Bk5PUYMno4vvnoGL756Biuvyu9y30AABm3AF/9Blh2FfDMaTBdGMLDx6Cq6iMkJT6AoKDh3e5+XdxVODwkFtNH3Nn9ebpAq1XCd1ZrDbTaGIRqQrHg6gXYXbMbDtnh94zzdliagFdHKL9PfLJXh/j87WI0nW/vxUkZJkNvbgZ+Pwp4shgIHerz8c5b7cjd0f7GbGZsBMRkjrJva7D6f74GAGSOj8OUBzvaBz3wxtVt8eiCRzE6RA+dwHDPwZPQMIYzk/L8O14giBwGZNwK7Fim/OuKW18Dxj508dZFtOMnP/lJ8vfff98uG/Sxxx6rGeiRqF4z/AJyYMbuADCNc/6w8++fABjHOX/cY5vDzm3OOf8+4dymrsOxHgHwCAAkJyePKS/3PSvcRYOlATd8eAN+OuqnWHjNQr/3t9e0Qh3rvSPXV2e+QmJIIkZGtLnE9p/fj/dK3sN/y//baftofTSeLXgW14ZcDXNLM2JS20RAtklgAkPTv/4J25lyMMYgNTWDqUSw0OEImjABhrxEMEFJjGyyNmH/+f0YGTESQ4N9+6KUZY5Tpxpx0mpDWpgaiY4WaFJSAADW8ko0bNwBm/kcDKFBUDlj9WG3/VjpxmaXYDnWiLUff4CI7JGYNUvxEDRb7Pju5AWU7dyKmbfehCGR4TB99SVOqjQwj7kG48OC3Fmh1vJmcIcMTYIOgq7rmuX6SiOqTzRhxJgYlHMJ6UEdtm2qAEo3AgWPQLbb0fD+XxA283aoIrpOJrPbG1FZ+RESE++DwPQo+74GYTF6xA3zIS5cfRg4/Q0wfi4AwGarQ1XVeiQn/9yvKXq9QZJMcDhaodFEeXSV855t6zecA9/9SRGTtCmA4L+jrup4I0zNNpiNdhhCNDAbbRiWFw1D4z7gfDFwzc/8Op5ZkrHy7HnoBAFagWGkQYcbIkMgyxxl31WjtdEKlVpE5NAgJGX5Ga747k+KlWuIBEbPBjQGfN/Uim0NLRDBsCA11r/jBQqHDTjyT6DxjFKS5ro54xxKuQcH0m4C4nN7dXjG2B7O+TV9WeKBAwdO5+Xl+ZaMQgSUAwcODMnLy0v19lx/CvmdAKZ2EPICzvl8j22Kndt4CnkB57zLu5trrrmG7969u1/WTBAEcblCQj646U7I+zNr/RwAzwysRAAdg2XubRhjKgBhAGhyAEEQBEH4SH8K+fcARjLGhjHGNADuBvDPDtv8E8ADzt/vALC5P+LjBEEQBHG50m/JbpxzB2PscQD/gVJ+toZzXswYexnAbs75PwG8DeB9xthxKJb43f21HoIgCIK4HOnXhjCc88845+mc8zTO+a+dj/3SKeLgnFs453dyzkdwzgtcGe4EQRAE4S9r1qyJGD58+Khx48Z1WYYye/bslIyMjOz09PTsadOmDW9qaupSBysrK1W5ubmZWVlZ2Zs2bQqeP39+QlxcXK7BYMj33M5sNrNbb711eHJyck5ubm7m0aNHNYAyrU2n012dmZmZnZmZmX3vvfcmB+7VtnHFdXYjCIIgLk/eeeedIa+//vqZb7/9tqyrbd58882zR48eLSkrKytJTEy0FRUVdTnFaOPGjSEjRoywHDlypGTatGnGGTNmNH777bedmsS8/vrrQ8LCwhxnzpw5/Pjjj9csXLjQ3QI0KSnJWlpaWlJaWlrywQcfBKZDUgeuyOlnBEEQRN+oXPx8kvXYsYDOI9eOHGka+ptfdzlV7YUXXojV6XT8hRdeOP/QQw8lFRcX63ft2lW2YcOGkNtvvz1dp9PJ8+fPT9m4cWPj8uXLz82bNy9xy5YtoQDwwAMP1D3//PPnXX3XZVmG2WwWuirf3LFjh/7FF19MtFgsQmZmZvbu3buPTJkypdXbths3bgx/6aWXKgHgpz/9acMzzzyTLHcxFAoA3nrrrYhdu3YFvfXWW+eWLFkSs2rVqthz584dKi4u1t5///2pe/bs8W1ghxOyyAmCIIhBweTJk43bt28PBoD9+/cbWltbRavVyrZu3RpcVFRUnpOTY3rvvfdOrlq16tzSpUujy8vLtcXFxSVlZWUlDz/8sLus+Y477kiNjo7OO378uO7ZZ5/12tt5woQJ5ueee65y+vTpDaWlpSXBwcFdJmLX1NRohg0bZgMAtVqN4OBgqaamRgUA586d02RlZWWPHTs2Y9OmTcEAcPPNN7fs2rUrBAC2b98eHB4e7jh16pR68+bNwePHj/dt+pMHZJETBEEQftOd5dxfTJw40fTAAw8ENTQ0CFqtlufm5hq3bdtm2LlzZ8gbb7xx5u9//3uUa9vNmzeHzp07t9Y1Xjk2NtY9xWTdunWnHQ4HHnzwweQ1a9ZE9LUzW1ejU5OTk+2nTp06GBcXJ23bts1w5513jigpKTmcnJzsMJlMQkNDg1BZWam588476z///POQb775JnjmzJnex1V2w6AT8j179tQxxvxv7aYQBqCpx636RiDP0ddj9WZ/f/bxdVtfthsC4EpqNHExPou+QNdEYPcJ5DUBBPa6SAnQcQYMrVbLExMTrcuXLx9SUFBgzMvLM3/xxRch5eXl2vz8/HYTjJxdD7u0olUqFe65554Lr776alxfhTwuLs526tQpTVpamt1ut8NoNIoxMTGSIAjQw5NEVAAAIABJREFU6/USAFx//fWm5ORk6+HDh3U33HCDacyYMa3Lly8fkpaWZpk8ebJx9erVQ/bs2RO8YsWKHqesdXotfVn8QMA5j+7tvoyx1ZzzRwK5nv48R1+P1Zv9/dnH12192Y4xtruvXacGExfjs3iprIOuiT5td0VdF74wYcIE4/Lly2NXrlx5esyYMebFixcn5uTkmIQOrYULCwub33zzzehbb721Ra1Wo6amRoyOjpZKSkq0OTk5VlmWsWHDhvCRI0f6NsKwG2699dbGNWvWRBUWFra+8847Eddee22LIAiorKxUxcTEOFQqFUpKSjSnT5/WZmRkWAHg+uuvb3nllVeGPv3001UTJkwwPfjggyE6nU6Oiorye/7plRYj/9cgO0dfj9Wb/f3Zx9dtL8b7Pti4VN4TuiYCuw9dE/3MjTfe2FJbW6u+6aabWpOSkhxarZZfd911neLKTz75ZG1iYqItMzNzVEZGRvbbb78dyTnH/fffPyw9PT07IyNjVHV1tfq3v/2tz+P55s6dmxgbG5trsViE2NjY3IULFw4FgAULFtQ1NDSokpOTc9544424V1999RwAfP7558Gu899xxx1pf/jDH8pdLv4pU6YYq6urNYWFhS0qlQrx8fG2goICv+PjQD/2WicIfyDLgyA6c6ldF9RrfeAYqF7rBOEPqwd6AQRxCULXBdEjgy5GTlyecM7pC4sgOkDXxcXhmWeeiduwYUO7ebi33XbbhaKiouqBWpM/kGudIAiC8AlyrQ8c5FonCIIgiMsUEnKCIAiCGMSQkBOXLIyxIMbYHsbYjwZ6LQQx0DDGJjHGtjHG3mSMTRro9RCXDiTkxEWDMbaGMXaeMXa4w+PTGGNHGWPHGWPPejz1DICPLu4qCeLi4ec1wQEYAegA+N39i7h8ISEnLibvApjm+QBjTASwHMAtALIB3MMYy2aMFQIoAVBzsRdJEBeRd+HjNQFgG+f8Fig3uP/3Iq/zkiE/Pz+zv469du3asMWLF8cBwEsvvRSblpY2Kj09Pfvaa69NLysr0/TXefsKCTlx0eCcbwVwocPDBQCOc85Pcs5tAP4G4DYAkwGMB3AvgJ8zxuizSlx2+HNNcM5dczEbAGgv4jIvKfbt21fa8TGHwxGQY8+ZM6fpN7/5TTUAjBkzxrR///4jZWVlJTNmzGh48sknE3vaf6CgOnJioEkA4DlF6RyAcZzzxwGAMfYggDqPLzGCuNzxek0wxmYCmAogHMAfB2Jhnnz53pGkCxXGgM4jj0wINk25P6vbqWoGgyHfZDLt27hxY8iSJUviY2Ji7CUlJYYTJ04UFxYWplVVVWmsVqswd+7cmkWLFtUBwLp160J/+ctfJkiSxCIjIx07d+4s83bsZcuWRe3evTvovffeOzN9+vQW1+MTJ040fvjhh1He9rkUICEnBhrm5TF3cwPO+bsXbykEcUng9ZrgnK8HsP5iL+ZS5uDBg0H79u0rzszMtAHA2rVrT8fGxkpGo5Hl5+dn33fffQ2yLLPHH388dcuWLaWZmZm2mpoa0d/zrFq1KrqwsPBSmFboFRJyYqA5ByDJ4+9EAD4PMSCIy5BBcU30ZDlfDHJzc1tdIg4ARUVFsZ9++mk4AFRXV6uLi4t1NTU1qoKCghbXdp5zyX1hxYoVkQcOHDCsWrXqaGBXHzhIyImB5nsAIxljwwBUALgbSlycIK5U6JrwEYPB4A65bdy4MeTrr78O2b17d2lISIhcUFCQYTabBedc8l4d/5NPPgl59dVX47dt23ZUr9dfsm1QKYGIuGgwxv4KYCeADMbYOcbYQ5xzB4DHAfwHwBEAH3HOiwdynQRxsaBrInA0NjaKYWFhUkhIiLxv3z7dgQMHggBg8uTJrd9++21IaWmpBgB8da1v375dP3/+/JQNGzYcT0hICEw2XT9BFjlx0eCc39PF458B+OwiL4cgBhy6JgLHrFmzmlavXh2dnp6enZaWZsnLy2sFgKFDhzqWLVt2+vbbbx8hyzKioqLsO3bsONbT8Z5++ukkk8kk3nnnnWnO49g2b958vL9fR2+goSkEQRCET9DQlIGDhqYQBEEQxGUKudYJgiCIK4rXX389auXKlbGej40dO9b4/vvvnxmoNfUFcq0TBEEQPkGu9YGDXOsEQRAEcZlCQk4QBEEQgxgScoIgCIIYxJCQEwRBEMQghoScIC4TGGNvMMb2MsbGDvRaCGIw0Z8zzi8GVH5GEJcBjLEgADEAHgXwIyj9ugmi3/jPyj8k1Z0tD+gY0yFJKaapjz1x0YaxOBwOqFQqrzPOBxNkkRODDsbY7xljT3j8/R/G2Fsefy9ljC0M8DmNAT5eOGNsnsffqYyxwz7uq2eMfc0Yc/eM5py3AogHsAXAMsaYhjG2lTFGN+vEZUNzc7MwadKkERkZGdkjR44c9ac//SkiISFhdFVVlQoAtm7daigoKMgAgIULFw6dMWPGsPHjx6enpKTkLF26dAigDFcZN25c+vTp04dlZGSMApQZ567nxo4dm/HDH/5weGpqas68efMSVq5cGTl69Ois9PT07OLiYi0AVFZWqqZOnZqWk5OTlZOTk/X5558HeVuvJElISEgYXVdX575Wk5OTc86ePRvQ65IucmIwsgPAnQD+wBgTAAwBEOrx/AQAT3jb8RIiHMA8ACt6se/PAKznnLvHMTLGogAYALQAkDjnNsbYlwDuArA2AOsliHZcTMvZxfr160Pj4uLsW7ZsOQ4A9fX14ksvvdTl9keOHNHv2bPnSEtLi5ifn589a9asJqDzHHNPSktL9evWrTsZExPjSElJGa3VausOHTp0ZMmSJTFLly6NWbNmzdlHH300aeHChTVTp041Hjt2TDN16tSRJ0+e7DTYRhRF3HzzzY1r164NX7BgQf3mzZuDEhMTbUlJSQEdwkIWOTEY2Q5FrAFgFIDDAFoYYxGMMS2ALAD7GGOfMMb2MMaKGWOPuHZmjBV1sIZfYow9xRi7jzH2HWNsP2NslafF67Gt122cFvURxtifnOf7nDGmdz73v4yxUsbYfxljf2WMLQLwWwBpzuP8P+fhRW/7e2EOgA0dHnsBwKsAigFkOx/7xLktQVwWXH311eZt27aFPvbYYwmbNm0KjoqK6na2+C233NIYHBzM4+PjHddee23ztm3bgoDOc8w9GT16dGtKSopdr9fz5ORk6y233NIEAHl5eeYzZ85oAGD79u2hCxYsSM7MzMyePn36CKPRKDY0NHjV03vvvffCunXrIgFg7dq1kbNmzbrQl/fAGyTkxKCDc14JwMEYS4Yi6DsBfAvgWgDXADjIObcB+BnnfIzzsf9xWq0A8DcolqqL2QB2Ox+7jnN+FQAJHUSQMZbVwzYjASznnI8C0AhgFmPsGgCzAOQDmOlcCwA8C+AE5/wqzvnTXe3f8bUzxjQAhnPOT3s8lup8Hz6EMvZylPOpwwAo8Y24bMjNzbXu3bu3ZPTo0ebnn38+YdGiRfGiKHJZVsaSm83mdprWcQ6562/POeYd0Wq17nangiBAp9Nx1++SJDEA4Jxj9+7dR0pLS0tKS0tLzp8/fzAiIsLrMadMmdJaXl6uraysVG3atCl8zpw5Db168d1AQk4MVlxWuUvId3r8vcO5zf8wxg4A2AUgCYpQgnO+D0AMY2woYywPQAOA0QDGAPieMbYfwBQAwzucc0oP25zinO93/r4HQCqAiQA2cM7NnPMWAP/q5jV5278jQ6CIvCe/AvAyV/otu4Xc6Xq3McZCujknQQwaTp8+rQ4JCZHnzZt34YknnqjZv3+/ITEx0bZ9+3YDAHz00UcRntv/+9//DjeZTKy6ulrctWtXyMSJE1sDsY6JEyc2FxUVxbj+3rFjR1feMwiCgFtuuaVx3rx5SSNGjDDHxcV160XoDRQjJwYrO6CI9mgoludZAE8BaAawhjE2CUAhgGs55ybG2BYAOo/91wG4A0AcFAudAfgz5/y5bs7Z0zZWj98lAHrnPr7ibf+OmOHxOhhjV0Gx9CcyxpY7nzvksb0WgMWPNRDEJcuePXv0zz33XKIgCFCpVHzFihXlJpNJmDt3bmpRUZF9zJgx7YQ6Pz+/dcqUKSMrKys1ixYtqkpNTbUfPnxY19XxfWX16tVnH3744eT09PRsSZLYuHHjWiZMmNDlwJU5c+ZcuPHGG7OWLVt2uq/n9gYNTSEGJU4BWw/gJOe80PnYHgAJAHIAXAfgYc75dMZYJoD9AKZxzrc4tx0F4E9QLNwbAURAiTtfxzk/zxiLBBDCOS93bm8EUNDVNk739kbOeY5z+0UAggF8CmAVlJsOFRRL+08A3gGwl3Oe4tze6/6c85e8vPazAEZyzi2Msf8A+B3n/Evnc7EA9nHOhzpDCd9wzrP69GYThJPBNDRl4cKFQ4ODg6WXX365ZqDXEghoaApxOXIIigjv6vBYE+e8DsAmACrG2EEASzpsB855MYAQABWc8yrOeQmUhLHPnfv8F0o5l+c+PW7TEc759wD+CeAAlBuP3c411gPYzhg77JHs5iufQ7HAbwIQ5BJx5/lqAAQ5bzImA/jMz2MTBDHIIIucIPoZxlgw59zIGDMA2ArgEc753j4cLx/AQs75T3rYbj2A5zjnR3t7LoLwZDBZ5Beb/p5x3p1FTjFyguh/VjPGsqHEr//cFxEHlGQ9xthXjDHRs5bcE2d2+yck4gRxcViwYEH9ggUL6gfi3CTkBNHPcM7v7YdjrunheRuA9wJ9XoIgLj0oRk4QBEEQgxgScoIgCIIYxJCQEwRBEMQghoScIAiCuKKYP39+QlxcXK5r6tlgh5LdCIIgCL+5sK4syV7dGtB55Oq4IFPkHen9PlVtxowZjYsWLTqflZWV09/nuhiQkBMEQRCDhqeffjp+3bp1kfHx8baoqChHfn6+adOmTeE5OTmmffv2BRmNRnH16tWnJk+ebGpqahIeeuih5IMHDxoAYPHixZUPPvhg45QpU3zuuZ6ZmemaJojTp0/rPv7447Jbb73V2B+vrbeQkBMEQRB+czEs545s3brV8K9//Svi0KFDJXa7nV111VXZ+fn5JgAwmUzCvn37Sv/9738HP/LII8OOHTtW/Oyzz8aHhoZKZWVlJQBQW1vbaTRxT5SWlpYAwAcffBC2dOnSuMLCwoAMXgkkJOQEQRDEoGDLli3BrhnjAPgPfvAD9yTAe++99wIA3HLLLUaj0SjU1dWJW7duDf3b3/520rVNdHR0ryaPHTp0SPv8888nfvXVV2WeY04vFSjZjSAIghgUdNdS3Nvscc55p8f9pbm5WZg9e3baypUry1NTU+19Olg/QUJOEARBDAomTZpk/M9//hNmMplYU1OT8MUXX4S7nvvrX/8aAQD/+c9/gkNCQqSoqChp0qRJza+99pp7bnhvXOt333136pw5c+qmTZt2ScXFPSEhJwiCIAYFN954o2natGlN2dnZo374wx+m5ebmtoaFhUkAEBERIeXn52c+/vjjKatWrToNAK+88kpVY2OjOHLkyFEZGRnZn332WQgAzJ07NzE2NjbXYrEIsbGxuQsXLhzq7XxlZWWaTZs2RfzlL38ZkpmZmZ2ZmZm9devWgGbqBwKafkYQBEH4xKUw/aypqUkICwuTW1pahGuvvTbjzTffLF+4cGHSq6++evaGG24wDeTa+hOafkYQBEFcFtx3330px44d01utVnb33XfXT5w48bIVb18hIScIgiAGDf/6179OdXzsu+++6/O43meeeSZuw4YNkZ6P3XbbbReKioqq+3rs/oZc6wRBEIRPXAqu9SuV7lzrlOxGEARBEIMYEnKCIAiCGMSQkBMEQRDEIIaEnCAIgiAGMSTkBEEQxBVNfn5+Zn8de+3atWGLFy+O66/jA1R+RhAEQfSCTz75JOn8+fMB7XIWExNjmjFjxkWbquZwOKBSqbBv377S/jrHnDlzmgA09dfxAbLICYIgiEFCc3OzMGnSpBEZGRnZI0eOHPWnP/0pIiEhYXRVVZUKUMacFhQUZADAwoULh86YMWPY+PHj01NSUnKWLl06BAA2btwYMm7cuPTp06cPy8jIGAUABoMh3/Xc2LFjM374wx8OT01NzZk3b17CypUrI0ePHp2Vnp6eXVxcrAWAyspK1dSpU9NycnKycnJysj7//POgrta8bNmyqPvvvz8ZAGbNmpV67733Jo8ZMyYjNTU1569//WtYIN4XssgJgiAIv7mYlrOL9evXh8bFxdm3bNlyHADq6+vFl156qcvtjxw5ot+zZ8+RlpYWMT8/P3vWrFlNAHDw4MGgffv2FWdmZto67lNaWqpft27dyZiYGEdKSsporVZbd+jQoSNLliyJWbp0acyaNWvOPvroo0kLFy6smTp1qvHYsWOaqVOnjjx58mSxL6/h7Nmz2u++++5oSUmJtrCwMOO22247ZDAY+tTQhSxygiAIYlBw9dVXm7dt2xb62GOPJWzatCk4Kiqq2/nirtnl8fHxjmuvvbZ527ZtQQCQm5vb6k3EAWD06NGtKSkpdr1ez5OTk6233HJLEwDk5eWZz5w5owGA7du3hy5YsCA5MzMze/r06SOMRqPY0NDgk57OmjXrgiiKGD16tDUpKcm6f/9+nX/vQmfIIicIgiAGBbm5uda9e/eWfPzxx2HPP/98whdffNEsiiKXZRkAYDab24mptxnlAGAwGOSuzqHVat3WsSAI0Ol03PW7JEkMUOai7969+0hwcLDflnRXa+oLZJETBEEQg4LTp0+rQ0JC5Hnz5l144oknavbv329ITEy0bd++3QAAH330UYTn9v/+97/DTSYTq66uFnft2hUyceLE1kCsY+LEic1FRUXuOec7duzQ+7rv+vXrIyRJQnFxsfbs2bPavLw8S1/XQxY5QRAEMSjYs2eP/rnnnksUBAEqlYqvWLGi3GQyCXPnzk0tKiqyjxkzpp1Q5+fnt06ZMmVkZWWlZtGiRVWpqan2w4cP99mVvXr16rMPP/xwcnp6erYkSWzcuHEtEyZMOOPLviNGjLAWFBRk1NfXq//whz+U9zU+DtDQFIIgCMJHBtPQlIULFw4NDg6WXn755ZqBXouLWbNmpf7oRz9q+ulPf9rg7740NIUgCIIgLlPItU4QBEFcdrz22muVF/N8r7/+etTKlStjPR8bO3as8f3333e73D/++OPT/XFucq0TBEEQPjGYXOuXG+RaJwiCIIjLFBJygiAIghjEkJATBEEQxCCGhJwgCIK4LFizZk3E8OHDR40bNy69q21mz56dkpGRkZ2enp49bdq04U1NTV3qYGVlpSo3NzczKysre9OmTcHz589PiIuLy3UNWfHkrbfeikhLSxs1YsSIUdOnTx/mevyNN96ISklJyUlJScl54403ovr+KjtDyW4EQRCET1zqyW7XX3/9yF/84hfV06dPb+lqmwsXLgiRkZEyADz88MOJMTExjt/85jfV3rZdvXp1xKZNm8LWr19/GgC+/PLLoBEjRtiysrJyTCbTPtd2hw4d0s6ePTtt69atR6Ojo6WKigpVQkKCo6amRhwzZkz2nj17SgRBQH5+fva+fftKoqOju+0R743ukt2o/IwgCILwm5IjzyS1GssCOo88KDjdlJ1V1OVUtRdeeCFWp9PxF1544fxDDz2UVFxcrN+1a1fZhg0bQm6//fZ0nU4nz58/P2Xjxo2Ny5cvPzdv3rzELVu2hALAAw88UPf888+fd4m4LMswm81CV73Od+zYoX/xxRcTLRaLkJmZmb179+4jU6ZM8dridfny5dE///nPz7sEOiEhwQEAn3zySdgNN9zQHBsbKwHADTfc0Lx+/fowURT5rl27gt56661zS5YsiVm1alXsuXPnDhUXF2vvv//+1D179hz1530j1zpBEAQxKJg8ebJx+/btwQCwf/9+Q2trq2i1WtnWrVuDi4qKynNyckzvvffeyVWrVp1bunRpdHl5uba4uLikrKys5OGHH653HeeOO+5IjY6Ozjt+/Lju2WefPe/tXBMmTDA/99xzldOnT28oLS0t6W5AyvHjx7VlZWW6q6++OjMvLy9z3bp1oQBQUVGhTkxMdE9ZS0hIsFVUVKhvvvnmll27doUAwPbt24PDw8Mdp06dUm/evDl4/PjxRn/fF7LICYIgCL/pznLuLyZOnGh64IEHghoaGgStVstzc3ON27ZtM+zcuTPkjTfeOPP3v//dHYPevHlz6Ny5c2vVajUAwGUVA8C6detOOxwOPPjgg8lr1qyJWLBgQb2X0/mMJEnsxIkT2p07dx49deqU+sYbb8ycNGlSsbfQNWMMycnJDpPJJDQ0NAiVlZWaO++8s/7zzz8P+eabb4JnzpzZ6O/5ySInCIIgBgVarZYnJiZaly9fPqSgoMB4ww03GL/44ouQ8vJybX5+frspYpxzMMa6tKJVKhXuueeeC5988klEV9v4Snx8vG369OmNWq2WZ2Zm2oYPH24pLi7WJiYm2s+dO6dxbVdRUaEZOnSoHQDGjBnTunz58iFpaWmWyZMnG7dt2xa8Z8+e4MLCQr8tchJygiAIYtAwYcIE4/Lly2MnTZrUUlhY2PLnP/85Ojs72yQI7eWssLCw+c0334y22+0AgJqaGlGWZRw+fFgLKDHyDRs2hI8cObLPY0RnzpzZuGXLlhAAqKqqUp06dUqXkZFhnTFjRtPXX38dWltbK9bW1opff/116IwZM5oA4Prrr29Zvnx57PXXX2+cMGGCaceOHSEajUaOioryOxGOhJwgCIIYNNx4440ttbW16ptuuqk1KSnJodVq+XXXXdfJin3yySdrExMTbZmZmaMyMjKy33777UjOOe6///5h6enp2RkZGaOqq6vVv/3tb33uyT537tzE2NjYXIvFIsTGxuYuXLhwKADMnDmzOTIy0pGWljbqxhtvTH/55ZfPxsXFSbGxsdLTTz9dOWbMmKwxY8Zk/eIXv6h0ufinTJlirK6u1hQWFraoVCrEx8fbCgoK/LbGASo/IwiCIHzkUi8/u5yhXusEQRAEcZlCWesEQRDEFc0zzzwTt2HDhkjPx2677bYLRUVFXhvFXGqQa50gCILwCXKtDxzkWicIgiCIyxQScoIgCIIYxJCQEwRBEMQghoScIAiCIAYxJOQEQRDEoCE/Pz+zv469du3asMWLF8cBwO9+97vo9PT07MzMzOwxY8Zk7NmzR9df5+0rlLVOEARB+MSlmrXucDigUgW2mtpzbvnatWvD3nzzzZht27YdC+hJ/IDmkRMEQRAB5YkjZ5JKWy0BnUeeGaQz/SErudupagaDId9kMu3buHFjyJIlS+JjYmLsJSUlhhMnThQXFhamVVVVaaxWqzB37tyaRYsW1QHAunXrQn/5y18mSJLEIiMjHTt37izzduxly5ZF7d69O+i999474xJxADAajWJXc8svBUjICYIgiEHJwYMHg/bt21ecmZlpA4C1a9eejo2NlYxGI8vPz8++7777GmRZZo8//njqli1bSjMzM201NTWir8d/5ZVXolesWBFrt9uF//73v0f775X0DRJygiAIwm96spwvBrm5ua0uEQeAoqKi2E8//TQcAKqrq9XFxcW6mpoaVUFBQYtrO8+55D3x3HPP1T733HO1b775ZuSLL74Yv379+tMBfxEBgJLdCIIgiEGJwWBwu783btwY8vXXX4fs3r279OjRoyVZWVlms9ksOOeS9+k8P//5zy/897//De/zgvsJEnKCIAhi0NPY2CiGhYVJISEh8r59+3QHDhwIAoDJkye3fvvttyGlpaUaQJlL7svxDh06pHX9/uGHH4alpKRY+2flfYdc6wRBEMSgZ9asWU2rV6+OTk9Pz05LS7Pk5eW1AsDQoUMdy5YtO3377bePkGUZUVFR9h07dvSYff7aa6/FbNu2LVSlUvGwsDDHu+++e6r/X0XvoPIzgiAIwicu1fKzKwEamkIQBEEQlynkWicIgiCuKF5//fWolStXxno+NnbsWOP7779/ZqDW1BfItU4QBEH4BLnWBw5yrRMEQRDEZQoJOUEQBEEMYkjICYIgCGIQQ0JOEARBEIMYEnKCIAjiiubRRx9NHDFixKhHH3008dixY5px48alZ2VlZaenp2d/+OGHYQBw9OhRjU6nuzozMzM7MzMz+95770127b9t2zZDenp6dnJycs6DDz6YJMtK59hZs2alvvPOOxH9vX4qPyMIgiCuaNauXRtdW1u7X6/X83vuuSdl5syZDc8880ztnj17dD/+8Y9H3nXXXYcAICkpyVpaWlrScf958+alrFixovymm25qnTRp0sh169aFzp49u/lirZ+EnCAIgvCbp9cdSCqrbgnoPPL0uBDT/7sjr9upat5mjnubN/7pp58GP/XUU8kAwBjDjh07SiMiIuSOx7vppptGmM1mIT8/P+upp56qYoyhublZBICGhgYxJibG3t16ysvL1UajUSgsLGwFgDlz5tR/8sknER2FPCEhYfSPf/zjC998800oAPz1r389mZOTE5D+7STkBEEQxKCh48zxu+66q9HbvPGlS5fGLVu2rPzmm29ubWpqEjwnpXmyefPm4waDId9lad98883GH/zgByPfeuutGLPZLHz66adlrm3PnTunycrKyg4ODpaWLFlSMW3aNGN5ebk6Pj7eLfYpKSm2qqoqtbdzhYaGSocOHTryxz/+MWr+/PlJX3311fFAvCck5ARBEITf9GQ59xcdZ44vW7Ys2tu88fHjxxsXLfr/7d1pWFNn3gbwf8ISEhKQIJshLBUChEUy9YpKFRXQoteoqFSLK1PXzquXFe1oW+tcOqLi5dJxhr7oqNSFGe2gU6s4MlK1KKiMigrEgLZAWRXZQ0IgJO8H31ikQYOiGHr/PtnDyTnPOV/uPk9Ozr1aOGPGjLqYmJj6wYMHGwzyrpKTk/kxMTG1GzZseJCRkWEdGxvrWVRUVODm5tZ4OmNQAAAXf0lEQVReXFx8x9nZuePSpUuc9957z0smk+Ubeqlad7Wp8+fPryN6XIu6bt064YvdgV/Cw24AAGASDHWOBwcHKw0F5+bNm6v37dtXqlKpmCEhIX65ublWxpzjyJEjA+fOnVtHRBQREdGiVquZ1dXV5mw2W+fs7NxBRDRq1Cilm5ubOj8/38rDw6O98wy8tLTU0tnZ2eByPJP5c+QyGIxee60qghwAAEyCoc5xtVrNNNQ3XlBQwJJKpar4+PjqwMDAlvz8fKOCfNCgQW1nzpyxISK6efOmVVtbG8PFxUVTWVlprtFoiIhIJpNZlpSUsHx8fNTu7u7t1tbW2u+++85aq9VSSkqK/ZQpUxoMHfvQoUN8IqL9+/fbSSSSll64JUSEpXUAADARhjrHHR0dDfaNb9u2zTE7O9uGyWTqRCKRKjo6utGYc+zatats0aJFHomJiU4MBoOSkpJKmEwm/ec//+Fu2rRJYGZmpjMzM9N98cUXpfpl/C+//LJ0wYIFnq2trYyxY8c2vffeewbPpVarGUFBQb5arZZx9OjRH3vrvqA0BQAAjILSlBcnEAgCr1+/ftfFxUXzIp9HaQoAAEA/haV1AADo93Jyctjz5s3z7LzN0tJSe+fOHfnrOH9FRUXeqzo2ghwAAPo9qVSqMvRWtv4AS+sAAAAmDEEOAABgwhDkAAAAJgxBDgAAYMIQ5AAA0C8cOHDA7q233vIfNmyYqLt9ZsyY4e7j4yMWiUTiyMjItxobG7vNwcrKSvOgoCBfPz8/8dmzZ7nLly8XODs7B3E4HImh/ZOTk+0YDMbbmZmZT1rhPvnkE2c3N7cADw+PgOPHj9u83BUahiAHAIB+ITk5eeCf//znn65du1bU3T5JSUllhYWFsqKiIpmrq2tbQkKCY3f7nj59mufl5dV69+5dWWRkpCIqKqrh2rVrdw3tW19fz0xMTHQMCgp68urVGzduWJ04cYJfWFhYcPbs2aKPPvrITf+a196En58BAEDPffM/Qnoo69U+cnIUKykqsdtWtXXr1jlZWVnp1q1b93DBggXCgoIC9tWrV4tOnjzJmzp1qsjKykq7fPly99OnTzckJiaW//73v3e9ePGiDRHR/PnzH3322WcP+Xy+lohIq9WSSqVidtdUlp2dzf7jH//o2trayvT19RVfv379bnh4eLfvR1+1apVg1apV1bt27XLWb0tNTR0wbdq0OjabrfP19W1zd3dXX7x40frixYvc7q7jwIEDA0+ePFnck9uGGTkAAJiEsWPHKrKysrhERLdu3eK0tLSYqdVqRmZmJjchIaE0ICBAeejQoR/37NlTvmPHDofS0lJWQUGBrKioSLZw4cJa/XGio6M9HBwchty/f99q7dq1Dw2dKyQkRPXJJ59UTpo0qV4ul8u4XG637zPPyspiV1RUWMbExDz1jvWKigpLoVDYpv/vQYMGtZWVlVk+6zpGjhzZ3NP7ghk5AAD03DNmzq/KyJEjlfPnz7eur69nslgsXVBQkOLSpUucK1eu8P7yl7/89M9//tNev+/58+dtli5dWmNh8bhhVF9wQkSUmppaotFoKDY21u3AgQN2K1asqDVwOqN0dHTQypUr3Q4fPvyLWXQ3XeW6511HT8eAGTkAAJgEFoulc3V1VScmJg6USqWK0NBQRUZGBq+0tJQlkUhaO++r0+me2fltbm5OMTExdd98843dy4ypoaHB7N69e1ZhYWE+AoEg8Pbt29bR0dFemZmZHFdX17aysjJL/b6VlZWWrq6u7T25DmMgyAEAwGSEhIQoEhMTncaMGdMcERHRfPDgQQexWKxkMp+Os4iIiKakpCSH9vZ2InrcU67Vaik/P59F9Pg78pMnTw7w9vbucXB2Zm9v31FfX3+7oqIir6KiIm/IkCEtqamp90NDQ5XTp09vOHHiBF+lUjHkcrllSUmJ1ZgxY1p6ch3GQJADAIDJGD16dHNNTY1FWFhYi1Ao1LBYLN0777yj6LrfypUra1xdXdt8fX39fXx8xPv37+frdDqaN2+ep0gkEvv4+PhXV1dbbN26tdLYcy9dutTVyckpqLW1lenk5BQUFxc36Fn7Dx06tDUqKqpOJBL5R0ZGinbu3Flqbm7eo+swBvrIAQDAKOgj7zvoIwcAAOin8NQ6AAD8qq1Zs8b55MmT/M7bpkyZUpeQkFDdV2PqCSytAwCAUbC03newtA4AANBPIcgBAABMGIIcAADAhCHIAQAATBiCHAAAoAuJROLb12MwFoIcAACgi9zcXHlfj8FY+B05AAD02OdZnwvv19/v1T5yLzsv5Z/e+VO3rWqFhYWWkZGR3lKpVHHz5k2un5+f8oMPPni0ceNGQW1trflXX331o1gsVs+ePdvjp59+YrHZbO3evXtLhw0bpkpLS+OuWrXKjYiIwWBQdna2nMlkUmRkpFdjY6OZRqNhrF+/vnLOnDkNREQcDkeiVCpziR73oH/99df2DAaDwsPDG7/88ssKQ+OTSqU+27dvLwsNDVVWVVWZDx061K+ioiKvN++RIQhyAAAwGWVlZVbHjh378e233y4NCgryS0lJsb9+/br873//+4D4+HgXgUDQNmTIEGVGRsYP3377LW/+/PmecrlctmPHDufdu3eXjh8/vqWxsZHJ4XC0RERpaWn3+Xy+tqqqynzYsGG+s2bNauhcXPL111/bpKWl2d24cUPO4/G0Dx48MOuzi+8GghwAAHrsWTPnV0kgEKilUqmKiEgkEqnCwsKamEwm/eY3v1Fu2rRpUEVFBev48eP3iYgmT57cvHjxYvPa2lqz4cOHK1avXi2cMWNGXUxMTP3gwYO1arWa8dFHH7levXqVy2Qy6eHDh5bl5eXmbm5uGv35zp07ZzNnzpxHPB5PS/R0r/mbAt+RAwCAybC0tHzyOlImk0lWVlY6IiIzMzPq6Ogw+LZSBoOh27x5c/W+fftKVSoVMyQkxC83N9dqz549/NraWvO8vLy7crlcZm9v365SqZ7Kxf/vNTdqbObm5rqOjsc5r1QqjftQL0CQAwBAvzF8+PDm5ORkeyKi06dP8+zs7DR8Pl9bUFDAkkqlqvj4+OrAwMCW/Px8q8bGRrOBAwe2s1gs3alTp3iVlZWWXY8XGRnZdPjw4YHNzc1Mose95t2dWygUqnNycqyJiFJSUuxe1TV2haV1AADoNxISEipnzZrlIRKJxGw2W/vVV18VExFt27bNMTs724bJZOpEIpEqOjq6saGhwWzChAleAQEBfv7+/kpPT8/WrseLjo5uunnzJic4ONjPwsJCFxER0fjXv/7V4MNua9eufTBz5sy3jh49aj9q1KimV32teihNAQAAo6A0pe+gNAUAAKCfwtI6AABAD8ydO9ftv//9L7fztg8//PDBihUravtiPAhyAACAHjh8+PBPfT2GzrC0DgAAYMIQ5AAAACYMQQ4AAGDCEOQAAAAmDEEOAAC/akuWLHH18vLyX7Jkieu9e/cshw0bJvLz8xOLRCLxsWPHbImIqqurzYYNGybicDiSefPmuRk6TlhYmJe3t7f/6x09nloHAIBfuZSUFIeamppbbDZbFxMT4z5t2rT6NWvW1Ny4ccNq8uTJ3jNnzszjcDi6jRs3Vt6+fZudn5/P7nqMgwcPDrC2tu6TQhUEOQAA9Fjlp58J1ffu9WofOcvbWzloc/wzW9UiIiIGV1VVWarVaubSpUsfrF69+lFqaqrN+vXrBR0dHQw+n6+5cuVKkaH+cTs7O23X44WFhXmpVCqmRCLxW7VqVRWDwaCmpiYzIqL6+nozR0fHdiIiGxsb7bvvvqsoLCxkdT1GY2Mjc/fu3U579+4tff/99wcTEVVUVJiPHz/eu6Cg4O6VK1fYISEh4qKiojxvb+82oVAYIJPJZPpGtZeFIAcAAJORkpJS4uTk1KFQKBgSiUQ8c+bMhmXLlnlcvHhR7uvr26YvNemuf7yr8+fP3+dwOBK5XC4jIho/frxi3Lhx3vv27XNUqVTMtLS0oueNKS4uTrBixYoHXC73yTkEAoFGrVYz6+rqmBcuXOD6+/srMzIyuDqdTmFvb6/prRAnQpADAMALeN7M+VVJSEhwSktLG0BEVF1dbbF7924HqVTa7Ovr20b0c1+4of5xY46fnJzMj4mJqd2wYcODjIwM69jYWM+ioqICMzPDpWfZ2dns4uJi1v79+8sKCwufak8bOnSoIiMjg3v58mXeH/7wh6qzZ8/a6nQ6Gj58uOKlbkIXeNgNAABMwunTp3nff/897/r16/LCwkKZn5+fKjg4WGmoL9xQ/7gx5zhy5MjAuXPn1hERRUREtKjVamZ1dXW3k95Lly5x8/PzOQKBIDA0NNS3pKSEJZVKfYiIRo4cqcjMzOSVl5dbzp49u6GgoIB9+fJl7ujRo5tf8BYYhCAHAACT0NDQYGZra9vB4/G0ubm5Vrdv37ZWq9XMa9eu8eRyuSXRz33hhvrHjTnHoEGD2s6cOWNDRHTz5k2rtrY2houLi6a7/desWVPz8OHDOxUVFXmZmZlyDw8PdU5OTiER0bhx45qPHz/O9/T0VJuZmdGAAQM0Fy5csI2IiOjVGTmW1gEAwCRMnz69ce/evQ4ikUg8ePDg1iFDhrQ4Ojpqdu/eXTJ16lQvrVZL9vb27dnZ2fcM9Y8bc45du3aVLVq0yCMxMdGJwWBQUlJSCZP5eM4rEAgCFQqFWXt7OyM9PX3AmTNnit5+++1fdJjr+fj4tBERjRo1qpmIaMSIEYqqqipLBweHXn26HX3kAABgFPSR9x30kQMAAPRTWFoHAIB+Lycnhz1v3jzPztssLS21d+7ckffVmHoLghwAAPo9qVSq0v9WvL/B0joAAIAJQ5ADAACYMAQ5AACACUOQAwAAmDA87AYAAL9qS5Yscf3uu+9sw8PDGzUaDSMrK4tHRNTa2sqsra01b25uvnXq1Cnexx9/LNR/pri42Grfvn0/zp07t2H69OkeV69e5fF4vA4iogMHDhSHhISoXtf4EeQAAPCr1rmPvPP2+Ph4x1u3bnGIiCZNmtQ8adIkGdHj18CKRKLAqKioJv2+mzZtKv/d735X/3pH/hiCHAAAeuy7Q3eFdRWKXu0j5wu4yvB5fn3aR75o0aInYZyamspfv359ZdfPHD582G706NGNz6siFYlE4uzs7EI+n9/B5/ODN23aVLZs2bLaqKgoz9jY2EdRUVG9Up6C78gBAMBkpKSklBQUFNy9deuWbM+ePU5lZWXmy5Yt8zhx4sQPhYWFsm+++eYHop/7yOVyuezq1avyzl3hnZ0/f/4+i8XSyuVyWecQLyoqsiwvL7ecNGlSU9fPpKam8mNiYuo6b9uwYYNAJBKJFyxYIFSpVAyin2tMb9y4YeXq6qq+fPkyl4goNzfXeuzYsS29dU8wIwcAgB573sz5VXnVfeR6Bw8e5E+cOLHe3PzpmCwtLbUoLCxkT5s27UnA79y5s0IoFLar1WrG7Nmz3T///HPn7du3V40aNUrx/fffc0tKSiwXLlz4MDk52aG4uNjC1tZWY2tr26PxPAtm5AAAYBJeRx+53okTJ/hz5syp67r90KFDdpGRkQ0sFuvJ9+nu7u7tTCaT2Gy27oMPPqi9ceOGNdHjGtOrV6/ysrKyuOPHj2+2t7fXHDlyxG748OG9WmOKIAcAAJPwOvrIiYhu377NampqMgsPD//F8ndqaip/1qxZTwV8aWmpBRGRVqulEydODPDz81MREXl5ebXX19ebFxcXW4nF4rYRI0YoEhMTnUNDQ9FHDgAAvz6vo4+ciOjgwYP2U6ZMqdP3kOsVFhZaVlVVWU6cOPGph9RmzpzpWVdXZ67T6RhisVh56NChUv3fgoODWzo6HtePjxkzpnnLli2CiIiIXnnITQ995AAAYBT0kfcd9JEDAAD0U1haBwCAfg995AAAACYMfeQAAADwRkKQAwAAmDAEOQAAgAlDkAMAAJgwBDkAAPRLmZmZnNjYWOHz93w2gUAQWFVV9YuHw+Pi4gatX7/e6WWP/7Lw1DoAAPRY+v9+IXxUVtqrNaYDhe7Kdz/8qNfKWEJDQ5WhoaHKrtvb29vJwsKit07T5zAjBwAAk7FmzRpnDw+PgJCQENGkSZM8169f7ySVSn0yMzM5RERVVVXmAoEgkOhxycrYsWO9iB7PnmNiYtzfeecd72nTpnlqNBpavHixq0gkEotEInF8fLzjs867bds2R7FY7CcSicSGClh27NgxMDQ01FuhUPyyweUVw4wcAAB6rDdnzsa6dOkS51//+hc/Ly9P1t7eTsHBwWKJRPKLGXd37ty5w7l27Zqcy+XqEhISHEpLS1kFBQUyCwuLJ2Ur3Rk4cKBGJpPd3bp1q8PWrVudjh079uR96ps3b3bIyMiwTU9Pv89ms1/7e88R5AAAYBIuXLjAnThxYgOPx9MSEY0fP76hJ5+PjIxs4HK5OiKi8+fP2yxdurRGv8Su7zHvzqxZs+qJiKRSqfLbb7+1028/duyYvYuLS1t6evoPnatNXycsrQMAgMkw1D1ubm6u0zeMKZXKbpe2ra2ttfp/63Q6YjAYRgevlZWVTn8ujUbz5Bw+Pj6q8vJyVnFxcZ996Y4gBwAAkxAWFqZIS0sboFAoGPX19cxz584NICISCoXqnJwcayKilJQUu2cf5bGIiIimpKQkh/b2diKi5y6tdyc4OFiZmJhYOnnyZK+SkpI+CXMEOQAAmISRI0cqp06dWhcQEOD/29/+drBUKlUQEa1du/bB/v37HSQSie+jR4+M+sp45cqVNa6urm2+vr7+Pj4+4v379/NfdFzvvvuuYsuWLeUTJkzwNvQztVcNfeQAAGCUN62PPC4ubhCXy+3YuHHjg74ey6uGPnIAAIB+Ck+tAwCASdq5c2dlbx5v3Lhxg8vKylidt8XHx5dPnz69qTfP09sQ5AAAAER07ty5H/p6DC8CS+sAAAAmDEEOAABgwhDkAAAAJgxBDgAAYMIQ5AAA8KuyfPlygbOzcxCHw5H09Vh6A55aBwCAHqtLLRK2V7f0ah+5hbO1kh8teuWtalFRUQ2rV69+6OfnF9CTz72pPeYIcgAAMBkff/yxS2pqKt/FxaXN3t5eI5FIlGfPnh0QEBCgzM3NtVYoFGZ79+4tHjt2rLKxsZG5YMECtzt37nCIiD799NPK2NjYhvDw8BZjzzd9+nQPOzs7TV5eHicoKEj5t7/9rfzVXd2LQZADAECPvY6Zc1eZmZmcU6dO2f1/Hzmjcx+5Uqlk5ubmyv/9739zFy9e7Hnv3r2CtWvXutjY2HQUFRXJiIhqampeqBjlhx9+sMrKyioyN38zI/PNHBUAAEAXFy9e5E6YMEHfKa4bN27ckz7yWbNm1RERTZgwQaFQKJiPHj0yy8zMtDl69OiP+n0cHBye2TnenWnTptW/qSFOhIfdAADARDyr5KtrTzmDwdB3jr/0eblcrvb5e/UdBDkAAJiEMWPGKNLT022VSiWjsbGRmZGRMUD/t3/84x92RETp6elcHo/XYW9v3zFmzJimnTt3Our3edGl9TcdghwAAEzC6NGjlZGRkY1isdh/4sSJg4OCglpsbW07iIjs7Ow6JBKJ77Jly9z37NlTQkS0ZcuWqoaGBjNvb29/Hx8f8ZkzZ3hEREuXLnV1cnIKam1tZTo5OQXFxcUN6sPLemnoIwcAAKO8CX3kjY2NTFtbW21zczNzxIgRPklJSaVxcXHC7du3l4WGhir7cmyv0rP6yN/cb+8BAAC6mDNnjvu9e/fYarWa8f7779eOHDmy34a3sRDkAABgMk6dOlXcdVtOTk7hyx53zZo1zidPnuR33jZlypS6hISE6pc99quGpXUAADDK7du3fwwMDKxnMpkIjtdIq9Uy8vLy7IYMGfKWob/jYTcAADBWfk1Nja1Wq33533SBUbRaLaOmpsaWiPK72wdL6wAAYBSNRrOwurp6X3V1dQBhIvi6aIkoX6PRLOxuByytAwAAmDD8HxUAAIAJQ5ADAACYMAQ5AACACUOQAwAAmDAEOQAAgAn7P4NxPKlgAtC0AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for b in bands:\n", " plt.plot(Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Wavelength']\n", " ,Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Transmission']\n", " , label=b)\n", "plt.xlabel('Wavelength ($\\AA$)')\n", "plt.ylabel('Transmission')\n", "plt.xscale('log')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.title('Passbands on {}'.format(FIELD))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### IV.a - Depth overview\n", "Then we plot the mean depths available across the area a given band is available" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "gpc1_g: mean flux error: 2.7031707953423325, 3sigma in AB mag (Aperture): 21.627513146353827\n", "gpc1_r: mean flux error: 4.078918670489123, 3sigma in AB mag (Aperture): 21.18083424817356\n", "gpc1_i: mean flux error: 6.810574833288005, 3sigma in AB mag (Aperture): 20.62423744010419\n", "gpc1_z: mean flux error: 9.259485938008499, 3sigma in AB mag (Aperture): 20.29072967200448\n", "gpc1_y: mean flux error: 10.614856713349065, 3sigma in AB mag (Aperture): 20.142411522862382\n", "mosaic_u: mean flux error: 0.048006835858793596, 3sigma in AB mag (Aperture): 26.003939157033948\n", "suprime_b: mean flux error: 0.041159954620040864, 3sigma in AB mag (Aperture): 26.171009645027617\n", "suprime_v: mean flux error: 0.04813330586888126, 3sigma in AB mag (Aperture): 26.001082636427547\n", "suprime_r: mean flux error: 0.034794445955210765, 3sigma in AB mag (Aperture): 26.35342204956344\n", "suprime_ip: mean flux error: 0.11186149369079823, 3sigma in AB mag (Aperture): 25.08549532774645\n", "suprime_zp: mean flux error: 0.14867425960645525, 3sigma in AB mag (Aperture): 24.776607402194223\n", "quirc_hk: mean flux error: 3.212951832857893, 3sigma in AB mag (Aperture): 21.439936326073386\n", "gpc1_g: mean flux error: 3.9750830370375314, 3sigma in AB mag (Total): 21.208831350121805\n", "gpc1_r: mean flux error: 4.037009549163444, 3sigma in AB mag (Total): 21.192047421465936\n", "gpc1_i: mean flux error: 4.267073376190561, 3sigma in AB mag (Total): 21.13187158567485\n", "gpc1_z: mean flux error: 9.128972926764485, 3sigma in AB mag (Total): 20.306142065402803\n", "gpc1_y: mean flux error: 12.202914572544413, 3sigma in AB mag (Total): 19.991037935776298\n", "acs_f435w: mean flux error: 0.021334635834019962, 3sigma in AB mag (Total): 26.8844837777442\n", "acs_f606w: mean flux error: 0.01603007213691179, 3sigma in AB mag (Total): 27.194858171384062\n", "acs_f775w: mean flux error: 0.024817375140598837, 3sigma in AB mag (Total): 26.720307249286485\n", "acs_f814w: mean flux error: 0.051923523624854764, 3sigma in AB mag (Total): 25.91878647118417\n", "acs_f850lp: mean flux error: 0.02549040478448241, 3sigma in AB mag (Total): 26.69125503303382\n", "wfc3_f105w: mean flux error: 0.0331934612395475, 3sigma in AB mag (Total): 26.404565511415505\n", "wfc3_f125w: mean flux error: 0.0294504354860414, 3sigma in AB mag (Total): 26.534467560402682\n", "wfc3_f140w: mean flux error: 0.04989578161974689, 3sigma in AB mag (Total): 25.96203728755456\n", "wfc3_f160w: mean flux error: 0.04983203515155435, 3sigma in AB mag (Total): 25.96342530265624\n", "moircs_k: mean flux error: 1.6567970291309213, 3sigma in AB mag (Total): 22.15902359536266\n", "mosaic_u: mean flux error: 0.060611167347938685, 3sigma in AB mag (Total): 25.75081524210973\n", "suprime_b: mean flux error: 0.015624035260423308, 3sigma in AB mag (Total): 27.22271383720213\n", "suprime_v: mean flux error: 0.03313022928474057, 3sigma in AB mag (Total): 26.406635759403493\n", "suprime_r: mean flux error: 0.025693424015084433, 3sigma in AB mag (Total): 26.68264190306352\n", "suprime_ip: mean flux error: 0.05566995703377198, 3sigma in AB mag (Total): 25.8431446479074\n", "suprime_zp: mean flux error: 0.07959091641012603, 3sigma in AB mag (Total): 25.455038100202934\n", "quirc_hk: mean flux error: 5.173927988358136, 3sigma in AB mag (Total): 20.92264591361228\n", "wircam_ks: mean flux error: 1.005450699983795, 3sigma in AB mag (Total): 22.701294911199376\n", "irac_i1: mean flux error: 0.1123093214324873, 3sigma in AB mag (Total): 25.08115735503406\n", "irac_i2: mean flux error: 0.10903651943670527, 3sigma in AB mag (Total): 25.11326691345176\n", "irac_i3: mean flux error: 0.7460192222540939, 3sigma in AB mag (Total): 23.02532181860989\n", "irac_i4: mean flux error: 0.7253464398435089, 3sigma in AB mag (Total): 23.055833153752594\n" ] } ], "source": [ "average_depths = []\n", "for b in ap_bands:\n", " \n", " mean_err = np.nanmean(depths['ferr_ap_{}_mean'.format(b)])\n", " print(\"{}: mean flux error: {}, 3sigma in AB mag (Aperture): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n", " average_depths += [('ap_' + b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n", " flux_to_mag(3.0*mean_err*1.e-6)[0], \n", " flux_to_mag(5.0*mean_err*1.e-6)[0])]\n", " \n", "for b in tot_bands:\n", " \n", " mean_err = np.nanmean(depths['ferr_{}_mean'.format(b)])\n", " print(\"{}: mean flux error: {}, 3sigma in AB mag (Total): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n", " average_depths += [(b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n", " flux_to_mag(3.0*mean_err*1.e-6)[0], \n", " flux_to_mag(5.0*mean_err*1.e-6)[0])]\n", " \n", "average_depths = np.array(average_depths, dtype=[('band', \"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dat in data:\n", " wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n", " depth = average_depths['5s'][average_depths['band'] == dat[0]]\n", " #print(depth)\n", " plt.plot([wav_deets[0],wav_deets[1]], [depth,depth], label=dat[0])\n", " \n", "plt.xlabel('Wavelength ($\\AA$)')\n", "plt.ylabel('Depth')\n", "plt.xscale('log')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.title('Depths on {}'.format(FIELD))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### IV.c - Depth vs coverage comparison\n", "\n", "How best to do this? Colour/intensity plot over area? Percentage coverage vs mean depth?" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "Text(0.5,1,'Depths (5 $\\\\sigma$) vs coverage on HDF-N')" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf4AAAKPCAYAAACM+ajcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XlcU1f+P/7XCUshEBEB2ZE1kYCAQLEW1Fq1tbW0Ki3d1HYccalWbaWfcex3lt/M+BltaWv5qJ+iM+pIcWb0I7WW0Tot1VhqK0YFSoCoYNxYBESIEBfI+f2RhGEJgpIQhffz8eDxgHvvufd9k+g7Z7nnMM45CCGEEDI0CCwdACGEEEIGDiV+QgghZAihxE8IIYQMIZT4CSGEkCGEEj8hhBAyhFDiJ4QQQoYQSvyEEELIEEKJnxBCCBlCKPGTThhjKsbYVBOd68+MsZWmOJeRc+czxsLMcW5CCBnMKPE/4PSJWMMYUzPGrjPGjjHGFjPGTPLemTLRdzmvG4B5ADI6bDvCGLvJGLuh/1H24xJpAP7Q3ziJeRj7XDHG3mSM5XU55q6f7Q7H3Ojw43WXa9Ywxhw6bFvAGDtihlsk5KFFif/hkMg5FwEYBWAdgF8B+KtlQ+rVmwAOcM41XbYv45w76n8k/Tj/fgCTGWOe/TjHA40xZm3pGAZAXz7biR0+M46c88q7nM8awAozxUrIoECJ/yHCOW/knO8H8DKANxhj4QDAGPNijO1ljNUyxs4zxpYbyuhrQb9mjJUwxhoYY9sZY3b6fZkA/AB8pa9J/Ze+WBRjrIgx1sgY+6fheH2ZXzHGruhraUrG2JQewn0GgOx+75UxZsMYW6uP/w5jjOt/CvWvxU0AJwE8ZaTsasbY/3XZ9iljLP0e7wGMMV/GWLb+ta1njG3Ubw/Vt2BcZ4wpGGPP9+Xa+r97e79+xRgrAtDMGLPWn7NcH28JY2xWh+OjGWOn9fv26N+vP/XlWkbu1eg9dYgrtafPRX/19Nm+Dx8CSGWMDTdVbIQMOpxz+nmAfwCoAEw1sv0igCXQfXk7CeC3AGwBBAKoAPB0h/LFAHwBjADwA4A/9XR+/d/5ALz0x5cCWKzfJwFwCYCX/m9/AEE9xF0L4NEu247ot9fp43jiLve9HsBP+rgdAHwLIBtAYIdj0gF8bKTsKAAtAIbp/7YCUAXgsXu8BysAhQA+0cdgByABgA2AcwDW6F/zJwGo9efu8dr6v/vyfhXo79tev+0l/fshgC4xNgPw1Je/AF0N1wbAbAC3De9vb9fqcq893lNvn4u+fm6hawXK6+tn+27H3O2a+s+J4TVYAOCIpf8d0w/9PEg/VON/eFVC9x/wowDcOOd/4Jzf5pxXANgK4JUOx27knF/inF8DsBbAq72cO51zXqk//isAUfrtbQAeASBljNlwzlWc8/IezjEcusTR0a+gSz7eALZA19IQ1LUgY0wEYDmAufq4mwHsBTBCf38Gav11OuGcXwBwCsBM/aYnAbRwzn+6x3uIgy7Rvcc5b+ac3+Sc50H3BcIRwDr9a/4dgBwAr/ZybaBv71e6/r41+vvZo38/tJzzfwI4q4/tMeiattM553c459nQJWfcw7UMerynLnEZ+1z0ZJ++9eA6Y+w6gM29HG9g+GwbO8++PpT/LYC3mW6cCSGkC0r8Dy9vANegq2F6dfkPdg0A9w7HXurw+wXoktndVHf4vQW6hADO+TkAKwH8HsBVxtg/ehpoBaABgKjjBs75cc65mnN+i3P+N+hq/c8aKTsRQAXn/GyHbc5d4oL+/Nd7uP4u/Cdpvab/+17vwRfABc55a5ftXgAucc61HbZdgO496fHaevf6foExNo8xVtDh+HAArvo4rnDOeQ9l+3Ktvt4T0MPn4i5mcs6HG34AvNXL8QaGz7ax88wEAMbY6+w/g/0OdizMOS+G7kvL6j5ej5AhhRL/Q4gx9ih0/znmQfcf/fmO/8FyzkWc844J1bfD737Q1agMOiaNXnHOd3HOE6BLKhy6JnljigCIezsdAGZkuxt0XxwAAIwxBmAWdP+ZdxQKXVO8MXsAPMEY89GXbU++93APlwD4se6D7CoB+LLOT1b4AbjS27XRt/er/T1hjI2Crpa+DICLPoEWQ/e6VQHw1r8+Bh3f675cq6/3NCC6fLZ7xDnP4v8Z7PeMkUN+ByAFnb+4EEJAif+hwhgbxhh7DsA/AHzOOf8ZuqbdJv2AMHvGmBVjLFz/H6jBUsaYD2NsBHQ1vn922FcDXfN7X64vYYw9yRh7BMBNABroms6NOQBgUoeywxljTzPG7PQD1l6HrmZ/yEjZYgDRjLEoxpg9gD9Dlwz/2eF8jwCIAfCNsYtzzmuhG1OwHbrkV3of95APXXJdxxhz0MceD+A4dP3s/8V0gxCfAJAI3fvS47U7nLO396sjB/291+rj/wV0NX4A+FEf+zL9a/oCdF0A93Otu96TufXw2b5v+padf0LXZUQI6YAS/8PhK8aYGroa3PsAPgbwCwDgnLdB9x90FIDz0A2c+wsApw7ldwH4N3QDuyoA/KnDvj8D+H/6puDUXuJ4BLpHruqga/YdCd0XCWN2AnhWn7gB3eCxP+E/g/vehq4Jt9uz/JxzOXRjEQ7o4/UA8Czn/E6Hw56HbtDW3R7t2gXdYK+ONe4+30OH1zYYugFnlwG8zDm/rb/+M/rzbAYwj3Ne1su1+/p+dTy+BMBH0CX5GgBjoOsigT6O2QB+CV2XxxzoWkVu3eu1+nhP5tDjZ9sE/gDdFydCSAesc/cgGWwYYyoACzjn31rg2v8N4CrnfIMZzn0cwC/1/blET/+6fMY5327pWAghD6ahMEEIsRDOeU+tAaY49zhznfthwhibBEAJXS39dQARAL62aFCEkAcaJX5CHm4SALuhG2FfDuBFznmVZUMihDzIzNbUzxjzha6f1wOAFsAWzvmnjLF/QvefFaB7Bvs657y354EJIYQQYgLmrPG3AljFOT+ln5DlJGPsG875y4YDGGMfAWg0YwyEEEII6cBsiV/f3Fil/13NGCuF7pnaEqD92exk6GY2uytXV1fu7+9vrlAJIWRQOnnyZB3n/L5nMDx58uRIa2vrv0D3CCk9BfZw0AIobm1tXRATE3PV2AED0sfPGPMHMBa6Z4UNJgCo6TI7W8cyCwEsBAA/Pz/I5XIzR0kIIYMLY+xCf8pbW1v/xcPDI9TNza1BIBDQI2APAa1Wy2pra6XV1dV/ge4R3W7M/g2OMeYI3TzrKznnTR12vQrg7z2V45xv4ZzHcs5j3dxoym1CCLGAcDc3tyZK+g8PgUDA3dzcGvGfib66MWuNnzFmA13Sz9IvIGLYbg3dxCMx5rw+IYSQfhFQ0n/46N+zHiv2Zqvx6/vw/wqglHP+cZfdUwGUcc4vm+v6hBBCCOnOnE398QDmAnhSv7JYAWPMsDjIK7hLMz8hhBBCzMNsiZ9znsc5Z5zzCM55lP7ngH7fm5zzz8x1bUIIIQMr7ZDS/dvSmk5LcX9bWiNKO6Q0tgz0Q+ngwYOOUqk01NraOmb79u3Olo7nftHjGcRsLlzIwLWGHzttu9bwIy5cyLBQRIQQc4nyG97y7u6CQEPy/7a0RvTu7oLAKL/hLZaOzVQCAwNvb9++XZWYmFhv6Vj6Y0gmfkpIA0M0LALFxcvbX+trDT+iuHg5RMMiLBwZIcTUpoa6qz9Ojqp4d3dB4P/3lcLr3d0FgR8nR1VMDXVX9/vcU6cGhYWFhQYHB4elpaW5AoBQKBybkpLiI5VKQ8ePHy+urKzscbC6TCYTisViaVRU1OhFixb5hISEhAFAenq6y5QpU4ImTJgQ4u/vH75q1SpPQ5mNGze6iMViqUQikc6cOTMAACQSye1x48ZpBILeU2dbWxvmzJnjFxwcHDZ58uTgSZMmBT8orQRDMvFTQhoYI5zHIzw8HcXFy1Fe8QmKi5cjPDwdI5zHWzo0QogZTA11VydF+9Ru/0HlmRTtU2uKpA8AWVlZKoVCUVpQUFCSkZHhXl1dbaXRaATR0dEtJSUlpfHx8erVq1d79VR+wYIFAZs2bbpQUFBQZmVl1ekphaKiIoc9e/ZUFBcXK/bv3z/i6NGjQrlcbpeWluYpk8nOKJXKkoyMjIv3GvPOnTudL126ZKtUKhV/+9vfVKdPn3a8n3s3hyGZ+CkhDZwRzuPh7f0aVKqN8PZ+jV5jQgaxb0trRHtPXXb7Rbx/1d5Tl9269vnfr/Xr17tLJBJpTExMaHV1tY1CobATCARYsGDBNQCYP39+fX5+vtHEWldXZ9Xc3CyYNm1aMwC88cYb1zruT0hIaPLw8GhzdHTkM2bMaDhy5IjjoUOHhiUmJjZ4enq2AoC7u3vbvcb8/fffO86ePbvBysoKfn5+rY899phJvgSZwpBM/AAlpIFyreFHXLmyC/7+y3Dlyq5uXSyEkMHB0Kf/cXJUxe8SwyoNzf79Tf45OTkimUwmksvlZUqlsiQ0NFSj0Wi65S7dE+Td9bYQXddyjDFwzsEY69f8BeZaAM8Uhmzip4RkfoYulPDwdAQFvtPeykKvNSGDT8HF68KOffqGPv+Ci9eF/Tnv9evXrZycnNpEIpH29OnTdoWFhQ4AoNVqYegz37Fjh0tcXJzRGrWbm1ubg4ODNjc31wEAMjMzR3Tcn5eXN6ympsbqxo0b7MCBA8MnTZp0Y/r06U379+8fUV1dbQUANTU1Vvca94QJE27s27fPua2tDZcuXbI+fvy4SVo/TGFA5up/0HRMSCOcx8PZ+TFq7jcDdVNRp9fU0MWibiqi15mQQSb1aUlN121TQ93V/e3nT0pKatyyZYubWCyWBgUF3YyMjGwGAHt7e61CobAPCwvzEIlEbdnZ2RU9nSMjI0O1ePHiUUKhUBsfH68WiUTtTfexsbE3Xn755QCVSmWXlJRUP3HixBYAWLVqVdWECRNGCwQCHh4e3rJ3716VTCYTJicnBzc1NVnl5uYOX7t2rde5c+cUxq75xhtvNHz77bcisVgcFhAQcDMyMrJ5+PDh99xlYA7sQW6OMIiNjeWmXKTnwoUMiIZFdEo+1xp+hLqpCKNGLTLZdQghxJIYYyc557H3W76wsFAVGRlZZ8qYTEUoFI5taWk53ZdjGxsbBU5OTloAWLNmjUdVVZXN9u3bL6Wnp7vI5XKHnTt33vPgvXu5bnV1tdWjjz4a+sMPP5T5+fm1muNaXRUWFrpGRkb6G9s3JGv8xpL7COfxVAslhJBBaPfu3U4fffSRZ1tbG/P29r61a9cu1UBcd9q0aSFNTU1Wd+7cYe+9917VQCX93gzJxE8IIeThZqy2P3fuXL8TJ050Gt2/ZMmSmhUrVtSnpKQ0dD1++fLl9QD6NRlPfn6+/bx58wI6brO1tdUWFRWV5efnK/tzbnMZkok/Ly8P3t7eCAj4z3t1/vx5XLlyBQkJCRaMjBBCyP3KzMw0S5P93cTFxWnKyspKBvq6/TEkR/V7e3tjz549OH/+PABd0t+zZw+8vb0tHBkhhBBiXkOyxh8QEICXXnoJe/bsQWxsLORyOV566aVOLQCEEELIYDQka/yALvnHxsbi6NGjiI2NpaRPCCFkSBiSNf6NF2rg0dyECrkcEydOhFwuxzUPX1Q7DMOyUYNmBUlCCCGkmyFZ45948n+wV3EYgc/NwpNPPonA52Zhr+IwJp78H0uHNqh8JivHsfLOjwAfK6/DZ7JyC0VECDGb3D+6Q3mw8+x0yoMi5P5x0NSmDh486CiVSkOtra1jHpSV9u7HkEz8zNoTO86tRc65Y1hfUYWcc8ew49xaMGvP3guTPovwccKyXafbk/+x8jos23UaET5OFo6MEGJyPrEt+GJxYHvyVx4U4YvFgfCJbbFwZCYTGBh4e/v27arExMR7egSwtfWBeHy/3ZBs6h/z/FJgzBhs/sc8fFYnx+aar/DIK5kYEzDR0qENKo8HuWLja2OxbNdpzBnnh8+PX8TG18bi8SBXS4dGCDE1yTNqzPqsAl8sDkTkq7Uo/LsbZn1WAckz/V6VburUqUFVVVW2t27dEixevLgmNTW1TigUjn399ddrf/jhB5GTk1Pb3r17K7y8vIxmWJlMJkxJSfEXCoXacePG3fjuu++czp49q0hPT3f58ssvh9++fVtw6dKlR5KSkuo/+uijKgDYuHGjS3p6ujtjDKGhoZp9+/adl0gktwFAIOi9zpyTkyP64x//6Dly5Mg7JSUlwvLycqNT+1qC2Wr8jDFfxthhxlgpY0zBGFvRYd/bjDGlfvsH5orhbvKGj8UOrxfw7sWd2OH1AvKGj7VEGIPe40GumDPOD+nfncOccX6U9AkZzCTPqBH5ai2O/68nIl+tNUXSB4CsrCyVQqEoLSgoKMnIyHCvrq620mg0gujo6JaSkpLS+Ph49erVq716Kr9gwYKATZs2XSgoKCizsrLqNE99UVGRw549eyqKi4sV+/fvH3H06FGhXC63S0tL85TJZGeUSmVJRkbGfc0PUFRU5PDhhx9eeZCSPmDepv5WAKs456EAHgOwlDEmZYxNBvACgAjOeRiANDPGYFRegxp/+T4bL37zLzS7z0NK9X785fts5DWo0fzTcdT/5S8DHdKgday8Dp8fv4jlTwbj8+MXu/X5E0IGEeVBEQr/7oZxS6pQ+He3bn3+92n9+vXuEolEGhMTE1pdXW2jUCjsBAIBFixYcA0A5s+fX5+fn+9orGxdXZ1Vc3OzYNq0ac0A8MYbb1zruD8hIaHJw8OjzdHRkc+YMaPhyJEjjocOHRqWmJjY4Onp2QoA7u7u97W4TkRERPPo0aNv309ZczJb4uecV3HOT+l/VwMoBeANYAmAdZzzW/p9V80VQ09qld9ha+nv4fDir3Bl50nclqzB1tLfo3nfVlx55x3YhY8Z6JAGJUOf/sbXxuLdpyTtzf6U/AkZhAx9+rM+q8Az6yrbm/37mfxzcnJEMplMJJfLy5RKZUloaKhGo9F0y12MMaPle1uIrms5xhg452CM9XsFO6FQqO3vOcxhQAb3Mcb8AYwFcByAGMAExthxxpiMMfboQMTQ0azW87BJ/hscZqbA+5NPcGX9dly/mYSATZnw/uQTODw2bqBDGpSKLjd26tM39PkXXW60cGSEEJO7LBd26tM39Plflgv7c9rr169bOTk5tYlEIu3p06ftCgsLHQBAq9XCMLJ+x44dLnFxcUa7Fdzc3NocHBy0ubm5DgCQmZk5ouP+vLy8YTU1NVY3btxgBw4cGD5p0qQb06dPb9q/f/+I6upqKwCoqamx6s89PGjMPriPMeYIYC+AlZzzJsaYNQBn6Jr/HwWwmzEWyLt8LWOMLQSwEAD8/PxMG1TCyvZfHR4bB+dXX0Hd5v+F61tLKOmb0OJJQd22PR7kSv38hAxGU35T022b5Bl1f/v5k5KSGrds2eImFoulQUFBNyMjI5sBwN7eXqtQKOzDwsI8RCJRW3Z2dkVP58jIyFAtXrx4lFAo1MbHx6tFIlF7031sbOyNl19+OUClUtklJSXVT5w4sQUAVq1aVTVhwoTRAoGAh4eHt+zdu1clk8mEycnJwU1NTVa5ubnD165d63Xu3LkHqv++L1hvzSD9OjljNgByABzinH+s3/Y1dE39R/R/lwN4jHNe29N5YmNjuVwuN0lM24q3IdwlHHGecQCA5p+OQ7XibVROC8eo3DKq8ZvQxgs1iBomRILzf1r68hrUKGhqoYmSCBkAjLGTnPPY+y1fWFioioyMfCD75oRC4VhjK/QZ09jYKHByctICwJo1azyqqqpstm/ffik9Pd1FLpc77Ny5c8AX9zG3wsJC18jISH9j+8w5qp8B+CuAUkPS19sH4En9MWIAtgAG7IMV7hKOVFkq8qvy25P+JzMFcFq6WNfs/847aP7p+ECFM6h5ar5Dys/nkNeg+8Kf16BGys/n4Kn5zsKREUKGkt27dzuNHj1aGhISEnbs2DHHtWvXVlk6JksyW42fMZYA4HsAPwMwDHBYA+BbANsARAG4DSCVc37XTGDKGj8A5FflI1WWilRlMPbblmDhm+mdWgBuFv8MlwULTHa9oepaw4/4R9Em/A9bhTd9PLDjcjXe5h/hlYilGOE83tLhETLoDeYavzFz5871O3HiRKfR/UuWLKlZsWLFPU24cy/y8/Pt582b12mxF1tbW21RUVGZua7ZF3er8Zutj59zngfA+DBLYI65rtsXcZ5xSJYk4/1bGVgUsag96QO6Pn9q6jeNEc7j8UoEoCjMwScXEpHEcvBKJCV9Qoh5ZGZmDniTfVxcnKasrKxkoK/bH0Nyyt78qnzsVu7GoohF2K3cjfyqfEuHNGiVIBy57GnM4nuQy55GCcItHRIhhAxpQy7xG5r50yalYdnYZUiblNbe509My9CnvxzpSPV3xXKkd+rzJ4QQMvCGXOIvri9G2qS09ub9OM84pE1KQ3F9sYUjG3yOFsixrO1DvBKxFEGB7+CViKVY1vYhjhaYbrwGIYSQezPkFumZHz6/27Y4z7hO/fzENJKdisDzpkDoFwo4A8JroXjq5ylgCUUAJls6PEIIGZKGXI2fDJzg6BXwnZGEa7tK0fhvFa7tKoXvjCQER6/ovTAh5KGSfird/cilI52m5z1y6Ygo/VT6oJm04+DBg45SqTTU2to6xjBrYE9UKpXN9OnTAwcqtntBiZ+YlV3QcDiM84T6u0twGOcJu6Dhlg6JEGIGEW4RLe/nvR9oSP5HLh0RvZ/3fmCEW0SLpWMzlcDAwNvbt29XJSYm9vp4oL+//52vv/66x9kELYkSPzGrm+XX0Xy8CqInfdF8vAo3y69bOiRCiBk84fuEem3C2or3894PXJe/zuv9vPcD1yasrXjC94l+j+adOnVqUFhYWGhwcHBYWlqaK6CbuS8lJcVHKpWGjh8/XlxZWdlj17VMJhOKxWJpVFTU6EWLFvmEhISEAUB6errLlClTgiZMmBDi7+8fvmrVKk9DmY0bN7qIxWKpRCKRzpw5MwAAJBLJ7XHjxmkEgt5Tp1KptDVc50Ez5Pr4ifnlf/l/8AgSo6LiKhwLbiL89QRc1VzEtVFXUZlVjxtRdnji+amWDpMQYmJP+D6hTgxKrM0qzfJ8PfT1KlMkfQDIyspSubu7t924cYONHTtWOmfOnAaNRiOIjo5u2bp16+XU1FTP1atXe/U09e6CBQsCNm/erJo2bVrzW2+95d1xX1FRkcPPP/+scHR01I4dO1b6wgsvNAqFQm1aWprnjz/+WObp6dk62BbpGZQ1/lOHLuCysqHTtsvKBpw6dKHTtvwv/w8Xi4s6bbtYXIT8L//P7DEOZh5BYuRsWAf7ujvItVGg8MJJ5GxYh1s+jsi1UcBNa5IlugkhD5gjl46Ivir/yu310Nervir/yq1rn//9Wr9+vbtEIpHGxMSEVldX2ygUCjuBQIAFCxZcA4D58+fX5+fnOxorW1dXZ9Xc3CyYNm1aMwC88cYb1zruT0hIaPLw8GhzdHTkM2bMaDhy5IjjoUOHhiUmJjZ4enq2AoC7u3ubsXM/rAZl4h/pPwyHtha3J//LygYc2lqMkf7DOh13otkRX3z05/bkf7G4CF989GecaDb6+SF95BcegedWrsbJY5mQejjj68OH4TXtecjkJ5H8SjLCZtLMiIQMNoY+/bUJaytWx62uNDT79zf55+TkiGQymUgul5cplcqS0NBQjUaj6Za7dMvDdNfbtPRdyzHGwDkHY8x8K9hZ2KBM/D4SZzydEo5DW4txfH8FDm0txtMp4fCRdB6EOXZcLL4eOQ1ffPRn/LD7c3zx0Z/x9chpGDvuvqe2Jnp+4RGIfOpZnPl6P/zd3VBQWobY2FgEBAT0XpgQ8tApqi0SduzTN/T5F9UWCftz3uvXr1s5OTm1iUQi7enTp+0KCwsdAECr1cIwsn7Hjh0ucXFxRrsV3Nzc2hwcHLS5ubkOAJCZmTmi4/68vLxhNTU1Vjdu3GAHDhwYPmnSpBvTp09v2r9//4jq6morABhsTf2Dto/fR+KM8InekB9QIfZZ/25JH9CtDf+bhc9jyyeX0br3H/jZLQ6/Wfg8rRdvAheLi8CO/Q/GPzEJ31TWIio8HHK5HKF2dfDUVgIJKy0dIiHEhJZHL6/puu0J3yfU/e3nT0pKatyyZYubWCyWBgUF3YyMjGwGAHt7e61CobAPCwvzEIlEbdnZ2T2OoM/IyFAtXrx4lFAo1MbHx6tFIlF7031sbOyNl19+OUClUtklJSXVT5w4sQUAVq1aVTVhwoTRAoGAh4eHt+zdu1clk8mEycnJwU1NTVa5ubnD165d63Xu3DlFf+7PEgZt4r+sbEDx0SuIfdYfxUevwFvibDT5+2gqMUatQP7wGMSpFfDRVAKgxN8fF4uLkLNhHSY/+ypGFa2H89hf4fCB/Uh8Ng5O/16Bqqc+hWfvpyGEENjb2/OjR4+eNbbv008/rQRQ2ds5YmJiNGfOnCkBgDVr1ngYvjwAgKura6uxQYFvv/12/dtvv93psb1Jkya11NTUFHU91hiJRHL77NmzD+SXgkHZ1G/o0386JRzjng9sb/bvOuDP0Kf/rcfTGJf0Gr71eLpTnz+5P9XlZ/DcytWoHxmLxqc+Rei5dLw+zRXBJR+i8alPUa71snSIhJAhZPfu3U6jR4+WhoSEhB07dsxx7dq1VZaOyZIGZY3/qqqpU5++oc//qqqpU63/+IkCfD1yWnvz/mNBLvjjFsDrRAH8wiMsFf5D77aLB9ocREgwvIY3z8Lp6Ae4GPAK/B5Ppto+IaTfWlpaTnfdNnfuXL8TJ050Gp29ZMmSmhUrVtSnpKQ0dD1++fLl9QB6nYznbvLz8+3nzZvXafCSra2ttqioqKw/5zWnQZn4o58e1W2bj5Gm/vrAePxmolN7n76hz7/ocuOAxDlYeXt7Y8+ePXjppZcQgEtoO74Vx60TMK7yEHD+KBAw0dIhEkIGoczMTKPP8ZtTXFycpqysrGSgr9sfgzLx99XiSUHdtj0e5EqD+/opICAAL730Eo7/40N4a79CtiAR415/D1a4BOx5E3hpByV/QgixkEHZx08sLyAgALFeVth15ymMHPei7jG+gIm6pH/llKV7bzqjAAAgAElEQVTDI4SQIYsSPzGL8+fPI7vGF34TX4dcLsf58+d1OwIm0qN8hBBiQWZL/IwxX8bYYcZYKWNMwRhbod/+e8bYFcZYgf7nWXPFQCzj/Pnz7X38Tz75JF566SXs2bPnP8mfEEKIxZizxt8KYBXnPBTAYwCWMsak+n2fcM6j9D8HzBgDsYArV67oBvbpZ+kz9PlfuXLFwpERQszl6oYN7urDhztNz6s+fFh0dcMGd0vFZGoHDx50lEqlodbW1jGGWQMfRmZL/JzzKs75Kf3vagClALzvXooMBgkJCd2m5g0ICEBCQoKFIiKEmJt9ZGRL5a9WBxqSv/rwYVHlr1YH2kdGtlg6NlMJDAy8vX37dlViYmK/HgG0tAHp42eM+QMYC+C4ftMyxlgRY2wbY8zotybG2ELGmJwxJq+trR2IMImJbCvehvyq/E7b8qvysa14m4UiIoSYm2jyZLXX+nUVlb9aHVj93//tVfmr1YFe69dViCZP7vfSvFOnTg0KCwsLDQ4ODktLS3MFAKFQODYlJcVHKpWGjh8/XlxZWdnjU2oymUwoFoulUVFRoxctWuQTEhISBgDp6ekuU6ZMCZowYUKIv79/+KpVq9qnGdm4caOLWCyWSiQS6cyZMwMA3Wx848aN0wgEvafOlStXeo0ePVo6evRo6ciRIyNefPFF//6+DqZi9sTPGHMEsBfASs55E4D/BRAEIApAFYCPjJXjnG/hnMdyzmPd3NzMHSYxoXCXcKTKUtuTf35VPlJlqQh3CbdwZIQQcxJNnqx2mvlCbcPOTE+nmS/UmiLpA0BWVpZKoVCUFhQUlGRkZLhXV1dbaTQaQXR0dEtJSUlpfHy8evXq1T1OCbpgwYKATZs2XSgoKCizsrLqtOpeUVGRw549eyqKi4sV+/fvH3H06FGhXC63S0tL85TJZGeUSmVJRkbGPc8PsGHDhsqysrKSH374QTl8+PDWFStWXL2fezcHsz7HzxizgS7pZ3HOswGAc17TYf9WADnmjIEMvDjPOKRNSkOqLBXJkmTsVu5G2qQ0xHnGWTo0QogZqQ8fFjXu+9LNed7cqsZ9X7o5jB+vNkXyX79+vfu//vWv4QBQXV1to1Ao7AQCARYsWHANAObPn18/e/bsYGNl6+rqrJqbmwXTpk1rBoA33njj2jfffDPcsD8hIaHJw8OjDQBmzJjRcOTIEUcrKyskJiY2eHp6tgKAu7t7m7Fz90ar1eLFF18MWLp0ac2ECRMemC4Pc47qZwD+CqCUc/5xh+0dZ2ydBaDYXDEQy4nzjEOyJBkZRRlIliRT0idkkDP06XutX1fhsWZNpaHZv+uAv3uVk5MjkslkIrlcXqZUKktCQ0M1Go2mW+7SpZzuOOdGt/dUjjEGzjkYY3cv2AerVq3y8vT0vL1ixYoHakyAOZv64wHMBfBkl0f3PmCM/cwYKwIwGcA7ZoyBWEh+VT52K3djUcQi7Fbu7tbnTwgZXDSFhcKOffqGPn9NYaGwP+e9fv26lZOTU5tIJNKePn3arrCw0AHQ1aYNI+t37NjhEhcXZ7Rlwc3Nrc3BwUGbm5vrAACZmZkjOu7Py8sbVlNTY3Xjxg124MCB4ZMmTboxffr0pv3794+orq62AoCamhqre43773//u9ORI0eGbdu27dK9ljU3szX1c87zABj7CkaP7w1yhj59Q/N+nEdcp78JIYPPyJUra7puE02e3O+m/qSkpMYtW7a4icViaVBQ0E3Dkrr29vZahUJhHxYW5iESidqys7MrejpHRkaGavHixaOEQqE2Pj5eLRKJ2pvuY2Njb7z88ssBKpXKLikpqX7ixIktALBq1aqqCRMmjBYIBDw8PLxl7969KplMJkxOTg5uamqyys3NHb527Vqvc+fOGV16d8OGDe5Xr161iYqKCgWA6dOnX9+wYUOvSwgPBNZbM8iDIDY2lsvlckuHQfpoW/E2hLuEd0ry+VX5KK4vxvzw+RaMjJChhTF2knMee7/lCwsLVZGRkXWmjMlUhELhWGMr9BnT2NgocHJy0gLAmjVrPKqqqmy2b99+KT093UUulzvs3LlzwBf3MbfCwkLXyMhIf2P7hvQiPcQ8jCX3OM84qu0TQixi9+7dTh999JFnW1sb8/b2vrVr1y6VpWOyJEr8hBBCHjrGavtz5871O3HihGPHbUuWLKlZsWJFfUpKSkPX45cvX14PoF8D7/Lz8+3nzZvXacYyW1tbbVFRUVl/zmtOlPgBqGWXYOMjgl1Q+xMeuFl+HXcuqyGa5GvByAghhPRVZmbmgDfZx8XFacrKykoG+rr9QavzASi/cAq1O4txs/w6AF3Sr91ZjPILtHzs/dh4oQZ5DZ3H8+Q1qLHxQrexP4QQQgYYJX4AI6IDcOzqPtTuLEbjv1Wo3VmMY1f3YUR0QO+FSTdRw4RYqFC1J/+8BjUWKlSIGtavp3oIIYSYADX1A/ALjwCWzsOZLbmQfMdxpkWO8Uvn6baTe5bgLMKWMH8sVKjwhpcr/lZZhy1h/khw7tc8HoQQQkyAavx6I+39EDxsLBQNPyB42FiMtPezdEgPtQRnEd7wcsUnF2rwhpcrJX1CCHlAUOLHf/r0f6rPgeMUH/xUn9Opz5/cu7wGNf5WWYd3Rrnjb5V13fr8CSGDy09flrufL6rr9A3/fFGd6Kcvy90tFZOpHTx40FEqlYZaW1vHGGYNfBhR4gdwVX4Wx67uw/il8xCfPAfjl87Dsav7cFV+1tKhPZQMffpbwvzxq0DP9mZ/Sv6EDF7uAU4tuTtKAg3J/3xRnSh3R0mge4DTA7M4TX8FBgbe3r59uyoxMfGBmnv/XlHiB1Btd6FTn75feATGL52HarsLFo7s4VTQ1NKpT9/Q51/QNGj+/RNCugiIcFVPeVNakbujJPD73We8cneUBE55U1oREOHa72/8U6dODQoLCwsNDg4OS0tLcwV0M/elpKT4SKXS0PHjx4srKyt7HLMmk8mEYrFYGhUVNXrRokU+ISEhYQCQnp7uMmXKlKAJEyaE+Pv7h69atap9EbmNGze6iMViqUQikc6cOTMAACQSye1x48ZpBILeU+fMmTMDPv/88/ZnxJ9//vmArKwsp368DCZDiR9A3AsvdhvI5xcegbgXXrRQRA+3ZaPcu/XpJziLsGzUoGnxI4QYERDhqpY85lFb9N1lT8ljHrWmSPoAkJWVpVIoFKUFBQUlGRkZ7tXV1VYajUYQHR3dUlJSUhofH69evXq1V0/lFyxYELBp06YLBQUFZVZWVp3mqS8qKnLYs2dPRXFxsWL//v0jjh49KpTL5XZpaWmeMpnsjFKpLMnIyLjn+QFSUlJqd+zY4QIA9fX1VidPnnRMTk5uvPe7Nz1K/MTkPpOV41h55+m9j5XX4TNZuYUiIoQMhPNFdSLlT9VuEU/6VCl/qnbr2ud/v9avX+8ukUikMTExodXV1TYKhcJOIBBgwYIF1wBg/vz59fn5+Y7GytbV1Vk1NzcLpk2b1gwAb7zxxrWO+xMSEpo8PDzaHB0d+YwZMxqOHDnieOjQoWGJiYkNnp6erQDg7u7eZuzcdzNjxowbFy5csLty5Yr1X//61xEzZsxosLGxufebNwNK/MTkInycsGzX6fbkf6y8Dst2nUaEzwPRykUIMQNDn/6UN6UVE5LFlYZm//4m/5ycHJFMJhPJ5fIypVJZEhoaqtFoNN1yF2PGFoMFeluIrms5xhg452CM9XsFu+Tk5Pq//OUvIz7//HOXhQsXPjCLHVHiJyb3eJArNr42Fst2ncbH/1Zi2a7T2PjaWDwe5Grp0AghZlJzvlHYsU/f0Odfc76xXzN3Xb9+3crJyalNJBJpT58+bVdYWOgAAFqtFoaR9Tt27HCJi4sz2q3g5ubW5uDgoM3NzXUAgMzMzBEd9+fl5Q2rqamxunHjBjtw4MDwSZMm3Zg+fXrT/v37R1RXV1sBQE1NjdX9xL548eK6jIwMdwCIjY29eT/nMAeawIeYxeNBrpgzzg/p353D8ieDKekTMsg99kJQtzm5AyJc1f3t509KSmrcsmWLm1gslgYFBd2MjIxsBgB7e3utQqGwDwsL8xCJRG3Z2dkVPZ0jIyNDtXjx4lFCoVAbHx+vFolE7U33sbGxN15++eUAlUpll5SUVD9x4sQWAFi1alXVhAkTRgsEAh4eHt6yd+9elUwmEyYnJwc3NTVZ5ebmDl+7dq3XuXPnFD1d19fXtzUoKOhmYmLiA/VsOCV+YhbHyuvw+fGLWP5kMD4/fhGPBblQ8ieE3DN7e3t+9OhRo89Wf/rpp5UAKns7R0xMjObMmTMlALBmzRoPw5cHAHB1dW3duXNnt8F7b7/9dv3bb7/d6bG9SZMmtdTU1BT1NXa1Wi1QqVSP/PKXv7zW+9EDh5r6ickZ+vQ3vjYW7z4laW/27zrgjxBCBsLu3budRo8eLQ0JCQk7duyY49q1a6vMfc19+/aJxGJxWEpKylUXF5d7HhxoTqy3gQ/3fWLGfAHsBOABQAtgC+f80w77UwF8CMCNc37XjBAbG8vlcrlZ4iSm95msHBE+Tp1q+MfK61B0uRGLJwVZMDJChhbG2EnOeez9li8sLFRFRkY+NN/Y586d63fixIlOo/uXLFlSs2LFCrNNuJOfn28/b968Tiu62draaouKisrMdc2+KCwsdI2MjPQ3ts+cTf2tAFZxzk8xxkQATjLGvuGcl+i/FEwDMOBrJxPzM5bcHw9ypaZ+QohZZWZmDnhOiYuL05SVlZUM9HX7w2xN/ZzzKs75Kf3vagClALz1uz8B8F8AzNPcQAghhBCjBqSPnzHmD2AsgOOMsecBXOGcF/ZSZiFjTM4Yk9fW1g5AlIQQQsjgZ/bEzxhzBLAXwEromv/fB/Db3spxzrdwzmM557Fubm5mjpIQQggZGsya+BljNtAl/SzOeTaAIAABAAoZYyoAPgBOMcY8zBkHIYQQ88r7x0738pP5nWbpKz+ZL8r7x05apOMBY7bEz3TzIP4VQCnn/GMA4Jz/zDkfyTn355z7A7gMIJpzXm2uOAghhJifZ8joloObPgo0JP/yk/mig5s+CvQMGT2kluVcuXKl1759+0yyRoG5mHNUfzyAuQB+ZowV6Let4ZwfMOM1CSGEWEBQTJz6maWrKg5u+igwbOKUWsXRXLdnlq6qCIoxPpXuYLVhw4ZeJxSyNHOO6s/jnDPOeQTnPEr/c6DLMf69PcNPCCHk4RAUE6cOmzil9tTB/Z5hE6fUmirpT506NSgsLCw0ODg4LC0tzRUAhELh2JSUFB+pVBo6fvx4cWVlZY8V2bi4OMkvf/lL39jYWElgYGCYTCYTPvXUU0GjRo0KX758eftyvr///e/dQ0JCwkJCQsL+8Ic/jASApqYmwRNPPBEskUikISEhYVu3bnUGgNTUVM/w8PDQkJCQsFdffXWUVqsFACQlJfkb1hCQyWTCsWPHjpZIJNIxY8aENjQ0GM256enpLvPmzfMz/D158uTgnJwcs7Ua0Mx9hBBCTKL8ZL5IcTTXLfqZ56sUR3Pduvb536+srCyVQqEoLSgoKMnIyHCvrq620mg0gujo6JaSkpLS+Ph49erVq73udg5bW1utXC5X/uIXv6h96aWXgrdu3XqxrKxM8c9//tO1urra6vvvvxfu2rXL5eTJk6Vyubx0586dbj/88IN9dnb2MA8PjztKpbLk7NmzitmzZzcBwHvvvXe1uLi49OzZswqNRiP4xz/+0Wn50Zs3b7LXX389aMOGDReVSmWJTCZTOjo6ak3xevQXJX5CCCH9ZujTf2bpqorJby6sNDT7myL5r1+/3l0ikUhjYmJCq6urbRQKhZ1AIMCCBQuuAcD8+fPr8/PzHe92jlmzZl0HgMjISE1wcLBm1KhRd+zt7bmvr++tiooK2yNHjjg+++yz14cNG6Z1cnLSzpgxo+Hw4cOi6Ohozffffz9syZIl3l9//bWjYfrdgwcPiiIiIkaLxWLpsWPHRMXFxfYdr1dUVGQ3cuTIO5MmTWoBgBEjRmhtbGz6+1KYBCV+Qggh/VZ1tkzYsU/f0OdfdbasX8vy5uTkiGQymUgul5cplcqS0NBQjUaj6Za7dOPJe2ZnZ8cBQCAQ4JFHHmmfPE4gEKC1tbXH6esjIiJunTp1qmTMmDGa999/3zs1NdWzpaWFrVq1alR2dnb5mTNnSubMmVN38+bNTjFxzsEY69MkddbW1tzQVQAAt27dMmtupsRPCCGk3xJemVfTtU8/KCZOnfDKvG7L9d6L69evWzk5ObWJRCLt6dOn7QoLCx0AQKvVwtCXvmPHDpe4uP6NJ3jyySdvHDhwYLharRY0NTUJDhw44Dx58mS1SqWyEYlE2rfeeuvaypUrawoKCoQtLS0CAPDw8GhtbGwUfPXVV85dzxcZGXmzpqbGViaTCQGgoaFBcOfOHaPXDgoKuq1QKIRtbW04d+6cTVFRkUN/7qU3tCwvIYSQB1ZSUlLjli1b3MRisTQoKOimYUlde3t7rUKhsA8LC/MQiURt2dnZFf25TkJCQstrr71WHx0dHQoAc+fOrY2Pj9fs3bt32K9//WsfgUAAa2trvnnz5guurq5tr7/+eq1UKg3z8fG53XGZXwM7OzuelZVVvnz5cr+bN28K7OzstEePHj3j5OTUrZ9/2rRpNzZt2nRLIpGESSQSjVQqNesjkGZbnc+UaHU+Qgi5d4N5dT6hUDi2paXltKXjeFDdbXU+auonhBBChhBq6ieEEPLQMVbbnzt3rt+JEyc6je5fsmRJzYoVK+oHLrKe7d27d9j777/v03Gbr6/vrW+++aZ8IOPoU+JnjD0CIAmAf8cynPM/mCcsQggh5N5kZmZetHQMd5OUlNSUlJRUYuk4+lrj/xJAI4CTAG6ZLxxCCCGEmFNfE78P53y6WSMhhBBCiNn1dXDfMcbYGLNGQgghhBCzu2uNnzH2MwCuP+4XjLEK6Jr6GQDOOY8wf4iEEEIedI2HVO62fqIW+1CX9ol0NKX1otsX1UKnp/37NYkPMa3eavzPAUgE8AyAYABP6f82bCeEEEJg6ydqubb7TKCmtF4E6JL+td1nAm39RGadjMaSVq5c6bVv3z6zrKKnVCptQ0JCwsxx7rvW+DnnFwCAMZbJOZ/bcR9jLBPAXKMFCSGEDCn2oS7qEcniimu7zwQ6RI+sbT511W1EsriiYwvAYNLa2ooNGzZUWjqO+9HXPv5O3zoYY1YAYkwfDiGEkIeVfaiL2iF6ZO2NHyo9HaJH1poq6U+dOjUoLCwsNDg4OCwtLc0V0M3cl5KS4iOVSkPHjx8vrqys7LEi+6c//WlkUFBQmFgslj733HOBAPDuu+96/fa3v3U3HBMSEhKmVCptlUqlbUBAQNjs2bP9xWKxdPr06YFqtVoAAN7e3mNSU1M9Y2JiJNu2bXNOSkryN6wX4O3tPWbZsmXeUVFRo8PDw0Pz8vKECQkJIb6+vuEffPCBm+E6v/nNb9zDw8NDxWKx9J133rnrUsKtra0wFkd/3fUkjLFfM8bUACIYY02MMbX+76vQPeJHCCGEANA17zefuurmGO9V1Xzqqpuh2b+/srKyVAqForSgoKAkIyPDvbq62kqj0Qiio6NbSkpKSuPj49WrV6/uMYmmp6d7FBcXl5w5c6Zkx44dF3q7nkqlslu8eHHtmTNnSkQikfbDDz9sT9x2dnbakydPKhcuXNjQtZyvr+/tgoKCsnHjxt2YP3++/1dffVV+/PjxsnXr1nkBQHZ29rBz587ZFRUVlZaWlpYUFBQIDx482ONywneLoz/umvg553/mnIsAfMg5H8Y5F+l/XDjnvzZFAIQQQh5+hj79EcniiuGJQZWGZn9TJP/169e7SyQSaUxMTGh1dbWNQqGwEwgEWLBgwTUAmD9/fn1+fn6PCVQikWhmzZoVsHnz5hE2Nja9LlDj4eFx+6mnnmoGgLlz59YfO3as/dzz5s3rlvANkpOTrwPAmDFjWqKjo5udnZ21Xl5erY888oi2rq7O6uuvvx529OjRYVKpVBoWFiYtLy+3Kysrs7ufOPqjr8/xr2GMzQaQAN0o/+855/vuVoAx5gtgJwAPAFoAWzjnnzLG/gjgBf22qwDe5Jw/lP0khBBCdG5fVAs79ukb+vxvX1QL+9Pkn5OTI5LJZCK5XF4mEom0cXFxEo1G063Syhjr8RyHDx8+e/DgQdG+ffuGf/DBB15nz54ttra25lrtfxbKu3XrVvsJup6r498ikajb6noGdnZ2HAAEAgFsbW3bv2AIBALcuXOHcc6xcuXKqvfee69PCx/dLY7+6Gt/wSYAiwH8DKAYwGLG2KZeyrQCWMU5DwXwGICljDEpdK0HEZzzKAA5AH57f6ETQgh5UDg97V/TNcHbh7qo+/so3/Xr162cnJzaRCKR9vTp03aFhYUOAKDVamHoX9+xY4dLXFyc0S8XbW1tKC8vt01MTFRv3rz5slqttmpsbLTy9/e/VVBQ4AAAeXl5witXrjxiKFNVVWX77bffOgDArl27Rjz++OM3+nMPBs8880xTZmama2NjowAAzp8/b3PlypUeK+DmiqOvNf5JAMK5fg1fxtjfoPsS0CPOeRWAKv3vasZYKQBvznnHeYodoGtBIIQQQrpJSkpq3LJli5tYLJYGBQXdjIyMbAYAe3t7rUKhsA8LC/MQiURt2dnZFcbKt7a2stdeey1ArVZbcc7ZokWLalxdXdvmzZvXkJWV5TJ69GhpVFRU86hRo24aygQGBt7ctm2by1tvvTUqICDgVmpqaq0p7mX27NlNCoXC7tFHHx0NAEKhUJuVlXXe29u71djx5oqD6XP53Q9iLBvAOx0e7xsFYB3n/NU+XYQxfwBHofvy0MQYWwtgHnTz/0/mnN/1ZmJjY7lcLu/LpQghhOgxxk5yzmPvt3xhYaEqMjKyT83SA00oFI41tkJffymVStvnnnsu5OzZswpTn3sgFRYWukZGRvob29fXpn4XAKWMsSOMsSMASgC4Mcb2M8b2360gY8wRwF4AKznnTQDAOX+fc+4LIAvAsh7KLWSMyRlj8tpak3zJIYQQQoa8vjb131c/PGPMBrqkn8U5zzZyyC4A/wLwu647OOdbAGwBdDX++7k+IYSQwclYbX/u3Ll+J06c6DTyfcmSJTUrVqyo7+t5JRLJ7YGs7VdXV1s98cQTkq7bjxw5ovTw8GgzxzX7lPg55zJ9834I5/xbxpg9AGvOeY8jNZlu+OFfAZRyzj/usD2Ec35W/+fzAMruP3xCCCFEJzMz86KlY7hXHh4ebWVlZSW9H2k6fUr8jLEUAAsBjAAQBMAHwGcAptylWDx0U/r+zBgr0G9bA+CXjDEJdI/zXYDuaQFCCCGEDIC+NvUvBRAH4DgAcM7PMsZG3q0A5zwPulX8ujpwTxESQgghxGT6OrjvFuf8tuEPxpg16DE8Qggh5KHT18QvY4ytAWDPGJsGYA+Ar8wXFiGEkIdJbm6uu1Kp7DQ9r1KpFOXm5rr3VOZhZ85lec2pr4l/NYBa6CbtWQRdc/3/M1dQhBBCHi4+Pj4tX3zxRaAh+SuVStEXX3wR6OPj02Lp2MzBsCzvzJkzH7plh/uU+DnnWgD7ALzFOX+Rc76V92XmH0IIIUOCRCJRz5o1q+KLL74IPHjwoNcXX3wROGvWrAqJRNLvxDgUl+VdsmSJ97p169rLvfvuu16/+93vTNJ60tuyvIwx9nvGWB10j90pGWO1jDGaX58QQkgnEolEHRkZWXv8+HHPyMjIWlMkfWBoLss7Z86ca3v37h1h+PvLL790njNnTo8rA96L3mr8K6F7LO9R/VK8IwCMAxDPGHvHFAE8CC5cyMC1hh87bbvW8CMuXMiwUESEEPLwUSqVosLCQrdx48ZVFRYWunXt879fQ3FZ3vj4eE19fb21SqWy+fHHH+2dnJzaQkJCbhs79l719jjfPADTOOftczVzzisYY3MA/BvAJ6YIwtIuXBCgTbsUkZGbMMJ5PK41/IjCwqWwEizBqFGWjo4QQh58hj59Q/N+YGCg2hTN/UN5Wd7ExMSGzz//3Lm6utomKSnpWl/K9EVvNX6bjknfQL+ojo2pgrA0X9+pKC2dgMLCpSiv+ASFhUtRWjoBvr5TLR0aIYQ8FC5fvizsmOQNff6XL18W9ue8Q3lZ3rlz517bu3fviJycHJM18wO91/jv1qxgkiaHB0FAQACemb4SeT9UQqvdiMrKaDwzfSUCAgIsHRohhDwUpkyZUtN1m0QiUfe3n38oL8sbGxt7s7m5WeDu7n571KhRd0wRA9DLsryMsTYAzcZ2AbDjnA9IrX8gluW91vAjTp9ejIsXAuA36jzGjv0MI5zHm/WahBBiTrQs770b8svycs6tOOfDjPyIBirpDwRDn75S+QRGjVoOpfIJFBYu7TbgjxBCCHnY9XWu/kHtgkqG0tIJ7c37AQEBOPg1MNxJRrV+Qgh5ANGyvPePEj+A5uYEPDPdu71P39Dnf+XKFQtHRgghpK9oWd6+ocQPICEhods2Q82fEEIIGUz6Olc/IYQQQgYBSvyEDCGnDl3AZWXnx4EvKxtw6lCvs5gSQgYJSvyEDCEj/Yfh0Nbi9uR/WdmAQ1uLMdJ/mIUjI4QMFEr8hAwhPhJnPJ0SjkNbi3F8fwUObS3G0ynh8JE4Wzo08pArL//IvbYut9Pc/LV1uaLy8o9MsqLcg2jlypVe+/btM8l6BAOJEj8hQ4yPxBnhE70hP6BC+ERvSvrEJIY5RbWUlKQGGpJ/bV2uqKQkNXCYU1SLpWMzh9bWVmzYsKFy5syZJlmB8G60Wi3a2kz3ZJ/ZEj9jzJcxdpgxVsoYUzDGVui3f8gYK2OMFTHGvmCMDTdXDISQ7i4rG1B89Apin/VH8dEr3fr8Cbkfbq5T1FJpWkVJSWrgmTN/9CopSQ2UStMq3Fyn9DsxTp06NSgsLMJfgosAACAASURBVCw0ODg4LC0tzRXQzdyXkpLiI5VKQ8ePHy+urKzs8Sm1P/3pTyODgoLCxGKx9LnnngsEdOvb//a3v21vjQgJCQlTKpW2SqXSNiAgIGz27Nn+YrFYOn369EC1Wi0AAG9v7zGpqameMTExkm3btjknJSX5G9YL8Pb2HrNs2TLvqKio0eHh4aF5eXnChISEEF9f3/APPvigfVnf3/zmN+7h4eGhYrFY+s477/S4lLBSqbQNDAwMmzNnjp9+JT/b/r6OBuas8bcCWMU5DwXwGICljDEpgG8AhHPOIwCcAfBrM8ZACOnA0Kf/dEo4xj0f2N7sT8mfmIKb6xS1p8fs2kuXd3h6esyuNUXSB4CsrCyVQqEoLSgoKMnIyHCvrq620mg0gujo6JaSkpLS+Ph49erVq3tMounp6R7FxcUlZ86cKdmxY0evI1lVKpXd4sWLa8+cOVMiEom0H374YXvitrOz0548eVK5cOHCbv9ofH19bxcUFJSNGzfuxvz58/2/+uqr8uPHj5etW7fOCwCys7OHnTt3zq6oqKi0tLS0pKCgQHjw4MEelxNWqVR2v/jFL+pLS0tLxGKxydbHMVvi55xXcc5P6X9XAygF4M05/zfn3LAgwU8AfMwVAyGks6uqpk59+oY+/6uqJgtHRgaD2rpcUVV1tpuvz5tVVdXZbl37/O/X+vXr3SUSiTQmJia0urraRqFQ2AkEAixYsOAaAMyfP78+Pz+/xwQqkUg0s2bNCti8efMIGxubnheo0fPw8Lj91FNPNQPA3Llz648dO9Z+7nnz5vX4LTk5Ofk6AIwZM6YlOjq62dnZWevl5dX6yCOPaOvq6qy+/vrrYUePHh0mlUql+lq8XVlZmV1P5/P09Lw9ZcoUY+vl9MuATODDGPMHMBbA8S675gP4Zw9lFgJYCAB+fn5mjI6QoSP66VHdtvlInKmfn/SboU/f0LzvPOJxtSma+3NyckQymUwkl8vLRCKRNi4uTqLRaLpVWhljPZ7j8OHDZw8ePCjat2/f8A8++MDr7NmzxdbW1lyr1bYfc+vWrfYTdD1Xx79FIpEWPbCzs+MAIBAIYGtr2/4FQyAQ4M6dO4xzjpUrV1a99957fVr4SCgU9nit/jD74D7GmCOAvQBWcs6bOmx/H7rugCxj5TjnWzjnsZzzWDc3N2OHEEIIeUA0NRYIOyZ5Q59/U2OBsD/nvX79upWTk1ObSCTSnj592q6wsNAB0A14M/Sv79ixwyUuLs7ol4u2tjaUl5fbJiYmqjdv3nxZrVZbNTY2Wvn7+98qKChwAIC8vDzhlStXHjGUqaqqsv32228dAGDXrl0jHn/88Rv9uQeDZ555pikzM9O1sbFRAADnz5+3uXLlyoDPoGvWCzLGbKBL+lmc8+wO298A8ByAKfxu6wITQgh5KAQFrarpus3NdYq6v/38SUlJjVu2bHETi8XSoKCgm5GRkc0AYG9vr1UoFPZhYWEeIpGoLTs7u8JY+dbWVvbaa68FqNVqK845W7RoUY2rq2vbvHnzGrKyslxGjx4tjYqKah41atRNQ5nAwMCb27Ztc3nrrbdGBQQE3EpNTa3tzz0YzJ49u0mhUNg9+uijowFdjT4rK+u8t7d3a29lTYmZK+8yXdvI3wBc45yv7LB9OoCPAUzinPfpxYyNjeVyudwscRJCyGDFGDvJOY+93/KFhYWqyMjIPjVLDzShUDjW2Ap9/aVUKm2fe+65kIFcoc8cCgsLXSMjI/2N7TNnjT8ewFwAPzPGCvTb1gD/P3v3HtbUlfYP/7uCIERCRIgBAeUcEpCDWBRrFRWtWH08jlWqjtVWbQfHSrV1Om/7m+nYaXXQduhh1DrWatHWsVYHT/TBcqhaoSoEOQXkoIJAQSCEM4T9/gHhAUVFAiTC/bkuLs3O3mvf2Rd6Z62197oRDmAogP9tmze5wnHchj6MgxBCCCFt+izxcxx3EUBXd1uc7atzEkIIGRy66u2vXLly9K+//trp7v7XXnutZNOmTfe6265EImnsz95+cXGxQUBAgOT+7bGxsQorK6veW7WnAyrLSwghZEA4fPjwbV3H8KSsrKzUmZmZ6f15TlqylxBCCBlEBmTiV8XdQX1OZadt9TmVUMXd0VFEhBBCiH4YkInf0FaA8iMZ7cm/PqcS5UcyYGj71BVRIoQQQnrVgJzjN3YajhHBUpQfycCwCdaoSSjCiGApjJ2oHhAhhJDBbUD2+IHW5D9sgjVUP93BsAnWlPQJIaQPfZhbJP6xTNlpWPXHMqXgw9wi8cOOedq98cYbo06ePNlnQ8k+Pj5ufdHugE389TmVqEkogmC6HWoSih6Y8yeEENJ7fM34tRszbjtqkv+PZUrBxozbjr5m/Fpdx9YXmpub8cknn9xdsGBBr1Qg7EpSUlJmX7Q7IBO/Zk5/RLAUwln27cP+lPwJIaRvzLIUqj6Vjs7dmHHb8d3sglEbM247fiodnTvLUqh1YgwMDHRyd3eXOjs7u4eFhVkCrSv3vfrqq7YymUzq7+/vevfu3YdOXW/fvn2kk5OTu6urq2zu3LmOABAaGjrqvffeax+NcHFxcVcoFEYKhcLIwcHBfdGiRfaurq6y2bNnO6pUKh4A2NjYjN2yZYu1r6+v5MCBA+aLFy+219QLsLGxGRsSEmLj7e3t5uHhIb148SJ/8uTJLnZ2dh47d+5sLzjz7rvvij08PKSurq6yzZs3P7SUsOYzAq2FisaPHy+ZOXOmk5OTk3twcPBotbrnj/gPyMTfVKDqNKevmfNvKuizL2aEEDLozbIUqpZamZd+WVBmvdTKvLQ3kj4ARERE5KelpWUkJyen7927V1xcXGxQV1fHGzduXG16enrGs88+q9q2bdtDk2h4eLhVampqelZWVvrBgwdvPe58+fn5xhs2bCjNyspKFwgELf/4xz/aE7exsXHLtWvXFOvWrXugPK+dnV1jcnJy5oQJE6rXrFljHxkZmZOQkJD50UcfjQKAEydOmN28edM4JSUlIyMjIz05OZl/7ty5h5YT7ujGjRvD/vnPf95RKBRp+fn5Qw8dOtTjkpoDMvELpto9MKdv7DQcgql2OoqIEEIGvh/LlIJjxRWiV20ti44VV4jun/PvqR07doglEonM19dXWlxcbJiWlmbM4/HwyiuvlAPAmjVr7iUmJj40gUokkrqFCxc6fPHFFyMMDQ0fW6DGysqqcdasWTUAsHLlynuXL19ub3vVqlUPJHyNpUuXVgLA2LFja8eNG1djbm7eMmrUqOahQ4e2lJWVGZw/f94sPj7eTCaTydzd3WU5OTnGmZmZxt25BmPHjq2RyWSNQ4YMwdKlS8t//vnnbn1h6MqAvKufEEJI/9LM6WuG958zF6h6Y7j/9OnTgri4OMHVq1czBQJBi5+fn6Suru6BTmtb7ZcuxcTEZJ87d05w8uTJ4Tt37hyVnZ2dOmTIEK6l5f/K3Tc0NLQ3cH9bHV8LBIIWPISxsTEHADweD0ZGRu1fMHg8HpqamhjHcXjjjTeKtm7d+sSFjx4V05MakD1+Qggh/etaVS2/Y5LXzPlfq6rla9NuZWWlgVAoVAsEgpakpCRjuVw+DABaWlqgmV8/ePCghZ+fX5dfLtRqNXJycozmzZun+uKLLwpUKpWBUqk0sLe3b0hOTh4GABcvXuQXFhYO1RxTVFRkFB0dPQwAjhw5MmLSpEnV2nwGjaCgoKrDhw9bKpVKHgDk5eUZFhYWdqsDfuPGjWGZmZlGarUax48fH/Hcc8/1+MsU9fgJIYRo7U+O1iX3b5tlKVRpO8+/ePFi5b59+0Surq4yJyenei8vrxoAMDExaUlLSzNxd3e3EggE6hMnTuR2dXxzczMLDg52UKlUBhzHsfXr15dYWlqqV61aVREREWHh5uYm8/b2rhkzZky95hhHR8f6AwcOWLz++utjHBwcGrZs2dKtEvKPs2jRoqq0tDTjZ555xg0A+Hx+S0RERJ6NjU3z44719vaufvPNN20zMzNNJkyYoFq5cmWP71ZnHPfY6Q6dGz9+PHf16lVdh0EIIU8Vxtg1juPG9/R4uVye7+Xl9cTD0v2Bz+f7dFWhT1sKhcJo7ty5Lv1Zoe9xTp8+Ldi1a5c4JibmZnePkcvlll5eXvZdvUdD/YQQQsggQkP9hBBCnjpd9fZXrlw5+tdff+10t/trr71WsmnTpnvdbVcikTT2Z2+/uLjYICAgQHL/9tjYWIWVlZUaAObOnauaO3durz2PTomfEEL0yJ64HHjaCjHJybJ92+WcMqQUKLFhqpMOI9N/hw8fvq3rGJ6UlZWVOjMzM70/z0lD/YQQokc8bYUIOZKEyzmtU+uXc8oQciQJnrZCHUdGBoo+S/yMMTvGWAxjLIMxlsYY29S2/Xdtr1sYYz2+6YQQQgaiSU6W+CzYByFHkrD7RwVCjiThs2CfTiMAhGijL3v8zQDe5DhOCmAigD8wxmQAUgEsAhDfh+cmhJCn1iQnS6yYMBrhP93EigmjKemTXtVniZ/juCKO4663/V0FIAOADcdxGRzHKfrqvIQQ8rS7nFOGbxJu44/TnfFNwu32YX9CekO/zPEzxuwB+ABIeIJj1jHGrjLGrpaW9sraCfrt4idA3n2DIHnxrdsJIYOGZk7/s2AfhM6StA/763vyD4tSiKMzSjqtzR+dUSIIi1KIH3bM0+6NN94YdfLkyV6pR9Cf+jzxM8ZMAXwP4A2O46q6exzHcfs4jhvPcdx4kUj0+AOedjbjgP+s/r/knxff+tpmnC6jIoT0s5QCZac5fc2cf0qBUseRPZr36OG1oceSHTXJPzqjRBB6LNnRe/TwWl3H1heam5vxySef3F2wYMFTV/a1TxM/Y8wQrUk/guO4E315rqeewxTgdwdbk/1PH7T++buDrdsJIYPGhqlOD8zpT3Ky1PtH+QKlYtXupd65oceSHf8amTYq9Fiy4+6l3rmBUrHWiTEwMNDJ3d1d6uzs7B4WFmYJtK7c9+qrr9rKZDKpv7+/6927dx/6ePr27dtHOjk5ubu6usrmzp3rCAChoaGj3nvvvfbRCBcXF3eFQmGkUCiMHBwc3BctWmTv6uoqmz17tqNKpeIBgI2NzdgtW7ZY+/r6Sg4cOGC+ePFie029ABsbm7EhISE23t7ebh4eHtKLFy/yJ0+e7GJnZ+exc+fO9t7ru+++K/bw8JC6urrKNm/e/NBSwjt37hS5ubnJ3NzcZDY2NmMnTJjg+qSf+2H68q5+BuDfADI4jtvdV+cZUBymAOPXAvE7W/+kpE8IeYoESsWqxeNsS7+6lG+9eJxtaW8kfQCIiIjIT0tLy0hOTk7fu3evuLi42KCuro43bty42vT09Ixnn31WtW3btocm0fDwcKvU1NT0rKys9IMHD9563Pny8/ONN2zYUJqVlZUuEAha/vGPf7QnbmNj45Zr164p1q1b90B5Xjs7u8bk5OTMCRMmVK9Zs8Y+MjIyJyEhIfOjjz4aBQAnTpwwu3nzpnFKSkpGRkZGenJyMv/cuXNdltd96623SjMzM9PlcnmGlZVV46ZNm0oA4Ek+98P0ZY//WQArAUxnjCW3/cxhjC1kjBUA8AdwhjEW1YcxPF3y4oGr/wamvNX65/1z/oQQoseiM0oE318vEL38rH3R99cLRPfP+ffUjh07xBKJRObr6ystLi42TEtLM+bxeHjllVfKAWDNmjX3EhMTH1qfXiKR1C1cuNDhiy++GGFoaPjYAjVWVlaNs2bNqgGAlStX3rt8+XJ726tWrXog4WssXbq0EgDGjh1bO27cuBpzc/OWUaNGNQ8dOrSlrKzM4Pz582bx8fFmMplM5u7uLsvJyTHOzMw0flQsa9eutZsyZYoqODhYCbSW+O3u536YPlu5j+O4iwAeVjD4h74671NLM6evGd53eI6G+wkhTw3NnL5meP9ZZ0tVbwz3nz59WhAXFye4evVqpkAgaPHz85PU1dU90Gl9VH36mJiY7HPnzglOnjw5fOfOnaOys7NThwwZwrW0tLTv09DQ0N7A/W11fC0QCFrwEMbGxhzQmpyNjIzav2DweDw0NTUxjuPwxhtvFG3durVbd2qGh4dbFBQUGH399dcPXZHwUZ/7YWjlPn1ReL1zktfM+Rde12VUhBDSLcm3K/kdk7xmzj/5diVfm3YrKysNhEKhWiAQtCQlJRnL5fJhANDS0gLN/PrBgwct/Pz8uvxyoVarkZOTYzRv3jzVF198UaBSqQyUSqWBvb19Q3Jy8jAAuHjxIr+wsHCo5piioiKj6OjoYQBw5MiREZMmTarW5jNoBAUFVR0+fNhSqVTyACAvL8+wsLCwyw74zz//zP/000+t/vOf/+QZGBi0b+/u534UWqtfX0x+48FtDlOot0/IIHM+9HmIxk2A74r327dd++Y9lF5PwOzd+jszuuV5Scn92wKlYpW28/yLFy9W7tu3T+Tq6ipzcnKq9/LyqgEAExOTlrS0NBN3d3crgUCgPnHiRG5Xxzc3N7Pg4GAHlUplwHEcW79+fYmlpaV61apVFRERERZubm4yb2/vmjFjxtRrjnF0dKw/cOCAxeuvvz7GwcGhYcuWLb3yTPmiRYuq0tLSjJ955hk3AODz+S0RERF5NjY2zffv+89//nOkUqk0eO655yQA4OXlVfPdd9/d6u7nfhTGcY+d7tC58ePHc1evXtV1GIQQ0ueuffMe1Lv+A4M3fwffFe8/8PpJMMaucRzX46XR5XJ5vpeXl14uIMDn8326qtCnLYVCYTR37lyX/qzQ9yS6+7nlcrmll5eXfVfvUY+fEEL0iO+K9xFZYAeTLyNx9nIALH8pgcGbv4P4mc24HnUL454fo+sQyVOOEj8hhOgZn4VLEJlvBa/rX6LMH/B8ZjOivkzF86966Do0vdFVr3flypWjf/311053ub/22mslmzZtutfddiUSSWN/9vaLi4sNAgICJPdvj42NVVhZWanv394boxyU+AkhRM+U/PoxXDKSIfd+FVa343Dm0wS8sHECbCXmug5Nrx0+fPihd7/rKysrK3VmZmZ6f56T7uonhBA9opnTN3/VG+PmuOOu7RyMzI9Gya8f6zo0MkBQ4ieEED1Sej2hfU4/Nb4Q4+fY4zf7QNz+tUjXoZEBgob6CSFEj8zeHYUCRUX7nL6txBw2EnNEfTkMBYoKGu4nWqMev47d278fNVc6VyuuuZKAe/v36ygiQoiu/ZZf1Z70AcBWYo7nX/XAb/ndLnBKyENR4tcxY4+xKNy8uT3511xJQOHmzTD2GKvjyAghujLu+TEP9OxtJeb6/Sjfhb+JoTjXeW1+xTkBLvxN/JAj9NrUqVOdy8rKDB6/58PdXwFQQ6FQGLm4uLhr07Y2KPHr2LCJE2Dz8cco3LwZpeHhKNy8GTYff4xhEyfoOjRCCOk+2/G1+GGDY3vyV5wT4IcNjrAdX6vjyHokLi7upqWlZafH6VpaWqBWP/CE3VOHEr8eGDZxAsyXL0PZF/+C+fJllPQJIU8fSZAKC/fk4ocNjji3bRR+2OCIhXtyIQnSujRvYGCgk7u7u9TZ2dk9LCzMEniyuvQ///wzXyKRyLy9vd3Wr19vq+lth4eHW6xatWq0Zr9p06Y5nz59WgAANjY2Y4uKioYoFAojR0dH9xUrVoxuq6hndPz4cTOZTCaVSCQyf39/10fFnpGRYeLn5yextbUdu3379pH3v5+enm4klUplcXFxWtU0eBKU+PVAzZUEVBz9Fpavv4aKo98+MOdPCCFPBUmQCl7LS5HwL2t4LS/tjaQPABEREflpaWkZycnJ6Xv37hUXFxcbPEld+rVr19rv3r37dnJycmZPzp+fn2/88ssv38vIyEg3NTVtCQkJsT9x4kSOQqFIP3nyZM6jjr1586ZxXFxc1q+//poRFhY2qmMVQLlcPnTx4sXO//73v/OmTp3abyMjlPh1TDOnb/PxxxD98Y/tw/6U/AkhTx3FOQHkR0WY8FoR5EdFD8z599COHTvEEolE5uvrKy0uLjZMS0sz7m5d+nv37hmoVCqDF154oVqz75Oe39raunHGjBk1ABAbGzvMz89P5ebm1ggAYrH4kWP/s2bNqjQxMeGsra2bR4wY0VRQUDAEAMrLy4csWLDA+fDhw7mTJk2qe9KYtEGJX8fqU290mtPXzPnXp97QcWSEEPIENHP6C/fkIuiju+3D/lom/9OnTwvi4uIEV69ezVQoFOlSqbSurq7ugdz1sLr0HMc99L0hQ4ZwLS0t7a8bGhq6zIl8Pr99p0e115WhQ4e2V8IzMDBAc3MzAwCBQKC2trZujI2N7fILS1+ixK9jFq+88sCc/rCJE2Dxyis6iogQQnqg4Cq/05y+Zs6/4KpWc9eVlZUGQqFQLRAIWpKSkozlcvkwoPt16S0tLdWmpqbqqKgo07Z9R2jec3JyakxLS+Or1WrcvHnTMCUlZdjj4pk2bVpNQkKCIDMz0wgASkpKenTnv6GhIXf+/Pmco0ePWuzZs2fE44/oPbSADyGE6JkDqQfgYeEBP2u/9m2JRYlIvZeKNR5rdBjZI8x4t+SBbZIglbbz/IsXL1bu27dP5OrqKnNycqr38vKqAYAnqUv/73//O/+VV16xNzExaZk+fXr7YggzZ86s/vzzzxskEom7RCKpk8lkj51nHzVqVHN4eHj+woULnVtaWmBhYdF0+fLl7J58NjMzs5aoqKibAQEBrqampi0rVqyo7Ek7T4pxHPf4vXrSMGN2AA4BsALQAmAfx3H/ZIyNAPAdAHsA+QCWchxX8ai2xo8fz129erVP4iSEEH2TWJSILXFbEDY1DH7Wfg+87i7G2DWO48b3NA65XJ7v5eVV1tPj+1J369LfT6FQGM2dO9elPyvw6YJcLrf08vKy7+q9vhzqbwbwJsdxUgATAfyBMSYDsA3ABY7jXABcaHtNCCGkjZ+1H8KmhmFL3BZ8lvRZj5I+IQ/TZ0P9HMcVAShq+7uKMZYBwAbAfAABbbt9DSAWwNt9FQchhDyN/Kz9sFSyFHtT9mK953pK+vfpqre/cuXK0b/++munm+Vee+21kk2bNrXfyS+RSBp7u7f/z3/+0+Jf//pXpxX6nnnmmWp9LRPcL3P8jDF7AD4AEgCI274UgOO4IsbYAwsaEELIYJdYlIhjimNY77kexxTH4GflR8n/MXSVaDdt2nSv45cLfdfnd/UzxkwBfA/gDY7jul1hgjG2jjF2lTF2tbS0tO8CJIQQPdNxTj/EJ6R92D+xKFHXoZEBoE8TP2PMEK1JP4LjuBNtm0sYY9Zt71sD+K2rYzmO28dx3HiO48aLRKK+DJMQQvRK6r3UTnP6mjn/1HupOo6MDAR9NtTPWlc4+DeADI7jdnd4678Afg/go7Y/T/VVDIQQ8jTq6pE9P2sa6ie9oy97/M8CWAlgOmMsue1nDloT/kzGWDaAmW2vCSGEtEk8dRy3U1M6bbudmoLEU8d1FBEZSPos8XMcd5HjOMZxnCfHcd5tP2c5jrvHcdwMjuNc2v4s76sYCCHkacRXZCMybHt78r+dmoLIsO3gK3q0Tky/CL8eLo69E9tped7YO7GC8OvhD9Sj14WNGzfaWFlZefL5fB9dx6JrtGQvIYToGYcp0+GTX4zIsO24dOwbRIZth09+MRymTNd1aA/lKfKs/fPFPztqkn/snVjBny/+2dFT5NlvVeceZcGCBZUJCQkZuo5DH9CSvYQQomeGTZwAr4/+gbK/vIMr338LF2UdvD76xwN1PfRJgF2A6oPJH+T++eKfHec5zSuNzIkUfTD5g9wAuwCtS/Nu3brV+vjx4yOsra0bLSwsmn18fGrPnz8/3MPDozYpKWlYdXW1wb59+/KmTZtWq1QqeWvXrh2dkpLCB4B33nnn7urVqys11fW6Iy0tbWhwcLCDWq1mgYGByn379ol7skqgvqIePyGE6KF7pia4bWEG5+Jy3LYwwz1TE12H9FgBdgGqeU7zSiMyIqznOc0r7Y2kHx8fz4+MjDS/ceNG+pkzZ3I6FtKpra3lJSUlZYaHh99at26dAwBs27bN2szMTJ2VlZWelZWV/sILLzxxDCEhIXavv/76b6mpqRmjRo1q0vYz6BtK/IQQomcuHPxfnNr5N4wrvIdJi5dhXOE9nNr5N1w4+L+6Du2RYu/ECiJzIkUvSV8qisyJFN0/59+jNmNjTYOCgipNTU05c3PzlpkzZ7YXsgkODi4HgKCgoOrq6mpeWVmZQXx8vNnmzZvbHxMXiUTqJz1nUlKS6Zo1a8oB4JVXXnlqFubpLhrqJ4QQPdN4NwUGvBkYuckTooWToLQbD4NTKWi8m4LWh6H0j2ZOXzO8P9F6oqrj6562+6hCcq1PjXd+zXHcA9tJZ9TjJ4QQPeM3UohZ8z0Rd0mNhP/mIu6SGrPme8JvpFDXoT1USmkKv2OS18z5p5S2zrX3VEBAQHVUVJSwtraWKZVKXnR09HDNe0ePHjUHgKioKFOBQKC2sLBQBwQEVO3evbt9KfjS0lKDJz2nt7d39cGDB80B4MCBAyO0iV8fUeInhBA9Y/HKK3BeOAkeU2xw9Ww+PKbYwHnhJFi88oquQ3uoP477Y8n9PfsAuwDVH8f9sUSbdqdOnVo7e/ZspUwmc58zZ46Tp6dnjVAoVAOAubm52sfHxy0kJGTM3r178wHgww8/LKqsrDRwcXFxl0gksrNnzwoAYMOGDbZisdizvr6eJxaLPUNDQ0c97JyffvrpnU8//VQ8duxYaVFRkaGpqekTTxfoM/aoYRR9MX78eO7q1au6DoMQQvqFKu4OlBwQdbo16afGF+L5ufYQMkAw1a7b7TDGrnEcN76nccjl8nwvL6+ynh7fW5RKJU8oFLaoVCqev7+/ZM+ePbdCQ0PtwsLC7kyZMqXXHxdUqVS8YcOGtfB4POzbt8/8u+++G3HhwoWc3j5PX5LL5ZZeXl72Xb1Hc/yEDU8GMQAAIABJREFUEKJnlBzQeC4fz8+1h22AHWzMDNF4Lh/KIHtofbfcU2jFihVjsrOzTRoaGtiyZcvuTZ48uU/XBrh06RJ/06ZNozmOg5mZmfrgwYP5fXm+/kaJnxBC9MxvDS0YGWQP3s8FUDaqwUsoglGQPX5raIGtroPTgcjIyLz7tyUmJiq0bfftt9+2OnXqVKc5/Pnz55fv2LGjWKFQpGvbvr6ixE8IIXpm3PNjAADKRjVUP92BYLodhAF2gzLp96UdO3YU79ixo1jXcfQ3urmPEEL0UH1OJWoSiiCYboeahCLU51Q+/iBCuoESPyGE6Jn6nEqUH8nAiGAphLPsMSJYivIjGZT8Sa+gxE8IIXqmqUCFEcFSGDu1PrJu7DQcI4KlaCrQegVcQmiOnxBC9E1Xj+wZOw1v/yJAiDaox08IIURrv33yiVgVE9PpaUNVTIzgt08+Eesqpo42btxoY2Vl5cnn8310HYuuUeInhBCiNRMvr9q7b29z1CR/VUyM4O7b2xxNvLz69Jn77lqwYEFlQkJCxpMe19Q04Irz0VA/IYQQ7QmmTVON2vFR7t23tzkKF8wvVZ48JRq146NcwbRpWt+YsHXrVuvjx4+PsLa2brSwsGj28fGpPX/+/HAPD4/apKSkYdXV1Qb79u3LmzZtWq1SqeStXbt2dEpKa42Ad9555+7q1asrZ8yYUdPd8y1evNje3Ny8+caNG3xPT8/aL7/8skDbz6BPKPETQgjpFYJp01TCBfNLKw4dtjZftbKoN5J+fHw8PzIy0vzGjRvpTU1NzNvbW+bj41MLALW1tbykpKTMc+fOma5bt84hOzs7bdu2bdZmZmbqrKysdKBnRXoAICcnx/jSpUtZQ4YMvDRJQ/2EEEJ6hSomRqA8eUpkvmplkfLkKdH9c/49ERsbaxoUFFRpamrKmZubt8ycObP9mcbg4OByAAgKCqqurq7mlZWVGcTHx5tt3rz5N80+IpGoRwV2Fi1aVDEQkz7wlPT4r127VsYYu6XrOLRgCUDnhS70CF2Pzuh6dEbXozNtrseY3gzkUTRz+prh/WH+/qqOr3va7qMKyTHGHnjNcdwD23vC1NS0RetG9NRTkfg5jhPpOgZtMMaualMha6Ch69EZXY/O6Hp09rRcjzq5nN8xyWvm/Ovkcr42iT8gIKD6tddeG1NbW1vU1NTEoqOjh69ataoUAI4ePWo+b948VVRUlKlAIFBbWFioAwICqnbv3j3ywIEDd4DWof6e9voHKhrqJ4QQorWRb7xRcn+CF0ybphr5xhsl2rQ7derU2tmzZytlMpn7nDlznDw9PWuEQqEaAMzNzdU+Pj5uISEhY/bu3ZsPAB9++GFRZWWlgYuLi7tEIpGdPXtWAAAbNmywFYvFnvX19TyxWOwZGho6Spu4nmbsUcMopHc8Ld/Y+wtdj87oenRG16MzXV4PuVye7+XlpfNpF6VSyRMKhS0qlYrn7+8v2bNnz63Q0FC7sLCwO1OmTNGLxwX1jVwut/Ty8rLv6r2nYqh/ANin6wD0DF2Pzuh6dEbXo7NBfz1WrFgxJjs726ShoYEtW7bs3uTJkynZa4F6/IQQQrqkLz3+vvL2229bnTp1akTHbfPnzy8fCKV6H9Xjp8RPCCGkSwM98Q9kj0r8dHMfIYQQMohQ4u9FjLHZjDEFY+wmY2xbF++HMsbSGWMpjLELjLF+e8ZWFx53PTrst4QxxjHGBvQNXd25HoyxpW2/I2mMsSP9HWN/6sa/l9GMsRjGWFLbv5k5uoizPzDGDjDGfmOMpT7kfcYYC2+7VimMsXH9HSMZOCjx9xLGmAGAzwEEAZABWM4Yk923WxKA8RzHeQI4DmBn/0bZf7p5PcAYEwD4I4CE/o2wf3XnejDGXAD8CcCzHMe5A3ij3wPtJ938/fj/ABzjOM4HwDIAX/RvlP3qIIDZj3g/CIBL2886AP/qh5jIAEWJv/f4AbjJcVwux3GNAL4FML/jDhzHxXAcp7kb9QoA236OsT899nq0+RtavwDV92dwOtCd6/EqgM85jqsAAI7jfsPA1Z3rwQEwa/u7EMDdfoyvX3EcFw+g/BG7zAdwiGt1BcBwxph1/0RHBhpK/L3HBsCdDq8L2rY9zFoA5/o0It167PVgjPkAsOM47nR/BqYj3fn9cAXgyhi7xBi7whh7VA/waded6/EXACsYYwUAzgLY2D+h6aUn/f+l3105lSPOSynrtDZ/XkqZ4MqpHLGuYupo48aNNlZWVp58Pt/ncfvu3LlT9Nlnn1n0R1y6QIm/93S1OHSXj0wwxlYAGA/gH30akW498nowxngAPgbwZr9FpFvd+f0Ygtah3AAAywHsZ4wN7+O4dKU712M5gIMcx9kCmAPgcNvvzWDU7f9fdEXsIKy9cDDdUZP881LKBBcOpjuKHYR68cz9ggULKhMSEjK6s+9bb71VGhIScq+vY9IVWsCn9xQAsOvw2hZdDE0yxgIB/BnAVI7jGvopNl143PUQAPAAENtWUMMKwH8ZY//DcdzVfouy/3Tn96MAwBWO45oA5DHGFGj9IvBr/4TYr7pzPdaibd6b47hfGGPGaC1YM5CnQB6mW/+/6JKDp6VqxmpZ7oWD6Y6SiValiivFohmrZbkOnpZal+bdunWr9fHjx0dYW1s3WlhYNPv4+NSeP39+uIeHR21SUtKw6upqg3379uVNmzatVqlU8tauXTs6JSWFDwDvvPPO3dWrV1fOmDGjprvnCw0NHWVqaqp+//33tVpuWF8N1m/PfeFXAC6MMQfGmBFab0b6b8cd2oa29wL4nwE+fws85npwHKfkOM6S4zh7juPs0XrPw0BN+kA3fj8AnAQwDQAYY5ZoHfrP7dco+093rsdtADMAgDEmBWAMoLRfo9Qf/wWwqu3u/okAlBzHFek6qPs5eFqqJBOtSlN+KrCWTLQq7Y2kHx8fz4+MjDS/ceNG+pkzZ3JSUlKGad6rra3lJSUlZYaHh99at26dAwBs27bN2szMTJ2VlZWelZWV/sILL2gdw0BDPf5ewnFcM2MsBEAUAAMABziOS2OMvQ/gKsdx/0Xr0L4pgP+09XJvcxz3PzoLug9183oMGt28HlEAZjHG0gGoAWzlOG5ADjd283q8CeBLxthmtA5rr+YG6IpjjLGjaJ3isWy7p+H/ATAEAI7j9qD1Hoc5AG4CqAXwsm4ifbS8lDKB4kqxyHO6bZHiSrHI1m2EStvkHxsbaxoUFFRpamrKAeBmzpxZqXkvODi4HACCgoKqq6ureWVlZQbx8fFm3377bfsXZqrM9yBK/L2I47izaP0H2nHbex3+HtjvQenQ467HfdsD+iMmXerG7wcHILTtZ8DrxvVIB/Bsf8elCxzHLX/M+xyAP/RTOD2imdPXDO/buo1QdXzd03Yf9V2vrQPV6TXHcQ9sJ53RUD8hhBCtleQp+R2TvGbOvyRPydem3YCAgOqoqChhbW0tUyqVvOjo6PYbXo8ePWoOAFFRUaYCgUBtYWGhDggIqNq9e/dIzT6lpaUG2px/IKLETwghRGsT5zuV3N+zd/C0VE2c76TVDXJTp06tnT17tlImk7nPmTPHydPTs0YoFKoBwNzcXO3j4+MWEhIyZu/evfkA8OGHHxZVVlYauLi4uEskEtnZs2cFALBhwwZbsVjsWV9fzxOLxZ6hoaGjtInraUZFegghhHRJX4r0KJVKnlAobFGpVDx/f3/Jnj17boWGhtqFhYXdmTJlil48LqhvHlWkh+b4CSGE6LUVK1aMyc7ONmloaGDLli27N3nyZEr2WqDETwghRK9FRkbm3b8tMTFRoW27b7/9ttWpU6dGdNw2f/788h07dhRr27Y+o6F+MigwxqwAfALgGQANAPIBvMFxXJYu4yJEn+nLUD95co8a6qeb+8iAx1qf7fkBQCzHcU4cx8kAvAOg19cQb6s6RwgheosSPxkMpgFoalsIBQDAcVwygIuMsX8wxlIZYzcYYy8CAGPsu4613xljBxljixljBm37/9pWE3192/sBbXXjjwC40bbtJGPsGmMsjTG2rkNbaxljWYyxWMbYl4yxz9q2ixhj37e1/StjbFA8v04I6X80x08GAw8A17rYvgiANwAvtK4B/ytjLB6tJWJfBHC2bTnZGQBeQ+va8UqO455hjA0FcIkx9mNbW34APDiO08xFruE4rpwxZtLW7vcAhgJ4F8A4ACoAPwGQt+3/TwAfcxx3kTE2Gq0r2kl77xIQQkgrSvxkMJsM4CjHcWoAJYyxOLTeA3AOQHhbcp8NIJ7juDrG2CwAnoyxJW3HC9FaRKcRQGKHpA8Af2SMLWz7u13bflYA4jiOKwcAxth/0LoePwAEApB1WHHMjDEm4DiO1hknhPQqGuong0EaAN8utne5rifHcfUAYgE8j9ae/7cd9t/IcZx3248Dx3GaHn975S/GWABaE7k/x3FeAJLQWmDmUeuI8tr217RtQ0mfPE0ufntInHMtUdBxW861RMHFbw/1+r00PbFx40YbKysrTz6f76PrWHSNEj8ZDH4CMJQx9qpmA2PsGQAVAF5sm7sXAZgCILFtl2/RWgjlObQOu6Ptz9cYY4ZtbbgyxtorhXUgBFDBcVwtY8wNwMS27YkApjLGzBljQwAs7nDMjwBCOsTnrdUnJqSfWbu41Z77fJejJvnnXEsUnPt8l6O1i5tePHO/YMGCyoSEhAxdx6EPaKifDHgcx3Ftw+6fMMa2AahH2+N8aK2WKEdr9be3OI7TPL/7I4BDAP7LcVxj27b9AOwBXG97UqAUwIIuTnkewAbGWAoABVpLDoPjuELG2N8BJKC1lno6AGXbMX8E8HnbMUMAxAPY0CsXgJB+4OTrpwr6w5u55z7f5eg+ZUZpWvwFUdAf3sx18vXTeuRq69at1sePHx9hbW3daGFh0ezj41N7/vz54R4eHrVJSUnDqqurDfbt25c3bdq0WqVSyVu7du3olJQUPgC88847d1evXl05Y8aMmsedR8PNzU2m+Xt+fr7x999/n/XCCy9Ua/s59AUlfjIocBx3F8DSLt7a2vZz//5NACzu29aC1scA37lv99i2H81+DQCCHhLKEY7j9rX1+H9A6xcMcBxXhtZpBUKeWk6+fir3KTNKr5/7r/W4oP8p6o2kHx8fz4+MjDS/ceNGelNTE/P29pb5+PjUAkBtbS0vKSkp89y5c6br1q1zyM7OTtu2bZu1mZmZOisrKx3oWZGezMzMdAA4cuSIcNeuXVaBgYHd/tLwNKDET0j/+gtjLBCtc/4/Ajip43gI6TU51xIFafEXROOC/qcoLf6CaPRYb5W2yT82NtY0KCio0tTUlAPAzZw5s1LzXnBwcDkABAUFVVdXV/PKysoM4uPjzb799ttczT4ikUjdk/PeuHFj6J///GfbmJiYrKFDhw6ole4o8RPSjziO26LrGAjpC5o5fc3w/uix3qqOr3va7qNWl+3wFEz7a47jHtj+pKqqqnhLly51+te//nXL3t6+SavG9BDd3EcIIURrRdmZ/I5JXjPnX5Sdydem3YCAgOqoqChhbW0tUyqVvOjo6OGa944ePWoOAFFRUaYCgUBtYWGhDggIqNq9e/dIzT49GepftmyZ/UsvvVQ2e/bsATOv3xElfkIIIVqbvGxVyf09eydfP9XkZatKtGl36tSptbNnz1bKZDL3OXPmOHl6etYIhUI1AJibm6t9fHzcQkJCxuzduzcfAD788MOiyspKAxcXF3eJRCI7e/asAAA2bNhgKxaLPevr63lisdgzNDR0VFfny8rKMjp//rz5N998Y+nm5iZzc3OTxcfHa/XlRd9QkR5CCCFd0pciPUqlkicUCltUKhXP399fsmfPnluhoaF2YWFhd6ZMmaIXjwvqm0cV6aE5fkIIIXptxYoVY7Kzs00aGhrYsmXL7k2ePJmSvRYo8RNCCNFrkZGRefdvS0xMVGjb7ttvv2116tSpER23zZ8/v3zHjh3FDztmIKChfkIIIV3Sl6F+8uQeNdRPN/cRQgghgwglfkIIIWQQocRPCCGEDCKU+AkhhGhNGZUvrsu416ksb13GPYEyKl8vyvKS/0OJnxBCiNaMRgtqy49lOWqSf13GPUH5sSxHo9ECvXj0buPGjTZWVlaefD7fR9ex6BolfkIIIVozkVqoRix1zS0/luVYGZkzqvxYluOIpa65JlILrSv09YYFCxZUJiQkZOg6Dn1AiZ8QQkivMJFaqIaNG1lafemu9bBxI0t7K+lv3brV2sHBwX3SpEku8+bNc3jvvffEfn5+kjVr1tj5+Pi4ubi4uMfExPCB1lX+lixZYu/q6ipzdXWVHTx4cDgAzJgxo2bMmDGPLbhTUVHBs7GxGdvQ0MAAoLy8vNPrgYASPyGEkF5Rl3FPUHP9N5Hps6OKaq7/Jrp/zr8n4uPj+ZGRkeY3btxIP3PmTE5KSsowzXu1tbW8pKSkzPDw8Fvr1q1zAIBt27ZZm5mZqbOystKzsrLSX3jhhSf68mFubt7i7++vOnbsmBAADhw4MGLOnDkVA6k0LyV+QgghWtPM6Y9Y6po7fJ7TXc2wv7bJPzY21jQoKKjS1NSUMzc3b5k5c2al5r3g4OByAAgKCqqurq7mlZWVGcTHx5tt3rz5N80+IpFI/aTnXLduXenBgwctAOCbb76xXLdu3YBaxIgSPyGEEK013lbxO87pa+b8G2+rtKps96jVZRljD7zmOO6B7U9q1qxZNQUFBUPPnDljqlar2TPPPFOvVYN6hhI/IYQQrQmfty+5f07fRGqhEj5vr1VZ3oCAgOqoqChhbW0tUyqVvOjo6OGa944ePWoOAFFRUaYCgUBtYWGhDggIqNq9e/dIzT6lpaUGPTnvsmXL7r388suOK1asGFC9fYASPyGEED02derU2tmzZytlMpn7nDlznDw9PWuEQqEaAMzNzdU+Pj5uISEhY/bu3ZsPAB9++GFRZWWlgYuLi7tEIpGdPXtWAAAbNmywFYvFnvX19TyxWOwZGho66lHnXbt27b2qqqoha9euLe/zD9nPqEgPIYSQLulLkR6lUskTCoUtKpWK5+/vL9mzZ8+t0NBQu7CwsDtTpkzpk3UCvvrqK/NTp04NP3ny5AOVAZ8GjyrSQ2V5CSGE6LUVK1aMyc7ONmloaGDLli27N3ny5D5dFOj3v/+9XUxMjPD06dPZfXkeXaHETwghRK9FRkY+0OtOTExUaNvu22+/bXXq1KkRHbfNnz+//Ouvv74D4I627esrGuonhBDSJX0Z6idP7lFD/XRzHyGEEDKIUOInhBBCBhFK/IQQQsggQomfEEKI1i5cuCBWKBSdludVKBSCCxcuiHUVE+kaJX5CCCFas7W1rf3hhx8cNclfoVAIfvjhB0dbW9s+ffSup9avX2/r7Ozsvn79elvNtq+++sqcMeYbHx/PB4CYmBi+m5ubzM3NTSaRSGSHDh1qXzXQxsZmrKurq8zNzU3m4eEh1cVn6Cl6nI8QQojWJBKJauHChbk//PCDo5eXV6lcLhctXLgwVyKR9Epp3t4WEREhKi0tTTYxMeGA1nK8n3/++UhPT88azT7jx4+vv3HjRrqhoSFu3bpl6OPjI1u+fHmloaEhACAuLi7L2tq6WUcfoceox08IIaRXSCQSlZeXV2lCQoK1l5dXaW8l/cDAQCd3d3eps7Oze1hYmCUAHD9+3Ewmk0klEonM39/fFQDOnDljqumhS6VSWUVFRZc5bvr06c51dXU8Hx8f6ZdffmkOAG+++abNm2++Wdyx/K5AIGjRJPm6ujr2uOI/hYWFQ9zd3aUA8Msvv5gwxnyzs7ONAMDOzs5DpVLpRc6lHj8hhJBeoVAoBHK5XDRhwoQiuVwucnR0VPVG8o+IiMgXi8Xq6upq5uPjI3vxxRcrQ0JC7GNjYzPd3NwaS0pKDABg165dVuHh4bdmzZpVo1QqeXw+v6Wr9n766aebfD7fJzMzMx0ALl26ZFJYWGi0fPly5ccff2x1377D1q1bZ3/37l2jPXv25Gm+CADAjBkzXBhjePnll0u3bNlSZmNj09zQ0MArLy/nxcTEmLq7u9dGR0ebchxXbWFh0SwQCLqMp79R4ieEEKI1zZy+Znjf0dFR1fG1Nm3v2LFDfObMmeEAUFxcbBgeHi7y8/NTubm5NQKAWCxWA8DEiROrt2zZYrd06dLy5cuXVzg5OT020arVamzevHn04cOHu1yTf/r06TU3b95Mu379uvHvf/97hyVLlij5fD536dKlTHt7+6bCwsIh06dPd3V3d68PCgqqHj9+fHV0dLTpxYsXBW+99VbR+fPnhRzHYeLEidXaXIPepBfDDoQQQp5uBQUF/I5JXjPnX1BQwNem3dOnTwvi4uIEV69ezVQoFOlSqbTO29u7tqth97///e/F+/fvv1VXV8ebNGmSNCkpyfhx7VdWVhpkZ2cbT58+XWJjYzNWLpcPW7JkibPmBj+NcePG1fP5fPXVq1dNAMDe3r4JAGxsbJpfeOGFyl9++WUYAEyePLk6Pj5eUFBQYPTSSy9VpqWlmVy8eNF06tSpenOvAyV+QgghWpsxY0bJ/T17iUSimjFjRok27VZWVhoIhUK1QCBoSUpKMpbL5cMaGhp4CQkJgszMTCMA0Az1p6WlDfXz86v74IMPiseOHVuTmpr62MRvYWGhrqiokBcWFt4oLCy84eXlVXP8+PGbU6ZMqc3MzDRqamoCAGRlZRnl5eUZu7i4NFZVVfE09w9UVVXxYmJizDw9PesAYObMmarvv/9+hIODQ4OBgQGGDx/eHBMTIwwMDNSbHj8N9RNCCNFbixcvVu7bt0/k6uoqc3Jyqvfy8qoZOXJkc3h4eP7ChQudW1paYGFh0XT58uXsnTt3jrx8+bIZj8fjXF1d65YsWaLU5twXLlwwnTt3rvWQIUM4Ho/H7dq167a1tXVzenq60cKFC50BQK1Ws8WLF99bsmRJFQBIJJJGAHjuuedUAODv719dVFRkJBKJ1Npei95CRXoIIYR0iYr0PL2oSA8hhBBCANBQPyGEkAEqMTHRZNWqVQ4dtxkZGbWkpKRk6iomfUCJnxBCyIDk5+dXp3lWn/wfGuonhBBCBhFK/IQQQsggQomfEEIIGUQo8RNCCNFaTs4ucWnZBUHHbaVlFwQ5ObvEuorpUe4vy7t//35zJycnd2dnZ/d58+a13xD46aefWowZM8ZjzJgxHp9++qmFZnt9fT1bvnz5GHt7ew8HBwf3gwcPDu/qPPqIbu4jhBCiNTOhd216+hZHmSwsV2Q5Q1VadkGgea3r2LrSsSzvjRs3hu7atcv6ypUrmSKRSF1YWDgEaF0RcMeOHaOuXbuWzuPx4OPjI1u2bFmlSCRS/+lPf7IWiURN+fn5qWq1Gr/99ttTk0+px08IIURrIssZKpksLDc9fYtjVtbfRnX8EqBt231dlvfzzz8Xvfrqq79pVtezsbFpBoCTJ08Kp0yZUiUWi9UikUg9ZcqUqhMnTggB4OjRo5bbt28vBgADAwNYW1s3Nzc3w9bWdmxLSwvKysoMeDye77lz50wBwNfXV5KamjpU22vRG56abyiEEEL0m8hyhsraalHpnYKD1na2q4t6I+kDfV+W97vvvhsBAOPGjXNTq9V499137y5ZsqSqsLDQ0NbWtlFznI2NTWNhYaFhWVmZAQCEhoaOunz5smDMmDEN+/btu21nZ9fs4OBQf/36dePs7OyhMpmsNjY21jQgIKCmuLjYyMPDo6E3roe2qMdPCCGkV5SWXRAUFZ8Q2dmuLioqPiG6f86/p3bs2CGWSCQyX19faXfK8m7fvn1kWVmZgaGhYbfaV6vVLCcnZ+gvv/yi+O6773L/8Ic/2JeVlRl0taQ9YwxNTU2spKTEcPLkydXp6ekZEyZMqNm4caMdAEyaNEl14cIFQVxcnGDr1q1Fv/zyiyA+Pn6Yl5dXTW9ci95AiZ8QQojWOs7pu7q+e1cz7K9t8u/rsrwAYG1t3Thv3rzKoUOHcm5ubo2Ojo71aWlpQ21tbZsKCgqMNPsVFhYajRo1qkksFjcbGxu3rFy5shIAVqxYUZ6amsoHgICAgOqLFy+aXr9+fdjvfvc7ZVVVlcGFCxcEkydPprK8hBBCBo4qZTK/45y+Zs6/SpnMf9yxj9LXZXkBYNGiRZWxsbECACgqKhqSl5dnLJFIGhYsWKCMi4szKy0tNSgtLTWIi4szW7BggZLH42HGjBnKM2fOCADg7NmzZi4uLnUAEBAQUHP9+nVTHo/H8fl8zt3dvfbQoUOiadOmUVleQgghA4eT05sl928TWc5QaTvP3x9leRctWlR1/vx5MycnJ3cDAwPu/fffv2NlZaUGgK1bt9719fWVAsBbb711VzOtsHv37oLg4GCHLVu2GFhYWDQfOnQoHwBMTEw4KyurxvHjx9cAwHPPPVf93//+d4Sfn1+dNtehN1FZXkIIIV2isrxPLyrLSwghhBAANNRPCCFkgKKyvF2jxE8IIWRAorK8XaOhfkIIIWQQocRPCCGEDCKU+AkhhJBBhBI/IYQQMojQzX2EEEK09mFukdjXjF87y1LYvmDPj2VKwbWqWv6fHK0fWNxH19avX2974cIF4YwZM5TNzc3s0qVLAgCor6/n3bt3b4hKpUqOjIwUbN261U5zTF5envH+/ftzV65cWbl48WL7K1euCAQCgRoADhw4kDdp0iS9WaTnUSjxE0II0ZqvGb92Y8Ztx0+lo3NnWQpVP5YpBZrXuo6tKxEREaLS0tJkExOTTqvYffDBByOTk1uXGZ43b55q3rx56UDrssCurq5jFyxYUKXZd/v27QUvv/xyRf9Grj0a6ieEEKK1WZZC1afS0bkbM247vptdMKrjlwBt2w4MDHRyd3eXOjs7u4eFhVkCwPHjx81kMplUIpHI/P39XQHgzJkzpm5ubjI3NzeZVCqVVVRUdJnjpk8nXRxrAAAgAElEQVSf7lxXV8fz8fGRfvnll+Yd3zt+/PiI4ODg8vuPOXz4sPnUqVOVAoGgy1K/Gq6urrKysjKDlpYWDB8+3Puzzz6zAIAFCxY4nDx5sleqFWqLEj8hhJBeMctSqFpqZV76ZUGZ9VIr89LeSPoAEBERkZ+WlpaRnJycvnfvXvGdO3eGhISE2J84cSJHoVCknzx5MgcAdu3aZRUeHn4rMzMz/cqVK5mmpqZdJumffvrp5tChQ1syMzPTX3311fYee1ZWllFBQYHRvHnzqu4/5vjx4yOWL1/e6QvBX//6VxtXV1fZ2rVr7erq6hgAjB8/vjo6Otr02rVrxra2tg0XL140BYCkpKRh06ZN04vSvJT4CSGE9Iofy5SCY8UVoldtLYuOFVeIfixT9koPd8eOHWKJRCLz9fWVFhcXG4aHh4v8/PxUbm5ujQCgKZwzceLE6i1bttht3759ZFlZmYGhoeETnefrr78eMWfOnIohQzrPgt+6dctQoVCYLFq0qP0Lwe7duwtzc3NT5XJ5RkVFhcG7775rBbQW5YmLizO9cOGC4JVXXvktIyPDJC8vz1AoFDYLhcJHjhb0F0r8hBBCtNZxTv9vLrZ3NcP+2ib/06dPC+Li4gRXr17NVCgU6VKptM7b27uWMfbAvn//+9+L9+/ff6uuro43adIkaVJSUrfK8mqcOHFixIoVKx4Y5j906JD57NmzK4cOHdp+P8CYMWOaeDweTExMuDVr1ty7du3aMACYOXOm6sqVK4JLly6Zzpo1S2VhYdH8zTffmE+cOFFvyvJS4ieEEKK1a1W1/I5z+po5/2tVtXxt2q2srDQQCoVqgUDQkpSUZCyXy4c1NDTwEhISBJmZmUZA6413AJCWljbUz8+v7oMPPigeO3ZsTWpqarcTv1wuH1pVVWUwY8aMB4bju5r3v3XrliEAtLS04MSJE8OlUmkdADg7OzdVVFQMycvLM5bJZI3+/v7Vn3/+udWUKVP0JvHTXf2EEEK01tUje7MshSpt5/kXL16s3Ldvn8jV1VXm5ORU7+XlVTNy5Mjm8PDw/IULFzq3tLTAwsKi6fLly9k7d+4cefnyZTMej8e5urrWLVmyRNnd83z99dcW8+fPL+fxOveHFQqFUVFRkdGcOXM6fY4XX3zRoby8fAjHcUwmk9UeOnToluY9b2/vGrVaDQAICAhQffjhhzaBgYG9cr9Db2Acxz1+L0IIIYOOXC7P9/LyKtN1HOTJyeVySy8vL/uu3qOhfkIIIWQQoaF+QgghA1JiYqLJqlWrHDpuMzIyaklJScnUVUz6gBI/IYSQAcnPz68uMzMzXddx6Bsa6ieEEEIGEUr8hBBCyCBCiZ8QQggZRCjxE0IIIYMIJX5CCCFaC4tSiKMzSjotzxudUSIIi1KIdRXTo6xfv97W2dnZff369bbZ2dlGEyZMcJVKpTJXV1fZd999JwSA4uJigwkTJrjy+XyfVatWje6qnenTpzu7uLi492/02qHETwghRGveo4fXhh5LdtQk/+iMEkHosWRH79HDa3UdW1ciIiJEN27cSN+7d2/Be++9Z71o0aKKjIyM9KNHj+aGhoaOBgA+n8+9//77d//yl78UdNXG119/PXzYsGHq/o1ce5T4CSGEaC1QKlbtXuqdG3os2fGvkWmjQo8lO+5e6p0bKBVrvVRtYGCgk7u7u9TZ2dk9LCzMEgCOHz9uJpPJpBKJRObv7+8KAGfOnDF1c3OTubm5yaRSqayioqLLHDd9+nTnuro6no+Pj/TLL780Z4yhqqrKAAAqKioMRo4c2QQAZmZmLc8//3y1sbHxA1X1lEolLzw8XPyXv/ylSLOtsLBwiLu7uxQAfvnlFxPGmG92drYRANjZ2XmoVCq9yLn0HD8hhJBeESgVqxaPsy396lK+9cvP2hf1RtIHgIiIiHyxWKyurq5mPj4+shdffLEyJCTEPjY2NtPNza1RU6Rn165dVuHh4bdmzZpVo1QqeXw+v8syuD/99NNNPp/vo3nGf9asWdUzZ8502b9//8i6ujremTNnsh4XU2hoqM2mTZtKTE1N289hY2PT3NDQwCsvL+fFxMSYuru710ZHR5tyHFdtYWHRLBAIqCwvIYSQgSM6o0Tw/fUC0cvP2hd9f71AdP+cf0/t2LFDLJFIZL6+vtLi4mLD8PBwkZ+fn8rNza0RAMRisRoAJk6cWL1lyxa77du3jywrKzMwNDTsVvtfffXViOXLl98rKSlJOXHiRPbq1asdNEV2unL58mWTvLy8oatWraq8/73x48dXR0dHm168eFHw1ltvFf3888+C6OhoUyrLSwghZEDRzOnvXuqd+//mud/VDPtrm/xPnz4tiIuLE1y9ejVToVCkS6XSOm9v71rG2AP7/v3vfy/ev3//rbq6Ot6kSZOkSUlJ3SrL+80331iuXLmyHAACAwNrGhoaeMXFxQ8dEf/5559NU1NT+TY2NmOnTJnilp+fP9TPz08CAJMnT66Oj48XFBQUGL300kuVaWlpJhcvXjSdOnWq3lTno8RPCCFEa8m3K/kd5/Q1c/7Jtyv52rRbWVlpIBQK1QKBoCUpKclYLpcPa2ho4CUkJAgyMzONAEAz1J+WljbUz8+v7oMPPigeO3ZsTWpqarcS/6hRoxrPnj1rBgDXr183bmxsZNbW1s0P2//tt98u/e2331IKCwtvxMfHZ9rb2zckJiYqAGDmzJmq77//foSDg0ODgYEBhg8f3hwTEyMMDAzUmx4/zfETQgjR2pbnJSX3bwuUilXazvMvXrxYuW/fPpGrq6vMycmp3svLq2bkyJHN4eHh+QsXLnRuaWmBhYVF0+XLl7N37tw58vLly2Y8Ho9zdXWtW7JkibI75/j444/vvPrqq/aff/65mDGGPXv25PN4rf1iGxubsdXV1QZNTU0sKipq+NmzZ7N8fX3rH9aWRCJpBIDnnntOBQD+/v7VRUVFRiKRSG/u/mccx+k6BkIIIXpILpfne3l5lek6DvLk5HK5pZeXl31X79FQPyGEEDKI0FA/IYSQASkxMdFk1apVDh23GRkZtaSkpGTqKiZ9QImfEELIgOTn51eneVaf/B8a6ieEEEIGEUr8hBBCyCBCiZ8QQggZRCjxE0IIIYMIJX5CCCHau/A3MRTnOi/PqzgnwIW/iXUU0SOtX7/e1tnZ2X39+vW22dnZRhMmTHCVSqUyV1dX2XfffScEAIVCYWRsbDxOU/EvODh4tOb4n3/+me/q6iobPXq0x+rVq+1aWlrr7yxevNj+q6++MtfRx+oWSvyEEEK0Zzu+Fj9scGxP/opzAvywwRG242t1HFmXIiIiRDdu3Ejfu3dvwXvvvWe9aNGiioyMjPSjR4/mhoaGtid4Ozu7hszMzPTMzMz0I0eO3NZsf/3118d88cUXt/Lz81Nzc3ONjx8/bqabT/LkKPETQgjRniRIhYV7cvHDBkec2zYKP2xwxMI9uZAEaV2cJjAw0Mnd3V3q7OzsHhYWZgkAx48fN5PJZFKJRCLz9/d3BYAzZ86YanrnUqlUVlFR0WWOmz59unNdXR3Px8dH+uWXX5ozxlBVVWUAABUVFQYjR45selQ8t27dMqyuruYFBgbW8Hg8vPTSS/dOnjz5QC/fxsZm7GuvvWYzduxY6dixY6WpqalDtb0WvYGe4yeEENI7JEEqeC0vRcK/rDHhtaLeSPoAEBERkS8Wi9XV1dXMx8dH9uKLL1aGhITYx8bGZrq5uTVqivTs2rXLKjw8/NasWbNqlEolj8/nt3TV3k8//XSTz+f7aJ7xnzVrVvXMmTNd9u/f//+zd6dxTV5p/8CvJEAgJiprWMIOSQhLGlFAigrCo9IpFcXasYt1RqcuraNSZ9TaZ+q4dMxM8al0cGurrQ4zUz9oZUqr46goFBQrIvuiIogGUkCWhCBLkv8L/3FQwao3ipbf9xW5c3LOSd78cp9DzuXQ2dnJ/vbbb6tMba9du2bh5+cn4/P5+g0bNlyfNm2atra21tzJyen2lwN3d/fu+vr6fmsAjxw5Ul9cXFz+17/+1Xbp0qWumZmZlwbjM2ECd/wAADA4Kg8LqPAf9hS6uJ4K/2F/z57/I1IqlUKJRCILDg72a2hoME9OTrYPCQnRSKXSbiIioVCoJyIKCwvTrly50nXjxo0OTU1NHHPzfrP4Hnv27LGZM2dOs1qtLjp48ODFefPmeer1enJzc+u5cuVKUXl5edmWLVvq5s2b53Xjxg12fzVu+isTTET05ptv3iAi+s1vfnOjoKCA/4gfwaBC8AMAAHOmPf0ZO6opdrPq9rI/w/DPyMgQnDp1SnDu3LmKysrKMj8/v87nnntO11/Qfvjhhw2fffZZbWdnJzs8PNyvoKDggcry/u1vf7N74403bhARxcTEdHR1dbEbGhrMrKysjI6OjnoiogkTJujc3Ny6SkpKLD08PHr63uHX1tZaODo69rs9YKryR0TEYrGeiqp4CH4AAGDu2jneHXv6pj3/a+d4TLptbW3ljBo1Si8QCAwFBQWWhYWFI7q6uth5eXmCiooKCyIi01J/aWkpNyQkpHPTpk0NgYGBHSUlJQ8U/M7Ozt3ffffdSCKi8+fPW3Z3d7OcnJx6VSqVWW9vLxERlZWVWdTU1HAlEkmXu7t7z4gRIwzHjx8fYTAYKDU11Xb69Omt/fW9d+9eGyKizz//3FqhUHQw+SwGC/b4AQCAuej/Vd9zTRKrYbrPn5CQ0LZr1y57sVgs8/b2vimXyzscHBx6k5OTa2bMmOFjMBjI1ta2Jzc39+Kf//xnh9zc3JFsNtsoFos7Z82a1fYgY/zf//1f3W9+8xuPlJQUIYvFoh07dtSw2Ww6evQof+PGjS4cDsfI4XCMH3/8ca1pW2Hbtm218+fP97x58yYrKiqq/eWXX+53rK6uLlZQUJDUYDCw/vnPf1Yz+SwGC6u/vQoAAIDCwsIauVzeNNTzeFa5uLgEnjt3rtzJyan3SY9dWFhoJ5fLPfp7Dkv9AAAAwwiW+gEA4Gfp7NmzVnPnzvXse83CwsJQVFRU8STGv379evGTGOdhIfgBAOBnKSQkpNP0W334Lyz1AwAADCMIfgAAgGEEwQ8AADCMIPgBAACGEQQ/AAAwlnw+WXiy7uQdx/OerDspSD6fLHyc4+7evdvay8vLPzQ0VDxQm9mzZ7tLJBKZWCyWTZs2zautrW3A7FOpVGZBQUFSPz8/2ZEjR/hLly51cXR0DOLxeIq+7To7O1m/+MUvvNzc3AKCgoKklZWVFkRElZWVFpaWlmNMVQJfffVVt/5HGjoIfgAAYCzIPki39vu1XqbwP1l3UrD2+7VeQfZBusc57p49e+y2bt16NS8vr2qgNjt27KirrKwsq6qqKhOJRN1KpdJhoLYZGRkCHx+fm+Xl5WXTpk3TxsfHt+bl5ZXf3W7r1q12o0aN6r169WrJO++8o05MTBSZnnN1de2qqKgoq6ioKPv73/9+lfm7HFwIfgAAYCzSNVKzKWJT9drv13ptPrvZee33a702RWyqjnSNZHRk7/vvvy/cuHGjAxHR/PnzXcPCwsREROnp6QI2mx2cn5/PX7p0qfvChQtFvb299NZbb4nEYrFMLBbLNm3a5EBEZGNjYyAiMhgM1NnZyR6okl5ubq7VBx98IMrMzBwllUplWq2WFR0d3eHu7n5PAZ6MjIzRv/71r5uJiH71q1+15ObmCgyGfqsAExHRZ599Zr1gwQIREdGGDRscRCJRINGt+gLBwcESJp/Rw0LwAwDAoIh0jdTEecc1ppanOsV5xzUyDX0ioqioKG1OTg6fiOjChQu8jo4OTldXFysrK4uvVCprAwICdHv37q3euXPntaSkJPva2lpuaWlpWVVVVdmCBQuaTf3MmjXLw97eXn7p0iXL1atX/9jfWOHh4Z1r1qxRxcXFtVRUVJTx+fwBz7RXq9UWnp6e3URE5ubmxOfz9Wq12oyI6Nq1axZ+fn6ycePGSY4cOcInIpoyZYrmzJkzAiKinJwc/ujRo3uvXLlifuLECX5YWJiW6ef0MBD8AAAwKE7WnRR8c/kb+9f8Xqv/5vI39nfv+T+KiIgIXXFx8YiWlhY2l8s1jh07Vpudnc07ffq0YPLkyXcE5okTJ0YuWrSo0dz8VsVcU0EdIqK0tLQatVpd6Ovre3P37t3WTOfVX50bFotldHNz67ly5UpReXl52ZYtW+rmzZvndePGDbabm1uvTqdjt7S0sFUqlcXLL7/cfPToUcH333/PnzhxIoIfAACeLaY9/U0Rm6pXh6xWmZb9mYY/l8s1ikSirpSUFLuQkBDtxIkTtceOHRPU1tZyFQrFzb5tjUbjfWvem5mZ0Zw5c24cOnSIcfA7Ojp2X7lyxYKIqKenh7RaLcfBwUFvZWVldHR01BMRTZgwQefm5tZlKg8cHBzckZKSYuft7X0zKipKm52dzc/Pz+fHxMQg+AEA4NlS1FjE67unb9rzL2os4jHtOzw8XJuSkiKMjIzUxMTEaL788kt7mUymY7PvjLCYmJj2HTt22Pf03NqSV6vVHIPBQCUlJVyiW3v86enpo319fW/eO8rD+cUvftG6e/duWyKiPXv2WI8fP17DZrNJpVKZ9fbeKsZXVlZmUVNTw5VIJF1ERBMmTNCkpKQIJ0yYoA0PD9fl5uYKLCwsDLa2tvr7DDXoEPwAAMDYb8f8Vn33nn6ka6Tmt2N+q2ba96RJkzSNjY3mkydP7nB1de3lcrnG559//p675BUrVjSKRKJuqVTqL5FIZJ9//rmN0WikuXPneorFYplEIvFvaGgw37x5s+pBx160aJFIKBQG3bx5ky0UCoMSExOdiYiWLVvW1NLSYubm5hbwySefOH700UfXiIiOHj3KN40/a9Ys748//rjWtOUQHR2tbWhosIiJidGYmZmRk5NTd0hIyBO92yciYvW3TwEAAFBYWFgjl8ubhnoe8PAKCwvt5HK5R3/P4Y4fAABgGEFZXgAAGHZWrVrlmJ6ebtP32vTp028olcqGoZrTk4KlfgAA6BeW+p9dWOoHAAAAIkLwAwAADCsIfgAAgGEEwQ8AADCMIPgBAICxHz/+WKjJzLzjeF5NZqbgx48/Fj7OcXfv3m3t5eXlHxoaKh6ozezZs90lEolMLBbLpk2b5tXW1jZg9qlUKrOgoCCpn5+f7MiRI/ylS5e6ODo6BvF4PEXfduvWrRN6e3v7i8Vi2fjx48VVVVUWpuc4HE6wVCqVSaVS2eTJk30G550OHgQ/AAAwZiWX61SrVnuZwl+TmSlQrVrtZSWX6x7nuHv27LHbunXr1by8vKqB2uzYsaOusrKyrKqqqkwkEnUrlUqHgdpmZGQIfHx8bpaXl5dNmzZNGx8f35qXl1d+d7vg4GDdhQsXyquqqsri4+NbVqxYITI9x+VyDRUVFWUVFRVlJ06cuMT8XQ4uBD8AADAmiIrSOCs3V6tWrfZq+PBDZ9Wq1V7Oys3VgqgoRqV533//feHGjRsdiIjmz5/vGhYWJiYiSk9PF7DZ7OD8/Hz+0qVL3RcuXCjq7e2lt956SyQWi2VisVi2adMmByIiGxsbA9Gts/o7OzvZLBar37Fyc3OtPvjgA1FmZuYoqVQq02q1rOjo6A53d/eeu9vGxcVpBAKBgYgoIiJCW19fb3Fvj/+VmZnJmzJlijcR0d/+9rfRlpaWY27evMnS6XQskUgUyOAjemgIfgAAGBSCqCjNqPjpjS179zmNip/eyDT0iYiioqK0OTk5fCKiCxcu8Do6OjhdXV2srKwsvlKprA0ICNDt3bu3eufOndeSkpLsa2truaWlpWVVVVVlCxYsaDb1M2vWLA97e3v5pUuXLFevXv1jf2OFh4d3rlmzRhUXF9dSUVFRxufzH+igm507d9rHxMS0mR53d3ezAwIC/ORyuXTfvn2jiW6VFy4tLeUREWVlZfF9fHw6s7KyeJmZmSMUCgWq8wEAwLNHk5kpaDuUbm899436tkPp9nfv+T+KiIgIXXFx8YiWlhY2l8s1jh07Vpudnc07ffq0YPLkyXcE5okTJ0YuWrSo0dzcnIiITMVxiIjS0tJq1Gp1oa+v783du3czLstrsm3bNpvCwkLeH//4x9sn/l26dKmopKSk/B//+Ef16tWrXUtLS7nm5ubk7u5+8/z585bnz58fsXTpUnVmZqbg1KlTgv4KDj1OCH4AAGDMtKfvrNxc7fjeeyrTsj/T8OdyuUaRSNSVkpJiFxISop04caL22LFjgtraWq5CobijvK7RaCQWizXgXbqZmRnNmTPnxqFDhwYl+A8dOiT46KOPnL777rtLVlZWt8f18PDoISKSyWTdYWFhmrNnz/KIbpUX/te//jXK3NzcGBcX13769Gn+6dOn+dHR0YxXRh4Ggh8AABjrLCzk9d3TN+35dxYW8pj2HR4erk1JSRFGRkZqYmJiNF9++aW9TCbTsdl3RlhMTEz7jh077Ht6bm3Jq9VqjsFgoJKSEi7RrT3+9PT00b6+vjfvHeXh5OTkWC1dutQ9PT39kouLS6/pemNjI6ezs5NFRFRfX2927tw5flBQUCcRUWRkpHbnzp0O48aN0zo7O/e2tLSYVVdXWwYHBzOez8NA8AMAAGMOy5er797TF0RFaRyWL1cz7XvSpEmaxsZG88mTJ3e4urr2crlcY3/L4ytWrGgUiUTdUqnUXyKRyD7//HMbo9FIc+fO9RSLxTKJROLf0NBgvnnzZtWDjr1o0SKRUCgMunnzJlsoFAYlJiY6ExH97ne/c9XpdJyXX37Zu+/P9i5cuGApl8v9JBKJbNKkSeLly5c3mII9MjJS29zcbB4ZGaklIpLJZJ0SiaTz7i8wjxuK9AAAQL9QpOfZhSI9AAAAQEREZkM9AQAAgCdt1apVjunp6TZ9r02fPv2GUqlsGOg1PxdY6gcAgH5hqf/ZhaV+AAAAICIEPwAAwLCC4AcAABhGEPwAAADDCIIfAAAYO5N+WXilqOmO43mvFDUJzqRfFj7OcXfv3m3t5eXlHxoaKh6ozezZs90lEolMLBbLpk2b5tXW1jZg9qlUKrOgoCCpn5+f7MiRI/ylS5e6ODo6BvF4PEV/7ffs2WPNYrGCs7Kybp9QuGbNGkc3N7cADw+PgAMHDoxk9g4HH4IfAAAYE3qO0h3/oszLFP5XipoEx78o8xJ6jtI9znH37Nljt3Xr1qt5eXlVA7XZsWNHXWVlZVlVVVWZSCTqViqVDgO1zcjIEPj4+NwsLy8vmzZtmjY+Pr41Ly+vvL+2LS0t7JSUFIegoKAO07X8/HzLgwcP2lRWVpYeOXKkavny5W69vb39vXzIIPgBAIAxzyA7TfQ8WfXxL8q8svdXOR//oswrep6s2jPIjlEBmvfff1+4ceNGByKi+fPnu4aFhYmJiNLT0wVsNjs4Pz+fv3TpUveFCxeKent76a233hKJxWKZWCyWbdq0yYGIyMbGxkB066z+zs5ONovF6nes3Nxcqw8++ECUmZk5SiqVyrRaLSs6OrrD3d29p7/27777rsu7777bwOVyb/8uPi0tbfTMmTNvWFlZGaVSabe7u3vXyZMnR9zvfUyfPt2TyWf0sBD8AAAwKDyD7DSSMMfGohPXnCRhjo1MQ5+IKCoqSpuTk8MnIrpw4QKvo6OD09XVxcrKyuIrlcragIAA3d69e6t37tx5LSkpyb62tpZbWlpaVlVVVbZgwYJmUz+zZs3ysLe3l1+6dMly9erVP/Y3Vnh4eOeaNWtUcXFxLRUVFWV8Pn/Ag25ycnKsrl+/bjFnzpy2vtevX79u4erq2m167Ozs3F1XV2dxv/cRERGB6nwAAPDsuVLUJKg802AfNFlUX3mmwf7uPf9HERERoSsuLh7R0tLC5nK5xrFjx2qzs7N5p0+fFkyePPmOQj0nTpwYuWjRokZzc3MiIhIKhXrTc2lpaTVqtbrQ19f35u7duxmV5dXr9bRixQq35OTkuruf6+9QPBaLZXyY9/G4IfgBAIAx055+9DxZ9YTZYpVp2Z9p+HO5XKNIJOpKSUmxCwkJ0U6cOFF77NgxQW1tLVehUNxRztZoNBKLxRrwLt3MzIzmzJlz49ChQ4yCv7W1lXPx4kXLyZMnS1xcXAILCwtHzJo1yycrK4snEom66+rqLExtVSqVhUgk6nmY9/G4IfgBAIAx9ZU2Xt89fdOev/pKG++nXvtTwsPDtSkpKcLIyEhNTEyM5ssvv7SXyWS6u8vZxsTEtO/YscO+p+fWlrxareYYDAYqKSnhEt3a409PTx/t6+vLKGhtbW31LS0thdevXy++fv16sVwu70hLS7s0ceJEXUJCQuvBgwdtOjs7WRUVFRY1NTWWkZGRHQ/zPh43BD8AADAWNt1bffeevmeQnSZsureaad+TJk3SNDY2mk+ePLnD1dW1l8vlGp9//vl7lsdXrFjRKBKJuqVSqb9EIpF9/vnnNkajkebOnespFotlEonEv6GhwXzz5s2qBx170aJFIqFQGHTz5k22UCgMSkxMdL5f+7Fjx96Mj4+/IRaL/adNmybesmVLrZmZ2UO9j8cNRXoAAKBfKNLz7EKRHgAAACAiIrOhngAAAMCTtmrVKsf09HSbvtemT59+Q6lUNgzVnJ4ULPUDAEC/sNT/7MJSPwAAABARgh8AAGBYQfADAAAMIwh+AACAYQTBDwAAjH3/z73Cy/ln7zie93L+WcH3/9wrfJzj7t6929rLy8s/NDRUPFCb2bNnu0skEplYLJZNmzbNq62tbcDsU6lUZkFBQVI/Pz/ZkSNH+EuXLnVxdHQM4vF4irvbfvbZZ9be3t7+Pj4+/nFxcbcr7H3yySe27u7uAe7u7gGffPKJLfN3ObgQ/AAAwJiTr1R3OCXJyxT+l/PPCg6nJHk5+Up1j3PcPXv22G3duvVqXl5e1UBtduzYUVdZWVlWVVVVJhKJupVKpcNAbTMyMs6miPgAACAASURBVAQ+Pj43y8vLy6ZNm6aNj49vzcvLK7+7XXFxMTcpKcnpzJkzFZcuXSrdsWNHHdGtY4KVSqXz2bNny8+dO1euVCqdGxsbOYPzbgcHgh8AABjzDg7RxL79bvXhlCSvzC92OR9OSfKKffvdau/gEEYlZ+9Xx57NZgfn5+fzly5d6r5w4UJRb28vvfXWWyKxWCwTi8WyTZs2ORAR2djYGIhundXf2dnJZrFY/Y6Vm5tr9cEHH4gyMzNHSaVSmVarZUVHR3e4u7v33N02JSXF/je/+c2P9vb2eiIiFxeXXiKiQ4cOjZo4cWK7UCjU29vb6ydOnNh+8ODBUZ999pn1ggULREREGzZscBCJRIFERKWlpdzg4GAJk8/oYSH4AQBgUHgHh2j8J0Y3nj/8Lyf/idGNTEOfiOh+deyVSmVtQECAbu/evdU7d+68lpSUZF9bW8stLS0tq6qqKluwYEGzqZ9Zs2Z52Nvbyy9dumS5evXqH/sbKzw8vHPNmjWquLi4loqKijI+nz/gQTeXLl3iVlVVWY4ZM0Yql8ulaWlpI4mIrl+/bi4SibpN7VxcXLqvX79uPmXKFM2ZM2cEREQ5OTn80aNH9165csX8xIkT/LCwMJTlBQCAZ8/l/LOC0qzj9mNiX6ovzTpuf/ee/6N4mDr2J06cGLlo0aJGc3NzIiISCoV603NpaWk1arW60NfX9+bu3bsZleUlItLr9azLly9zT58+XfnVV19Vv/322x5NTU2c/g7FY7FY5Obm1qvT6dgtLS1slUpl8fLLLzcfPXpU8P333/MnTpyI4AcAgGeLaU8/9u13q6PmvaUyLfszDf+HqWNvNBqJxWINeJduZmZGc+bMuXHo0CHGwe/k5NQdFxfXyuVyjVKptNvLy+tmaWkpVyQS9Vy7ds3C1O769esWzs7OPUREwcHBHSkpKXbe3t43o6KitNnZ2fz8/Hx+TEwMgh8AAJ4t9RcreH339E17/vUXK3hM+37QOvYxMTHtO3bssO/pubUlr1arOQaDgUpKSrhEt/b409PTR/v6+t68d5SHM3PmzNaTJ08KiIjq6+vNrly5YimRSLri4+PbTp06NbKxsZHT2NjIOXXq1Mj4+Pg2IqIJEyZoUlJShBMmTNCGh4frcnNzBRYWFgZbW1v9/UcbXAh+AABgLOKXc9V37+l7B4doIn45V8207wetY79ixYpGkUjULZVK/SUSiezzzz+3MRqNNHfuXE+xWCyTSCT+DQ0N5ps3b1Y96NiLFi0SCYXCoJs3b7KFQmFQYmKiMxHRzJkz221sbHq9vb39J02aJF6/fn2do6OjXigU6n/3u9+pgoOD/YKDg/1+//vfq0xbDtHR0dqGhgaLmJgYjZmZGTk5OXWHhIQ80bt9IhTpAQCAAaBIz7MLRXoAAACAiIjMhnoCAAAAT9qqVasc09PTbfpemz59+g2lUtkwVHN6UrDUDwAA/cJS/7MLS/0AAABARAh+AACAYQXBDwAAMIwg+AEAAIYRBD8AADDW9u8aYWd58x3H83aWNwva/l0jHKo5paamjnrvvfccH0ffISEhkqysLManEg4F/JwPAAAYs3AT6G7sr/KymS2utvKz1XSWNwtMj4dqTq+99lobEbXdfb2np4dMhXyGI9zxAwAAY1Z+thqb2eLqG/urvFq/uezc90sAk34rKystPD09/V955RV3X19f/5deesnz0KFDgjFjxkjd3d0DMjMzeWq1mhMTE+MtFotlcrlcmpeXZ0VElJycbDt37lw3IqKEhASPBQsWiEJDQ8VLliwRtbW1sWfNmuUhFotlYrFY9sUXX4zu7e2lhIQED19fX3+xWCz74x//6PBT89Pr9TRz5kyP3/72t85M3ueThDt+AAAYFFZ+tpoRYxwatTkqJ/7zzvVMQ9+krq7O8quvvqoODg6uDQoK8ktNTbU9d+5cxd///vfRmzZtcnJxcemWy+W6Y8eOXf7Xv/4lePPNNz0rKirK7u7n8uXLljk5OVVmZma0ePFil5EjR+qrqqrKiIgaGxs5p0+f5tXX15tfvHixlIioqamJc7959fT0sOLj4z1lMlnns3TwD+74AQBgUHSWNws6zv9oz3/eub7j/I/2d+/5PyoXF5eukJCQTg6HQ2KxuHPy5MntbDabxowZo7t27Rr37Nmzgvnz5zcTEb300kua1tZWs+bm5ntCe+bMmS1mZrfud7OyskauWLHiR9Nz9vb2eqlU2lVXV8d98803XdPS0kZaW1vft2rekiVL3J+10CdC8AMAwCDou6c/Os5bZVr2H4zwt7CwuH3ELJvNJktLSyMREYfDIb1e3+8JtCwW656LfD7fYPrbaDQSi8W643l7e3t9SUlJWVRUlGbbtm0Ov/zlLz3uN6+xY8dqs7OzR+p0Otb92j1tEPwAAMBY91UNr++evmnPv/uq5rH/53tYWJhmz549tkREGRkZAmtr614bGxvD/V4TGRnZvmXLltt7+I2NjZz6+nozvV5P8+bNa924ceP14uLi+8594cKFTVOmTGl78cUXvXt6egbnzTwBCH4AAGBs1FQP9d17+lZ+tppRUz3Uj3tspVKpOn/+PE8sFsvWrl3r8sUXX1z5qdf86U9/qm9tbeX4+vr6SyQS2XfffSeoqakxj4iIkEilUtmvf/1rz/Xr11/7qX7WrVunlsvlupkzZ3rq9ffdGXhqoEgPAAD0C0V6nl0o0gMAAABEhJ/zAQAADOiNN95w++GHH/h9ry1evFi9bNmy5qGaE1MIfgAAgAHs27fv6lDPYbBhqR8AAGAYQfADAAAMIwh+AACAYQTBDwAAjB0/flxYWVl5xyl9lZWVguPHjw9ZWV7oH4IfAAAYE4lEuq+//trLFP6VlZWCr7/+2kskEumGem4PSqFQSId6Dk8C/qsfAAAYk0gkmhkzZlR//fXXXnK5vLGwsNB+xowZ1RKJZFAq9D0JBQUFFUM9hycBd/wAADAoJBKJRi6XN+bl5TnJ5fLGwQj9yspKC09PT/9XXnnF3dfX1/+ll17yPHTokGDMmDFSd3f3gMzMTJ5arebExMR4i8VimVwul+bl5VkREX377bd8qVQqk0qlMj8/P1lLSwu7ra2NPX78eLFMJvMTi8Wyv/3tb6NNY/F4PIXp7/fff18oFotlEolEtmTJEpeB5hcSEiLJysriERHV19ebubi4BDJ9z48b7vgBAGBQVFZWCgoLC+1DQ0PrCwsL7b28vDSDEf51dXWWX331VXVwcHBtUFCQX2pqqu25c+cq/v73v4/etGmTk4uLS7dcLtcdO3bs8r/+9S/Bm2++6VlRUVGWlJTkmJycXDtlypSOtrY2No/HMxARffvtt5dsbGwM9fX1ZqGhodJXX321lc3+733w/v37R3777bfW+fn5FQKBwKBWq+8p8fsswx0/AAAwZtrTnzFjRnVsbKzKtOx/9z/8PQoXF5eukJCQTg6HQ2KxuHPy5MntbDabxowZo7t27Rr37Nmzgvnz5zcTEb300kua1tZWs+bmZk5YWJh25cqVrhs3bnRoamrimJubk8FgYC1fvlwkFotlUVFR4h9//NHi2rVrd9wE/+c//xn5+uuvNwkEAgMRkVAofDaq7zwgBD8AADB27do1Xt89fdOe/7Vr1xiX5bWwsLhdTY7NZpOlpaWRiIjD4ZBer++32ByLxTJ++OGHDZ999lltZ2cnOzw83K+goMBy586dNs3NzWbFxcXlFRUVZba2tj2dnZ13ZKHRaCQWi/VAczMzMzOaqvLpdLoHe9EQQ/ADAABj0dHR6ruX9SUSiSY6Ovqxl+UNCwvT7Nmzx5aIKCMjQ2Btbd1rY2NjKC0t5YaEhHRu2rSpITAwsKOkpMSyra2NY2dn18Plco3ffPONQKVSWdzd37Rp09r37dtnp9Fo2ERE91vqd3V17Tp79uwIIqLU1FTrx/UeBxP2+AEA4JmmVCpVr776qodYLJZZWVkZvvjiiytERH/+858dcnNzR7LZbKNYLO6cNWtWW2trKyc2NtYnICDAz9/fX+fp6Xnz7v5mzZrVfv78ed5zzz3nZ25uboyJiWn761//er2/sVevXq1+5ZVXvP75z3/aTpgwof1xv9fB0O8SCQAAQGFhYY1cLm8a6nnAwyssLLSTy+Ue/T2HpX4AAIBhBEv9AAAAP+GNN95w++GHH/h9ry1evFi9bNmy5qGa06NC8AMAAPyEffv2XR3qOQwWLPUDAAAMIwh+AACAYQTBDwAAMIwg+AEAgLHLl5OEjU3H7ziet7HpuODy5SThUM3pfh5nCd7ExETnP/zhD0/l+yZC8AMAwCAYOeo5XVnZSi9T+Dc2HReUla30GjnqOd1Qz62v3t5eIho+JXj7g+AHAADG7O2iNTLZR9VlZSu9qqo2OJeVrfSSyT6qtreLZlSdr729nR0ZGekjkUhkvr6+/p9++qm1i4tLYH19vRkRUVZWFi8kJERCdOtOOz4+3jMsLEzs7u4ekJSUZEd06xjf0NBQcVxcnKdEIvEn+m8J3oyMDMG4ceMkL7zwgpeHh0fAkiVLXLZv324TGBjoJxaLZaWlpVwiIpVKZTZ16lTvgIAAv4CAAL+jR4+OuN+8i4qKeHfP42mBn/MBAMCgsLeL1jg5zmysu/aFk6toXj3T0CciOnjw4EhHR8eekydPXiIiam5u5qxbt27A9uXl5Vb5+fnlGo2Go1AoZAkJCW1EREVFRSMKCgpKpVJp992vqaiosEpLS6t2cHDodXd3D+RyuU3FxcXlGzZscEhKSnLYvXt33cKFC10TExPVU6dO1V68eNFi6tSpvtXV1aUPMw8PD48epp/HYMAdPwAADIrGpuOC+oaD9q6iefX1DQft797zfxRjxozpzM7OHrl48WKXI0eO8G1tbe9bIjc2NraVz+cbnZycesePH9+enZ09gogoKCioo7/QJyIKDAzscHd377GysjK6ubl1xcbGthERyeXyzqtXr1oQEeXk5IxctmyZm1QqlcXFxflotVpOS0vLgBk60DyeBrjjBwAAxkx7+qblfWubcM1gLPcHBQV1nT9/vuzAgQOj1q5d63Ls2LF2DodjNBgMRER0d0ndu8vpmh7zeDzDQGNwudx+y/6y2WzS6/Usolules+dO1fO5/MfqMDNQPN4GuCOHwAAGGtvu8DrG/KmPf/2tgs8Jv3W1NSYCwQCw5IlS24sX75cfeHCBZ5IJOrOycnhERHt37//jlK4hw8fHq3T6VgNDQ2cM2fOCCIiIjqYjG8SERHRrlQqHUyPc3Nzre7X/nHNYzDgjh8AABjz9n5Xffc1e7toDdN9/vz8fKs1a9aI2Gw2mZmZGbdt21ar0+nYixYt8lAqlT3BwcF3BKpCoeiIjo72ValUFitXrqz38PDoKSkpsWQyByKiXbt21S1YsMBNLBbL9Ho9KzQ0VBMeHj7gMb79zYPpHAYLyvICAEC/nrWyvImJic58Pl+/fv36e76EDDcoywsAAABEhKV+AAD4mdiyZYvqSY63detW2+3bt99xQt+4ceO0T3slPyz1AwBAv561pX74Lyz1AwAAABEh+AEAAIYVBD8AAMAwguAHAAAYRhD8AADA2J+q64VHm9ruOJv/aFOb4E/V9U9lXXqFQiEd6jkMFQQ/AAAwFjySp1taftXLFP5Hm9oES8uvegWP5OmGem599fb2EhFRQUFBxRBPZcgg+AEAgLEpdqM0n/i5VS8tv+r1vxevOS8tv+r1iZ9b9RS7UYyO7G1vb2dHRkb6SCQSma+vr/+nn35q7eLiElhfX29GRJSVlcULCQmREN06uS8+Pt4zLCxM7O7uHpCUlGRHRJSRkSEIDQ0Vx8XFeUokEn8iIh6PpzA9N27cOMkLL7zg5eHhEbBkyRKX7du32wQGBvqJxWJZaWkpl4hIpVKZTZ061TsgIMAvICDA7+jRo/1W29Pr9eTi4hLY1NTEMV1zc3MLqKure2rOzUHwAwDAoJhiN0oz29G68dNrTU6zHa0bmYY+EdHBgwdHOjo69lRWVpZdvHixdObMme33a19eXm517Nixi2fOnKn4y1/+4lxTU2NORFRUVDTiL3/5y/XLly+X3v2aiooKq+3bt9eVl5eXpqWl2VZVVVkWFxeXv/HGG01JSUkOREQLFy50TUxMVJeUlJR//fXXlxctWuTR3/gcDoemTJnSmpqaOpqI6MSJEyNEIlG3q6trL9PPYrAg+AEAYFAcbWoT7G9osf+NyK5+f0OL/d17/o9izJgxndnZ2SMXL17scuTIEb6tra3+fu1jY2Nb+Xy+0cnJqXf8+PHt2dnZI4iIgoKCOqRSaXd/rwkMDOxwd3fvsbKyMrq5uXXFxsa2ERHJ5fLOq1evWhAR5eTkjFy2bJmbVCqVxcXF+Wi1Wk5LS0u/Gfrqq6/eSEtLsyEiSk1NtUlISLjB5DMYbE/N0gMAADy7THv6puX9CdYCzWAs9wcFBXWdP3++7MCBA6PWrl3rcuzYsXYOh2M0GAxERNTZ2XlH+N5d9970mMfjGQYag8vl3j7Cls1mk6WlpdH0t16vZxERGY1GOnfuXDmfz//J426jo6M75s+fz1WpVGZHjhwZvWnTpid6lPBPwR0/AAAwlt+u4/UNedOef367jsek35qaGnOBQGBYsmTJjeXLl6svXLjAE4lE3Tk5OTwiov3791v3bX/48OHROp2O1dDQwDlz5owgIiKio/+eH05ERES7Uql0MD3Ozc21Gqgtm82m2NjY1iVLlrj6+Ph0Ojo63neV4knDHT8AADC2xsvpnlK4U+xGaZju8+fn51utWbNGxGazyczMzLht27ZanU7HXrRokYdSqewJDg6+I9gVCkVHdHS0r0qlsli5cmW9h4dHT0lJiSWTORAR7dq1q27BggVuYrFYptfrWaGhoZrw8PABi/G89tprNyZNmuSXnJxcw3TswYYiPQAA0K9nrUhPYmKiM5/P169fv/6eLyHDDYr0AAAAABFhqR8AAH4mtmzZ8kT/iW7r1q2227dvv+NkwnHjxmn37ds34BbA0wBL/QAA0K9nbakf/gtL/QAAAEBECH4AAIBhBcEPAAAwjCD4AQAAhhEEPwAAMPbRvyuFx8rVd5zNf6xcLfjo35XCgV4zlBQKhXSo5zBUEPwAAMDYc26jdYn7L3iZwv9YuVqQuP+C13Nuo3VDPbe+entvFckrKCioeBLj9fT0PIlhHgqCHwAAGIvxE2q2zH6uOnH/Ba8/flPqnLj/gteW2c9Vx/gJGR3Z297ezo6MjPSRSCQyX19f/08//dTaxcUlsL6+3oyIKCsrixcSEiIhunVyX3x8vGdYWJjY3d09ICkpyY6IKCMjQxAaGiqOi4vzlEgk/kREPB5PYXpu3LhxkhdeeMHLw8MjYMmSJS7bt2+3CQwM9BOLxbLS0lIuEZFKpTKbOnWqd0BAgF9AQIDf0aNHRww058TEROc5c+a4P//8874zZ870ZPL+Hwcc4AMAAIMixk+oSRgjatyTU+P0q+c96pmGPhHRwYMHRzo6OvacPHnyEhFRc3MzZ926dQO2Ly8vt8rPzy/XaDQchUIhS0hIaCMiKioqGlFQUFDaX2neiooKq7S0tGoHB4ded3f3QC6X21RcXFy+YcMGh6SkJIfdu3fXLVy40DUxMVE9depU7cWLFy2mTp3qW11dXTrQPIqKinh5eXkVD1LN70lD8AMAwKA4Vq4WHDh/zf5Xz3vUHzh/zf55HzsN0/AfM2ZM59q1a10XL17sMn369LZp06Zp79c+Nja2lc/nG/l8fu/48ePbs7OzR1hbW+uDgoI6+gt9IqLAwMAOd3f3HiIiNze3rtjY2DYiIrlc3nnq1CkBEVFOTs7Iixcv3q7Ip9VqOS0tLWxra+t+y/1Omzat9WkMfSIEPwAADALTnr5pef95HzvNYCz3BwUFdZ0/f77swIEDo9auXety7Nixdg6HYzQYbuVtZ2fnHVvWLBaL+nvM4/H6DWgiIi6Xezug2Ww2WVpaGk1/6/V6FhGR0Wikc+fOlT9omI8YMWLA8YYa9vgBAICxC1dbeX1D3rTnf+FqK49JvzU1NeYCgcCwZMmSG8uXL1dfuHCBJxKJunNycnhERPv377fu2/7w4cOjdTodq6GhgXPmzBlBRERER/89P5yIiIh2pVLpYHqcm5trdb/2TzPc8QMAAGMrp0ruKYUb4ydkvNSfn59vtWbNGhGbzSYzMzPjtm3banU6HXvRokUeSqWyJzg4+I5gVygUHdHR0b4qlcpi5cqV9R4eHj0lJSWWTOZARLRr1666BQsWuInFYpler2eFhoZqwsPDn+piPANBkR4AAOjXs1akJzEx0ZnP5+vXr19/z5eQ4QZFegAAAICIsNQPAAA/E1u2bFE9yfG2bt1qu3379jtOJhw3bpx23759T/UWAJb6AQCgX8/aUj/8F5b6AQAAgIgQ/AAAAMMKgh8AAGAYQfADAAAMIwh+AABg7vgGIVUeFtxxrfKwgI5vEA7wiiGlUCikj6vv1NTUUe+9957j4+qfKfycDwAAmBON1dHXi7xoxo5qksRqqPKw4Pbjp0hvby+ZmZlRQUFBxeMa47XXXmsjorbH1T9TuOMHAADmJLEamrGjmr5e5EWHVzvf8SWAgfb2dnZkZKSPRCKR+fr6+n/66afWLi4ugfX19WZERFlZWbyQkBAJ0a2T++Lj4z3DwsLE7u7uAUlJSXZERBkZGYLQ0FBxXFycp0Qi8Sci4vF4CtNz48aNk7zwwgteHh4eAUuWLHHZvn27TWBgoJ9YLJaVlpZyiYhUKpXZ1KlTvQMCAvwCAgL8jh49OmKgOScnJ9vOnTvXjYgoISHB49VXX3ULDg6WeHh4BPzjH/8YxeTzGAy44wcAgMEhidWQfE4j5W13otDF9UxDn4jo4MGDIx0dHXtOnjx5iYioubmZs27dugHbl5eXW+Xn55drNBqOQqGQJSQktBERFRUVjSgoKCjtrzRvRUWFVVpaWrWDg0Ovu7t7IJfLbSouLi7fsGGDQ1JSksPu3bvrFi5c6JqYmKieOnWq9uLFixZTp071ra6uLn2Q91BXV8c9e/ZsZVlZGTcmJkYyffr0Yh6PN2SH6OCOHwAABkflYQEV/sOeQhfXU+E/7O/Z838EY8aM6czOzh65ePFilyNHjvBtbW3192sfGxvbyufzjU5OTr3jx49vz87OHkFEFBQU1NFf6BMRBQYGdri7u/dYWVkZ3dzcumJjY9uIiORyeefVq1ctiIhycnJGLlu2zE0qlcri4uJ8tFotp6Wl5YEyNCEh4QaHw6HAwMAuV1fXrgsXLjAuGsQE7vgBAIC5vnv6klgNeU3SDMZyf1BQUNf58+fLDhw4MGrt2rUux44da+dwOEaD4Va5+87OzjvCl8ViUX+PeTyeYaAxuFzu7btvNptNlpaWRtPfer2eRURkNBrp3Llz5Xw+/6Hv1Aea01DBHT8AADB37RzvjpA37flfO8dj0m1NTY25QCAwLFmy5Mby5cvVFy5c4IlEou6cnBweEdH+/fut+7Y/fPjwaJ1Ox2poaOCcOXNGEBER0dF/zw8nIiKiXalUOpge5+bmWj3oaw8ePGit1+uptLSUW1dXx5XL5TcHY06PCnf8AADAXPT/3lsKVxKrYbrPn5+fb7VmzRoRm80mMzMz47Zt22p1Oh170aJFHkqlsic4OPiOYFcoFB3R0dG+KpXKYuXKlfUeHh49JSUljJfWd+3aVbdgwQI3sVgs0+v1rNDQUE14ePgDFePx8fHpCgkJkTQ3N5t//PHHtUO5v0+EIj0AADCAZ61IT2JiojOfz9evX7/+3i8hQyQhIcHjxRdfbPvVr37V8iTHRZEeAAAAICIs9QMAwM/Eli1bVE9yvK1bt9pu3779jpMJx40bp923b9/tLYADBw7UPMk5PQgs9QMAQL+etaV++C8s9QMAAAARIfgBAACGFQQ/AADAMILgBwAAGEYQ/AAAwFjy+WThybqTd5zNf7LupCD5fLJwoNcMJYVCIR3qOQwVBD8AADAWZB+kW/v9Wi9T+J+sOylY+/1aryD7IN1Qz62v3t5eIiIqKCioGOKpDBkEPwAAMBbpGqnZFLGpeu33a702n93svPb7tV6bIjZVR7pGMjqyt729nR0ZGekjkUhkvr6+/p9++qm1i4tLYH19vRkRUVZWFi8kJERCdOvkvvj4eM+wsDCxu7t7QFJSkh0RUUZGhiA0NFQcFxfnKZFI/ImIeDyewvTcuHHjJC+88IKXh4dHwJIlS1y2b99uExgY6CcWi2WlpaVcIiKVSmU2depU74CAAL+AgAC/o0ePjhhozpMmTfKRSqUyqVQqEwgEz33yySe2ycnJttHR0d4TJkzw9fDwCHj33XedmHwuTOAAHwAAGBSRrpGaOO+4xtTyVKfX/F6rZxr6REQHDx4c6ejo2HPy5MlLRETNzc2cdevWDdi+vLzcKj8/v1yj0XAUCoUsISGhjYioqKhoREFBQWl/pXkrKiqs0tLSqh0cHHrd3d0DuVxuU3FxcfmGDRsckpKSHHbv3l23cOFC18TERPXUqVO1Fy9etJg6dapvdXV1aX9zOHXq1CUiouzsbN78+fM9Xn311dbU1NTRRUVFI4qLi0v5fL5BoVDIpk+f3jZx4sQnviKCO34AABgUJ+tOCr65/I39a36v1X9z+Rv7u/f8H8WYMWM6s7OzRy5evNjlyJEjfFtbW/392sfGxrby+Xyjk5NT7/jx49uzs7NHEBEFBQV19Bf6RESBgYEd7u7uPVZWVkY3N7eu2NjYNiIiuVzeefXqVQsiopycnJHLli1zk0qlsri4OB+tVstpaWkZMEPr6+vN5s2b55mamlptmnNERES7o6Ojns/nG3/xi1+0nDx5kv+onwsTuOMHAADGTHv6puX9MKcwzWAs9wcFBXWdP3++7MCBA6PWrl3rcuzYsXYOh2M0GAxERNTZ2XlHdaMBUQAAFuNJREFU+N5d6970mMfjGQYag8vl3j7Cls1mk6WlpdH0t16vZxERGY1GOnfuXDmfz//J4257e3spISHBa9WqVapx48bdLsE70NyeNNzxAwAAY0WNRby+IW/a8y9qLOIx6bempsZcIBAYlixZcmP58uXqCxcu8EQiUXdOTg6PiGj//v3WfdsfPnx4tE6nYzU0NHDOnDkjiIiI6Oi/54cTERHRrlQqHUyPc3NzrQZq+/bbb4tkMpnurbfeuqMi3/fffz9SrVZztFot67vvvhs9adIk7WDM7WHhjh8AABj77Zjf3lMKN9I1UsN0nz8/P99qzZo1IjabTWZmZsZt27bV6nQ69qJFizyUSmVPcHDwHcGuUCg6oqOjfVUqlcXKlSvrPTw8ekpKSiyZzIGIaNeuXXULFixwE4vFMr1ezwoNDdWEh4dfHaCt0MfH56ZUKh1JRPS///u/14mIxo4dq33llVc8a2pqLBMSEpqHYn+fCEV6AABgAM9akZ7ExERnPp+vX79+/T1fQoZacnKy7blz50bs3bu33y8Lgw1FegAAAICIcMcPAAADeNbu+J+0rVu32m7fvv2OkwnHjRun3bdv3xO5q7+f+93xI/gBAKBfCP5nF5b6AQAAgIgQ/AAAAMMKgh8AAGAYQfADAAAMIwh+AABg7MePPxZqMjPvOJtfk5kp+PHjj4UDveZxyMrK4s2bN8+VaT99KwD2lZiY6PyHP/zhib6nwYbgBwAAxqzkcp1q1WovU/hrMjMFqlWrvazk8id6Ot3EiRN1X3zxRd3d13t6ep7kNJ5qCH4AAGBMEBWlcVZurlatWu3V8OGHzqpVq72clZurBVFRjEvzrlq1ytHDwyMgPDxcHBcX5/mHP/xBGBISIsnKyuIR3aqE5+LiEkhElJGRIYiKivIhunV3PmfOHPfnn3/ed+bMmZ69vb301ltvicRisUwsFss2bdrkcL9x//znPzvIZDI/sVgsKygouOfY36SkJLuJEyf6arXaoam284hwVj8AAAwKQVSUZlT89MaWvfucrOe+UT8YoZ+dnc37+uuvbYqLi8t6enroueeekykUigdeRSgqKuLl5eVV8Pl8o1KptK+treWWlpaWmZubk1qt5tzvtXZ2dr1lZWXlmzdvtt+8ebPwq6++qjU99+GHH9ofO3Zs1L///e9LVlZWz9SBOLjjBwCAQaHJzBS0HUq3t577Rn3boXT7u/f8H0VmZib/hRdeaBUIBAYbGxvDlClTWh/m9dOmTWs1ldI9ceLEyEWLFjWam5sTEZFQKNTf77WvvvpqCxFRSEiIrq6ujmu6/tVXX9kePXp01OHDhy8/a6FPhOAHAIBBYNrTd1ZurnZ87z2Vadl/MMK/v7r1ZmZmRr3+Vm7rdLoBl9pHjBhhMP1tNBqJxWI9cFBbWloaTWP19vbeHkMikXReu3aNe+XKFfMH7etpguAHAADGOgsLeX339E17/p2FhTwm/U6ePFn77bffjtZqtayWlhb2f/7zn9FERK6url1nz54dQUSUmppq/SB9xcTEtO/YscPe9I9+P7XUP5DnnntOl5KSUvvSSy/51NTUPHPhj+AHAADGHJYvV9+9py+IitI4LF/OqERuRESEbsaMGTcCAgL8X3zxRe+QkBAtEdHq1avVn3/+ub1CoZA2NTU90P+rrVixolEkEnVLpVJ/iUQi+/zzz20edV5Tp07V/ulPf7oWGxvr29/P/p5mKNIDAAD9ehqL9CQmJjrz+Xz9+vXrGX2h+LlDkR4AAAAgIvycDwAAniFbtmxRDWZ///M//+Pd9z/2iYg2bdp0LSEhoX0wx3maIPgBAGDY+s9//nN5qOfwpGGpHwAAYBhB8AMAAAwjCH4AAIBhBMEPAAAwjCD4AQCAsTPpl4VXipruOJ73SlGT4Ez65cdau37SpEk+TU1Nj3QC32DpWynwWYDgBwAAxoSeo3THvyjzMoX/laImwfEvyryEnqMeuJLeozh16tQlOzu7O4rtGAwGMp3jD/dC8AMAAGOeQXaa6Hmy6uNflHll769yPv5FmVf0PFm1Z5Ado9K877//vnDjxo0ORETz5893DQsLExMRpaenC6ZPn+7p4uISWF9fb1ZZWWnh5eXl//rrr7v5+/vLLl++bJGWljZSJpP5SSQS2fjx48VERJmZmTyFQiH18/OTKRQKaWFhIZeIKDk52TYmJsZ78uTJPi4uLoEffvih/bp164R+fn4yuVwufZBz/fV6Pc2cOdPjt7/9rXNvby8lJCR4+Pr6+ovFYtkf//hHByafw2BC8AMAwKDwDLLTSMIcG4tOXHOShDk2Mg19IqKoqChtTk4On4jowoULvI6ODk5XVxcrKyuLHxERcUf/NTU1lr/61a+ay8vLy/h8vuGdd97xOHjw4OXKysqyQ4cOXSYiksvlN8+ePVtRXl5e9sEHH1z//e9/LzK9vqqqyurAgQPVP/zwQ/mf/vQnFx6PZygvLy8bO3Zsx86dO23vN8+enh5WfHy8p6+v783k5GTV6dOnefX19eYXL14sraqqKnv77bebmX4WgwXBDwAAg+JKUZOg8kyDfdBkUX3lmQb7u/f8H0VERISuuLh4REtLC5vL5RrHjh2rzc7O5p0+fVowefJkbd+2Tk5O3dHR0R1ERCdPnhwREhKikUql3UREQqFQT0R048YNzgsvvODt6+vr//vf/961qqrK0vT68PBwjbW1tcHZ2bmXz+frX3755VYiosDAQF1NTc0dp/vdbcmSJe4ymaxTqVQ2EBFJpdKuuro67ptvvumalpY20tra+qnZe0DwAwAAY6Y9/eh5suoJs8Uq07I/0/DncrlGkUjUlZKSYhcSEqKdOHGi9tixY4La2lquQqG42bctj8czmP42Go3EYrHu6W/VqlUukyZN0ly8eLH0m2++udTd3X07By0sLG5XrWOz2WRpaWk0/d3b23tvZ338/y8kI3U6HYuIyN7eXl9SUlIWFRWl2bZtm8Mvf/lLj0f9DAYbgh8AABhTX2nj9d3TN+35q6+0Mf5v9/DwcG1KSoowMjJSExMTo/nyyy/tZTKZjs0eOMKioqI68vLyBBUVFRZERKY9+vb2do5IJOomItq5c6cd07mZLFy4sGnKlCltL774ondPTw/V19eb6fV6mjdvXuvGjRuvFxcXPzX/9Y/gBwAAxsKme6vv3tP3DLLThE33Zlw+d9KkSZrGxkbzyZMnd7i6uvZyuVzj888/r73fa5ydnXuTk5NrZsyY4SORSGQzZszwIiJatWpVw7p160RjxoyRDvZ//q9bt04tl8t1M2fO9KypqTGPiIiQSKVS2a9//WvP9evXXxvUwRhgGY3Gn24FAADDTmFhYY1cLm8a6nnAwyssLLSTy+Ue/T2HO34AAIBhBGV5AQAAHsAbb7zh9sMPP/D7Xlu8eLF62bJlT81P9R4Egh8AAOAB7Nu37+pQz2EwYKkfAABgGEHwAwAADCMIfgAAgGEEwQ8AADCMIPgBAICx7/+5V3g5/+wdx/Nezj8r+P6fe4VM+lUoFFJmMxtYamrqqPfee8+RiOjw4cN8mUzmZ2ZmFrxnzx7rxzXm0wDBDwAAjDn5SnWHU5K8TOF/Of+s4HBKkpeTr1THpN+CgoKKu6/19vYy6fK21157re3DDz9sICLy8vLq3rNnT01cXNwz9dO8R4HgBwAAxryDQzSxb79bfTglySvzi13Oh1OSvGLffrfaOziEUWleHo+nICLKyMgQhIaGiuPi4jwlEok/EVFMTIy3v7+/n4+Pj/9HH310+9z9tLS0kTKZzE8ikcjGjx8vHqjv5ORk27lz57oREUkkku7Q0NDO+53//3OB3/EDAMCg8A4O0fhPjG48f/hfTmNiX6pnGvp3KyoqGlFQUFBqKrWbmppaIxQK9VqtlqVQKGSvv/56i8FgYL3zzjseJ0+erJBKpd2m4jzwXwh+AAAYFJfzzwpKs47bj4l9qb4067i9W+BzmsEM/6CgoA5T6BMRKZVK4bfffjuaiKihocG8tLTUUq1Wm4WEhGhM7YRC4eBW4vkZQPADAABjpj190/K+W+BzmsFa7jfh8XgG098ZGRmCU6dOCc6dO1chEAgMISEhks7OTrbRaCQWizUYw/1s/fw3MwAA4LGrv1jB6xvypj3/+osVj6UOfWtrK2fUqFF6gUBgKCgosCwsLBxBRBQVFdWRl5cnqKiosCAiwlL/vXDHDwAAjEX8cq767mvewSGDutTfV0JCQtuuXbvsxWKxzNvb+6ZcLu8gInJ2du5NTk6umTFjho/BYCBbW9ue3Nzciz/V36lTp3izZ8/2aW9v5xw/fnz0pk2bnC9dulT6OOY+1FhGo3Go5wAAAE+hwsLCGrlc3jTU84CHV1hYaCeXyz36ew5L/QAAAMMIlvoBAOBnbevWrbbbt2+/4wTBcePGaX8uZXYfFpb6AQCgX1jqf3ZhqR8AAACICMEPAAAwrCD4AQAAhhEEPwAAwDCC4AcAAMba/l0j7CxvFvS91lneLGj7d41woNc8CIVCIWU2s4GlpqaOeu+99xyJiNatWyf09vb2F4vFsvHjx4urqqosHte4Qw3BDwAAjFm4CXQ39ld5mcK/s7xZcGN/lZeFm0DHpN+CgoKKu6/19vYy6fK21157re3DDz9sICIKDg7WXbhwobyqqqosPj6+ZcWKFaJBGeQphOAHAADGrPxsNTazxdU39ld5tX5z2fnG/iovm9niais/W0ZH9vJ4PAXRraI8oaGh4ri4OE+JROJPRBQTE+Pt7+/v5+Pj4//RRx/ZmV6TlpY2UiaT+UkkEtn48ePFA/WdnJxsO3fuXDciori4OI1AIDAQEUVERGjr6+t/tnf8OMAHAAAGhZWfrWbEGIdGbY7Kif+8cz3T0L9bUVHRiIKCglJTyd3U1NQaoVCo12q1LIVCIXv99ddbDAYD65133vE4efJkhVQq7X6UIj07d+60j4mJaRvMuT9NEPwAADAoOsubBR3nf7TnP+9c33H+R3uuz2jNYIZ/UFBQhyn0iYiUSqXw22+/HU1E1NDQYF5aWmqpVqvNQkJCNKZ2QqFQ/zBjbNu2zaawsJC3c+fOysGa99MGwQ8AAIyZ9vRNy/tcn9GawVruN+HxeAbT3xkZGYJTp04Jzp07VyEQCAwhISGSzs5OttFoJBaL9Uj9Hzp0SPDRRx85ZWdnV1pZWf1sj7XFHj8AADDWfVXD6xvypj3/7qsa3uMYr7W1lTNq1Ci9QCAwFBQUWBYWFo4gIoqKiurIy8sTVFRUWBARPehSf05OjtXSpUvd09PTL7m4uAzOfw8+pXDHDwAAjI2a6qG++5qVn+2gLvX3lZCQ0LZr1y57sVgs8/b2vimXyzuIiJydnXuTk5NrZsyY4WMwGMjW1rYnNzf34k/197vf/c5Vp9NxXn75Ze//30/3iRMn/l97dxDTRNrGAfwpssqWlK6UOoB8uts2nXa6drYhpWEPJlguHjhUvBgJ2cN642LwIhe9GQyraROtIV+iSdODSSMXPJEmRSJJE0x3QEgbV9YoXUpqbNkW2W9ph+9gZgNaIu4MKaX/36ktM29fTv/OM/O+z297MfdyQ5MeAAAoCU16Khea9AAAAAARodQPAAAHnNfr1fn9/m07CDqdznwgEHhdrjmVE0r9AABQEkr9lQulfgAAACAiBD8AAEBVQfADAABUEQQ/AADIFg6HmUQisa0tbyKR0ITDYVlteUF5CH4AAJCtra3t/djYmEEK/0QioRkbGzO0tbXJasvrcDgsyszwU8FgUDs0NNRMRHTz5k292WzmLBYL197ezj579qxur7633PBUPwAAlPSlT/VLYc/zfFoQBL3H41lkWVbxnfsKhQLV1iq7Gv3du3c1jY2NItGHHwT37t07NjU19dkd//YrPNUPAAB7jmXZHM/z6Wg02sLzfFqJ0Fer1Q6iD015XC6Xuaen5zuWZW1ERN3d3UabzWY1mUy2kZGRJumcUCjUwHGclWVZrrOz07zT2D6fT9ff33+CiEgKfSKifD5/6N82+qkE2MAHAAAUkUgkNIIg6F0u17IgCHqDwZBT8op/dna2PhaLzUstd4PB4CuGYYr5fF7lcDi4vr6+jCiKqoGBgW8jkUjcYrH8vdsmPUREN27c0N+9e5fZ2NiomZiYOLBteXHFDwAAskllfo/Hs3j27Nk/PB7P4tZ7/kqw2+1rUugTEQ0PDzMsy3Lt7e3WVCr11fz8fF0kEqnv6OjISccxDFPc7fhXr15Nv3nz5vn169eXrl271qLUvPcbBD8AAMi2tLSk3npPn2XZnMfjWVxaWlKsLa9arf6nHD8+Pq6ZnJzUzMzMxBOJxILVal1fX1+v2dzcJLll+kuXLr2bmJj4RvaE9ykEPwAAyOZ2u1c+LuuzLJtzu92ftOtVQjabPaTVaosajUaMxWJ1giDUExF1dXWtRaNRTTweP0xEtNtS/9zc3BHp9cOHD7UnT578317Mez/APX4AAKg4vb29q6Ojo3qz2cwZjca/eJ5fIyJqbW0t+Hy+Vx6PxySKIul0uo3p6enPPp1/69atY1NTUw21tbWbWq228ODBg9/3/r8oDyznAwCAktCkp3JhOR8AAAAQEUr9AABwwHm9Xp3f79+2dbDT6cwHAoHX5ZpTOaHUDwAAJaHUX7lQ6gcAAAAiQvADAABUFQQ/AABAFUHwAwCAbC9f/sKk34a3bc+bfhvWvHz5C7PTOVAeCH4AAJCtQfvD+4WFKwYp/NNvw5qFhSuGBu0P7+WM63A4LMrM8FPBYFA7NDTUvPWz+/fvH1WpVO1PnjxRbKvh/QbL+QAAQDZ9kzvHcSOLCwtXDC3N59LLqUd6jhtZ1De5ZXXni8Vi8Y8/KxQKVFsrP74uXry4SkSr0vtMJlNz586dY3a7fU324PsYrvgBAEAR+iZ3rqX5XPrN0oOWluZzabmhT0SkVqsdRB+a8rhcLnNPT893LMvaiIi6u7uNNpvNajKZbCMjI03SOaFQqIHjOCvLslxnZ6d5p7F9Pp+uv7//hPR+cHDw+ODgYOrIkSMHep07rvgBAEAR6bdhzXLqkf4/bT8tL6ce6Y82/phTIvwls7Oz9bFYbF5quRsMBl8xDFPM5/Mqh8PB9fX1ZURRVA0MDHwbiUTiFovl79026Xn69OnXyWTy8IULF1Zv377d/PkzKheCHwAAZJPu6Uvl/aONP+a2vlfiO+x2+5oU+kREw8PDzOPHj78hIkqlUl/Nz8/Xrays1HZ0dOSk4xiGKX5u3GKxSJcvXz4RCAQObGOerVDqBwAA2f5c/VW9NeSle/5/rv6q2ENyarValF6Pj49rJicnNTMzM/FEIrFgtVrX19fXazY3N0mlUn3RuNls9tCLFy/qzpw5wx4/fvyUIAj158+fNx3UB/wQ/AAAIJvROLjy8ZW9vsmdMxoHV/bi+7LZ7CGtVlvUaDRiLBarEwShnoioq6trLRqNauLx+GEiot2U+nU6XTGTyQjJZHIumUzO8Ty/FgqFfjt9+rSsFQn7FUr9AABQcXp7e1dHR0f1ZrOZMxqNf/E8v0ZE1NraWvD5fK88Ho9JFEXS6XQb09PTL8o93/0ETXoAAKAkNOmpXGjSAwAAAESEUj8AABxwXq9X5/f7t20d7HQ684FA4HW55lROKPUDAEBJgiAsnjp1KlNTU4OgqCCiKKrm5uaO8jxvKPV3lPoBAGAnz9PptFYUxS9bHwdlI4qiKp1Oa4no+U7HoNQPAAAlFQqFn1Op1H9TqdT3hAvFSiES0fNCofDzTgeg1A8AAFBF8AsOAACgiiD4AQAAqgiCHwAAoIog+AEAAKoIgh8AAKCK/B9RvQgKa9efIgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dat in data:\n", " wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n", " depth = average_depths['5s'][average_depths['band'] == dat[0]]\n", " #print(depth)\n", " coverage = np.sum(~np.isnan(depths['ferr_{}_mean'.format(dat[0])]))/len(depths)\n", " plt.plot(coverage, depth, 'x', label=dat[0])\n", " \n", "plt.xlabel('Coverage')\n", "plt.ylabel('Depth')\n", "#plt.xscale('log')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.title('Depths (5 $\\sigma$) vs coverage on {}'.format(FIELD))" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }