{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# HDF-N master catalogue\n", "\n", "This notebook presents the merge of the various pristine catalogues to produce the HELP master catalogue on HDF-N." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "0246c5d (Thu Jan 25 17:01:47 2018 +0000) [with local modifications]\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "import os\n", "import time\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table\n", "import numpy as np\n", "from pymoc import MOC\n", "\n", "from herschelhelp_internal.masterlist import merge_catalogues, nb_merge_dist_plot, specz_merge\n", "from herschelhelp_internal.utils import coords_to_hpidx, ebv, gen_help_id, inMoc" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "SUFFIX = os.environ.get('SUFFIX', time.strftime(\"_%Y%m%d\"))\n", "\n", "try:\n", " os.makedirs(OUT_DIR)\n", "except FileExistsError:\n", " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## I - Reading the prepared pristine catalogues" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#threed = Table.read(\"{}/CANDELS-3D-HST.fits\".format(TMP_DIR)) # 1.1\n", "#acs = Table.read(\"{}/ACS.fits\".format(TMP_DIR)) # 1.2 GOODS-ACS\n", "hawaii = Table.read(\"{}/Hawaii.fits\".format(TMP_DIR)) # 1.3 Hawaii-HDFN\n", "ultra = Table.read(\"{}/Ultradeep.fits\".format(TMP_DIR)) # 1.4 Ultradeep_Ks_GOODS-N\n", "ps1 = Table.read(\"{}/PS1.fits\".format(TMP_DIR)) # 1.5 PanSTARRS\n", "candels_gn = Table.read(\"{}/CANDELS-GOODS-N.fits\".format(TMP_DIR)) # 1.6 CANDELS-GOODS-N" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## II - Merging tables\n", "\n", "We first merge the optical catalogues and then add the infrared ones. We start with PanSTARRS because it coevrs the whole field.\n", "\n", "At every step, we look at the distribution of the distances separating the sources from one catalogue to the other (within a maximum radius) to determine the best cross-matching radius." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### PanSTARRS" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue = ps1\n", "master_catalogue['ps1_ra'].name = 'ra'\n", "master_catalogue['ps1_dec'].name = 'dec'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### CANDELS-GOODS-N" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl81dWB/vHPyb4nhOwba9h3wg6CCgqC4taKa1t1LK3W\n1mln2s50Op1OO9NOp7Z1q1udtlq1VbSigqioyL7LEraEACFAdsi+3pzfHwR/KUUI8k2+994879eL\nl8m9N7kPV715cs75nmOstYiIiIjIpQtwO4CIiIiIv1CxEhEREXGIipWIiIiIQ1SsRERERByiYiUi\nIiLiEBUrEREREYeoWImIiIg4RMVKRERExCEqViIiIiIOUbESERERcUiQW0+ckJBg+/bt69bTi4iI\niHTa1q1by621iRd6nGvFqm/fvmzZssWtpxcRERHpNGPMkc48TlOBIiIiIg5RsRIRERFxiIqViIiI\niENUrEREREQcomIlIiIi4hAVKxERERGHqFiJiIiIOETFSkRERMQhKlYiIiIiDlGxEhEREXGIipWI\niIiIQ1SsRERERByiYiUiIiLikCC3A4i7XtxY2KXf/7ZJWV36/UVERLyJRqxEREREHKJiJSIiIuIQ\nFSsRERERh6hYiYiIiDhExUpERETEISpWIiIiIg5RsRIRERFxiIqViIiIiENUrEREREQcomIlIiIi\n4hAVKxERERGHqFiJiIiIOETFSkRERMQhKlYiIiIiDlGxEhEREXGIipWIiIiIQ1SsRERERByiYiUi\nIiLiEBUrEREREYeoWImIiIg4RMVKRERExCEqViIiIiIOUbESERERcYiKlYiIiIhDVKxEREREHKJi\nJSIiIuIQFSsRERERh6hYiYiIiDhExUpERETEISpWIiIiIg5RsRIRERFxiIqViIiIiENUrEREREQc\n0qliZYyZa4zZb4zJN8Z87xz3zzLGVBljPmn/80Pno4qIiIh4t6ALPcAYEwg8DswBioDNxpil1to9\nZz10tbV2QRdkFBEREfEJnRmxmgjkW2sLrLXNwMvAwq6NJSIiIuJ7OlOs0oGjHT4var/tbFONMTuN\nMcuNMcMdSSciIiLiQy44FdhJ24Asa22tMeYa4K9A9tkPMsbcB9wHkJWV5dBTi4iIiHiHzoxYHQMy\nO3ye0X7bp6y11dba2vaPlwHBxpiEs7+RtfZpa22OtTYnMTHxEmKLiIiIeJ/OFKvNQLYxpp8xJgRY\nBCzt+ABjTIoxxrR/PLH9+1Y4HVZERETEm11wKtBa22qMeQBYAQQCz1lrc40xi9vvfxK4GfiaMaYV\naAAWWWttF+YWERER8TqdWmPVPr237Kzbnuzw8WPAY85GExEREfEt2nldRERExCEqViIiIiIOUbES\nERERcYiKlYiIiIhDVKxEREREHKJiJSIiIuIQFSsRERERh6hYiYiIiDhExUpERETEISpWIiIiIg5R\nsRIRERFxiIqViIiIiENUrEREREQcomIlIiIi4hAVKxERERGHqFiJiIiIOETFSkRERMQhKlYiIiIi\nDlGxEhEREXGIipWIiIiIQ1SsRERERByiYiUiIiLiEBUrEREREYeoWImIiIg4RMVKRERExCEqViIi\nIiIOUbESERERcYiKlYiIiIhDVKxEREREHKJiJSIiIuIQFSsRERERh6hYiYiIiDhExUpERETEISpW\nIiIiIg5RsRIRERFxiIqViIiIiENUrEREREQcomIlIiIi4hAVKxERERGHqFiJiIiIOETFSkRERMQh\nKlYiIiIiDlGxEhEREXGIipWIiIiIQ1SsRERERByiYiUiIiLikE4VK2PMXGPMfmNMvjHme+d53ARj\nTKsx5mbnIoqIiIj4hgsWK2NMIPA4MA8YBtxqjBn2GY/7OfCu0yFFREREfEFnRqwmAvnW2gJrbTPw\nMrDwHI/7BrAEKHUwn4iIiIjP6EyxSgeOdvi8qP22Txlj0oEbgN86F01ERETEtzi1eP3XwHettW3n\ne5Ax5j5jzBZjzJaysjKHnlpERETEOwR14jHHgMwOn2e039ZRDvCyMQYgAbjGGNNqrf1rxwdZa58G\nngbIycmxnze0iIiIiDfqTLHaDGQbY/pxulAtAm7r+ABrbb8zHxtjfg+8dXapEhEREfF3FyxW1tpW\nY8wDwAogEHjOWptrjFncfv+TXZxRRERExCd0ZsQKa+0yYNlZt52zUFlrv3zpsURERER8j3ZeFxER\nEXGIipWIiIiIQ1SsRERERByiYiUiIiLiEBUrEREREYeoWImIiIg4RMVKRERExCEqViIiIiIOUbES\nERERcYiKlYiIiIhDVKxEREREHKJiJSIiIuIQFSsRERERh6hYiYiIiDhExUpERETEISpWIiIiIg5R\nsRIRERFxiIqViIiIiENUrEREREQcomIlIiIi4pAgtwOIiIj4uhc3Fnbp979tUlaXfn9xjkasRERE\nRByiYiUiIiLiEE0FioiIX+vqaTqRjjRiJSIiIuIQFSsRERERh6hYiYiIiDhExUpERETEISpWIiIi\nIg5RsRIRERFxiIqViIiIiENUrEREREQcomIlIiIi4hAVKxERERGHqFiJiIiIOETFSkRERMQhKlYi\nIiIiDlGxEhEREXGIipWIiIiIQ1SsRERERBwS5HYAERGRrlLV0EJeSQ1HT9ZztLKBptY2IkMDiQwJ\nIjI0kIiQIFJiw+ifEIkxxu244gdUrERExK/kl9byx/WHWZtfzsGyOgAMkBgdSkRIEGU1TRxuqqO+\n2YNt/5qk6FCmDUxgTGYcwYGazJHPT8VKRER8nrWWtfkVPLumgI/2lxESFMCMgQncMDadyroWMnqF\nExYc+Ddf02YtDc0eDpTUsCa/nNe3H+Pd3GIm9e/NpH7xRIcFu/S3EV+mYiUiIj7L02b56/ZjPLO6\ngH3FNSREhfKPcwZx+6QsekeFAvDixsJzfm2AMUSGBjE2qxdjMuMoKK9jbX45H+wrZW1+ObdNzCI7\nObo7/zriB1SsRETEJ31y9BQ/fGM3O4uqGJISzS9uHsV1Y9IIDQq88BefxRjDgMQoBiRGUVrdyMub\nj/KH9YdZOCadCX3jnQ8vfqtTxcoYMxf4DRAIPGut/dlZ9y8E/hNoA1qBb1lr1zicVUREhIraJn6x\nYj9/3nKUxKhQfrNoDNeNTnNs8XlSTBj3XdaflzcX8vr2Y1TWNTNnWDIBWtwunXDBYmWMCQQeB+YA\nRcBmY8xSa+2eDg9bCSy11lpjzCjgL8CQrggsIiI9U1ub5U+bCvnfFfupa2rl3un9ePDK7C5ZCxUW\nHMidk/vy5o7jrDpQRmVdMzePz9DCdrmgzoxYTQTyrbUFAMaYl4GFwKfFylpb2+HxkfDphRYiIiKX\nrOhkPd95ZQcbCiqZ0r83P144vMvXPwUGGBaOSaN3VAjLdxdT1dDC3dP6ERKkciWfrTPFKh042uHz\nImDS2Q8yxtwA/DeQBMx3JJ2IiPRo1lpe2VrEj9/cg7WWn980ki/mZHbbnlPGGGZkJxIXEcLLmwp5\n45Nj3Dw+Q3teyWdybPG6tfZ14HVjzGWcXm81++zHGGPuA+4DyMrKcuqpRUTED5XVNPH913bx/t4S\nJvaL55dfGE1mfIQrWUamx1I6JImV+0rpmxCpBe3ymTpTrI4BmR0+z2i/7ZystR8bY/obYxKsteVn\n3fc08DRATk6OpgtFROSc3t9TwneX7KSmqZUfzB/K3dP6ERDg7ijR5UOSOFJRz5s7jpMeF05aXLir\necQ7daZYbQayjTH9OF2oFgG3dXyAMWYgcLB98fo4IBSocDqsiIj4n477TLV42li++wQbCipJjQ3j\na5MHEBESxMubj57nO3SPAGP44oRMHvsgj5c2FXL/5QP/btNRkQuuwLPWtgIPACuAvcBfrLW5xpjF\nxpjF7Q+7CdhtjPmE01cQ3mKt1YiUiIh0WnF1I098lM+GgkqmD0zgazMHkBwT5nasvxEVGsSiCVmc\nrG/mtW1F6EednK1Ta6ystcuAZWfd9mSHj38O/NzZaCIi0hNYa9l4qJJlu04QGhzIl6f2ZZAX73je\nNyGSq4al8E5uMesLKpg6IMHtSOJFtPO6iIi4pqK2iRc2HGFvcQ2DkqO4aVyGT5zRNz07gcMVdSzf\nVUy/hEhSY7XeSk7TZhwiIuKK1XllzP3Nag6U1jJ/ZCpfmtLXJ0oVnF5vdfP4DEKCAli264SmBOVT\nKlYiItKtmlo9/OStPdz5u03EhQfz9VkDmDYwwef2hooICeLKoUkcLKtjf0mN23HES6hYiYhIt8kr\nqeGGx9fx7JpD3DWlD29+Y7pPT6NN6tebhKgQlu8qxtOmUStRsRIRkW7gabM883EB8x9dQ3F1I7/7\nUg4/XjjC57crCAwwzBuRSlltE5sOV7odR7yAFq+LiEiXOlpZz7df2cGmQ5XMGZbMf90wksToULdj\nOWZISjT9EiJZubeEMRlxhIf4dlmUS6MRKxER6RLWWl7aVMjcX3/M3uPV/O8XRvP0neP9qlTB6fME\nrxmZSkOzh48OlLodR1ymESsREXFc0cl6/vX13aw6UMa0gb35n5tHk+7HR8Ckx4UzNqsX6w5WMKlf\nb+IjQ9yOJC7RiJWIiDjG02b5/dpDXPWrj9l8uJL/uG44z989ya9L1RlzhiUTYGBFbrHbUcRFGrES\nERFH5JXU8N0lO9lWeIqZgxL56Q0jyOgV4XasbhMbHsxl2Yms3FfKtMp6suJ7zt9d/j+NWImIyCVp\nbPHw6/cPMP+RNRwqr+NXt4zm91+Z0KNK1RkzshOJCAlk1YEyt6OISzRiJSIin9vqvDJ++EYuh8rr\nuG50Gj+8dhgJUf61OP1ihAQFMKlfPB/tL6O8tqlHvxY9lYqViIic14sbC//utuqGFt7edYJdx6ro\nHRnCV6b1JTspmndzS1xI6F0m9+/Nx3nlrM0vZ+GYdLfjSDdTsRIRkU7ztFk2FFTw/t4SPG2W2UOT\nmJGdSHCgVpacER0WzJjMOLYVnmT20GQiQ/WjtifRv20REemUg2W1vLnjOKU1TQxKjuLaUWn01lTX\nOU0fmMDWIyfZeKiCK4Ykux1HupGKlYiInNep+maW7TrB7uPV9IoI5s7JfRiSEu1zhyZ3p+SYMAYl\nR7G+oFIjej2M/k2LiMg5NbZ4eGRlHr96/wD7S2qYPTSJb80exNDUGJWqTpg+MJG6plZ2HD3ldhTp\nRhqxEhGRv2Gt5d09Jfzk7T0crWxgRFoM80am0itCu4lfjAGJkaTGhrE6v5xxfXoRoDLaI6hYiYjI\np/JLa/iPN/ewOq+cQclRvHjvJA5X1LsdyycZY5g+MIFXthaRV1LD4JQYtyNJN1CxEhHxcefaDuFi\nNbZ4+GBfKesOlhMSFMCCUalM6tdbpeoSjcqIY0VuMavzy1WseggVKxGRHsxayydHT/HO7mJqm1oZ\n36cXVw1PIUpbBDgiMMAwdUAC7+QWc/xUA2k94MzEnk6L10VEeqjiqkaeWV3AK1uLiI0I5muzBnDj\nuAyVKodN6BtPcKBhQ0GF21GkG+j/HhGRHqaxxcPKvSWsL6ggLDiQG8amM16Lq7tMeEggI9Pj2Hms\nivmjUgkNCnQ7knQhFSsRkR7CWkvu8Wre2nmcmsZWJvSL56qhyURohKrL5fTpxbbCk+w+Vs34Pr3c\njiNdSP83iYj0ACfrm3lzx3H2FdeQGhvG7ZP6kBkf4XasHqNP7wgSokLYcqRSxcrPqViJiPgxT5tl\n3cFy3t97+nDka0akMGVAAoEBmvbrTsYYxveJZ0VuMeU1TSRE6yggf6ViJSLip05UNfDatmMcO9XA\nkJRorh2dpk0+XTQ2K4739hSztfAkVw9PcTuOdBEVKzmvphYPB0pr6dM7gpiwYLfjiEgntLa18dH+\nMj7aX0p4cCC3TsxiRJqOoXFbTFgwg5Kj2VZ4ktlDkzVq6KdUrOScWj1tbDpcyYf7Sqlr9hAYYBiT\nEce07ARSYsLcjicin+HYyQaWbCuiuLqRMZlxzB+ZSqQWp3uNnD692FdcQ15JDUNStWGoP9L/bfI3\n2qxlx9FTvL+3hJP1LfRPjGT6wAT2F9ewrfAkWwtPkp0UxfTsBAYmRuk3YBEv0drWxgf7Svn4QBlR\noUHcObkPQ/WD2+sMTokhMjSILUdOqlj5KRUr+VRlXTMvbDhCcXUjaXFhXD82/dPyNCQlhjlDk9l4\nuJL1Byv4v7WHuXJIElcOTXY7tkiPV1LdyCtbjnK8qpFxWXHMH5lGeIj2SvJGgQGGcZlxrD1YTk1j\nC9FaYuF3VKwEOD1S9ZctRznV0MyiCZmMSI/9u80CI0KDuHxwEjMGJvDa9mN8sK+UvgmRDEiMcim1\nSM/W1mb53ZpDPP5hPqFBAdwxKYthabFux5ILGN+nF6vzy/nk6ClmZCe6HUccpiNtBIC1+eUUVtZz\n7ag0RmXEnXcH5qDAABaOSSMhKpS/bD5KbVNrNyYVEYCik/Xc+swGfrpsL9lJUXxz9iCVKh+RFBNG\nVnwEW46cxFrrdhxxmIqVUFrdyHt7ShiaGsOYzLhOfU1oUCCLJmbS0OLhlS1HadObg0i3eXPHceb9\nZjW5x6v5n5tHccfkPjrfz8eM79OLspomjp5scDuKOEzFqofztFle3VZESFAA149Ju6jF6Kmx4cwf\nlUpeaS2rD5R1YUoRAahvbuWfX93BN17azoDEKJY9OIMv5mTqIhIfNDI9luBAw9YjJ92OIg5Tserh\nVueVUXSygetGp32uRZQT+8YzMj2W9/aWcKSirgsSigjA7mNVLHhkDa9sLeKBywfyyuIpZPXWkTS+\nKiw4kGGpMew+VkVrW5vbccRBKlY92L7ialbuLWVEeiyjMjo3BXg2Yww3jE0nLiKElzcfpb5Z661E\nnGTt6QXqNzyxlvpmD3+6dxLfuXowwYF6+/Z1ozLiaGjxkF9a63YUcZD+z+yhWjxtfPsvOwgLCWTh\n6LRL+l5hwYEsmpBJbWMrK3JLHEooIlX1Ldz3/Fb+8609zBqcxPJvzmDqgAS3Y4lDspOjCA8OZGdR\nldtRxEEqVj3UH9cfIfd4NdePSXNkV+aMXhHk9O3FtiMnqWpocSChSM/2ydFTXPPIaj7aX8oPFwzj\n6TvH0ytS5/z5k6CAAIanxbDnRDXNrZoO9BcqVj1Qq6eN59YcYmK/eIY7eHn2ZYMSsVg+1kJ2kc/t\nzNTfF55chzHwyuKp3D29nxao+6lRGXE0t7axv6TG7SjiEBWrHui9PSUcO9XAPdP7Ofp9e0WEMDar\nF5sPV1LTqFErkYtV3djCVztM/b39jRmd3gJFfFP/xEiiQ4PYWXTK7SjiEBWrHuh3aw6RFR/B7C44\njmbmoEQ8bZY1+eWOf28Rf7b3RDXXPbqGD/aV8oP5Q3n6zvHERui4E38XYAwjMmLZX1xDY4vH7Tji\nABWrHmbH0VNsOXKSL0/tS2CA81MLCVGhjMqIZWNBJfXakV2kU17bVsQNT6ylocXDy/dN5t4Z/TX1\n14OMTo+ltc2y50S121HEAdqqt4f5v7WHiAoN4gs5GV32HLMGJ7GjqIq1Byu497L+XfY8Ir7ixY2F\n57y91dPGW7tOsOlQJf0SIlk0IZMDJbUcKNHl9z1JZnwEcRHB7Cw6xbisXm7HkUukYtWDFFc18tbO\nE9w1pW+XnqieHBPG8LQY1heUU93YQoxObxf5O6fqm3lxUyFFJxu4LDuROcOSu2QUWbyfMYZR6XGs\nyS+jtqlVxxP5OE0F9iDPbziMx1q+PLVvlz/XrMFJNLa08fz6I13+XCK+pqC8lsc/zKesponbJ2Ux\nd0SKSlUPNzozljYLuce1p5Wv61SxMsbMNcbsN8bkG2O+d477bzfG7DTG7DLGrDPGjHY+qlyKhmYP\nL24sZM7Q5G45BiM9LpzBydE8u7pAu7GLtLPWsja/nOfWHCIiJIivzRrg6JYn4rtSYsJIjA5lx1EV\nK193wWJljAkEHgfmAcOAW40xw8562CFgprV2JPCfwNNOB5VL8/r2Y5ysb+Fuh7dYOJ/LBydysr7l\nM9eXiPQkza1tvLK1iLd3nWBISgxfmzWApOgwt2OJlzDGMCojliMVddpk2cd1ZsRqIpBvrS2w1jYD\nLwMLOz7AWrvOWnvmiO4NQNetjJaLZq3lubWHGJ4Ww6R+8d32vFm9I5nYL54/rD9MW5vttucV8TYn\n65t56uOD7Dh6ijnDkrltUhZhwYFuxxIvMzojDgvs0p5WPq0zxSodONrh86L22z7LPcDySwklzlqd\nV05+aS13T+v+3Ztvn5TF0coG1h2s6NbnFfEWGwoqePzDfE7WN3PXlD5cPjiJAG2lIOeQEBVKelw4\nO49pOtCXObp43RhzOaeL1Xc/4/77jDFbjDFbysp07El3eXFjIb0jQ1gwOrXbn/vq4SnERQTz0mZN\nB0rPYq3l+Q1HuOPZjUSGBPH1mQMZnBLjdizxciPSYyk62cDJ+ma3o8jn1JlidQzI7PB5Rvttf8MY\nMwp4FlhorT3n8IS19mlrbY61NicxMfHz5JWLVNXQwgf7S7l2dBqhQd0/9RAWHMiNYzN4N7eYitqm\nbn9+ETc0t7bxL6/v5t/+upvLBiXytVkDSIgOdTuW+IARaafLd+5xbRbqqzpTrDYD2caYfsaYEGAR\nsLTjA4wxWcBrwJ3W2gPOx5TPa8XuYppb21g4Js21DLdOzKTFY1myrci1DCLdpaymiduf3cBLmwq5\n//IBPHNXjtZTSaf1jgolNTaM3ZoO9FkXLFbW2lbgAWAFsBf4i7U21xiz2BizuP1hPwR6A08YYz4x\nxmzpssRyUd7YcYw+vSNcPcg1OzmanD69eHnTUazVInbxX7nHq1j42Bp2Havi0VvH8k9XD9H+VHLR\nRqTHUlhZr6sDfVSn1lhZa5dZawdZawdYa3/aftuT1ton2z++11rby1o7pv1PTleGls4prW5k3cEK\nFo5Oc/3csUUTsygor2PjoUpXc4h0lXd2n+Dm367HAq8unsq1o90bJRbfNqJ9bzNtFuqbtPO6H3tz\n5wmshevGnO8izu4xf2Qq0WFBvLxJi9jFv1hreWRlHotf2MbglGjeuH8aI9K16ad8fonRoSTHhLL7\nmNZZ+SIVKz/2xifHGJEew8CkKLejEB4SyA1j01m2u5hTutpF/ERji4dvvLSdh987wI1j03n5vskk\nxWjTT7l0w9NObxZa06jpQF+jYuWnCspq2VlUxcLR7o9WnbFoQhbNrW28vv3vLioV8Tml1Y3c8tR6\n3t51gu/NG8Ivvzhai9TFMSPSY7Ho6kBfpGLlp5buOI4xuLJ31WcZlhbD6Mw4XtpUqEXs4tN2H6vi\nusfWklday9N35rB45gDX1zGKf0mODiUhKpTdWmflc4LcDiDOs9ay9JPjTOoXT2psuNtx/satEzL5\n3mu72FZ4ivF9erkdR+Siz7LMPV7FX7YcJSIkiHum96OspknnYYrjjDGMSI9h1f4yapt0kL0v0YiV\nH9p1rIqC8jqu94JF62e7dnQakSGBWsQuPsday6oDZfxpYyHJMWF8fdYAr/vFRfzLiLTT04F7NR3o\nU1Ss/NAbnxwnONAwb4T3TAOeERkaxLWj03h71wnqm/VbmPiG1rY2lmw7xorcYkZlxPIPM/oTHRbs\ndizxc6mxYcRHhmg60MeoWPkZT5vlzR3HmTU4idgI73zjv2l8BvXNHlbkFrsdReSC6ptaeW7NYbYV\nnuSKIUnckpNJcKDeOqXrGWMYkRbLwbJaTtbpampfoXcHP7OxoILSmiavnAY8I6dPLzLjw3ltm64O\nFO9WVtPEb1cdpOhkPbfkZDJ7aLIWqUu3GpEeQ5uF9/aWuB1FOknFys+88clxIkMCuXJokttRPpMx\nhhvHZrAmv5ziqka344ic08GyWn67Kp/GFg/3TO/HaBePhZKeKz0unLiIYJbtOuF2FOkkFSs/0upp\nY8WeYuYMS/b6/XRuHJeOtWhPK/FKWw5X8n9rDxETFszXZg2kT+9ItyNJD3VmOnBtfrnODvQRKlZ+\nZNOhSk7VtzDXCxetn61P70hy+vTitW1F2tNKvEabtSzffYLXth9jQGIUi2cOID4yxO1Y0sONSIuh\nxWP5YJ+mA32BipUfWb67mLDgAGYOSnQ7SqfcOC6DvNJanYclXqG5tY0XNxayOq+cSf3iuWtKX68f\n+ZWeISM+gpSYMJbv0gU/vkDFyk+0tVlW5BYza1AS4SG+8cNg/shUQoICWLKtyO0o0sNVN7Tw9OqD\n7D1RzYJRqVw3Oo3AAC1SF+8QYAxzR6Sw6kAZddos1OupWPmJ7UdPUVrTxNwRKW5H6bTYiGDmDE1m\n6Y7jtHja3I4jPdTxUw088VE+5bXN3DmlD1MHJOjKP/E680ak0NTaxof7S92OIhegYuUnVuQWExxo\nuMKLrwY8lxvHpVNZ18yq/WVuR5EeaEVuMU99fBBjDF+9rD9DUmLcjiRyTjl940mICtF0oA9QsfID\ntn3B7bSBCcT42G7Qlw1KpHdkCK9t13SgdB9rLb/96CCLX9iq42nEJwQGGK4ensKH+0tpaPa4HUfO\nQ8XKD+w5Uc3RygbmDvedacAzggMDuG5MGu/vKaWqXpcSS9dravXwnVd28vN39rFgVJqOpxGfMW9E\nKvXNHlYd0Ai/N1Ox8gMrdhcTYGDOsGS3o3wuN43LoNnTxlu7jrsdRfxcRW0Tdzy7kSXbivjW7Gwe\nWTRGx9OIz5jUP55eEcG8s1ubhXozvaP4gXdyi5nYL57eUaFuR/lchqfFMCg5iiVbNR0oXWdfcTXX\nP7GWnUVVPHrrWL41e5AWqYtPCQ4MYM6wZFbuLaWpVdOB3krFyscdLKvlQEmtT04DnmGM4aZxGWwr\nPEVBWa3bccQPrcgt5sYn1tHU0safvzqFa0enuR1J5HOZNzKVmqZW1uaXux1FPoOKlY97Z/fpK0Su\n9qFtFs7lhrHpBBh0MLM4ylrLoyvz+OrzW8lOiuLNb0xnjM78Ex82bUAC0WFBLNPVgV5LxcrHrcgt\nZkxmnM9f0ZQUE8ZlgxJZsq0IT5uOuJFL19Ds4YGXtvPL9w5ww9h0/vzVKSTHhLkdS+SShAQFMHto\nMu/tKdFLKTJIAAAgAElEQVT+f15KxcqHHTvVwM6iKp/aFPR8bh6fwYmqRtYfrHA7ivi4o5X13Pzk\nOpbtOsH35w3h4S+O1vE04jfmjUihqqFF75VeSsXKh52ZBvTl9VUdzR6aTExYkI64kUuyOq+M6x5b\nQ2FlPc99aQJfnTlAi9TFr1w2KJGIkECW79Z0oDdSsfJhK3YXMyQlmr4JkW5HcURYcCDXjk5j+e4T\n1DRqTyu5OGc2/fzSc5tIig7jzQemc/kQ3zqJQKQzwoIDuWJIEu/mFtOq6UCvo2Llo8pqmth8pJKr\n/WS06oybx2fQ2NLGsl3ap0U6r7apla//aRs/f2cf14xM5bWvT/WbXzhEzmX+yFQq6prZUFDpdhQ5\ni4qVj3p3TzHWwryR/lWsxmTGMSAxkle1p5V0Ul5JDdc/vpZ395Twg/lDefTWsUSGBrkdS6RLXT4k\niciQQN7aqY2VvY2KlY96Z3cx/RIiGZwc7XYURxljuGl8BpsPn+RweZ3bccTLvbq1iOseW8up+mae\nv3si987or/VU0iOEBQcye1gy7+QW6+pAL6Ni5YOq6k9fDXL18BS//CFy49iM9j2tNGol51bf3Mp3\nXtnBd17ZwejMWJY9OIOpAxPcjiXSrRaMSuNUfQtrtFmoV9F4uQ96f28JrW3Wb7ZZOFtKbBjTsxNZ\nsu0Y35o9iIAA/yuP0nkvbiz8m89Lqht5aVMhZTVNXDEkiSuGJPH+3lKX0om457JBpzcLfWvHCS4f\nrAs1vIVGrHzQO7nFpMaGMToj1u0oXebm8RkcO9XAhkPap0VOs9ay+VAlT3yUT11TK1+e1pfZQ5MJ\n8MNRW5HOCA0K5KphKby7p1hnB3oRFSsfU9fUyscHyvx2GvCMq4YlEx0WpEXsApz+7/6FjYW8/skx\nsuIj+MYV2WQn+df6QpHPY8GoVGoaW1l9QNOB3kLFysd8tL+MptY2v50GPCMsOJAFo9JYvqtYe1r1\ncAdKanhkZR4HSmqYNyKFr0zrR0x4sNuxRLzCtIEJxIYH6+pAL6Ji5WPeyS2md2QIE/rGux2lyy2a\nkElDi4fXt+tg5p6oscXDj5bm8vt1hwkPCeTrswYwIztRU38iHYQEBTB3eArv7SmhsUXTgd5AxcqH\nNLZ4+GBvCVcNTyawByzoHp0Zx8j0WF7YcARrdTBzT7L1yEmueWQ1v193mCkDenP/5QN9/qBxka6y\nYHQqdc0ePtqvizi8gYqVD1mbX05ds8fvdls/nzsmZ3GgpJbNh0+6HUW6QWOLh5++vYebn1xHU0sb\nL9wziWtHpREcqLcqkc8ypX9vekeG8OZOnVjhDfRu5UPe2V1MdFgQUwf0nP16rh2dRnRYEC9sOOJ2\nFOliWw5Xcs1vVvPM6kPcNjGLFQ9dxvTsnvPfusjnFRQYwNwRKXywt5T65la34/R4KlY+otXTxnt7\nS5g9NJmQoJ7zry0iJIibxmWwfPcJymub3I4jXaC2qZUfLc3lC0+tp9nTxov3TuKnN4wkSsfSiHTa\nglFpNLR4WKk93VzXc35C+7iNhyo5Vd/So6YBz7hjchYtHstfthx1O4o4bEVuMbN/uYo/rD/MXZP7\nsOJbl2kHdZHPYWK/eBKjQ3V1oBdQsfIR7+wuJjw4kJmDEt2O0u0GJkUzuX88L24sxNOmRez+4ERV\nA/f9cQtffX4rcRHBvPa1qfzHwhE6PFnkcwoMMMwfmcqH+8u0RY3LVKx8gKfNsiK3mJmDEgkPCXQ7\njivumNyHopMNfHygzO0ocglaPW08t+YQs3+5io/zyvjevCG8+Y3pjM3q5XY0EZ933Zg0mlvbWLZL\ni9jdpGLlAzYeqqC0pon5o1LdjuKaq4alkBAVqkXsPmzToUoWPLqGH7+1h5y+8bz30EwWzxygK/5E\nHDI2M47+CZEs2aq9/9ykcXcf8OaO40SEBDJ7aLLbUVwTEhTAogmZPP5RPkUn68noFeF2JGl39iHJ\nZ6tpbOGd3cVsP3qKuPBgbp+UxbDUGFbn6QgOEScZY7hpfAa/WLGfwop6snrrfdIN+lXRy50e1i1m\nzrDkHjsNeMatk7IwwEubzv+DXLyDp82y7mA5D793gJ1FVcwalMi3Zg9ieFqsX59zKeKmG8amYwws\n2aZzVt3SqWJljJlrjNlvjMk3xnzvHPcPMcasN8Y0GWO+43zMnmt1XhlVDS1cNzrN7SiuS48L54oh\nyfx581GaW9vcjiPnUVBWy2Mf5vHWzhNkxkfwzSuzuWp4So/aKkTEDWlx4Uwd0JvXthfRpot9XHHB\ndzljTCDwODAPGAbcaowZdtbDKoEHgf91PGEP9+aO48SGBzMju+ddDXgud03pQ3ltM3/V+YFe6VR9\nMy9tKuTZNYdoam3j9klZfGVqXxKiQ92OJtJj3DQug6OVDWw5ohMr3NCZXx8nAvnW2gJrbTPwMrCw\n4wOstaXW2s2ArvF0UEOzh3f3lHDNSP2mf8aM7ARGpMfw21UHtfWCF2n1tPHR/lJ+9f4B9p6o5ooh\nSTykaT8RV8wdkUJkSCBLtmo60A2d+WmdDnTcmbGo/TbpYiv3lVDf7OFaTQN+yhjD/bMGcqi8jrd1\nSbFX2FdczW9W5vHunhKyk6J5aPYgZg9N1tV+Ii6JCAli3shU3t51goZmj9txepxufeczxtxnjNli\njNlSVqb9iC5k6SfHSYoOZVK/3m5H8SpXD09hYFIUT3yYrzUELjpcXsc9v9/MH9cfIcAYvjKtL3dM\n7kOvyBC3o4n0eDeNy6C2qZV39xS7HaXH6UyxOgZkdvg8o/22i2atfdpam2OtzUlM1Jqh86lqaOGj\n/WUsGJVGYICmUjoKCDDcf/kA9hXXsHKfzsXqbg3NHv53xX6u+tXHbCioYN6IFL5x5UCyk6LdjiYi\n7Sb1iyc9LpxXNR3Y7TpTrDYD2caYfsaYEGARsLRrY8mK3GKaPW1cN0bTgOdy7ag0suIjeOyDPKzV\nqFV3sPb0CQCzH17FYx/mM39UKh9+ZxYzshMJCtC0n4g3CQgw3DQunbX55RRXNbodp0e54LuhtbYV\neABYAewF/mKtzTXGLDbGLAYwxqQYY4qAfwR+YIwpMsbEdGVwf/fmjuP06R3B6IxYt6N4paDAABbP\nHMCOoirW5Gujya52pKKOu3+/ma8+v5Wo0CD+fN9kfnXLGJJiwtyOJiKf4cZxGbRZeF1XUXerTu28\nbq1dBiw767YnO3xczOkpQnFAWU0Ta/PL+fqsgbqi6jxuGp/OIyvzeOyDfG1H0UUaWzw88dFBnlx1\nkOAAww/mD+VLU/tqYbqID+ibEElOn14s2VbE4pn99fOkm+jd0Qst23WCNoumAS8gNCiQf7isPxsP\nVbLlcKXbcfzO6rwyrv71xzyyMo+rh6fwwXdmce+M/ipVIj7kpvEZ5JfWsv3oKbej9Bh6h/RCS3cc\nZ0hKNIOStRj4Qm6dmEl8ZAiPfZjvdhS/UVrTyIMvbefO320iwBheuGcSj946lmRN+4n4nGtHpxEV\nGsQL63WAfXfRIcxe5khFHVuPnOSfrh7sdhSfEBESxD3T+/GLFfv55OgpxmTGuR3J61zokOQz2qxl\n06FK3t1TTIvHcsWQJGYOSqSwsr7T30NEvEtUaBA3j8/gxY2F/Mv8oSRE6RSErqYRKy/z4qZCAgMM\nN4/XkrXOumtKHxKiQvnR0lzta/U5FVc18tSqgyzdcZy0uHC+eUW2NvkU8RN3TO5Ds6eNl3WAfbfQ\nu6YXaW5t49UtRVw5JEnTLhchOiyYf7lmCJ8cPcUrW49e+AvkUy2eNt7dU8xjH+ZRUdfMzeMzuGda\nP53tJ+JHBiZFMSM7gRc2FNLi0QH2XU3Fyou8u6eYirpmbp2U5XYUn3PD2HQm9O3Fz5bv41R9s9tx\nfMLBsloeWZnHR/vLGJ0Rx0OzBzEuq5euHBLxQ1+a0pfi6kbe21PidhS/p2LlRV7cWEh6XDiXaeuA\ni2aM4ccLR1Dd2MovVux3O45Xq29uZcm2In635hAWuHtaP76Qk0lkqJZciviry4ckkdErnD+sO+x2\nFL+nYuUlDpXXse5gBbdOzNQRNp/T0NQY7prShxc3FbKrqMrtOF7HWsvOolP86v08thee5LLsRB68\nIpuBSVFuRxORLhYYYLhrSh82Hqpk74lqt+P4NRUrL/Fy+6L1L+ZkXvjB8pkemjOI3pGh/Nsbu7WQ\nvYNT9c08v+EIL28+Slx4MF+fNZC5I1IICdJbgEhP8cWcTMKCA/ijtl7oUnpX9QJNrR5e2VrE7KFJ\nOiLkEsVoIfvf8LRZ1h0s59cr8zhYVss1I1NZPHMAaXHhbkcTkW4WFxHC9WPS+ev2Y1TVt7gdx2+p\nWHmBFbklVNY1c9ukPm5H8QtayH7a3hPV3Pjbdby18wR94iP45pWDmD4wQVPNIj3YnVP60NDi0S+e\nXUjFygu8uPEImfHhzBiY4HYUv9BxIfs/v7qzx00JNjR7+NnyfSx4dA1FlfXckpPJl6f2JT4yxO1o\nIuKy4WmxTOjbiz+uP4Knh703dhcVK5cVlNWyoaCSRROyCNBIgmOGpsbwL9cM5d09JTzeg467WXWg\njKt+vYonVx3k5nEZrPz2TEZnxmkLBRH51Jem9qWwsp6Ve7X1QlfQ9dUue2lTIUEBhi/kaKd1p909\nrS+7ik7x8PsHGJEey+VDktyO1GWOn2rgP9/aw/LdxfRPiOTl+yYzuX9vt2OJiBe6engKWfERPPJB\nHnOGJesXL4dpxMpFTa0eXt1axJxhySRFa9G604wx/PeNoxiaEsODL2/ncHmd25Ec19zaxpOrDjL7\n4VV8uL+Uf7p6MMu/NUOlSkQ+U3BgAA9emc3uY9XaMLQLaMTKRUu2HuNkfQt3TPbfRetdfXjvbRfY\npT48JJCn7hzPtY+t4b7nt/D616f5zUaY6/LL+eHSXPJLa5kzLJkfLhhGZnyE27FExAdcPyaNxz/M\n51fv5zF7aLKWojhII1YuafG08fiH+YzJjGPqAI0udKXM+Ageu3Uc+aW1/NOrO7DWtxdsHiyr5d4/\nbOG2ZzfS1OrhuS/n8MxdOSpVItJpQYEBPHjlQPaeqGZFbrHbcfyKipVLXttWxLFTDXzzymzNb3eD\n6dkJfHfuEJbtKuZny/f5ZLk6WdfMj5bmcvWvPmZDQQXfnTuE9x6ayRVDkt2OJiI+6LrR6fRPjORX\n7x/ocVdPdyX/mBPxMS2eNh77MJ9RGbHMGqxzAbvLfZf15+jJep76uIDSmiZ+ftMon9h5vKHZw/Mb\nDvPYB/nUNrVy68QsHpoziISoULejiYgPCwwwfGv2IB58aTtv7zrBtaPT3I7kF1SsXPDGJ8c5WtnA\nvy8YrtGqbmSM4T8XjiA1NpxfrNhPaU0jv71jPDFhwW5HO6eGZg9/2niEJ1cVUF7bxMxBifzr/KEM\nSo52O5qI+In5I1N5dGUev37/ANeMTNUGwg7w/l/X/Uxr+9qqYakxXDnUfy//91bGGO6/fCAPf3E0\nGwsq+eKT6zlR1eB2rL/R2OLhd2sOcdkvPuQnb+9lcEoUryyewh/unqhSJSKOOjNqdbCsjrd2Hnc7\njl/QiFU3e3PncQ6V1/HkHeM1WuWiG8dlkBQdxuIXtnLD4+t45q4cRmbEdnuOjldNVje0sPFQJZsO\nV1LX1Er/xEiuH5NOv4RI8kpqySup7fZ8IuL/5o1IYUhKNL95P4/5I1MJCtSYy6XQq9eNPG2WRz/I\nZ0hKNFcN04Jjt03PTuCVxVMAWPj4Gr63ZCelNY3dmsFay5GKOl7aVMj/rNjHR/tLyewVzr0z+nHv\n9P70S4js1jwi0vMEtI9aFZTXsWRbkdtxfJ5GrLrR27tOUFBWxxO3j9OeIV5iaGoM73xrBo9+kM8f\n1x9m6Y7jLJ45gH+Y0Z/wkMAue97CinqW7T7BH9Yd5kRVI2HBAUwdkMCkfvH01qJ0EelmVw9PZlxW\nHD9bvo/ZQ5P1PnQJVKy6SVub5dGVeWQnRTF3eIrbcaSDuIgQ/m3BMO6c3IefLd/Hw+8d4MWNhSye\n2Z/Zw5LJ6HXp+0NZazlcUc/y3SdYtusEu49VA5DRK5yFY9IYm9nLJ65QFBH/ZIzhZzeNYv4jq/nJ\n23v51S1j3I7ks1Ssuslr24+RV1rLbxaN0WiVl+qbEMmTd45n06FKfrpsLz96cw8/enMPQ1KiuWJI\nElcOTWJMZq9OXTVT39zKrqIqth89xfbCk2wvPEVpTRMAYzLj+NdrhjJvZAofHyjv6r+WiEinDEqO\nZvHMATz6QT7Xj01n5iBtB/R5qFh1g/LaJn7y9h7GZcVx7SjtE+LtJvaL569fn0pBeR0f7C1l5b4S\nnvq4gCc+OkhIYAC9o0LoHRVCfGQoCZEhhIcEcrK+mYraZirr2v/UN3NmD9K+vSOYNjCBsVlxXDk0\nmfS4cHf/giIin+H+ywfy9q4T/Ovru3j3ocuICFFNuFh6xbrBj9/cQ32Th5/fNEqjVT7CGMOAxCgG\nJEbxD5f1p6qhhVUHysg9XkVlbTMVdc1U1DZxsLSWhhYPcRHB9I4MYUBiFBP6hZAUHcqojFhGZ8Rp\nrYKI+Iyw4ED+64aRLHp6A79+P49/uWao25F8jopVF/tgXwlLdxznodmDyNYeRD4rNjyY60ancZ12\nJhYRPze5f28WTcjk2dUFXDc6jRHp3b8VjS/TatkuVNvUyg9e382g5Ci+NmuA23FEREQ65fvzhhIf\nGcp3l+yk1dPmdhyfomLVhX7xzj5OVDfy3zf6xpl0IiIiALERwfzHdcPJPV7NUx8XuB3Hp+infRfZ\neqSSP244wpem9GV8n15uxxEREbko14xMYf6oVP733f2s3FvidhyfoTVWXaCp1cN3l+wiLTac71w9\n2O04cgk6HjkjItKTGGP4xc2jOFJRx4Mvbee1r09jcIrWCl+IRqwcZq3lp2/vJb+0lp/cMIKoUHVX\nERHxTREhQTxzVw6RoUHc84fNVNQ2uR3J6+mnvsOe/riAP64/wr3T+3H54CS34/g9jSiJiHSt1Nhw\nnr4rh1ueWs/iF7bywr2TCA3quiO/fJ1GrBz0xifH+O/l+5g/KlV7f4iIiN8YkxnHL74wms2HT/KD\n13djz+yALH9HI1YOWX+wgn96ZScT+8Xzyy+M1kagIiLiV64bnUZ+aS2PrMwjKz6CB64YiDH6WXc2\nFSsHHCip4b7nt5DVO4Jn7swhLFhDpCIi4n++dWU2hRV1/PK9A1TUNfNvC4Z16vzUnkTF6hIVVzXy\n5ec2ER4cyO+/MoHYiGC3I4mIiHSJgADDw18cQ0JUKM+uOcSxUw08smgs4SEaUDhDa6wuwbbCk1z/\n+FqqGlr4v69MIKNXhNuRREREulRAgOEHC4bx79cO4/29JSx6ZgPlulrwUypWn4O1lufXH+aWp9YT\nEhTAXxZPYXiazlISEZGe4yvT+vHkHePZX1zNDU+s5WBZrduRvIKK1UVqaPbw7Vd28G9v5DIjO5E3\nH5iuUiUiIj3S1cNTePm+KdQ3eVjwyBp++9FBmlt79tmCKlYX4VB5HTf+dh2vbz/GQ7MH8exdOVpT\nJSIiPdqYzDiWfmM607MT+Pk7+7jmkdWsO1judizXqFh1wvFTDXz/tV3MeXgVx0818NyXJ/DN2dna\nUkFERARIjwvnmbtyeO7LOTS1erjtmY08+NJ2Sqsb3Y7W7XRV4HmUVjfy+If5vLTpKBbLbZOyuP/y\ngSTHhLkdTURExOtcMSSZqQMSeOLDfJ5cVcCK3GIWjErjtklZjMuK6xH7XqlYnaXV08amQ5W8vesE\nr24twtNm+UJOBg9ckU16XLjb8URERLxaWHAg/3jVYG4Yl8Ezqwt4Y/sxlmwrYkhKNLdNyuL6senE\nhPnvMhrTmW3pjTFzgd8AgcCz1tqfnXW/ab//GqAe+LK1dtv5vmdOTo7dsmXL583tqMYWD2vyynkn\nt5j395Zwqr6FsOAA5o9M48ErB9Knd6TbEbuMztoTEfF+t03KcjvC51bb1MrST47z4qYj7D5WTUhg\nAGOz4pgyoDdTByQwJjOOkCDvX5lkjNlqrc250OMuOGJljAkEHgfmAEXAZmPMUmvtng4Pmwdkt/+Z\nBPy2/Z9exVpLVUML+4tryD1ezZ4T1ew5Xk1eaQ0tHkt0WBCzhyZz9fAUZg5K1IZnIiIilygqNIjb\nJmVx26QsdhVVsXTHMdYXVPCblXn8+v08woIDGN+nF4OSoxmQGEX/xEgGJkaRGB3qk1OHnZkKnAjk\nW2sLAIwxLwMLgY7FaiHwR3t6+GuDMSbOGJNqrT3heOJOOn6qgec3HKGkqpHi6kaK2/9Z3+z59DEJ\nUSEMS4vlskGJTBnQmyn9e/tEaxYREfFFIzNiGZlxeouiqvoWNhyqYP3BCrYcqeTlTUdpaPn/P6Oj\nQoNIigklISqUhKiQ9n+GEh0WRGRoEFGhQUSEBBIVGkRqXLjXLNfpTLFKB452+LyIvx+NOtdj0gHX\nilVdUyvPfFxAckwYKbFhDE2N4fIhSaTEhDEwOYrhaTEkRWsRuoiIiBtiI4K5engKVw9PAaCtzVJc\n3UhBWR0F5bUUlNVRVtNEWW0T+4prKK8pp7qx9Zzf6/ZJWfz0hpHdGf8zdevidWPMfcB97Z/WGmP2\nd/VzHuzqJ/BtCUDP3Wykc/QaXZheo/PT63Nheo0u4Ha3A3i5/2r/08X6dOZBnSlWx4DMDp9ntN92\nsY/BWvs08HRngknXM8Zs6cxCvJ5Mr9GF6TU6P70+F6bXSPxJZxYUbQayjTH9jDEhwCJg6VmPWQrc\nZU6bDFS5ub5KRERExA0XHLGy1rYaYx4AVnB6u4XnrLW5xpjF7fc/CSzj9FYL+ZzebuErXRdZRERE\nxDt1ao2VtXYZp8tTx9ue7PCxBe53Npp0A03LXpheowvTa3R+en0uTK+R+I1ObRAqIiIiIhemTZtE\nREREHKJi1UMZY+YaY/YbY/KNMd9zO4+3McY8Z4wpNcbsdjuLNzLGZBpjPjTG7DHG5Bpjvul2Jm9j\njAkzxmwyxuxof43+w+1M3sgYE2iM2W6MecvtLCJOULHqgTocUzQPGAbcaowZ5m4qr/N7YK7bIbxY\nK/Bta+0wYDJwv/4b+jtNwBXW2tHAGGBu+1XT8re+Cex1O4SIU1SseqZPjymy1jYDZ44pknbW2o+B\nSrdzeCtr7YkzB61ba2s4/YMx3d1U3sWeVtv+aXD7Hy1q7cAYkwHMB551O4uIU1SseqbPOoJI5KIZ\nY/oCY4GN7ibxPu3TXJ8ApcB71lq9Rn/r18A/A21uBxFxioqViHxuxpgoYAnwLWtttdt5vI211mOt\nHcPp0ygmGmNGuJ3JWxhjFgCl1tqtbmcRcZKKVc/UqSOIRM7HGBPM6VL1J2vta27n8WbW2lPAh2jd\nXkfTgOuMMYc5vRzhCmPMC+5GErl0KlY9U2eOKRL5TMYYA/wO2GutfdjtPN7IGJNojIlr/zgcmAPs\nczeV97DWft9am2Gt7cvp96APrLV3uBxL5JKpWPVA1tpW4MwxRXuBv1hrc91N5V2MMS8B64HBxpgi\nY8w9bmfyMtOAOzk9yvBJ+59r3A7lZVKBD40xOzn9y8x71lptKSDi57TzuoiIiIhDNGIlIiIi4hAV\nKxERERGHqFiJiIiIOETFSkRERMQhKlYiIiIiDlGxEhEREXGIipWIXJAxxtO+V1WuMWaHMebbxpiA\n9vtyjDGPnOdr+xpjbuu+tH/33A3t5/V5BWPMLcaYfGOM9rQS8UMqViLSGQ3W2jHW2uGc3kF8HvDv\nANbaLdbaB8/ztX0BV4pVu4Pt5/V1mjEmsKvCWGv/DNzbVd9fRNylYiUiF8VaWwrcBzxgTpt1ZvTF\nGDOzw07s240x0cDPgBnttz3UPoq02hizrf3P1PavnWWM+cgY86oxZp8x5k/tR+dgjJlgjFnXPlq2\nyRgTbYwJNMb8whiz2Riz0xjz1c7kN8b81RiztX307b4Ot9caY35pjNkBTPmM5xze/vEn7c+Z3f61\nd3S4/akzxcwYM7f977jDGLPSwX8NIuKlgtwOICK+x1pb0F4eks666zvA/dbatcaYKKAR+B7wHWvt\nAgBjTAQwx1rb2F5MXgJy2r9+LDAcOA6sBaYZYzYBfwZusdZuNsbEAA3APUCVtXaCMSYUWGuMedda\ne+gC8e+21la2n9+32RizxFpbAUQCG621324/Q3PfOZ5zMfAba+2f2h8TaIwZCtwCTLPWthhjngBu\nN8YsB54BLrPWHjLGxF/0Cy0iPkfFSkSctBZ42BjzJ+A1a21R+6BTR8HAY8aYMYAHGNThvk3W2iKA\n9nVRfYEq4IS1djOAtba6/f6rgFHGmJvbvzYWyAYuVKweNMbc0P5xZvvXVLRnWdJ+++DPeM71wL8a\nYzLa/355xpgrgfGcLmkA4UApMBn4+EzRs9ZWXiCXiPgBFSsRuWjGmP6cLiKlwNAzt1trf2aMeRu4\nhtMjSFef48sfAkqA0ZxejtDY4b6mDh97OP97lAG+Ya1dcRG5ZwGzgSnW2npjzEdAWPvdjdZaz/m+\n3lr7ojFmIzAfWNY+/WiAP1hrv3/Wc13b2Vwi4j/+X3t37FJlFIdx/PuADiFyITBoKgnCQdpcg/6D\nhsjJZtv6A5qDlgaVaGgQnAuCIAvaLwQuItHiHDk4SASZHodzkhLpKrxgvHw/0+VwuOe82+/+znPP\na8ZK0rkkmQJeACvlxFvck9wopWyWUp4Cn4AZYA+Y/GPagNoNOgQWgFFB8S/A1SRzbY3JJGPAe+Bh\nkvE2fjPJxIjvGgC7raiaoXaVzrxmKyi3SylLwBvgFvARuJfkSpt7Ock1YAjcTjL9e3zE3iT1gB0r\nSWdxqR3NjQO/gDXg2SnzHiW5AxwCW8C79vmghcJXgefAqyQPgHXg+78WLqX8TDIPLLdc1A9q1+kl\n9ahwo4Xcd4C7I55jHVhM8plaPA3PueZ9YCHJPvAVeNLyWo+BD6lXUOxTc2bDFo5/3ca/Uf9RKanH\ncr56IHwAAABaSURBVOIHpyT1RpLrwNtSyuwFb+Uv7UjyONAvqT88CpTUZwfAIP/ZBaHUrt3uRe9F\nUvfsWEmSJHXEjpUkSVJHLKwkSZI6YmElSZLUEQsrSZKkjlhYSZIkdeQI/RkUt/89+WUAAAAASUVO\nRK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(candels_gn['candels-gn_ra'], candels_gn['candels-gn_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, candels_gn, \"candels-gn_ra\", \"candels-gn_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Ultradeep" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4XOd55v/vg0HvvQMEQYIF7BREdYkusqhiyy22JLfE\nTmQ7VuJkE5dsNsWbXD/bm1+ycdayZUWRncSWFFvNKpQoWVYv7BVgAxsqARC9t3n3D4BcCCLFoXiA\nMwDuz3XhEmbmEPNoSGBunPO8z2vOOURERETk4kX4XYCIiIjIbKFgJSIiIuIRBSsRERERjyhYiYiI\niHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4pFIv544MzPTlZSU\n+PX0IiIiIiHbvn37Kedc1vmO8y1YlZSUsG3bNr+eXkRERCRkZnYilON0KVBERETEIwpWIiIiIh5R\nsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPhBSszGyDmR00s2oz+/ZZHk8xsyfN\nbLeZVZrZ73lfqoiIiEh4O2+wMrMAcDdwI1AO3G5m5ZMO+xpQ5ZxbBawH/tHMoj2uVURERCSshXLG\nah1Q7Zw76pwbAh4Cbp10jAOSzMyARKANGPG0UhEREZEwF0qwKgBqJ9yuG79voh8CS4EGYC/wdedc\n0JMKRURERGYIr5rXbwB2AfnAauCHZpY8+SAzu9PMtpnZtpaWFo+eWkRERCQ8hBKs6oGiCbcLx++b\n6PeAR92YauAYsGTyF3LO3eucq3DOVWRlnXeDaBEREZEZJTKEY7YCZWY2n7FAdRtwx6RjaoAPAK+a\nWQ6wGDjqZaGz2QOba0I67o7Liqe4EhEREbkY5w1WzrkRM7sL2AQEgPudc5Vm9pXxx+8B/g74mZnt\nBQz4lnPu1BTWLSIiIhJ2QjljhXNuI7Bx0n33TPi8AfiQt6WJiIiIzCyavC4iIiLiEQUrEREREY8o\nWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERER\njyhYiYiIiHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxER\nERGPKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUr\nEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHQgpWZrbBzA6aWbWZffss\nj3/DzHaNf+wzs1EzS/e+XBEREZHwdd5gZWYB4G7gRqAcuN3Myice45z7B+fcaufcauAvgJedc21T\nUbCIiIhIuArljNU6oNo5d9Q5NwQ8BNz6LsffDjzoRXEiIiIiM0kowaoAqJ1wu278vncws3hgA/DI\nOR6/08y2mdm2lpaWC61VREREJKx53bz+YeD1c10GdM7d65yrcM5VZGVlefzUIiIiIv4KJVjVA0UT\nbheO33c2t6HLgCIiIjJHhRKstgJlZjbfzKIZC09PTD7IzFKA64Bfe1uiiIiIyMwQeb4DnHMjZnYX\nsAkIAPc75yrN7Cvjj98zfujHgOecc71TVq2IiIhIGDtvsAJwzm0ENk66755Jt38G/MyrwkRERERm\nGk1eFxEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIi\nIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiIiHhEwUpERETEIwpW\nIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQj\nClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLikUi/C5DQPbC55rzH3HFZ8TRUIiIi\nImejM1YiIiIiHgkpWJnZBjM7aGbVZvbtcxyz3sx2mVmlmb3sbZkiIiIi4e+8lwLNLADcDVwP1AFb\nzewJ51zVhGNSgR8BG5xzNWaWPVUFi4iIiISrUM5YrQOqnXNHnXNDwEPArZOOuQN41DlXA+Cca/a2\nTBEREZHwF0qwKgBqJ9yuG79vokVAmpm9ZGbbzezzXhUoIiIiMlN4tSowErgE+AAQB7xpZm855w5N\nPMjM7gTuBCgu1uo1ERERmV1COWNVDxRNuF04ft9EdcAm51yvc+4U8AqwavIXcs7d65yrcM5VZGVl\nvdeaRURERMJSKMFqK1BmZvPNLBq4DXhi0jG/Bq42s0gziwcuA/Z7W6qIiIhIeDvvpUDn3IiZ3QVs\nAgLA/c65SjP7yvjj9zjn9pvZs8AeIAjc55zbN5WFi4iIiISbkHqsnHMbgY2T7rtn0u1/AP7Bu9JE\nREREZhZNXhcRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQj\nClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERE\nxCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiIiHhEwUpE\nRETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeCSk\nYGVmG8zsoJlVm9m3z/L4ejPrNLNd4x9/7X2pIiIiIuEt8nwHmFkAuBu4HqgDtprZE865qkmHvuqc\nu2UKahQRERGZEUI5Y7UOqHbOHXXODQEPAbdObVkiIiIiM08owaoAqJ1wu278vsmuNLM9ZvaMmS3z\npDoRERGRGeS8lwJDtAMods71mNlNwONA2eSDzOxO4E6A4uJij55aREREJDyEcsaqHiiacLtw/L4z\nnHNdzrme8c83AlFmljn5Cznn7nXOVTjnKrKysi6ibBEREZHwE0qw2gqUmdl8M4sGbgOemHiAmeWa\nmY1/vm7867Z6XayIiIhIODvvpUDn3IiZ3QVsAgLA/c65SjP7yvjj9wCfBL5qZiNAP3Cbc85NYd0i\nIiIiYSekHqvxy3sbJ913z4TPfwj80NvSRERERGYWTV4XERER8YiClYiIiIhHFKxEREREPKJgJSIi\nIuIRBSsRERERjyhYiYiIiHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAl\nIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyi\nYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxERERE\nPKJgJSIiIuIRBSsRERERjyhYiYiIiHgkpGBlZhvM7KCZVZvZt9/luEvNbMTMPuldiRJ0jh/+9jD3\nvHyEPXUdjAad3yWJiIjIWUSe7wAzCwB3A9cDdcBWM3vCOVd1luO+Dzw3FYXOZdXNPTR0DpAQHeCh\nrbUkxzZyeWkG60rSiY8571+hiIiITJNQzlitA6qdc0edc0PAQ8CtZznuj4BHgGYP6xNgR007cVEB\nvrlhCZ+/fB5ZSTE8V9XE9549wNbjbX6XJyIiIuNCOd1RANROuF0HXDbxADMrAD4GvA+41LPqhIHh\nUaoaurhkXhpRgQiW5CWzJC+Zk10DPLK9jhcPNFMxLw0z87tUERGROc+r5vV/Br7lnAu+20FmdqeZ\nbTOzbS0tLR499ey2t76TkaBjbXHa2+7PTY7lsvnpdPQP09g54FN1IiIiMlEowaoeKJpwu3D8vokq\ngIfM7DjwSeBHZvbRyV/IOXevc67COVeRlZX1HkueW3bWtJOVGENhWtw7Hlucm4QB+xu7pr8wERER\neYdQgtVWoMzM5ptZNHAb8MTEA5xz851zJc65EuBh4A+dc497Xu0c09Y7xPHWPtYUp571Ul9SbBRF\n6fEKViIiImHivMHKOTcC3AVsAvYDv3TOVZrZV8zsK1Nd4Fy2o6YdA9ZMugw4UXleMg2dA7T3DU1f\nYSIiInJWIa3Vd85tBDZOuu+ecxz7uxdflgSdY2dNOwuyEkmJizrnceV5yTxbeZL9jV1cuSBzGisU\nERGRyTR5PUydaO2jvW+YNcWp73pcZlIMWYkxuhwoIiISBhSswtTOmnaiIyNYlp9y3mOX5iVz7FQv\n/UOj01CZiIiInIuCVRgaGgmyt76T5fkpREee/6+oPC+JoIODTd3TUJ2IiIici4JVGKpq7GJwJMja\n81wGPK0wPZ7EmEiqdDlQRETEVwpWYWhnTTup8VGUZCaEdHyEGUvzkjjU1M3giC4HioiI+EXBKsz0\nDY1Q3dzD6qJUIi5gm5qleckMjQR580jrFFYnIiIi70bBKsw0dAzggNLMxAv6cwuyEokORPB8VdPU\nFCYiIiLnpWAVZho6+gHIT4m9oD8XFYigLCeR56uaCAbdVJQmIiIi56FgFWYaOvtJjYsiPiak2a1v\nU56XTHP3IHvqO6egMhERETkfBasw09AxQF7qOzdcDsXi3CQCEcbzVSc9rkpERERCoWAVRgZHRmnt\nGSQ/9cIuA54WHx1Jxbw0XjrY4nFlIiIiEgoFqzBysnOscT0/5b2dsQKoKEnj4MluBoY1dkFERGS6\nKViFkTON6+/xUiDAioJURoJOeweKiIj4QMEqjDR0DJAQHSA59sIb109bWTi2t+BeNbCLiIhMOwWr\nMNLQ2U9+ahx2AYNBJ8tLiSUzMZo9dQpWIiIi003BKkyMjAZp6hq4qMuAAGbGioIU9ipYiYiITDsF\nqzDR1D1I0I2dcbpYKwpTOdzcTd/QiAeViYiISKgUrMJE43jjesFFnrECWFmQQtBBVYMa2EVERKaT\nglWYqO/oJyYygrSE6Iv+WivGG9jVZyUiIjK9FKzCRGPnAHkpcURcROP6aTnJseQkx2hloIiIyDR7\n7+v6xTNB52js7OfSknTPvuaKglT21HV49vVERGR2eWBzzXmPueOy4mmoZHZRsAoDp7oHGR51FzVx\nfbKVhSm8cKCJ7oFhkmKjPPu6IiIS3kIJTDJ1dCkwDDR0DgAXN3F9shWFKTgHlWpgFxERmTYKVmGg\noaOfyAgjKynGs6+5omB8Arsa2EVERKaNglUYaOjsJzcllkDExTeun5aZGENBahx71MAuIiIybRSs\nfOaco6GjnzwP+6tOG5vArgZ2ERGR6aJg5bO69n4GhoPkp178xPXJVhSmcLy1j86+Yc+/toiIiLyT\ngpXPTjeXe7ki8LSV44NC9zXocqCIiMh00LgFn1U2dBJhkOvBHoGTnW5g31PXyVULMz3/+iIiMr00\nSiH8KVj5rLKhi6ykGKIC3p88TI2Ppjg9nr316rMSEZkJegdHaO8bYmTUMRIMMjQy9t+0+GgK07y/\nsiHeCylYmdkG4AdAALjPOfe9SY/fCvwdEARGgD9xzr3mca2z0r76Tk82Xj6XFYUp7K5VsBIRCSf9\nQ6Psre/kYFM3R5p7eK36FC3dg3T2n7snNi0+igVZiSzISqQ0K0HDn8PUeYOVmQWAu4HrgTpgq5k9\n4ZyrmnDYC8ATzjlnZiuBXwJLpqLg2aSle5Dm7kFPt7KZbGVBCk/vaaStd4h0DzZ4FhGRC+Oco669\nn+0n2tlRM/axv7Gb0aADICE6QFpCNKWZCWQlxZAYE0kgwghEGBE29t+O/mGONPewr6GTbSfaAShO\nj+eTawvJ9HAGoly8UM5YrQOqnXNHAczsIeBW4Eywcs71TDg+AXBeFjlbHTzZDUxNf9VpK8Yb2PfW\nd3Ldoqwpex4RkbnoXD1PXf3DHD3Vw5HmXk52DVDf0Q+MhahVRal85bpS1hansSw/hZzkGB7cUnve\n57qiNIPg+Iie6vGzXHe/VM3H1xae6akV/4USrAqAiX/jdcBlkw8ys48B3wWygZs9qW6Wq24eC1bZ\nU/jbxvIzE9g7FKxERKbISDDI8VN9HGrq5mBTNy3dgwDERQUozUpgbXEqJZkJ5CTHEmFjw6CbugZp\n6mq+oOeJMKMwLZ7CtHhWF6Xy4JYaHtxSw7HSDG5ankvkFPTryoXxrHndOfcY8JiZXctYv9UHJx9j\nZncCdwIUF2vH7OqWHpJiI0mMmbo1BMmxUZRmJrBHW9uIiHiqtWeQbcfbONjUTXVzD4MjQQIRRmlm\nAhXz0liQlUhuyv8LUl5LjY/mD64tZdO+k7x+pJW69j5uv7SYNLV9+CqUd/R6oGjC7cLx+87KOfeK\nmZWaWaZz7tSkx+4F7gWoqKiY85cLjzT3sjA7EZuib7rTVhSmsOVY25Q+h4jIXNDQ0c+mypM8u+8k\nW4+3EXSQEhfFqsJUFucmsSArkejI6TtrFBkRwc0r8ynJTODh7XX88MVq7nr/QtLiFa78Ekqw2gqU\nmdl8xgLVbcAdEw8ws4XAkfHm9bVADNDqdbGzTXVLD+un4fLcsvxkfr2rQQ3sIiIhmtg71dE3xN76\nTvbWd1LXPtYrlZMcw/rF2ZTnJZOXEjvlvyCfz7L8FLKTYrn7pWoe2VHHF6+aP2VnyuTdnTdYOedG\nzOwuYBNj4xbud85VmtlXxh+/B/gE8HkzGwb6gU875+b8Gal309k/TEv3IAuyE6f8uZblj/VZVTV0\ncXWZBoWKiJxPz+AI++o72VPXwfHWPgAKUuO4oTyHZfkpYbkSLysphpuX5/HYrno2H2vjitIMv0ua\nk0Jq7nHObQQ2Trrvngmffx/4vrelzW5HWsYWUi7MSqR5vMlxqizNSwagqrFTwUpE5Bz6hkZ4rrKJ\nx3bW8+rhFoJubHHRB5fmsKowhYzE8AtTk1WUpFHZ2Mmz+xpZlJ04I2qebTR53SfVzePBKnvqg1V6\nQjR5KbFUje9LKCIiY0aDjterT/H4znqerTxJ39AoBalxXFOWxarC1CkdhzMVzIyPrSnkBy8c4uEd\ndfzBNaW6JDjNFKx8cqS5h+hAxLRtUVCel0xVo4KViAjA/sYuHt1Rx693NdDcPUhSbCS3rs7no6sL\nuLQknYe2nn+uVLhKiYvilhX5PLyjjjeOtHK19oqdVgpWPqlu7mF+ZsK0zRwpz0/mpUMtDAyPEhsV\nmJbnFBEJJ81dA/x6VwOP7qxnf2MXkRHG+5Zk87E1Bbx/Sfas+tm4pjiVfQ2dPFd5ksU5SWSFYU/Y\nbKVg5ZMjLT1nmsqnw7L8ZEaDjoMnu1lVlDptzysiMl3ONgV9cGSUqoYudtV2UN3cgwMK0+L48Kp8\nVhakkBATSUffMI/uOOcUoRlp7JJgAf/8m8M8vL2WO69dQCBClwSng4KVDwaGR6lp6+Mjqwum7TnL\n88ZXBjZ2KViJyKw2GnQcaelhV20HlQ2dDI860uKjWL84i1VFqWQnzay+qfcqKTaKD6/K55fbatlX\n36mf/dNEwcoHx1t7CTpYkJUwbc9ZmBZHUkykGthFZFYKBh0nWnvZVdvB3vpO+oZGiY2KYE1RGquL\nUinOiJ+TTdwrC1N4YX8Tbx5tVbCaJgpWPjjS3AuMrQicLhERxlI1sIvILOKcY299J0/vbeSp3Y3U\nd/QTOf6zblVhCotykub83nkRZlyxIIOn9jRS195HYVq83yXNegpWPqhu7sEMSjOnL1jBWAP7L7fV\nMhp0utYuIjOSc47ddZ1s3NvIxr2N1LX3E4gwrinL5MoFGZTnJRMzi5rQvbC2OI3nqpp480grv1Oh\nYDXVFKx8UN3SQ0FqHHHR0/vNX56fTN/QKCdaeynNmt5QJyLyXg2PBtlyrI3nq5p4vqqJ+o5+ogLG\nVQsz+eP3l3F9eQ5pCdFnbV4XiI0KsLY4ja3H29iwPJek2Ci/S5rVFKx8UN3cM62XAU8rPzOBvUvB\nSkTCWmffMK8cbuH5qiZePNhM98AIMZERXFOWyZ9ev4jrl+aQEq+AEKorSjN462grW4+38f4lOX6X\nM6spWE2zYNBxtKWHqxZM/x5OZTmJREYYVQ1d3LIyf9qfX0TkXILBsX6plw+18PKhFnbWtBN0kJEQ\nzY3Lc4kOBFiYnUh0ZARDI0Ge3tvod8kzSlZSDItyEtl8rI3rFmWrHWQKKVhNs/qOfgZHgr6csYqJ\nHPvBVKmVgSLiM+ccNW19vF7dyhtHTvHGkVbaeocwg5UFKdz1voVctziL1UVpBCJMl/k8cEVpJv/+\n5nH2NXSyqlArBKeKgtU0O71H4AIfghXAsvwUXjnc4stzi8jcVtfex+ajbbx1tJU3jrRS39EPQFJs\nJAuyEvng0mwWZieRGDP21nTwZA8HT/b4WfKsUpaTSEZCNG8eaVWwmkIKVtPsSMv45ss+9TiV5yfz\nyI46mrsH5syQPBGZfs45jp3qZcuxNrYca2PzsbYzQSolLoorSjP48nWltPUOkZUYg83BGVPTTaMX\npoeC1TSrbu4hIyGatIRoX57/dAP7/sZuBSsR8cxo0LG/sYstx9rYeryNrcfbOdUzCEBCdICSzATW\nFKcyPzOBnOTYM8M69XNoemn0wtRTsJpm1c09LPBxRd6ZlYENXVy3KMu3OkRkZhsaCbK3vnP8bFQr\n24+30z04AkBBahzXlGXiHJRkxJOVpDNS4SI2KsAlxWls0eiFKaNgNY2cc1S39HDj8jzfakiJj6Ig\nNY7Khk7fahCRmWdkNMi+hi5erz7Fm0da2XysleFRB4ytOFuan0xJRgIlGfGkxvtzRl5Cc3lpBm8e\nbWV3bQdXl+kXbK8pWE2jtt4hOvqGfVkRONGyfG1tIyLv7nSP1CuHWnitupXNR1vPnJFakptERUk6\n8zMSKMlMONNsLjNDVlIMeSmxVDZ0KVhNAX03TKMzKwKncfPlsynPT+b5/U30DY0QH61/AiIypndw\nhO89c4BDTd0cbu6hrXcIGJsltSQvmQVZCZRmJSpIzQLl+cn8dn8zXQPDJOtyoKf03TGNqk+vCPT5\njFV5XjLOwYGT3awtTvO1FhHxV1PXAM9XNfGb/U28Ud3K0GiQ6EAEpVkJXL0wk0U5SaT7tNhGps7y\n/BRe2N9MVUMXl5dO/8Dq2UzBahodae4lLipAfkqcr3WU5481sFc2dClYicwhp4dsNnUNUNnQxYGT\nXdS1j41ASE+I5tKSNBbnJlOSEU9kIMLPUmWKZSfFkJkYrWA1BRSsplF1Sw8LshOI8HkrgYLUOFLi\noqjSBHaROcE5R1VjF89VnaSyvouW8TEIRWlxfKg8h6V5yWRr5d6cYmYsy0/h1cMt9A2OEK/Lu57R\nKzmNjjT3UFHi/xkiM6M8Tw3sIrOZc47Khi6e2tPIxr2N1LT1YcD8zASuWJBBeV4yyXHqrZnLluUn\n8/KhFvaf7OaSef6/N80WClbTpHdwhPqOfm7LKvK7FGDscuDP3zrByGhQp/xFZgnnHPsbu3l6bwNP\n72nkeGsfkRHGlQsz+cP1C+gaGFHjuZxRkBpHalwUlQ2dClYe0nfYNDl2qheY+sb1UDcqXV6QzOBI\nkMPNPSwdHxoqIjNTdXM3T+5u5Mk9DRxt6SUQYVy5IIOvrl/Ah8pzz+z0oI2MZaKxy4HJbD7WxuDw\nKDFRAb9LmhUUrKbJ4eZuwL/NlydbXTT228nu2g4FK5EZqKa1jyf3NPDk7gYOnOzGDC6fn8GXrp7P\nhmW5ZCTG+F2izADL8lN4/UgrB5u6WamNmT2hYDVNDjX1EBlhlGT4O8PqtJKMeFLiothV28Ft64r9\nLkdEzmHiWaaugWH21nWyp66D2vHVfMXp8dyyMo/lBSln5hFtqmzypVaZeYoz4kmMiWRfQ5eClUcU\nrKbJ4aZu5mcmEB0ZHv1MZsaqolR21Xb4XYqIvIv+oVEqGzrZXdfB0ZZeHJCXEssNy3JZWZhCmraP\nkYsQYUZ5fjK7ajoYHg0SpZ7bi6ZgNU0ONfWwoiDF7zLeZnVhCj98sUUT2EXCzMDwKC8eaObxXfX8\nZn8zo0FHekI06xdns6owhezkWL9LlFlkWX4yW461Ua2eW0/o3XQa9A+NUtvexyfWFvpdytusLk4l\n6GBvXSeXaUCciK9Gg47NR1t5bGc9z+47SffgCJmJMVw2P51VhakUpsVpzpRMidLMROKiAuyr71Sw\n8kBIwcrMNgA/AALAfc657016/DPAtwADuoGvOud2e1zrjFXd3INzsCgnPBrXTzt9PX13XYeClYgP\nfvHWCRo7B9hV28Geug66BkaIiYygPC+Z1UWplGYlEvB5oLDMfoEIY2leElWNXYwGnf7NXaTzBisz\nCwB3A9cDdcBWM3vCOVc14bBjwHXOuXYzuxG4F7hsKgqeiQ41ja0ILMtJ8rmSt8tMjKEwLU59ViLT\nrLatj1/vquc/3jxBc/cgATMW5SRyU1EqS/OS1eci025Zfgo7ajo42tITdu9VM00oZ6zWAdXOuaMA\nZvYQcCtwJlg5596YcPxbQHhd8/LZoeZuogMRlGTE+13KO6wuSmVnjYKVyFRr7Rnk6b2NPL6znh3j\n33PzMuK5dXU+K/JTtKWI+GphdiJRAWP/yS4Fq4sUyndyAVA74XYd73426kvAMxdT1GxzuKmH0qyE\nsJxwvroolaf2NNLcPUB2khpiRbzUPTDMpsomntjdwOvVpxgNOhbnJPHNDYv5yKp8Xjl0yu8SRQCI\nCkRQmpnI4aYev0uZ8Tz9FcnM3sdYsLr6HI/fCdwJUFw8d2YnHWrqZk1xeG4XsLpovM+qtpPryxWs\nRC7WwPAo//PJKnbXdXDwZDcjQUdqfBRXLchkdVEquSlj32cKVRJuFuUkcrCpm9aeQQ2YvQihBKt6\nYOIGd4Xj972Nma0E7gNudM61nu0LOefuZaz/ioqKCnfB1c5AvYMj1LX38+mK8NgjcLJl+SkEIozd\ntR1cX57jdzkiM9LQSJBXD7fw5O4Gnq9qondolMSYSC4tSWdVYQpF6fFa0Sdhb1FOEtDIoeYerlCw\nes9CCVZbgTIzm89YoLoNuGPiAWZWDDwKfM45d8jzKmew6uax06rhes06LjrAktwkNbCLXKCR0SBv\nHGnlqT2enfvRAAAgAElEQVQNPLvvJF0DI6TERfHhVfnER0cyPzNBq6tkRslIjCE9IZrDTd1coZXi\n79l5g5VzbsTM7gI2MTZu4X7nXKWZfWX88XuAvwYygB+N/1Y24pyrmLqyZ47TKwLDbdTCRKuKUnly\ndwPBoCNCbwQi5zQadGw93saTu8fCVGvvEIkxkXyoPIcPr8rnqoWZREdGaLNjmbEW5SSy/UQ7I6PB\nsOwLnglC6rFyzm0ENk66754Jn/8+8PveljY7HG7uIToygnlhskfg2awuTOWBzTUcPdXLwjDZJFok\nXDjn2F3XyRO7Gnh6bwNNXYNEBYwluclsWJ7LopwkogIRNHYO8PD2Or/LFbkoi7KTeOtoG8db+/R+\n8B5pfe8UO9TUzYIwH/K3uvh0A3uHvpFkzpp8lqmpa4A9dR3sruukrXeIQISxKCeJ9YuzWZKbRExk\nwKdKRabO/KyxS9iHm7r1fvAeKVhNscNNPVSUhOeKwNMWZCWSEB1gd10Hn7hEI8hk7ursH2ZPXQe7\najto7BzAGPv+WL8oi2X5KcRFK0zJ7BYTGaAkI55Dzd3cSJ7f5cxIClZTqGdwhPqOfu7ICe/REoEI\nY2VhqhrYZU7qHhjmmX0nue+1oxxr6cUBhWlx3LIyjxUFKSTFRvldosi0WpSTxDP7TtLZP+x3KTOS\ngtUUOnx6K5sZcDp1VVEq//baUQaGR4mN0m/lMruNjAZ59fApHtlRx/NVTQyOBElPiOZ9S7JZXZRK\nppaayxxWNh6sTr+HyYVRsJpCpyfYLgrTUQsTrS5KZXjUUdXYxdowHWYqcjGcc1Q2dPHojnqe2F3P\nqZ4hUuOj+PSlRXx0TQH7G7o0a0oEyEmKITk28syqdrkwClZT6FBTNzGRERSlh98egZP9vwnsHQpW\nMqs0dQ3w+M56Ht1Rz8GmsX07378km4+vLWD94myiI8eWlB9o1JuICIDZ2EKNfQ2dGrvwHihYTaFD\nzT0szA7vFYGn5abEkpscqz4rmRX6h0Z5ruokD2+v4/XqUwQdFKePb3hckEJ8dCSneoY0HkHkHMpy\nkth2op1dtR1UlKT7Xc6MomA1hQ43dXP5DJpeu6oohd0KVjJDBYOOt4618uiOep7Z20jv0CgFqXHc\n9b6FRAYi1DclcgEWZiUSYfDyoRYFqwukYDVFugaGaewcoCyMJ65PtqoolU2VTbT3DpGWEO13OSLn\n9cDmGpq7B9hVMzYioaN/mJjICFYUpLCmOI15GfFEqG9K5ILFRQcoSovn5UMt/NmHFvtdzoyiYDVF\nTq+mWJQd/o3rp1XMG/utZPOxVjYs1/wSCV/tvUM8uaeBe185Sl17PwaU5SRyw7JcluYln+mbEpH3\nriwnid/sb+JUz6DO+F4ABaspcmgGrQg8bU1xKokxkbxy+JSClYSdoZEgLx5s5pHtdbx4sJnhUUdu\nciw3Ls9lVVEqyZo3JeKpRTmJ/GZ/E68dPsVH1xT4Xc6MoWA1RQ41dRMXFaAwLc7vUkIWFYjgigUZ\nvHKoBeeclp6L706PSHh4ex1P7G6grXeIzMQYvnBFCR9fW6jFFiJTKD81joyEaF462KxgdQEUrKbI\n4aYeynISiZgBKwInurYsk+ermjje2sf8zPDdOFpmt1M9g/z14/vYUdPBya4BAhHG0rxkblmZR1l2\nEoEIU6gSmWIRZlxTlskrh08RDLoZ937mFwWrKXKoqZtryrL8LuOCXbtorOZXDrUoWMm0Gh4N8tLB\nFn65rZYXDzQzEnQUpcVx6+p8Vhakap8+ER+sX5zN47sa2FvfyarxeYfy7hSspkBn3zDN3YMsmkEr\nAk+bl5HAvIx4Xj3cwheuLPG7HJmlHthcc+bzlu5Btp1oY0dNB72DIyTGRHLFggzWFqeRkxzrY5Ui\nck1ZJmbw0sEWBasQKVhNgUPN4ysCZ1Dj+kTXlGXy2I56hkaCWl0lU2JoJMi++k62nmjjRGsfEQaL\nc5OpmJfGopykGTFUV2QuyEiMYWVBCi8faubrHyzzu5wZQcFqCpzeX2kmzbCa6NqyLH7+Vg07atpn\n1IBTCX/76jt5cEsND2+vY3AkSEZCNBuW5bKmOJUkreoTCUvXLc7mh789TEffEKnxmnF4PgpWU2Bv\nXSep8VEUpM6cFYETXbEgg8gI45VDLQpWctF6Bkd4YlcDD26pYW99JzGREZTnJVNRkk5JRrxWn4qE\nuesWZfEvLxzmlcOn+MiqfL/LCXsKVlNgV20HqwpTZ+wbRlJsFGuL03j18Cm+ucHvamSm2lPXwYNb\navj1rgb6hkZZnJPE3364nI+tKeTpvY1+lyciIVpdlEpKXBQvH2xRsAqBgpXHegZHONjUzQ3Lcv0u\n5aJcU5bJP/3mEK09g2Ro4q6E6KevHWN3XSdbjrfS0DFAVMBYUZDKuvnpFKXFYWYKVSIzTCBibOzC\ny4daNHYhBApWHttT14FzsLp4Zq+euHZRFv/4/CFeqz7Fras1GE7e3b76Th4Y750aGgmSmxzLh1fl\ns7pQYxJEZoP1i7N5ak8jVY1dLC9I8bucsKZg5bHTQwtXF87sYLW8IIXU+CheOaRgJWfXNzTCk7sb\neGBzDbvrxnqnlucns64knaJ09U6JzCbXLsoE4OVDLQpW56Fg5bFdNR2UZMSTljCzV04EIoyrF2by\n6mFtbyNvd+BkFw9sruGxHfV0D45Qlp3I33y4nI+rd0pk1spOimVZfjIvHWzma+9b6Hc5YU3BykPO\nOXbVdnDlgtmxku7asiye2tPIwaZuluQm+12O+GhgeJS/enwfm4+1UdPWR2SEsbwghXUl6cwbX9mn\nUCUyu61fnMU9Lx+ls3+YlDiNRzkXBSsPNXYO0Nw9yOpZMp32mvFTv68eOqVgNUcdaenhgc1jvVOd\n/cNkJERz0/Jc1hanER+jHx8ic8l1i7K5+8UjvF59iptW5PldTtjST0YPnemvKk7zuRJv5KXEsSgn\nkVcOt/AH15b6XY5Mk6GRIM9VneQXb9Xw5tFWIiOMG5bnkpscS2lmgi4Li8xRa4tTSYqN5KWDzQpW\n70LBykO7ajuIDkSwNG9mbmVzNteUZfGfb51gYHiU2Cit7prNatv6eGhrDf+1tY5TPYMUpMbxjRsW\n8zsVhWQnxb5tfz8RmXsiAxFnxi6o9/bcFKw8tKumg/L8ZGIiZ08AuXZRFv/22jFeO3yKD5bn+F2O\neGw06PjOk5VsPtp2ZiumxblJ3Lwil7KcJCLM+E1Vs89Viki4uG5RFhv3nuTAyW6W5qlF5GwUrDwy\nMhpkb30nn760yO9SPHVFaQaZidH8clutgtUs0tI9yC+31fLA5hrqO/pJiolk/eIsLi1J115gInJO\n1y3KBuClgy0KVuegYOWRg03d9A+PsmaGDwadLDoygk9cUsh9rx6juWuA7ORYv0uS98g5x+Zjbfz8\nrRNsqjzJ8KjjygUZXLsoi/K8ZAKapiwi55GbEsuS3CRePNDMV9cv8LucsBRSsDKzDcAPgABwn3Pu\ne5MeXwL8FFgL/KVz7v/3utBwd6ZxfZasCJzotkuL+cnLR/nV9jrNL5lhHthcw8DwKDtq2tlyrI3m\n7kFioyJYV5LOuvkZZCVpuyIRuTA3LMvlX357mObuAbKT9Mv2ZBHnO8DMAsDdwI1AOXC7mZVPOqwN\n+GNgzgWq03bVdJCeEE1xerzfpXhufmYCV5Rm8NDWGoJB53c5EqJ99Z08trOO7z6zn6f2NI6dfVxb\nwLc3LOXmlfkKVSLynty0Ig/nYFNlk9+lhKVQzlitA6qdc0cBzOwh4Fag6vQBzrlmoNnMbp6SKmeA\nXbUdrCpMmbWrJG5bV8TXH9rFG0daubos0+9y5BwGhkd5ek8jP998gp01HUQFjFWFqVw2P4OCtDi/\nyxORWWBRTiKlWQk8s7eRz10+z+9ywk4owaoAqJ1wuw64bGrKmZm6B4apbunhlpX5fpcyZW5Ylktq\nfBQPbq1RsApDNa19/GLzCX65rZb2vmFKsxL461vKcQ5tgiwinjIzblqex49eqqa1Z5CMRJ39nmha\nm9fN7E7gToDi4uLpfOoptaeuE+dg9SxrXJ8oNirAJ9YW8h9vHtc3Upj4+VsnONTUfWZUghkszUvm\nY2sKWZClQZ4iMnVuXJHLD1+s5rmqJm5fN3vez70QSrCqBybOECgcv++COefuBe4FqKiomDXNOmca\n1wtnTrAKZdjjHZe9/Zvl9nVF/Ntrx3hkRx13XqvVIH5p7x3iv7bV8pOXj9DeN0xSTCTvW5LNpSXp\n2r9LRKZFeV4yJRnxbNzbqGA1SSjBaitQZmbzGQtUtwF3TGlVM8zOmg5KMxNIiZ/db2oLs5OomJfG\nQ1tq+YNrSnVGZJrtru3gP948wZN7GhgaCVKSkcANy3JZlp+iUQkiMq3MjBtX5HHvK0dp7x0iLUHz\n7047b7Byzo2Y2V3AJsbGLdzvnKs0s6+MP36PmeUC24BkIGhmfwKUO+e6prD2sOCcY1dtB9fOkb6j\n29YV8+e/2s3mY21cXprhdzmz3sDwKE/taeQ/3zzO7rpO4qMDfKqikM9ePo8dJzr8Lk9E5rCblufx\n45eO8Pz+Jj5VMbuGY1+MkHqsnHMbgY2T7rtnwucnGbtEOOfUd/RzqmdwVvdXTXTzijy+82QlD22p\nUbCaIg9srqGtd4jNx1rZdryd/uFRspJi+PDKPNYUpxEbFVCoEhHfLS9IpjAtjmf2NipYTaDJ6xdp\nNg8GPZu46AAfW1PAQ1tr+du+IW1/4qHRoOOlg838+xvH39aMfnlpBqWZakYXkfBiZty0Io+fvn6M\nzv5h9XiOO++AUHl320+0Ex0ZwZLcubNn0m2XFjM0EuTf3zjhdymzwqmeQe5+sZpr/9eLfOnft9HQ\n0c/6xdl844YlfOayeSzISlSoEpGwdOPyXIZHHb+p0rDQ03TG6iI453iusomrFmQQHTl3Mmp5fjI3\nrxibYfKxNQUUZ8y+afNT7fS+fb/YXMOz+xoZHnVcUZrBf79pKW29Q2pGF5EZYXVRKvkpsTyzr5FP\nXDInO4LeQcHqIuyr76K+o5+vf6DM71Km3V/dUs5LB5v5myf2cf/vXqozKiHq6BvikR31PLD5BEda\nekmKjeQzl83js5cXszA7CQhtFIaISDgwMzYsz+Pnb52ge2CYpFhdDlSwugjP7GskEGFcX57jdynT\nLjcllj+9fhF///R+NlWeZMPyPL9LClvOObafaOeBLTU8sauBkaCjKC2OT6wtZEVBCtGREWw51s6W\nY+1+lyoicsFuWpHL/a8f47cHmrl1dYHf5fhOweo9cs7x7L6TXF6aPmfnd/zulSU8sqOe7zxZxTVl\nWSTE6J/TRO29Qzy6s54Ht9RQ3dxDYkwkl8xLY938dPJStG+fiMwOa4vTyE6K4ek9jQpWKFi9Z4ea\nejh6qpffu3q+36X4JjIQwd9/dDmf+PEb/PNvDvGXN5f7XZJvTl++CzrHsVO9bDveRmVD15mzUx9f\nU8CKwhRiIrVvn4jMLhERxkdW5fOzN47T1DVATnKs3yX5SsHqPXpmXyNmcMOyuXcZcKJL5qVx+7oi\n7n/9OB9fW8jSvLmzOnKiroFhdpxoZ9uJdtp6h4iNiuDSknQuLUknN2Vu/5ARkdnv81eU8G+vH+M/\n3zzBn9+w2O9yfKVg9R49u+8kFfPSyE7Sm+a3NixhU2UT/+Pxffzqy1cQMUdWtI2MBnnpYAv/ta2W\nF/Y3EXQwPzOBDy7NZll+ClGBubNSVETmtuKMeD64NIcHttRw1/sXEhs1d8/OK1i9B8dO9XLgZDd/\ndcvcvfQ1UWp8NH9x4xK+8fAefvrGcb40yy+PVjf38KvttTy6o56W7kEyE2O4emEWFSVpZCbG+F2e\niIgvvnjVfJ6vauLXu+r59KVzd2NmBav34Jl9jQBsWJ7rcyXh45OXFLKp8iR/91QVcVEB7rhsdn1T\ndQ0M8/SeRh7eXsf2E+0EIoz3L8nmUxVFrF+cxa+21fldooiIry4vTWdJbhL3v3acT1UUzdkxPApW\n78Gz+06yqjCFgtTZvbIrlHlKpwOUmXH3Z9by1Z/v4L8/tpegc3z28nlTXeKUGg06Xj3cwj89f4iq\n8Ub0rKQYblyey+qiVJJio2jpHlSoEhFh7H3gi1fP55sP7+HNI61cuTDT75J8oWB1gera+9hT18m3\nNizxu5SwExMZ4MefXcsf/nwH/+PxfTjn+NwVJX6XdUGcc+yr7+KJ3fX8elcDzd2DxEUFuGReGpfM\nS6MgNW7O/hYmInI+H1mVz/efOcD9rx9TsJLQbKoc2w/pRl0GPKuYyAA/+uxavvaLnfzVrysJOvjC\nlSV+l3VeR1p6eGJXA0/ubuDoqV4iI4z1i7P4xNpCWroHiVQjuojIecVGBfjMZcX8nxerOX6ql5LM\nBL9LmnYKVhfo2X2NLMlNmpP/WEIVExngR59Zy9ce2MHfPFFJa88gf/i+8Fol4pzjYFM3m/Y1sany\nJFWNXZjB5fMz+INrS7lxeS6p8WODX7XFjIhI6D57+Tx+/PIRfvbGcf72I8v8LmfaKVhdgObuAbad\naOdPPrDI71LCXnRkBHffsZZvPbKHf/ltNY/sqOebGxbzkVX5vl1KGx4NsuNEO7/Z38SmyiZq2vow\noDg9nptW5LGyIIXkuCicg417T/pSo4jITJedHMstK/P51bZa/tuHFpE8x/YPVLC6AJsqm3AOblyh\ny4ChiI6M4H9/ejW/U1HI3z+1n68/tIufvXGcv7qlnLXFaVP+/M45jrT08trhFl6rPsVbR9voGRwh\nKmBctTCTr1y3QJuGiohMgS9eNZ/Hdtbzy621/P41pX6XM60UrEI0GnQ8uLmGBVkJlGUn+l3OjHLl\ngkye/KOreWR7Hf/w3EE+/qM3WL84iw8szWH9oiyK0uM9eZ7ewRH21neyu7aDXbUd7Kzp4GTXAADz\nMuK5dXU+15RlctXCzDNhSpf5RES8t6IwhYp5afz09eN89vJ5YdUKMtUUrEL0yPY6qhq7+Jfb12hV\n2AShBpM7LivmU5cWcdPKPO59+QiP7arnpYMtAJRmJbB+UTbr5qeRlRRLdlIMmYkxxEW//RtxNOjo\nGxqha2CEmtY+TrT2cnz8v0dbejnc3E3QjR2bnhBNYVocl5dmsDA7kfTxjbLbeod5cnejdy+AiIic\n1Z9ev4jP3LeZ//38If7ipqV+lzNtFKxC0DM4wv/adJC1xal8eGWe3+XMaIkxkfy3Dy3mT69fxNFT\nvbx8sIWXDrXw880nuP/1Y287NiE6QHJcFP3Do/QNjTI0EnzH14sKGEXp8ZRkJHDD8lxWF6WwqjD1\nzOpNERHxx1ULM7l9XRH/+upRNizPZc00tICEAwWrEPz4pWpO9Qxy3xcqdLbKI2bGgqxEFmQl8sWr\n59M/NMqRlh5aegY51T1IS88gLd2D9AyMEBcdIC46QHxUJPHRASobukhPiCYjIZqU+CgiJvydnOwc\n5GSnQpWISDj47zct5eWDLXzj4T089UdXz4lLggpW51Hb1se/vnqMj68pYHVRqt/lzFpx0QGWF6SE\ndKz6okREZoak2Ci++4mVfOH+LfzghcNzYri2gtV5fO/ZAwTM+MaGxX6XMqMpDImIzE3XLcriUxWF\n/OTlI2xYlsuqWX6SQuOk38XW4208vaeRL19XSl7K7N4XUEREZKr85c3lZCfF8ue/2s3gyKjf5Uwp\nBatzCAYd//PJKvJSYvnytQv8LkdERGTGSomL4rsfX8Hh5h7+zwvVfpczpRSszuHRnfXsrR/bbHny\nsn8RERG5MO9bks0nLynkRy9V84vNJ/wuZ8qox+osXjzQzF//eh+ri1L5yKp8v8sRERGZFb7zkWW0\n9gzyl4/to7atn2/esJiIiNm12l5nrCb5zzeP86V/30ppVgI/+dwls+4vXERExC8JMZH86+cr+Mxl\nxdzz8hH+6KGdDAzPrp4rnbEaFww6/r+N+7nvtWN8cGk2P7htDQkxenlERES8FBmI4O8/upzi9Hi+\n+8wBmjoHuPfzFWd2yJjpdMYK6B8a5au/2M59rx3jd68s4Sefq1CoEhERmSJmxpevW8Ddd6xlT30n\nH/vR6zy1p4GR0XfusDHThJQezGwD8AMgANznnPvepMdt/PGbgD7gd51zOzyu1XPtvUM8uaeB/3zz\nBNUtPfz1LeV88er5fpclIiIyJ9y8Mo/clBj+7Je7ueuBneSlxPL5K0q4fV0RqfEz8wzWeYOVmQWA\nu4HrgTpgq5k94ZyrmnDYjUDZ+MdlwI/H/xt2hkaCvHiwmUe21/HiwWaGRx1L85K57/MVfGBpjt/l\niYiIzCmXzEvnhT9bz4sHmrn/9WN8/9kD/OCFQ3xsTQHXlGWxLD+Z4vT4GbOlXChnrNYB1c65owBm\n9hBwKzAxWN0K/IdzzgFvmVmqmeU55xo9rzhEvYMj7Krt4ERrHydae8f+2zb2ed/QKJmJMXzhihI+\nvraQ8vxkv8oUERGZ8wIRxgfLc/hgeQ4HTnbx09eO8+iOeh7cUgtAUkwkS/OTWZafTF5KLKnx0aTF\nR5MWH0VqfDRZSTGkxEX5/H8xJpRgVQDUTrhdxzvPRp3tmALAt2B17FQvn7lvMwDRgQgK0+OYlx7P\nZfPTuW5xFtcszCQyoBYzERGRcLIkN5nvf3Il37l1GYeauqls6KKyoZPKhi4e3FLDwPA7+7BuX1fM\ndz++wodq32laO7TN7E7gzvGbPWZ2cLqe+/B0PdF7kwmc8ruIWUavqff0mnpPr6m39Hp67DN+FxCi\n741/TLF5oRwUSrCqB4om3C4cv+9Cj8E5dy9wbyiFzSVmts05V+F3HbOJXlPv6TX1nl5Tb+n1lHAQ\nyrWwrUCZmc03s2jgNuCJScc8AXzexlwOdPrZXyUiIiLih/OesXLOjZjZXcAmxsYt3O+cqzSzr4w/\nfg+wkbFRC9WMjVv4vakrWURERCQ8hdRj5ZzbyFh4mnjfPRM+d8DXvC1tTtHlUe/pNfWeXlPv6TX1\nll5P8Z2NZSIRERERuViaNyAiIiLiEQUrn5nZBjM7aGbVZvZtv+uZ6czsfjNrNrN9ftcyG5hZkZm9\naGZVZlZpZl/3u6aZzsxizWyLme0ef02/43dNs4GZBcxsp5k95XctMrcpWPlownZBNwLlwO1mVu5v\nVTPez4ANfhcxi4wAf+acKwcuB76mf6MXbRB4v3NuFbAa2DC+mlouzteB/X4XIaJg5a8z2wU554aA\n09sFyXvknHsFaPO7jtnCOdd4ekN151w3Y29cBf5WNbO5MT3jN6PGP9TsehHMrBC4GbjP71pEFKz8\nda6tgETCjpmVAGuAzf5WMvONX7baBTQDzzvn9JpenH8Gvgm8c68TkWmmYCUi52VmicAjwJ8457r8\nrmemc86NOudWM7ZLxTozW+53TTOVmd0CNDvntvtdiwgoWPktpK2ARPxkZlGMhapfOOce9bue2cQ5\n1wG8iPoCL8ZVwEfM7Dhj7RTvN7Of+1uSzGUKVv4KZbsgEd+YmQH/Bux3zv2T3/XMBmaWZWap45/H\nAdcDB/ytauZyzv2Fc67QOVfC2M/Q3zrnPutzWTKHKVj5yDk3ApzeLmg/8EvnXKW/Vc1sZvYg8Caw\n2MzqzOxLftc0w10FfI6xswC7xj9u8ruoGS4PeNHM9jD2y9XzzjmNCBCZJTR5XURERMQjOmMlIiIi\n4hEFKxERERGPKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWInJeZjY7PsKo0s91m9mdm\nFjH+WIWZ/cu7/NkSM7tj+qp9x3P3j+/LFxbM7NNmVm1mml0lMgspWIlIKPqdc6udc8sYmxR+I/A3\nAM65bc65P36XP1sC+BKsxh0Z35cvZGYWmKpinHP/Bfz+VH19EfGXgpWIXBDnXDNwJ3CXjVl/+uyL\nmV03YUL7TjNLAr4HXDN+35+On0V61cx2jH9cOf5n15vZS2b2sJkdMLNfjG+pg5ldamZvjJ8t22Jm\nSWYWMLN/MLOtZrbHzL4cSv1m9riZbR8/+3bnhPt7zOwfzWw3cMU5nnPZ+Oe7xp+zbPzPfnbC/T85\nHczMbMP4/+NuM3vBw78GEQlTkX4XICIzj3Pu6Hh4yJ700J8DX3POvW5micAA8G3gz51zt/zf9u4m\nxMoyDOP4/0IHv7ABISFIsiJTDDVMUARRMoNCUBBnIbqwjS4UxZXUWnQjVCJBLYpQaTGCYH5BEMHg\n6EAbkRJBN+LHhIqGOjkdrxbvM3Icpjlz4IB6uH6rl+fjPM85i8N97uc+7wsgaTLwke2BEpgcAT4o\n898H5gLXgR5gqaTzwE9Al+0+Sa8Aj4DPgHu2F0maAPRIOmP7aoPtb7Z9pzynr09St+3bwBTgnO1d\n5dmdf46w5hbgS9uHyphxkuYAXcBS24OSDgIbJJ0EvgWW2b4qaVrTH3REvHQSWEVEK/UA+yUdAo7a\nvlaSTvU6gAOSFgA1YFZd33nb1wBKXdRM4B5ww3YfgO37pX8VME/SujK3E3gHaBRYbZe0tlzPKHNu\nl710l/Z3/2fNs8Dnkl4v7++ypA+BhVRBGsAkoB9YDPw2FOjZvtNgXxHRBhJYRUTTJL1FFYj0A3OG\n2m3vlfQz8AlVBunjEabvBG4B86nKEQbq+v6pu64x+neUgG22Tzex7+XASmCJ7YeSfgUmlu4B27XR\n5ts+LOkc8Clwohw/CvjB9u5ha60e674ion2kxioimiLpVeAb4ICHPcVd0tu2L9jeB/QBs4G/gal1\nwzqpskFPgI1Ao0LxS8BrkhaVNaZKGg+cBrZK6ijtsyRNafBancDdElTNpsoqjXnNElBesf0VcAyY\nB/wCrJM0vYydJukNoBdYJunNofYGe4uINpCMVUSMxaRyNNcB/Av8COwfYdwOSSuAJ8BF4GS5rpWi\n8O+Bg0C3pE3AKeDBaAvbfiypC/i61EU9oso6fUd1VPh7KXL/C1jT4H2cArZI+oMqeOptcs31wEZJ\ng1cmovIAAACESURBVMBNYE+p1/oCOKPqFhSDVHVmvaU4/mhp76f6R2VEtDEN+8EZEdE2JM0Ejtt+\n7zlv5RnlSPJpQX9EtI8cBUZEO6sBnXrBbhBKlbW7+7z3EhGtl4xVRERERIskYxURERHRIgmsIiIi\nIlokgVVEREREiySwioiIiGiRBFYRERERLfIfJC9kTG9EbIQAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(ultra['ultradeep_ra'], ultra['ultradeep_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, ultra, \"ultradeep_ra\", \"ultradeep_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Hawaii" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl83Gd57/3PNaNdGu2rJdmSbVleYschjrPvBEJYUqAt\ngUKhQHNCG9qermn7dDmnfUpp+7Q9faDkBBpoT4GQQgouMUkICVnsxLGdeIlsy5Zl2Vqsfd+lmfv8\nIckojhPL9m/0mxl936+XXtHM/DRzeaxYX933dd+3OecQERERkUsX8LsAERERkUShYCUiIiLiEQUr\nEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPLKgYGVmd5pZ\nvZk1mNkD53g8x8z+y8z2m1mdmf2K96WKiIiIxDY735E2ZhYEjgJ3AC3AbuCjzrlD8675IyDHOfcH\nZlYE1AOlzrnJt3rewsJCV1VVdel/AhEREZEo27t3b7dzruh81yUt4Lm2Ag3OuUYAM3sEuBs4NO8a\nB4TMzIAsoBeYfrsnraqqYs+ePQt4eRERERF/mdnJhVy3kKnAcqB53u2W2fvm+xKwDmgDDgK/6ZyL\nLKQAERERkUThVfP6u4F9wDJgM/AlM8s++yIzu9fM9pjZnq6uLo9eWkRERCQ2LCRYtQKV825XzN43\n368Aj7kZDcAJYO3ZT+Sce8g5t8U5t6Wo6LzTlCIiIiJxZSHBajdQY2bVZpYC3ANsO+uaU8DtAGZW\nAtQCjV4WKiIiIhLrztu87pybNrP7gSeBIPCwc67OzO6bffxB4C+Ab5jZQcCAP3DOdUexbhEREZGY\ns5BVgTjntgPbz7rvwXmftwHv8rY0ERERkfiinddFREREPKJgJSIiIuIRBSsRERERjyhYiYiIiHhE\nwUpERETEIwpWIiIiIh5RsBIRERHxyIL2sZLY8K1dpxZ87ceuXh7FSkRERORcNGIlIiIi4hEFKxER\nERGPKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUr\nEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIR\nBSsRERERjyhYiYiIiHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcWFKzM7E4zqzezBjN7\n4ByP/56Z7Zv9eN3MwmaW7325IiIiIrHrvMHKzILAl4H3AOuBj5rZ+vnXOOf+1jm32Tm3GfhD4Dnn\nXG80ChYRERGJVQsZsdoKNDjnGp1zk8AjwN1vc/1HgW97UZyIiIhIPFlIsCoHmufdbpm9703MLAO4\nE/jepZcmIiIiEl+8bl5/P7DjraYBzexeM9tjZnu6uro8fmkRERERfy0kWLUClfNuV8zedy738DbT\ngM65h5xzW5xzW4qKihZepYiIiEgcWEiw2g3UmFm1maUwE562nX2RmeUANwM/8LZEERERkfiQdL4L\nnHPTZnY/8CQQBB52ztWZ2X2zjz84e+kHgaeccyNRq1ZEREQkhp03WAE457YD28+678Gzbn8D+IZX\nhYmIiIjEG+28LiIiIuIRBSsRERERjyhYiYiIiHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiI\niEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWI\niIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiC\nlYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiIiHhEwUpERETEIwpWIiIiIh5RsBIRERHx\niIKViIiIiEcUrEREREQ8sqBgZWZ3mlm9mTWY2QNvcc0tZrbPzOrM7DlvyxQRERGJfUnnu8DMgsCX\ngTuAFmC3mW1zzh2ad00u8M/Anc65U2ZWHK2CRURERGLVQkastgINzrlG59wk8Ahw91nXfAx4zDl3\nCsA51+ltmSIiIiKxbyHBqhxonne7Zfa++dYAeWb2UzPba2a/7FWBIiIiIvHivFOBF/A8VwK3A+nA\nS2b2snPu6PyLzOxe4F6A5cuXe/TSIiIiIrFhISNWrUDlvNsVs/fN1wI86Zwbcc51A88Dl5/9RM65\nh5xzW5xzW4qKii62ZhEREZGYtJBgtRuoMbNqM0sB7gG2nXXND4AbzCzJzDKAq4HD3pYqIiIiEtvO\nOxXonJs2s/uBJ4Eg8LBzrs7M7pt9/EHn3GEzewI4AESArznnXo9m4SIiIiKxZkE9Vs657cD2s+57\n8Kzbfwv8rXeliYiIiMQX7bwuIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEhER\nEfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbAS\nERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiIiHhEwUpERETEIwpWIiIiIh5R\nsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQjClYiIiIi\nHlGwEhEREfGIgpWIiIiIRxYUrMzsTjOrN7MGM3vgHI/fYmYDZrZv9uNPvS9VREREJLYlne8CMwsC\nXwbuAFqA3Wa2zTl36KxLX3DOvS8KNYqIiIjEhYWMWG0FGpxzjc65SeAR4O7oliUiIiISfxYSrMqB\n5nm3W2bvO9t1ZnbAzH5kZhs8qU5EREQkjpx3KnCBXgWWO+eGzewu4PtAzdkXmdm9wL0Ay5cv9+il\nRURERGLDQkasWoHKebcrZu87wzk36Jwbnv18O5BsZoVnP5Fz7iHn3Bbn3JaioqJLKFvOpbV/jG/u\nOsnjB9r8LkVERGRJWsiI1W6gxsyqmQlU9wAfm3+BmZUCHc45Z2ZbmQlsPV4XK+fW2j/GM4c7ONw+\nhM3ed3pgjLKcdF/rEhERWWrOG6ycc9Nmdj/wJBAEHnbO1ZnZfbOPPwj8PPA5M5sGxoB7nHMuinUL\n0DE4zlN17RxuHyItOcA715WwtjTEl55t4Lt7Wvj87W+ajRUREZEoWlCP1ez03vaz7ntw3udfAr7k\nbWlyPv/+8klGJqd557oSrltVQFpyEICVhZk8ureZX791NYGAnedZRERExCvaeT1O9Y5M0jMyyR3r\nS7ltbfGZUAWwpSqP5t4xXm7UbKyIiMhi8mpVoCyyhs5hAFYVZb7psQ3LckhLbuOLTxzhI1edf/Xl\nx67WCk0REREvaMQqTjV0DZOdlkRRVuqbHksOBri8Ipe6tkHGJsM+VCciIrI0KVjFoYhzNHYNs7o4\nC7Nz91BtqcpnOuLY19K/yNWJiIgsXQpWcah9YJzRyTCrirLe8pry3HTKctLY29S7iJWJiIgsbQpW\ncehMf1XxWwcrgC0r8mgbGKetf2wxyhIREVnyFKzi0PGuYYpDqWSnJb/tdZsr80gKGHtOatRKRERk\nMShYxZmpcISmnpHzjlYBpKcE2bAsm33N/UyFI4tQnYiIyNKmYBVnTvWOMhV2rH6b/qr5tlTlMz4V\noa5tMMqViYiIiIJVnDneOUzAoLrwzftXnUt1YSZ5GcnsURO7iIhI1ClYxZmGrmEq8jLesNP62wmY\nsakil6aeESanNR0oIiISTQpWcWRsMkxr3xirF9BfNd/y/AwiDk4PaHWgiIhINClYxZET3cM4eNv9\nq86lPC8dgOY+BSsREZFoUrCKIw1dw6QEA1Tmp1/Q12WnJZOTnkxL32iUKhMRERFQsIorDZ0jVBVm\nkBS48L+2irx0WjRiJSIiElUKVnGirX+M7uGJBW+zcLbKvAx6RyYZnZj2uDIRERGZo2AVJ3Y0dAPn\nP8bmrcz1WbXoeBsREZGoUbCKEzsauslMTaIkO+2ivr48Nx0DmtVnJSIiEjUKVnFi5/EeVhVlEjC7\nqK9PSw5SFEqlpVcjViIiItGiYBUHekcm6RyaoCL3wlYDnq0iL4OWvlGccx5VJiIiIvMpWMWB413D\nABSFUi/peSry0hmZDNM/NuVFWSIiInIWBas4cLxzLlhdXH/VnMq8DABtuyAiIhIlClZxoKFzmNSk\nALkZyZf0PCU5qQQDRkuvGthFRESiQcEqDhzvGmZlUdZFN67PSQoEWJaTpqNtREREokTBKg40dA2z\nqijTk+eqyMugrX+MiBrYRUREPKdgFePGp8K09I2x+iI3Bj1bRV46k+EInUMTnjyfiIiI/IyCVYxr\n7BrBOVh1kUfZnO1MA7v6rERERDynYBXj5rZa8GrEKj8rhbTkgFYGioiIRIGCVYxr6BzGDKoLvemx\nCphRkTuzUaiIiIh4S8Eqxh3vGqYyL4O05KBnz1mRl0774DhT4YhnzykiIiIKVjGvodO7FYFzKvIy\niDg43a/pQBERES8tKFiZ2Z1mVm9mDWb2wNtcd5WZTZvZz3tX4tIVjjhOdI941l81pyJ/5sxB7Wcl\nIiLirfMGKzMLAl8G3gOsBz5qZuvf4rovAk95XeRS1do3xsR0xLMVgXOy05LJSU9Wn5WIiIjHFjJi\ntRVocM41OucmgUeAu89x3eeB7wGdHta3pHm9InC+8tx0rQwUERHx2EKCVTnQPO92y+x9Z5hZOfBB\n4CvelSYNs4cvez1iBTMN7D0jk4xNhj1/bhERkaXKq+b1fwT+wDn3tsvMzOxeM9tjZnu6uro8eunE\ndbxrmILMFPIyUzx/7rKcNAA6Bsc9f24REZGlKmkB17QClfNuV8zeN98W4BGbOSS4ELjLzKadc9+f\nf5Fz7iHgIYAtW7bosLrzmFkR6P1oFUBJ9mywGlKwEhER8cpCRqx2AzVmVm1mKcA9wLb5Fzjnqp1z\nVc65KuC7wK+dHarkwh3vGmZVFPqrAHLSk0lNCtA+oGAlIiLilfOOWDnnps3sfuBJIAg87JyrM7P7\nZh9/MMo1Lkk9wxP0jU55vofVHDOjJDtNU4EiIiIeWshUIM657cD2s+47Z6Byzn3q0suS410jQHRW\nBM4pzU7jYOsAzjlmp3FFRETkEmjn9RgVzRWBc0py0hibCtMxOBG11xAREVlKFKxi1PGuYdKSA5Tn\npkftNUqyUwGo7xiK2muIiIgsJQpWMaqhc5iVhVkEAtGboisNzawMrG8fjNpriIiILCUKVjHqeNdw\nVPurADJSkwilJVHfPhzV1xEREVkqFKxi0NhkmNb+saj2V80pzU6jvkMjViIiIl5QsIpBjd3DOBfd\nFYFzSrLTONYxTDii/VpFREQulYJVDJrbamFVcXT2sJqvJDuNiekIJ3tGov5aIiIiiU7BKgY1dA4T\nMKgqWIxgNbMy8KhWBoqIiFyyBW0QKtHxrV2nznn/s0c6yc1I4bFXzz6S0XvFoTTM4Ej7EHdeVhb1\n1xMREUlkGrGKQV1DExSHUhfltVKSAqzIz9CIlYiIiAcUrGJMxDm6hycoylqcYAVQWxriSLuClYiI\nyKVSsIoxA6NTTEcchYs0YgVQW5pNU/cI41PhRXtNERGRRKRgFWN6RycByM9MWbTXrC0JEXE/O59Q\nRERELo6CVYzpHfYhWJWGAKjXdKCIiMglUbCKMb2jkwQMctKTF+01qwoySEkKqIFdRETkEilYxZje\nkUnyMlIIWPQOXz5bUjDA6qIsNbCLiIhcIgWrGNM7Mrmo04BzaktDGrESERG5RApWMcbPYHV6YJyB\n0alFf20REZFEoWAVQ8Ymw4xNhf0JViUzDexHOzVqJSIicrEUrGKIH1stzJlbGag+KxERkYunYBVD\nekf8C1ZlOWmE0pI4qmAlIiJy0RSsYshcsMrLWPxgZWbUloS0l5WIiMglULCKIb0jk2SkBElLDvry\n+mtKQ9R3DOGc8+X1RURE4p2CVQzpG5mkwIdpwDlrS0MMjE3RMTjhWw0iIiLxTMEqhvSMTJDnY7Ca\nWxl4pH3QtxpERETimYJVjAhHHANjU740rs/RmYEiIiKXRsEqRgyMTRFx+DoVmJuRQkl2qoKViIjI\nRVKwihFnVgT6GKwAakuztZeViIjIRVKwihE9IzMN4/k+bLUw39rSEA1dw0yHI77WISIiEo8UrGJE\n38gkwYCRnZ7sax21JSEmpyM09Yz6WoeIiEg8SvK7AJnROzJJXkYKATNf65jfwL66OMvXWkREJHq+\ntevUgq/92NXLo1hJYtGIVYzoHZ0kP9Pf0SqA1cVZBAzqteWCiIjIBVtQsDKzO82s3swazOyBczx+\nt5kdMLN9ZrbHzG7wvtTE5Zyjd2TS160W5qQlB6kqzFQDu4iIyEU471SgmQWBLwN3AC3AbjPb5pw7\nNO+ynwDbnHPOzDYBjwJro1FwIhqbCjM+FfG9cX3O2tIQdW0asRIRiScXMrUn0bOQEautQINzrtE5\nNwk8Atw9/wLn3LD72QFzmYAOm7sAc1st5Gem+lzJjNqSbE71jjI6Oe13KSIiInFlIcGqHGied7tl\n9r43MLMPmtkR4HHg096UtzT8LFjFxohVbWkI5+BYx7DfpYiIiMQVz5rXnXP/6ZxbC/wc8BfnusbM\n7p3twdrT1dXl1UvHvZ9tDup/8zrMTAWCjrYRERG5UAsJVq1A5bzbFbP3nZNz7nlgpZkVnuOxh5xz\nW5xzW4qKii642ETVOzJJVmoSqUlBv0sBoDI/g7TkgBrYRURELtBC9rHaDdSYWTUzgeoe4GPzLzCz\n1cDx2eb1dwCpQI/XxSaqma0WYmMaECAYMNaUhKjvUAO7iIif1JAef84brJxz02Z2P/AkEAQeds7V\nmdl9s48/CHwY+GUzmwLGgI/Ma2aX8+gdmaSqINPvMt6gtiTEs/WdfpchIiISVxa087pzbjuw/az7\nHpz3+ReBL3pb2tIwHYkwMDpFXmXsjFjBTAP7f+xtoXt4gsKs2FitKCKyFIxPhTl8epDXWwf4/mtt\ntPaP0T82ScTN7Hs499/05CCbK3O5siqf0uw0v8uWWTrSxmcDo1M4oCCGpgIB1pZmAzMN7IWrFaxE\nRKJlYjrM3pN97Gjo5sWGHupaB5iOzEz6ZKYEKc9Lp6owk6BBwAwzI2DQNTzBy4297DjeQ0VeOleu\nyOPyilzSkmOjX3epUrDy2c9WBMZWsJo7M/BI+xDXr37TOgQREblIzjmOdgzz/NEuXmjo5pUTPYxP\nRQgGjCsqc7n3ppVsqshlY0UOPz3Sib3NGbLDE9Psb+5nz8lefrCvjSfr2vnUtVUsj7H2kqVEwcpn\nPTG2h9WcwqwU8jNTOKqVgSIil6xvZJIXG7pnwtSxbtoHxwFYVZTJPVct5/rVhVyzMp9Q2hu33Xm7\nUAWQlZrE9asLuW5VAS19Yzy6p5lvvNTEZ25YSXluerT+OPI2FKx81jcySVLACKXF1l+FmVFbEuJI\nh4KViMiFmgpHeO1UPy8c6+L5o10caB3AOchOS2J5fgbXriqgpjiL3NmjzLqGJviv/acv+vXMjMr8\nDD5zQzUPvdDI13ec4LM3rlTvlQ9i66f5EtQ7OkleZgqB8/xW4ofa0hCP7mkmEnEEArFXn4hIrPjW\nrlP0DE9wtHOYho4hjnePMDkdIWBQkZfBrbXFrCnOojwvg2AU/z3NzUjhM9dX89UXGnn4xRPce+NK\nCkPqk11MClY+6x2ZjJnDl8+2tjTE6GSY5r5RVmi+XkTkDUYmptnR0M3zx7rYfrD9Zz2zGclsrsyl\npjiLlYVZpKcsbjN5QVYqn76hmq8+38i/7DjBr964MubaTRKZgpWPnHMxuYfVnPkN7ApWIrLUOedo\n7B7h2SOd/LS+i1dO9DIZjpCREmR5fgbXry5kTXEWBTGwRU1xKI1P31DN1144wb+82Miv3bKazFT9\nyF8Mepd9NDoZZmI6ErO/Sawp+dmZge/eUOpzNSIii2dux/PpcIQTPSMcOT1EfcfQmVGp4lAqV6/M\nZ01JiBUFGSQFPDt61zNlOel86roqHnzuOM8d7eKujWV+l7QkKFj5qDdGVwTOyUxNojI/XYcxi8iS\n0jk0zt6TvRxpH+JY5zCT0xGSAsaqoixurClkTUmIvBht4ThbZX4G71iex8uNPVy/upCc9OTzf5Fc\nEgUrH81ttRBrm4POV1uSTb1WBopIAotEHAdaB3jmSCc/re/kQMsAMLOCb3NFLmvLQqwszCIlKfZG\npRbitnXF7Gvu55kjnXzwinK/y0l4ClY+6hmZwIi9zUHnW1s6c2bgxHSY1CTt5isiiaFjcJwXj3Wf\n2VuqZ2QSM7iiMpfffdcaxqcilOWknXcfqXiQl5HC1up8dp3o4aaawpjoAUtkClY+6h2eJCc9meRg\n7P4WVFsaIhxxNHQOs2FZjt/liIhclIGxKfY09fJiQzcvHuvmWOcwMNOKccPqQm5bW8xNa4rOtGbM\n9Vgliltqi9hzspenD3fwkauW+11OQlOw8lHPyCT5WbE7WgWwrmymgf1Q26CClYjEjd6RSV450cuu\nEz3sauzlcPsgzkFSwKgqzOTODaWsLs6iNCeNgBmjk2GeeL3d77KjJpSWzHWrCnn+aBc3rRmjLEe7\nskeLgpWPeoYnWB/jYaW6MIuMlCCvtw7wC1sq/S5HRORNnHM0946xu6mXPSd72d3UR8PsiFRacoB3\nLM/jN2+vYXh8msr8jJieJYimm2qK2HWih6cPdfCJa6v8LidhKVj5ZHB8ipHJcEw3rgMEA8aGZdkc\nbB3wuxQREWAmSJ3sGeWlxh5env3oGJwAZhrOt1Tl86F3lLO1Kp9NFblnms4TbXrvQqWnBLmppoin\nDnVwqneU5fkZfpeUkBSsfHKqZxSAghifCgS4rDyHb79yiulwhKQl+pueiCyecwWg0clpjnUOc7R9\niMbuEQbGpgAIpSZRXZTJNSsLWFGQSXEo9cwRYUc7hjnaMbyotce6a1cVsON4D0/VtfOZG6oTojk/\n1ihY+aSpZwSAgszYX52xsTyHr09FON41cmY3dhGRaHLO0TE4QX37IEc6hjjVM4oDMlKCrCzK4ubC\nTFYWZVKUlapwcAFSk4LcWlvEDw+c5kT3CCuLsvwuKeEoWPnk5OyIVSxsDnq+4fGOwXEAvvp8I3/3\ni5cvRkkisgQ55zh8eoin6to52DpwZq+/Zblp3FJbRG1pNhV56TF5aH08uaoqn6cPd7D3ZJ+CVRQo\nWPmkqXuE7LSkuNhwriiUSkowQGv/mN+liEgCOtYxxLb9bTx+4DSN3SMYzO5yXsTa0hDZ2i3cU8nB\nABuW5XCwdYC7pyNx8XMonihY+eRkzyj5cTANCBAwoyw3TcFKRDzTPTzBf+1v47FXWznYOkDAZvp/\nPnvjSoYnpsnSgcFRtbkyl70n+zjSPsimily/y0ko+s71SVPPCJVxtCKjPDed3U29amAXkQs2124w\nFY5wpH2I1071cbRjiIiDZTlp3LWxjMsrcgilzYxMKVRFX3VhJtlpSexr7lew8pi+e30wOjlN59AE\nmyvj55u5PDednWGnBnYRuSDOOU71jPDqqX4OtPYzPhUhOy2JG1YXsnl5HqXZaX6XuCQFzNhUkcvO\n492MTkyToTDrGb2TPjh5ZquF+JgKBFiWO7NL78HWAQUrETmvkz0jbNvXxn++1kpj9wjJQWPDshyu\nWJ7LqqIsNaDHgM2VubzY0M3BtgGuri7wu5yEoWDlg5Nntlrwf0XgQs01sL/eOsDPX1nhdzkiEoO6\nhiZ4/EAb39/Xxr7mfgC2VuezuTKXy8pzSEvWQe6xpCwnjaJQKvua+xWsPKRg5YOmGNpqYaECZpTl\npGkHdhF5g47BcZ6qa+fJug52Hu8m4mBdWTYPvGctH7h8Gcty05f8juexyszYXJnLjw910Dc6SV5G\n/PxMimUKVj442TNCYVZK3P32tiwvnX2n+glHHMGAhvFFliLnZnot/+7JeuraBmjum1ktXJiVwo01\nRWyuzKVktm/qp/VdfpYqC3B5xUyw2t/czy21xX6XkxAUrHzQ1D3KioJMv8u4YOW56bx0vIfjXcOs\nKVGflchSMTA6xY7j3bxwrIvnj3af2XplWW4ad6wvYX1ZNsUh7YAej/IzU1ien8H+FgUrryhY+eBk\nzwjXrIq/+ezyuQb2lgEFK5EE1jsyyZ6mXnY39fJKUx8HW/qJuJlz+a5bXcDnblnFwNiUpo4SxObK\nXLbtb+P0wBhlOel+lxP3FKwW2fhUmLaBcaricMSqKJRKenKQg60DfFgN7CIJIRxxNHQOs6+5j9dO\n9bO7qZfjXTMLbFKCAS6vzOH+22q4eU0hl1fkntnHTn1TiWNjeQ4/PNDG/uZ+BSsPKFgtsubemcb1\nFQUZjEyEfa7mwgTM2LAsm9fVwC4St7qHJ3j1ZB+vNfez71Q/B1r6GZmc+bcoOy2JK1fk8eErK7iq\nKp+NWsm3JGSmJlFTHGJ/ywDv2lCqrTAukYLVIptbEVhVkEld26DP1Vy4y8pz+M7uZjWwi8SBSMTx\nD08f5UT3CM29o5zqHaVvdAqAgEFZTjqXledQmZ9BZV4GBVkpZ36oHusY5ljHsJ/lyyLaXJnLd/Y0\n09QzwspCHcx8KRYUrMzsTuB/AUHga865vz7r8V8C/gAwYAj4nHNuv8e1JoS5PaziNVhtLM/hGzub\naOwapkZ9ViIxJRJx1HcM8XJjDy839rDrRC/9s0EqOy2JyvwMrllZwPL8DJblppOs46lk1rqybJKD\nRl3roILVJTpvsDKzIPBl4A6gBdhtZtucc4fmXXYCuNk512dm7wEeAq6ORsHxrqlnhNyMZHIy4vO0\n9o0VOQAcaBlQsBLxwdm9TRPTYY53DnOkfYj6jiGGxqcByMtIZlVhFtVFmVQXZpKbnqxVe/KWUpIC\nrCzM4mjHkN+lxL2FjFhtBRqcc40AZvYIcDdwJlg553bOu/5lQJ3Nb+FkT3xutTBnVVGWGthFfDY8\nMU1d2wCH2gZp7B4hHHGkJgVYUxJiTUmIlUWZWrEnF6y2NET9/iG6hycojKMj12LNQoJVOdA873YL\nbz8a9RnyQP96AAAgAElEQVTgR5dSVCJr6hnhHcvz/C7jogUDxno1sIssuoHRKZ6sa+frO05wvGuY\niJs5FuvalQXUloaoKshU36NckrltdOrbhyhcrWB1sTxtXjezW5kJVje8xeP3AvcCLF++3MuXjguT\n0xFa+8b44BXxPdKzUQ3sIoticjrCM0c6+e7eFp472slU2JGfObPD+aaKHEqz0zS9J57Jz0yhKCuV\nox1DXL+60O9y4tZCglUrUDnvdsXsfW9gZpuArwHvcc71nOuJnHMPMdN/xZYtW9wFVxvnWvpGiTio\nKsjwu5RLcpka2EWixjlHXdsg393bwg/2tdI3OkVRKJVPXlvF+y9fxuutAwpTEjW1pSFebuxhcjpC\nSpIWN1yMhQSr3UCNmVUzE6juAT42/wIzWw48BnzCOXfU8yoTxMmeuT2s4rfHCmZGrEAN7CJe+dau\nU4xOTLOvpZ89TX20D47PTLuXZfOBy/NYXZxFMGDUtQ0qVElUrSkJ8WJDN41dw6wty/a7nLh03mDl\nnJs2s/uBJ5nZbuFh51ydmd03+/iDwJ8CBcA/z/5PP+2c2xK9suNT05mtFuJ7xGp1cRahtCT2nOxV\nA7vIJYhEHDuP9/DI7lPUtQ0SjjjKc9P5wOXLuLwil/QUbc4pi6uqIIOUYID6jiEFq4u0oB4r59x2\nYPtZ9z047/PPAp/1trTEc7JnlFBqEvmZ8b1aJxgwtlbl83Jjr9+liMSl1v4xvrunhf/Y20xL3xjp\nyUG2VuezZUWejhQRXyUFA6wqntl2wTmnEdKLoJ3XF1FTzwgrCjMS4hv1mpUF/ORIJx2D45Rkp/ld\njkjMm5gO81RdB4/uaebFhm6cgxtWF/J7766lf3RKm3VKzFhTksXh04N0DU1QrH/fL5iC1SI62TPK\n+mWJMbR6zcoCAF5u7OHuzeU+VyMSe7616xTOOVr6xnj1VB8HWgYYmwqTk57MrbXFXLk8j7zMFEYm\nwgpVElNq57Zd6BhSsLoIClaLZDocobl3lLs2lvpdiifWL8smlJrEy429ClYiZ2kfGOe5o128eqqP\nrqEJkmb3f7tyeR6rirN0yK3EtNyMFIpDM9su3FhT5Hc5cUfBapG09Y8zHXFxvyJwTjBgXFWdz67G\nc+6sIbLkDI5P8cTBdn6wv5WXjvcQcbAiP4MPbi7nsvIcNaJLXKktDbGzoYeJqTCpyfrevRAKVovk\nxOyKwBX58b0icL5rVubzzJFOOgfHNVwsS9L4VJhnj3Tyg31tPFPfyeR0hBUFGdx/62qSggEdCyJx\nq7YkxAvHujneNcz6ZTl+lxNXFKwWybHZgy1XFyfOqeFn+qxO9PKBy5f5XI3I4piYDvP80W5+eKCN\npw91MDIZpjArlV+6ejl3by7n8ooczOxNhyWLxJMVBZmkJgWo71CwulAKVovkSPsQhVmpFCTQb7Dr\ny+b6rHoUrCShTUyHefFYN196poFDpweZmI6Qnhxkw7JsNlbksLJwZgPPQ22DHGob9LtckUsWDBir\n5227IAunYLVI6tuHWFuaWLuUJwUDbKnK42X1WUkCGpsM89zRLn70+ml+criT4Ylp0pIDbFiWw6aK\nHFYVZemsTElotSUh6toG6Ric8LuUuKJgtQjCEcfRjiE+fs0Kv0vx3DUrC3i2vovOoXGKQ+qzkvg2\nND7Fs/VdPPH6aZ490sXYVJjcjGTeu7GMOzeW0tw7SlJAWyPI0lAzb9sFWTgFq0VwsmeEiekItQk2\nYgU/67Pa1djL+zUdKHFm7oy+w+2D1LUNcqxzmHDEkZWaxMbyHC4rz6G6MJNgwDjdP65QJUtKTnoy\npdlpZ3qEZWEUrBZBffvMN2WiTQUCbFiWTdZsn5WClcSL9oFxnjrUzjd2NtHUPULEQW56MtdU57Nh\nWQ7LCzK015QIUFOcxc7jPYxOTpORosiwEHqXFsGR9iHMoKY48YLVXJ/VrhM6N1BiW1P3CE/WtfNE\nXTuvneoHoDArlZtqili/LJvy3PSEOG5KxEurS7J4oaGbXY293Lq22O9y4oKC1SKobx+iqiAzYTcI\nvGZlAX/9oyN0DU1QFEqcVY8S35xz1LUN8lRdO0/WdZzpE9mwLJvffdca7ryslFdO9PlcpUhsqyrI\nJClgPH+sS8FqgRSsFkF9x9CZs5cS0Zk+qxM9vG+TpgPFP9PhCF/40REOnx7k8OlB+kanMKCqMJP3\nbixj/bJs8jJSABSqRBYgORigujCTF451+11K3FCwirKxyTBNPSMJvc/TZcuyyUwJ8nKjgpUsvpGJ\naV441sVTdR08U99J/+gUSbN78NxaW8zaspk+QBG5OKuLs/jR6+209Y+xLDfd73Jinv61ibJjnUM4\nl5iN63Nm+qzy2dWoPitZHJ2D4/z4cAdPH+pgx/EeJqcj5GYkc9vaYtKTg9QUh0hJ0go+ES/UFIf4\nEe28eKybX7yq0u9yYp6CVZQdmV0RmIhbLcx3zcoCvvjEEbqHJ3Q+mnjOOcfxrmGerOvgqUMd7G+e\naT6vzE/n41ev4I71JVxVlUdSMKCjZEQ8VpKdSlEoleePdSlYLYCCVZTVtw+RlhxgRUGm36VE1TUr\n84GZ/azeu6nM52okEUQijtea+3iqroPv7m2hZ2QSgIq8dO5YX8K6smxKQqmYGSe6RzjRPeJzxSKJ\nycy4saaQZ450Eo44nThwHgpWUVbfPkRNcSjhvxEvK88hKzWJ5492KVjJRQtHHHuaetl+8DQ/er2d\nzqEJkoNGVUEm168uZF1ZNjnpyX6XKbLk3FRTxGOvtlLXNsCmily/y4lpClZRdqR9iFtqi/wuI+qS\ngwFuX1fMU4fa+cvwZSQH1d8ib29uyi7iHCd7RjnQ0s+htkGGJqZJChhrSkLcUlvM2tIQacmJuVWJ\nSLy4fnUhAC8c61awOg8FqyjqGZ6ge3gioRvX57trYxk/2NfGS8d7uGlN4odJuTQdg+Psb+5nX0s/\n/aNTJAeN2pIQl5XnUFsaIjVJYUokVhSFUllfls3zR7v49VtX+11OTFOwiqL6JdK4PufmNUVkpgTZ\nfvC0gpWcU9/IJP/5Wivfe7WFurZBDKgpyeJdsz1TClMisevGNYU8/OIJhiemtYXJ29A7E0VLZUXg\nnLTkIO9cX8ITde38xc9pOlBmRCKOlxp7eGR3M0++3s5kOMKmihzet6mMjeU5hNLUMyUSD26qKeJ/\nP9fIrsYebl9X4nc5MUvBKorq24fIz0yhaAltP/BeTQcuWWdvczA8Mc2epl52N/XSNzpFenKQK6vy\n2LIij7IcbTIoEm+uXJFHWnKAF451K1i9DQWrKDoye5TNUjrY9aY1RWSlJvH4AU0HLkXOOZp7R3n5\nRC8HWwcIRxzVhZncsb6UDcuyNYopEsfSkoNcXV3A88e6/C4lpilYRUkk4jjaPsRHlthmamnJQd65\nrpgntTpwSRmfCrOnqZeXG3toGxgnNSnA1qp8rl6ZT3Eoze/yRMQjN9YU8pePH6a1f4xyHW9zTvqp\nFyWnekcZmwovmRWB8921sYz+0Sl2Hu/xuxSJsvaBcf72ySNc+4Wf8NhrrYSd4+7Ny3jgPWt5/+XL\nFKpEEszcTMSLGrV6SxqxipKl1rg+39x04PYDp7lZ04EJ6dVTfXx9RxM/OniasHPcsa6E5fkZVBdm\nLqmpb5GlpqY4i9LsNJ472sVHrlrudzkxScEqSua2WlhTsvSClaYDE9NUOML2g6d5eEcT+5v7CaUl\n8anrqvjkdVVU5mfojD6RJcDMuKW2iB8eOM3kdESHnZ+DglWU1HcMsjw/g8wlutfHezct4/v72th5\nvEejVnGud2SSb79yin97qYmOwQmqCzP5n3dv4EPvqNBeNiJL0DvXlfDI7mZeOdHLDTWFfpcTc/Sv\nYpQcaR9aktOAc26sKZxdHdimYBWn6toG+NMf1LG/uZ/piGN1cRZ3biilpiREwIxt+9r8LlFEfHD9\n6kJSkwI8fbhDweocFjSGZ2Z3mlm9mTWY2QPneHytmb1kZhNm9rvelxlfxqfCNHWPLMnG9TlpyUHu\nWF/Ck3UdTIUjfpcjCzQVjvD4gdP84oMv8d5/epEDLf28Y3kev3l7DZ++vpra0mwC6qESWdLSU4Lc\nWFPIjw914Jzzu5yYc94RKzMLAl8G7gBagN1mts05d2jeZb3AbwA/F5Uq40xD5zARl5iN6xfSR5OV\nmsTA2BQ7Grq5pbY4ilXJpeocGuc7rzTzrVdOcXpgnMr8dP74rnUEzEhP0TEzIvJG71xXwtOHO6nv\nGGJtabbf5cSUhUwFbgUanHONAGb2CHA3cCZYOec6gU4ze29UqowzcysCl/KIFcDq4iyyUpPYtq9N\nwSqGzIVj5xwnekbY1dhLXdsAETfzd/aJa1ZQWxrSyJSIvKXb1s78m/70oQ4Fq7MsJFiVA83zbrcA\nV0ennMSw92QfodQkqgoy/S7FV8nBAB9+Rznf3HWK33l3rTaTixFjk2Fea+7jlRO9dA5NkJYc4LpV\nhWytzqdwCR2/JCIXrzg7jcsrc/nx4U7uv63G73JiyqKukzSze81sj5nt6epK3M3FXjrezdUr80nS\nNgPce/MqAL76fKPPlSxtzjn2nuzjd/9jP3/9xGF+eOD0meD7wJ3ruGtjmUKViFyQO9YVs7+5n86h\ncb9LiSkLGbFqBeafy1Ixe98Fc849BDwEsGXLloTseGvtH6OpZ5RPXFvldykxoTw3nQ9eUc63XznF\nr9+6mqKQfngvpoHRKb6/r5Vvv3KKI+1DZKYE2VyZx9bqfI0gisgluX1dCX/31FGeOdzJPVu1Weic\nhQyp7AZqzKzazFKAe4Bt0S0rfr00e4zLdasKfK4kdnzullVMhSM8vOOE36UsCc45djX28Nvf2cfW\nv3qaP9tWR1LQ+KsPbmTXH7+TD15RrlAlIpdsbWmI8tx0nj7c6XcpMeW8I1bOuWkzux94EggCDzvn\n6szsvtnHHzSzUmAPkA1EzOy3gPXOucEo1h6Tdh7vJj8zhdoluOP6W1lZlMVdG8v4Py+d5L6bVpGT\nkex3SQmpe3iCx15t4ZHdzTR2jRBKTeIXtlRwz1XLuaw8x+/yRCTBmBl3rC/hkd2nGJsMawXxrAVt\nEOqc2w5sP+u+B+d93s7MFOGS5pzjpeM9XLuygEBAK6rm+7VbVvPDA6f5t5ea+PztanT0SjjieOFY\nF3/7ZD2HTw8ScbA8P4MPv6OCjeU5pCQFONAywIGWAb9LFZEEdPu6Yr6xs4kdDd28c32J3+XEBO28\n7qGTPaOcHhjnGk0Dvsn6ZdncvraYh3ec4NM3VC/Zo3680tY/xqN7mvmPPS209o+RkRLkulWFbFmR\nR3F2mt/licgScXV1AVmpSfzkSIeC1Sz9dPPQTvVXva1fu3U1H/7KTr79yik+e+NKv8uJO1PhCD85\n3Mkju0/x3NGZVbU3rC7kj9+7ju7hCZICWoUqIosrJSnAzWuKePpwJ/9vxGm2BgUrT+083k1Jdior\nC5f2/lVv5coVeVy7soCvvtDIJ65dQWqS5uPfyvwd7ntHJtnd1MurJ/sYmpgmOy2JW9YUsWVFPnmZ\nKfSPTilUiYhv3rm+mMcPnuZA6wCbK3P9Lsd3ClYemeuvumlNEaYdq9/S/bet5pe+tovv7m3hl65e\n4Xc5MSsccRw+Pcjupl4aOoeBmSOSrqrKZ01JiKB+KxSRGHFrbTHBgPGTwx0KVihYeeZoxzA9I5Nc\nq2nAt3XdqgI2V+byj08f490bSrUp5Vla+kZ55JVm/nVnE0MT0+SkJ3Pb2mK2VOWTk67VlCISe3Iz\nUrhyRR5PvN7Ob9+xZskPLihYeWTn8W5A/VXnY2Z84UMbufvLO/idR/fz9U9dteTn5MMRx0/rO/nm\nrlM8W9+JATXFIbZWa3RKROLDz20u54/+8yD7WzQdqMYMj+w83sPy/Awq8jL8LiXmrSvL5k/et57n\njnbxtReX7lE3HYPj/NNPjnHjF5/hM/+6h9dbB/j8rat54Q9u45PXVbGuLFuhSkTiwvsvLyM9Och3\ndp86/8UJTiNWHghHZna6vmtjmd+lxI2PX72cnQ3d/M0T9WytLlgSv+F8a9cpIs7R0DnMKyd6OdI+\ns+/U6uIsPrZ1+Zkg9Vx94p6jKSKJKZSWzPs2lbFtXxv/z3vXL+ktdZbun9xDh9oGGRyfVn/VBTAz\n/vpDmzjQ8gKf//arPP4bN5Kdlrg9RJ2D4/y0vpPdTb30jU6RmRLkhtWFXFWVT4H6zEQkAdyztZL/\n2NvC4wdO84tXVZ7/CxKUgpUH5vqrrl2pYHUhcjKS+aePXsEv/u+X+MPHDvKlj16RUE2PU+EIzx7p\n5NE9zTxb30U44lhZmMm7N5SyviybpKBm4kUkcbxjeR6ri7N4ZPcpBSu5NDuP97C6OEs7Xl+EK1fk\n8TvvWsPfPFHP9asK+djV8X9CekPnEN/d28r3Xm2ha2iColAq9960kvTkoFZBikjCMjPuuaqSv3z8\nMEc7hlizRM/MVbC6RJPTEXY39fLzVy75oxIv2n03reKl4z38yQ9eZ3I6zCevq4q7kavOoXG27Wvj\n+/taeb11kGDAuG1tMR/ZUskttUUkBQNv2PRTRCQRffCKcr74xBG+s7uZP3nfer/L8YWC1SU60NLP\n6GRY2yxcgkDA+MrHr+S3HtnHn//XIY60D/E/776MlKTYnirrH53kL354iAMtAzR0DuOA8tx03rux\njE0VOYTSkukcmuDRPS1+lyoisigKslJ51/pSHnu1hd+/s3ZJnrChYHWJXmzoxmzmIEq5eFmpSTz0\niSv5+x8f5UvPNtDQOcxXPn4lRaHYmjrrGprgqUPtPPF6OzuP9xCOOPIykrm5tojNlbkUhzQdLCJL\n20euquTxg6f58aEO3rdpmd/lLDoFq0swHY7w6O5mrqkuIC8zxe9y4l4gYPzuu2upLQ3xe9/dz91f\nepGHfnkLl5Xn+FZTJOJ4vW2A5+q7+OnRLl471UfEQXVhJvfetJIAxrLctLibuhQRiZYbVhdSnpvO\nd3Y3K1jJhXnqUAdtA+P8+Qc2+F1KQnn/5cuoLszkV/9tDz/35R28b1MZn76hmk0V0d/ryjlHS98Y\nr5zoZUdDN88f66J7eBKATRU5fP62Gt6zsZTakhBmpr4pEZGzBALGL26p5B+ePkpz7yiV+Utr42wF\nq0vw8IsnWJ6fwe3rSvwuJWZdSPCYvyLwsvIc/uvzN/DPzx7n0T3NfH9fG1dV5fHp66t514ZSz3Yk\nH5sMc6xziNdO9fNKUy97mnrpGJwAICMlSE1xFrfWFlNTEiJrdsO7V0/28+rJfk9eX0QkEf3Clgr+\n8SdH+Y89zfz2u2r9LmdRKVhdpAMt/ew52cefvm+9jh2JksKsVP70/ev573fU8OieFr6x8wSf++ar\nlOWk8Y7leawrC7GuLJt1ZdmU5bz1dNzEdJjOwQk6h8bpGJygoXOYI+2DHGkfoql7hIibua4sJ+1M\nr1xVQSbF2akENMUnInLBluWmc/OaIr6zp5lfu3U1aclLp4ldweoifX1HE1mpSfzCFm2zEG2htGQ+\nc0M1n7quih8f6uD7r7VysHWAxw+e/tk1qUmkpwRJChjBoBE0I2BG7+gk/aNTb3g+M1ien8Ha0hDv\n27SMdaUhLivPoSIvXdN7IiIe+W83reKjX32Zh55v5Ddur/G7nEWjYHUROgbH+eGBNj5+zQpCCXwM\nS6wJBow7LyvlzstKARgan6K+fYjDpwdp6BxmYjrCdMQRibiZ/zpHXkYKpwfGyU5LIjs9mVBaEvmZ\nKW9YAtw3OsULx7r9+mOJiCSka1cVcNfGUv75pw18+MoKynPT/S5pUShYXYR/f/kk0xHHp66r8ruU\nhHKh/VihtGS2VOWzpSrfs+cVERHv/NFd6/jJ4U6+sP0wX/rYO/wuZ1EoWF2g8akw39x1ineuK2FF\nQabf5SxZCksiIrGvIi+D+25exf/6yTE+fk0P1yyBM3Vje2vrGLRtXxu9I5P8yvVVfpciIiIS8+67\neRXluen8+bY6psMRv8uJOgWrC+Cc4+EdJ1hbGuLaJZC6RURELlV6SpA/umsdR9qH+PbuZr/LiToF\nqwvwUmMPR9qH+PQN1dppW0REZIHu2ljKNSvz+f+eqqd/dNLvcqJKwWqBxqfC/M0T9RRkpvCBy5fe\nFv0iIiIXy8z4s/dvYHBsir//8VG/y4kqBasFcM7x+989wL7mfv7i5y5bUhudiYiIeGFdWTYfv2YF\n//7ySX6wr9XvcqJGqwIX4B9+fJRt+9v4/TtruWtjmd/liIiIxKU/uHMtR9qH+O/f2UfEOT54ReJt\nsq0Rq/P43t4W/umZBj6ypZLP3bzK73JERETiVmZqEt/4lau4urqA3350P9/d2+J3SZ5TsHobuxp7\neOCxA1y3qoC//OBlalgXERG5RBkpSTz8qau4flUhv/fd/TyaYCsFFazewonuEf7bv+9leX4GX/ml\nK0kO6q0SERHxQnpKkK99cgs3rC7k9793gEdeSZxNn5UWzjI2Geah54/zoX/eQdCMr39qKzkZOg9Q\nRETES2nJQb76y1u4eU0RDzx2kM/+6272N/f7XdYlW1CwMrM7zazezBrM7IFzPG5m9k+zjx8ws7g7\nEGhiOsy/vdTEzX/7LH+1/QgbK3L59r3XsLwgw+/SREREElJacpCHfvlKfueONexu6uPuL+/gkw+/\nwt6TfX6XdtHOuyrQzILAl4E7gBZgt5ltc84dmnfZe4Ca2Y+rga/M/jemTUyHqW8fYk9TH//y4gla\n+8fYWpXP///RK7haO6uLiIhEXWpSkM/fXsOv3FDN/3npJF99oZEPf2Un160q4I71JVxemcv6suy4\n2epoIdstbAUanHONAGb2CHA3MD9Y3Q38m3POAS+bWa6ZlTnnTnte8QKFI47+0UkGxqbe8NE3Mkl9\nxxAHWgY42jHEVNgBsKkihy98aCM31hSqSV1ERGSRZaUm8blbVvHJ61bwzZdP8Y2dTfyP/5qJGslB\nY21pNpsqcqjIyyA/M5m8jBTyM1PIy0yhKJRKdlpstO0sJFiVA/Nb9lt482jUua4pB3wLVofaBnn/\nl14852M56clsLM/hMzesZGN5DhvLc6jMT1egEhER8VlGShK/etNKfvWmlbQPjLOvuZ/9Lf3sb+5n\n2/42hsan3/Q1H926nC98aKMP1b7Zom4Qamb3AvfO3hw2s/rFfP35Dvj1wm9UCHT7XUQC0vvqPb2n\n0aH31Xt6T6Pgl/wu4Dz+evYjylYs5KKFBKtWoHLe7YrZ+y70GpxzDwEPLaSwpcDM9jjntvhdR6LR\n++o9vafRoffVe3pPxW8LWRW4G6gxs2ozSwHuAbaddc024JdnVwdeAwz42V8lIiIi4ofzjlg556bN\n7H7gSSAIPOycqzOz+2YffxDYDtwFNACjwK9Er2QRERGR2LSgHivn3HZmwtP8+x6c97kDft3b0pYE\nTYtGh95X7+k9jQ69r97Teyq+splMJCIiIiKXSkfaiIiIiHhEwcon5zsmSC6cmT1sZp1m9rrftSQK\nM6s0s2fN7JCZ1ZnZb/pdU7wzszQze8XM9s++p//D75oSiZkFzew1M/uh37XI0qRg5YN5xwS9B1gP\nfNTM1vtbVUL4BnCn30UkmGngd5xz64FrgF/X9+olmwBuc85dDmwG7pxdTS3e+E3gsN9FyNKlYOWP\nM8cEOecmgbljguQSOOeeB3r9riOROOdOO+denf18iJkfWOX+VhXf3Izh2ZvJsx9qdvWAmVUA7wW+\n5nctsnQpWPnjrY4AEolZZlYFXAHs8reS+Dc7XbUP6AR+7JzTe+qNfwR+H4j4XYgsXQpWInJeZpYF\nfA/4LefcoN/1xDvnXNg5t5mZUyq2mtllftcU78zsfUCnc26v37XI0qZg5Y8FHQEkEgvMLJmZUPVN\n59xjfteTSJxz/cCzqDfQC9cDHzCzJmbaK24zs3/3tyRZihSs/LGQY4JEfGdmBvwLcNg59/d+15MI\nzKzIzHJnP08H7gCO+FtV/HPO/aFzrsI5V8XMv6nPOOc+7nNZsgQpWPnAOTcNzB0TdBh41DlX529V\n8c/Mvg28BNSaWYuZfcbvmhLA9cAnmPntf9/sx11+FxXnyoBnzewAM79k/dg5p60BRBKEdl4XERER\n8YhGrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEpHzMrPw7B5W\ndWa238x+x8wCs49tMbN/epuvrTKzjy1etW967bHZc/ligpl9xMwazEx7V4kkIAUrEVmIMefcZufc\nBmZ2Cn8P8GcAzrk9zrnfeJuvrQJ8CVazjs+ey7dgZhaMVjHOue8An43W84uIvxSsROSCOOf+b3t3\nF5plGcdx/PtDR5mtgZAQFFmhKYYVNcgkW/RKL1Ag7cD0oMCMXkjyoKjjMCKhEinqoIgVQZOCyhcQ\npFjNjUyLyAj0RHpZqNibq/X46+C+Fk9j7tnggenD7wODm+u+r13/e4Pxf/7Xf/c9BKwBHlGla7T6\nIun6uie0fympHdgAXFfG1pUq0qeS9pSva8vcLkm7JL0nab+knvJKHSR1SvqsVMsGJLVLmiHpeUmD\nkr6S9OBk4pf0vqQvSvVtTd3475JekLQPWHqSNReX471lzfll7n1146+OJmaSbiv3uE/Szib+GiLi\nFDVzugOIiNOP7QMleZg75tR64GHbfZLOBoaBJ4H1tu8EkHQWcLPt4ZKYvANcXeZfCSwGfgD6gGWS\nBoB3gW7bg5LOAY4DDwDHbHdKOgPok7TD9sEG4d9v+0h5T9+gpF7bh4HZwG7bT5R3eO4fZ821wIu2\ne8o1MyQtArqBZbZHJG0GVkraCrwGLLd9UNKcKf+gI+K0k8QqIpqpD9goqQfYYvtQKTrVawM2SboC\nqAEL6s4N2D4EUPqi5gHHgB9tDwLY/rWcvwVYImlFmdsBzAcaJVaPSbqnHF9Q5hwusfSW8UtPsubn\nwO/tidkAAAHTSURBVNOSzi/3972kG4GrqJI0gFnAEHAN8Mloomf7SIO4IqIFJLGKiCmTdDFVIjIE\nLBodt71B0kfA7VQVpFvHmb4O+Bm4nKodYbju3F91xzUm/hsl4FHb26cQdxdwE7DU9p+SdgFnltPD\ntmsTzbf9tqTdwB3Ax2X7UcCbtp8as9Zdk40rIlpHeqwiYkoknQu8AmzymLe4S7rE9te2nwMGgYXA\nb0B73WUdVNWgE8AqoFGj+HfAeZI6yxrtkmYC24GHJLWV8QWSZjf4Xh3A0ZJULaSqKk16zZJQHrD9\nEvABsATYCayQNLdcO0fShUA/sFzSRaPjDWKLiBaQilVETMassjXXBvwDvAVsHOe6xyXdAJwAvgG2\nluNaaQp/A9gM9EpaDWwD/phoYdt/S+oGXi59Ucepqk6vU20V7ilN7r8Adze4j23AWknfUiVP/VNc\n815glaQR4Cfg2dKv9QywQ9UjKEao+sz6S3P8ljI+RPUflRHRwjTmA2dERMuQNA/40PZl0xzK/5Qt\nyf8a+iOidWQrMCJaWQ3o0Cn2gFCqqt3R6Y4lIpovFauIiIiIJknFKiIiIqJJklhFRERENEkSq4iI\niIgmSWIVERER0SRJrCIiIiKa5F9b+Bcl2hka9gAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(hawaii['hawaii_ra'], hawaii['hawaii_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, hawaii, \"hawaii_ra\", \"hawaii_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cleaning\n", "\n", "When we merge the catalogues, astropy masks the non-existent values (e.g. when a row comes only from a catalogue and has no counterparts in the other, the columns from the latest are masked for that row). We indicate to use NaN for masked values for floats columns, False for flag columns and -1 for ID columns." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for col in master_catalogue.colnames:\n", " if \"m_\" in col or \"merr_\" in col or \"f_\" in col or \"ferr_\" in col or \"stellarity\" in col:\n", " master_catalogue[col] = master_catalogue[col].astype(float)\n", " master_catalogue[col].fill_value = np.nan\n", " elif \"flag\" in col:\n", " master_catalogue[col].fill_value = 0\n", " elif \"id\" in col:\n", " master_catalogue[col].fill_value = -1\n", " \n", "master_catalogue = master_catalogue.filled()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxps1_idradecm_ap_gpc1_gmerr_ap_gpc1_gm_gpc1_gmerr_gpc1_gm_ap_gpc1_rmerr_ap_gpc1_rm_gpc1_rmerr_gpc1_rm_ap_gpc1_imerr_ap_gpc1_im_gpc1_imerr_gpc1_im_ap_gpc1_zmerr_ap_gpc1_zm_gpc1_zmerr_gpc1_zm_ap_gpc1_ymerr_ap_gpc1_ym_gpc1_ymerr_gpc1_yf_ap_gpc1_gferr_ap_gpc1_gf_gpc1_gferr_gpc1_gflag_gpc1_gf_ap_gpc1_rferr_ap_gpc1_rf_gpc1_rferr_gpc1_rflag_gpc1_rf_ap_gpc1_iferr_ap_gpc1_if_gpc1_iferr_gpc1_iflag_gpc1_if_ap_gpc1_zferr_ap_gpc1_zf_gpc1_zferr_gpc1_zflag_gpc1_zf_ap_gpc1_yferr_ap_gpc1_yf_gpc1_yferr_gpc1_yflag_gpc1_yps1_flag_cleanedps1_flag_gaiaflag_mergedcandels-gn_idcandels-gn_stellarityf_acs_f435wferr_acs_f435wf_acs_f606wferr_acs_f606wf_acs_f775wferr_acs_f775wf_acs_f814wferr_acs_f814wf_acs_f850lpferr_acs_f850lpf_wfc3_f105wferr_wfc3_f105wf_wfc3_f125wferr_wfc3_f125wf_wfc3_f140wferr_wfc3_f140wf_wfc3_f160wferr_wfc3_f160wf_moircs_kferr_moircs_kf_candels-wircam_kferr_candels-wircam_kf_candels-irac_i1ferr_candels-irac_i1f_candels-irac_i2ferr_candels-irac_i2f_candels-irac_i3ferr_candels-irac_i3f_candels-irac_i4ferr_candels-irac_i4m_acs_f435wmerr_acs_f435wflag_acs_f435wm_acs_f606wmerr_acs_f606wflag_acs_f606wm_acs_f775wmerr_acs_f775wflag_acs_f775wm_acs_f814wmerr_acs_f814wflag_acs_f814wm_acs_f850lpmerr_acs_f850lpflag_acs_f850lpm_wfc3_f105wmerr_wfc3_f105wflag_wfc3_f105wm_wfc3_f125wmerr_wfc3_f125wflag_wfc3_f125wm_wfc3_f140wmerr_wfc3_f140wflag_wfc3_f140wm_wfc3_f160wmerr_wfc3_f160wflag_wfc3_f160wm_moircs_kmerr_moircs_kflag_moircs_km_candels-wircam_kmerr_candels-wircam_kflag_candels-wircam_km_candels-irac_i1merr_candels-irac_i1flag_candels-irac_i1m_candels-irac_i2merr_candels-irac_i2flag_candels-irac_i2m_candels-irac_i3merr_candels-irac_i3flag_candels-irac_i3m_candels-irac_i4merr_candels-irac_i4flag_candels-irac_i4candels-gn_flag_cleanedcandels-gn_flag_gaiaultradeep_idf_ultradeep-wircam_kferr_ultradeep-wircam_kf_ultradeep-irac_i1ferr_ultradeep-irac_i1f_ultradeep-irac_i2ferr_ultradeep-irac_i2f_ultradeep-irac_i3ferr_ultradeep-irac_i3f_ultradeep-irac_i4ferr_ultradeep-irac_i4m_ultradeep-wircam_kmerr_ultradeep-wircam_kflag_ultradeep-wircam_km_ultradeep-irac_i1merr_ultradeep-irac_i1flag_ultradeep-irac_i1m_ultradeep-irac_i2merr_ultradeep-irac_i2flag_ultradeep-irac_i2m_ultradeep-irac_i3merr_ultradeep-irac_i3flag_ultradeep-irac_i3m_ultradeep-irac_i4merr_ultradeep-irac_i4flag_ultradeep-irac_i4ultradeep_flag_cleanedultradeep_flag_gaiahawaii_idm_ap_mosaic_umerr_ap_mosaic_um_mosaic_umerr_mosaic_um_ap_suprime_bmerr_ap_suprime_bm_suprime_bmerr_suprime_bm_ap_suprime_vmerr_ap_suprime_vm_suprime_vmerr_suprime_vm_ap_suprime_rmerr_ap_suprime_rm_suprime_rmerr_suprime_rm_ap_suprime_ipmerr_ap_suprime_ipm_suprime_ipmerr_suprime_ipm_ap_suprime_zpmerr_ap_suprime_zpm_suprime_zpmerr_suprime_zpm_ap_quirc_hkmerr_ap_quirc_hkm_quirc_hkmerr_quirc_hkf_ap_mosaic_uferr_ap_mosaic_uf_mosaic_uferr_mosaic_uflag_mosaic_uf_ap_suprime_bferr_ap_suprime_bf_suprime_bferr_suprime_bflag_suprime_bf_ap_suprime_vferr_ap_suprime_vf_suprime_vferr_suprime_vflag_suprime_vf_ap_suprime_rferr_ap_suprime_rf_suprime_rferr_suprime_rflag_suprime_rf_ap_suprime_ipferr_ap_suprime_ipf_suprime_ipferr_suprime_ipflag_suprime_ipf_ap_suprime_zpferr_ap_suprime_zpf_suprime_zpferr_suprime_zpflag_suprime_zpf_ap_quirc_hkferr_ap_quirc_hkf_quirc_hkferr_quirc_hkflag_quirc_hkhawaii_flag_cleanedhawaii_flag_gaia
degdeg0 galaxy, 1 star
0182231893921992736189.39211408761.8600144331nannan9.337710380550.39174100756611.19439983370.012.95219993590.010.46350002290.012.46860027310.012.6522998810.066550999879812.45600032810.13014699518710.40200042720.26212599873510.50150012970.254988998175nannan668214.426684241096.310165False120848.1667280.023939.77286660.0False236919.0545330.037373.16607480.0False31555.86196151934.2397871637809.40724394532.20655351False250726.26381560532.0813874228770.46141253727.5541811FalseFalse3False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
1183141887446216712188.74456256762.621649393113.72449970250.00066899997182213.77309989930.0015109999803813.42210006710.0002119999990113.4694995880.0032820000778913.3304996490.0010860000038513.33419990540.0010860000038513.33520030980.0015670000575513.41040039060.0033960000146213.31540012360.0020079999230813.37909984590.0028979999478911754.39061997.2427233788811239.837702415.6422844457False15529.5893983.0322954347314866.206626344.9380715976False16896.631802116.90073714216839.145047516.84323642False16823.636496324.28088815915697.838030849.1001939038False17133.257835631.686868564716156.975322143.1254971847FalseFalse3False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
2183141894117361384189.41162934762.617179493114.77630043030.0016659999964814.84539985660.0020910000894213.9601001740.00073500000871714.01010036470.0021150000393413.6489000320.0019259999971813.70800018310.0023900000378513.53499984740.0022430000826713.58570003510.0024470000062113.44060039520.0020659998990613.51840019230.003488000016664461.489013666.84589926034186.393595898.06250113518False9461.498621296.40505634679035.6594486617.6013473675False12602.01485422.354859741211934.381779426.2708130939False13995.875192728.913790547513357.340161330.1043764723False15267.215715329.051316506214211.500120945.6553925725FalseFalse3False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
3183151896152897299189.61526489762.630448833115.19909954070.0031159999780415.24629974370.0053349998779614.64739990230.00074899999890514.70250034330.002023000037314.42899990080.0019039999460814.4886999130.0012219999916914.32999992370.0015059999423114.39550018310.0034159999340814.26830005650.0036299999337614.36429977420.001903999946083022.457367298.674277461522893.8772293214.2196922213False5023.889043033.465752427924775.291226578.89757041087False6143.2761738910.77314862735814.602555036.54435602567False6729.767035749.334706462926335.7776382119.9339543985False7123.2793702423.81564097146520.4878549611.4346454229FalseFalse3False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
4182771899391593788189.93911159762.310826393116.08580017090.0038499999791416.1415004730.0080049997195615.58880043030.00084599998081115.63969993590.00075100001413415.41310024260.0014260000316415.47589969640.0032480000518315.3423004150.0018139999592715.40919971470.00320299994215.29570007320.0034159999340815.39039993290.005320999771361335.610829084.736050655381268.819401439.35484964773False2110.959143661.644848340882014.280858211.39327117062False2481.760699763.259531017642342.287072487.00699534516False2648.987042684.425810216582490.692506487.3477221436False2765.158120628.699884848962534.1949833312.4196382765FalseFalse3False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
5183251894072041815189.40711272762.709187023115.54979991910.0054729999974415.6023998260.001296999980715.19799995420.00086099997861315.26290035250.0012349999742615.08129978180.0030920000281215.14290046690.0023590000346315.0544004440.0018670000135915.10729980470.0029529999010315.01550006870.0042730001732715.10179996490.002862999914212188.1648246411.03014344292084.683214642.49032322704False3025.519931432.399268427122849.967181793.2417721549False3368.83769029.593901527073183.023267226.91581616667False3453.343842965.938268405783289.122723338.94580012519False3579.3154292914.08667720813305.826175148.7172003792FalseFalse3False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
6183071896006252444189.60056402762.559736773114.09370040890.0017630000365914.13640022280.001104000024513.55070018770.00093300000298813.59099960330.0010740000288913.39789962770.003246000036613.44139957430.0093529997393513.34020042420.0036329999566113.38920021060.0056940000504313.28769969940.0017780000343913.35840034480.001918000052688366.0380681113.58463073778043.404520738.17870745123False13794.943463511.854336473513292.300740213.1486187128False15879.621586747.474931779815255.9820934131.421606757False16746.337142956.035196990516007.367503983.9485235687False17576.00308928.7824371716467.962222729.091368854FalseFalse3False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
7182241891931461754189.19325617761.867501703114.88510036470.0023719999007914.92469978330.00091000000247714.34619998930.00097599998116514.39980030060.0037410000804814.1635999680.0046500000171414.22430038450.0061750002205414.08699989320.0017529999604414.15789985660.0043870001114.02429962160.0029829998966314.08520030980.002266000024974036.080819988.817596081453891.527346543.26164852887False6630.098862235.959989485766310.7340710421.7441921566False7844.4050900533.596083147417.8807306942.1883464392False8417.8279047313.59119454567885.6964851531.8627592929False8918.2604495424.50242506658431.7918351517.5976820385FalseFalse3False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
8182711883352854935188.33531290762.261862413113.26239967350.0010860000038513.31779956820.0010860000038512.86030006410.0010860000038513.39900016780.0010860000038512.87189960480.0059580001980112.92000007630.0035250000655713.8457002640.0015200000489113.44480037690.001400999957712.70049953460.001927000004812.7692003250.0030519999563717990.371459617.994742543217095.43565617.0995892988False26054.333888526.060664256415863.533602415.8673879326False25777.4621644141.45436433524660.391639580.063538238False10512.836119314.717673911415208.271228119.6242763701False30185.62595353.574432814828334.781631279.6489533305FalseFalse3False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
9183161895594883740189.55952015762.635805253113.06700038910.0011889999732413.12069988250.0021599999163312.95769977570.0010860000038512.9953002930.0010860000038512.6855001450.0021430000197112.75150012970.0054139997810112.66930007930.0010860000038512.73840045930.0010860000038512.68309974670.0016860000323512.7413997650.0040790000930421537.725838123.586167001620498.403937340.7802103268False23818.811623923.824598831623008.053725423.013643945False30605.532634360.408464552728800.494734143.61303556False31065.615900131.073163848929150.084383129.1571669192False30673.271682947.631401461129069.6694862109.211780927FalseFalse3False-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannan0.0nannanFalsenannanFalsenannanFalsenannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "master_catalogue[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## III - Merging flags and stellarity\n", "\n", "Each pristine catalogue contains a flag indicating if the source was associated to a another nearby source that was removed during the cleaning process. We merge these flags in a single one." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "flag_cleaned_columns = [column for column in master_catalogue.colnames\n", " if 'flag_cleaned' in column]\n", "\n", "flag_column = np.zeros(len(master_catalogue), dtype=bool)\n", "for column in flag_cleaned_columns:\n", " flag_column |= master_catalogue[column]\n", " \n", "master_catalogue.add_column(Column(data=flag_column, name=\"flag_cleaned\"))\n", "master_catalogue.remove_columns(flag_cleaned_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "combining the flag_merged column which contains information regarding multiple associations" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue['flag_merged'].name = 'flag_merged_tmp'\n", "flag_merged_columns = [column for column in master_catalogue.colnames\n", " if 'flag_merged' in column]\n", "\n", "flag_merged_column = np.zeros(len(master_catalogue), dtype=bool)\n", "for column in flag_merged_columns:\n", " flag_merged_column |= master_catalogue[column]\n", " \n", "master_catalogue.add_column(Column(data=flag_merged_column, name=\"flag_merged\"))\n", "master_catalogue.remove_columns(flag_merged_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each pristine catalogue contains a flag indicating the probability of a source being a Gaia object (0: not a Gaia object, 1: possibly, 2: probably, 3: definitely). We merge these flags taking the highest value." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "flag_gaia_columns = [column for column in master_catalogue.colnames\n", " if 'flag_gaia' in column]\n", "\n", "master_catalogue.add_column(Column(\n", " data=np.max([master_catalogue[column] for column in flag_gaia_columns], axis=0),\n", " name=\"flag_gaia\"\n", "))\n", "master_catalogue.remove_columns(flag_gaia_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each prisitine catalogue may contain one or several stellarity columns indicating the probability (0 to 1) of each source being a star. We merge these columns taking the highest value. We keep trace of the origin of the stellarity." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "candels-gn_stellarity\n" ] } ], "source": [ "stellarity_columns = [column for column in master_catalogue.colnames\n", " if 'stellarity' in column]\n", "\n", "print(\", \".join(stellarity_columns))" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "# We create an masked array with all the stellarities and get the maximum value, as well as its\n", "# origin. Some sources may not have an associated stellarity.\n", "stellarity_array = np.array([master_catalogue[column] for column in stellarity_columns])\n", "stellarity_array = np.ma.masked_array(stellarity_array, np.isnan(stellarity_array))\n", "\n", "max_stellarity = np.max(stellarity_array, axis=0)\n", "max_stellarity.fill_value = np.nan\n", "\n", "no_stellarity_mask = max_stellarity.mask\n", "\n", "master_catalogue.add_column(Column(data=max_stellarity.filled(), name=\"stellarity\"))\n", "\n", "stellarity_origin = np.full(len(master_catalogue), \"NO_INFORMATION\", dtype=\"S20\")\n", "stellarity_origin[~no_stellarity_mask] = np.array(stellarity_columns)[np.argmax(stellarity_array, axis=0)[~no_stellarity_mask]]\n", "\n", "master_catalogue.add_column(Column(data=stellarity_origin, name=\"stellarity_origin\"))\n", "\n", "master_catalogue.remove_columns(stellarity_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IV - Adding E(B-V) column" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " ebv(master_catalogue['ra'], master_catalogue['dec'])\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## V - Adding HELP unique identifiers and field columns" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(gen_help_id(master_catalogue['ra'], master_catalogue['dec']),\n", " name=\"help_id\"))\n", "master_catalogue.add_column(Column(np.full(len(master_catalogue), \"HDF-N\", dtype='" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(specz['ra'] * u.deg, specz['dec'] * u.deg)\n", ")" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue = specz_merge(master_catalogue, specz, radius=1. * u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VII - Choosing between multiple values for the same filter\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "We have to choose between the various HST catalogues which may contains different objects depending on the prior catalogue. The CANDELS-GOODS-N catalogue is taken as a base and any missing wircam or IRAC fluxes are taken from the Ultradeep Ks selected catalogues" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bands = [\n", " ['candels-wircam_k', 'ultradeep-wircam_k', 'wircam_ks'],\n", " ['candels-irac_i1', 'ultradeep-irac_i1', 'irac_i1'],\n", " ['candels-irac_i2', 'ultradeep-irac_i2', 'irac_i2'],\n", " ['candels-irac_i3', 'ultradeep-irac_i3', 'irac_i3'],\n", " ['candels-irac_i4', 'ultradeep-irac_i4', 'irac_i4'],\n", " \n", "]" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true }, "outputs": [], "source": [ "ir_origin = Table()\n", "ir_origin.add_column(master_catalogue['help_id'])" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/numpy/core/numeric.py:301: FutureWarning: in the future, full(5, 0) will return an array of dtype('int64')\n", " format(shape, fill_value, array(fill_value).dtype), FutureWarning)\n" ] } ], "source": [ "ir_stats = Table()\n", "ir_stats.add_column(Column(data=np.array(bands)[:,2], name=\"Band\"))\n", "for col in [\"CANDELS-GOODS-N\", \"Ultradeep\"]:\n", " ir_stats.add_column(Column(data=np.full(5, 0), name=\"{}\".format(col), dtype=str))\n", " ir_stats.add_column(Column(data=np.full(5, 0), name=\"use {}\".format(col), dtype=str))\n", " " ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "Table length=5\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxBandCANDELS-GOODS-Nuse CANDELS-GOODS-NUltradeepuse Ultradeep
0wircam_ks0.00.00.00.0
1irac_i10.00.00.00.0
2irac_i20.00.00.00.0
3irac_i30.00.00.00.0
4irac_i40.00.00.00.0
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ir_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "for band in bands:\n", "\n", " # total flux \n", " has_candels = ~np.isnan(master_catalogue['f_' + band[0]])\n", " has_ultradeep = ~np.isnan(master_catalogue['f_' + band[1]])\n", " \n", "\n", " use_candels = has_candels\n", " use_ultradeep = has_ultradeep & ~has_candels\n", "\n", " f_ir = np.full(len(master_catalogue), np.nan)\n", " f_ir[use_candels] = master_catalogue['f_' + band[0]][use_candels]\n", " f_ir[use_ultradeep] = master_catalogue['f_' + band[1]][use_ultradeep]\n", "\n", " ferr_ir = np.full(len(master_catalogue), np.nan)\n", " ferr_ir[use_candels] = master_catalogue['ferr_' + band[0]][use_candels]\n", " ferr_ir[use_ultradeep] = master_catalogue['ferr_' + band[1]][use_ultradeep]\n", "\n", " m_ir = np.full(len(master_catalogue), np.nan)\n", " m_ir[use_candels] = master_catalogue['m_' + band[0]][use_candels]\n", " m_ir[use_ultradeep] = master_catalogue['m_' + band[1]][use_ultradeep]\n", " \n", " merr_ir = np.full(len(master_catalogue), np.nan)\n", " merr_ir[use_candels] = master_catalogue['merr_' + band[0]][use_candels]\n", " merr_ir[use_ultradeep] = master_catalogue['merr_' + band[1]][use_ultradeep]\n", " \n", " flag_ir = np.full(len(master_catalogue), False, dtype=bool)\n", " flag_ir[use_candels] = master_catalogue['flag_' + band[0]][use_candels]\n", " flag_ir[use_ultradeep] = master_catalogue['flag_' + band[1]][use_ultradeep]\n", "\n", " master_catalogue.add_column(Column(data=f_ir, name=\"f_\" + band[2]))\n", " master_catalogue.add_column(Column(data=ferr_ir, name=\"ferr_\" + band[2]))\n", " master_catalogue.add_column(Column(data=m_ir, name=\"m_\" + band[2]))\n", " master_catalogue.add_column(Column(data=merr_ir, name=\"merr_\" + band[2]))\n", " master_catalogue.add_column(Column(data=flag_ir, name=\"flag_\" + band[2]))\n", " \n", " master_catalogue.remove_columns(['f_' + band[0], 'f_' + band[1],\n", " 'ferr_' + band[0], 'ferr_' + band[1],\n", " 'm_' + band[0], 'm_' + band[1],\n", " 'merr_' + band[0], 'merr_' + band[1],\n", " 'flag_' + band[0], 'flag_' + band[1],])\n", "\n", " origin = np.full(len(master_catalogue), ' ', dtype='Table length=5\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxBandCANDELS-GOODS-Nuse CANDELS-GOODS-NUltradeepuse Ultradeep
0wircam_ks0.00.00.00.0
1irac_i10.00.00.00.0
2irac_i20.00.00.00.0
3irac_i30.00.00.00.0
4irac_i40.00.00.00.0
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ir_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true }, "outputs": [], "source": [ "ir_origin.write(\"{}/hdf-n_wircam_irac_fluxes_origins{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VIII.a Wavelength domain coverage\n", "\n", "We add a binary `flag_optnir_obs` indicating that a source was observed in a given wavelength domain:\n", "\n", "- 1 for observation in optical;\n", "- 2 for observation in near-infrared;\n", "- 4 for observation in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source observed both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: The observation flag is based on the creation of multi-order coverage maps from the catalogues, this may not be accurate, especially on the edges of the coverage.*\n", "\n", "*Note 2: Being on the observation coverage does not mean having fluxes in that wavelength domain. For sources observed in one domain but having no flux in it, one must take into consideration the different depths in the catalogue we are using.*" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true }, "outputs": [], "source": [ "candels_gn_moc = MOC(filename=\"../../dmu0/dmu0_CANDELS-3D-HST/data/CANDELS-3D-HST_XMM-LSS_MOC.fits\")\n", "ultra_moc = MOC(filename=\"../../dmu0/dmu0_Ultradeep-Ks-GOODS-N/data/Ultradeep_Ks_GOODS-N_HELP-coverage_MOC.fits\")\n", "ps1_moc = MOC(filename=\"../../dmu0/dmu0_PanSTARRS1-3SS/data/PanSTARRS1-3SS_XMM-LSS_MOC.fits\") \n", "hawaii_moc = MOC(filename=\"../../dmu0/dmu0_Hawaii-HDFN/data/R_MOC.fits\")" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": true }, "outputs": [], "source": [ "was_observed_optical = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " ps1_moc + hawaii_moc)\n", "\n", "was_observed_nir = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " candels_gn_moc + ultra_moc\n", ")\n", "\n", "was_observed_mir = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " candels_gn_moc + ultra_moc\n", ")" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " Column(\n", " 1 * was_observed_optical + 2 * was_observed_nir + 4 * was_observed_mir,\n", " name=\"flag_optnir_obs\")\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VIII.b Wavelength domain detection\n", "\n", "We add a binary `flag_optnir_det` indicating that a source was detected in a given wavelength domain:\n", "\n", "- 1 for detection in optical;\n", "- 2 for detection in near-infrared;\n", "- 4 for detection in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source detected both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: We use the total flux columns to know if the source has flux, in some catalogues, we may have aperture flux and no total flux.*\n", "\n", "To get rid of artefacts (chip edges, star flares, etc.) we consider that a source is detected in one wavelength domain when it has a flux value in **at least two bands**. That means that good sources will be excluded from this flag when they are on the coverage of only one band." ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# SpARCS is a catalogue of sources detected in r (with fluxes measured at \n", "# this prior position in the other bands). Thus, we are only using the r\n", "# CFHT band.\n", "# Check to use catalogue flags from HSC and PanSTARRS.\n", "nb_optical_flux = (\n", " # PanSTARRS\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_z']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_y']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_r']) + \n", " 1 * ~np.isnan(master_catalogue['f_suprime_ip']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_zp'])\n", ")\n", "\n", "nb_nir_flux = (\n", " 1 * ~np.isnan(master_catalogue['f_wircam_ks'])\n", ")\n", "\n", "nb_mir_flux = (\n", " 1 * ~np.isnan(master_catalogue['f_irac_i1']) +\n", " 1 * ~np.isnan(master_catalogue['f_irac_i2']) +\n", " 1 * ~np.isnan(master_catalogue['f_irac_i3']) +\n", " 1 * ~np.isnan(master_catalogue['f_irac_i4'])\n", ")" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": true }, "outputs": [], "source": [ "has_optical_flux = nb_optical_flux >= 2\n", "has_nir_flux = nb_nir_flux >= 2\n", "has_mir_flux = nb_mir_flux >= 2\n", "\n", "master_catalogue.add_column(\n", " Column(\n", " 1 * has_optical_flux + 2 * has_nir_flux + 4 * has_mir_flux,\n", " name=\"flag_optnir_det\")\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IX - Cross-identification table\n", "\n", "We are producing a table associating to each HELP identifier, the identifiers of the sources in the pristine catalogues. This can be used to easily get additional information from them.\n", "\n", "For convenience, we also cross-match the master list with the SDSS catalogue and add the objID associated with each source, if any. **TODO: should we correct the astrometry with respect to Gaia positions?**" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "8 master list rows had multiple associations.\n" ] } ], "source": [ "#\n", "# Addind SDSS ids\n", "#\n", "sdss = Table.read(\"../../dmu0/dmu0_SDSS-DR13/data/SDSS-DR13_HDF-N.fits\")['objID', 'ra', 'dec']\n", "sdss_coords = SkyCoord(sdss['ra'] * u.deg, sdss['dec'] * u.deg)\n", "idx_ml, d2d, _ = sdss_coords.match_to_catalog_sky(SkyCoord(master_catalogue['ra'], master_catalogue['dec']))\n", "idx_sdss = np.arange(len(sdss))\n", "\n", "# Limit the cross-match to 1 arcsec\n", "mask = d2d <= 1. * u.arcsec\n", "idx_ml = idx_ml[mask]\n", "idx_sdss = idx_sdss[mask]\n", "d2d = d2d[mask]\n", "nb_orig_matches = len(idx_ml)\n", "\n", "# In case of multiple associations of one master list object to an SDSS object, we keep only the\n", "# association to the nearest one.\n", "sort_idx = np.argsort(d2d)\n", "idx_ml = idx_ml[sort_idx]\n", "idx_sdss = idx_sdss[sort_idx]\n", "_, unique_idx = np.unique(idx_ml, return_index=True)\n", "idx_ml = idx_ml[unique_idx]\n", "idx_sdss = idx_sdss[unique_idx]\n", "print(\"{} master list rows had multiple associations.\".format(nb_orig_matches - len(idx_ml)))\n", "\n", "# Adding the ObjID to the master list\n", "master_catalogue.add_column(Column(data=np.full(len(master_catalogue), -1, dtype='>i8'), name=\"sdss_id\"))\n", "master_catalogue['sdss_id'][idx_ml] = sdss['objID'][idx_sdss]" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['ps1_id', 'candels-gn_id', 'ultradeep_id', 'hawaii_id', 'help_id', 'specz_id', 'sdss_id']\n" ] } ], "source": [ "id_names = []\n", "for col in master_catalogue.colnames:\n", " if '_id' in col:\n", " id_names += [col]\n", " if '_intid' in col:\n", " id_names += [col]\n", " \n", "print(id_names)\n" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue[id_names].write(\n", " \"{}/master_list_cross_ident_hdf-n{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)\n", "id_names.remove('help_id')\n", "master_catalogue.remove_columns(id_names)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## X - Adding HEALPix index\n", "\n", "We are adding a column with a HEALPix index at order 13 associated with each source." ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(\n", " data=coords_to_hpidx(master_catalogue['ra'], master_catalogue['dec'], order=13),\n", " name=\"hp_idx\"\n", "))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## XI - Saving the catalogue" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxradecm_ap_gpc1_gmerr_ap_gpc1_gm_gpc1_gmerr_gpc1_gm_ap_gpc1_rmerr_ap_gpc1_rm_gpc1_rmerr_gpc1_rm_ap_gpc1_imerr_ap_gpc1_im_gpc1_imerr_gpc1_im_ap_gpc1_zmerr_ap_gpc1_zm_gpc1_zmerr_gpc1_zm_ap_gpc1_ymerr_ap_gpc1_ym_gpc1_ymerr_gpc1_yf_ap_gpc1_gferr_ap_gpc1_gf_gpc1_gferr_gpc1_gflag_gpc1_gf_ap_gpc1_rferr_ap_gpc1_rf_gpc1_rferr_gpc1_rflag_gpc1_rf_ap_gpc1_iferr_ap_gpc1_if_gpc1_iferr_gpc1_iflag_gpc1_if_ap_gpc1_zferr_ap_gpc1_zf_gpc1_zferr_gpc1_zflag_gpc1_zf_ap_gpc1_yferr_ap_gpc1_yf_gpc1_yferr_gpc1_yflag_gpc1_yf_acs_f435wferr_acs_f435wf_acs_f606wferr_acs_f606wf_acs_f775wferr_acs_f775wf_acs_f814wferr_acs_f814wf_acs_f850lpferr_acs_f850lpf_wfc3_f105wferr_wfc3_f105wf_wfc3_f125wferr_wfc3_f125wf_wfc3_f140wferr_wfc3_f140wf_wfc3_f160wferr_wfc3_f160wf_moircs_kferr_moircs_km_acs_f435wmerr_acs_f435wflag_acs_f435wm_acs_f606wmerr_acs_f606wflag_acs_f606wm_acs_f775wmerr_acs_f775wflag_acs_f775wm_acs_f814wmerr_acs_f814wflag_acs_f814wm_acs_f850lpmerr_acs_f850lpflag_acs_f850lpm_wfc3_f105wmerr_wfc3_f105wflag_wfc3_f105wm_wfc3_f125wmerr_wfc3_f125wflag_wfc3_f125wm_wfc3_f140wmerr_wfc3_f140wflag_wfc3_f140wm_wfc3_f160wmerr_wfc3_f160wflag_wfc3_f160wm_moircs_kmerr_moircs_kflag_moircs_km_ap_mosaic_umerr_ap_mosaic_um_mosaic_umerr_mosaic_um_ap_suprime_bmerr_ap_suprime_bm_suprime_bmerr_suprime_bm_ap_suprime_vmerr_ap_suprime_vm_suprime_vmerr_suprime_vm_ap_suprime_rmerr_ap_suprime_rm_suprime_rmerr_suprime_rm_ap_suprime_ipmerr_ap_suprime_ipm_suprime_ipmerr_suprime_ipm_ap_suprime_zpmerr_ap_suprime_zpm_suprime_zpmerr_suprime_zpm_ap_quirc_hkmerr_ap_quirc_hkm_quirc_hkmerr_quirc_hkf_ap_mosaic_uferr_ap_mosaic_uf_mosaic_uferr_mosaic_uflag_mosaic_uf_ap_suprime_bferr_ap_suprime_bf_suprime_bferr_suprime_bflag_suprime_bf_ap_suprime_vferr_ap_suprime_vf_suprime_vferr_suprime_vflag_suprime_vf_ap_suprime_rferr_ap_suprime_rf_suprime_rferr_suprime_rflag_suprime_rf_ap_suprime_ipferr_ap_suprime_ipf_suprime_ipferr_suprime_ipflag_suprime_ipf_ap_suprime_zpferr_ap_suprime_zpf_suprime_zpferr_suprime_zpflag_suprime_zpf_ap_quirc_hkferr_ap_quirc_hkf_quirc_hkferr_quirc_hkflag_quirc_hkflag_cleanedflag_mergedflag_gaiastellaritystellarity_originebvhelp_idfieldzspeczspec_qualzspec_association_flagf_wircam_ksferr_wircam_ksm_wircam_ksmerr_wircam_ksflag_wircam_ksf_irac_i1ferr_irac_i1m_irac_i1merr_irac_i1flag_irac_i1f_irac_i2ferr_irac_i2m_irac_i2merr_irac_i2flag_irac_i2f_irac_i3ferr_irac_i3m_irac_i3merr_irac_i3flag_irac_i3f_irac_i4ferr_irac_i4m_irac_i4merr_irac_i4flag_irac_i4flag_optnir_obsflag_optnir_dethp_idx
degdeg
0189.39211408761.8600144331nannan9.337710380550.39174100756611.19439983370.012.95219993590.010.46350002290.012.46860027310.012.6522998810.066550999879812.45600032810.13014699518710.40200042720.26212599873510.50150012970.254988998175nannan668214.426684241096.310165False120848.1667280.023939.77286660.0False236919.0545330.037373.16607480.0False31555.86196151934.2397871637809.40724394532.20655351False250726.26381560532.0813874228770.46141253727.5541811FalsenannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalseFalse3nanNO_INFORMATION0.00892060480491HELP_J123734.107+615136.052HDF-Nnan-99FalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalse01184308828
1188.74456256762.621649393113.72449970250.00066899997182213.77309989930.0015109999803813.42210006710.0002119999990113.4694995880.0032820000778913.3304996490.0010860000038513.33419990540.0010860000038513.33520030980.0015670000575513.41040039060.0033960000146213.31540012360.0020079999230813.37909984590.0028979999478911754.39061997.2427233788811239.837702415.6422844457False15529.5893983.0322954347314866.206626344.9380715976False16896.631802116.90073714216839.145047516.84323642False16823.636496324.28088815915697.838030849.1001939038False17133.257835631.686868564716156.975322143.1254971847FalsenannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalseFalse3nanNO_INFORMATION0.010016679481HELP_J123458.695+623717.938HDF-Nnan-99FalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalse01184359432
2189.41162934762.617179493114.77630043030.0016659999964814.84539985660.0020910000894213.9601001740.00073500000871714.01010036470.0021150000393413.6489000320.0019259999971813.70800018310.0023900000378513.53499984740.0022430000826713.58570003510.0024470000062113.44060039520.0020659998990613.51840019230.003488000016664461.489013666.84589926034186.393595898.06250113518False9461.498621296.40505634679035.6594486617.6013473675False12602.01485422.354859741211934.381779426.2708130939False13995.875192728.913790547513357.340161330.1043764723False15267.215715329.051316506214211.500120945.6553925725FalsenannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalseFalse3nanNO_INFORMATION0.00939106127967HELP_J123738.791+623701.846HDF-Nnan-99FalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalse01184358063
3189.61526489762.630448833115.19909954070.0031159999780415.24629974370.0053349998779614.64739990230.00074899999890514.70250034330.002023000037314.42899990080.0019039999460814.4886999130.0012219999916914.32999992370.0015059999423114.39550018310.0034159999340814.26830005650.0036299999337614.36429977420.001903999946083022.457367298.674277461522893.8772293214.2196922213False5023.889043033.465752427924775.291226578.89757041087False6143.2761738910.77314862735814.602555036.54435602567False6729.767035749.334706462926335.7776382119.9339543985False7123.2793702423.81564097146520.4878549611.4346454229FalsenannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalseFalse3nanNO_INFORMATION0.00961707766829HELP_J123827.664+623749.616HDF-Nnan-99FalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalse01184358005
4189.93911159762.310826393116.08580017090.0038499999791416.1415004730.0080049997195615.58880043030.00084599998081115.63969993590.00075100001413415.41310024260.0014260000316415.47589969640.0032480000518315.3423004150.0018139999592715.40919971470.00320299994215.29570007320.0034159999340815.39039993290.005320999771361335.610829084.736050655381268.819401439.35484964773False2110.959143661.644848340882014.280858211.39327117062False2481.760699763.259531017642342.287072487.00699534516False2648.987042684.425810216582490.692506487.3477221436False2765.158120628.699884848962534.1949833312.4196382765FalsenannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalseFalse3nanNO_INFORMATION0.0109041692966HELP_J123945.387+621838.975HDF-Nnan-99FalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalse01184007074
5189.40711272762.709187023115.54979991910.0054729999974415.6023998260.001296999980715.19799995420.00086099997861315.26290035250.0012349999742615.08129978180.0030920000281215.14290046690.0023590000346315.0544004440.0018670000135915.10729980470.0029529999010315.01550006870.0042730001732715.10179996490.002862999914212188.1648246411.03014344292084.683214642.49032322704False3025.519931432.399268427122849.967181793.2417721549False3368.83769029.593901527073183.023267226.91581616667False3453.343842965.938268405783289.122723338.94580012519False3579.3154292914.08667720813305.826175148.7172003792FalsenannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalseFalse3nanNO_INFORMATION0.00963436382679HELP_J123737.707+624233.073HDF-Nnan-99FalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalse01184358658
6189.60056402762.559736773114.09370040890.0017630000365914.13640022280.001104000024513.55070018770.00093300000298813.59099960330.0010740000288913.39789962770.003246000036613.44139957430.0093529997393513.34020042420.0036329999566113.38920021060.0056940000504313.28769969940.0017780000343913.35840034480.001918000052688366.0380681113.58463073778043.404520738.17870745123False13794.943463511.854336473513292.300740213.1486187128False15879.621586747.474931779815255.9820934131.421606757False16746.337142956.035196990516007.367503983.9485235687False17576.00308928.7824371716467.962222729.091368854FalsenannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalseFalse3nanNO_INFORMATION0.0101999541983HELP_J123824.135+623335.052HDF-Nnan-99FalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalse01184357936
7189.19325617761.867501703114.88510036470.0023719999007914.92469978330.00091000000247714.34619998930.00097599998116514.39980030060.0037410000804814.1635999680.0046500000171414.22430038450.0061750002205414.08699989320.0017529999604414.15789985660.0043870001114.02429962160.0029829998966314.08520030980.002266000024974036.080819988.817596081453891.527346543.26164852887False6630.098862235.959989485766310.7340710421.7441921566False7844.4050900533.596083147417.8807306942.1883464392False8417.8279047313.59119454567885.6964851531.8627592929False8918.2604495424.50242506658431.7918351517.5976820385FalsenannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalseFalse3nanNO_INFORMATION0.00964287432676HELP_J123646.381+615203.006HDF-Nnan-99FalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalse01184308915
8188.33531290762.261862413113.26239967350.0010860000038513.31779956820.0010860000038512.86030006410.0010860000038513.39900016780.0010860000038512.87189960480.0059580001980112.92000007630.0035250000655713.8457002640.0015200000489113.44480037690.001400999957712.70049953460.001927000004812.7692003250.0030519999563717990.371459617.994742543217095.43565617.0995892988False26054.333888526.060664256415863.533602415.8673879326False25777.4621644141.45436433524660.391639580.063538238False10512.836119314.717673911415208.271228119.6242763701False30185.62595353.574432814828334.781631279.6489533305FalsenannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalseFalse3nanNO_INFORMATION0.0102366169901HELP_J123320.475+621542.705HDF-Nnan-99FalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalse01184317197
9189.55952015762.635805253113.06700038910.0011889999732413.12069988250.0021599999163312.95769977570.0010860000038512.9953002930.0010860000038512.6855001450.0021430000197112.75150012970.0054139997810112.66930007930.0010860000038512.73840045930.0010860000038512.68309974670.0016860000323512.7413997650.0040790000930421537.725838123.586167001620498.403937340.7802103268False23818.811623923.824598831623008.053725423.013643945False30605.532634360.408464552728800.494734143.61303556False31065.615900131.073163848929150.084383129.1571669192False30673.271682947.631401461129069.6694862109.211780927FalsenannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalseFalse3nanNO_INFORMATION0.00954951214949HELP_J123814.285+623808.899HDF-Nnan-99FalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalse01184358011
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "master_catalogue[:10].show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": true }, "outputs": [], "source": [ "columns = [\"help_id\", \"field\", \"ra\", \"dec\", \"hp_idx\"]\n", "\n", "bands = [column[5:] for column in master_catalogue.colnames if 'f_ap' in column]\n", "\n", "\n", "bands_no_ap = (set([column[5:] for column in master_catalogue.colnames if 'flag' in column]) \n", " - set(bands) \n", " - set(['cleaned', 'gaia', 'merged', 'optnir_det', 'optnir_obs'])\n", " )\n", "\n", "for band in bands:\n", " columns += [\"f_ap_{}\".format(band), \"ferr_ap_{}\".format(band),\n", " \"m_ap_{}\".format(band), \"merr_ap_{}\".format(band),\n", " \"f_{}\".format(band), \"ferr_{}\".format(band),\n", " \"m_{}\".format(band), \"merr_{}\".format(band),\n", " #\"flag_{}\".format(band)\n", " ] \n", "\n", "for band in bands_no_ap:\n", " columns += [\"f_{}\".format(band), \"ferr_{}\".format(band),\n", " \"m_{}\".format(band), \"merr_{}\".format(band),\n", " #\"flag_{}\".format(band)\n", " ] \n", "\n", "columns += [\"stellarity\", \"stellarity_origin\", \"flag_cleaned\", \"flag_merged\", \"flag_gaia\", \n", " \"flag_optnir_obs\", \"flag_optnir_det\", \n", " \"zspec\", \"zspec_qual\", \"zspec_association_flag\", \"ebv\"] # " ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Missing columns: {'flag_gpc1_y', 'flag_suprime_b', 'flag_quirc_hk', 'flag_irac_i2', 'flag_irac_i1', 'flag_suprime_v', 'flag_irac_i3', 'flag_moircs_k', 'flag_acs_f435w', 'flag_acs_f775w', 'flag_suprime_zp', 'flag_mosaic_u', 'flag_suprime_ip', 'flag_suprime_r', 'flag_wfc3_f140w', 'flag_wfc3_f105w', 'flag_irac_i4', 'flag_acs_f850lp', 'flag_wfc3_f125w', 'flag_wircam_ks', 'flag_gpc1_z', 'flag_gpc1_r', 'flag_acs_f814w', 'flag_acs_f606w', 'flag_gpc1_i', 'flag_gpc1_g', 'flag_wfc3_f160w'}\n" ] } ], "source": [ "# We check for columns in the master catalogue that we will not save to disk.\n", "print(\"Missing columns: {}\".format(set(master_catalogue.colnames) - set(columns)))" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#master_catalogue[columns].write(\"{}/master_catalogue_hdf-n{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)\n", "master_catalogue.write(\"{}/master_catalogue_hdf-n{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }