{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# GAMA-15 Selection Functions\n",
"## Depth maps and selection functions\n",
"\n",
"The simplest selection function available is the field MOC which specifies the area for which there is Herschel data. Each pristine catalogue also has a MOC defining the area for which that data is available.\n",
"\n",
"The next stage is to provide mean flux standard deviations which act as a proxy for the catalogue's 5$\\sigma$ depth"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This notebook was run with herschelhelp_internal version: \n",
"017bb1e (Mon Jun 18 14:58:59 2018 +0100)\n",
"This notebook was executed on: \n",
"2018-06-25 13:40:19.919919\n"
]
}
],
"source": [
"from herschelhelp_internal import git_version\n",
"print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n",
"import datetime\n",
"print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"#%config InlineBackend.figure_format = 'svg'\n",
"\n",
"import matplotlib.pyplot as plt\n",
"plt.rc('figure', figsize=(10, 6))\n",
"\n",
"import os\n",
"import time\n",
"\n",
"from astropy import units as u\n",
"from astropy.coordinates import SkyCoord\n",
"from astropy.table import Column, Table, join\n",
"import numpy as np\n",
"from pymoc import MOC\n",
"import healpy as hp\n",
"#import pandas as pd #Astropy has group_by function so apandas isn't required.\n",
"import seaborn as sns\n",
"\n",
"import warnings\n",
"#We ignore warnings - this is a little dangerous but a huge number of warnings are generated by empty cells later\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"from herschelhelp_internal.utils import inMoc, coords_to_hpidx, flux_to_mag\n",
"from herschelhelp_internal.masterlist import find_last_ml_suffix, nb_ccplots\n",
"\n",
"from astropy.io.votable import parse_single_table"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"FIELD = 'GAMA-15'\n",
"#FILTERS_DIR = \"/Users/rs548/GitHub/herschelhelp_python/database_builder/filters/\"\n",
"FILTERS_DIR = \"/opt/herschelhelp_python/database_builder/filters/\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Depth maps produced using: master_catalogue_gama-15_20180213.fits\n"
]
}
],
"source": [
"TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n",
"OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n",
"SUFFIX = find_last_ml_suffix()\n",
"#SUFFIX = \"20171016\"\n",
"\n",
"master_catalogue_filename = \"master_catalogue_{}_{}.fits\".format(FIELD.lower(), SUFFIX)\n",
"master_catalogue = Table.read(\"{}/{}\".format(OUT_DIR, master_catalogue_filename))\n",
"\n",
"print(\"Depth maps produced using: {}\".format(master_catalogue_filename))\n",
"\n",
"ORDER = 10\n",
"#TODO write code to decide on appropriate order\n",
"\n",
"field_moc = MOC(filename=\"../../dmu2/dmu2_field_coverages/{}_MOC.fits\".format(FIELD))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Remove sources whose signal to noise ratio is less than five as these will have been selected using forced \n",
"# photometry and so the errors will not refelct the RMS of the map \n",
"for n,col in enumerate(master_catalogue.colnames):\n",
" if col.startswith(\"f_\"):\n",
" err_col = \"ferr{}\".format(col[1:])\n",
" errs = master_catalogue[err_col]\n",
" fluxes = master_catalogue[col]\n",
" mask = fluxes/errs < 5.0\n",
" master_catalogue[col][mask] = np.nan\n",
" master_catalogue[err_col][mask] = np.nan"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## I - Group masterlist objects by healpix cell and calculate depths\n",
"We add a column to the masterlist catalogue for the target order healpix cell per object ."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"#Add a column to the catalogue with the order=ORDER hp_idx\n",
"master_catalogue.add_column(Column(data=coords_to_hpidx(master_catalogue['ra'],\n",
" master_catalogue['dec'],\n",
" ORDER), \n",
" name=\"hp_idx_O_{}\".format(str(ORDER))\n",
" )\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"# Convert catalogue to pandas and group by the order=ORDER pixel\n",
"\n",
"group = master_catalogue.group_by([\"hp_idx_O_{}\".format(str(ORDER))])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"#Downgrade the groups from order=ORDER to order=13 and then fill out the appropriate cells\n",
"#hp.pixelfunc.ud_grade([2599293, 2599294], nside_out=hp.order2nside(13))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## II Create a table of all Order=13 healpix cells in the field and populate it\n",
"We create a table with every order=13 healpix cell in the field MOC. We then calculate the healpix cell at lower order that the order=13 cell is in. We then fill in the depth at every order=13 cell as calculated for the lower order cell that that the order=13 cell is inside."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"depths = Table()\n",
"depths['hp_idx_O_13'] = list(field_moc.flattened(13))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/html": [
"Table length=10 \n",
"
\n",
"idx hp_idx_O_13 \n",
"0 427039119 \n",
"1 427045789 \n",
"2 424938402 \n",
"3 427045790 \n",
"4 427045121 \n",
"5 427044263 \n",
"6 427045791 \n",
"7 427045792 \n",
"8 427045793 \n",
"9 427039120 \n",
"
\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"depths[:10].show_in_notebook()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"depths.add_column(Column(data=hp.pixelfunc.ang2pix(2**ORDER,\n",
" hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[0],\n",
" hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[1],\n",
" nest = True),\n",
" name=\"hp_idx_O_{}\".format(str(ORDER))\n",
" )\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true,
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"Table length=10 \n",
"\n",
"idx hp_idx_O_13 hp_idx_O_10 \n",
"0 427039119 6672486 \n",
"1 427045789 6672590 \n",
"2 424938402 6639662 \n",
"3 427045790 6672590 \n",
"4 427045121 6672580 \n",
"5 427044263 6672566 \n",
"6 427045791 6672590 \n",
"7 427045792 6672590 \n",
"8 427045793 6672590 \n",
"9 427039120 6672486 \n",
"
\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"depths[:10].show_in_notebook()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/html": [
"Table masked=True length=10 \n",
"\n",
"idx hp_idx_O_13 hp_idx_O_10 ferr_ap_decam_g_mean f_ap_decam_g_p90 ferr_decam_g_mean f_decam_g_p90 ferr_ap_decam_r_mean f_ap_decam_r_p90 ferr_decam_r_mean f_decam_r_p90 ferr_ap_decam_z_mean f_ap_decam_z_p90 ferr_decam_z_mean f_decam_z_p90 ferr_ap_suprime_g_mean f_ap_suprime_g_p90 ferr_suprime_g_mean f_suprime_g_p90 ferr_ap_suprime_r_mean f_ap_suprime_r_p90 ferr_suprime_r_mean f_suprime_r_p90 ferr_ap_suprime_i_mean f_ap_suprime_i_p90 ferr_suprime_i_mean f_suprime_i_p90 ferr_ap_suprime_z_mean f_ap_suprime_z_p90 ferr_suprime_z_mean f_suprime_z_p90 ferr_ap_suprime_y_mean f_ap_suprime_y_p90 ferr_suprime_y_mean f_suprime_y_p90 ferr_ap_omegacam_u_mean f_ap_omegacam_u_p90 ferr_omegacam_u_mean f_omegacam_u_p90 ferr_ap_omegacam_g_mean f_ap_omegacam_g_p90 ferr_omegacam_g_mean f_omegacam_g_p90 ferr_ap_omegacam_r_mean f_ap_omegacam_r_p90 ferr_omegacam_r_mean f_omegacam_r_p90 ferr_ap_omegacam_i_mean f_ap_omegacam_i_p90 ferr_omegacam_i_mean f_omegacam_i_p90 ferr_ap_gpc1_g_mean f_ap_gpc1_g_p90 ferr_gpc1_g_mean f_gpc1_g_p90 ferr_ap_gpc1_r_mean f_ap_gpc1_r_p90 ferr_gpc1_r_mean f_gpc1_r_p90 ferr_ap_gpc1_i_mean f_ap_gpc1_i_p90 ferr_gpc1_i_mean f_gpc1_i_p90 ferr_ap_gpc1_z_mean f_ap_gpc1_z_p90 ferr_gpc1_z_mean f_gpc1_z_p90 ferr_ap_gpc1_y_mean f_ap_gpc1_y_p90 ferr_gpc1_y_mean f_gpc1_y_p90 ferr_ap_ukidss_y_mean f_ap_ukidss_y_p90 ferr_ukidss_y_mean f_ukidss_y_p90 ferr_ap_ukidss_j_mean f_ap_ukidss_j_p90 ferr_ukidss_j_mean f_ukidss_j_p90 ferr_ap_ukidss_h_mean f_ap_ukidss_h_p90 ferr_ukidss_h_mean f_ukidss_h_p90 ferr_ap_ukidss_k_mean f_ap_ukidss_k_p90 ferr_ukidss_k_mean f_ukidss_k_p90 ferr_ap_vista_z_mean f_ap_vista_z_p90 ferr_vista_z_mean f_vista_z_p90 ferr_ap_vista_y_mean f_ap_vista_y_p90 ferr_vista_y_mean f_vista_y_p90 ferr_ap_vista_j_mean f_ap_vista_j_p90 ferr_vista_j_mean f_vista_j_p90 ferr_ap_vista_h_mean f_ap_vista_h_p90 ferr_vista_h_mean f_vista_h_p90 ferr_ap_vista_ks_mean f_ap_vista_ks_p90 ferr_vista_ks_mean f_vista_ks_p90 \n",
"uJy uJy uJy uJy uJy uJy uJy uJy \n",
"0 134226592 2097290 nan nan nan nan 5.185075e-07 1.0212726465397282e-05 0.3458474 9.482696437835692 8.216232e-07 2.1175761867198164e-05 0.5858852 22.650573921203613 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.21023609 1.2530426263809205 nan nan 0.0846733 1.684419703483582 0.09720915 2.402827262878418 0.10238967 3.272310304641724 0.12159265 5.122196292877198 0.2086195 8.456571483612063 0.27727032 10.322418689727783 nan nan 0.34827091623895357 1.7889584351648204 0.8926761262395497 5.830154774472676 1.0192849307539602 7.870152226516549 0.8017508799103293 15.912243747496706 0.8516376935138238 13.664123328941049 1.3928113868969987 23.52221230958412 1.3442254196399297 20.55216296858164 2.894998788923195 26.61950913026702 3.6149968032433537 23.55141479670379 3.0393708 17.449309253692626 nan nan nan nan nan nan 5.5880446 32.515445709228516 nan nan 6.7122993 62.35185623168945 9.812085 75.00704956054688 0.7920463 16.3915283203125 1.8303959 18.414660453796387 1.3846154 23.359660148620605 4.017344 26.564175033569335 1.7187109 27.46394424438477 4.689211 31.738461303710938 3.610589 41.54606399536133 nan nan 3.0994172 49.94132308959961 7.901993 50.00286598205567 \n",
"1 134226602 2097290 nan nan nan nan 5.185075e-07 1.0212726465397282e-05 0.3458474 9.482696437835692 8.216232e-07 2.1175761867198164e-05 0.5858852 22.650573921203613 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.21023609 1.2530426263809205 nan nan 0.0846733 1.684419703483582 0.09720915 2.402827262878418 0.10238967 3.272310304641724 0.12159265 5.122196292877198 0.2086195 8.456571483612063 0.27727032 10.322418689727783 nan nan 0.34827091623895357 1.7889584351648204 0.8926761262395497 5.830154774472676 1.0192849307539602 7.870152226516549 0.8017508799103293 15.912243747496706 0.8516376935138238 13.664123328941049 1.3928113868969987 23.52221230958412 1.3442254196399297 20.55216296858164 2.894998788923195 26.61950913026702 3.6149968032433537 23.55141479670379 3.0393708 17.449309253692626 nan nan nan nan nan nan 5.5880446 32.515445709228516 nan nan 6.7122993 62.35185623168945 9.812085 75.00704956054688 0.7920463 16.3915283203125 1.8303959 18.414660453796387 1.3846154 23.359660148620605 4.017344 26.564175033569335 1.7187109 27.46394424438477 4.689211 31.738461303710938 3.610589 41.54606399536133 nan nan 3.0994172 49.94132308959961 7.901993 50.00286598205567 \n",
"2 134226603 2097290 nan nan nan nan 5.185075e-07 1.0212726465397282e-05 0.3458474 9.482696437835692 8.216232e-07 2.1175761867198164e-05 0.5858852 22.650573921203613 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.21023609 1.2530426263809205 nan nan 0.0846733 1.684419703483582 0.09720915 2.402827262878418 0.10238967 3.272310304641724 0.12159265 5.122196292877198 0.2086195 8.456571483612063 0.27727032 10.322418689727783 nan nan 0.34827091623895357 1.7889584351648204 0.8926761262395497 5.830154774472676 1.0192849307539602 7.870152226516549 0.8017508799103293 15.912243747496706 0.8516376935138238 13.664123328941049 1.3928113868969987 23.52221230958412 1.3442254196399297 20.55216296858164 2.894998788923195 26.61950913026702 3.6149968032433537 23.55141479670379 3.0393708 17.449309253692626 nan nan nan nan nan nan 5.5880446 32.515445709228516 nan nan 6.7122993 62.35185623168945 9.812085 75.00704956054688 0.7920463 16.3915283203125 1.8303959 18.414660453796387 1.3846154 23.359660148620605 4.017344 26.564175033569335 1.7187109 27.46394424438477 4.689211 31.738461303710938 3.610589 41.54606399536133 nan nan 3.0994172 49.94132308959961 7.901993 50.00286598205567 \n",
"3 134226600 2097290 nan nan nan nan 5.185075e-07 1.0212726465397282e-05 0.3458474 9.482696437835692 8.216232e-07 2.1175761867198164e-05 0.5858852 22.650573921203613 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.21023609 1.2530426263809205 nan nan 0.0846733 1.684419703483582 0.09720915 2.402827262878418 0.10238967 3.272310304641724 0.12159265 5.122196292877198 0.2086195 8.456571483612063 0.27727032 10.322418689727783 nan nan 0.34827091623895357 1.7889584351648204 0.8926761262395497 5.830154774472676 1.0192849307539602 7.870152226516549 0.8017508799103293 15.912243747496706 0.8516376935138238 13.664123328941049 1.3928113868969987 23.52221230958412 1.3442254196399297 20.55216296858164 2.894998788923195 26.61950913026702 3.6149968032433537 23.55141479670379 3.0393708 17.449309253692626 nan nan nan nan nan nan 5.5880446 32.515445709228516 nan nan 6.7122993 62.35185623168945 9.812085 75.00704956054688 0.7920463 16.3915283203125 1.8303959 18.414660453796387 1.3846154 23.359660148620605 4.017344 26.564175033569335 1.7187109 27.46394424438477 4.689211 31.738461303710938 3.610589 41.54606399536133 nan nan 3.0994172 49.94132308959961 7.901993 50.00286598205567 \n",
"4 134226594 2097290 nan nan nan nan 5.185075e-07 1.0212726465397282e-05 0.3458474 9.482696437835692 8.216232e-07 2.1175761867198164e-05 0.5858852 22.650573921203613 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.21023609 1.2530426263809205 nan nan 0.0846733 1.684419703483582 0.09720915 2.402827262878418 0.10238967 3.272310304641724 0.12159265 5.122196292877198 0.2086195 8.456571483612063 0.27727032 10.322418689727783 nan nan 0.34827091623895357 1.7889584351648204 0.8926761262395497 5.830154774472676 1.0192849307539602 7.870152226516549 0.8017508799103293 15.912243747496706 0.8516376935138238 13.664123328941049 1.3928113868969987 23.52221230958412 1.3442254196399297 20.55216296858164 2.894998788923195 26.61950913026702 3.6149968032433537 23.55141479670379 3.0393708 17.449309253692626 nan nan nan nan nan nan 5.5880446 32.515445709228516 nan nan 6.7122993 62.35185623168945 9.812085 75.00704956054688 0.7920463 16.3915283203125 1.8303959 18.414660453796387 1.3846154 23.359660148620605 4.017344 26.564175033569335 1.7187109 27.46394424438477 4.689211 31.738461303710938 3.610589 41.54606399536133 nan nan 3.0994172 49.94132308959961 7.901993 50.00286598205567 \n",
"5 134228014 2097312 nan nan nan nan 4.935294e-07 5.338569717423527e-05 0.62597716 26.43040771484375 9.136784e-07 7.065122044878085e-05 0.61311555 38.113921737670935 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.2320776 11.626157355308552 0.37541068 19.543386268615713 0.0876883 3.242756366729737 0.10756739 4.973746252059936 0.097718045 6.296526908874512 0.12499767 7.248914480209351 0.19756326 12.881778240203872 0.28195268 16.40565128326416 0.9991227480568864 76.97688294259962 0.9478306535110793 68.20247366063188 1.1178170928625137 66.05152604972315 1.322601942713443 61.37022892721748 0.8278944596423699 56.541574600609756 0.9481786556641225 50.751060175180264 1.7654012070927052 101.36779413504394 1.8381918328960145 94.2274589274823 4.151021813632829 126.31060616834179 3.330510979143962 96.35111599028552 3.5968742 507.06809997558594 6.2682734 526.9618774414063 6.188336 308.07347106933594 7.130998 322.67149353027344 5.7335763 224.19540252685536 10.871893 347.74883422851565 6.8216734 258.0086181640625 11.223945 274.2400207519531 0.8298682 29.993879318237305 2.3718386 102.0642074584961 1.4487895 67.36036682128906 4.0367875 133.2998512268067 1.7642776 88.83100357055665 5.1259313 181.34911804199226 3.6635222 163.32646179199216 10.852872 314.278549194336 3.1391466 144.1946640014649 9.223716 289.2537628173828 \n",
"6 134227976 2097312 nan nan nan nan 4.935294e-07 5.338569717423527e-05 0.62597716 26.43040771484375 9.136784e-07 7.065122044878085e-05 0.61311555 38.113921737670935 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.2320776 11.626157355308552 0.37541068 19.543386268615713 0.0876883 3.242756366729737 0.10756739 4.973746252059936 0.097718045 6.296526908874512 0.12499767 7.248914480209351 0.19756326 12.881778240203872 0.28195268 16.40565128326416 0.9991227480568864 76.97688294259962 0.9478306535110793 68.20247366063188 1.1178170928625137 66.05152604972315 1.322601942713443 61.37022892721748 0.8278944596423699 56.541574600609756 0.9481786556641225 50.751060175180264 1.7654012070927052 101.36779413504394 1.8381918328960145 94.2274589274823 4.151021813632829 126.31060616834179 3.330510979143962 96.35111599028552 3.5968742 507.06809997558594 6.2682734 526.9618774414063 6.188336 308.07347106933594 7.130998 322.67149353027344 5.7335763 224.19540252685536 10.871893 347.74883422851565 6.8216734 258.0086181640625 11.223945 274.2400207519531 0.8298682 29.993879318237305 2.3718386 102.0642074584961 1.4487895 67.36036682128906 4.0367875 133.2998512268067 1.7642776 88.83100357055665 5.1259313 181.34911804199226 3.6635222 163.32646179199216 10.852872 314.278549194336 3.1391466 144.1946640014649 9.223716 289.2537628173828 \n",
"7 134227980 2097312 nan nan nan nan 4.935294e-07 5.338569717423527e-05 0.62597716 26.43040771484375 9.136784e-07 7.065122044878085e-05 0.61311555 38.113921737670935 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.2320776 11.626157355308552 0.37541068 19.543386268615713 0.0876883 3.242756366729737 0.10756739 4.973746252059936 0.097718045 6.296526908874512 0.12499767 7.248914480209351 0.19756326 12.881778240203872 0.28195268 16.40565128326416 0.9991227480568864 76.97688294259962 0.9478306535110793 68.20247366063188 1.1178170928625137 66.05152604972315 1.322601942713443 61.37022892721748 0.8278944596423699 56.541574600609756 0.9481786556641225 50.751060175180264 1.7654012070927052 101.36779413504394 1.8381918328960145 94.2274589274823 4.151021813632829 126.31060616834179 3.330510979143962 96.35111599028552 3.5968742 507.06809997558594 6.2682734 526.9618774414063 6.188336 308.07347106933594 7.130998 322.67149353027344 5.7335763 224.19540252685536 10.871893 347.74883422851565 6.8216734 258.0086181640625 11.223945 274.2400207519531 0.8298682 29.993879318237305 2.3718386 102.0642074584961 1.4487895 67.36036682128906 4.0367875 133.2998512268067 1.7642776 88.83100357055665 5.1259313 181.34911804199226 3.6635222 163.32646179199216 10.852872 314.278549194336 3.1391466 144.1946640014649 9.223716 289.2537628173828 \n",
"8 134227978 2097312 nan nan nan nan 4.935294e-07 5.338569717423527e-05 0.62597716 26.43040771484375 9.136784e-07 7.065122044878085e-05 0.61311555 38.113921737670935 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.2320776 11.626157355308552 0.37541068 19.543386268615713 0.0876883 3.242756366729737 0.10756739 4.973746252059936 0.097718045 6.296526908874512 0.12499767 7.248914480209351 0.19756326 12.881778240203872 0.28195268 16.40565128326416 0.9991227480568864 76.97688294259962 0.9478306535110793 68.20247366063188 1.1178170928625137 66.05152604972315 1.322601942713443 61.37022892721748 0.8278944596423699 56.541574600609756 0.9481786556641225 50.751060175180264 1.7654012070927052 101.36779413504394 1.8381918328960145 94.2274589274823 4.151021813632829 126.31060616834179 3.330510979143962 96.35111599028552 3.5968742 507.06809997558594 6.2682734 526.9618774414063 6.188336 308.07347106933594 7.130998 322.67149353027344 5.7335763 224.19540252685536 10.871893 347.74883422851565 6.8216734 258.0086181640625 11.223945 274.2400207519531 0.8298682 29.993879318237305 2.3718386 102.0642074584961 1.4487895 67.36036682128906 4.0367875 133.2998512268067 1.7642776 88.83100357055665 5.1259313 181.34911804199226 3.6635222 163.32646179199216 10.852872 314.278549194336 3.1391466 144.1946640014649 9.223716 289.2537628173828 \n",
"9 134227977 2097312 nan nan nan nan 4.935294e-07 5.338569717423527e-05 0.62597716 26.43040771484375 9.136784e-07 7.065122044878085e-05 0.61311555 38.113921737670935 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.2320776 11.626157355308552 0.37541068 19.543386268615713 0.0876883 3.242756366729737 0.10756739 4.973746252059936 0.097718045 6.296526908874512 0.12499767 7.248914480209351 0.19756326 12.881778240203872 0.28195268 16.40565128326416 0.9991227480568864 76.97688294259962 0.9478306535110793 68.20247366063188 1.1178170928625137 66.05152604972315 1.322601942713443 61.37022892721748 0.8278944596423699 56.541574600609756 0.9481786556641225 50.751060175180264 1.7654012070927052 101.36779413504394 1.8381918328960145 94.2274589274823 4.151021813632829 126.31060616834179 3.330510979143962 96.35111599028552 3.5968742 507.06809997558594 6.2682734 526.9618774414063 6.188336 308.07347106933594 7.130998 322.67149353027344 5.7335763 224.19540252685536 10.871893 347.74883422851565 6.8216734 258.0086181640625 11.223945 274.2400207519531 0.8298682 29.993879318237305 2.3718386 102.0642074584961 1.4487895 67.36036682128906 4.0367875 133.2998512268067 1.7642776 88.83100357055665 5.1259313 181.34911804199226 3.6635222 163.32646179199216 10.852872 314.278549194336 3.1391466 144.1946640014649 9.223716 289.2537628173828 \n",
"
\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"for col in master_catalogue.colnames:\n",
" if col.startswith(\"f_\"):\n",
" errcol = \"ferr{}\".format(col[1:])\n",
" depths = join(depths, \n",
" group[\"hp_idx_O_{}\".format(str(ORDER)), errcol].groups.aggregate(np.nanmean),\n",
" join_type='left')\n",
" depths[errcol].name = errcol + \"_mean\"\n",
" depths = join(depths, \n",
" group[\"hp_idx_O_{}\".format(str(ORDER)), col].groups.aggregate(lambda x: np.nanpercentile(x, 90.)),\n",
" join_type='left')\n",
" depths[col].name = col + \"_p90\"\n",
"\n",
"depths[:10].show_in_notebook()"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## III - Save the depth map table"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"depths.write(\"{}/depths_{}_{}.fits\".format(OUT_DIR, FIELD.lower(), SUFFIX), overwrite=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## IV - Overview plots\n",
"\n",
"### IV.a - Filters\n",
"First we simply plot all the filters available on this field to give an overview of coverage."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"{'decam_g',\n",
" 'decam_r',\n",
" 'decam_z',\n",
" 'gpc1_g',\n",
" 'gpc1_i',\n",
" 'gpc1_r',\n",
" 'gpc1_y',\n",
" 'gpc1_z',\n",
" 'omegacam_g',\n",
" 'omegacam_i',\n",
" 'omegacam_r',\n",
" 'omegacam_u',\n",
" 'suprime_g',\n",
" 'suprime_i',\n",
" 'suprime_r',\n",
" 'suprime_y',\n",
" 'suprime_z',\n",
" 'ukidss_h',\n",
" 'ukidss_j',\n",
" 'ukidss_k',\n",
" 'ukidss_y',\n",
" 'vista_h',\n",
" 'vista_j',\n",
" 'vista_ks',\n",
" 'vista_y',\n",
" 'vista_z'}"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tot_bands = [column[2:] for column in master_catalogue.colnames \n",
" if (column.startswith('f_') & ~column.startswith('f_ap_'))]\n",
"ap_bands = [column[5:] for column in master_catalogue.colnames \n",
" if column.startswith('f_ap_') ]\n",
"bands = set(tot_bands) | set(ap_bands)\n",
"bands"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5,1,'Passbands on GAMA-15')"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAAG+CAYAAACQ630wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXl4FFXa9u9T1Wv2fYckkJ2ECAkBAUXUYVdR1BlxndcFxRl10NFR0Y8Zd1/RGXxHHUXcwBVcQUdRESKIQEC2EAhbyL4vvSW91Pn+qOpOJ+lOOt3VQML5XRcXnapTVSed7rrrWc7zEEopGAwGg8FgDD+4Mz0BBoPBYDAY/oGJPIPBYDAYwxQm8gwGg8FgDFOYyDMYDAaDMUxhIs9gMBgMxjCFiTyDwWAwGMMUJvKMsxpCyDJCyOrhdi0Gg8E4HTCRZwwaQshJQoiJEKInhNQTQt4ihASd6XkNBwghKkLI44SQw4QQAyGkmhDyDSFkhouxPxFCWgkh6l7b3yaEUELI5b22/1Pafkuv7RdJ2x/0YH7XEkK2EUKMhJCfXOyn0rz10r+Vnv7uDAZDfpjIM7zlMkppEIDxACYAWHqG5zNcWAvgCgA3AQgHkArgXwDmOg8ihKQAuAAABdBDzCWOALjZabwCwDUAjrkYezOAFufx/dAC4J8Anu1nTD6lNEj6d5sH52QwGH6CiTzDJyil1QC+AZALAISQPxJCDhFCdISQ44SQRfaxhJAoQsh6QkgbIaSFEFJMCOGkfQ9JVqtOsmIvcbqMhhDykbRvNyEk3+mcfyOEHJP2lRJCrnTadwsh5GdCyAuSxXuCEDLbaX8qIWSzdOxGAFFO+zSEkNWEkGZpvjsJIbGu3gNCSLZkVbcRQg46W9CSVf1vQsgG6Tq/EkJGuznPpQB+B+AKSumvlFKz9O+/lNJ7ew2/CcB2AG/DtTh/BWAKISRc+nkWgH0A6npdMwDA1QDuBpBOCCl0NTc7lNLvKaUfA6jpbxyDwTg7YCLP8AlCyAgAcwDskTY1AJgHIATAHwG8RAgZL+27H0AVgGgAsQAeAUAJIZkA/gRgAqU0GMBMACedLnMFgE8ARAB4H8DnhBCltO8YRIs2FMDfAawmhMQ7HTsRwGGIAv48gDcJIUTa9z6AEmnfE+gpljdL5xwBIBLAnQBMLn5/JURB/Q5ADIA/A1gj/U52rpPmFg7gKICnep9H4lIAv1JKq9zsd+YmAGukfzNdPIB0AvgSwB+cxr/r4jwLAOghvr/fSuN8ZQshpI4Q8qnkcWAwGGcIJvIMb/mcENIG4GcAmwE8DQCU0g2U0mNUZDNE8btAOsYCIB5AMqXUQiktpmLzBBsANYAcQoiSUnqSUursVi6hlK6llFoAvAhAA2CSdL1PKKU1lFKBUvoRgHIARU7HVlBK36CU2gC8I10/lhAyEmKY4TFKaReldAtEsbZjgSjuaZRSG6W0hFLa4eJ9mAQgCMCzktX9I4D1EIXdzqeU0h2UUitEUT7PzXsaBSdLmxASIXkH2gkhnU7bpwJIBvAxpbQE4oPOQhfnexfATYSQUADTAHzuYszNAD6S3p/3AVzn9ADlDdMApADIgmjtr5dCBQwG4wzARJ7hLfMppWGU0mRK6WJKqQkACCGzCSHbJXd8G0Qr3+4G/1+Ilux3kiv/bwBAKT0K4D4AywA0EEI+JIQkOF2r0v6CUipA9AYkSNe7iRDymySGbRDDBlFOx9Y5HWuUXgZJx7dSSg1OYyucXr8H0bL9kBBSQwh53o34JQColOblfJ5EV3MAYJSu74pmiA8h9vm2UErDABRAfAiyczOA7yilTdLP78OFy55S+jNEr8lSAOvtfyM7khdmOsQHDwD4AuID1Fxp/2tOCXSPuJlz72tukR522gDcCzGnINuTYxkMhvwwkWfIhpTlvQ7ACwBiJYH6GgABAEqpjlJ6P6V0FIDLACyxx94ppe9TSu0WKgXwnNOpRzhdgwOQBKCGEJIM4A2Irv5I6XoH7NcbgFoA4YSQQKdtI+0vJE/D3ymlOQAmQwxBuHJl1wAYYc8tcDpPtQdz6M0PACYQQpLcDSCEaAFcC2Ca5BKvA/AXAPnOuQpOrIYYJnHlqr8R4j3gK+k8xyGK/E0AQCm90ymB7mkvfh9A/Ft68vdgMBh+gIk8Q05UEC3ORgBWKcnNsfSLEDKPEJImxcQ7ILrpbYSQTELIxdJDQifE2LfN6bwFhJCrJLfvfQC6ICadBUIUkUbp/H+ElAA4EJTSCgC7APydiMvWpkJ88LDPdTohJI8QwktztfSak51fARgAPEgIURJCLpLO86En8+g1p+8AbIIYCpkozUsJKTQhMV+aRw5Et/95EC3lYrh+CFkBMZlvi4t9N0HMFTjP6d8CAHMJIZGu5kgI4QkhGgAKAJyUoKiU9o0hhJwnjQkCsBziw86hwbwPDAZDPpjIM2SDUqoDcA+AjwG0QowTf+k0JB3A9xATvX4B8Aql9CeIDwbPAmiC6NqOgZiUZ+cLAL+XznkjgKskS7sUopD8AqAeQB6ArYOY8kKIiXktAP4felq7cRCXs3VAFKnNEK3i3r+zGeISttnS/F8BcBOltGwQ83DmKogx/dUA2gCcAHA9xOx4QHTLv0UpPUUprbP/A/B/AK7vHf+WXP4/SLkPDgghkyDGzv/tfB5K6ZcQQyrOOQXO3AjxIexViLkWJojeFEBMpvwI4nt2XDr/PCmXgsFgnAFIr+8+g8FgMBiMYQKz5BkMBoPBGKYwkWcwGAwGY5jiN5EnhKwihDQQQg642U8IISsIIUcJIfucCqYwGAwGg8GQAX9a8m+jO1nIFbMhJmKlA7gDYiIPg8FgMBgMmfBbJSpK6ZYBSlpeAeBdKet3OyEkjBASTymt7e+8UVFRNCWlv9MyGAwGozclJSVNlNJoH88Ro1AoVkJcqsrCvWceAcABq9V6W0FBQYOrAWey3GQinCqZQaxilgixSEkPCCF3QLT2MXLkSOzateu0TJDBYDCGC4SQioFH9Y9CoVgZFxeXHR0d3cpxHFuadYYRBIE0Njbm1NXVrYTrbpRn9EnMVRUslx8aSunrlNJCSmlhdLRPD6IMBoPB8J7c6OjoDibwZwccx9Ho6Oh29FME7EyKfBWcypVCKlV6hubCYDAYjIHhmMCfXUh/D7dafiZF/kuIHbKIVH2rfaB4PIPBYDAYDM/xW0yeEPIBgIsARBFCqiCWDVUCAKX0NYiNS+ZALKFphNh7nMFgMBgMhkz4M7veXe1r+34K4G5/XZ/BYDAYjOGCxWKBUumq23X/sCUQDAaDwRgyLFu2LDY9PX1Menr6mH/84x8xhw8fVqWmpo75/e9/n5yenj7m8ssvT/3888+Dx48fn5WcnJy7adOmAADo6OjgrrnmmpTc3Nzs7OzsnNWrV4cBgE6n4+bMmTMqIyMjZ+7cuaPGjh2btWXLlgAAuP7660fm5uZmp6WljfnLX/6SYJ/D5s2bA8aNG5eVmZmZk5eXl93a2sodPnxYVVBQkJmTk5Odk5OTvXHjxkAAWL9+ffCECRMy58yZMyolJSV38eLFia+++mpEXl5edkZGRs7BgwfV7n7XBQsWpNx2221JEydOzFi8eLHbFtT9cSaX0DEYDAZjiPLXtXtHHKnTBch5zoy4YOP/Xp1f6W5/cXFxwPvvvx9ZUlJyiFKKgoKC7EsuuURXWVmp+eijj44XFBRUjB07NnvNmjWRu3btKnv//ffDnnrqqfjp06cfe+SRR+KnT5/e8cknn5xsamriCwsLsy+//PKOF154ITosLMx25MiR0p07d2rOP//8Mfbrvfjii9WxsbE2q9WKyZMnZ/7666/a/Pz8zuuvv370mjVrjk2bNs3Y0tLCBQUFCQqFwlpcXHwkICCA7t+/X33dddeNOnDgwCEAKCsr065du/Z4TEyMNTk5OU+tVjft37//0BNPPBGzfPnymFWrVrn9nY8dO6bZunXrEYXCO7lmIs9gMIYV1Cqg48dTCJqSCE6rAOFcrdZlDEV++umnoDlz5rSFhIQIADB37tzWTZs2BScmJnYVFRWZACAjI8N08cUXd3Ach/HjxxuffPLJBOnYkG+//TZsxYoVcQDQ1dVFjh49qtq2bVvQvffe2wAAEyZM6MzIyDDar/fOO+9EvP3221FWq5U0NjYq9+7dqyGEICYmxjJt2jQjAERERAgA0NHRQW699dbk0tJSLcdxqKiocFjoeXl5huTkZAsAjBw5smv27NntAJCfn2/avHlzcH+/81VXXdXqrcADTOQZDNnZWLER1bpq3JBzAxScAl8d+won2k/gT+P+BI6wCJm/afvqGAy/1kH3Y7dxlPTsBWdwRsOT/ixuf+GuNbpKpXLs4DgOGo2GAgDP87DZbMR+7Nq1a4/m5+d3eXLOsrIy1f/93//FlpSUHIqOjrYtWLAgpbOzk6OUghDS56CnnnoqNiYmxrJu3boTgiBAq9UW2Pep1WqX8+M4zjE/dwQFBQn97R8IdsdhMHyEUor7Nt2HpT8vxYn2E1jy0xIsL1mOB7c8iNf2voZHfn4Eb+x/A9trt5/pqQ57qEBh+LWuz/aqvxWfgdkw5Obiiy/Wf/3112E6nY7r6Ojgvv766/Dp06frPDl2+vTpHcuXL48VBFEzt27dqgWAyZMn6z/88MNwACgpKdEcOXJECwCtra28VqsVIiIibJWVlYqffvopFADy8/M76+vrVZs3bw6QxnEWiwXt7e18fHy8hed5vPLKK5E2m80P78DgYZY8g+EjzZ3N+OHUDwCAL459AQ2vwZTEKdhYsREbKzYiKSgJVfoqFFcVY3LC5DM82+FN08r9bveZa/RQJQSdxtn0hAoUbV8eg2F7LUJmpiBk+oiBD2L0YOrUqcaFCxc2jx8/PhsAbrzxxsaoqCiP1PTZZ5+tueOOO0ZmZWXlUEpJUlJS16ZNm47+9a9/bbz22mtTMjIycnJzc42ZmZmm8PBwW15eXldubq4xPT19zMiRI7sKCgr0AKDRaOiaNWuO3XPPPSM7Ozs5jUYjbNmy5ch9993XsGDBgtGff/55+NSpU3VardYnC1wuiDtXxdlKYWEhZbXrGWcTJfUluOW/tyA5JBkVHRW4Pe923DP+HtQb6mGlVsQExODPP/4Zu+t34/a823Ft5rUIVYee6WkPS5wtdruL3tW204VgtoFT8QCAhld+g/lUt9GZ8I/JEHRmtP/3JCIWZoEQ/+YOEEJKKKWFvpxj7969J/Pz85vkmtPZgNVqhdlsJgEBAfTgwYPqGTNmZBw7duyA3aU+FNi7d29Ufn5+iqt9zJJnMHykokPs+/Hqpa9CQRSID4oHAMQGxjrGFMYWYmv1VqzYswIHmw/ihWkvQMGxr99gsLZ2QhGucbuf2roNp8Qnuj0m2rFRMO07vbrU8skRGEvqHT8nLDu/h8ADQM3j2xyvOw82Q5sbddrmx+hGp9NxF1xwQabFYiGUUrz00ksVQ0ngB4LdZRgMHznZcRJKTomEwATwHO9yzNzUuSipL0F7Vzt+OPUDvjr2Fa5Mv/I0z3To4myNxz82CXxg36Ig1Y9udbwmyu6/Q8R1Waje97N/J+hE45v70VXe1mNbzbJf+j3Gprf4c0qMfggPDxfsS93OFA899FDcF198EeG87Yorrmh57rnn+iaYDBIm8gyGj1S0V2Bk8Ei3Ag8A8UHxePXSV0EpxZQPpmBv414m8l5S+8R2KKK0iHug2/NMrd1WfPiC9B7jnd3gNr0ZfJDKr/PrLfC9SVh2fh/Rt7V2+nNKjLOc5557rk4OQXcFy65nMLzEZDXh5m9uxo+VP2JkyEiPjiGEIDUsFVX6Kj/PbvggdFr7bLM2mWCu6nZ/Vy/ttuIDCmP7jCda0Z5p//qEH2bYTcvHh/vdH35NBjiNoscciZJz+TsyGHLARJ7B8JLS5lLsbtgNAMiOzPb4uEhNJFo7W/01rWEBFahj/bKtTVzWrMmOgDY/2jGm4f9+AwA0vX3QsS1oaqLLBLaIqzMAAMbdDX6bs6vzh84d5XgdMjMFgQWiuIcvSEf41emIvnMsuBAVhK6zY7kVY/jB3PUMhpfozXrH6wmxEzw+LkITgf1N7pd6MYDqR36GOiMc0f+T60hYC54+AuqRIbBcPAL1L4kPV73Xv4fNG9XnXID4gOBvzNX6Hj/bM/mDL0jsM5YQgsDCOAAAp+JBO5nIM/wDs+QZDC8xWAwAgKenPo3COM9XJkVoItDa2eq20ta5jrVFjE93HRG9Ha2flgMAFKFilVBlbKDL4xL+fr7bc56O0rYNL+9xvI5/dKLHxxENzyx5ht9gIs9geIneIlpuE+M9v6EDgFahhY3aYBVYHNYV1NxT8LRjxaVlfGh3s67EZ6b2GBP/2CRw6v4dk8oksRDO6RBUPtjz5D5OrQDtYp8Fhn9gIs9geIndkg9SDq6KmpITl39ZBLZsyhXU0p0pTymFpc4APrxnN05CCBKfmIzoO8Yi8ZmpLpfU9UabJbrs7Z4COXF+cIj503mDOpaoeVBmyftEUVFRpr09rDPTpk1La2pq6rPsZcmSJQmPP/543wzNQbJ+/frg6dOnp/l6Hn/CRJ7B8BK9RQ8CAq1CO6jjlPzwEnnD9u3Q/bhJtvM5izysAuAmqkGUPNSjQj2uFKfOCBdP2WTydYp9MO1vdLxWJfXbVKwPRMH1WALIkI/Nmzcf9bTs7XCFJd4xGF5itBgRjnB0dHQgNNTzMrXDzZI/dcsfAQDZZfLUE6GW7nuy0GUDtQhQj/K9DLAyRjT0rM3yi3zr2nKvjyXKISryn989Ag2lsvaTR0yOEfP/7ba73eHDh1Xz5s1LLy8vPwgAjz/+eKxer3dY6jabDddcc01KUlKSecWKFTWJiYl5u3btOhQfH2996KGH4j766KOohIQEc2RkpGXcuHFGAHjyySdj3nrrrWie52lGRkbn+vXrj2/YsCHo/vvvHwmIXqNt27aVhYeHu/wjGQwGftasWaMOHz6szcvLM37++ecnOO7ssZ+ZyDMYXtLV2YWLTlyENWvWYPHixR4f5xB52/AQeTs2vR58kO8NYJwteVu7GTadGZwH7viB4DQKEBUPQWf2+Vzu0OYNvjQtUXCgFpaE6SsWi4XMnz8/NScnx9S7sExxcXHAZ599FrF///5Si8WC8847L8cu8itWrIirqKjYr9Vqqd21v3z58rgVK1ZUzJgxw9De3s4FBAS4fQo7dOiQ9rfffjuekpJiKSgoyNq4cWPQzJkz9e7Gn26YyDPOaaTe0F4dK7QLICBoaGiAwWBAYKDrrO/e2GvWDwVLngoCGl96CYqoKETcfHOf/c5u+up77sHIVat8v6aTyFubTICN9ki68wU+WCl7CVlbe3d78pBLPSuK5AxRcD3q7g8Z+rG4zwSLFy9Onj9/vstSsJs2bQqaM2dOW3BwsAAAM2bMcJQlzMzMNF155ZWpl19+edv111/fBgCTJk3SP/DAAyOuvfbaluuuu6519OjRbv9AeXl5htGjR1sAYMyYMcZjx475t6TiIDl7fAoMxmlkr86Ij+taMH3nYczYdRh1XeKNv7LTDLPg2Q1XaOke9/bbb6Orq6uf0d0MJXd9x9ffoPmNlah/5lmYKyr67G/85z8dr00HDvbZ7w2Ck7ve2mgEAHBaeewRLlglqyVPbQJqn9nh+Nnd8r7+IAoC2CiowKz5gVAoFFRw+n52dnY6NKywsFBfXFwcYjQaXT61u3uY37RpU/ndd9/dWFJSEpifn59jsVjw9NNP161cubLCZDJxkydPzt6zZ4/bzkhqtdrxh+N5Hlar1f/rNQcBE3nGOcEndS14vVKsRramphkzdx3BPYdOoczQiX06E548VoOqTjMm/FKKh44MXHL266+/BndC/PpMmzYNjY2NKC4uHuAokSEl8l995Xht2Latz35VcrflGjpvrizXdLbkjfvEhDa5RJ4PUsImo8g7N8XxGoX4ORqScfnTTFJSkrWlpUVRV1fHm0wm8u233zqSNRYtWtQ0Y8aM9nnz5o22WHp+ty6++GL9hg0bwvR6PWltbeU2btwYBogx/GPHjqkuu+wy3SuvvFKl0+n49vZ2/uDBg+qioiLTU089VZeXl2c4cOCA+/aHZzlM5BnDGhulmLHzMP586BQeP1oDAPisXiyysiJ7JLZOzMKtiVH4vKEVRwzi0qoPalvQ1Y81b7PZsGNHt/U2ffp0ZGRkYN++fRA88AI4suvP8pi8Ta+Hfts2RPzxj1DEx8O4c2efMUSrhTIxEYqYGAhmecSzh7u+QUySU8bKk9/FBSohGOV53+UqZkR46TZsY5b8QKjVanr//ffXFhUVZV9yySVpaWlpPdZDLlu2rD4/P9941VVXpdps3R6hqVOnGq+88sqW3NzcMfPmzRtdVFSkBwCr1UoWLlyYmpGRkZObm5uzaNGi+qioKNvzzz8fk56ePiYzMzNHq9UKV199dftp/lVlg8XkGcOWlVWN2Nqqxz59dza10SZgR7sBd46IxrVx4rrpZK0KVgrUdHXf/Dc2dWBeTJjL83Z29l1nnZ+fjyNHjuCXX35BYWEh1Gr3MeShEpM3/PwzYLEg+JKL0VVeDvPJvu56W1sb+LAwCEYjBINBluv2WEInIZu7PlAJwWgFFajPVfDMJzp6/DyYKnfOEF6cx5CMy58Bli5d2rB06VK3TQheeumlGvvr6upqR/1od53eSkpK+nQVeueddzzKN5g3b55u3rx5jk5J77777ilPjjudMEueMez4sqENcZt+w9LyanzT1PMBfEe7HmZKcWF437XMjWZRdDkAa+tbHNsP6U0QnKy2pqYmx2tjgBgzzsrKgkajwcaNG7FixQoYjUa38xsq7vqODRvAh4ZCe955UI0cAXNlZR/r1VpXDz48HFxgoGwiDxsF+J4CzAX4nl3vOA8FBJPvFeYaX9/X4+fBVLnreaD0u7KYPMMPMJFnDDvuPHjS7b73a1vAAZgY1p0gRSDeZJvMVhAAtyRGYVOLDnqrDQd0RkzfeRj/rKh3jG9r6+4XbtaKLmqe5zFz5kwolUoYDAbs2rXL7RzsIn82l7U17t4N3cbvEX799SAKBZRJIyDodBA6uq1XW0cHuo4cgSYnB1xAAASD+webwUApBbxc8TAQnEpcUu3KW+ALMXcPrsqdM3aPAmXu+rOWHTt2aLOysnKc/40dOzbrTM/LE5i7njHsGB2ght4m4LWcZBSFBmJRaQW+bBCF2f5/IN+n0iWaLFaEK3lcFRuOVdVNePFkPUxSjP3D2hYsSRG7hjln0TeldFv148aNw7hx4/Dee+9h586dmDJlCngX1znbK95Rmw31Tz4FRWwsIm+7FQCgTEgAAFhqasBLhX+sDaLHVJ2Zga7Dh2FtbHR9wsEiudL9IXlEJSW5WeQrgqYdGwXViMFVueuB3ZJnIn/WUlRUZCorKys90/PwBmbJM4YdJkHABeFBmBgWBEIIwhR9hdYZu9HYZLYiSqlEYWgg5kWH4oPaZuxsF13Q1V1mVJhEcbeLfFNmE3gX5544cSJ0Oh0OHDjg8npnu7u+7dNP0VlaitiHHgQXICa8KRPiAQCW2lrHOLuoK6KjQTQaCB4uIRwQgQIcoEwUC+vwYfKskQfE6nKAvJZ82FzX7W09xRGTZ+56hh9gIs8YdhhtArROZSXVHiZYdVhtCJVE+9q4CLRabTigN2FGZAg4ELxRJYqafXmOLlQHnusr8mlpaYiNjcX333/vMttezop35k4rNq46iPZG+Uq1tn/6GdSZmQiePduxzWHJVztymhyWvDImBpxGDeoiIdEb7ElxMX86D1H/k4u4ByfIcl5ArHcPyCvyPhfqkT6rzF3P8AdM5BnDDpONQst3f7QVkqn+6Kh4xKmU+EdagsvjLJTalyxjSnh3edbfRYXgd5Eh+KZRTOKzV8mzwQae9BV5juNw4YUXQqfT4eTJk332y2nJn9jbhCM76rH7276Z794gmM0w7duHoAsv7FE8hI+MBFGrYalxEnlnS16lls+SpwA4AkIINBnhsvaCd1jyZt/d9aqUEChkWNpHHO56ll3PkB8Wk2cMKyilMAk9LXmz5AZVEoLfpoxxe6yVUiglYXOO2c+NDkOHVcDXTe1oMlu7RV6wOZbD9SYtTew+WVlZiVGjerpz5RR5s5QlbpVBtADAfPw4YLNBnZXZYzshBMr4+B4ib2loABcYCC4wEESjkc2Sh+C/xDtZ3fUCBR8iQwVT5q5n+BFmyTOGFZ3SjTLAyZJP1oo34tEBrt2qdjkxCxS8k7h8W5iBN8akIEKpQH6w2E52n84IQRDAcRxs1AYFcS3yarUa4eHhqK+v77NPzsQ7fZtM1rNEV7nYTU2TkdFnnzIhoYfIt777HqhUcITTqEFlsuRFd70sp+oDcWTX+/5QRM2Cw/3vCw5PBXPXe8XJkyeVs2bNcpsY0dTUxD/77LPRp3NOZxN+FXlCyCxCyGFCyFFCyN9c7B9JCNlECNlDCNlHCJnjz/kwhj/2bHhnd/2tSdFYe95o/C6q/3alzpY8AOQHB+AyqSDO2GDRLbtXZ3RY8hbB4jImbyc2Nta1yPsQkzd3WiE4uXWNksh3GuRJ4us6egxQKKBKSemzT5HQbcnbxZ0PFrPKiVoDarE4tvuEQAEZXfTOdLvrfbfkqVVwnM8XuovhMJH3hpSUFMt///vf4+72Nzc382+++WbM6ZzT2YTf3PWEEB7AvwH8DkAVgJ2EkC8ppc7LEJYC+JhS+iohJAfA1wBS/DUnxvDHKAlggJO7nicEU10Uv7FjlxMLpVC6EZcQBY+0ADX26ozItrvrqeuYvJ3Y2FgcPnwYFosFSmV3MRdv3fWG9i589OQOJOdF4ZKbsgF0W/JdRnnW3Fvr6sQYu7Jv8RllfDxszc0QzGbYpFoBkXfdCUC05AGAdnWBBPgYpz4dIi9DnXih0wqikMFOsj+QDjF3/WNbHxtxtPWorP3k08LTjE9MecJttbm77rorMTk52fy3v/2tEQCWLFmSEBwcbHv//fejysvLD+7atUvzxz/+MdVisRBBELBu3bpjDz/8cGJlZaU6KysrZ9q0aR3PP/98zaxZs9La29t5q9VKHn/88ZobbrihzdUcMPWNAAAgAElEQVT1nn/++ehVq1ZFA4BOp+OTkpK6fv311yNy/s7+xp+WfBGAo5TS45RSM4APAVzRawwFECK9DgVQAwbDB0y2vpa8p1h7uet7kx8cgL06U7e7vp+YPADExMSAUorGXuvH7db/YIvhbF17FCadBWXbah3xW4Mk8lYZLFMAsDY2QBHj2rOpjBOX0Vnr6nok3QGiJQ9AluQ7sRaOn0Te7q738f2iVgGC3gJjSV9PzaDnxLGytp5yww03tKxbty7C/vMXX3wRPmnSJEepxZdffjl68eLF9WVlZaX79u07lJqaal6+fHnViBEjusrKykr/85//VAUEBAgbNmw4Wlpaemjz5s1HHnnkkSR3PScefPDBxrKystK9e/ceiouLM997772+/8FPM/5MvEsE4PxEVgWgd3HnZQC+I4T8GUAggEtdnYgQcgeAOwBg5MjB92tm+EaLwYyaNhNyE/t3d58NONz1nOcibxcUSy93fW+yAzVYV98KoyRCNjqwyANAY2MjEhK6M/rt1r8Az2/qNpuAk/ubQIgogq11RkQkBHaLvEzFXayNjS5d9YDzWvk60E6pcYxD5MW8B1mS7/xpySvkKYYja8e4IVoMpz+L219MmTLF1NzcrDh58qSytrZWERoaahs1apSjM9L5559veOGFF+KrqqpUf/jDH1rz8vL6PHUKgkDuu+++pO3btwdxHIeGhgZVVVWVYuTIkW6fum+99dYRF154oW7hwoVDrlGNPy15V9/S3p/i6wC8TSlNAjAHwHuE9E25oZS+TiktpJQWRkefs/kTZ4TqNhPGP7ER817+Ge0yde/yJ3ZLXsMPXiQslPYumd6DcKUo6EaQ7ph8P+76iIgIKBQKVFX1bF1rL6MrUM+FQtfUCUunDQWzUwAAtcfaYO60wtwpipVclrylodFhnfdGESdW/LPU1vSx5DmNaMnLkXzn18Q7jgAKDoKP2fX2+HnoPN8K4QCsGM5gueyyy1pXr14dvmbNmogFCxa0OO+78847W7744oujWq1WmD17dsaXX37ZJ073n//8J6K5uVmxf//+Q2VlZaWRkZEWk8nk9hO3YsWKyKqqKtULL7wwJD3N/hT5KgAjnH5OQl93/K0APgYASukvADQAovw4J8YAfL2/Fsu+PIjDdWJjpXUl3QL10xG3jZ/OGqy0e7mcpzhi8kL/lnyQZAUaKTxy1/M8j4yMDBw8eBDObS8JIeAINyiR72gSLecR2RHQBitRe7TdYcWrAxSyWPJCVxeE9nYoYlznKCnjJXd9ba1D5Pko8esqp7ven0voAIBTcb6vk5cseTkS78Cy6wfFjTfe2LJu3bqI9evXh99www2tzvtKS0tV2dnZXUuXLm2YMWNG22+//aYNDQ21GQwGxx+qvb2dj4qKsqjVavrVV18F19TUuF0HWVxcHPDyyy/HffLJJydclageCvhT5HcCSCeEpBJCVAD+AODLXmNOAbgEAAgh2RBFXqYC2IzB0qTvwl8/2Yu3t53Ezat2QN9lxS/HmpEVF4zIQBV+LDv7Rd5+n1R4IfLCAMeFSF9yI+BR4h0gtqA1Go0ol5am2eEwSJFvFt3gIVEaxKSEoKlK5xD50GitLJZ8b+u8N5xGAz46CuZTldD9uAlcSAg4qaWuI/FOLne9F54YTyFKzud18nZLnniR+9FnPhyz5AdDYWFhp8Fg4GJjY83Jyck93IvvvfdeREZGxpisrKyc8vJyzaJFi5rj4uJsBQUF+vT09DGLFi1Kuu2221r27t0bmJubm7169eqI1NRUtx/af/3rXzHt7e38BRdckJmVlZXz+9//Ptn/v6G8+C0mTym1EkL+BOBbADyAVZTSg4SQfwDYRSn9EsD9AN4ghPwFoiv/Ftq7lyXjtFDZYsTt7+5Cp1XAC9fk44FP9uLfm46i5FQrbpyUjLr2TvxW6TIB9azCbsn3l0DXH/2JfLBU8tYEDlpCYBWs/VrygFgUJyAgAAcOHEBWVnfTKkLI4Nz1zSZwPEFAqBoR8YGoLG1BW4No3YfHBaKhQudzj3RrgyTybix5AFAlJ8N88iTMJ05AM6a7sJDDku88uxPvALG0re8iL1nyChnmaf+bMZH3mCNHjjhWaWVmZprLy8sPAsAzzzxT98wzz/TpGf/VV1+dcP75t99+K/PkOmvXrj3p41TPOH6teEcp/RrisjjnbY87vS4FMMWfc2B4xsri4zjRZMAr14/HzDFx+GxPFd78+QTMVgFT0iKx5UgTWvTmgU90hrF5IfLOIxX9iKTdXW8CQaBUDGcgS57neSQnJ6Ourud9hyd8n97s/dHR3ImgCA04jiAyIRCCjaKqrAWEAGFSaVWrVYBS5b1L0V6L3p0lDwDasfloWbUKABAye5ZjuyPxruvsTrwD5LHkHS4jOS15Zt8w/ACreMcApRQ/lDXggvQozBwjJlfNyo2H2SogMUyLC9OjERGogq7LCrNVQJvRjFd+OgrbWWh5dLvrvTt+MO56Tyx5AAgODoZer++xze7u95SOpk6ERIrWckyKuOr02O5GBIVroFSL87J5KVzG3XsgmEzd7vp+LPnw6/7geK12qopnT7wTZMuu9/007hBFXp7seiJHWIFZ8mecuro6vne/+KysrJy6urqhGYh3gtWuZ+Bogx5VrSbcddFox7aZObF4akMpbrsgFQqeQ0SgaKm1Gs14aeMRfLizEtlxIZiedXYVkvLGXe88tL/EO5W0LO9UTS1CWlthC7f1W/HOTkBAADo7O2Gz2Rz95XnCD9pdnzpWTHILjwtEQnoYasrbEBShBicJjeBF4patvR0VCxdCkz8WgUUTAaUSfFiY2/GqEd25tOr0dMdru7uedvnu7fE17DAgPPE5yc0Rk5ejGI5zUgjjjBAXF2cbqv3iB4KJPAMf7KgEzxFcmh3r2BYTosEvf7sEYQFi5bNISeSb9Wa0m8Rcl9p2mRqSyIivMfn+DDOVJDw2aX2XQAW3tet7HKcS3zur1eoQ+cHE5M2dVph0FoREax3bzvvdSNSUtyExMxy8lOFt82Lttq2jAwDQuXcf1CmpUERFgQxQYyDptVdhOXXKUdIWcK54J8NnQupC5y8IL0Pinf29lsGSZ4l3DH/CRP4c57fKNnyw4xSuOC8BsSGaHvvCA7tXltgt+RaD2eGmP1KvO30T9RD7rXsw7nriFJXvz5K3u/IFJwHyxF2vUIhjLBYL1FI2+mAsefvyuZCobpFPHRuF6/8xCaHRWhz5VYz3eyPygsFRLAzWRvdr5J0JvuiiPtuIRsbEO39b8hzxXVAFe3Y9c9czzm5YTP4chVKKr/bW4KpXtiJQrcCfL07vd3xkkGTJG7pwqsUI4OwUebslP5gldM70d5z9AUBwqtTiibveXrfeYule7TOYdfLtjaLIhzpZ8gAQFhMgrrlXeG/JOy95s9TVQRkb289o9xDJW0HNMiRn+lnkCU8c69y9xdFMRo552s/BEu8YfoCJ/DmIyWzDnBU/488f7MF5I8Kw6YFpSI0K7PeY8IBuS/5sFPkdJ1rw/744AIu0tInzNru+X0te+l+jQV5+HgAMmF0P9CPyHgZh3Ym8HV4SecE6eJGgTnMyHz8ORXzcoM8BAEQKQ1CbDI1yBOq6XqZMEF4GS56tk2cMEZi7/hzk9S3Hcai2A4/MycLCickIUg/8MQgLUIEQ4Ei9HkazDaFaJZoNZkfb1TOJIFAsfGM7rALFgjjRbex1dn0/lhkhBEpCIICASgLtibvepcgPohhOR6MJmkAl1AF9O8MB3SJv86LBidDL8lbGeinyUkgCMrSa9X/iHed74p0gY3a9/fvDEu/OGOPGjcvas2ePR2vnhxpM5M8xKKV495eTuDQ7FndcOHrA8XZ4jiA8QIU9p8QqkmkxQSipaIVVoFD6sTqZJ2w91gSrZAWV1nYAoZxXFe+Agd38CkJgJcRxkCeJd3aRP3z4MCIjI6HRaMBxg3PXh7ix4gGAk55oBG/c9b1EXhHnnbsedkveIoMlT/28Tl6OmLys7nrxv6Fmydc88uiIrvJyWVvNqtPTjQlPP3XaGt9YrVYoFAoMV4EHmLv+nKOq1YRmgxnTswbf6CcqSIUyqaZ9ekwQAMAsZzcuD7EJFEs/34+L/ncTVv18Ah/sOIUQjQJ5iaEwSDXJ/VHxDhAz7G0goFKvJc6Dbnd2kd+yZQvee+898TgPLHljhxmlW2vQ3mhy66oHnCx5b9z15p5Nh5yXyA0GwnEAx8nkrodfRV5cQidXWVsZsuvtD41DTOTPBB0dHdxFF12UlpmZmZOenj7mjTfeCE9MTMyrra1VAMCWLVsCioqKMgGx1/z8+fNTJ02alJGcnJy7fPnyKABYv3598MSJEzMuu+yy1MzMzDEAEBAQMM6+b8KECZlz5swZlZKSkrt48eLEV199NSIvLy87IyMj5+DBg2oAqKmpUcycOXN0bm5udm5ubvZ3333nNt45bdq0NPu6++Dg4PNefvnlSH+/T84wS/4cw16aNj/J/Vpod4yODsKRej04AoyKFj/TltPQA/unww2objPh2sIRUPIc3vvlJFZvP4XEMC3+sV5c2vrni9NQVqdDtdkKQIlBVbBwuk8PpC0KQiAQ4nAnexKTd65kVl1dLV1nYJH/9avjKC0WezrlTIl3O47nfUi862XJO699HyxEoRgS7nrCk+7EOW+xC7JcXiyODLnEu9Npcdv59NNPQ+Li4iw//fTTUQBobm7mly1b5nb8oUOHtCUlJYd0Oh0/bty4nAULFrQDwL59+wL37NlzMCsrq0+maFlZmXbt2rXHY2JirMnJyXlqtbpp//79h5544omY5cuXx6xatapy0aJFI5YsWVI/c+ZMfXl5uWrmzJnpx48fP+hqDps3bz4KiM1ubr311pSFCxee1vrgTOTPEVb8UI6TzQaEB6igVnDIjOvTgXFAMuOC8c2BOoQHqBAoxfH9bclXtRpxy1s7AQC/nWrD0nk5+OcP5bggPQorby7EP78vh5Ln8OeL07D0swMw6sQlXN5m1/MDZHwpCYHN6dzEgwyxES6sY45wA1a8a683Ol6nT3DvRueVdne9N5a8eI8Lv/FGULMZnNa9x2BAFAp53PV+TrwD57vIOyx5Dzw5niBLCOEcYPz48aZHH310xF133ZV4xRVXtM+aNUvf3/jZs2e3BQUF0aCgIOv555/fUVxcHBgeHm4bO3aswZXAA0BeXp7B3vhm5MiRXbNnz24HgPz8fNPmzZuDAWDr1q0h5eXlji+LXq/nW1tbufDwcJc3xNraWsUtt9yS+uGHHx6LjIz0/Ul4EDCRPwew2gS8tfUE9F1WZMWFIDcxFEovsoKzpAcDs1VwHN/lZ5F/a+tJKHmCy8Ym4JOSKny1rwZmq4CHZmVBreDx0Kzupi/hgSqYWgbvrnceOZABqbS764nkrveg8bmrxESOcAPWKu8yWaEOUGD6jVkIjXYf+uR8seQt4n0u8vbboOynnK0nEIUCVAZL3u8xeRkS7xzufjkteZZ4NyBjx47t2r17d+m6detCH3300cTvv/++g+d5KkiJkL37wvf+7tl/DggIcPtuq9Vqx4eD4zhoNBpqf22z2Qggeud27dp1KCgoaMAPktVqxYIFC0Y99NBDNRMmTDjtFcRYTP4cYPvxFrQaLbDYKPZXt6MoNcKr82TGiTXTTRYb1FIcWA53/bZjTbj61W1Y9XOPRlGw2AR8vqcal2bH4oVr8vGXSzNQkByON2+egNzE0D7niQhUwi4xXlvyAxyntLvrpUcDT0TeFZ6467sMVqSMjcLocf2Lry/Z9XZLnlO5bantMYTnARli8qfFXS/4GJOXsxgOIGbYM0t+QE6ePKkMDg4WFi9e3HLffffV//bbbwFJSUnmrVu3BgDAxx9/HO48/ptvvgkzGo2krq6O3759e/DUqVMNrs88OKZOndrx3HPPOb6Y27Ztc+sCu/vuu5NycnKMd9xxR6sc1x4szJI/B/j2YB1UPAezJAKTR3uX9zEyIgBxIRosmZHhsOTNPoq8rtOCP7+/B80GM3ZVtCI9NggXpItJgVuONKLZYMaC8UngOIJ7L00H4D5mHB6gApXuuYO59/aw5AcYq7C766WD/CryRgvUAQN/RXkpu96bBjUO97rC9fK8QaHgZXLX4zQk3snjrpdrnoQbetn1Z4KSkhLtww8/nMRxHBQKBX3llVcqjEYjd+edd6Y899xzloKCgh4iPm7cOMMll1ySXlNTo3rggQdqU1JSLAcOHNC4O7+nvP7665W33XbbyIyMjBybzUYmTpyomzx58ik3Y2PT0tI6s7KyQgDgscceq77++uvbfZ2DpzCRPwfYerQJU9IicbCmA61GMwqTvbPkeY5g+yOXAAC+L60HAFi8iAM7s35fLZoNZrx/+0Q88ul+PLn+EL6+Nwo8R7B2dzVCQ1SYlunZSoDIIBVARKEezNp957j6QEV0VByB/jSIvCBQmDttbtfGO+MohuOFcFFB9H3IUtRFoZTPXe/PYjgcAahvHgN77XtZGtQAQzLx7kywYMGCjgULFvRpJHPy5MkDrsanp6d3fvDBBxXO2+bNm6ebN29ej0peRqNxj6t9O3bsOOzquPj4eOuGDRuOezJnSmmJJ+P8BRP5YYwgUJxoNuB4kwHXFY1EXKgWrQYztD70HLejUtgted9u6p/sqkRaTBDOHxWJGdNT8OqmY/jj1sPIjg7G58E2qCdFo81mQ7QHIhSqVQKE+BSDGsgDIFry3VfwRuTLy8sHFHmrtBTQk/7wvpS17c4S9/0zIZu73nYaiuEAojXvtcjbAAUn3zxlSAZkMFzBRH4Y89qWY3j+v+KD6PmjI3H7haNkO7cciXfl9TrsPtWGh2dn4aTJjBW6dqAwCt9ZO/FdbScQrEQngK/KD+J/Gr8F0i8FSt4BLrgfCE/ucz61gndY8oPB2Xgf6Fh7TH4wiXe9WbNmDbjC/sva2l3vCtXA5/el1SzslrwMVQsJL5O73u+Jd/YysgK8fiS0Ufni8ej2LjDk48UXX6w5ndf717/+Ffnqq6/2WAYzYcIE/XvvvefSjX+6YCI/TKGUYs128bM1KioQOfEhsp5f5Ui88/7O9O4vFeCVHCbnxuKXNnElTLiCh63aAFNbFy7Pi8dJpRWzN1wNGKuBn54WD9z9DnD/YSC4ZwlWjZKTLHnvb74DJt5xYoMauyhyXooEh/6X0Fklkbe3ke0PXhIbr7LrHVnivlvyUMqTXU9PR0we8CkuTwV5RV7MrmcqP5S59957m++9997mMz2P3jCRH0boOi1Yv68W+UlhsNgEVLeZ8PyCsbi6QExckxOVPfHOS0u+tKYDH+w6Bev0BMzefxTzY8IRzHM4ODUXZqsAo9mGiEAVPtj6KeKN1bAU3Apr9W6o2yvAmVqBbx5E9eUrcd3e48gM1OC1McneW/JOrweKyXOAaMnDe0s+LCwMHNf/Ejq7Jc97EPO1u4x9suRlWO9NeIVsDWr83oUO8M09LsjrbSCEJd4x/AMT+WHERzsr8eSGQwCA1KhAaJU8ZubGyS7wgLMlP3iR31fVhutX/orAuADUcwAosLa+FVPCgsARAo2Sh0YpWpbnt+2BDRw+HPMn/DWoA/OiQ7Gy/j2g+EWsSd2OI8YQHDF24qqmMBSoNV6JvDMDHcuDgPqQeDdq1CiYzWaPLXmFB5Y8IQQcT7xMvBPkseIhxeTlctf7NfFOfE99E3nI621gljzDT7B18sOIkopWaJQcpqRF4kSTAc9fPVZMRvMD9qY0g7Xk2zotuHP1boRqlbj60jQAgEa6WU4K61v+eUTdTuwPTsdfKzoAAN81dQAT74LAqxC39y1cFh2GKKUCa+tbJUvekxp0PXEeP5C7XgydOmfje/4VCg8Ph0ajQWdn54DFcGyDcNcDkETeC6+KTQBkqtomh7ueChSg8HPind1d730+iexr+ZnIM/wEs+SHCZRS7KpoxawxcXh2wVicaDIgW+Y4vDOO7Pp+RP7XNj2ePVGLC8KD8ZfkWBwzdWHqr2VQBHP4dM5YrDR2IFmjwrK0BDx7og7zop3q6VvNwO53wFf+gqOjrndsNlOKOmUYdkZdiIVVX2DOiSj8Z9SteK2xA4ZRAkB8MwIHkjsCeGXJP/zww+A4Dl9//bVD5Puz5G1WcZ8nljwgVr3zdgmdbKVZeQWo1UdL3v7gc1oS784idz1H2Ao6hl9glvwwoarVhEZdFwqSw6FR8n4VeMB5CZ1rkRcoxQOHK/FLmwHPn6jDJ/WteKFMTHaNSgtDUWoEThi7MCpAjdnRYdg8Wons6s3dN/nDG4CvHwAATC64HHePjMGrOWJG/VvVTfjfETfAEJGOqJLXcefJd2ChFBua20EJARnkzXIwZW15iCJvj8l7mpWuVquhVCrR1dUFvV4PhU3RryVvNdstec9c6byCwOaN+9kms7veV5G3f5z8acnbz+1r4h2z5M8aioqKMrds2dKn9vO0adPSmpqa+nzAlyxZkvD444972Vd5aMEs+SGOTaAob9A5MukLvCx0M1gGSrwr1ZtQbuzCi5kj8M+KenxZ14pt1a1AkAKBoWpQSnHc1IWi0EDgx6eALc+LBy78GEifAWy4X/x5zgtIyJ6BxzgOJ4xi85nVNc3oCEqF6u5fgLU3IXLfGoyaejX26kzg+MGLvDMDuuvRc6WTJ13onCktFet4BDQHwBRlcjtuMDF5AOA4L931VJDPklcqIJh8K81tf/CRY0mfO+yFf3xPvJNpQoC4Tn6IifwP7x4a0VKtl7WffERikPGSm7Jl625n7wB3LsMs+SHMySYDLnphE2b9sxjvba/ALZNTkB0/+O5y3jBQ4t3mVnFJ3MWRIZgWEYyfWnQwakVBPGHqQqPZCoNNwNSWnaLAZ8wSDyx5B3jjYsAorUQput0RMx6pVSFEwaHZYsXYYC20PAdMuA3oasfVHbtwxNgJniMY7IJjZ0Hx2F0vDRxs4t0FF1wAAKAa2q8lb3e9cx4u0/LaXS9nTF4Od73gf3c9HNn1PsTkZS7YQ1g/eY84fPiwKj09fYz958cffzx2yZIlCfafbTYbrrrqqpR77rknAQCce80/9NBDcSkpKbmTJ0/OKC8vV9uPefLJJ2NGjx49JiMjI2fevHmjAGDDhg1B9h7w2dnZOa2trS6/JPPnz09dvXq1I854+eWXp65Zs6ZvY40zCLPkhzDr99WgssWE568ei6QwLc4fHelXC8gZ5QCW/PfN7cgO1CBOrURhcADeI80ATzAhJBA7OwzYpzchwGbCtG2PAZFpwDXvAJ/eDhz60u01eUIwPjgQP7XqMDtK+h6lXAAoA3F+x168HHR+n6IinQYLasrbkJof5dF741HinbO7fpAZAOnp6SguLgYnDFTWVtznuch7l10PWWPyvO9L6Bwi7/t83OFY334WxeSHorteTotbDiwWC5k/f35qTk6O6bnnnqtz3ldcXBzw2WefRezfv7/UYrHgvPPOyxk3bpwRAFasWBFXUVGxX6vVUrtrf/ny5XErVqyomDFjhqG9vZ1z17Xu9ttvb3zppZdib7jhhrbm5ma+pKQkaN26dSdcjT1TMEt+CHOoVoeREQG4tnAEJqd5JmJyoeAICAEamndCpzvYY1+bxYod7QbMkIRYrbM49l0WI27b22HEgyfeREBHJXDZvwClBhg1TRwUJIXK4s/rc91/pCfib6lxuDkxStzA8UBcHka3lcEkCCBKzuGuN3aY8eb9xfjmtf1oqnLfdtr5XRvoLeQBCE7ZfTw3OHc9L8W/w8rC+k28G7Qlr+AgeFsMR66YvFIBWGXIroefs+s5GdbJy1yVT0y8G1oif7axePHiZFcCDwCbNm0KmjNnTltwcLAQEREhzJgxo82+LzMz03TllVemvvLKKxFKpZICwKRJk/QPPPDAiCeffDKmqamJVypdr1KaO3euvqKiQlNdXa148803I+bOndvqbuyZgon8EOZQXYejx/vphlIzlJwNjS07cfjw/+uxb3ubATYKTI8Q53aish3Kox24NiYchaHiMrm9OiNmNm9D56hLgJSp4oG5VwNT/wL8z7fAomLgxs/6XDcjUIP7UuIQrHASpvh8RLYcAqECqKI7trn3h25Dw9DW5dHvNZAlTwDAB0veGdpPWKFb5D1fQudV4p0gX0xeHne99P9pyK4/+xLv5DvdcEWhUDh6xwNAZ2en48NbWFioLy4uDjEajS7/MO6MoE2bNpXffffdjSUlJYH5+fk5FosFTz/9dN3KlSsrTCYTN3ny5Ow9e/a47Vx37bXXNq9cuTJi9erVkXfccUeT97+df2AiP0QxmW042WRAlp+z6N3R0PgdeGKGVVBApy/rYYX80qaHliMYFyLm5NS0diKx0YIVY5IRpxKfchsbjiK1sxrKjBndJ9WGAZcuAyJSgfixQICHSYRxueAtRozsrIOg4Bzu+sZKHTSB4vWMHWLf9OZqPd577BdsWlMGQ7so/INpNdu74t1gE++cb1AeWfIeCgnvdTEcm2wxeTnc9ac38c4HVfWhuY1LhqC7/kyQlJRkbWlpUdTV1fEmk4l8++23jvj3okWLmmbMmNE+b9680RaLpcdxF198sX7Dhg1her2etLa2chs3bgwDxBj+sWPHVJdddpnulVdeqdLpdHx7ezt/8OBBdVFRkempp56qy8vLM/TXnvbOO+9s+s9//hMLAIWFhb5lnvoBJvJDkDajGY9/cQACBXJOU6KdM1arDpWV70DBCQgMngBBMMFqdXi/UGboRGagFmpJPGrbOxEfJn5HYlRKJHQ14u/7/g4A4NMu9X1C4SkAgBGdtTCrOdgkAW6p1iMpKxxAt8gf29OIjkYTSotr8MnTO9Fl6ilKnmbXO2rXDzLxzvlhSN7EOx+K4cjQZhYAiMJ3d73Duvbnnckuzj5ovNyWPCtr6xlqtZref//9tUVFRdmXXHJJWlpaWifDYfsAACAASURBVA9RXbZsWX1+fr7xqquuSrU5FWaaOnWq8corr2zJzc0dM2/evNFFRUV6ALBarWThwoWpGRkZObm5uTmLFi2qj4qKsj3//PMx6enpYzIzM3O0Wq1w9dVXu+3/PmLECOvo0aM7b7jhhrOubj3gYeIdISQOwEjn8ZTSbf6aFKN/Vm09iU9KqgAAYxJObyJnZ1cdfv11FqxWHTSqWxz3yS5zE5RKUVCPGjsxKSzIcUxNu0kMK+gboVBq8GTFGyjqOIC6gATERaX5Pqkwcf18hrkOPwOwARBsAgztZoTFBUClVThEvvZoGyKTgjDxslR8/ep+7PzqBIxhHNRUQJeKG9A44yAm3tk7yA3W4kxKSgIAWCIt/Vry9hu+37PrBRvIIPMK3KLgz61iOB4ub/QIZsl7zNKlSxuWLl3a4G7/Sy+95Og+V11dvd/++rnnnqtzFa8vKSk53HvbO++843FSoU6n406ePKm+9dZbWzw95nQy4KeUEPI0gB0AngTwmPRvqZ/nxeiHnw43IClci8/vnoIREbIuU+2XpqZN2Lp1CqxWHbKzn4NWFQirID732awGAIDRJqC6y4LRAeIKFUopats6kalpB/6VD/x7Ei6p/wkA8NbkF+WZWEgiQHg8FC4KuQ2ASS+66wKCVQgIUaGt3oiDxdWoKmtFQloYUvKiED86FHt/rETrpxUoKhdd9wN1sHMsoZMYrLue4zgEBwfDQhQ4VT7d7RJEm7TdU2vRa0teoDJa8kp5ytri9CTe+SKq/ojJM0t+6PH5558HZ2RkjLn99tsbIiMjfW/B6Ac8seQXAMiglA461kAImQXgXxCTkldSSp91MeZaAMsgekH3UkoXDvY65xJN+i7sq2rHkt9l4LwRYQMfINd1mzZh/4HF4PkgZGc/g9iYOVApNsNKxY+Q1SZmr1d2ikKbqhVFvsNkhcliw3jLbsBiACwGqAEsyfgrohP6Zs97Ba8AgmIQYmoClBQCAUxSRr9WEvnK0hZUlrZAE6hEWkEMCEdw5QPj0VJjwIdP7ECYQfx+DmQ4c6Cg6O4n703smOM4NLWEos2YgX1V7ShIDu8zxm6V8x4n3nEQvImHCzYQLzrpuUKeineS0PlzpYgMIu+Psrasru3Zy44dO7Q33XRTqvM2lUol7Nu3r2z+/Pn73R13NuCJyJ+AFxEyQggP4N8AfgegCsBOQsiXlNJSpzHpAB4GMIVS2koIiRnsdc41fi4Xkzcvyow+bddsa9uFffvvhFabgsKCDx1ueSXPwSKIlqzNKop8bZco8vFqMeGtpl2s6pbcWQZowoCL/oaOXe+iOnUGboqSMdQQFANiaAAXIj4tmvTiPLTBSkeTl7EXJ2Hq1ekOC4wQgsjEIKiSAhFi7GnJdxos6DJaEBrd01Nid9c7Ws16ETzmOA48EcXQ5kZoHBbtIGLy3mTXy7mETh53vfS/P931nEzuepZdf85QVFRkKisrKx145NmHJyKvA7CHEPI9AMc6JErpkgGOKwJwlFJ6HAAIIR8CuAKA8xt1O4B/U0pbpXO6jbMwRH6rbEOAij9tsfjGxu9w4OBfoNEkoLDgIyiV3d4DlYKDTRJ5uyVf0yVa0HaRb9SJH5mo9v1AYgEw6S6ETLoLH8k90aBYQF8PgIBCgEkniXyQCs3SGvnR42Nculj5UCVCT5mQWmdBxc+1qG6zYO+PYkju+r9PQlhst9DbRd7RoMaLzHSO4wAqnmDbsSYUpfZdRSDYxHar/s6ul7UYjqzuejlm5Ab7uc8idz1LvGP4C0++Sv8F8DyA3QAOOv0biEQAzskLVdI2ZzIAZBBCthJCtkvu/T4QQu4ghOwihOxqbGz04NLDl4M17ciOD5HKt/qXxsbvsG//YgQFZaKg4JMeAg8AKp7AYhPnYbMZAQB1ksjHqZWAIKDdYIIWndC2HRFF3l8ExQD6BtiL2ppNotioAxS48A8ZiEwMRNwo1w9GnJIDbwPm/6rHwU+POwQeAI7srO+RBW8/v6+WvL3Y3Wqp50BvBJvgcdId4EMxHIGeZQ1q/O+ul8eSB1tCxxgSDGjJU0rfJIQoANjToI9SSj35Jrv6BvT+FCsApAO4CEASgGJCSC6ltK3HQZS+DuB1ACgsLDxnvwmCQFFa04EFBUl+vQ6lFJRacfzEywgIGI3x49aA57V9xqkUHExmmzQ3KXu9y4JIpQLqrg5g1UzMbKnEKcUlIFTwr8gHRDrq3VMQWLrEeSnVPEaPj8Ho8f1EgqTOdW0BHII6bbj20QmIHhGMdc/vws71J3D8t0Zcfs95CAhRiTF5Z3e9C5PTWFKChheWo+vIEagzMxF9770InFjk2M/zPIJVZqATuHVqap/jAdGS99SKB3woa2uzySdWMrjrHcI7iAecQXOWJt4xkWf4A0+y6y8AcBTAmwBWAThCCJniwbmrAIxw+jkJQI2LMV9QSi2U0hMADkMUfYYLKlqMMJhtGJPg3wI4x46/gE0/5UCvL0VK8h0uBR6QYvKSd5ZKIl/XZUGcWiG2iW0sg8pmwN0KqR594nj/TVodDNjMUAkWgFCHyCvUA1uphBOd/CBATGYYokeItQemXJ2O+LRQNFfp8c1r+9FYqesbk+8l8tRqRdXiu2Gtr4cyIQGm3btx6uabYamudoyJjIyE2maPybtp1WujHle7A7zPrpdzCR1RKABKQd38Tp5NSDrX2W7Jy1wMh5W1ZfgLT+4iLwGYQymdQimdDGAuxIz5gdgJIJ0QkkoIUQH4A4De3Uc+BzAdAAghURDd98c9nfy5xi/HREvVn/F4o/EEKipeg1Y7AqNHP4i4uKvcjlVwBHZdsVvy9V0W/K51J7D/E+CiR/DpqCfEAZxSdKn7C5UozIE2o8OSV6g4hzXc7w2UEHAU4AWAV3R/JeJGheKqBwqQdf7/Z+/Lw6Mqz/bv9z1nlkz2QBICgYQlCQmbrAoiCipuiFpwr/Wrn7Xo11+1uLW1n6W1fpa6tZVqtdYu1p1VgWq1sgkii6wJYQkQIAuE7MlkZs457/v745wzM1lm5szMmUDs3NfFRWbmLG8mM+c+9/Pcz/MMQO3RZixdvAO2Ghe4X5CqK8m7ysqgNDcj67FHMXT5MvR/4AEAgPvYce82oiiqNxUAPAHUN2M8vHC9QMEiIS0zm+EIWmAwGjXfq81wolTyZkYb4sa7OHrAb37zm8wlS5b0i+YYRox3Vn9HPOf8gEbaQcE5lwkhPwDwCdQSujc456WEkF8C2ME5/1B7bTYhpAxqefOjnPPzsmvQucY/tlbiZyv3Izc9AQXZSaF3iBA1NcsAEEwY/xbs9pyg2wqUQGEchFh9JO+RMKvmU8CeCkz/EbYu348O4Qbceec9MVszAFXJA0iWnThrSYbkkmHRVLyzuQl/f+z/YcCIIsx9+CegXZQroQDhAGU9N5+5eF4B+ucm44sPDsNR0QFWbPU2w+lK8u7DhwEA9lGjQCwWpN50I86+/DLkMz5PKaW+ITqB6uTDDdcLAoEiR0BanJmo5NXjcFkGsYa8RPS8HL2t7XleJ2+6u74PGu8+eeW3g8+erDS1UUf/wXnOq+5/6Lyabncu8dhjj0VtQjNyv/w1IeRVQsh07d8rAHYZOTjnfC3nvJBzPpxz/rT23JMawYOrWMg5L+Gcj+Gcvxv5r/LNhcI4XllfgYl56fj4oRmwiSaVPHVBTe1KHK/8IzIzrwpJ8AAgChQyY6DUCsY9UDjHWbcHo2q+AEZcAYhWNLoY3ky+Fxh2WUzW7IVNvfFJUpwAATwuxUvyO9asRHtTIyp2bEXl3t3d99Vy8gLjEHogeXuSBeMuH4yMgYkQWxVtQI2KriTvOX4csFhgyVHfPzFTLXWUz5z2biMIgjcsLQUwy4VtvIs0XG/mPHlR1I4ZhcO+F+bJmxGuN91dH8/JG8aiRYuyCwoKRhUUFIz65S9/mXXw4EHr0KFDR9166615BQUFo+bOnTt05cqVyRMmTBiZl5c3et26dQ4AaGlpoTfffHP+6NGji4uLi0v0OfCtra302muvHVZYWFhy3XXXDRs7duzIjRs3OgDgzjvvHDJ69OjiESNGjPrRj37knVu/YcMGx/jx40cWFRWVjBkzprixsZEePHjQOnHixKKSkpLikpKS4k8//TQRAFavXp08efLkomuvvXZYfn7+6AceeGDQK6+8kjFmzJjiwsLCktLSUltPvycALFy4cOCTTz6ZHc37ZUTJLwDwQwCPQTXTbQTwUjQnjSM8fF5+BlVNHfjZdcVIshnqRBwWOOeoOPocKiv/iPS0izCq5DlD+4makqdUVfJnPTLGtB5EoqseKLgKANDcISE1oRdGL2pKPom1A4TA45Zh0d6rI9u2YMiYC3Dm+FGUf7EeQy/obAAkRFPyPPjUt+QMO4TaFgCAEkDJSzW1sGRnq/lpAHJdHYjNBvmsL0BFKfWG6wMq+UjC9REa78ybJ6+RfDTh+t5shhPNqNn4PHmcC8W9adMmx9tvv91v586dBzjnmDhxYvHll1/eevLkSft77713dOLEiZVjx44tfuutt/rt2LGj/O233057+umnc2bOnFnx05/+NGfmzJktH3zwwfGzZ88KkyZNKp47d27Lc889l5mWlqYcOnSobPv27fapU6eO0s/3wgsvVGVnZyuyLGPatGlFX331VcK4ceNcd9555/C33nqr4tJLL3U2NDTQpKQkJoqivGnTpkMOh4Pv27fPdvvttw/bv3//AQAoLy9PWLp06dGsrCw5Ly9vjM1mO7tv374DTz31VNbzzz+f9cYbb8TsvTTirndBLaH7TawWEUdwfFZ2GmkOC64sieqGLiCqqt5GZeUfkdn/Sowa9UJAo11XCJRA9iP5areESS1adeWwywAAzU4J+f17ofWulpNPkjsr+eYztWisqcYFV82BPSkZJ8v2d9+XqANjBQaIQYg1KcMO4UgjADW3BHQneaW5GUK62izozPPPo/5PrwPQFL6+j1+4PmBOPiLjHQfnPCzTGmcs4tB6V+jh+mhy8rp1IpbhekJJ9OHxGHS8ixvvQmP9+vVJ1157bVNKSgoDgOuuu65x3bp1yYMGDXJPmTKlAwAKCws7Zs2a1UIpxYQJE5y/+tWvBmr7pnzyySdpv//97wcAgNvtJkeOHLFu2bIl6cEHHzwDAJMnT3YVFhY69fP97W9/y/jrX//aX5ZlUldXZ9mzZ4+dEIKsrCzp0ksvdQJARkYGA4CWlhby3//933llZWUJlFJUVlZ6FfqYMWPa8/LyJAAYMmSI+5prrmkGgHHjxnVs2LAhplPGApI8IeQdzvnthJBd6F76Bs55DK3Scfijoq4NhdnJEE0ySPmjpXU/Ko6+gJSU8Rgz5uWwWpx6lTyxgjMPTrjcGNpxCootBYJmsut1Ja84AaoqeYdD9Ibn88aOByEEh77chJa6M0jJ9JkACQEo52pOXgym5G2gLgaLzMEsPdfJyw0NkI4fx4GRxQAAy+DBkE6ehPuYz0/qr+TlYDn5MJS8IKrbsgAph4Awc558HwnXe49/Hk2h64tK/lwg0I2Q1Wr1vkAphd1u54CaGlMUtZkH5xxLly49Mm7cOLf/voGOWV5ebl2yZEn2zp07D2RmZirz5s3Ld7lcVLuR7rbT008/nZ2VlSUtW7bsGGMMCQkJ3pChzWbrcX2UUu/6YoVg3+5Htf/nA7i5h39x9BKOnm3H8MxE04/b2PgVdu68FYrSiuHDHw67h7lAKWTGQagVCnPjRIcHg9xngNTB3nBrU4cHaQ5zlGJQWNRRtnamfn8ljwLBIuD43q+R1K8/MgbmIrd4NADg1IEual4z3gkMQQkyOUM9x8UHOqA0WpHgSe6mmqWqKrD2du/jYR+uAk1KgtLoa/0gCELocL0SHonoqj/ckD1n5uXkzQ3Xm7CgICDRDoRh3NwKAO2mI67mg2PWrFlta9euTWttbaUtLS107dq16TNnzmw1su/MmTNbnn/++WymlXhu3rw5AQCmTZvW9u6776YDwM6dO+2HDh1KAIDGxkYhISGBZWRkKCdPnhTXr1+fCgDjxo1znT592rphwwaHth2VJAnNzc1CTk6OJAgCXn755X5KlN0fzUJAJc85P6X9WA3AxTnnhJDhAIoA/Ks3FheHOju+od2Dof3NJXmXqxp79z0Au30QLhj3FyQkdG1GGBq+nLwFnMs46fLgUqkBQppqOnPLClwSQ4rdfB9BN3hvUDSFLDMIIsGx/XtQMGUaCCHoPzgPtsREnCovRcmMWb5dNeMd5cDBzeuQnnEY46++vtspckakgSVQXFLmAspycTd+he2JJ3HFHb6SRtakknnmwoVIuWo2aEIChPR0SFVVkOvqIGRkgFJd/3NIQcL14ShyXfWHnZdXFBOn0JkQrg+zZ3/EiEI5c8YBbm5KwXuvyBHzG5y+jOnTpzvvuOOO+gkTJhQDwF133VXXv39/Q2z661//uvq+++4bMnLkyBLOOcnNzXWvW7fuyKOPPlp3yy235Gsz5Z1FRUUd6enpypgxY9yjR492FhQUjBoyZIh74sSJbQBgt9v5W2+9VfHDH/5wiMvlona7nW3cuPHQQw89dGbevHnDV65cmT59+vTWhISE86Io0sjVdxOAGYSQVAAboDrrbwPwnVguLA4VR8+qqnBYf3PL5ioqnoOiODFu7PKICB7QcvIKAyECOJexq8WJh6UmIHEcAKDVpV7sU3ojXK+RPNGUkCIxSK42uNvbkTd2vLYJxaCiEpw60KUrs5+73t3eis//+hoGFpUge+jwTpslZ9jRdkt/NKxtQH6d+rtVlzUDALgk4fBlMwEA1uHD0f++73n3E5KTITGGw5fMQOq8b4HOnAlHezuIwOEJoOQ5C99dDyBshz1nZpbQmRCu9yblYy3lowiPxyKloP+tzTb0fQOxaNGi04sWLTrt/9zhw4e9X+ply5Yd138uKiry6K8lJSXxt99+u7Lr8RwOB1u+fPkxh8PBS0tLbbNnzy4sKCjwdD2WPy699FLnnj17yv2fGzNmjPvQoUPecvM//OEPVQAwZ86c1jlz5nijDdu2bfPOr+/6Wle88MILXRvIhQ0jt/CUc+6EOnJ2Cef8egBjoz1xHMZwrE4jeZPC9bLcjj1770Pt6VXIz/s+HI68iI8lasY7Qiz4oOMC7Gt1op+nAUhSy8Z0ko9FRUA36CSvJVplj4z2pnqAEAwZPc672aCRo9BYfQrtTY2ddtWNdyMmTkJCUjLW/+1PPYdObQRvzkqB89bD2JuzHh0tEjjncB89CqVeddCzjo5Ou9AUX4fC5mXLkbx8Oa7/aDVSPe1BSuh6J1wPZl4zHJgQrtd7+sea6IgQufGOx4LkiQld+OKICK2trXTKlCkji4qKSm666abhL774YqWeM/8mwMjVlxJCJgO4A8B92nOxKdSOoxuOnm2DSAkGZ5jjUD946Oc4e3YdBg36NvLzfxDVsQRBJ3kBn7uLUCBKEBU3kKia2to0kk+2956SFzSWUFwetJ6tRU5BERwpvnB6brFaHXPqQCkKL7oYktsFDjVUDwCZ+fkYPPIufPb6H3Bo6xcomnpJ59No/zMCtFkbIXsY3E650yzwtFs6W1aEjM5T5iwn1GqZi2pK0VKc36Mjnik8qAmwK3Qlr4Q7pMbMefJ6Mxwp+px8TJvhANEZ3WKwRu+x4jn5Xkd6ejrTS93OFR5//PEBq1at6nShuOGGGxoWL15cG+2xjZD8QgC/ALCGc76fEDIMagg/jl5AdZMLA1LtsJigturqPkNt7Qrk5/8Aw4f9KOrjWSjVOt4JaOSJ+K5DM61qzvpWlzqRLjnWOXnOgaMbAQBUI3mucIieKoy4/KJOm2YPK4AjNQ0b3/oLtn+4FKePHkFb7k3oD3VQjCBSjLl8Nvb++2N8+qclyMwbhoyBvnSGNx0ADpeoRlncThlWt8+wa83p3EgoYVQJWteu9T52d3RABDC8uRp/qKjH0J+sxdafXI4BqXbvNoxxWMJx10eYkzdznrwergczw10f/XqCISrjXSyUvBm1+3H0WSxevLjWDELvCSG/Spzzzznn13LOnyaq3DjNOX8gFouJozva3LIp4W5JakT5wZ8hKWkkhub/jwkr87W1ZdyKZu7AQGhhars6krbFq+RjRPJ1B4HVPwL+fgOwQs2BU3AM7DgNQgSUpNZg3ISizmsWRUyddzta6k6jpe4MJl3/LThSfGWqVCCgVMDchT8FpQJW/uaXcDt9bnn9C6OAQxI0J79bBvMjeZrYObViHTGi02PS0AAAGNDua5BzvL690zZMCa83esThehOb4ZgTrtdUcqxz8tEa72CuOdDbhS/O8XGYDCNT6P5OCEkhhDigzpE/RghZGPulxQEATo+MxChJXlE6sH//Q5CkRpQUPwtKzSlpE7ULUyNSwEGQCbV/PaxqasGr5G0mh+vdrcCpHcDSe4Adb6hkP/RSAADhDPeeWgaAQiASbDVbu+1+wVXX4bsv/hH3/PY1XPrtezB4lM9iImhkmZqVjbkP/xSNtdX4auUH3te9Sp4zyKL6+0ouBdzt8W7TleTthYWdHtu0G4IhLT7vkLVLaJ4pLOxRs+p+YSp5buI8edGEEjoeA5XcA6JT8tr/pip5/dhxlo/DXBi5hR/DOW8BcCPU0rlcAP8Vy0XF4UO7W4mK5BlzY8+ee9HQuBkji55GcnKJaWvTQ8T1TDWWeUneopJcayyUPOfA+3cDr18OnN4P3Pw34JGDwDVqQ0YKDlG7CAvEA1Ss6/EwGQNzYU9SKxb8c6v+jvbc4tEomnoJ9vxrLSS3S91WK9FjABRBvYnxuBVIp3xdKamjs39CzOo8fU/Q6nT7dzSDaOkFoaecfDhKXtSVfJg5eUUxLbdsRgldTAi0J5ih5GMRro+TfBwmwwjJWwkhIoAbAKzknHsQH4rYa3B6ZCRaI1daVdXvobFpK0qKF2PgwPkmrsxPyTM13J3GtZC1puTb3Jq73iySbzgG/PsXQMW/1ceXPAKU3KD+LKjRAsoZqNZAShw0FqjaEfq4ftfqrsQ67oqr4elw4sh2NSLgn5NXRJXkJZcCudHPrW+3dzoG6UEpn8odBAqOBFl9z+QuM9gjaWur7xcO1GY4508JnS9cb8qSAoOSyPPfMcjJk7i7Po4YwchV5HUAJwCkA9hACBkCoC2mq4rDi3a3Aoc1MpJkzI3KyleRljo56Fz4SOBsbsKJvbu0n1WCsitaTt7iC9fbLTR606DsBjoagd9fAHzxotoX/3/rgcv/18cGgpqCoOCgTH1OSEwGnA0hD99ZyXdea27xaKRkZmP/+s86Pd+J5N2yOpddP4Yt4FApL8727w8ASPKo75mny5jY8AfURFYnb2YzHG9O3gR3PWLcDCeacH1cyZ9fOH78uOXqq68eFuj1s2fPCr/+9a8zIzn2wYMHrQUFBaNCb3n+wsiAmhcBvKg/JoScBDAr8B5xmAk1Jx+Z0qquWQa3uxYlxb8x1cjEmIKl//ckTtQ7gP6XwLWiDLj5Klh1krf6wvVRl89JHcCfrwRq9/me+9brXkLxgqqPKWfYlDoZkwAIFgFgkloLHsxcRnoO1wNqA52SGTOxdfl7aG9q9Cp5Bg4mqmTmcSngiqweh3OQHki+aO8esOZmHL5kBgCgLVEbjSt14AyAjYfrMHV4P+/2kcyTBwAl7Jy8ic1wLLqSNyEnH2spL5xfzXDMGH/b22hYemiwVNtu6vQpy4BEZ8b8wrAmsuXn50sff/zx0UCv19fXC3/+85+zfvzjH0c9m70vIuCVjxByu/b/D/3/Afh/UMfPxtELaPdEpuQ5Zzh58g0kJ49Bevo0U9d0bNcO1B0/irGXqfd6rNmFQbUnYJW7Knk5+nz82kc6E/yMR73NdjpBC9cTcLhIgvaURl6Ku/v2fiBBwvUAUHTRdIBzHNn+ZadwPRe0mnyJqUpeO1DXcD0AUKsVYmYmhi5fhvabb4FkVdebJKnvmdiFMMKfJ6/l5OUwSUJhppGVNy1hhrv+vDbexbCEru9w/DnB/fffP8hflS9cuHDgz3/+82xdbe/YscM+ZsyY4pEjR5YUFhaW7Nu3z/bwww/nnjx50jZy5MiS73//+7nNzc106tSphSUlJcWFhYXeufKhUFZWZi0uLi7ZsGGDo6fzxOp3jhbBrsDp2v8RhTniUMGYB3V1/wKhFvTvdxkoNf5ZkBQGj8wiysmfPfs5nM5jGFXyounlSCfL9kOwWJA1ogDYXwbFYsGoQ7shZlIABLCoJNvqjlLJ1x0Cdr8NXHg/cOUvgKaTQP8RPW+rh+s5g8yt2lPax1t2edfUE/wJReihAU2/wXlIH5iLQ1s3g8yeB4BAAQMRNMKXGThT1GgBY6BBRrfaS0ogT50K+Z9r1MeKalbcc6oZda1uZCarnw81XB9JTj4S451Jva287vpo6uS1/89n450Si3C99n8fUvLhKm4z8O1vf7vhoYceGqKr8lWrVqUvWbKk8u233+4PAC+99FLmAw88cPr+++9vcLlcRJZlPP/886fmzJmTUF5eXgYAkiRhzZo1RzIyMlhNTY144YUXjrzjjjuaaJBo3549e2y33Xbb8D//+c/Hpk2b1nH33XcP7nqe8xXBBtS8rP3/v723nG8eqqvfx8FDPwcAjCz6FTIyZoAKNtis/UPu63SrF0tHmO56j6ceB8p/goSEPGRlXRP+okOg5lA5soeOgKhd1KWhA1F8ZC/EyQWqitduKlpdEpKjKf9b+7A6J/6ShwHRFpjggU45eQXqjYWghY/hagYS0gPtGVLJE0JQeOHF2LbqA+CyOQASoEBtO0soUbvMhVDynY7nSIKiqV6roub1Nx6qw81/3IL1j6r978MN10c1he48KqHzqutYG++ICUo+FnXy8WY4QXHxxRd31NfXi8ePH7fU1NSIqampyrBhw7z1q1OnTm1/7rnnck6dOmW97bbbGseMGdMtJ3kD0wAAIABJREFUjMcYIw899FDu1q1bkyilOHPmjPXUqVPikCFDevzgNjQ0iDfeeOOIDz74oGLSpEkuo+c5X2CkTn4IIeQ3hJD3CSHL9X+9sbhvAmpqlyMxsRA22wA0NGzGli9nYPv2Gw3t2+5RP3PhKvljx1+CLDdjzOg/gFJzatTbmxohSxIUWcLpY0eQUzjSa6hzDRkIq+SB1Hja66wH1La2YTXy4Rw4vhl47y7gF+nAsY3AZY/3HJ7vCj93vaLdu1JR+91/Ny7QXiqC5OR1FF50MThjaD59Wlsqh0AECCKBInNwpqi8ZLH06KbvdDp7gpfkbRrJA8Dxeqf357BL6CKdQmfiPHlvx7tocvKMAyT2zXCIQCKuEYpJSkH/fePdcELi+uuvb/zHP/6R/tZbb2XMmzevk7N2wYIFDatWrTqSkJDArrnmmsIPP/wwuev+r776akZ9fb24b9++A+Xl5WX9+vWTOjo6An4JkpOTlZycHM/69eu9U8KMnOd8gZEr8IcA/g7gU8RL58JCe3sFWlr2YMSIn6Ct7QBOn1ZDtG53jaH9nRrJh6PkXa5qVFW9h5ycm5GcXBz2mt1OJ6oOliJ/3ARQLYxbe+QQ3l30uKr6ADBFQe7IUWjVLnIerd6cO5u9+XgAaHfLxsvnOAc++zmw+Xedn59gcNih1n+d+uXkqdXYDY4/nwgBQuSZeUORlp2DU6drgH75kDkHpRSCSDspeWoJfU6SYO+m5LuCh93xLvIpdGbNk9cjAlE3w+mNKWwm9K43tfWu0PeMd+cKd911V8P3vve9/MbGRnHDhg0HXS6X9wOj5c3do0aNOnP06FHb7t27E6ZMmeJsb2/3/rWam5uF/v37SzabjX/00UfJ1dXVQbuDWSwW/vHHH1fMnDmzICkpiS1YsKChp/PMnTvX0Fz73oaRK7CHc/5CzFfyDcTJU38FQDEgey7qLWmorV0JALDZBhjav10L14ej5E9VvQ3OZeTnRdZ5+NPXXsLBLzdh+u1348Ib1UErO1avgCL5yCgzbyiGjp+EwwdUs6rbrpI8c7V6nfWAmpM3rOT/PldV7hfcCcx4BPi9Oh4WNoM3yIRog2YY3LADcEFwpITay7uvjkDqmRCCwosuxlcVahqSMQaBCKAayXOmqCNrQ4TqAYAT2qOS977OedgldLqXIFx3PRQFxKx58toNTjQ5ec56YTgN1HOw86iEzhu5iJN8SEyaNMnV3t5Os7OzPXl5edLBgwe9JP3mm29mfPDBB/1EUeSZmZnSM888U52dna1MnDixraCgYNSsWbOaFy1aVHvNNdeMGD16dPGoUaOcQ4cOdYU6Z0pKCvvkk0+OXHbZZYVJSUmstLTU3vU8sf2tI4eRK/BLhJCfAfgEgDfvwDnfG7NVfQPQ3LwLVVXvIDf3LthsWUhPm+p9jRiUAHq43qi7XlGcqKn5AP37z4xoRryrvQ1Htn8JANjx0XJcMPs6UEpR8fU2jLvyWsz49nchWq1gCoMgihC0i5xLC9FzyQnYVeMY51xV8kZIvnqXSvAAMHeJ37zR8EHAwYgWrk80ZJqF/xC2YGa3UZddARz+MwAgcW0lsoZRCCIBkxmgERsJYrrzX6VXybPuJK+Tj9AL4XpTm+F4lXzP0QlDYLwXOuHAJCUfr5M/V/Cf2+4/M/6ZZ56pfeaZZ7oNevnoo4+O+T/evXt3eddteoL/sfv376/4T6vr6TznI4ywRyGAewFcA1+4ngOYEatF9XVwznHw0C9gs2Vj+DC1zX9CwiDkDfk+Ghq+gLOj0tBxdOOd0Tr5U1VvweM5iyFDvhfWeretWop9n3+C/HETocgyZn33+/j8L69ix+oVYIoM2e3GyGkzYLVrYXCNFESNWDzEAoVScEUCBFV5d0gKGDfQ7e7zp4GNvwEEG3DvZ1romALTfwSMuCKs30NX8lplG2h2IZCSC7Dg4eNAbW27ImNgLjJy1JsnwoChZRRCJvXm5EFIUGe9b50kuJKPwL0dsbvexHnyvpx8lFPoekXJn1/z5PUbzSjub+OIo0cYIflbAORzzs9b9+D5hjN1/0Rr6z6UFP8GougLN48Y8RiOHrXh2PHfg3MFhAQnb6/xzoAaluV2nDz5V6SlXYj0tMmG11p9qByb3v4rAGB37WokJKfggtnXoXLfbmxd9g4AoGjqJRhU3L3pk6Dlcj1MgCxaAMXjNcDps+SDKvmj61WCHz0fuOr/gORs32tXLDL8O/hAQMEheJUwBUZcDhz6JPhe/uF6MfiFO7eoBGCAMz8JA7YDQo5fTh7GlLzCARACDxV7zMnrajy8Errw3fWcc9V4Z9I8eW8JXRQd7zjjMGs5QRGNko9JCV1cyZ9L1NbWCpdddllR1+fXr19/cMCAAVHctZ57GCH5vQCS4ReqjyM4jh17CYmJhRgwoLuLXrSoeWJZboPFkhr0OE6PnpMP/Weqqn4bbnctRo/6XchtdXDOsfGtN5CYlo4RU6Zhz7/WYNiEySCU4uoHfoQdH61A/8FDUDRtRo9uZ72Bi8QpZIsIokjeUrZWdwCSV2RVrqy8H9i/FOg3Apj7UidXfqRgIGrvel3JC0RdT4hmOP7lWoGMdzooVV3ZcqoVggIAChSZoXml6rcwFq5XIQk9k7z72DFYPG3h5eT1jndyGFJQ75dvspKPuuNdL+Xkz8dmODzurj8nGDBggKLX0X/TYITk+wEoJ4R8hc45eXOboX9DoCgdaG8/hGFDH+pRqevKXpZbQpJ8u1t31wdX/JwrqDr1NtJSJyMtbZLhte759J+oKi/Dlff9AAUXXgyLzYbxV80BANgTkzD9truC7q/n5D2MQrGIagtZTcm390TyG59Vw/P+bb2+9ZopBA8AChc6KXkqULW+PoCDXQcxYLzzbqsd25OoEiNXJLXjnf66AZJn2l2FR7DA1gMhVt1xC6Z5FPDvrA15rK7rDisnr4XVQ5X8GQWhVDVARjuFrrfc9RHWpMdynnzEQ3PiiCMAjJD80zFfxTcIer7d4Rja4+sWUVfyLSGPpbvrHZbgF+HTp9egw3UCI0Y8bnidiizhy6VvY3DJGIyZdRUIIbj02/cY3h/wU/KMgokCCJe7h+v1nHxLTXeCv289MHB8WOcMBg51nryg9yoRiboeObq2tp221dYv2TSS56qSt+TmQmlu9jrMQ60T0JR8F+Md6+gAd7kgAGAh1t1pXTR8kveqRhPj40QUvSbESMAZj3mNPIDz13gXV/JxmAwj3+4tAD7nnP8bwHEANgAbYrmovgynUzVxBiJ5USN5yQDJOz0ybCKFGCScyjnDseN/QGJiITIzZxte5/E9X8PZ3IRJ138r4ouqvi6JETCRgnAlcLh+/1IAHLh6sfr4xldMJXhANbSpU+jUx95wPZOCXjyDTaHrfhL1OLJVD6/KYIo2lIZSQ0qec+3mSBC6Ge/OVp32raXxNIyCEAIqkAiVvIlJcFGMUslzc+vPA4AI59cUur44oCaOvgEjX6dNABIIITlQyf1+AG/EdFV9GB3O4wCAhIT8Hl/XSV6RQ/dNaPfIIU13Z+vXwek8gqH5/xOWgerUgVIIoogho0N0gwsCfyXPBQLqR/KdwvWuZnVEbP4lwEULgEcrgAvuiPi8gZBAPBjWcQqCblwTqXc9UDwB9+tcQhdCyeskLwKcAJxJah6cqf8Mheu1U9gVT7ec/Dv/8hvG886SkMfyBxUplDDc9XpzI7NK6ABVyUeTk+ec90qdvClK3syIg9d4Z94h/xOwcOHCgU8++WR26C3/c2GEFSjn3AlgHoAlnPPrAYyN7bL6LpzOY7BZsyGKiT2+rufkDSl5twJHiEY4tbUrYbFkIDPz6rDWWX2oHFnDRkAMwyjWFYKX5AlACSgU78jXNrdfuH7dM+pc99lPqTsmhu7bHy700PMVDVshcD0nTwyRvJFmOF3PoxBAsRIw5lFz8rpT3QjJ+7Vnt3Qp7xPamn0PynbBuWtXyON59z0PlDwRhKim0PVaCV0Uveu9+5k5814/VFzJx2EyjOTkKSFkMoA7ANynPWferf83DM6OY0hw5Ad8XfTm5I0p+WAkL8ttOHv23xg48BZQarz1rcfVgdMVhzD+mrmG9+kJupJXOMApQMF84XotJ5/ccgTY9iow6R7Tw/P+UCQJrSwRzCZqrnfNCS/a9A0C7sv91G9Idz1Xe6szziHbKZgsQREYOGfgjIEYaKXLtHA9JwRFjSfwyy9fx6+m3A3KGS5/o7MFpmPPHjjGG3vfwg3Xe5W8mTVrFjHKKXR9pxnOf3q4fuXKlYPPnDlj6jz5rKws54033hh0ut3jjz8+4L333us/cOBAT79+/aTx48c7S0tLbQsWLBjS0NAg2u129vrrr1eOHz/edfLkSfGee+7JO3HihA0AlixZUnnllVe2X3HFFcNramqsbrebLliw4PQjjzxyFgAcDsf4u++++8zGjRtTUlNTlaeffvrU448/Pri6utq6ePHiE3feeWdzT2tqbW2lt956a/6RI0fsBQUFrpMnT1qXLFlyYsaMGc6etu9NGPl2LwTwCwBrOOf7CSHDoIbw4+gBTudxOIKSvNoCVpZCK3mXxJAQxHRXV/cvMObGgOzwyPpk6T4osoz8cRPC2q8rdCWvMAIIUJW8X7hepATWPX9X1f3MJ6I6VygosoQjLBsNYioEpiptQojXCBjMfMc8PpIPVSev5+QVzqHYKJjshiJz1U1nUMl7D0UI7IqEyafLMbCtDs9uetn72vLpautj1tpm+HiUkvCa4ZhcQgcARIguJ99bbW0hkMgbz+g3UvE6+V7Hpk2bHCtWrMjYt29f2erVq4/s2bMnEQDuvffevJdffvlEaWnpgWefffbU/fffPwQAFixYMOSSSy5pPXjwYFlpaWnZhAkTXADw1ltvHS8tLT2we/fusldffTW7trZWAICOjg46c+bM1tLS0gOJiYnKz372s0GbNm069MEHHxx56qmnArYRffbZZzPT0tKUQ4cOlS1atKi6rKys51DuOUBI+cc5/xzA536PjwIw1BidEHI1gN9BVf6vc85/HWC7+QA+ADCZc77DyLHPR0hSMySpIaDpDgAIESAISYbc9R6ZwSYGJvna0x/Cbs9FSkp4Cvn4nq8h2mwYNLJ7g5twIGrNcJhW9kTBO5XQOawCyJF/A8NnAYn9ojpXKMgeD2QiwsadEBgH03lL0JV84HA900rgqkYmhjQh6jl5xgFmp1BcbkDQcvKcG3LXK35KXoeFKRjRXOV9/O4lZzHv8EA4t28PeTwdVKDhKXmTS+gAzV0f7RS63jDeRTNP3luUEAMl34fc9aEUdyywbt26pGuvvbYpOTmZAcDs2bObXC4X3bVrV9LNN988XN/O4/EQANiyZUvy0qVLjwGAKIro16+fAgCLFy/OXrNmTRoA1NbWWkpLS+0DBgxot1gsfP78+S0AMGrUqA6bzcZsNhufMmVKR1VVVcA7+C1btiQ9+OCDZwBg8uTJrsLCwnOu4HWEJHlCyAioaj7ff3vOeVArN1GLxP8A4EoApwBsJ4R8yDkv67JdMoAfAvgq3MWfb2hqUi/IyUnBydMiphgiebesBDTeuT1n0di4BXlD7gvLHS97PDiy/UsMGTUWogFCCga9AYvMAXQJ17d7FKRaOdBQAYwyNlo3GiiyBBkUFiZDZNxrbjOSk+eaklcsBthFuwhzcHALBWv3gGjGO86Yoba2XgHp93ezKx7IhELkDGsmqc+LU2fCufo9MKcT1BE6Kkr1PvpG4TXemZuTj6bjXW9PoeM8gpK9eO/6c4qufy/GGJKTk2WjzWxWr16dvGHDhuQdO3aUJycnsylTphTpo2ZFUeRU+z5QSmGz2TgACIIARVEC/sHP55szI9/upQAOAPgVgP/1+xcKUwAc4Zwf5Zx7ALwL4IYetnsKwG8AhJwEdL6jvmEDBCExZEMa0ZJiyHjnlhmsAUKpR448A84Zsgf09JaqcLY0Q3L73tb6qpN49+ePo62hHhOvi5549Zw8YwSEclDiU/IdHgXpVq27XUJG1OcKBUWSIEGElUugDGD6RdNAuF5vauJOMELy2g0BB7iFQlE8au96cHWim5E6ee164K/kHZILImdos1rwj1nqOkjhSECW4T56rKfDdEO4Sl4nebPmyQNQc/JR9K5X29r2Tsc79YTh7xuTefJxd70hzJo1q23NmjVpbW1tpLGxkX766adpDoeD5ebmet544410QCX9L7/8MgEALr744tZnn302EwBkWUZDQwNtamoSUlNTleTkZLZr1y67HvKPBtOmTWt799130wFg586d9kOHDiVEe0yzYOTbzTjnL3HOt3DOv9L/GdhvEAD/cM4p7TkvCCHjAQzmnK8OdiBCyH2EkB2EkB11dXUGTt374Jyjvn4DMtKngdLgak4UUwwZ79wyg60HdXn27OeorV2J/LwFSEos6HHfmiMH8cfv34VVzz2N9qZGLPu/J/HXhfejue40rv/Rj6MqndPhy8kDol6crpGq0yMj3aJd7C2hx69GC1mSIBEBViapOXn9bdMNiTww8WRemIVPxyWgcoyBsbbecD0HrIKWk2fqhZ9z473r0Znkrz2uTv9L8khQtJuOlhzVv+E5djT0uqAa78IZNRuTErooc/K95a6PSjnHICevfxT6kvHuXGD69OnOm266qWH06NGj5syZM3zKlCltAPDOO+8c/ctf/tK/qKiopKCgYNSyZcvSAOCVV145sWHDhuTCwsKS0aNHl3z99dcJ8+bNa5ZlmRQWFpb89Kc/HThu3Lj2aNf16KOP1tXX14uFhYUlTz/99ICioqKO9PT086LnvRFL9ipCyH0AVqBzW9tQUrSnb4D3E0zUou4XAfxXqAVwzl8D8BoATJo06bz8FjQ2bYXLVYX8vPtDbiuKKXC5qkJuFygnf/TY75CQkIf8/B8E3Ld0/WfgjKFy7y5sef8tHN/zNUZMnooZd/4X0nPCH0PbE3xKnoNSBijoFK7PErXPuBh7klckCTJEWJgMgavGOwA+AmOBv2+iSLF1ZAImG7ho6zl5RQvXK7Ib1OKbHhZOMxzud74pp32TL4mcAC52oCaDY6jFgo5du5F6/fUhj3telNCJYlQldLyX3PX+bvZwz+abQmfigoR4uN4oFi9eXLt48eJuY143bdp0uOtzgwcPlv/9739XdH1+48aN3bYFAKfT6a1ZfeGFF6oDvdYVDoeDLV++/JjD4eClpaW22bNnFxYUFASp2+09GCH5e7X//UP0HMCQEPudAjDY73EuAP83LRnAaADrtRzLAAAfEkLm9jXz3ZGK51BZ+QpEMRn9+88Kub0oJEKWQ7um3bICm9j5StLeXoHW1v0YMfwxCELP5Mk5x7HdO5GeMwiNNVXY+++PMWT0WNzwiLkOd73jHeOAKCidSL7DoyDFqpO8zdTz9gRZ8kAiAuzcA1HhvnC9ruSDkLygkQozErvV1C/nACyiN0KggIIAhsL1ekSW9UBmqy4kcNRPg6ffF/hHzVt4evQouA8dCr0u6OH6MJrhKOYreYhC1L3rieU8V/KaOdDU9ruk75XQxeFDa2srveSSS4okSSKcc7z44ouVdrv9vPhjGnHXDw61TQBsB1BACBkKoArAbVBr7fXjNgPwdkUhhKwH8EhfI/i29sM4ceI1ZGfNQWHhz2G1hs4/U2oDY6H7krtlBmsXkj916k0QYkVOzryA+zVUnUJL3Rlcce8D2PzeP9DR2oLRM423vDUKn5IHRKqSHacWEKjh+hSHdrEXY5+eUiQJElE/ziLjPiXvHdQdmOT1d9jQ9dVPycMqQL2zARinEGCM5HsK1+tYOp3CcWoIJrbdiI3ie2jNvBAJ+42H68NS8nr4wcyws2iJKiev1smbtpyA8H0sIiV5cxfp8wicF7wQRwAsW7Ys5Yknnsj1f27w4MHuTz/9tGL//v0HztW6gsFQBxVCyEgAJQC80pFz/nawfTjnMiHkBwA+gVpC9wbnvJQQ8ksAOzjnH0a+7PMHFRXPQhAcKCx80hDBAwAVDJK8xDopeVluRU3tMgzIngOrNXDXuGO71fukoRdMwoDhhTi+dxdGTpthaG3hQPAzL4lEU7hU0EheQZLYe0pedderitTCWFjhel2RKWEqeWIRvDcPDMZJXtfaPZG82wKkuTMxvDUdXwz/AJUJ7Rhx+gy4ooQsdaMCgewxTrAxKaETBHA5+NS/YOCcq02MYo0owuMxMQfGp9D1CcybN69l3rx5fWokrZESup8BmA1gJFTCvgrAFwCCkjwAcM7XAljb5bknA2x7Wejlnl9QFBfq6zdhcO5dsFqN14EbV/JKp5z86TNroShODBoUvO975d5dyBiYi5TMLKRkZiF72AjDawsHrg6tFJRzr/GOEQEUGskLupLvhZy8R4JELOoNB/ML1+vjfoMo+bCu937NcGATweEjecAgyWssz7sQxf6cVFDagYLkXNiaOC7MnIo98l6MUBQoTU0Q+wX/jKnh+jBC5bEooRNFcGcUqUilDxjvYmEOjAv5OGIEI9/uWwHMBFDDOb8LwDgYjAB809HSsgece5CeflFY++kkH6y2UlYYGEcnJV9T/QEcjhFISbkg4H5MUVBVXobBJrjng6Gurg5LXnoJBByEAyJVyYVrarrDoyBRe65X3PWyBEk7t8gY5DCUvDcnb+QKy3RSB4hfTl5vVRueu77z1++9K9owMHEgRmanAQCmZF6EWqhdNFl7aAOwIBK1+55BxELJR5uT573Yu957vjARCyVPCFGvxvGcfBwmwwhZd3DOFUKIrDWuqQUwLMbr6hNoatoGgCA1dWJY+1FqA8DBuQRCeiYFt9bURM/Jt7dXoLllF0aM+HFQw8+ZYxWQ3C7kFkfXzS4QqqqqcOTIEXz55Zdwu93qfHXOveF6BgGSwuBRGBKpFrbtFSXvgUxFQFGVvCsMJe/NyRs5kV8JHbGK0HPyXDuPsXC9dlPR5e/YmAhMzByDxFYBbgDZ9jy4tI8H6+gIeVw1Jx9OM5xYzJOPMiffm1PogPNHyQPR9dOPI44AMPLt3kUISYM6XnYHgG0Avo7pqvoImpq2IympCBZLalj7qSSPoCF7neR1JV9TsxSECBgw4Kagxz51YD8AILd4dFhrMoJjx47hT3/6E9atWwdRFHHvvffCIgpaTl5zmXMCp5YXdtBeDNfLEjzaPavAOGRvnbyu5AOTHwkrXK/l5AFQqwX6rYFXyRshef08XYiiMRnoZ++HBO1vnirmwK0djjlDd8kMvxlOrKbQRZ6Th9YiOdbQGyBFpOSV2NyIRDMZL444AiGokieqZFzEOW8C8AdCyCcAUjjn//Ekz5iE5pZdQV3ugdCZ5HtuwOLWJnnZLAIYk1FTuxL9+s2ELYjhDgBOlZciPWcgktLN7TLncrnw4YcfIjU1FXfccQcyMzNBKYUo7AcY97nrIaBDI/mE3iR5P3e9wHwz230kHziETHVlbcB4pzeQYRwgNj/jXRhKXudh1kVBSyLBoKRBSBAFNAEQkQ7YbQA6wA0r+XDC9TFohhPlFLre6ngXV/Jx+GP8+PEjd+3aVR56y76HoLfwXE0ar/Z7fCRO8CqamndAUZxIT5sa9r6Cl+QDG5Q8fkq+sXELPJ4zyBnwraDHVWQZVQdKMWikuSq+srISr776KpqamnDTTTchOzsben9ngdIuSp6i3aMSagLRfr9eIHm1451KsALnvo53ZhvvtI0YtMYvupIPw3inMA7GuxvvOqpux20jb4NdU9YtLgXpaTnq8WMSrjdfycOMjne9UkKnK/kIdmbc3FnyOmhcyfc2ZO2z+k0leMBYTn4bIWRCnNw7o67uE1BqQ79+l4S9bzjheqtIUVO7AqKYiv79Lwu4Pecc21cthau9DcMnXRj2mnpCU1MTPvroI1RUVCA1NRXf+c53kJ+f32kbgRItJ68b0ohXyduJnpPvhRI6SYJHI3TKAEWPwRsw3oWj5PWwPwMgWC3gvIu73siAGs7BQTqRfPl3ZmPdgocgUtFL8s0uCRnpOQCOgjlDk7wg0Ajb2prsro96Ct35reRjFW0glETUS/9coezA44Pb2w6ZOk8+ManQWVK8OOB0u5aWFjp37txhNTU1VsYYeeyxx6oXLVqUu2PHjgM5OTnyxo0bHY888sjgbdu2HVy4cOHAo0eP2mpray01NTXWH/7wh7UPP/zw2dWrVyc/9dRTOVlZWVJZWZmjoqKi1OFwjHc6nbtWr16d/Itf/GJgZmamVFZW5rj22msbx4wZ0/Hyyy9nu91usmLFiopRo0a5q6urxe9+97t5+mS6F1544cTs2bN7dMdWV1eL8+fPH9rU1CRecMEFzvXr16fs3LnzQE5OThRfFOMISPKEEJFzLgOYDuB7hJAKAO1Q77M55zy6YeR9GJwz1NV9in4ZMyAI4X/GdZJXgpG8Nv7UQmXU1X2KnAE3evfrCeVfrMfm9/+B4ZMuxLAJwQfkGEFlZSVWrFiBpqYmZGVlYf78+cjKyuq2naBdmPyVvJ6Tt6H3jHey5IFMVRVNtd71CuMQjBjvwilR5r46eWqJzHgnM97tWm69bTYGZ6ifJT0nX9PmQr90tQWxcSUf/oAac0leAKKYQvefHa5HPFwfAsuXL08ZMGCAtH79+iMAUF9fLyxatCjg9gcOHEjYuXPngdbWVmH8+PEl8+bNawaAvXv3Ju7atat05MiR3cKp5eXlCUuXLj2alZUl5+XljbHZbGf37dt34Kmnnsp6/vnns954442T3//+9wcvXLjw9FVXXdV2+PBh61VXXVVw9OjR0p7W8OMf/3jgpZde2vrMM8/ULl26NOWdd94JnnM1GcGU/DYAEwDEfk5oH0N9/Qa43bXIHPZIRPsbU/IqebiceyCyDmRnB+9dXr5lI1Iys3HDw09ENVVMURSsXbsWO3fuREpKCu655x4MGRK4g7EgEBDGYRF9pWR6uN4C5g1lAAAgAElEQVQKj9pWVoh9xaUiSZC02fGUAwolkBQGwYDxjoZRQsf9lDwVBLW6AL6cPMTQvytjqpJvSUkBAGwaRVAg+m4WqXbUsppWXFmgNtdq7WhCeojjhhuuj00JXXRT6Hpr1Kx/7/pwwZnJE+g0kD4Wrg+muGOFCRMmdDzxxBOD77///kE33HBD89VXXx20P/g111zTlJSUxJOSkuSpU6e2bNq0KTE9PV0ZO3Zse08EDwBjxoxpz8vLkwBgyJAh7muuuaYZAMaNG9exYcOGZADYvHlzyuHDh72tPNva2oTGxkaanp7e7Qu4bdu2pJUrVx4BgPnz57ekpKT06uCaYFckAgCc827N/f+TcfLU33Ho0C9htw9C//6XR3QMfUodUwKTvJ6Tb2/Zgn72bKSlTQ64LWNqbXzh1OlRETznHB9//DF27tyJ/Px83H777bDZgofauyt5Apem5K3cAwixD9UDWsc7UX1fiabkJYXBbqCtbYbWcOiOHAMNjbzz5AGBihCs6r7h5eShhespPvvBhXgteSdet/hInikMnACl1S24a6Kq5Juc9SGHRYTvrtcHrZjpro8uJ8+V2BBoN0TTYS5WSp7EjXehMHbsWPfXX39dtmzZstQnnnhi0GeffdYiCAJn2s23PhdeR9dyY/2xw+EIeDesz5AH1Jnyeg96Sql3pjznHDt27DiQlJQU8g92rmfNB/t2ZxJCFgb612srPI/AOUdl5atITZ2IC6esgcWSEtFxwsnJt7fuRFb2dSBBapnPnqiE29keVdnc7t278dvf/hbbt2/HsGHD8O1vfzskwQNqHhiMQ9TC1goj6JDUny2E9YqKBwDZI0HW3lfCCRgFZIUbysknigJOXToOC/OzQ5/Iz11PCYVgUY+vzzIjohGS17L/hMDD1JSGw0/JKwoHFQiqmjrQP1Ej+fazIY9LRTVcb/iiohvvTM7JRzOFrm8o+RilFIQ4yYfC8ePHLcnJyeyBBx5oeOihh07v3r3bkZub69m8ebMDAN5///1OAa9//vOfaU6nk9TW1gpbt25Nnj59etRjZQFg+vTpLYsXL/bmL7ds2RJwQMeUKVPa3nzzzQxATTe0tLSYGDoLjWBXYAFAEnrF69o30Nq6D253LYYPWwhRNDB7PACoNj3OSLjeQjswIESovqpcTQXljoysAc6JEyewatUqpKen46KLLsLs2bO97vlQELSyH70ZjgLqJXmRcN8UuBhDVfIayTMCRVDD9b4pdMGJRzR60favkycUokWAzACmle8RS+jfV9GMdyCAm6sRQ4efkueKb9yq050OB4BmZ2PI4wqCb/SvYMD9HZMSuqin0HFzR7gGQjSjXWOk5ON18qGxc+fOhJ/85Ce5lFKIoshffvnlSqfTSRcsWJC/ePFiaeLEiZ1IfPz48e2XX355QXV1tfWRRx6pyc/Pl/bv3x+1Sei11147ee+99w4pLCwsURSFXHjhha3Tpk070dO2v/71r6vnz58/rKSkJH3q1KltmZmZUlpaWq+F7INdkWo457/srYX0BZyp+wSEiBGH6XWEo+STEjKRnDwm6PFOlZchuV8mUjK7G+OCQZIkLF++HAcOHEB6ejruu+8+2O3hff4pJYAMiFAv7IwDLs00KEDpPZL3eCAlamvnRA3XMz8lHyRcHw50YmQABCrAYrVAdqmDeYBwwvXqgBpdydv9zIlM4dB66+Bv22pxP9ScfChQffSvwmEozR6LErooc/K9ZbyLSskrMboR6WPu+nOBQANijh8/vr+n7QsKClzvvPNOpf9zc+bMaZ0zZ06r/3P6rPiur23btu1gT/vl5OTIa9asMTQeMiMjQ9m4ceMhi8WCzz77LHHz5s3JCQkJvfaXDpmTj0MF5xx1dZ8gPe0iWCxpUR1LMEDy7a4WAMDArEuDtrHlnKOqvBRDRo0Naw0dHR1YunQpKioqkJ6ejltuuSVsggc09cg4LMQXrnfpSr4XSV6WJchCijodjhMolEBWGCCGDteHBW9hNdWUvAi4/JS8AeOdwhgAAk4IJK71FPAbx8sUBoddPU5+lpoSanM2hzwu1ZW8wTyzV8mbOoVOBBQFnPPI5q0zXxQjpvDm5CMolGccRIyF8S7C0bdxnNc4cuSI9ZZbbhnOGIPFYuGvvvrq8d48f7ArUnRy9RuGtrZyOJ3HMHjwPVEfy4iSP9u4D0AiBg64Iuix9n3+CdobG5A3drzh81dXV+Mvf/kLJEnClVdeiYsvvtjwvl1BKQHhgMB9JXQuSYE6b0MxNRQcDIokQRJtYNpHmmnGO18znEi6nnSHt7YcBAIRINpEoNVPyRsiec1450fydqGzkhdEgsxEG063esAI0OYyQvKakpcN/q7MfHe9N10hy4CBqIY/OOd6HsS09QSCt61txMa7GEh5redEHObghRdeqO7N8/3ud7/r98orr3Qy9kyePLntzTffPHHgwIFzNp424BWJc97Qmws533H6zBoQIiAr8+qoj2WE5OubygBMRnpqYcBtTh3Yj09fW4LUrGyMmGys897OnTvx0UcfITExEd/5zncwePDgsNbeFVTPyWskqjB1Ap1dFECY4iPZGEORJMiCFQpXP9KyQNSUh34xNk3J+4a6UEIh2lQi05U8DBjvGOfghID5kbzNrwqBMQ4qUAxMtaOmxQUIAlyedjglZ6fcfVeEreT19rNm3ohpNwxclg2lLjpBuzfpFXd9NPPkFQYqhPm7GUG8rW2fxoMPPlj/4IMP1p/rdXRFb1hc+jw45zh9ejXS06fBao2+J3wokvd4GtDaXgug86jZrijfvBGi1Ya7Fr8EmyN4Ux7OOXbt2oWPPvoIAHDXXXdFTfCARvIcEOAjeZesIMEqqGa33srJSxIkwQoG9eKrUKKWIRpohhMOOGMgnMOr5K0ayXtz8qF/X1kL1zNKIEGBlVp99fxQSZpSggGpdtQ2dwCCAFEBatprgh5XJ3nFaAhaV/KimcY79f2IKC+v30D1Zk4+AiXPFe6NBJiJvlYnH0ffQJzkDaC1dT9crpPIzrrOlOPpdfJKgN71LS17IDGVLIKRfG3FYQwsKg5J8IwxrFixAqtWrYLFYsF9992HAQMGRLj6ziB+Sl7hBIwxuCQGu0hVEumtnLzkgSzavEpeETTzooESunDAubdYDpRQWGw2gCvgYeXk1ag0owQyFNi6tP1lWgndkAwHjtc7AVEAZUBdR13Q4wrngZLXQ/9cCn8SnU5wJk6+DQzdbBhJuF7hQJDvZcSI18nHEQP0zhW4j6Ox8UsAQL9+l5lyPEIEEGIJqOSdzqOQmQirSAKal5iioP5kJcbNvjbk+Xbu3Im9e/dixowZuOyyywyXxxmBTvICFJXkFQUdkgK7VehVklckCQq1QIFO8rFR8owxEHBwUAhEgMVqA8BUJU+Iofw2Y2okgBECDxQkCJ1LbJnCQAWC4pwU9XcQRIgMOOM8E/S4/u56I+CxUPJ6JCMSJc96Ucl7R82G79XgMouJklcH1Jh/2Dj+sxFX8gbQ1LwTCQl5sNkyTTsmpbaAJO/21EFiNtiCEEZjTTVkyYPMvKFBz3Ps2DH885//xNChQzFz5kxTCR5QSV413nEonIIpMtySmpNXw/W9lJOXJUAQ4YJKmArVlbxeJ2+ykieqkhetVp+SN2hgkzUHOaMEEmGdyufUpao5+ewU9XlORVXJO4MreSrqSt4gU+hEbOZnwi8nHzZ0ku9Fd33E4foYKHkS710fRwwQJ/kQ4JyhqWlH0LaykYBSa5Cc/FkwkgybJfCfp65SLdEMRvKffvop/va3vyE5ORnz58+PrKQpBLxKnjMwPyXf2zl5WZLAKYVEtOE/IoVbUkwP1zPmbWCruettIFwBo4Jhl7o+hY5RApmw7uF6pubkdZJnVIQNYshwfdhKXu9dbyDFYBTenHwEM+W94fpYqOQu8J4jonA9i9mo2bi7/txg/PjxI8/1GmKFOMmHQHv7EchyE9JSzSb5wEre4zkLBYmwBQmj1lUeAxVE9Mvt2TxXUVGBzZs3QxRF3H333UhMTDRl3V1BKADOIYBpSl5Rc/IW2rtKXpLABQEeohKjQlUDoKoKiXnGO8414x0FpRQWqxVcU/JGSV7RlDynFDJhncrnAF9OPjtFu2EhFInEbiBcH15OXlfy5ra11d4DOfycPLzVib0Zro/UeBcLJR833vU2enuevBSBVyVaxHPyIdDUvAMAkJYW/fhWfwQjeVlqhsLtQU13dZXH0G9QLoQeSrZaWlqwfPlypKen44EHHoAl3FKmcEAJwNRwPeMETJbR4VGQ7rD0uvGOUwoJGjFSwKXXi1PBVCWvG+9Ud70NBIo6hc6gIlY4hwVQS+gIQ6LQeQY9UxhEq4AkmwiHVYBECBzEFjpcL4QXrvc2wzFVyYvasSNQ8lw33hkk+YajwO/9+kMsCt1LwAsaufGOK7HLyUcUWThHeOjAicHl7S5T58mPTLQ7f1s85Bs1T37hwoUDa2pqLCdOnLBmZGTIH3300TEz37NQiJN8CLS27ofFko6EhDxTjytQG5ji6vE1hXVAZlZYQ5D8kNHjuj3vcrnw5ptvwul04rbbbostwQOq6uIclHPNXa/AJSuwWQTApQCxqCfuAYokgRNfuF6mBB06yRPBVOMdBcD1OnmrDeButRmOUSWv6EqeQCa8U4084MvJE6KG7CVQJBCrAXe9+nlRZKNKXlUxZip5fSBRRDl5neCCLae5Cvj4x8DxTUBHl37+zxUCjxwydi7vcMLwnG6cc3Wd8RK6c4K+OE9eO5/jq6++Kjcytc5sxEk+BFyuatjtg0zPZwdT8orSAYlZAir5lrozaGtsQPawEZ2el2UZ77//Purr63H77bebUgcfEhQA02a46+F6j4IEiwA4ZcAScDiTaWCKAs6YquR5bJW8arzjYF4lLwLcCUaM5+QV7nPXS7Q7yetT6AAgK9kGD6ewEwFnnGeCtouNuK2tmUreEgXJB6uTr9kDvDqj+/OT7wW2v67+3HYaqPgcGD4r9DoJ8UahwgIDwE3u969D6FtKPpjijhX64jx5ALj66qubzgXBA3GSDwm3uxaOhHzTj0upDUpAkndCYqJahtYFzpZmrHr+aQBA/gUTvc/rtfBHjx7FDTfcgMLCwJ3yTAUlIFBnuDMQKLIMl+yfk4/9R0zR8lydjHeUwKWHjIlgWltb/3C97q4nUMCpaNjAxlhwJc+Zj+QHpiXADYI0WCExCU3uJqTb03s6bAThevOVvPdGJwKS99XJdyH5fUuBVT/oeSfZBRTPBQ58qD5+8yZg9tPAv57wbfPzph7z/EQgYZfQ6TdGMeldL9CwIwv/aeiL8+QBIDEx8Zz9YePGuxBwu2ths5vTOMYfqpLvuRmOonTAo4g9uuu/ePfvOHP8KC6+9S5kDMz1Pr9161aUlpZi5syZGD/eeB9708AAxik4U9ChK/leInlZM3lxQiETrdGQ0FXJRzH+1A8+kqfqFDqtGQ4jguE2rrJfnbxMOazdcvI+ks9NT4CLAVbtfjyY+S5cdz1iMKAGUeTke6yT3/pHYNl/AzndU1MAgEn/DYye1/k5f4IHgF8EGCgVSQ5c3z6u5M8J+uI8+XONuJIPAllugyy3wmbLMf3YVLCBSd3HA3DOwVgH3LJquur0GmM4su1LFF98KS761q3e510uFz7//HNkZGRgxoweQpoxBNcuyJQBMggUWc3J2y16M5zYu+sVj3qzxAiFDN1dT7zjes023lGoStxCLFpOPkwlz31KXhJ4D+565iX5wekOyEQAkdTHp52nUZRR1ONxBTG8trZckQFKTU1FET0nL0Wg5GW/Erq6g8AfpvhevGsF8H/a9/BHpcCLo4DhlwODJgBZJaEPXrEOGD6zy1pJ2HXyXiVvQk6+qbYGR3ftwKCiYmQPGxHRev7T0BfnyZ9rxEk+CNxutX+8PRYkHyAnz5hqxnPJAhzWzn+e+qqT6GhtwZAxF3R6ft++fZBlGXPmzIlJLXwwcE3QEA4oIJAkCZxDI3m5VwbUKLIvXC97e9cDLsV8452iKF4lL1JRDddrSt7o1DWFqXl1ruXke1by6hubm5GAk4SCy+pZa7WZBj0hkhI6MyfQAf4d76JohiPQzgT/yGHA6gAu/TFw+BMgNRf4WZ3vBtJiV28C1j4G1B/27beoGViUqv785o3AnN8Ck77re10Iv42sTsLR5uTLN2/Amt8/63383Rf/CBoP14dEX5wn39vT8LoiHq4PApdG8jZbLML1PTfDURQnAKBDpmpDGT9UH1JLOQcWFnufq6+vx8cff4z09HTk5+ebvs5Q4NpNBeGqGU3SZsnbezNcr+XkGSFQoIXrKfGRvElKXo2yqOF6DqKRvA0IMyevh+s5oZAFBDXeDU53QKECFA+HSMSgQ2rCb4bDTDXdAX696yPJyesquc3vd/x5E5CkRUVn/gS4b736s2jtHCUaPgsYe4v688T/Ah7ap/6cMcy3zeqHgNIVvrVSGr5y1qNDBpV8W0M9/vzD7+H5W+fg+VvnoHLfbjx/6/9n77zj5Crr/f9+zjlTd7Zld5NNL6QXQiCEhPKjY/CCgIAUQaRIAMGLgILoRb2KXkC596IgKKIIioAoXLqAkNAhIYRkU9gAm2STTdm+0095fn+cM2V7m9lswnm/Xnll59RnZs6cz/l+n285pZ3AA/zh21eA5rrrXXKPa8n3QCJu32z8/qGz5E0nrS6uCwo6iHxd9Sb8BSFKR49xtjV5+umnUVWVCy64IOcla/uCdO51wrKj61Pz43bg3dDkyRuJhDMWBSMt8pBoZ8kP3kJK53Fji3TKkkeaWIrW5zl5y7HkTQGGSqeyttLpQgcwutiPJRT0pE5FsCLHlryR2/Q5SLfaHVDFu9S4X7nF/v+o6/tXGMdwUlKLxkHJBPvvq1fBf2ZN0z7+dZhzhv23KjJxCf0cY0+Bd1JKVr/wNK/+8bed1v3tpz/odj/dSKSPX/3uW4yeNoPQiLJ+jc8lw3DqJz+U4+iIK/I9kLHkR/ayZf/p3l2fwJKCuCEIdHDX11VvZPS0GWmX/Msvv0xNTQ0nnHACZWV752ZgOfc6RUokoDtzsYH0nPwQiLwzJy+FwHQC7wxVZEReUXJiyZupCnEAQklb8nZZW0+fLXnTmZM3NHt8Aa3rBjUAmqqgeT0YyTCVBZV9FPl+FMPJtSWvpSz5AVT2SgloZLvtYzz2+z1v3xG/E2BXUJ5Zpigw7yuw9rHMsqYtUDrRia7Pvbv+znNP7dcxU/zpz9/hjInX8stzTkkvu/7RZwZ0LJehx+0nvw+SSNTh8ZSl+7/nkm5FXiZJmrY1lB14F4+Eadi+jdHT7BLLTU1NvP3228yfP58jjzwy5+PrKyl3vSIlJgq646YNpmvX539O3kgH3glMmbHkkzmek0+l6diWvC3yHp8PYdkd8Ppqydtz8gq60rXIm1lz8gBenwczaVAZ7Fnk+1sMRw7Ckl+zZ02Xkf7pB52BVLxLpdAxwBa4i6+EL/0KDv5a++Vn3Nv+9UuOp0AZQKBburZA15/bc7/6RbvX05ccxaFfOrPLbY86/+udlv1jy//0bzwuLr2QV5EXQiwVQmwSQmwWQtzUxfrrhBDrhRAfCSFeEULktqzcIEnE6/LiqoeMyMsObmRpJUmY9kNFtrt+y0cfgpSMnzMPgNdeew1VVTnuuN4Lf+QTy7mCFGmLrOFY8kM5J68nM+56K9VqVoFEuoKalpMUupQlr2SJvO2u1/tnyTt58rrajSVvWOlIeQC/34tpGIwMjmRPbE962qAj/bXkMS0YQJvZn77zUy547gKOf/x4InqHjKTBdKFLj3uA35XqsQW+48OBosKEwzOv1z8JOBHy/Y6u77mJzoY3XgPAGwiy9Kpvc8q/f5dDTzuLKQcfSqCwKL3dUed/nUWnndWvc7u4DIS8ibwQQgXuBk4GZgPnCSE65rqsBhZKKQ8E/gbcnq/xDIR4Ymdegu4ANNUu+WyasXbLLStJ0rSt0ZS7PhGN8NZjD1NYXsHoaTOpra1lzZo1LF68mOLi4ryMr69k3PUWFiLd8CGTJz8UlnzCGYvAxGNbgkJkLPkcBd6lLHkFiRQKmkhF1xtYige8fbfkEQJDsceULfKWaSElqFmWoj/gQxoGI/zlJMwErcnWLo/b/4p3BqKP38+Tm59k3oPzaE228uimR9PLF/9lMfMenMfvPvodQNqbMZg5eYEJ88/v9/49Muf0zstUpf/ueqP7FLqG2kwBuGX3Psico49HCEEgVMgZN/6Qq+7/S3p9SuC/9dATPZ/P7UrnMkjyackvAjZLKT+VUiaBvwKnZW8gpXxVShl1Xr4DjGMYoeuNeL3lvW84AFQ1BIBptreELCtBwhH5lLv+vaf+RtPOHZx81bdBCJ588klCodCQ58R3Rcr2Up1Sr6Zzc7dbzQ7tnLwlBJb0oAr7QSPXgXftLXkVj+JB83hBGliqN123vdfjWBJFCIwu3PUpV3u2yAcDXjRpolj2nHN3BXFSleL6UwynLyl0ET3Cf7z5HwAc8cgR6eXFvswD5l2r70K39Kzo+oHPyYPutDfMIYsu77RIKP0PvOuuGI5lmfzx+ivTr73+vtVG8Xh7ngpMRHNSu8Xlc0w+RX4skF3buNZZ1h2XAs93tUIIcbkQYqUQYuWePT036cglphlFVXPaZCmNpnUn8knijrs+JfKfrHyX8bPnMn7OgXzyySfU19dz0kkn4fPlPlagv2Tc9bYlb5pZlrwcmmI4qeh6CzDxoDgiH89x4F27OXmhoikaQlFQnTlk6elbjY104J3jrs+OrjcdS7G9yPtQpYWRLATothudEAJFE/0IvDO7rXYXToZZ8KcFLN+2nIfXP9zlNn86+U/tXr9b9+7g5uSzLflUmdpcIQSc8t/tFw2kGE43lvw7T/w1/bfSw4PTV275GRf8vO/z7nqi6yZWLoPjmmuuGVtZWXlgMBjcC+VBh5Z8inxXk1Zd/qKEEBcAC4E7ulovpfytlHKhlHJhRUVFDofYPVJKTDOWN5FXVbu/u2G0768gpZ521we9Gi27d9FQu5UpBy+itraW5557juLiYmbNmtXpmHuD1OypKi0sAaYx9HPyaXc9AinVtCUfM7Jr1+fYXe+k0AEojkVuad5u921/HDuFTnfc9UEtc42lRT6rpHFB0I9qWcSi9jWzK7qr22MrqmJ3uesLPRTDWfLIEgxpcPW/rubXH/6aY8Yd0279/Sfdz5TiKVyz4Jr0srV71mbK2g6k4l2qjrwwINB1ff5BsfCSzN+WCVr/8+QzKXTtb507N2e6353wjW92u//4OQd2aizVExvfXNGv8bn0jdNPP7353Xff3bC3xzEU5PMOXAtkt0EbB3TKWxRCnAB8HzhaStl1x5a9gF15TuZP5DVH5M32Im9lBd4FvSqfrn4LgNLJU3nwwQfxer2cffbZ+W8h20fsOXlpu+uFsF3anpS7fqhE3nHXY1vyqvPoEddzOyefdtcL25JXnWp+mmPJW/2w5IVQ0FV7nCHnWgAw9ZQln3lGDvo9jEi00RK2XcDZLWeNpMnuLa0oqkLz7ihI2Y85+a4t+U9bMoW8VKEyvnA8Nx92M6/VvpZeftjowwC4/MDLeWDdA0T0CK3J1qx+8gNvNSsw4et5Th1b/TBCXZgpbtNX0vX+29swOz/JVNorKstdym0i0mOTtb3Kd/62ZvzHO9tyeoOcXlkYveOs+T12t/vOd74z+m9/+9uI0aNHJ8vKyowFCxZEX3jhhZK5c+dGV69eXRAOh9Xf/va3nx177LHRlpYW5dJLL53w0UcfBQFuvvnmHV//+tebjz/++D7NgzQ1NSlz586d8+mnn67z+XyysbFRmTdvXvp1Lt5zvsnnHfh9YJoQYjKwHTgXaBdNI4RYANwHLJVSdt95Yy+QqjynqvnpO6A5lrxpdHbXZ4v86g/ep3T0WFa8txJN01i2bBlFRUWdjre3MAR4Uu5qwEoF3mnCngcfouh6RVXtLqBSRcGeD86XJS+kPSefsuQr63bSUgQWfe8nL7yCpGPJh8hMu3Tlrm/+q+0Kbv2sjqKyIvZE97Dz0xaqXt/Ox+/vwuqQMhdv67rxUec31LUlf9qTdujMXcfexbETMvXeA1qAmBHrtP0PFv+A773+PcYVjhtcF7qUyCtkitnkC08AoSlp93tf6SpPvq56E7G2TDCk0s+StxPmzmfrujVdrtMTw8buGRasWLEi+PTTT5euXbt2va7r4qCDDpq9YMGCKEA0GlVWr1698fnnnw9dfvnlk6urq6tuuumm0UVFRebHH3+8HmDPnj39mj8sLS21lixZ0vbYY48VX3jhhc0PPPDAiC9+8YtN+4rAQx5FXkppCCGuBl4EVOABKWWVEOI/gZVSyv/Dds+HgMedAi9bpZRfyteY+kMq6l1V8uWu735OPhV4p0mDbevWMP2o43ivpoZjjz12WAk8gCnAR9L52+4nD+BP/ZSGKE9e8/owJVhSwyNskdctiW5aeBQtx5a8ZUfXOyJvOU4VWTSib8eRKXe9Pc4gGTd/V4F3KbZs3I7/kEI+WLWJkrWr0LwKsw8fw8S5ZViWJB7RefWhjYSb+yYM0shY8g+se4D/XtV+zvr/jWsf2HnXcXfxjX9+o9NxFo9eDNi58+cfcHbm2P0l5YHw9m3aY1BY5gBFvvOcfMfKdkofAzBTfOn677Nn62c8+sMbO60b6l4U/aE3izsfvPbaa6FUj3hAnnjiic2pdeeff34jwMknnxwOh8NKfX29umLFiqK//vWvaddURUVFvy/Myy+/fM9tt91WeeGFFzY//PDD5b/73e9qcvFehoq85slLKZ+TUk6XUh4gpbzVWXaLI/BIKU+QUo6SUh7k/BsWAg9DYMmn3fUdRF5mRH7Xug8wDYNPG1sIBoMcfPDBeRnLYDAAr+Met4QdZezTMsFoQ9Ggxkgk0AsRLZIAACAASURBVLxeTKQ9J4+OkBYogmjCzHkKXcqS9yi2uieK7WtEFnTT0rQDpmVHduuqgT8hUbOEpitLPsUuVILxImL+Vo772kwuvu1Ijj5/BpMOLGfKQRXMWGyneyaifbOipa4jPB7e2P5GJ4GfUjwFtcMD2oHlB3Z5nNS0xfOfPZ+Zkx9QP3nn84137s6Yc5693hH5gbaazYiv1eHaKqnsX20NXzDIuJlz0q8LSzNxR6uefbJ/49vP6SmlsKve8dJ5oB4MJ510UqS2ttb37LPPhkzTFIceeug+FQ3pVrzrBtNyLPm8Bd45lrzRxZy8YbtvN7z8LN6iEuoTBqeffjqFhYV5GctgMAGv4x63EEjTzKTPwZAF3tmWvMSSKqrQ8UgDBISThu3/zaW7XliQFXinSlvQDNHXPHnLqXhnEEzYYpte14XIJ0+zrWdDSqbNmIJRHGXW4WPwBtp/tqqqoCgCPd5HkTcMhKZx5ctXdlr3i6N/0WlZ0NP1b6HQa1+XRd4iu4KepiGTfZwyyCYdS5CbjoE9okechjD9tOSNzoF3Rof3WlAysKDB8VPnAnDIMQMri/t54Jhjjgm/+OKLxdFoVLS0tCgvv/xy+sn6kUceKQV48cUXQ4WFhWZZWZl5zDHHtN55553pIIn+uutTnHvuuQ0XX3zxlAsuuKB+8O9iaHFFvhtSc+X5suTthwfRyZKXjrveo8CeTzbRGihiyeGHM3369LyMY7DoArwiY8lLy3QK4TjCNUSBdx6fD92Szpy8gSYNx5I3ch54J5BIkZmT9zgPOX0XeSdPXhgEkt2IvCdjfeyot4+rSAtVFrMntgezm/ejaAI92ccUOkPvVKXvta+8xs2H3czUkr5HgGuKxpTiKelgPMXnQw4g9cue7zYRYmimO4WmIPXBu+uz5+MHQ2GpXZNDyOHrot/bHH300dGlS5e2zJ49e84Xv/jFAw488MBIcXGxCVBaWmouWLBg5tVXXz3xvvvuqwH4+c9/Xtfc3KxOmzZtzowZM2Y/99xzhQBXXHHFuFGjRh0Yj8eVUaNGHXjdddeN6em8l156aUNra6t26aWXDoGbKbe4DWq6Id+WvBACVS3odk7eiwVCUDptJscff3xexpALEgr4HJEzFQEpkU9FV6v5zwLQk7a7XpcSnBQ6r2WgC0E4YeShdr0FQkVxCrZo0hF5+tiFTtptTg1MCvQOIu+IjuJYig3bw7Q125aiIi0UoxzDMtgZ3cnYUOeyE6qmpI/RG1LXUUKZjIBvH/JtygJlnDfzvD7t3/49WdQ5LWKF348V73/AWErkhwqhDaB/exfFcKKtLTkakP2ftOCEy77Jy/ffnZvj7mf88Ic/3HnnnXfuaGtrU5YsWTLju9/97q5HH3207Jxzzmm6++67t2dvW1xcbP3973+v6XiMe++9t/bee++t7es5X3nllcKlS5c2lZeXD90FmiNcke+GzJx8fkQe7Aj7jnnylpUkaQVQjDimP8i/fek0tBx3CsslupAZd70ALMvOkTcdF6aa/yCqVOBd0pJIqaAKHU0aSEUQyeGcfKpkr8BCZEXSZ0S+b55Aw7JskZcG/qRsJ/JWh8C7j9/fla7+5lMgEbOD+2paaroUec2jEEv0sdqcbqTn0Mv8ZVw85+K+7dcFNa016b8Vnw8ZH8C0pWEiGICbf4AIVYBlN8ZJVQvsDWlYoGSqC0opIUelZ9NHsSy7J4JLl1xwwQUTq6urA4lEQpx77rkNRx55ZLT3vQbORRddNP7VV18tfuaZZ6p733r4MXzVYy9jmfm15MHOle9kycskccOPZiYYMX4iEycOq5497TClxEAQVDPueixnTn5IRT6BFgjaKXSW7a73WgYIL5FkypIffFnbbJFHZH46Hmm/V8Pq28/JskAIBUOY+JIgs9KksufkpZRUv7eLsROKYB2MLfLR1GKXkt3atpUjOKLTsVWPimX1TSilYWA6BumiykU5i+QWfj/WAFK/ZCKJYADlcAeK43KXhoXw9u0BTSZNhCezba5c9UCmfJgFEw/c7wuxDZinn376s47L3nvvvU2DPe6NN95Y+dRTT7VLkTnttNMaH3zwwW20r966T+GKfDfkO7rePnZBl4F3sUQxHkvnoMOW5O3cuSDhNPcIOH3RLad8rO2ud27WQ+GuTyTwlJYBIKVAFc6cvPASSRhOWdvcdaGzy+5k3LUKEsVMYsi+XSu6ZaGqKoZl4NNpF6SWEXnBrs9aaWuMM2bBCHgOxhZ5ebtBIzAqwNbWrV0eW/MqIO2qekov1qnUdZqtNgCer3me24/uvT/Udw/9Ll6l84PbOTPO4YWaFwAQ/oFZ8jKRQIgEVAxNNUehO9lXhgV9FXm9/QNBpCl3U7RTD1nMhndfY+TISQSGYZDt/s5tt92287bbbuu+l/M+iivy3ZDKk1fylCcPdv36joF3iXiYuD4SzTIoLMtPc5xckXTmqAtUA0w7Z17IoXfXJ2MxQkE7WwFLQUXHK3VQBC0x3Wk1mzt3PcJslxqoAKqZQDcLut4xC8uSdpc5RcXExK+LdvPX2Zb8lnUNCEVQOa2MndiW/NYdMQ6cOpEtrVu6PL7HZ48rGTPwF/T8gCUNA9Vjfz+/Ou5XvY4d4MLZF3a5PKgFiRu2sCs+P9ZAAu+Suu2uP/o7/d53IAhpj7E/aXRWwkTxZb77cA5F/oCFh/GVSd+ltKiSrquCu7j0Hze6vhtsS15B6cJqyRVdBd61tDQQN3x4pE5BcR7qd+eQpGPJB1Wn4p1ii/xQu+uTsSgiYD+MWaaCJpJoloGiCna1JnIWeNfOXZ81/y5IiXzvN2Y9Vf9eVdAVHZ8ukMmMyBtOZLzmVWmsi1BcEcAbsMV6TJGXpGlR4R/bJ5HvDWkYJJxAtwmFg6swF9ACJMwEpmU6lvwA3PUpkfcNTcGnVBR/fwri2O76zG0znkN3vfAoCCGwOgROpmv6u7gMAFfkuyHVgS6fFac0NYTRoaxtNNZKwvThsXSCA8y3HSoSTsBRgSPyliJQpGWXtB0id72UkmQsihq0rWhpCDSRwCsNCvwedrXGcx54JzGRWa1QFQmKGSep924RGk50tqLYKXR+HcxYJm5IT9jj9PhUmuoilFYG01UDR4fsB6YCpZId4R3oVuf5a6/fds4l+iLyuk7CKa1bNEhhXd+4HoCGeMPALfmmHbbIR4am06QQ9oNov0U+y12/67PNuRuPE2wpdavdfScRy2tcmct+jivy3ZDPNrMpugq8SyYiRMwgASs+4KIaQ0Ui5a7XMiIPUOTThsySN/Qklmki/AGnOYst8j5pUODX2NkSz3ngnZ3mlfnpCCltS74vIu94PyzVBAH+pIIRz9SD1xMmiiIQiqBlT4ySUcF0nfTKQvuzFEY5hjTSKWvZeJx6wolIHwLYdJ2ksL+7VEGbgZIqbRvWwwi/f2CWfFuTLbyNn/a+8UC57F9wyNcBECv+0z5vsu8PgDJpIbLc9auefard+hlLjhrw0IQi7M54utXOW68PJFPBxcXBFfluMK1YXoPuoHMKXVNTE5F4gpgMECKBN5Df8w+WtLtecaLrnaup0KdkiuHkWeSTUdvKEf4gqgVIgUfECWAQ8Kvsao1jidz0kzdN0y6V2cmST4l878cwzFSQor2xXxcY8SxLPmni8askIjqWKQmV+tKWfKlfJeBRiUXtIl9b2zoH3/mcKnjRtt4HI3WdhDDxKB58qq/X7XtiTIFdSyRmxAacQielx7bktcGNpUfGHQLldmEpgTMn3w+Rt5ImSpa7fs4xJ7RbP/vo4wY1PMWrIPX249n45vJBHXN/5rrrrhtzyy23jNrb4xjOuCLfDfnsJZ9CVQuQMplOeWpubiZq2cVJSn1iWDengEx0ffacPECRTxkyd30y5cr0+/E4rnBNJAlIE79X49P6CH9duR1jIK1PO2AYBqqqgjTInpPHslDNOMlk75a86XxmhiPyPkPBjLW35DWvSizsPASEPJmOZ5bFpPICmlps13pX8/K+Alvk45He0+gsXSeuWoO24iFT8jaqRweeQofXEfk8P9w600xC2CJv9bFCIDju+ixLfsuaD4BMKdspCw4d1NBSVfhElilvDqAPgMveQ+/L0/4Q4kbXd4Ptrs+zJa9lOtEpipdkMklYt2+WZcHh/9WkouuDzryu5dz7Cr0Mmbs+6Qik8Pvx2NlgaCJBgUxQUmCf20LBMPRBX+yGYTiFiSxkdgqdJVHNOEYf3PV6yl2v2J+Pz1AwEhmRNxImHp9K3BH5QIEXTPuDlabJlPJi1u3QCYwJUNvWuWCXz7luYr1Y8tI0QdeJKWZuRF6zr9uYEUMZaApdWuTzaMlDutSyMgBLXibbp9Clousv+/UDOSmKI7yq467PiHyotG/dDYecJ785nt3rc2sJjZwd5fS7e8xJv/HGGysfffTR8jFjxiTLysr0BQsWRKuqqnxXXHHFhMbGRs3v91v333//lgULFsS3bdumXXLJJRO3bt3qA/j1r3+95cQTT4yccMIJB9TV1XkTiYRyxRVX7LrhhhvqAYLB4IKLLrpo94oVK4qKi4vNW2+9tfbGG28cv2PHDu9tt9229atf/WqX5Q3vuuuusueff744kUgo0WhUeeeddz7O6ecyCFxLvhtMM5a3NrMpVEfkUy77ZDJJ2LQfLMqzyo0OVzq669HsG1NIlVkin19LPuG46/FmW/IJCqwkE8qDHDm13K5El6PAO03TkNJoJ/JYFooZR0/0bhGm3PWG0w7XqyuYHebkPT6VeKQ7Sz5IbVOccaHxXVryqbS53ubkU7n5UUUn5An1Ou7eaGfJ+wZoyUuvnSdfPH7Q4+kRrz1WIezPXSb6I/Imwtv5tql5PDmpUic8SqeHjhfv/d9BH3d/4fXXXw/+4x//GLF27dr1zzzzzOY1a9YUAFx22WUT77nnnq1VVVUb7rjjjtorr7xyAsAVV1wx4aijjmrbtGnT+qqqqvUHH3xwHODPf/5zTVVV1YYPP/xw/X333Tdq586dKkAsFlOOPfbYtqqqqg0FBQXmD37wg7Gvv/76x48//vjmn/zkJ51LTGbxwQcfhB555JHPhpPAg2vJd4tlRlG9+c1T93rsAi7JZD2BwHhb5A37BlRZkt8HjFwQdyz5QHpO3rHsVTnk7nrp9eExbOHyiARBK0mTlDx82WE8/KPc5cmrqmoX1tEEhiXRFIGwLFQrgWmAZVooavfPzkbaXW+LoCoVzGj76HqPTyURddz5QQ1iGUt+UlkBpiUp941hW1tNp+N7fI67vpd2s5ZjaUcVnZB38CIfcFzsMSOG8PvAMNJd7vqKVEN2xbsZSwc9nh4ZY7dsFtjfQV8teWlJpG6hZFnylVOn4y8Y/OeXQnjsHvfDfaoOoDeLOx+8+uqroS9+8YvNhYWFFsBJJ53UHI/HldWrV4fOPvvsA1LbJZNJAfDWW28V/u1vf/sMQNM0ysrKTIDbbrtt1LPPPlsCsHPnTk9VVZW/srIy4vF45FlnndUKMGfOnJjP57N8Pp9ctGhRbPv27T0+xR111FGto0aNGna17V2R7wZjCKLrvT67b3Qyucf5P0lb0k4FqywbmlzhwZB03JMBYZCQHqRT7jOoWEPork9Z8j40085ZTrnr9zje04DPiz8RgYZPoOyAbo7UO7qu4/V6walVn5AWGiqivh7/CDtLIhk38Rf0IPKOt8Fw0rcEKlYkk2GhJ0wChd50T3hfgQeaMpb8lApbUPxiFLXhNzAts13fd4+3b3nyKUs+LHQKPblz10eNKEqqZkEshtqPym3SUhCh3Almt1TaLV0VbEu+r3PyqYC4bHd9Q+02xs6cnbOhCa/aL8/C55GOD0CWZVFYWGhs3LhxfV/2f+aZZwqXL19euHLlyo2FhYXWokWLZsRiMQVA0zSpKPbvTVEUfD6fBFBVFdPsuRBGMBgclgUNXHd9N5hmFCXPc/I+ry3yiURG5FvjIbxmgtIRwzt9Dtq76xN40BXbag8Mocinc4g9XjzOvVETCYJWIh0zEPA5Y/jVwYM6l67reDwecGrVpwIPRTSGx7AFI9lLL3fDSrnrU+5sBSsr8M5Imnh8CvGIjhDg9amgZiz5WaMLURVBPFqa7kaXjea4knsVecedHhaJnFjy2e56JWQ/qGY/vPSGtCRIDRHrnBaYP3QQ/bDknYeBbJHX4zFqPlyVsxEpAQ2rDzUOPq8cd9xx4WeffbYkHA6LpqYm5aWXXioJBoPWuHHjkg888EAp2KL/9ttvBwCOOOKItjvuuKMCbE9cY2Oj0tzcrBYXF5uFhYXW6tWr/SmX//6KK/LdYFkxNDW/373HUwaIdpZ8a6KQoBkb9oVwIJMnH5QxwvhJhbb5hDVk7vpYq229W14fXqc8qUckCFhJDMfT4PfmZgzJZBKv14u0bIFMPeQAaE5J12SsZ8FIWfK64yoWQsXKctfHIzq+Ag+JiIEv6EEoAqFkLPmgV2P6qEJ2N9nC3HFeXuurJe+IfJtI5GRO3qN40IRG1IiiOta4FQ73slfWeIxUG98h7EIn7II4fbWcU9ul5uRljrrPZaMENCznQfH4S67M+fH3dY488sjoGWec0Th37tw5p5xyygGLFi0KAzzyyCOf/uEPfyifMWPG7GnTps154oknSgB+85vfbF2+fHnh9OnTZ8+dO3f2Bx98EDjzzDNbDMMQ06dPn33zzTePmT9/ft+fRvdBXHd9F0gpMc1Y3i15RdHwestIJHcDjsgnQwTNKAUlJXk9dy5IiVxAxohKf9qSV0x9yCz5aEsz/sIiDCHwOylsXiVGwEqQqg6aq1a9uq4TCoWQaUveOYHPR7Pf/jsW7lmk0nPyxFEtFd2jIqOO29iSxMM6wUIvLbuj6Uj5bEse4KDxJTxT5YcJsK11G4zJHD+1TzLes3Cl5uTbiOckul4IQUAL2NH1jsibbW193l9GU9MXQ1vdTcg2rD5a8pYj8qna9ZaZe7e68GtYzoOir2C/NjAHTHeNZF5//fVOrWDHjx9vvPLKK590XL5ixYou28ZGo9HVqb/vvPPOHd2t68i3vvWtBqChl6HvFVxLvgssKw7IvM/JA3i9FSST9QAkk3Fa9UJH5PcFS94Recu25JPCFnRTH1qRLyguIWZJfE4Km89jEbQSaREW3tzcLFPu+pTIx1OWvGWhGG3OeHoReSe6PinjaJZGwqMgHXd9IqIjpR1Rn4ga9nw8ZCx5Z9+DxhfTFgniVXxsaWtvyadEXu/FOk250mM+kRORBwh4Ara7viBlyffdQLIa7QddRQytUaUQRfYyxZLCcjIWFOd7MY3c50MrARUMC6lbVEycnPPju3z+cC35LhiKNrMpfN4KEgn7BpdIRGgzCxlj7iA4zJvTAIQdS6bAseRbzUJ8xDGSiYy7XsnvJRZpaSZYXEKrZeF3RN7rkwStJLGUpR3IjVck5a63TMc1nzq+ZaGZtmu6V5G3Uu76JJrUSHoUaLKPl8ptDxZ6iUf0TBe5lCXvZAjMH18CKJR6R3dqOZuqXW/0Yp2mRd5LTtz1YAffRY3sOfm+u+utmDN9MVSWfMVM2LMRRYSxeslESNFR5D9Z+W7Oh6U4358VNygfPzHnx3cZHE888UTR97///XHZy8aPH5946aWXOnkLhguuyHdBqs1svvPkwbbkwxE7rbI1ESMhyxghomie/PdhHyxthkVAEfhkjAgB2swQPuLoyaQdnKZ62xX1yAex1mZGTjqAXaaFLynRvAqK10dQJog5lq/w5yZTIWXJ60lbIFOeDKREwwBhEW3rm8gnZRyP5SHpURBh2wsQc/YNFNqWfHGF85DZwZKfWhHC71HwWmNZW7+WpJnE63hMhCJQNYGh9xzom5ovj/kGX7c+xZ7YHnbV7kKdfn27c/QFGXHa1A6VJT/7NFi+EYVWzD4GupmOyKuOyMf78RDTVxSnLLEVM1ALM14waVkZj47LXuPMM89sPfPMM/sUxT9ccK+aLkg1jRkKS97rG0kyWY+UFruc3OgKX/8LiewNwqZJSFPRjAgRfLQatpimLfkhaDMbaW4mWFJCzLLw65Zdu13zEzATaUteCxTn5FwpSz7pdA6MZ1vyqooi9F4D3hJOGpZuxdGkRsKrIiL2Q2U0LfJ2Cp0v6MQ4OEVWUmlvmqowa3QRhA+lMd7IP7f8s905NK8KEgy9e2veTIm8l5xE1wNE9EiHOfl+WPIf/A0AZdYJvWyZI5xrUxGt/bPkFXveHKD63bdyPiyRJfLZ7K7JY9Mel/0aV+S7IG3JD8GcvM9bjpQGut5EvVMJdHRw30ihaTNMClUVkYxgqEFa9JTIJ8FI5D2y3kgmScaiFBSXEjclQQO8QQ94CwiaEaKO5esJDt6SNwwD0zTxeDwkUxUKLZmOsFY0DUim89u7I260n5NPehRELIG0rHQpW3+Bh0RUT9ehF367+mF2+9a5Y4rZsm004wsn8OjGR9udI9NTvnuRT82Xx3zkJE8+G6WgADQNs6mpz/tYLc0ACJm7/uw9cuilACiEsaJ9m1u3IjqKk/EAsK3qo5wPK9tdn024aVjGdLnsA7gi3wVJ3f5BeTz5nxf3+kba50zW05hQQErGFKm97DU8aDMtQpoCiTCmp4DmhG0xG8kExFvAnxsLutvzN9oBiwWlI2yvQkLiL9AgUEKBHk5b8ubYRQBEi6YM+FxxJxpd9aYa1NjR9amgOdXrxbLiJGM9C0bcmStPWDE0S0P3aAgpsSIR25IXoGgKUpK25IXPruUuYxmRP2JqGZGk5LCyf+PDPR/ycVOmkmZK5BM9iJcViSA1FV3NnSWfKoijSwOtvBxjT9/7wluO1a8cfUVOxtIrAfu3rYhWpG4HuvWGGdbT8/H5IuWulx0s+bX/+mdXm7u49Ior8l0Qj9nVGgOBcb1sOXj8vtEAxGJbaEhqhMwwpWX5FcdcETZMihXAiGFqQVoSxQjVseRjjRDIb2ON5jo7w6WkcjSthklh3KKg2Af+EoLJNmJOTnoo4OcjazLh4MBrosdSjXC8AuFUvItbEqPRblDiCQSw9EgfLHlb5Fv1FnyWD93jWG5tbcTb7GA73bHiUpHyQghEIJBOewM4aloFXlXBaDkEn+rjsU2Ppdel0+h6sOTN1hbMoA+EyFng3QkTbVf7py2folVUYOze3ed9LTkCQRSltDInY+krCnY8RF+seSuip+fj80VqHt5stadmFp76ZQAat3duRuTi0hdcke+CWLwWRQk4xWrySyg0CyE0Wlo/oln3Uay3UlS+b7RHbjNNyp1OXoYapDVZmBH5aAME8yvyTTttkS+tHEOrYRKMpUS+mECyFV1KdEsS8mlYKFiDaDebsuTxgJC24LcZJkaDLfK+UBFSxom19RxPEUuaIHTCehshEcLUnJt6czOxtmS7krb+YEZQOvZoL/BpHDZlBG9+HOPEiSfy3KfPEXcK8gSLbcs/Hu0+CNDYU0/C6Y+Qq8C7loTdoOuxTY+hjRzZL0velKWoomlI4jiyUYX9/aVEtSfMtiRKYefxLT7zvJyNRwloiICG0Wh/l0dfcAkATXXbc3aO/ZFFixbNWLFiRaf51aOPPnpqfX19J9dorvrQ19TUeJYuXTpwF+EQ4Ip8F8Ri2wgExg1JkwhV9RMKzaClZTXNRgHFRitF5WN633EY0GZYlDvphnG1gDY9hPBBPNwG0fxb8k11O/AGAnYKXURH0yXBEi8ESvDp9txuzLII+TXMQYp8ypK3NAvFsuezWwyTxIYNAAQmTEBaYSItSSyr+0pocd1CaLb1GBIh8NrBnUZDI9HWJMFCD5Fm+0EhWJIRlI6WPMDJc0fzaX2EWaHjadPbeG3bawCUjLTvda313bd7NXbvJlzspcBTkI7MHyyKsG8nq3evRqvon7velCNRRT34hqB2fRaqsMdoNPfcGtdKmphNcTxOxoO0Mu79GUuOzOmYtBH+tMi7DI7ly5dvLi8vz1szgEmTJukvvPDCsI6KdFPouiAeryXgz3O7yyyKihZQveUFojJAid5MScWEITv3YAibJpXSDq5qpAQLhaZQKZHmRtCa8m/J122npHIMQghanVzzUIkPEiVoZhK/aafRjfDblrwxiAplUaf0bFzEQSbRhC3yujNlUDR9OrJmA5YJ4cY4ReVdZ2bEDROvz34AKVFLMD32A4PR0EDjzlIOOKiCcPq9ZNoNK34/MqslLcBpB43hf17+mL+s8FAxeiTPf/Y8SycvpWycnafesL376HZj924ap6iMLhg9kI+jS65feD2vbnuVzc2b8VR+AbOpCSsSsQPxekCaJrqcQFB5JWdj6SuasKcUzOaePTDGrihI8FTa7yXdMwEoKq/I7ZhG+Enu6PzdmYaOqg2f1Nr/ePM/xm9u2pzT6OSppVOjPzniJ912t9u0aZP3lFNOmVZdXV0FcMstt4wKh8NpS900Tc4+++xJ48aNS9511107xo4dO2/lypUbRo8ebXTVhx7gpz/96cg//OEPFaqqyunTp8efeeaZT5999tnQ9ddfPwHs6bK33nprY2lpaafAjY7jGY64lnwHpJTEYrX4h2A+PkVx0Xw2Ndo328r4Loorhr8lb0pJi2EyKmm7O6sj9m99l7+CcG01JFohR5XmusKyTHZu/pjKKdOImxZqg+1uLa0sSAdVlenNtBomHlVBVVV0feAVylqdGvltog0BFKnCFvnttsgXzpqNx2cL9u4t3ZdzjSVNvH47sHOkNhKh+px9WklEDEZNKSbclEBRBMHibEvejxVtL/IFPo2bvziLjXVhxvsO5a0dbxE34mlLvnlX++1TSNPEqK9nT4HJyODIAXwaXTOxKFO8xTdtGgCJzZt73c/c/CGSIB7f0EeQCyIotGLs7vqzSqHX2d+tVtn5mlbU3NpKnjEFmA3xTnEC9Vu3dLOHC4Cu6+L000+fPG3atPhdd93VriRtd33oAe66667KdevWrf/444/X//GP/yGN2AAAIABJREFUf9wC8Mtf/rLyrrvu2rJx48b177zzzsZQKDQsO8z1BdeS74BhNGOa4SG15IuLD2ZT01towmCUvovgPlC3vjaexJQwybAtoY/CIUJqhDpGEmmtgtFAsDxv56/fuoVENMLYWXPYnkhS1mpb6SWjgqBPAmBSbDu7kjrTCvx4NA3DGLi7vqWlhWAwSJNhey5KPB4m/t+TxNasAcBTWsroqeXU1ehsWVfP1EO6Fs9o0kDzNyAUD5UFlTQ0NBD3K2zfYv8Ux04vYfvHTQRLvChKZrpILS7GbGnpdLwvzR/DEx/U8t76SrQxcd7b+R6LRx4OQOueroUruWUrmCbrPXswrIG33u0J34wZAMQ3biIwf36P2+oPfxf4ER5j6GuMCAEe5RPi1aXAtG63S9a2Ifwa2gg/Ukpee/B36XWKlttsGO8EO+UzsbWNwMwRBAqLiLW18vD3ruX6R5/J6bkGQ08W997gqquumnj66ac3dlXXvqs+9Kl1M2bMiJ1xxhmTv/SlLzV/9atfbQZYvHhx+IYbbhj/la98pfG8885rOuCAA/ZZkXct+Q7EnMh6f2DskJ0zGJzE5ua5TC6sIVRkoSjDP4Xuk6jt3hwX3kpSLWAPJYwP7KbamkJE+tHL5qRzkfPBZ6tX2uefNYeqcJyxjQb+cr+dPlY2FYDJsVp2JWxrSPN4BiXyDQ0NlJSUsDOyk0JvIaM9Gsf//h70bfb14hkzhknzD8JMbKbmo+7none3JfD6mxgbGktJcQmartFQpNIY9aGoguKKIE11UUpHtfeCaqUjMBo7W7qKIvjF2fPx6dMQ0surW5fjDWj4ghrhpjiW2fneFHnjDQDWTRSUBXIbXHrE2CMASJQXoZaUEHnzzV73SVozAROPGGJL9czfA9hV75rNbufBrbhB5D1bN4QieO/Jx6lanplayPXv1TuuEAQkt9jeo1lHHpPT4+/LaJomrax4iHg8ntawhQsXhl9//fWiaDTaZTBVdzFWr776avU3v/nNPatWrSqYP3/+bF3X+dnPfrbz/vvv3xKLxZTDDz981urVq/1d7rwPkFeRF0IsFUJsEkJsFkLc1MV6nxDiUWf9u0KISfkcT1+Ixe1UlaG05BvCCba0ljOzvJpR8/eNgJtPnVrjpfVVbJLjOHjCCA4s2EJUFrAhNIPWcSeB5svLufVkgjUvPc+EuQdSVD6SDxrbmLjHYNJMp65B0VikN8S8cDV1jsh7PR5M0xhQe1Bd16mtrWXChAlsaNzA9NLpzE22r7GuBALMPOJoEK3EIybV73fuiy6lpK6lDd3zGROLJlJUVIQwBNWT/o02Spj7/8aSjBk07AhTPq59xLs6YgRmY9fFZUYV+bn9zENIhg/g7xtfYvPuNiqnFCMlbKnq/GAQfuN1kmMr2F0q+Oqsr/b78+iJ3VHbs3Puc+dRfMYZtL3yCvqu7lPpZN162sxz8SnrUK57P6dj6ZWZpwAQ0p4CoOXFmi43i6zcBUBwQQVGMskbf/1Tel0uI+tTKD4V76Riwm9sR5oWY2bMTq9LRIe2S99wY9y4cUZjY6O2c+dONRaLiRdffDGdb7xs2bL6k046qeWUU045oOPUXFd96MGew//kk0+8p556ats999xT29bWpra0tKhVVVW+RYsWxW699dad8+bNi6xbt84V+Y4IIVTgbuBkYDZwnhBidofNLgWapJRTgf8GbsvXePpKJkd+6ET+x0/bbsq5ng2UzthCXd0/kHJ4e4derm/lYHMPnu0reS05i2+fMJWlfMKBSjVvjDicx3aO6zHKvL9IaVeXa2uo5/lf/5K2hj0sOv0rJCyLDW/vxKdLpi90MmIUBTH5aJY2vsWnrbYw+r1eimSYqtq+V2FL8f7772MYBqMqR1C9cx0HB2dy7sWZm7t3ip1BEywqZtKBBwHwz99v4I3HXmfHZjtm4Wfv/oxr/vUttot/oNPMKaNPZ9xYO+4jUjYPgIPmWqx6YQuWIZmyoH0wl1ZRgdXWRnjFii7HeNKcSv5tyhew1Ca+cO8fedVrxyg895u1NO2MEHVSxGJr1xF5+x1eGm0XEppXPq/fn0dP3Hn0nQBsbdtKybnngGWx/frr0g1xspHxBDv+126wEyhYB8VD5z0DwGPft33Kx6hFHmJr9hD/uP31YUZ0Wp6xg6fF4hD/e+GX261feMrpeRla4VFjkbpF3c/fY9qCxQgnc6FmzQd5Od++gs/nk9dff33dokWLZh1//PFTp06d2s4q+tGPfrRr/vz50S9/+cuTzaxA2+760BuGIc4///zJqX7zy5Yt21VeXm7efvvtI6dNmzZnxowZswOBgHXWWWd1nitzEELk7kaXB8RALJs+HViIJcCPpJRfcF5/D0BK+fOsbV50tnlbCKEBO4EK2cOgFi5cKFeuXNnv8XyyJ8zGujbnvJnl0cgnGGYbSAtdb6C+/lXAYtas2wB7GFLaf6VGJZHpZQBtbesxzQSWZYAQCDQsKZHSwsJCoCCEikSxA/t0aIpKWuKSqm1xNjb6WRJ9h8Oj77LwUpVo7GO83pEUFy/A7x+Lx1OCpoZQ1QBCeFBUHwIVBAgEI0Yc1a7O/taGKOvrWrLG23cMKVmbTCKRGFKiCUHckpQpKlHLIm5ZzKz+PZH4Ls6pe4ECM0pd6ULG659BZA87RAmnt/2Y3VoFRWqCuSNNJlT6KSsArwoeFTyqwKsKhAKK8KDJcbTu2W1/slIipERi/28mLdpqGqjfVoOhx1HxogoPyqwFECglWR9nwk4dMcrPtLMmp11ypbvfZdHyr7HJN4ltlcey1n8ws9c/SEvJaF5ZeAPCV4AQsFHXuSBUxDhP+/CUrVvXYIRriLVGaNvSzJLV7zC+uuspyL8//BhnzZrGjAI/1e/v4p+/bx9oqwViNJDgo1EvU1X5Bl7p5eJ3/wsQNJW/j6nFKdnTzEgzQlQ5GCQcdd5MFH/GE+LfUkv4P34IwJTnn8M3uXMb0pgR44THTyIRK6Zp+/HMTgrmJD2Mb5nVbrsxDW9xx7F/ZcGMo7n7+Lv7cXX0jXkP2g8Ob5/3NuHb/oemP/8Z4fdTes45FJ50ImrZVFqe+4zkVvv36BGbGXnrRXunAUu0EeqrSchZ7PnNmnarPGNC6E6Ue+iIMfz+4X9Pr1v2mwdpqN3GROehLtdIKdnx43fSbXAtafKO/hyLvnYOkw46ZEDHFEKsklIuHMy41qxZUzN//vz6wRxjf+L1118PXnfddePff//9TXtzHGvWrCmfP3/+pK7W5VPkzwKWSikvc15fCBwmpbw6a5t1zja1zutPnG3qOxzrcuBygAkTJhyyZUv/5+7uW/4JP39+40DfTs4RWBR4ohSqYQ7YsZlDkh9y4JdmcdwZd7B79wvs2fNP2sIbSCTq0q1vu+PwJcvbVef709s13PLUwDI6pEchcVzPaVXvvnsuY+K7SQo/PsVCK5sCow8kOmYJD32wllHFa3j5relsFNNpKSqmRRaRtAbmuh9tCC4Id+8paxOSGo/Jq36dRAeNOF15gx95HsRPkpmJBwFYEbqWYxY/SDTVlyBm4KlqRm1on0J1aHAlsywTKSRR/TPOefYDCmPtfyt1Y8ax7JY7iAH3z5nM0opipJTcc+WrXY51V6iGf8z7b059azpjxTcBMNU4LaE3MP0aSiJOwWddB5/NOeYEZr6xktiqVUx8+CGCC7u+V7+y9RW+s/w76JbTFtXSuPzdX3babsalPo5feHheakHsiuzCkhajQ6Ox4nFqr76GZE0Nxq5daGNGU3HdvbS9ak+LqWI3o248CqUkd1H+AyWxtZU996zptFwrD1B5w0J213zKQzd+i2X3/olQaX7TQ8FuUrPzFyvTLW4Bxv7syHTt/P7iinxuWbFiRfBrX/valB//+Me1F110UXPve+SPvSXyZwNf6CDyi6SU12RtU+Vsky3yi6SU3ebSDNSSb4wkqQ8nyH67Ekk8VodhxhBCQfOUoGnFCIRtSSLSVr9wrOb0a1IeAUE0WoMQoCoeQGLJJAoKiuJBCJDSREoTgYkQgoBHpTigoCoqhmGieXz4faPQtK4LgVhWAsMIY1kJLCuJZSUcd779ZgoKpqIomXSrhnCCXa0Jsg0jQd9uDIaUfBJPogjQBOiONb9LNyjUVIo0lfFBL1OLg2jSAK19IRXTNFFVFctKkkjsQcoklmUR1SW6aaEbFknTImlYSCSgIMwRRFqabZekACEUJHagjGWAGfcipIppmGh+FdWnoXoUVJ+KJ6A5x+ka3ZKEDZOIZRE3LSYXxCn0lxNNmDQbBiFFReviownrrZSE4hT5QgS0AKE4CE2j7aWXiX34ISiC8iuvxDOyszjdfcW/AJgwp4y2xjgFxV4qxgeYcLCfoM++RvSECVKiegRSSqrqq5jpm4BeV4daXIxWVkb2F+gPhSgqH4kViSD8foTafbBXQ6yBrW1bEQgUoTCvZBbRVavwzJyLoXiJtSUpGzu0RWcArFgMfft2PGMmgipQfMMvuUfqJtJ03HQChKYgtL0fn2w0J1ALvQh14A9lrsgPnPfeey/wta99rZ37zOv1Wh999NGwsBz3lsgPK3e9i8tQ0bAjTFt9nEkH5i+F0MWlv7giv//Sk8jn8xH1fWCaEGKyEMILnAv8X4dt/g+4yPn7LOBfPQm8i8u+QNmYkCvwLi4uw4K8+cuklIYQ4mrgRUAFHpBSVgkh/hNYKaX8P+D3wENCiM1AI/aDgIuLi4uLi0sOyOukmJTyOeC5Dstuyfo7DpydzzG4uLi4uLh8Xtn7ESUuLi4uLi4uecEVeRcXFxeXfZbeerrX19er//Vf/zXgVoELFiyYOdB9hwOuyLu4uLi47LP01tO9oaFB/f3vfz/gQgyrV68eFmlyA2X4Jaq6uLi4uAx7dtz8/fGJ6uqc9pP3TZsWHfOzW7vtbnfllVeOnThxYvKmm27aA3DdddeNKSwsNP/yl7+UV1dXV61cudJ/8cUXT9Z1XViWxRNPPPHJ9773vbHbtm3zzZw5c/bRRx/devvtt+9YunTp1JaWFtUwDHHLLbfsuOCCC7otZhMMBhdEo9HVuXyfQ4lrybu4uLi47BNccMEFjU888US63OBTTz1Vunjx4nRjhF/96lcVV1111a6NGzeu/+ijjzZMnjw5+ctf/rJ2/PjxiY0bN66/7777aoPBoPXss89uXr9+/Ybly5d/fPPNN4/L7my3v+Fa8i4uLi4u/aYniztfHHHEEbGGhgatpqbGU1dXpxUXF5tTpkxJptYvWbIk8otf/GJ0bW2t99xzz22aN29eouMxLMsS11577bh33nknpCgKu3fv9tbW1moTJkwYeC/qYcw+J/KrVq2qF2LAjaeLgW67CQ0jhsM4h2oM+TxPLo+di2MN5hjlgFtpbHgxHH6n/WHi3h5ALjj11FObHn744dKdO3d6zjzzzMbsdVdccUXjUUcdFfnHP/5RfPLJJ0+/5557ambMmNFO6O+7774RDQ0N2tq1azf4fD45duzYebFYbL/1au9zIi+lHHCUpBDit1LKy3M5nnwwHMY5VGPI53lyeexcHGswxxBCrBxsSVKX3DIcfqefRy688MLGb3zjG5Oampq05cuXb4rH4+mC/uvXr/fOmjUrMWfOnN2ffvqp78MPPwwsWrQoGolE0iLe0tKilpeX6z6fTz799NOFO3bs8HZ9pv2D/fbppRue3tsD6CPDYZxDNYZ8nieXx87FsYbD9+qSO9zvcy+wcOHCeCQSUUaNGpWcOHGinr3uoYceGjF9+vQ5M2fOnF1dXe1ftmxZQ2VlpXnIIYeEp02bNmfZsmXjLrvsssY1a9YUzJ07d9bDDz88YvLkyfHuzgXkpVPjUJK3BjUuLi65w7XkXYYDn7cGNTt37lQPPvjg2Tt27Fi7t8fSE3urQY2Li0vu+O3eHoCLy+eJmpoaz+LFi2d985vf3LW3xzIY9rk5eReXzyNSSlfkXVzyxM6dO9VjjjlmRsfl77zzzobKykpzb4wpV7gi7+Li4uLyuaaystLcuHHj+r09jnzguutdXFxcXFz2U1yRd3FxcXFx2U9xRd7FZR9FCFEghFglhDhlb4/FxcVleOKKvIvLMEEI8YAQYrcQYl2H5UuFEJuEEJuFEDdlrboReGxoR+ni4rIv4Yq8i8vw4Y/A0uwFQggVuBs4GZgNnCeEmC2EOAFYD+zT6T0uLoMl3/3k93Xc6HoXl2GClHKFEGJSh8WLgM1Syk8BhBB/BU4DQkABtvDHhBDPSSn331ZaLsOOV/60YXzj9nBOW82OGBuKHv+1Wf1qfNPXfvKp9rSfN1xL3sVleDMWyL7p1QJjpZTfl1JeC/wF+J0r8C6fB6688sqx2Vb5ddddN+aHP/zhqGnTps0BWLlypX/evHmzZs6cOXv69Omz165d67v++uvHpfrJL1u2bFxLS4uyZMmS6bNnz541ffr02Q8//HBJd+f793//9zE/+clPRqZeX3PNNWN/+tOfjuxu++GIW9bWxWUY4Vjyz0gp5zqvzwa+IKW8zHl9IbBISnnNXhuky+eWvV3W9s033wxce+21E95///1NAAcccMCcX//611u+9a1vTayurq666KKLxi9evDhy5ZVXNsbjcWEYBtu3b/eccsop06qrq6sAdF2nra1NGTFihFVXV6cddthhM2tqatYpSmebd9OmTd4zzjjjgPXr128wTZNJkybNff/994ddgZyeytq67noXl+FNLTA+6/U4YMdeGouLy15lqPvJz5gxI1lSUmK8+eabgbq6Os+cOXOiw03ge8MVeReX4c37wDQhxGRgO3AucP7eHZKLy95jqPvJX3zxxfX3339/+e7duz0XX3xxQ77eV75wRd7FZZgghHgEOAYoF0LUAj+UUv5eCHE18CKgAg9IKav24jBdXPYqQ91P/sILL2y+9dZbxxqGIc4888xuA/yGK67Iu7gME6SU53Wz/DnguSEejovLsKRjP/lNmzalRfqhhx4a8fjjj5dpmiYrKir0n//85ztGjRqV7id/3HHHtfzoRz/aefLJJ0+dO3furDlz5kR76yfv9/vl4Ycf3lpSUmJq2r4nmW7gnYuLi4tLn9jbgXd7A9M0mTNnzuzHH3/8k67m+IcDbj95FxcXFxeXfrJq1Sr/xIkT5x111FGtw1Xge2Pf8z24uLi4uLjkkO76yb/22mubamtr1+6NMeUKV+RdXFxcXD7XuP3kXVxcXFxcXPY5XJF3cXFxcXHZT3FF3sXFxcXFZT/FFXkXFxcXF5f9FFfkXVz2E4QQvxJCfCCEOHRvj8XFZThzzTXXjK2srDwwGAwu2NtjyTdudL2Ly36AEKIAGAksA07Brnnv4pI3XvzN/4yv37Ylp/3ky8dPjH7hymv71U9+IJx++unNN9xww+5Zs2bNzfe59jauJe+yzyGE+G8hxLVZr18UQtyf9fqXQojrcnzOcI6PVyKEuCrr9SQhxLo+7hsQQiwXQqipZVLKCDAaeA24SwjhFUKsEEK4D/Iu+xXf+c53Rk+ePHnO4YcfPu3UU0+dfMstt4xatGjRjEsuuWT8ggULZk6bNm3Oq6++GgRoaWlRzjrrrEnTp0+fPX369Nl//OMfSwCOP/74yMSJE/W+nK+qqso3f/78mXPnzp117bXXjtnXrH/3BuCyL/IWcDbwP0IIBSgHirLWHw5c29WOw4gS4CrgngHsewnwdylluuWlEKIMCAJtgCmlTAohXgHOAf6cg/G6uLRjKCzujqxYsSL49NNPl65du3a9ruvioIMOmr1gwYIoQDQaVVavXr3x+eefD11++eWTq6urq2666abRRUVF5scff7weYM+ePWrPZ+jM1VdfPf6qq67avWzZssbbb7+9ItfvKd+4lrzLvsib2EIOMAdYB7QJIUqFED5gFrBaCPGkEGKVEKJKCHF5amchxG0drOgfCSGuF0JcIIR4TwjxoRDivmxLOWvbLrdxLPENQojfOef7pxAi4Kz7DyHERiHES0KIR4QQNwD/BRzgHOcO5/BqV/t3wVeBpzos+wHwC6AKmO0se9LZ1sVlv+C1114LnXzyyc2hUEiWlpZaJ554YnNq3fnnn98IcPLJJ4fD4bBSX1+vrlixoujb3/727tQ2FRUV/e4Fv3r16tAll1zSCHDZZZftc61mXZF32eeQUu4ADCHEBGyxfxt4F1gCLAQ+klImgUuklIc4y77lWLsAf8W2cFN8BVjpLDtCSnkQYNJBIIUQs3rZZhpwt5RyDtAMnCmEWAicCSwAvuyMBeAm4BMp5UFSyu90t3/H9y6E8AJTpJQ1WcsmOZ/Do8AG7AcfsB9+3CA8l/2GnhqqCSE6vZZSdlr+ecMVeZd9lZQ1nxL5t7Nev+Vs8y0hxBrgHWA8togipVwNjBRCjBFCzAeagHnAIcD7QogPgeOBKR3OeXwv23wmpfzQ+XsVMAk4EnhKShmTUrYBT/fwnrravyPl2A8A2fwU+E9p3wHTIu+485NCiMIezuniss9wzDHHhF988cXiaDQqWlpalJdffrkkte6RRx4p/f/t3XtYVOXeN/DfWoPAjDPAgJyPpgwwnBxJCiIBTQNSs+hJQ2231a3oNmNPmqX7KdPMSNEnc+OhHre9hekO0/JIuS8FXtxmIipyBgNJQDkOMwyDc1jvHzq+5gFBQBz4fv5y1rrXWvea6/L6ct9zr/UjIsrIyBCKRCK9nZ2dPioqqnXDhg0OxjYPM10/atQo1c6dO8VERDt27LDtjft4lBDyYKpO0o1AD6QbI9ZTdGMkH05EOQzDRBHRc0QUxnFcMBHlEZHlbcenE9ErdGNkvpuIGCL66ubIehTHcT4cx62845oPanN7lSo93Vjz0p1hxL2Ov1P77ffBMMwoujFD8A+GYSqJ6L/p/4/kiYgsiKjTetkApiIyMlIdExOjkEql/nFxcSOCgoLarK2t9UREYrFYL5PJfBctWuS5bdu2SiKitWvX1ra0tPC8vb39fXx8pIcPHxYRESUmJro5OjoGaTQa1tHRMUgul7vc75qff/559eeff+4YGBjoV1tbO0QoFHZ7yr8/YeEdmKocInqbiC7dHLE2MQxjQzcC7i9E9AwRNXMcp2YYxpeInr7j+N1E9AXdGBlHEpGYiH5gGGYjx3HXGIaxJSIRx3FVtx3z7y60udP/JaJtDMOspRv/3164eV0lEXV7hM1xXDPDMDyGYSw5jtMQUTIRTeY47t9ERAzDONKNP2iMi/HqOY7r0ipiAFPwwQcf1G3YsKFGqVSyYWFhPu+8887VPXv22E2bNq35H//4x5Xb21pbWxu+//77yjvPsXXr1t+3bt36e1eu5+XlpT137lwxy7K0fft2cWBgYFsv3cojgZAHU5VPNwJ61x3bhBzHNTAMc5SIEhmGuUBEJXRjpH8Lx3EFN6exr3AcV0tEtQzD/J2Ifrq5Yl9LRH8loqrbjil8UJs7cRz3K8MwPxLR+ZvtzhCRguO4RoZhcm4+NneEiP7RjXv/iYgiGIYxENFQY8DfvN5VhmGG3vwDJJqIDnfjvACPvZkzZ3qWlZXxOzo6mOnTpzdGRESo+/J6OTk5grfeesuD4ziysrLS79y5s7Ivr9fbmM4WMgBAzzEMI+Q4TsUwjICIsohoHsdxZ3twPhkRyTmOm/WAdt8T0Xscx5U87LUAbnf+/PnK4ODghv7uR19YtmyZ0w8//PCH39xffPHFpuTk5Lr+6lNXnT9/flhwcLDXvfZhJA/Q97YzDCOlG7+lf9WTgCe6sXCQYZjjDMPwbn9W/nY3V+HvR8ADdE1ycnKdKQR6dyHkAfoYx3EJfXDOHQ/Yf52I/k9vXxcATAtW1wMAAAxQCHkAAIABCiEPAAAwQCHkAQDAZFVWVg6JiYm58+2UtzQ0NPA++eSThyosU1JSYu7t7e3/4JaPLyy8AwCAbmtKL3XX1rX1aj35IU5D1bavSLpV3c7Ly0t79OjRS/fb39jYyPvf//1fh3fffbe+5z00PRjJAwCASViwYIHr7aNyuVzu8sEHHzgaR9tnzpyxDAwM9PP19ZVKJBJpfn6+xdtvv+1WXV1t4evrK50/f76bQqFgw8LCJFKp1E8ikUi/+eYbm/tfkUiv19P06dM9R44c6f/MM894q1Qqk6p4g5fhAABAl/T3y3BycnL4SUlJHr/++msJEdGIESP8N2/eXLV48WLPsrKygj/96U/uTz/9dNuCBQuaNBoNo9Pp6MqVK0MmTZrkXVZWVkBEpNVqSalUsra2toba2lqzp556yreysvIiy9495i0pKTH39/cPzMrKKgwPD2+Pi4t7YtKkSS0LFy5sesS33im8DAcAAEzeM888097Y2GhWWVk5pLa21sza2lr/xBNPXDfuDwsLa1u/fr3z77//bj59+vTmwMDAjjvPYTAYmKSkJLdTp04JWZala9eumf/+++9mHh4euntd09XVtSM8PLydiEgmk6krKyst+u4Oex+m6wEAwGRMnjy5+ZtvvhGnpaXZxsfH/2FEnZiY2PTDDz+U8/l8Q2xsrOTHH3+8qwjUtm3bbBsbG83y8/OLiouLC+3s7LTt7e33zUJzc/Nb0908Ho/T6XQmNV2PkTwAAJiMWbNmNf3lL3/xam5uNsvMzCzRaDS3QrewsNDcz8+vw9/f/9qlS5cszp07xw8NDVW3tbXdCnGFQsEbNmyY1sLCgjtw4ICopqbGvH/u5NHASB4AAEzGk08+qWlra2MdHR2ve3p6/qGM8tdff20rkUj8fX19pWVlZZbz589vdHJy0oeEhKi8vb3958+f7zZ37tym8+fPDw0ICPD75ptvbIcPH67pr3t5FLDwDgAAuqS/F97BvXW28A4jeQAAgAEKv8kDAMCgVldXx4uKivK5c/uJEydKnJyc7lnO2VQg5AEAYFBzcnLSFxcXF/Z3P/oCpusBAAAGKIQ8AADAAIWQBwAAGKAQ8gAAAAMUQh4AAAay0WVPAAAgAElEQVSVN99809XJySlIIBDI+rsvfQ2r6wEAoNv279/vfu3atV6tJ+/g4KCeOnVqt+rJP4ypU6e2LFmy5Jqfn19AX1+rvyHkAQDAZCxdutQ5PT3d1tnZ+bqdnZ1OJpOpjx49ahMQEKDOy8sbqlKpeNu3b/8tOjparVAo2Dlz5nhcuHBBQES0fPnymjfeeKNl/PjxbV29nq+vr9T478rKSsu9e/eWvvDCC6q+uLe+gJAHAIBuexQj7jtlZWUJDhw4IM7Pzy/UarXMqFGjpDKZTE1EpFar2by8vOIjR44I582bN7ysrKzg3XffdbaystKXlpYWEhHV19fzuntN4/Pzu3btsk5JSXF67rnnuvwHwuMAIQ8AACbhxIkTwtjY2BahUMgRETdhwoQW476EhIQmIqLY2FiVSqViGxoaeFlZWVa7d+++ZGxjb2//UG+vy8/Pt1ixYoXb8ePHSy0sLEyq4AsW3gEAgEnorKAawzB3feY47q7t3dXa2sq++uqrI7Zs2VLl5eWlffARjxeEPAAAmISoqChVRkaGtVqtZhQKBXvs2DEb475vv/1WTESUkZEhFIlEejs7O31UVFTrhg0bHIxtHma6fvr06V4zZsxoiImJMZnf4W+HkAcAAJMQGRmpjomJUUilUv+4uLgRQUFBbdbW1noiIrFYrJfJZL6LFi3y3LZtWyUR0dq1a2tbWlp43t7e/j4+PtLDhw+LiIgSExPdHB0dgzQaDevo6Bgkl8td7nW90tJS86NHj4q/+eabYb6+vlJfX19pVlZWrz5R0NdQTx4AALrkcagnr1AoWGtra4NSqWTDwsJ8tm7dWiWXy93Xr19fPXbsWHV/9q2/dFZPHgvvAADAZMycOdOzrKyM39HRwUyfPr0xIiJiUAZ7VyHkAQDAZBw4cOC3O7edPn26pKfnXbZsmdMPP/xge/u2F198sSk5Obmup+fuT5iuBwCALnkcpuvhbp1N12PhHQAAwACFkAcAABigEPIAAAADFEIeAABggELIAwAADFB4hA4AALqtsGiZe5uqtFff/jZUKFFL/ZI7rW63cuVKx7S0tGFERLNmzaqfNm1aS0xMjHdoaKjq7NmzQj8/P/Xs2bMbVq1a5drY2Gi2c+fOS9HR0erW1lZ2zpw5HkVFRXy9Xs+sWLGiZubMmS1KpZKdNm2aV3l5uaW3t7emurrafPPmzZfHjh2rnjFjhsf58+eHajQadvLkyc0bN26sISLKzMwUJCUleajVatbc3JzLysoquXbtmllCQsLw9vZ2lojos88+uzxhwoS2gwcPij788EMXe3t7bWFhoSAuLq45MDCwPTU11bGjo4PZt29fhb+/f8e97jU+Pt5r0qRJij//+c/NREQCgUCmVqvzuvOdIuQBAMAkZGdnC3bt2mWXm5tbxHEchYSE+I0fP15ZXV1tuWfPnkshISFVQUFBfmlpaXZnzpwp3rVrl82aNWuco6OjK5YvX+4cHR3d+t1331U2NDTwnnzySb8pU6a0rl+/3t7GxkZfWlpa+Ouvv1qGhYX5G6+3YcOGK46OjnqdTkfh4eE+v/zyCz84OFgzY8aMEWlpaRWRkZHqpqYmVigUGszMzHTZ2dmlAoGAy8/Pt3jttdeeuHjxYhERUXFxMT89Pf2Sg4ODztPTM9DCwqIhPz+/aPXq1Q4pKSkOO3bs6LOyvQh5AADotgeNuPvCiRMnhHFxcS1WVlYGIqIXXnih+fjx4yJXV9eO0NDQdiIiiUTSPm7cuFaWZWn06NHqjz76yOXmsVYZGRk2mzZtciIi6ujoYMrLy81PnjwpfOutt64REY0ZM0YjkUhuvUHvq6++st25c+cwnU7H1NfXDzl//rwlwzDk4OCgjYyMVBMR2draGoiIWltbmTlz5ngWFhbyWZalqqoqC+N5AgMD2zw9PbVERB4eHh2xsbEKIqLg4OD2zMxMUV9+Zwh5AAAwCfd7eZu5ufmtHSzLkqWlJUdExOPxSK/XM8Zj09PTy4ODg/8wNX6/cxYXF5tv3rzZMTc3t8je3l4fHx/vpdFo2Jvla+86aM2aNY4ODg7avXv3/mYwGIjP54cY991eg/72/rEse6t/92JmZsbp9XoiIjIYDKTVartdNxcL7wAAwCSMGzdOdfjwYRulUsm2trayhw8fFkdHRyu7cmx0dHRrSkqKo8FgICKinJwcPhFReHi4avfu3WIiotzcXMvS0lI+EVFzczOPz+cbbG1t9dXV1WYnTpywJiIKDg7WXL161TwzM1Nwsx2r1WpJoVDwnJ2dtTwej1JTU+2M4dwTnp6e13NzcwVERGlpaTY6na7bIY+RPAAAmISIiAh1QkJC4+jRo/2Ibiy8GzZsWJfS9JNPPqmZN2+eh6+vr5TjOMbNza3j+PHj5UuXLq1/9dVXvSQSiTQgIEDt4+PTLhaL9YGBgR0BAQFqb29vfw8Pj46QkBAVEZGlpSWXlpZWsXjxYg+NRsNaWloasrKySpOSkq7Fx8eP2L9/vzgiIkLJ5/MNPb3fN998s37SpEkjAwMD/caOHdv6MOfEu+sBAKBLBuK763U6HV2/fp0RCARcQUGBxcSJEyUVFRUXjVPqpgClZgEAAO5BqVSyzz77rI9Wq2U4jqONGzdWmVLAPwhCHgAABi2xWGwwPurWX/qyzC2m6wEAoEsG4nT9QIBSswAAAIMQQh4AAGCAQsgDAAAMUAh5AACAAQohDwAAg8qbb77p6uTkFCQQCGQPavvpp5/ab9682e5R9Ksv4BE6AAAYVKZOndqyZMmSa35+fgEPavvOO+/UP4o+9RWEPAAAdFtS0WX34jZNr9aT9x1qqf4fP49Oq9stXbrUOT093dbZ2fm6nZ2dTiaTqY8ePWoTEBCgzsvLG6pSqXjbt2//LTo6Wq1QKNg5c+Z4XLhwQUBEtHz58po33nijZfz48W1d7ZNcLncRCoX6VatWXe3p/fUHhDwAAJiErKwswYEDB8T5+fmFWq2WGTVqlFQmk6mJiNRqNZuXl1d85MgR4bx584aXlZUVvPvuu85WVlb60tLSQiKi+vp6Xv/ewaOHkAcAgG570Ii7L5w4cUIYGxvbIhQKOSLiJkyY0GLcl5CQ0EREFBsbq1KpVGxDQwMvKyvLavfu3ZeMbezt7XteGs7EYOEdAACYhM7e0MowzF2fb9Z+7+tuPdYQ8gAAYBKioqJUGRkZ1mq1mlEoFOyxY8dsjPu+/fZbMRFRRkaGUCQS6e3s7PRRUVGtGzZscDC2GYzT9Qh5AAAwCZGRkeqYmBiFVCr1j4uLGxEUFNRmbW2tJyISi8V6mUzmu2jRIs9t27ZVEhGtXbu2tqWlheft7e3v4+MjPXz4sIiIKDEx0c3R0TFIo9Gwjo6OQXK53KUfb6tPoUANAAB0yeNQoEahULDW1tYGpVLJhoWF+WzdurVKLpe7r1+/vnrs2LHq/uxbf0E9eQAAGBBmzpzpWVZWxu/o6GCmT5/eGBERMSiDvasQ8gAAYDIOHDjw253bTp8+XdLT8/ZlTff+hOl6AADoksdhuh7uhnryAAAAgxBCHgAAYIBCyAMAAAxQCHkAAIABCiEPAAAwQCHkAQAABig8Jw8AAN22NP28e2mdslfryUucROp1rwR3Wt1u5cqVjmlpacOIiGbNmlU/bdq0lpiYGO/Q0FDV2bNnhX5+furZs2c3rFq1yrWxsdFs586dl6Kjo9Wtra3snDlzPIqKivh6vZ5ZsWJFzcyZM1uUSiU7bdo0r/Lycktvb29NdXW1+ebNmy+PHTtWPWPGDI/z588P1Wg07OTJk5s3btxYQ0SUmZkpSEpK8lCr1ay5uTmXlZVVcu3aNbOEhITh7e3tLBHRZ599dnnChAltBw8eFH344Ycu9vb22sLCQkFcXFxzYGBge2pqqmNHRwezb9++Cn9//4573WtBQYFFQkLCcL1ezzz33HOK7du3O6rV6rzufKcIeQAAMAnZ2dmCXbt22eXm5hZxHEchISF+48ePV1ZXV1vu2bPnUkhISFVQUJBfWlqa3ZkzZ4p37dpls2bNGufo6OiK5cuXO0dHR7d+9913lQ0NDbwnn3zSb8qUKa3r16+3t7Gx0ZeWlhb++uuvlmFhYf7G623YsOGKo6OjXqfTUXh4uM8vv/zCDw4O1syYMWNEWlpaRWRkpLqpqYkVCoUGMzMzXXZ2dqlAIODy8/MtXnvttScuXrxYRERUXFzMT09Pv+Tg4KDz9PQMtLCwaMjPzy9avXq1Q0pKisOOHTvu+YfNokWL3BcuXHht/vz5TZ9++qn9w3xnCHkAAOi2B424+8KJEyeEcXFxLVZWVgYiohdeeKH5+PHjIldX147Q0NB2IiKJRNI+bty4VpZlafTo0eqPPvrI5eaxVhkZGTabNm1yIiLq6OhgysvLzU+ePCl86623rhERjRkzRiORSG69Jverr76y3blz5zCdTsfU19cPOX/+vCXDMOTg4KCNjIxUExHZ2toaiIhaW1uZOXPmeBYWFvJZlqWqqioL43kCAwPbPD09tUREHh4eHbGxsQoiouDg4PbMzEzR/e43Ly9P+NNPP5UTEc2dO7dx5cqVbt39zhDyAABgEu73hlZzc/NbO1iWJUtLS46IiMfjkV6vZ4zHpqenlwcHB/9havx+5ywuLjbfvHmzY25ubpG9vb0+Pj7eS6PRsDdr1N910Jo1axwdHBy0e/fu/c1gMBCfzw8x7rOwsLhn/1iWvdW/voKFdwAAYBLGjRunOnz4sI1SqWRbW1vZw4cPi6Ojo5VdOTY6Oro1JSXF0WAwEBFRTk4On4goPDxctXv3bjERUW5urmVpaSmfiKi5uZnH5/MNtra2+urqarMTJ05YExEFBwdrrl69ap6ZmSm42Y7VarWkUCh4zs7OWh6PR6mpqXZ6vb7H9ztq1CjVzp07xUREO3bssH1Q+3vBSB4AAExCRESEOiEhoXH06NF+RDcW3g0bNqxLafrJJ5/UzJs3z8PX11fKcRzj5ubWcfz48fKlS5fWv/rqq14SiUQaEBCg9vHxaReLxfrAwMCOgIAAtbe3t7+Hh0dHSEiIiojI0tKSS0tLq1i8eLGHRqNhLS0tDVlZWaVJSUnX4uPjR+zfv18cERGh5PP5hp7e7+eff149Y8aM4Zs2bXKaOHFii1Ao7PZfDihQAwAAXTIQC9TodDq6fv06IxAIuIKCAouJEydKKioqLhqn1PuTUqlkhw4damBZlrZv3y7es2eP7b///e+KO9uhnjwAAMA9KJVK9tlnn/XRarUMx3G0cePGqsch4ImIcnJyBG+99ZYHx3FkZWWl37lzZ2V3z4GQBwCAQUssFhuMj7r1l85q2ZeUlBT25NyYrgcAgC4ZiNP1AwHqyQMAAAxCCHkAAIABCiEPAAAwQCHkAQAABiiEPAAADCpvvvmmq5OTU5BAIJD1d1/6GkIeAAAGlalTp7b88ssv3X5sTqvV9kV3+hSekwcAgO7b/1d3ulbYq/XkyUGqpqn/6LS63dKlS53T09NtnZ2dr9vZ2elkMpn66NGjNgEBAeq8vLyhKpWKt3379t+io6PVCoWCnTNnjseFCxcERETLly+veeONN1rGjx/f1tUuxcfHe4nFYl1+fr4gKChI/cUXX/ze09t8lBDyAABgErKysgQHDhwQ5+fnF2q1WmbUqFFSmUymJiJSq9VsXl5e8ZEjR4Tz5s0bXlZWVvDuu+86W1lZ6UtLSwuJiOrr63kPc92KigrLnJycUjMz04tM0+sxAAD0vweMuPvCiRMnhLGxsS1CoZAjIm7ChAktxn0JCQlNRESxsbEqlUrFNjQ08LKysqx27959ydjG3t7+oUrDvfzyy82mGPBE+E0eAABMRGdvaGUY5q7PN2u/9/i6QqGwxxXl+gtCHgAATEJUVJQqIyPDWq1WMwqFgj127JiNcd+3334rJiLKyMgQikQivZ2dnT4qKqp1w4YNDsY2Dztdb8oQ8gAAYBIiIyPVMTExCqlU6h8XFzciKCiozdraWk9EJBaL9TKZzHfRokWe27ZtqyQiWrt2bW1LSwvP29vb38fHR3r48GEREVFiYqKbo6NjkEajYR0dHYPkcrlLP95Wn0KBGgAA6JLHoUCNQqFgra2tDUqlkg0LC/PZunVrlVwud1+/fn312LFj1f3Zt/6CevIAADAgzJw507OsrIzf0dHBTJ8+vTEiImJQBntXIeQBAMBkHDhw4Lc7t50+fbqkp+ftrKZ7T8/dnzBdDwAAXfI4TNfD3VBPHgAAYBBCyAMAAAxQCHkAAIABCiEPAAAwQCHkAQBgUJPJZL793Ye+gpAHAIBBSafTERFRXl5ecT93pc/gOXkAAOi2/875b/fy5vJerSc/UjxSvfqZ1fetbtfa2spOmTLlidraWnODwcC88847NStXrnQ7c+ZMkbOzsy4rK0uwZMkS99OnT5fI5XKXS5cuWdTV1Q2pra01X7x4cd3bb7/dcPDgQdHq1audHRwctIWFhYKKiooCgUAgU6vVeQcPHhR9+OGHLvb29trCwkJBXFxcc2BgYHtqaqpjR0cHs2/fvgp/f/+Ompoasz//+c+eV65cMSci2rBhw+WJEyfeVaNer9fTE088EfCf//yn2MXFRafX62n48OEBv/zyS7Gzs7OuN7+7+8FIHgAATML3339v5eTkpC0pKSksKysrePnll1s7a19UVMQ/duxY2alTp4rXrVvnUllZOYSI6MKFC0PXrVt3paKiouDOY4qLi/lbtmypLioqKkhPT7crLS21zM/PL5o1a1ZDSkqKAxHR/Pnz3eVy+dWLFy8W7du3ryIxMdHrXtfn8Xj0yiuvNH755Ze2REQ//PCDlZ+fX/ujCngijOQBAOAhdDbi7iujR49uX7FihfuCBQtcX3zxRUVMTIyqs/bG2vNCoVAXFhbWmp2dPVQsFuuDgoLafH19r9/rmMDAwDZPT08tEZGHh0dHbGysgogoODi4PTMzU0RElJOTY1VWVsY3HqNSqXjNzc2sWCy+qyTtggULGqZMmTLy/fffv7Zjx45hb7zxxiN9mRBCHgAATEJQUFDH2bNnC/fu3Wu9YsUK12PHjrXyeDzOYLiRre3t7X+Ynb5XjXkiIoFAcN/68BYWFrdeA8uyLFlaWnLGf+v1eoboRl37M2fOFAmFwge+MnbkyJHaYcOG6X788UdRXl7e0P3791/q8g33AkzXAwCASaisrBwiEokMCxcubEpKSrp67tw5gZub2/WcnBwBEdG//vUv8e3tjxw5YqNWq5m6ujreqVOnRBEREXf9bv4wIiIiWpOTk2/VqT958iS/s/azZ8+unzt37vApU6Y0mZk92rE1RvIAAGAScnNz+e+9954by7JkZmbGpaamVqnVajYxMdErOTlZGxIS8ocQl8lkbePHj/euqakxX7JkSa2Xl5f24sWLlj3tx/bt26vnzp3rIZFIpHq9nnnqqaeU4eHhl+/X/rXXXlMsWrSIN2/evMaeXru7UKAGAAC6xJQK1MjlchehUKhftWrV1f7uS1ZWluBvf/ube25ubo+r5d0L6skDAAD0g+XLlzvt3LnT/p///OddJXIfBYzkAQCgS0xpJP+offbZZ3ZbtmxxvH3bmDFjVF9//fV9p/F7S2cjeYQ8AAB0CUL+8YR68gAAAIMQQh4AAGCAQsgDAAAMUAh5AACAAQohDwAAJkkul7u8//77jg9uOXgh5AEAAAYovAwHAAC6rWb5CveOsrJerSdv4e2tdvl4TafV7ZYtW+a0Z8+eYS4uLtft7Oy0MplMXVBQYJGYmOjR1NRkZmlpafjyyy+rZDKZprq62mz27Nmely9ftiAi2rx5c9WECRPannvuuRG1tbXmHR0dbGJi4tUlS5Y0EBEJBALZn/70p2tZWVlW1tbW+jVr1vy+bNky95qaGvPk5OTLM2bMUNyrT9OmTfM8f/78UCKiq1evDpk9e/a1lJSU2t78bh4WRvIAAGASsrOzBfv27bPNz88vPHjwYLkxWOfOneuZmpp6uaCgoGjdunW/L1iwwIOIKDEx0ePZZ59VlpSUFBYUFBSOHj1aQ0SUlpZWWVBQUHTu3LnCbdu2OdbV1fGIblSxi46OVhYUFBQNHTpU//e//901Ozu79LvvvitfvXq16/36tWfPnqri4uLCH3/8sdzGxkY3f/78R/6O+vvBSB4AALrtQSPuvnD8+HFhXFxci0gkMhARTZw4sUWj0bB5eXnC//qv/xphbHf9+nWGiOjkyZOi9PT034iIzMzMyM7OTk9ElJyc7Hjo0CEbIqK6urohBQUFlk5OTm1DhgzhXnnllVYiIn9//3YLCwuDhYUFFxoa2n7lyhXzzvqmVquZ+Pj4ERs3brwskUjuWau+PyDkAQDAZNxZI95gMJBIJNIVFxcXduX4gwcPijIzM0VnzpwpFolEhtDQUB9jHXozMzOOZW9McLMse6u2PI/Hu1VL/n5mzZrlOXny5OapU6cqH+a++gqm6wEAwCSMGzdOdejQIRuVSsU0NzezP//8s41AIDC4ubld37Fjh5joRuj/5z//4RMRPfPMM8p169bZExHpdDpqampiW1paeNbW1nqRSGTIy8uzNE7598TatWvtVSoV7+OPP67r6bl6G0IeAABMQkREhPqll15qCggI8J80adKI0NBQFRHRt99+e+mf//znMB8fH6m3t7f/3r17bYiItmzZcjkzM1MkkUikAQEB0rNnz/Lj4+MVOp2OkUgk0uXLl7sEBwe3dX7VB9u8ebNTSUkJ39fXV+rr6yv99NNP7Xt6zt6CAjUAANAlKFDzeEKBGgAAgEEIC+8AAAC6YO/evVYrVqxwu32bu7t7x88//1zRX316EIQ8AABAF8THx7fGx8d3aRX/4wLT9QAAAAMUQh4AAGCAQsgDAAAMUAh5AACAAQohDwAAg5pMJvPtq3OnpaVZL1++3Kmvzv8gWF0PAADd9u//U+TedEXVq6VmbV2F6vGv+z2ywjc6nY7MzMwoLy+vuK+ucbM87T1L1D4KGMkDAIBJaG1tZaOiokYaX1/7xRdfiF1dXQNra2vNiIiysrIEoaGhPkREcrncZerUqcOffvppiaenZ0BKSsowohsFap566inJ5MmTh/v4+PgT3agjb9w3ZswYn7i4uCe8vLwCFi5c6LplyxbbwMBAP4lEIi0oKLAgIqqpqTF7/vnnRwQEBPgFBAT4/fTTT/d9//2mTZvsXn/9dY++/m7uByN5AADotkc54jb6/vvvrZycnLQnTpwoJyJqbGzkrVy58r7ti4qK+Lm5uUVKpZInk8mk8fHxCiKiCxcuDM3Lyyvw9fW9qyRscXExPz09/ZKDg4PO09Mz0MLCoiE/P79o9erVDikpKQ47duyonj9/vrtcLr/6/PPPq8rKysyff/5570uXLhX01X33BEIeAABMwujRo9tXrFjhvmDBAtcXX3xRERMTo+qsfWxsbItQKOSEQqEuLCysNTs7e6hYLNYHBQW13SvgiYgCAwPbPD09tUREHh4eHbGxsQoiouDg4PbMzEwREVFOTo5VWVkZ33iMSqXiNTc3s2Kx2NB7d9s7EPIAAGASgoKCOs6ePVu4d+9e6xUrVrgeO3aslcfjcQbDjWw11oU3urP2vPGzQCC4bxgba8gT3agpb2lpyRn/bawpz3EcnTlzpkgoFD72Fd7wmzwAAJiEysrKISKRyLBw4cKmpKSkq+fOnRO4ubldz8nJERAR/etf/xLf3v7IkSM2arWaqaur4506dUoUERHR47KyREQRERGtycnJDsbPJ0+e5HfWvj9hJA8AACYhNzeX/95777mxLEtmZmZcampqlVqtZhMTE72Sk5O1ISEhfwhxmUzWNn78eO+amhrzJUuW1Hp5eWkvXrxo2dN+bN++vXru3LkeEolEqtfrmaeeekoZHh5+uafn7QuoJw8AAF1iSvXk5XK5i1Ao1K9atepqf/elr6GePAAAwCCE6XoAABhwNmzYUPMor/fZZ5/ZbdmyxfH2bWPGjFF9/fXX/TqNj+l6AADoElOarh9MMF0PAAAwCCHkAQAABiiEPAAAwACFkAcAABigEPIAAGDSQkNDfbKysu4qexsZGTmyoaGBd+d2uVzu8v777zveub27Dh48KIqOjh7Z0/P0JTxCBwAA3Zax5X/cG6qrerWe/DB3T/XzC5J6rbpdZmZmeW+dy1RhJA8AACahpKTE3Nvb29/4+f3333eUy+Uuxs96vZ5efvllr8WLF7sQEd1ea37ZsmVOXl5eAeHh4ZKysjIL4zEfffSRw4gRI/wlEol00qRJTxARHTp0SOjr6yv19fWV+vn5SZubmx+YlZmZmQI/Pz9pYWGheW/ec09hJA8AAN3WmyPu3qDVapmpU6cOl0ql7cnJyXW378vOzhbs27fPNj8/v1Cr1dKoUaOkMplMTUS0adMmp6qqqnw+n88Zp/ZTUlKcNm3aVDVx4sQ2hULBdla1jojo559/HpqUlOTx448/lnt7e9+zhG1/wUgeAABM3sKFCz3vFfBERMePHxfGxcW1iEQig62trWHixIktxn0+Pj7tL7300vDU1FTbIUOGcERETz/9tGrJkiXuH330kUNDQwNvyJAh971ueXm55cKFC70OHTr02AU8EUIeAABMhJmZ2a3a8UREGo3mVoY9+eSTquzsbCu1Ws3c69g7a8sbHT9+vOyvf/1rfW5u7tDg4GCpVquljz/+uO7LL7+sam9vZ8PDw/3y8vLuW7nOwcFBa2FhYTh16lSvrk/oLQh5AAAwCW5ubrqmpiazuro6Xnt7O5ORkWFt3Dd//vyGiRMnKiZNmjRCq9X+4bhx48apDh06ZKNSqZjm5mb2559/tiG68Rt+RUWF+eTJk5Wpqam/K5VKnkKh4BUUFFiEhoa2r1mzpi4wMLCts/K0VlZW+iNHjpR98MEHrgcPHhT12c0/JPwmDwAAJsHCwoJ7++23a0NDQ/3c3Nw6RrtnZsEAAAE6SURBVI4cqbl9/8qVK6/+7W9/47388svD9+/f/5txe0REhPqll15qCggI8Hd1de0IDQ1VERHpdDomISFhuFKp5HEcx8yfP//qsGHD9G+//bbLyZMnrViW5SQSSfsrr7yi6Kxf7u7uuoMHD5bHxsZ6CwSCynHjxrV11v5RQoEaAADoEhSoeTyhQA0AAMAghOl6AACATpw+fZr/+uuvD799m7m5ueHChQvF/dWnrkLIAwBAVxkMBgPDsuyg+p03NDS0vbi4uLC/+3EvBoOBIaL7PseP6XoAAOiqi/X19dY3gwX6mcFgYOrr662J6OL92mAkDwAAXaLT6ebW1dV9WVdXF0AYJD4ODER0UafTzb1fA6yuBwAAGKDwlxgAAMAAhZAHAAAYoBDyAAAAAxRCHgAAYIBCyAMAAAxQ/w/w6mJkYKE7jwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for b in bands:\n",
" plt.plot(Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Wavelength']\n",
" ,Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Transmission']\n",
" , label=b)\n",
"plt.xlabel('Wavelength ($\\AA$)')\n",
"plt.ylabel('Transmission')\n",
"plt.xscale('log')\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
"plt.title('Passbands on {}'.format(FIELD))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### IV.a - Depth overview\n",
"Then we plot the mean depths available across the area a given band is available"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"decam_g: mean flux error: 2.868645765374822e-07, 3sigma in AB mag (Aperture): 39.06300455640706\n",
"decam_r: mean flux error: 4.2884113327090745e-07, 3sigma in AB mag (Aperture): 38.626455775641226\n",
"decam_z: mean flux error: 6.367662308548461e-07, 3sigma in AB mag (Aperture): 38.197246803882585\n",
"suprime_g: mean flux error: 0.02295534312725067, 3sigma in AB mag (Aperture): 26.804987391175665\n",
"suprime_r: mean flux error: 0.034290555864572525, 3sigma in AB mag (Aperture): 26.36926055002271\n",
"suprime_i: mean flux error: 0.033941492438316345, 3sigma in AB mag (Aperture): 26.380369526387902\n",
"suprime_z: mean flux error: 0.0738983303308487, 3sigma in AB mag (Aperture): 25.535610298211445\n",
"suprime_y: mean flux error: 0.1488315612077713, 3sigma in AB mag (Aperture): 24.775459269636265\n",
"omegacam_u: mean flux error: 0.2787735164165497, 3sigma in AB mag (Aperture): 24.09406808006336\n",
"omegacam_g: mean flux error: 0.10243125259876251, 3sigma in AB mag (Aperture): 25.18111565420906\n",
"omegacam_r: mean flux error: 0.10494126379489899, 3sigma in AB mag (Aperture): 25.15483113807702\n",
"omegacam_i: mean flux error: 0.3801940083503723, 3sigma in AB mag (Aperture): 23.757183692351212\n",
"gpc1_g: mean flux error: 11822.918125643875, 3sigma in AB mag (Aperture): 12.525385157994386\n",
"gpc1_r: mean flux error: 21.891621991686776, 3sigma in AB mag (Aperture): 19.356502012051372\n",
"gpc1_i: mean flux error: 15.654806948260552, 3sigma in AB mag (Aperture): 19.720577572303192\n",
"gpc1_z: mean flux error: 7.9404600103329, 3sigma in AB mag (Aperture): 20.457582705948532\n",
"gpc1_y: mean flux error: 13.917084090328421, 3sigma in AB mag (Aperture): 19.848326234808873\n",
"ukidss_y: mean flux error: 4.035210132598877, 3sigma in AB mag (Aperture): 21.19253147463123\n",
"ukidss_j: mean flux error: 5.420261383056641, 3sigma in AB mag (Aperture): 20.872146287776452\n",
"ukidss_h: mean flux error: 6.280020236968994, 3sigma in AB mag (Aperture): 20.712294255135795\n",
"ukidss_k: mean flux error: 6.8160481452941895, 3sigma in AB mag (Aperture): 20.623365239657467\n",
"vista_z: mean flux error: 0.8532747030258179, 3sigma in AB mag (Aperture): 22.879474687385816\n",
"vista_y: mean flux error: 1.5828652381896973, 3sigma in AB mag (Aperture): 22.208587009402372\n",
"vista_j: mean flux error: 1.5816757678985596, 3sigma in AB mag (Aperture): 22.209403210562606\n",
"vista_h: mean flux error: 2.5936875343322754, 3sigma in AB mag (Aperture): 21.672402726322098\n",
"vista_ks: mean flux error: 2.8268470764160156, 3sigma in AB mag (Aperture): 21.57894107532072\n",
"decam_g: mean flux error: 103190.203125, 3sigma in AB mag (Total): 10.173100694844905\n",
"decam_r: mean flux error: 307405.96875, 3sigma in AB mag (Total): 8.987916123882755\n",
"decam_z: mean flux error: 0.8747311234474182, 3sigma in AB mag (Total): 22.852510415067933\n",
"suprime_g: mean flux error: 0.03472571820020676, 3sigma in AB mag (Total): 26.355568771657552\n",
"suprime_r: mean flux error: 0.05153351277112961, 3sigma in AB mag (Total): 25.926972495544113\n",
"suprime_i: mean flux error: 0.052601877599954605, 3sigma in AB mag (Total): 25.90469374726772\n",
"suprime_z: mean flux error: 0.11327511817216873, 3sigma in AB mag (Total): 25.071860553398018\n",
"suprime_y: mean flux error: 0.23561790585517883, 3sigma in AB mag (Total): 24.276676133921193\n",
"omegacam_u: mean flux error: 0.4727758765220642, 3sigma in AB mag (Total): 23.52055859199836\n",
"omegacam_g: mean flux error: 0.1352354735136032, 3sigma in AB mag (Total): 24.879470298194313\n",
"omegacam_r: mean flux error: 0.13743656873703003, 3sigma in AB mag (Total): 24.861941103305234\n",
"omegacam_i: mean flux error: 0.5915163159370422, 3sigma in AB mag (Total): 23.277280042254638\n",
"gpc1_g: mean flux error: 12603.803998134066, 3sigma in AB mag (Total): 12.455942761107849\n",
"gpc1_r: mean flux error: 25.88477446606786, 3sigma in AB mag (Total): 19.17458589987998\n",
"gpc1_i: mean flux error: 17.320821705491856, 3sigma in AB mag (Total): 19.610775635092217\n",
"gpc1_z: mean flux error: 11.32778117510822, 3sigma in AB mag (Total): 20.071834735889077\n",
"gpc1_y: mean flux error: 17.379143403953634, 3sigma in AB mag (Total): 19.60712594616779\n",
"ukidss_y: mean flux error: 6.816124439239502, 3sigma in AB mag (Total): 20.62335308677455\n",
"ukidss_j: mean flux error: 7.465983867645264, 3sigma in AB mag (Total): 20.524479245260558\n",
"ukidss_h: mean flux error: 11.642038345336914, 3sigma in AB mag (Total): 20.04212429973763\n",
"ukidss_k: mean flux error: 12.790072441101074, 3sigma in AB mag (Total): 19.940014352535606\n",
"vista_z: mean flux error: 2.09651255607605, 3sigma in AB mag (Total): 21.90345319382599\n",
"vista_y: mean flux error: 3.6865522861480713, 3sigma in AB mag (Total): 21.290645868562926\n",
"vista_j: mean flux error: 3.9484081268310547, 3sigma in AB mag (Total): 21.216141770386592\n",
"vista_h: mean flux error: 6.629664897918701, 3sigma in AB mag (Total): 20.65346792026687\n",
"vista_ks: mean flux error: 7.477791786193848, 3sigma in AB mag (Total): 20.522763442288657\n"
]
}
],
"source": [
"average_depths = []\n",
"for b in ap_bands:\n",
" \n",
" mean_err = np.nanmean(depths['ferr_ap_{}_mean'.format(b)])\n",
" print(\"{}: mean flux error: {}, 3sigma in AB mag (Aperture): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n",
" average_depths += [('ap_' + b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n",
" flux_to_mag(3.0*mean_err*1.e-6)[0], \n",
" flux_to_mag(5.0*mean_err*1.e-6)[0])]\n",
" \n",
"for b in tot_bands:\n",
" \n",
" mean_err = np.nanmean(depths['ferr_{}_mean'.format(b)])\n",
" print(\"{}: mean flux error: {}, 3sigma in AB mag (Total): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n",
" average_depths += [(b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n",
" flux_to_mag(3.0*mean_err*1.e-6)[0], \n",
" flux_to_mag(5.0*mean_err*1.e-6)[0])]\n",
" \n",
"average_depths = np.array(average_depths, dtype=[('band', \""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for dat in data:\n",
" wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n",
" depth = average_depths['5s'][average_depths['band'] == dat[0]]\n",
" #print(depth)\n",
" plt.plot([wav_deets[0],wav_deets[1]], [depth,depth], label=dat[0])\n",
" \n",
"plt.xlabel('Wavelength ($\\AA$)')\n",
"plt.ylabel('Depth')\n",
"plt.xscale('log')\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
"plt.title('Depths on {}'.format(FIELD))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### IV.c - Depth vs coverage comparison\n",
"\n",
"How best to do this? Colour/intensity plot over area? Percentage coverage vs mean depth?"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5,1,'Depths (5 $\\\\sigma$) vs coverage on GAMA-15')"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAANeCAYAAACGV62wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XlYk1e+B/DvSQQDGpBNkE0WSSBhExDqUus4tOqt3lGptnWb1rrXW6XVqZ1uc2c6M+51mI6tTmu1DLbVltrRlnpr68bYgiAJJZCoCFVZLFCBCAhCzv0jCQUMsiQQ1N/nefJoTt5z3t+b5OH95ZzzvodxzkEIIYQQYiSwdgCEEEIIGVgoOSCEEEJIO5QcEEIIIaQdSg4IIYQQ0g4lB4QQQghph5IDQgghhLRDyQEhhBBC2qHkgBBCCCHtUHJwH2GMFTPG4i3U1l8ZY2st0ZaJtjMZY/K+aJsQQkjXKDmwIsPJuoExpmWMVTPGzjDGVjDGLPK5WDIZ6NCuG4BFAHa1KTvBGLvJGLtheGjM2MVWAH80N07SdxhjTzDGMhhjdYyxnwz/X8UYYx22O8EYu84YG9yhvJgx1sQYc+1QrmCMccaYn4l9mmzLxHarGWNZjLFGxtjeTtqx1HeVkHsSJQfWN4NzLgYwEsBGAC8CeM+6IXXpKQBfcs4bOpSv5pwPNTykZrT/bwC/YoyNMKONAY0xNsjaMfQWY+wFAH8DsAWABwB3ACsAjAdg22Y7PwAPAuAA/ttEU0UAnmyzfRgAu0722VVbbZUCeAPAnjtsY6nvKiH3JEoOBgjOeQ3n/N8AHgfwW8ZYKAAwxjwZY58yxioYY0WMseeMdQy/vl5ijOUbflG9zxgTGV5LBuAL4LDh19HvDNUiGWO5jLEaxtjHxu0NdV5kjJUYejI0jLFfdxLuNAAne3usjDEbxtifDfHfMvxS5IwxpeG9uAkgG8AjJupuYIx90qHsb4yxpB4eAxhjPoyxVMN7W8UYe8tQHmL4dVnNGFMxxv67O/s2PO/q83qRMZYLoI4xNsjQZqEh3nzG2Kw220cxxnIMrx00fF5vdGdfJo7V5DG1iWtdZ9+LDu04Qt+rs4pz/gnnXMv1cjjn8znnjW02XwTgewB7AfzWRHPJhm2Mfgvgg04Ooau2WnHOUznnhwBU3Wk7QsgdcM7pYaUHgGIA8SbKLwNYCX3ylg3gNeh/kQUAuARgSpv6eQB8ADgD+A+ANzpr3/A8E4CnYfsCACsMr0kBXAHgaXjuByCwk7grAIzpUHbCUF5piGPSHY57E/R/6H0ADAFwDEAqgIA22yQB2G6i7kgA9QAcDM+FAMoAPNDDYxACUAJ40xCDCMAEADYALgL4veE9nwxAa2i7030bnnfn81IYjtvOUDbH8HkIoE8M6wCMMNT/EcAaQ0yzATQZP9+u9tXhWDs9pq6+FybamgqgGcCgbny/LwJYBSAawC0A7h2/mwA0AEIM7+UVw3vMAfh1t6077P8NAHtNlJ9AN7+r9KDH/fqgnoOBqRT6P9JjALhxzv/IOW/inF8C8E8AT7TZ9i3O+RXO+c8A/ow23bSdSOKclxq2Pwwg0lDeAmAwABljzIZzXsw5L+ykjWHQn1zaehH6E5QXgN3Q91gEdqzIGBMDeA7AQkPcdQA+BeBsOD4jrWE/7XDOfwRwDsBMQ9FkAPWc8+97eAyx0J8M13PO6zjnNznn6dAnGUMBbDS8598COALgyS72DXTv80oyHHeD4XgOGj4PHef8YwAXDLE9AGCQYftbnPNU6E/g6MG+jDo9pg5xmfpedOQKoJJz3mwsYPq5MtVMP39moqFsAvQn+gOc82wAhQDmmWjP2HvwMAA1gJKOG/Sgre7q1neVkPsZJQcDkxeAn6H/g+hp+MNbzRirhv7Xn3ubba+0+f+P0J/w7qS8zf/roT9pgHN+EcBaAH8A8BNj7CPGWGdtXQcgblvAOc/g+i7mRs75Puh/kf2XiboTAVzinF9oU+bUIS4Y2q/uZP/78cuJbZ7heU+PwQfAj21PcgaeAK5wznVtyn6E/jPpdN8GPf28wBhbxPST8Izbh0J/AvYEUMI5553U7c6+untMQCffCxOqALi2nTPBOR/HOR9meM34N+W3AP6Pc15peL4fnQ8tzIN+HktnQwqdtsUYm89+mViY1kn9dnrwXSXkvnXXToq6VzHGxkD/Rzsd+j/QRZzzoDtU8Wnzf1/oex2MOHqAc74fwH7GmAP0VyJsArDQxKa5ACQAzt6pOQDMRLkb9MkFAIAxxgDMgn6CW1shAP7VSdsHAWxjjHkb6o7txTFcAeDLGBvUIUEoBeDDGBO0OZn6Ajjf1b4NbXb1ebV+JoyxkdD/2v81gO845y2MMQX071sZAC/GGGuTIPhA/6u5u/vq7jH1xHcAGgH8Bvoen9swxuwAzAUgZIwZk47BAIYxxiI450rjtpzzHxljRdCfnJ/pRVspAFJ6cRxtdfZdJeS+RT0HAwRjzIExNh3ARwD+xTn/Afpu5FrDJDY7xpiQMRZqSCCMnmWMeTPGnKH/5fhxm9euQd992p39Sxljk5n+MrGbABqg76Y35UsAD7WpO4wxNoUxJjJMspsPfQ/BURN18wBEMcYiDX/4/wr9H+eP27Q3GPqx5a9N7ZxzXgH9uPH70J8gC3pxDJnQn4A3MsaGGGIfDyAD+nH/3zH9xMlJAGZA/7l0uu82bXb1ebU1xHDsFYb4n4a+5wDQn4RbAKw2vKe/gX64oTf7uuMx9QTnvBrA/wLYyRh7jDE2lDEmYIxFGo4H0A+7tACQQT88EQl9snca7ScgGj0DYLJhiKmjnrYFw/slgn4eg9D4vTS81pPvKiH3L2tPerifH9BPymqAfny9BvoTwrMAhG228QTwIfTdvtehn8gX36b+SwDyoe+C3wfAvk3d30A/ubEawDrcPkHxD9AnIgAQDv0JRwv9kMYRGCb2mYjbFcBV/DKpzg36XgStYV/fA3j4Dsf9MvS/Zsugn33u2uH1OQBSu3jvFkJ/Yl3fpqzbx2DY3heAcVZ7JfTj7gAgh/5qjBrDezurq3334POK77D9nw2xVgLYbtjvEsNrMdBPYLwBfY9FKoBXu7MvE3F1ekx3+l7c4b2bb3iv66FPbjIALIN+wuNXALaZqDPXEOsgU++FYZtBaDMhsTttmXjtD4Y22j7+0JvvKj3ocb8+GOc96nkmAwhjrBj6E8kxK+z7LwB+4pzv6IO2MwA8wznPs3TbdzPD+/IO5/x9a8dCCLm30ZwD0iuc89/3YdtxfdX23YQx9hD0l/pVQv9LPRz6X9KEENKn+nzOgWEsNIcxdsTw3J/pb7V6wXCzFduu2iDkPiWF/l4MNQBeAPAY57zMuiERQu4HfT6swBh7HvqxUwfO+XTG2AHox5M/Yoy9A0DJOX+7T4MghBBCSLf1ac+B4XKvRwG8a3jOoL9xjPEWtPvwyw1lCCGEEDIA9PWwwg4AvwNgvLbaBUA1/+W68qtofyMWQgghhFhZn01INFyz/xPnPNtwXTVg+kYjJsc1GGPLoL80CkOGDIkODg7ukzgJIeRelZ2dXck5dzOj/vBBgwa9C/39N+i+OPcWHYC85ubmJdHR0T91fLEvr1YYD+C/GWP/Bf2iNg7Q9yQMa3NXOm+0v6NfK875bujve46YmBielZXVh6ESQsi9hzH2ozn1Bw0a9K6Hh0eIm5vbdYFAQNe930N0Oh2rqKiQlZeXvwsTy6D3WSbIOX+Jc+7NOfeDfjGYbznn8wEcB/CYYbPfAvi8r2IghBBillA3N7daSgzuPQKBgLu5udXgl7uytn+9n+MB9CuiPc8Yuwj9HIT3rBADIYSQrgkoMbh3GT5bk3lAv9wEiXN+Avr70YPrl5aNvdP2hBBCCLEemmBCCCHEbFuPatyPFVxrt5T7sYJr4q1HNaaWEbcajUZjGxQUJLd2HAMdJQeEEELMFuk7rP75A4oAY4JwrOCa+PkDioBI32H11o6N9BwlBwPAOycLcaawsl3ZmcJKvHOy0EoREUJIz8SHuGu3z4289PwBRcD/HlZ5Pn9AEbB9buSl+BB3rdltx8cHyuXykFGjRsm3bt3qCgD29vajly5d6i2TyULGjh0rKS0t7XSY/PTp0/ZSqVQWGRkZvH379uHG8ubmZixfvtw7NDQ0RCKRyLZs2eJqfO2VV15xl0gkMqlUKlu1apUXAGzbts01NDQ0RCqVyqZMmRKo1WoFAJCQkOA3f/5837i4OIm3t3fYF198MXTOnDl+AQEB8oSEBL87Hdubb77p6ufnFxobGyt94oknRi5atMjXzLfLIig5GADCvR2xen9Oa4JwprASq/fnINzb0cqREUJI98WHuGsTorwr3v9P8YiEKO8KSyQGAJCSklKsUqkKFApF/q5du9zLy8uFDQ0NgqioqPr8/PyC8ePHazds2ODZWf1nnnnGb/v27ZcVCoW6bfmOHTtcHR0dW/Ly8gqUSmXBvn373NRqte2BAwccvvjiC6fs7Gy1RqPJf/3118sBYP78+dfz8vIKNBpNvlQqbUhKSmpNJmpqagZ999135zdu3Hjl8ccfD1q/fv21CxcuqNRqtd2ZM2fsTMVVXFxss3Xr1hEZGRkFp0+fPn/hwgWRJd4vS6DkYAAYF+iKt+aNxur9Odj+fxqs3p+Dt+aNxrhA164r96f0HUDRqfZlRaf05YSQ+96xgmviT89ddXt6vF/Zp+euunWcg9BbmzZtcpdKpbLo6OiQ8vJyG5VKJRIIBFiyZMnPALB48eKqzMzMoabqVlVVCbVarfDRRx+9Ydy2Nd5jxxwOHDjgEhwcLBs9enTI9evXB+Xn54u+/vprhwULFlSKxWIdALi7u7cAQHZ2tl10dLRUIpHIPv30UxeVStV6Mn/00UerBQIBoqKi6l1cXG7FxsY2CIVCSCSShsLCwsGmYjt9+vSQuLg4rbu7e8vgwYP5rFmzrlvi/bIESg4GiHGBrlgQ54ukby9iQZzvwEsMAMArCjj41C8JQtEp/XOvKGtGRQgZAIxzDLbPjbz0+gx5qXGIwdwE4ciRI+KTJ0+Ks7Ky1BqNJj8kJKShoaHhtnOXfume23HO7/Qa27Zt22W1Wp2vVqvzS0pKfpg9e3ZtZ3WWLVvm/9Zbb10+f/58/osvvlja2NjYGodIJOIAIBQKYWtr23r5p0AgQHNzs8kA+nrhQ3NQcjBAnCmsxL8yLuO5yaPwr4zLt81BGBD8JwJz9uoTgm//rP93zl59OSHkvqa4XG3fdo6BcQ6C4nK1vTntVldXCx0dHVvEYrEuJydHpFQqhwCATqfD+++/7wQAe/fudYmNjTU5hOHq6toydOjQlqNHjw41bOtsfO3hhx+uefvtt90aGxsZAOTm5g6ura0VTJ06tTY5OdnVOKfg2rVrQgCor68X+Pr63mpsbGQfffSRs6n99cSDDz5Yl5GRIa6oqBDeunULn3/+uZO5bVpKv9zngNyZcY6BcSjhgUCXgTu04D8RiHkGOLUZmPg7SgwIMdOevD0IdQlF7Ihfbv+SWZaJvKo8LA5dbMXIembdFOm1jmXxIe5ac+cdJCQk1OzevdtNIpHIAgMDb0ZERNQBgJ2dnU6lUtnJ5XIPsVjckpqaeqmzNt57773iJUuW+NnZ2ekmT55cayxPTEysLC4uHhwWFhbCOWfOzs63vvzyy8LHHnus9ty5c/aRkZEhNjY2PD4+vuatt94q2bBhQ2lsbGyIl5dXU0hISP2NGzeE5hybv7//rcTExLIxY8aEDB8+/JZEImlwdHRsMadNS2EDuVvD6F5fW+Gdk4UI93ZslwicKaxE7tUarHgo0IqRmWAcSoh5Bsh6j3oOCDFTZlkm1p1ch60PbUXsiNjbnpuDMZbNOY/pbX2lUlkcERExALsx9Vcr1NfX51g7DnPV1NQIHB0ddbdu3cKUKVNGPfXUU5WLFi2q7q/9K5VK14iICL+O5dRzMACYSgDGBboOvF4DY2JgTAj8H6ShBULMFDsiFlsf2op1J9dhrnQuDmgOWCQxIHeH9evXe546dcqhsbGRPfTQQ7ULFizot8TgTig5IN1Xcq59ImCcg1ByjpIDQswQOyIWc6VzsSt3F5aHL6fEoBtM9RosXLjQ9+zZs+2uWli5cuW1NWvWVHXctr+Fh4cHNzU1tZvn98EHHxTt3r37qrViuhNKDkj3TVh7e5n/REoMCDFTZlkmDmgOYHn4chzQHECsRywlCL2QnJx82doxdCY3N1fd9VYDB12tQAghVtR2jsHq0atbhxgyyzKtHRq5j1FyQAghVpRXlddujoFxDkJeVZ6VIyP3MxpWIIQQKzJ1uWLsCBpWINZFPQeEEEIIaYeSA0IIIeb75k/u0KS1v1WyJk2Mb/7kbqWITNJoNLZBQUFya8cx0FFyQAghxHzeMfX4bEVAa4KgSRPjsxUB8I6pt3Jkd43m5mZrh9CKkgNCCCHmk07TYtY7l/DZigCkbfDEZysCMOudS5BOM3vZ5vj4+EC5XB4yatQo+datW10B/R0Sly5d6i2TyULGjh0rKS0t7XQO3enTp+2lUqksMjIyePv27cON5c3NzVi+fLl3aGhoiEQikW3ZsqX1znOvvPKKu0QikUmlUtmqVau8AGDbtm2uoaGhIVKpVDZlypRA49oLCQkJfvPnz/eNi4uTeHt7h33xxRdD58yZ4xcQECBPSEjwu9Ox2dvbj167dq1neHh48DfffGNyZUlroOSAEEKIZUinaRHxZAUy3h6BiCcrLJEYAEBKSkqxSqUqUCgU+bt27XIvLy8XNjQ0CKKiourz8/MLxo8fr92wYYNnZ/WfeeYZv+3bt19WKBTt7jWwY8cOV0dHx5a8vLwCpVJZsG/fPje1Wm174MABhy+++MIpOztbrdFo8l9//fVyAJg/f/71vLy8Ao1Gky+VShuSkpJak4mamppB33333fmNGzdeefzxx4PWr19/7cKFCyq1Wm135swZu85ia2hoEISGhjbk5uaqp0yZcsMS75clUHJACCHEMjRpYig/dEPcyjIoP3S7bQ5CL23atMldKpXKoqOjQ8rLy21UKpVIIBBgyZIlPwPA4sWLqzIzM03+6q6qqhJqtVrho48+esO4rfG1Y8eOORw4cMAlODhYNnr06JDr168Pys/PF3399dcOCxYsqBSLxToAcHd3bwGA7Oxsu+joaKlEIpF9+umnLiqVSmRs69FHH60WCASIioqqd3FxuRUbG9sgFAohkUgaCgsLB3d2bEKhEE899dR1S7xPlkSXMhJCCDGfcY6BcSgh4CGtJYYWjhw5Ij558qQ4KytLLRaLdbGxsdKGhobbftgyxkzW55zf6TW2bdu2ywkJCbVty7/88ksHU3WWLVvm/8knn1wcO3ZsQ1JSksvJkydbkx+RSMQB/cne1ta2dUVDgUCA5uZm0wEAsLW11Q0aNPBOxdRzQAghxHxXs+zbJQLGOQhXs+zNaba6ulro6OjYIhaLdTk5OSKlUjkEAHQ6Hd5//30nANi7d69LbGysyQTE1dW1ZejQoS1Hjx4datjW2fjaww8/XPP222+7NTY2MgDIzc0dXFtbK5g6dWptcnKyq3FOwbVr14QAUF9fL/D19b3V2NjIPvroI2dT+7tXDLx0hRBCyN3n169eu61MOk1r7ryDhISEmt27d7tJJBJZYGDgzYiIiDoAsLOz06lUKju5XO4hFotbUlNTL3XWxnvvvVe8ZMkSPzs7O93kyZNbewkSExMri4uLB4eFhYVwzpmzs/OtL7/8svCxxx6rPXfunH1kZGSIjY0Nj4+Pr3nrrbdKNmzYUBobGxvi5eXVFBISUn/jxg2hOcc2kDHOeddb9aZhxkQATgEYDH0S8gnn/HXG2F4ADwGoMWz6FOdccae2YmJieFZWVp/ESQgh9yrGWDbnPKa39ZVKZXFERESlJWOyFHt7+9GmVmYkPaNUKl0jIiL8Opb3Zc9BI4DJnPMbjDEbAOmMsTTDa+s555/04b4JIYQQ0kt9lhxwfZeE8bIMG8Ojb7opCCGE3FdM9RosXLjQ9+zZs+2uWli5cuW1NWvWVHXctr+Fh4cHNzU1tZvn98EHHxTFxsY2WCumO+nTOQeMMSGAbACjAPyDc57BGFsJ4M+MsdcAfANgA+e8sS/jIIQQcu9LTk6+bO0YOpObm6vuequBo0+vVuCct3DOIwF4A4hljIUCeAlAMIAxAJwBvGiqLmNsGWMsizGWVVFR0ZdhEkIIIaSNfrmUkXNeDeAEgKmc8zKu1wjgfQAm1yXlnO/mnMdwzmPc3Nz6I0xCCCGEoA+TA8aYG2NsmOH/dgDiAagZYyMMZQzATAB5fRUDIYQQQnquL+ccjACwzzDvQADgAOf8CGPsW8aYGwAGQAFgRR/GQAghhJAe6rOeA855Lud8NOc8nHMeyjn/o6F8Muc8zFC2gHM+YBaaIIQQ0jtJ55LcT1w50W4thRNXToiTziW5WysmUzQajW1QUJDc2nEMdHT7ZEIIIWYLdwuvfzn95QBjgnDiygnxy+kvB4S7hddbOzbSc5QcEEIIMdskn0naP0/486WX018O2Ji50fPl9JcD/jzhz5cm+Uwye9nm+Pj4QLlcHjJq1Cj51q1bXQH9HRKXLl3qLZPJQsaOHSspLS3tdJj89OnT9lKpVBYZGRm8ffv24cby5uZmLF++3Ds0NDREIpHItmzZ0roE8yuvvOIukUhkUqlUtmrVKi8A2LZtm2toaGiIVCqVTZkyJdC49kJCQoLf/PnzfePi4iTe3t5hX3zxxdA5c+b4BQQEyBMSEvw6iyslJcUxODhYFhwcLPPz8wv18vIKM/e9shRKDgghhFjEJJ9J2hmBMypSClJGzAicUWGJxAAAUlJSilUqVYFCocjftWuXe3l5ubChoUEQFRVVn5+fXzB+/Hjthg0bPDur/8wzz/ht3779skKhaHevgR07drg6Ojq25OXlFSiVyoJ9+/a5qdVq2wMHDjh88cUXTtnZ2WqNRpP/+uuvlwPA/Pnzr+fl5RVoNJp8qVTakJSU1JpM1NTUDPruu+/Ob9y48crjjz8etH79+msXLlxQqdVquzNnztiZimv+/Pk1arU6X61W58tksvrVq1eXW+L9sgRKDgghhFjEiSsnxIcLD7vND5lfdrjwsFvHOQi9tWnTJnepVCqLjo4OKS8vt1GpVCKBQIAlS5b8DACLFy+uyszMHGqqblVVlVCr1QofffTRG8Ztja8dO3bM4cCBAy7BwcGy0aNHh1y/fn1Qfn6+6Ouvv3ZYsGBBpVgs1gGAu7t7CwBkZ2fbRUdHSyUSiezTTz91UalUImNbjz76aLVAIEBUVFS9i4vLrdjY2AahUAiJRNJQWFg4+E7H98orr7iLRCLdSy+9NGBu6kOrMhJCCDGbcY6BcSjhgREPaC0xtHDkyBHxyZMnxVlZWWqxWKyLjY2VNjQ03PbDVn91/O0453d6jW3btu1yQkJCbdvyL7/80sFUnWXLlvl/8sknF8eOHduQlJTkcvLkydbkRyQScQAQCoWwtbVtXSpAIBCgubnZdAAAPv/8c/GhQ4ecv//++wF1B0XqOSCEEGK23Ipc+7aJgHEOQm5Frr057VZXVwsdHR1bxGKxLicnR6RUKocAgE6nw/vvv+8EAHv37nWJjY01mYC4urq2DB06tOXo0aNDDds6G197+OGHa95++223xsZGBgC5ubmDa2trBVOnTq1NTk52Nc4puHbtmhAA6uvrBb6+vrcaGxvZRx995Gxqfz1x/vx52zVr1oz85JNPCocOHTqg1h6ingNCCCFmey7quWsdyyb5TNKaO+8gISGhZvfu3W4SiUQWGBh4MyIiog4A7OzsdCqVyk4ul3uIxeKW1NTUS5218d577xUvWbLEz87OTjd58uTWXoLExMTK4uLiwWFhYSGcc+bs7Hzryy+/LHzsscdqz507Zx8ZGRliY2PD4+Pja956662SDRs2lMbGxoZ4eXk1hYSE1N+4cUNozrHt2rXLpaamRjhz5sxRAODu7t508uTJi+a0aSlMv3jiwBYTE8OzsrKsHQYhhNxVGGPZnPOY3tZXKpXFERERlZaMyVLs7e1Hm1qZkfSMUql0jYiI8OtYTsMKhBBCCGmHhhUIIYTcdUz1GixcuND37Nmz7a5aWLly5bU1a9ZUddy2v4WHhwc3NTW1+0H+wQcfFMXGxjZYK6Y7oeSAEELIPSE5OfmytWPoTG5u7oC6GqErNKxACCGEkHYoOSCEEEJIO5QcEEIIIaQdSg4IIYQQ0g4lB4QQQsz2044d7trjx9utpaA9flz8044d7taKqa+tXbvW89ChQxZZP2KgoeSAEEKI2ewiIupLX9wQYEwQtMePi0tf3BBgFxFRb+3Y+kJzczN27NhROnPmTIusPDnQUHJACCHEbOJf/UrruWnjpdIXNwSU/+UvnqUvbgjw3LTxkvhXvzL75BkfHx8ol8tDRo0aJd+6dasroL9D4tKlS71lMlnI2LFjJaWlpZ1emv/GG28MDwwMlEskEtn06dMDAOD555/3fO2111p7NYKCguQajcZWo9HY+vv7y2fPnu0nkUhkU6dODTCuseDl5RW2bt26EdHR0dI9e/Y4JSQk+BnXd/Dy8gpbvXq1V2RkZHBoaGhIenq6/YQJE4J8fHxCN2/e7Gbcz6uvvuoeGhoaIpFIZImJiZ0uMw0A69evH+Hv7y8fN25c0IwZM/zbxtvXKDkghBBiEeJf/UrrOPM3Fdc/SB7hOPM3FZZIDAAgJSWlWKVSFSgUivxdu3a5l5eXCxsaGgRRUVH1+fn5BePHj9du2LCh0xNtUlKSR15eXv758+fz9+7d+2NX+ysuLhatWLGi4vz58/lisVi3ZcuW1pO7SCTSZWdna5YtW3a9Yz0fH58mhUKhjouLu7F48WK/w4cPF2ZkZKg3btzoCQCpqakOFy9eFOXm5hYUFBTkKxQK+7S0NJNLTZ86dcr+8OHDTj/88EP+F198UZibmzuke++WZVByQAghxCK0x4+Law597ua0aGFZzaHP3TrOQeitTZs2uUulUll0dHRIeXm5jUqlEgkEAixZsuRnAFi8eHFVZmamyZMsAEil0oZZs2b579y509nGxqZinYDiAAAgAElEQVTLBYU8PDyaHnnkkToAWLhwYdWZM2da2160aNFtSYHR3LlzqwEgLCysPioqqs7JyUnn6enZPHjwYF1lZaXwq6++cjh16pSDTCaTyeVyWWFhoUitVotMtXXixImh06ZNqx46dCh3cnLSPfzww9VdxW1JdIdEQgghZjPOMTAOJQwZO1ZriaGFI0eOiE+ePCnOyspSi8ViXWxsrLShoeG2H7aMsU7bOH78+IW0tDTxoUOHhm3evNnzwoULeYMGDeI6na51G+OyzabaavtcLBbr0AmRSMQBQCAQwNbWtjUJEQgEuHXrFuOcY+3atWXr16/vcjEray+KSD0HhBBCzNagVNq3TQSMcxAalEp7c9qtrq4WOjo6tojFYl1OTo5IqVQOAQCdTgfjeP/evXtdYmNjTSYgLS0tKCwstJ0xY4Z2586dV7VarbCmpkbo5+fXqFAohgBAenq6fUlJyWBjnbKyMttjx44NAYD9+/c7jxs37oY5x2A0bdq02uTkZNeamhoBABQVFdmUlJSY/JE+adKkG0ePHnWsr69nNTU1gmPHjg2zRAzdRT0HhBBCzDZ87dprHcvEv/qV1tx5BwkJCTW7d+92k0gkssDAwJsRERF1AGBnZ6dTqVR2crncQywWt6Smpl4yVb+5uZnNmzfPX6vVCjnnbPny5ddcXV1bFi1adD0lJcUlODhYFhkZWTdy5MibxjoBAQE39+zZ47Jq1aqR/v7+jevWrasw5xiMZs+eXatSqURjxowJBgB7e3tdSkpKkZeXV3PHbR966KH6qVOn1shkMrmXl1djeHh4naOjY4sl4ugOZu2ui+6IiYnhWVlZ1g6DEELuKoyxbM55TG/rK5XK4oiIiC67wK3B3t5+tKmVGc2l0Whsp0+fHnThwgWVpdvuqZqaGoGjo6NOq9UKxo4dK33nnXd+nDBhgkUvDVUqla4RERF+Hcv7rOeAMSYCcArAYMN+PuGcv84Y8wfwEQBnAOcALOScN/VVHIQQQsjdaMGCBSMvXLhg19jYyJ544okqSycGd9KXwwqNACZzzm8wxmwApDPG0gA8D+BNzvlHjLF3ADwD4O0+jIMQQsg9xlSvwcKFC33Pnj3b7qqFlStXXluzZk1Vd9uVSqVN/dlrUF5eLpw0aZK0Y/mJEyc0hw8fLuqvODrqs+SA68crjJM4bAwPDmAygHmG8n0A/gBKDgghhJgpOTn5srVj6CkPD48WtVqdb+04OurTqxUYY0LGmALATwC+BlAIoJpzbpx8cRWAVyd1lzHGshhjWRUVFpkLQgghhJBu6NPkgHPewjmPBOANIBZAiKnNOqm7m3MewzmPcXNzM7UJIYQQQvpAv9zngHNeDeAEgAcADGOMGYczvAGU9kcMhBBCCOmePksOGGNujLFhhv/bAYgHUADgOIDHDJv9FsDnfRUDIYQQQnquL3sORgA4zhjLBXAWwNec8yMAXgTwPGPsIgAXAO/1YQyEEEL6wfefF7oX5Va2W0uhKLdS/P3nhf22kmB/W7t2reehQ4cssn7EQNOXVyvkAhhtovwS9PMPCCGE3CPc/R3rv9mbH/Drp2SX/MNdtUW5lWLjc2vH1heam5uxY8eOfhkW1+l04JxDKBT2x+4A0NoKhBBCLMA/3FX766dkl77Zmx9w+sB5z7aJgrltx8fHB8rl8pBRo0bJt27d6gro75C4dOlSb5lMFjJ27FhJaWlppz9233jjjeGBgYFyiUQimz59egAAPP/8856vvfZaa69GUFCQXKPR2Go0Glt/f3/57Nmz/SQSiWzq1KkBWq1WAABeXl5h69atGxEdHS3ds2ePU0JCgp9xfQcvL6+w1atXe0VGRgaHhoaGpKen20+YMCHIx8cndPPmza2z6l999VX30NDQEIlEIktMTOx0mWmNRmMbEBAgX7Bgga9hBUdbc9/HnqDkgBBCiEX4h7tqpQ94VOR+e3WE9AGPCkskBgCQkpJSrFKpChQKRf6uXbvcy8vLhQ0NDYKoqKj6/Pz8gvHjx2s3bNjQ6Yk2KSnJIy8vL//8+fP5e/fu/bGr/RUXF4tWrFhRcf78+XyxWKzbsmVL68ldJBLpsrOzNcuWLbtt6WYfH58mhUKhjouLu7F48WK/w4cPF2ZkZKg3btzoCQCpqakOFy9eFOXm5hYUFBTkKxQK+7S0tE6Xmi4uLhY9/fTTVQUFBfkSiaRf7yRMyQEhhBCLKMqtFGu+L3cLn+xdpvm+3K3jHITe2rRpk7tUKpVFR0eHlJeX26hUKpFAIMCSJUt+BoDFixdXZWZmdnqSlUqlDbNmzfLfuXOns42NTZcLCnl4eDQ98sgjdQCwcOHCqjNnzrS2vWjRotuSAqO5c+dWA0BYWFh9VFRUnZOTk87T07N58ODBusrKSuFXX33lcOrUKQeZTCYz9AaI1Gq1qLP2RowY0fTrX/+6rqt4+wKtykgIIcRsbecY+Ie7ar2DnbWWGFo4cuSI+OTJk+KsrCy1WCzWxcbGShsaGm77YcsY67SN48ePX0hLSxMfOnRo2ObNmz0vXLiQN2jQIK7T6Vq3aWxsbG2gY1ttn4vFYh06IRKJOAAIBALY2tq2JiECgQC3bt1inHOsXbu2bP369d1azMre3r7TffU16jkghBBitmtFNfZtEwHjHIRrRTX25rRbXV0tdHR0bBGLxbqcnByRUqkcAugn6RnH+/fu3esSGxtrMgFpaWlBYWGh7YwZM7Q7d+68qtVqhTU1NUI/P79GhUIxBADS09PtS0pKBhvrlJWV2R47dmwIAOzfv9953LhxN0y13VPTpk2rTU5Odq2pqREAQFFRkU1JScmA/JE+IIMihBByd3ngN4HXOpb5h7tqzZ13kJCQULN79243iUQiCwwMvBkREVEHAHZ2djqVSmUnl8s9xGJxS2pqqsmrIpqbm9m8efP8tVqtkHPOli9ffs3V1bVl0aJF11NSUlyCg4NlkZGRdSNHjrxprBMQEHBzz549LqtWrRrp7+/fuG7dOovcw3/27Nm1KpVKNGbMmGBA3zOQkpJS5OXl1dxV3f7G9OsjDWwxMTE8KyvL2mEQQshdhTGWzTmP6W19pVJZHBER0a0u8P5mb28/2tTKjObSaDS206dPD+rPlRmtSalUukZERPh1LKdhBUIIIYS0Q8MKhBBC7jqmeg0WLlzoe/bs2XZXLaxcufLamjVrqrrbrlQqberPXoPy8nLhpEmTpB3LT5w4ofHw8Gjprzg6ouSAEELIPSE5OfmytWPoKQ8Pjxa1Wp1v7Tg6omEFQgghhLRDyQEhhBBC2qHkgBBCCCHtUHJACCGEkHYoOSCEEGK29I8+cC/Mzmy3lkJhdqY4/aMP3Durc7dbu3at56FDhyyyfoQpo0ePDu6rtrtCyQEhhBCzjQgKrk/7x7YAY4JQmJ0pTvvHtoARQcH11o6tLzQ3N2PHjh2lM2fOtMjKk6bk5OSo+6rtrtyTyUHVu++i7vuMdmV132eg6t13rRQRIYTc2wKjY7XTnn3hUto/tgUc37vbM+0f2wKmPfvCpcBo02se9ER8fHygXC4PGTVqlHzr1q2ugP4OiUuXLvWWyWQhY8eOlZSWlnZ6af4bb7wxPDAwUC6RSGTTp08PAIDnn3/e87XXXmvt1QgKCpJrNBpbjUZj6+/vL589e7afRCKRTZ06NUCr1QoAwMvLK2zdunUjoqOjpXv27HFKSEjwM67v4OXlFbZ69WqvyMjI4NDQ0JD09HT7CRMmBPn4+IRu3ry5dcnnV1991T00NDREIpHIEhMTO11m2niM5r1zvXdPJgei0DCUJCa2Jgh132egJDERotAwK0dGCCH3rsDoWK184q8rzqX9e4R84q8rLJEYAEBKSkqxSqUqUCgU+bt27XIvLy8XNjQ0CKKiourz8/MLxo8fr92wYUOnJ9qkpCSPvLy8/PPnz+fv3bv3x672V1xcLFqxYkXF+fPn88VisW7Lli2tJ3eRSKTLzs7WLFu27Lalm318fJoUCoU6Li7uxuLFi/0OHz5cmJGRod64caMnAKSmpjpcvHhRlJubW1BQUJCvUCjs09LSOl1q2pruyeRgyANx8HrzTZQkJqIiKQkliYnwevNNDHkgztqhEULIPaswO1OsOvWNW9S0/y5TnfrGreMchN7atGmTu1QqlUVHR4eUl5fbqFQqkUAgwJIlS34GgMWLF1dlZmZ2epKVSqUNs2bN8t+5c6ezjY1NlwsKeXh4ND3yyCN1ALBw4cKqM2fOtLa9aNGi25ICo7lz51YDQFhYWH1UVFSdk5OTztPTs3nw4MG6yspK4VdffeVw6tQpB5lMJpPL5bLCwkKRWq0W9eS96C/3ZHKwMvkIPq7RwenJJ1C58204PfkEPq7RYWXyEWuHRggh9yTjHINpz75w6VdPLSs1DjGYmyAcOXJEfPLkSXFWVpZao9Hkh4SENDQ0NNx27mKMddrG8ePHLzz77LMV2dnZQyIiImS3bt3CoEGDuE6na92msbGxtYGObbV9LhaLdeiESCTiACAQCGBra9uahAgEAty6dYtxzrF27doytVqdr1ar8y9fvpyXmJg4IBe2uieTgzHDXfCnFh3+lXcFrqtW4l95V/CnFh3GDHexdmiEEHJPKrugtm87x8A4B6HsgtrenHarq6uFjo6OLWKxWJeTkyNSKpVDAECn08E43r93716X2FjTQxgtLS0oLCy0nTFjhnbnzp1XtVqtsKamRujn59eoUCiGAEB6erp9SUnJ4NZjKSuzPXbs2BAA2L9/v/O4ceNumHMMRtOmTatNTk52rampEQBAUVGRTUlJyYBcxmBABmWuxx0FqNmTiqSZM6GoqMKpmdF47tAhPL74MWuHRggh96QJTyy61rEsMDpWa+68g4SEhJrdu3e7SSQSWWBg4M2IiIg6ALCzs9OpVCo7uVzuIRaLW1JTUy+Zqt/c3MzmzZvnr9VqhZxztnz58muurq4tixYtup6SkuISHBwsi4yMrBs5cuRNY52AgICbe/bscVm1atVIf3//xnXr1lWYcwxGs2fPrlWpVKIxY8YEA4C9vb0uJSWlyMvLq9kS7VsS47zL4Reri4mJ4VlZWd3e/tSfn8JQ/zH42y0fHPX1xZTLl7HG5gpuFJ3FxJf39l2ghBAygDDGsjnnMb2tr1QqiyMiIgZkt7e9vf1oUyszmkuj0dhOnz49qD9XZrQmpVLpGhER4dex/J4cVnCelAA/zV/RdKsYUy5fRtOtYvhp/grnSQnWDo0QQggZ8PpsWIEx5gPgAwAeAHQAdnPO/8YY+wOApQCM3TS/55x/acl95xa64i8+L+EfV/6K8z5zIblyAKt9XsL0QleEjrfkngghhFiDqV6DhQsX+p49e7bdVQsrV668tmbNmqrutiuVSpv6s9egvLxcOGnSJGnH8hMnTmg8PDxa+iuOjrqVHDDGBgNIAODXtg7n/I93qNYM4AXO+TnGmBhANmPsa8Nrb3LOt/Yu5K5l6mrwWM1oqN1mY9zV93DG7bd4rGY0TrnUYF5f7ZQQQohVJScnX7Z2DD3l4eHRolar860dR0fdHVb4HMBvoD/h17V5dIpzXsY5P2f4vxZAAQCv3ofafTuemoqAUVcRXJGK9CHzEVyRioBRV7Hjqan9sXtCCCHkrtbdYQVvznmvz6yMMT8AowFkABgPYDVjbBGALOh7F267qQRjbBmAZQDg6+vbo/3l/ecwRua8gMKRf4HfeX9ckjyAwJwXkOdqh9DxM3p7GIQQYlGLDikwwc8FyyJ9Wst2K64gvbgKH8yMtGJk5H7X3Z6DM4yxXt17mDE2FMCnANZyzmsBvA0gEEAkgDIA20zV45zv5pzHcM5j3NzcTG3SqU8upiAt9H/gWRIE8WQfeJYEIS30f/DJxZTeHAIhhPSJCX4u+EtqHnYrrgDQJwZ/Sc3DBD+6Jwuxrjv2HDDGfgDADds9zRi7BKARAAPAOefhXdS3gT4xSOGcp0Jf6Vqb1/8JwOK3LfQc+hD+XrMPvv8VgwnRfvjB5RL+rkzF046/tfSuCCGk1yac+QGbRg3Gi6l5OHr+J2Tn/YRNo2wRduYHoE1vAiH9rathhem9bZjp7zf5HoACzvn2NuUjOOdlhqezAOT1dh+dGS+MQsH183hR8yqeFOTjQ82HeOD6WIx3jrL0rgghpNeGSjwQ83+VWDy8CXvOlWOxazNi8oSwecTD2qH1WM3RYndbX3G9XYhL602PGgqqxE2XtfaOU/xuu0HSvWDt2rWekyZN0vblss3WcsfkgHP+IwAwxpI55wvbvsYYSwaw0GRFvfGG139gjCkMZb8H8CRjLBL6HoliAMt7F3rn5DPj8FzRcLz85cvYlbsLYTfC8Nzs5+Dv72/pXRFCSK/5xkfh49JvMO8HEUJsf8boa87IChPi8fi774eMra+4/ucD5wOc50ou2YW4aBsKqsTG59aOrS80Nzdjx44dpdaOo690d86BvO0TxpgQQPSdKnDO0znnjHMezjmPNDy+5Jwv5JyHGcr/u00vgkVViCpwyeESgq8H45LDJVSILHL3S0IIsZjdiit48WITih21GNvijWJHLV682NQ6B+FuYhfionWeK7n084HzAdWHCz3bJgrmth0fHx8ol8tDRo0aJd+6dasroL9D4tKlS71lMlnI2LFjJaWlpZ3+2H3jjTeGBwYGyiUSiWz69OkBAPD88897vvbaa+7GbYKCguQajcZWo9HY+vv7y2fPnu0nkUhkU6dODdBqtQIA8PLyClu3bt2I6Oho6Z49e5wSEhL8jOs7eHl5ha1evdorMjIyODQ0NCQ9Pd1+woQJQT4+PqGbN29unTj36quvuoeGhoZIJBJZYmJip8tMb9682S04OFgWHBws8/LyCouLi5OY+z72xB2TA8bYS4wxLYBwxlgtY0xreP4T9Jc3DkiK7a/jnT2rMa5yHFaGr8S4ynF4Z89qKLa/bu3QCCGkVXpxFTaNsoV/rQOqParhX+uATaNskV7c7Xv2DCh2IS7aIVHDK278p3TEkKjhFZZIDAAgJSWlWKVSFSgUivxdu3a5l5eXCxsaGgRRUVH1+fn5BePHj9du2LCh0xNtUlKSR15eXv758+fz9+7d+2NX+ysuLhatWLGi4vz58/lisVi3ZcuW1pO7SCTSZWdna5YtW3bbVXY+Pj5NCoVCHRcXd2Px4sV+hw8fLszIyFBv3LjREwBSU1MdLl68KMrNzS0oKCjIVygU9mlpaSaXmv7d735XoVar85VKZYGHh0fTmjVr+nVo5o7JAef8r5xzMYAtnHMHzrnY8HDhnL/UTzH2WM5QLVYfvIlV/hMxefJkrPKfiNUHbyJn6D03LEQIuYu9cCsdMXktsHnEFaFrZ8DmEVfE5LXghVvp1g6tVxoKqsR1535yGzres6zu3E9uDQVVZi3XbLRp0yZ3qVQqi46ODikvL7dRqVQigUCAJUuW/AwAixcvrsrMzDR5kgUAqVTaMGvWLP+dO3c629jYdLmgkIeHR9MjjzxSBwALFy6sOnPmTGvbixYtui0pMJo7d241AISFhdVHRUXVOTk56Tw9PZsHDx6sq6ysFH711VcOp06dcpDJZDK5XC4rLCwUqdVq0Z1ieeaZZ3wmTpyonTdvXk1XcVtSd+9z8HvG2GwAE6CfK3Cac36o78IyT5BsNhz+MBG6TZtRcfkydB9+BIc//BFBrq7WDo0QQn5R6owrQR8gPPpZAMDQ6EbkFn0Ap9L/snJgPdd2joFdiIt28KhhWksMLRw5ckR88uRJcVZWllosFutiY2OlDQ0Nt/2w1c+BN+348eMX0tLSxIcOHRq2efNmzwsXLuQNGjSI63S61m0aGxtbG+jYVtvnYrFYh06IRCIOAAKBALa2tq1JiEAgwK1btxjnHGvXri1bv359txazSkpKcrl69artvn37+v3Oj92dc/APACsA/AD91QUrGGP/6LOozDRhwgSMmjkTTk8+gcqdb8PpyScwauZMTJgwwdqhEUJIq4jonxAVNwF5ec+h8NKbyMt7DlFxExAR/ZO1Q+uxpsta+7aJgHEOQtNlrb057VZXVwsdHR1bxGKxLicnR6RUKocAgE6ng3G8f+/evS6xsaaXhm5paUFhYaHtjBkztDt37ryq1WqFNTU1Qj8/v0aFQjEEANLT0+1LSkoGG+uUlZXZHjt2bAgA7N+/33ncuHE3zDkGo2nTptUmJye71tTUCACgqKjIpqSkxOSP9NOnT9v//e9/9zh48GCRUCi0xO57pLs9Bw8BCOWG9Z0ZY/ugTxQGrLrvM3D9w4/gumolrn/4Eexj4zDkgThrh0UIIb/wioLDwacQOGE61MVvIVj0KBy+2gzM2WvtyHrM1OWKdiEuWnPnHSQkJNTs3r3bTSKRyAIDA29GRETUAYCdnZ1OpVLZyeVyD7FY3JKammryqojm5mY2b948f61WK+Scs+XLl19zdXVtWbRo0fWUlBSX4OBgWWRkZN3IkSNvGusEBATc3LNnj8uqVatG+vv7N65bt84iM9pnz55dq1KpRGPGjAkGAHt7e11KSkqRl5dXc8dt//a3vw2vqakRPvjgg1IAiIiIqPv444+7nC9hKcxwvr/zRoylAkhsc2njSAAbOedP9nF8AICYmBielZXV7e3rvs9ASWIivN58E0MeiLvtOSGEDATnjv6IoboT8DuXiBsh4zG04D8ojnoTNwSTEDVlpNntM8ayOecxva2vVCqLIyIiutUF3t/s7e1Hm1qZ0VwajcZ2+vTpQf25MqM1KZVK14iICL+O5d0dVnABUMAYO8EYOwEgH4AbY+zfjLF/Wy5My7iZ90O7RGDIA3HwevNN3Mwb0J0dhJD7TPH100g7NghXfVbDOfcUrvqsRtqxQSi+ftraoZH7XHeHFV7r0ygszGXJktvKhjxAwwqEkIHF0+9naC5WIy1bgpjAvyMrW4B6t0J4+g2zdmgDnqleg4ULF/qePXu23VULK1euvLZmzZpuXxsqlUqb+rPXoLy8XDhp0iRpx/ITJ05oPDw8Wvorjo66lRxwzk8ahhKCOOfHGGN2AAYZlmImhBDSCw+4R8Jd+CL2u0zHycsjcMulDPOEafB332Tt0O5KycnJ/T6r31weHh4tarU639pxdNStYQXG2FIAnwDYZSjyBjBgL2UkhBCrS98BFJ1qX1Z0Sl9uVHIONmP/ClG9O+qHXobdTS/YjP0rUHIOP1//Dj/+uAuEWEN35xw8C/1aCbUAwDm/AGB4XwVFCCF3Pa8o4OBTvyQIRaf0z71+WTfhqttv8XlaDZocrsHP7wIah5bg87QaFIhikJf3HMQOd1z4lpA+0905B42c8ybjjSAYY4OgvxkSIYQQU/wn6i9JPPgUEPMMkPWe/rn/xNZN8pUaaIep8cQT8+A4rBynT/0vVHktyPxPHWYsSoKz01hrRU/uc93tOTjJGPs9ADvG2MMADgI43HdhEULIPcB/oj4xOLVZ/2+bxAAA7D2b8fgTc+Hv7w9np7EIDZsCachXcPJ3osTgLrB27VrPQ4cOWeQW0QNNd5ODDQAqoL/x0XIAXwJ4pa+CIoSQgWhP3h5klmW2K8ssy8SevD2mKxSd0vcYTPyd/t+iU6h6913UfZ8BQH83V39/f9R9n4Hif72KkpL9iIycg2FOn+Ln69/19eFY1DfffOOu0WjanSg1Go34m2++ce+szt3MuGTzzJkz78mJ+d1KDjjnOugnIK7inD/GOf8n787dkwgh5B4S6hKKdSfXtSYImWWZWHdyHUJdQm/f2DjHYM5eYPLLrUMMIleOksTE1gSh7vsMFCY9ix89DyM0NAmBAYkIDU1CXt5zd1WC4O3tXf/ZZ58FGBMEjUYj/uyzzwK8vb3rzW37flyyec2aNZ5/+tOfWuf2/c///I/XG2+80W9z/bpaspkxxv7AGKsEoAagYYxVMMbuqvseEEKIJcSOiMXWh7Zi3cl1eCvnLaw7uQ5bH9qK2BGx7bZLT09H0Q8Z7eYYFMEH6SH/iyGudfB6802UJCaiIikJJYmJsFs5FWGj324dSnB2GovQ0CRoa3P7+xB7TSqVamfNmnXps88+C0hLS/P87LPPAmbNmnVJKpWa/cv6flyyedWqVZUffvihC6BfH+LQoUNOS5Ys6be1vLvqOVgL/VUKYwzLNDsDiAMwnjGW2OfREULIABM7IhZzpXOxK3cX5krn3pYYAICXlxcOqjmK4AMAKCoqwsGDB+EVOgGYsBZDHohrtzBc0INv3DbHwNlpLEaOXN4vx2QpUqlUGxERUZGRkTEiIiKiwhKJAXB/LtkslUqbhg0b1vyf//zH7rPPPnOQy+X1/XlTpK6Sg0UAnuScFxkLOOeXACwwvEYIIfeUc0d/xFVN+7//VzXXce6o/gdnZlkmDmgOYHn4chzQHLh9DsLnn0BYp8WcOXNw8OBBfPvtt/j4ww8R5jkc/v7+AG5fGM44xHC302g0YqVS6RYXF1emVCrdOs5B6I22SzZrNJr8kJCQht4s2fzss89WZGdnD4mIiJDdunUL1lyyWa1W56vV6vzLly/nJSYmdrp2xdNPP1357rvvur7//vuuTz/9dL/1GgBdJwc2nPPbAuecVwCw6ZuQCCHEeob7OeDoP/NaE4Srmus4+s88DPdzaJ1jsPWhrVg9enXrEEPbBMEjUIIjOzZCWKdFTEwMTp06BUFlGeSR+vsbtF0Izu2551qHGO72BME4x2DWrFmXpk2bVmocYjA3Qbhfl2wGgIULF1YfP37cUalUDklISKixRAzd1dV9Dpp6+RohhNyVWkQH8OCiABz9Zx5CJ3oh71QJHlx0Ey2iA8irsmk3x8A4ByGvKq+1zDc0HNPXbkDq239DncdI2NdWQec6Ai1D9OfIOy0Mdzev/3L16lX7tnMMjHMQrl69am/O8ML9umQzoO+JGDduXO2wYcNaBg3q7m2JLOOOSzYzxloA1Jl6CYCIc94vvZSdkQ0AACAASURBVAc9XbKZEEJ66+fr3yEv7zkIa1+C4vAwRM6oRovDXxEa2v2bEhUVFWH/v5KRYydGfKAfpkRG4uDBgwgODkbTqBCUD3HA6pHurduWlJRgwoQJFj8WWrK55wbSks0tLS2Qy+WygwcPFoaFhTX2xT56tWQz51zIOXcw8RD3V2JACCH9ydlpLDwc/4I6wR8RNvME6gR/hIfjX3p0UyLVuWwMKf8R8YF+2CxyR871WsyZMweaQSKsv3odHnW1ANpMVPTy6qvDIXep7Oxs0ciRI8MefPDB2r5KDO6kf/spCCFkgLuquY7TH4ggfXQ0GnkKhouX4PQHItgvvQ774Wpoa3PveBXB5bxcXE5Lxey1G+AbGo7h55RYd60OT97i+MxhBLY4i3DpyGf4tjwGWVlZmDNnTutERdJ998OSzVevXv2hv+LoiJIDQghp46fiWjy46CbKqnMg0IlQ0/AxHlwUg+KCH6D76QWEhibdsX554XlMNyQGADA7KgLZGQq8Vw8kjnRFuVAAu5gHcOrUt5g4cSL8/f2Rfl0LRW1961AD6R1astly+iw5YIz5APgAgAcAHYDdnPO/McacAXwMwA9AMYC5nPNOrxslhBBLeOdkIcK9HTEu0LW17ExhJXKv1mCF8DDOl3rBPiIefrGlyMv7PUYPW4GGfDW+b7wO3ci1YE42CA99u8vhhdjfPNb6/6p330VOSDg+43ZIHOmKfaWVeOanyyj/PhPl0gm4/l0+fvbwwWs/38Ruud8v8TwU2GfvAyHd0d21FXqjGcALnPMQAA8AeJYxJoN+nYZvOOdBAL4xPCeEkD4V7u2I1ftzcKZQP7/uTGElVu/PQbi3I+AVhcDC3yF3z35cKcxApOMzGPLFJmTnBGGE73jodDfh4BDW48WQckLC8ez1RiSxBrwYMAJ/uF6C3TZieDwQi0yXYfiqKRDrfriGPzqLIPi5sTWezM8/weW89ndHvJyXi8zPP7HY+0HInfRZcsA5L+OcnzP8XwugAIAXgN8A2GfYbB+AmX0VAyGEGI0LdMVb80Zj9f4cbP8/DVbvz8Fb80brexL8J0L4xD5MGbYVutQC2P37rzhavQ7+cyJwc9A/4ee3GjduqHu81oHaeyT+4TQYvuvWoiIpCfL/fRV/Qj0GR8dgcbg3tGHOGJyvRfp3P7aLx3ivBGOCcDkvF0d2bIRHoKQv3hpCbtOXPQetGGN+AEYDyADgzjkvA/QJBACTC0kwxpYxxrIYY1kVFRa5xJQQcp8bF+iKBXG+SPr2IhbE+bYbYoD/RAjjlmC07UdQVD8M++gwVDQkmrUY0uqR7ogfH9t6q+ThixZi7oypiHSwx77SSqyJ8kWL71AcutDYLh7f6m+RMO8RHNmxEf858C8c2bERCfMegW/1t5Z+Swgxqc+TA8bYUACfAljLOa/tbj3O+W7OeQznPMbNza3rCoQQ0oUzhZX4V8ZlPDd5FP6Vcbl1iAEAUHQKLRnvIqfpCUQO+xo3MrPgZvemycWQ2nb7a09ewc3C6nbd/jcLq/H/7N15WJNX+j/+90kEIRCQTUAWWROSoEGhUETUilg7DjMqLt3EpdCqY7XWdspoZ76fX+eyagdth9p+ik4LlY/W2mpbS7UbU1BrB4wK1ISAiqkoiwEFIkQF8vz+gDCAoGBY9X5dF1fJs5znzqM1d845z7l12aUA7lwq+T8//oTnlRrslHkhkjOD5WU9RvjbIPWX3/4bj9tEOCvewJQIP/znwD5MifCDs+INwG3iwN2sXrpwYZuztiqzw2qI2qpM4YUL22iW5TDUr8kBY8wMLYnBHo7jDrZurmSMubbudwVwtT9jIIQQ4L9zDHY8PQEvzxS3DTGcuFDVkhjsW4Lval6B05ItMHsmHU84vIuLn+V3qLNgLIbUvtvfzF0I7e6z+OW93XDxFeHmhRpc21sIM3dhl0slW278Cz66WdU2xyDl2YlImxeEJ6K92+LRXfJGpc9G+Jb8LxZGWsO35H9R6bMRuktD95FHG9ugBpXqFR9jgqCtyhSqVK/42NgGmVyymQy8fksOWEulig8BFHIct73drkMAlrT+vgTAV/0VAyGEGBVcrv3vHAP8dw5CweVa4MppXPB9C+OXPw13sV3bHIRJj9bhqubODk/jEskZ72zBqVMZOHH1S0waPQe2ZTa4trcQ9k9LYOE7qsulkv3++U/4ay50iGeynRBvTfJvi2d5wXvYfVaP216L4FF1BLe9FmH3WT2WF7w3oPesN5wco3RSaVKJSvWKT3Hx38eoVK/4SKVJJU6OUSZXZpwxY4avTCaT+Pn5yZKSkhyBlhUSExIS3KVSqSQ8PFxUVlbW7dN3J06csJTL5QEikUgaHR3tq9Vq+QAQGhoqfu655zxCQkLEPj4+suzsbMHMmTN9x44dG7hmzZq2EtDvv/++/bhx4yQBAQHSp59+emxTU8tqx2+//bajl5dXYGhoqPjJJ58cGxcX5wkAe/futR0/fnyARCKRTpo0SVRaWjoCAGpra3nz58/3EolEUpFIJE1LSxsFAM8884xnYGCgxM/PT7Zu3bq267q5uY1bvXq1W1BQUEBgYKDk+PHjgsmTJ/t7eHgEvvXWW912qWdkZAgfe+wxP+PruLg4z+TkZIfe3PP+7DmIALAYwHTGWF7rz+8AbAEQzRg7ByC69TUhhPSrFVN9O84xQEuCsGKqLzD5JYgWLmhJDIy8p2DU3L9g4uNju2zPM3A85DN/h/8c2Af3x4JgE+EO3b9LYRXmCgvfUQAAh/j4O+olWD0aBof4+LvG48ezxV6PNJy9+g1uuj+Ps1e/wV6PNPjxbPvgTvQfJ8conavLPG3p5TRXV5d52r5IDABgz549GqVSWZiXl6dKSUlxrqio4Ov1et7EiRMbVCpVYUREhC4xMXFMd+cvXbrU+80337xcXFyskslk+tdee63tWHNzc4NCoShatmyZdsGCBX67du26pFarlZ9++qljRUUF//Tp0xaff/65vUKhUKvVahWPx+M++OADB41GY5aUlOSak5NTeOzYseJz5861lV6Ojo6+kZeXpy4sLFTNnz//2htvvOECAImJia42NjbNxcXFquLiYtXs2bN1ALB9+/YrZ8+eLVSr1cqff/5ZmJOTY2lsy8PD43ZeXp46LCzsxvLly72+/vrrCzk5OeotW7Z0+377Qr+tc8Bx3HG01GDoSlR/XZcQQgbCpbMFyP/+MB6NfRKXf8qD52gv2Ez3QH1OOUb6jmpLEO5HIleL31dVY/VoB/hdb8b50Q7YUVWNQKsBLczXa9qqTGF5xUEnD/el5eUVB53s7Cfp+iJB2Lp1q/M333wzCgAqKirMlEqlBY/HQ3x8/DUAWL58efW8efP8ujq3urqar9Pp+LNnz74BAAkJCdULFizwMe6fO3duDQDI5XK9n5+ffuzYsY0A4OHhcaukpMQ8KyvL+uzZswK5XC4BgJs3b/JGjx7ddOzYMauwsDCds7Nzc2s714uLiy0A4OLFi+Zz5sxx12q1Zrdv3+Z5eHjcAoCjR4/a7Nu3r61AlJOTUzMAfPzxx/ZpaWmOTU1NTKvVmuXn51uEhYXpAWDhwoU1ADBu3LiG+vp6np2dncHOzs4wcuRIQ1VVFd/R0bHZ1PvblQF5WoEQQh4kxkcLf/9SIoKDf49Jo+fgxNUvUTumDvZPS3BtbyFuXqi57/bzRzXh9uVI+F6fArXTD/C9PgW3L0cif1SXxfuGBOMcA6k0qUQk+muZcYih8yTF3srIyBBmZ2cLFQqFuqioSCWRSPR6vf6Oz66Wkezes7Cw4ACAx+Nh5MiRbZUIeTwempqaGMdxbMGCBdVqtVqlVqtVGo3m7Pbt28vuVrRw9erVnqtWrbpaXFys2rFjx2+3bt3iAQDHcXfEqVarzXfs2OGcnZ1dXFxcrJo+fXrtzZs3295f+/jMzc07xNfY2NjlmzYzM+MMBkPb61u3bvX65lByQAghvdR+ieTGyzo4xQUi/E9xqLhQDAvfUbB/WoLGy/f/hblpwnqsCH8MarsTGFs1FWq7E1gR/hiaJqzvw3fRt+pq8wTt5xgY5yDU1eYJTGm3pqaGb2tr2ywUCg1nzpyxyM/PtwIAg8GA1NRUOwBIS0tzCA0N7fKGOzg4NNvY2DR/++231gDw4YcfOoSHh9/o6fVnzZpVl5GRYXflypURAFBZWckvLi42j4yMrM/JyRFqtVp+Y2Mjvvrqq7YxKZ1Ox/f09Gw0xmbcPm3atLrt27e3Pb6v1Wr5169f51taWhrs7e2bS0tLR2RlZZk8duTr63vr/Pnzlnq9nlVXV/OPHz9u09s2qLYCIYT0UvslkoVTPQAAnhjVVk/BwsRhhYKcn2DGpaDR8nlICi/inOvzMNOnoCBnJKbLnjYt+H7i67u+svM2J8cok4cVYmNja3fu3OkkEomkvr6+N+VyeT0AWFpaGpRKpaVMJnMRCoXNBw8eLOmujdTU1IsrV64cu2bNGp6np+etTz75RNPT6wcHB998/fXXr0RFRYkMBgPMzMy45OTkS1FRUfXr1q0rf+SRRySjR49uFIlEeltb22YA2LhxY9lTTz3l6+zsfDskJKT+0qVLIwFg8+bN5cuWLfP09/eX8Xg8bsOGDWVLliypCQwMbPD395d5enreCg4O7nHi0h0/P7/GmJiY6xKJRObt7X1TJpP1+okRdreukaEiJCSEUygUgx0GIYQMiCc/fAPBfFdUXdDi4+m/w5J/H4ajrxNONZdj33N/63E7jLFTHMeF3G8c+fn5GrlcXnXvIweeQCCY0FVlxoFUW1vLs7W1NTQ2NuLxxx/3W7p0aVVcXNz9jycNgvz8fEe5XO7VeTsNKxBCyBDzoexxePzwM76e/gTWjXXG19OfgMcPP+ND2eODHRpp59VXXx0TEBAgFYlEMk9Pz1vPPvvssEoM7oaGFQghZIjJPq/BG/FrsTPID5PthIiws8bz8Wthc74Yv+v0aOTDqqteg8WLF3uePHnSuv22lStXVq5du7a6P2LYuXPn5f5ot6dyc3Mt4+LiOqyMZW5ubigoKFCb2jYlB4QQMsSURE7DThsBJtu1TPSfbCfEziA/5Pn066Ptw156evqlwY5hIIWGhurVarWqP9qm5IAQQoaY1WPvLEcw2U7YliwQ0t9ozgEhhBBCOqDkgBBCCCEdUHJACCGEkA4oOSCEEGKyzSXlzt9X1XaYFPF9Va1wc0n5nRMoyJBHyQEhhBCTBdsIGl4svORjTBC+r6oVvlh4ySfYRtDr1fnI4KPkgBBCiMlmOtrq3pV4lrxYeMnnr+cuj3mx8JLPuxLPkpmOtiZXZZwxY4avTCaT+Pn5yZKSkhyBlhUSExIS3KVSqSQ8PFxUVlbW7dN3J06csJTL5QEikUgaHR3tq9Vq+QAQGhoqfu655zxCQkLEPj4+suzsbMHMmTN9x44dG7hmzZq250bff/99+3HjxkkCAgKkTz/99NimppYCWG+//bajl5dXYGhoqPjJJ58cGxcX5wkAe/futR0/fnyARCKRTpo0SVRaWjoCaFlRcf78+V4ikUgqEomkaWlpowDgmWee8QwMDJT4+fnJ1q1b13ZdNze3catXr3YLCgoKCAwMlBw/flwwefJkfw8Pj8C33nrLqbv329zcjGeffdbTz89P9thjj/lNnTrVz1iHoqcoOSCEENInZjra6ha62Gl3Xa5yXehip+2LxAAA9uzZo1EqlYV5eXmqlJQU54qKCr5er+dNnDixQaVSFUZEROgSExO7XQRi6dKl3m+++ebl4uJilUwm07/22mttx5qbmxsUCkXRsmXLtAsWLPDbtWvXJbVarfz0008dKyoq+KdPn7b4/PPP7RUKhVqtVqt4PB73wQcfOGg0GrOkpCTXnJycwmPHjhWfO3fOwthmdHT0jby8PHVhYaFq/vz519544w0XAEhMTHS1sbFpLi4uVhUXF6tmz56tA4Dt27dfOXv2bKFarVb+/PPPwpycHEtjWx4eHrfz8vLUYWFhN5YvX+719ddfX8jJyVFv2bKl2/e7e/duu9LSUvOioiLlxx9/rDlz5ox1d8d2h9Y5IIQQ0ie+r6oV7q+47pTg7li+v+K6U6SdUNcXCcLWrVudv/nmm1EAUFFRYaZUKi14PB7i4+OvAcDy5cur582b59fVudXV1XydTsefPXv2DQBISEioXrBggY9x/9y5c2sAQC6X6/38/PRjx45tBAAPD49bJSUl5llZWdZnz54VyOVyCQDcvHmTN3r06KZjx45ZhYWF6ZydnZtb27leXFxsAQAXL140nzNnjrtWqzW7ffs2z8PD4xYAHD161Gbfvn1tBaKcnJyaAeDjjz+2T0tLc2xqamJardYsPz/fIiwsTA8ACxcurAGAcePGNdTX1/Ps7OwMdnZ2hpEjRxqqqqr4jo6OzZ3f87Fjx6znzZt3nc/nw9PTs+nRRx/t9Z8B9RwQQggxmXGOwbsSz5K/+7uXGYcYOk9S7K2MjAxhdna2UKFQqIuKilQSiUSv1+vv+OxijN1X+xYWFhwA8Hg8jBw5sq0SIY/HQ1NTE+M4ji1YsKBarVar1Gq1SqPRnN2+fXvZ3YoWrl692nPVqlVXi4uLVTt27Pjt1q1bPADgOO6OONVqtfmOHTucs7Ozi4uLi1XTp0+vvXnzZtv7ax+fubl5h/gaGxu7fNN9UVCRkgNCCCEmO1XXIGg/x8A4B+FUXYPAlHZramr4tra2zUKh0HDmzBmL/Px8KwAwGAwwjqOnpaU5hIaGdvnt2MHBodnGxqb522+/tQaADz/80CE8PLzHZZFnzZpVl5GRYXflypURAFBZWckvLi42j4yMrM/JyRFqtVp+Y2Mjvvrqq7YxfZ1Ox/f09Gw0xmbcPm3atLrt27ePNr7WarX869ev8y0tLQ329vbNpaWlI7Kysmx7d4fuFBkZeePLL7+0a25uRmlp6YicnJxeJ2g0rEAIIcRkf/Fxrey8baajrcnDCrGxsbU7d+50EolEUl9f35tyubweACwtLQ1KpdJSJpO5CIXC5oMHD5Z010ZqaurFlStXjl2zZg3P09Pz1ieffKLp6fWDg4Nvvv7661eioqJEBoMBZmZmXHJy8qWoqKj6devWlT/yyCOS0aNHN4pEIr2trW0zAGzcuLHsqaee8nV2dr4dEhJSf+nSpZEAsHnz5vJly5Z5+vv7y3g8Hrdhw4ayJUuW1AQGBjb4+/vLPD09bwUHB/c4cenOkiVLrv/4449CkUgk8/b2vimXy+tHjRp1x/DD3bC+6H7obyEhIZxCoRjsMAghZFhhjJ3iOC7kfs/Pz8/XyOXyqr6Mqa8IBIIJXVVmHEi1tbU8W1tbQ2NjIx5//HG/pUuXVsXFxQ2Jss3G2CoqKviPPPKI5Oeff1Z7eno2dT4uPz/fUS6Xe3XeTj0HhBBCyH149dVXxxw9etTm1q1bbOrUqXXPPvvskEgMACA6Otq/rq6O39jYyF599dXyrhKDu6HkgBBCyLDTVa/B4sWLPU+ePNnhsb2VK1dWrl27tro/Yti5c+fl/mi3p3Jzcy3j4uK8228zNzc3FBQUqHNzc4tMaZuSA0IIIQ+E9PT0S4Mdw0AKDQ3Vq9VqVX+0TU8rEEIIIaSDfksOGGMfMcauMsbOttv2P4yxK4yxvNaf3/XX9QkhhBByf/qz5yANwKwutr/NcVxQ68/hfrw+IYQQQu5DvyUHHMcdBXCtv9onhBBCSP8YjDkHqxljBa3DDt1WiWKMPc8YUzDGFFqtdiDjI4QQ0ktJ3xU5/1hY2WElvh8LK4VJ3xU5D1ZMBDBWkOytgU4O/heAL4AgAOUAtnV3IMdxOzmOC+E4LsTJqdvKlIQQQoaAIM9RDS/vz/MxJgg/FlYKX96f5xPkOarB1LapZHPvSjZnZGQIw8LCRDExMd5isVh2P/d8QJMDjuMqOY5r5jjOAGAXgNCBvD4hhJD+MUPirNu+MKjk5f15Pv/f18oxL+/P89m+MKhkhsTZ5KqMVLK5dyWbAaCgoMDqH//4x5ULFy4o7+eeD+g6B4wxV47jyltfzgVw9m7HE0IIGT5mSJx1sRPdtak/a1yXRXiV90ViAFDJZqB3JZsBYPz48fUBAQG37/ee9+ejjJ8A+AWAmDF2mTH2HIC3GGO/MsYKADwGYF1/XZ8QQsjA+rGwUnjg9GWnZRFe5QdOX3bqPAfhflDJ5t6XbAYAgUBg6P3d+K/+fFrhKY7jXDmOM+M4zp3juA85jlvMcdw4juPGcxz3h3a9CIQQQoYx4xyD7QuDSv5fjKzMOMRgaoJAJZsHB62QSAghxGR5l2oE7ecYGOcg5F2qEZjSbmxsbG1TUxMTiUTSDRs2jOmiZLPk6NGjws2bN3f7ZTM1NfXia6+95i4SiaQFBQWWW7ZsKevp9duXbBaJRNLp06eLSktLzby9vRuNJZsjIiLEXZVsDg4OFjs4OLQ9LrB58+bympoavr+/v0wsFksPHz4sDA8P1xtLNi9evNirL0o29wUq2UwIIQ8oKtncv4Zyyeae6q5kM/UcEEIIIffh1VdfHRMQECAViUQyT0/PW0OpZLOpqCojIYSQYYdKNt+9ZLOpbVNyQAgh5IFAJZv7Dg0rEEIIIaQDSg4IIYQQ0gElB4QQQgjpgJIDQgghhHRAyQEhhBBCOqDkgBBCiOky/+6MoiMdl0ouOiJE5t+dBymih5ZGozGbNWuWz72P7B4lB4QQMsR8npOAE+dTO2w7cT4Vn+ckDFJEPeAe0oAvVvi0JQhFR4T4YoUP3EMaBjmyh46Xl1fjt99+W3LvI7tHyQEhhAwxYxwmoUrzZluCcOJ8Kqo0b2KMw6RBjuwuxE/oMPeDEnyxwgdHEsfgixU+mPtBCcRPmFy2ecaMGb4ymUzi5+cnS0pKcgRalk9OSEhwl0qlkvDwcFFZWVm36/acOHHCUi6XB4hEIml0dLSvVqvlA0BoaKj4ueee8wgJCRH7+PjIsrOzBTNnzvQdO3Zs4Jo1a8YYz3///fftx40bJwkICJA+/fTTY5uaWsolvP32245eXl6BoaGh4ieffHJsXFycJwDs3bvXdvz48QESiUQ6adIkUWlp6QigZbnl+fPne4lEIqlIJJKmpaWNAoBnnnnGMzAwUOLn5ydbt25d23Xd3NzGrV692i0oKCggMDBQcvz4ccHkyZP9PTw8At966y2n7t5vUVGRub+/v8yUe07JASGEDDGT/JbB0WsDqjRvYt+Jp1GleROOXhswyW/ZYId2d+IndJA/pUXO/7pC/pS2LxIDANizZ49GqVQW5uXlqVJSUpwrKir4er2eN3HixAaVSlUYERGhS0xMHNPd+UuXLvV+8803LxcXF6tkMpn+tddeazvW3NzcoFAoipYtW6ZdsGCB365duy6p1Wrlp59+6lhRUcE/ffq0xeeff26vUCjUarVaxePxuA8++MBBo9GYJSUluebk5BQeO3as+Ny5cxbGNqOjo2/k5eWpCwsLVfPnz7/2xhtvuABAYmKiq42NTXNxcbGquLhYNXv2bB0AbN++/crZs2cL1Wq18ueffxbm5ORYGtvy8PC4nZeXpw4LC7uxfPlyr6+//vpCTk6OesuWLd2+375AKyQSQsgQNMlvGfZd/QFON3OgFYQN/cQAaBlKyP/ECWEry5H/iRN8pur6IkHYunWr8zfffDMKACoqKsyUSqUFj8dDfHz8NQBYvnx59bx58/y6Ore6upqv0+n4s2fPvgEACQkJ1QsWLGgbj587d24NAMjlcr2fn59+7NixjQDg4eFxq6SkxDwrK8v67NmzArlcLgGAmzdv8kaPHt107Ngxq7CwMJ2zs3NzazvXi4uLLQDg4sWL5nPmzHHXarVmt2/f5nl4eNwCgKNHj9rs27evrbvfycmpGQA+/vhj+7S0NMempiam1WrN8vPzLcLCwvQAsHDhwhoAGDduXEN9fT3Pzs7OYGdnZxg5cqShqqqK7+jo2Gzq/e0K9RwQQsgQdOJ8KgQNJ6G1CIOg4eQdcxCGHOMcg7kflOCJLWVtQwydJyn2UkZGhjA7O1uoUCjURUVFKolEotfr9Xd8djHG7qt9CwsLDgB4PB5GjhzZVqaYx+OhqamJcRzHFixYUK1Wq1VqtVql0WjObt++vexuFY1Xr17tuWrVqqvFxcWqHTt2/Hbr1i0eAHAcd0ecarXafMeOHc7Z2dnFxcXFqunTp9fevHmz7f21j8/c3LxDfI2Njff3pnuAkgNCCBlijHMMHL024MlJe9uGGIZ0gnBZIegwx8A4B+GyQmBKszU1NXxbW9tmoVBoOHPmjEV+fr4VABgMBqSmptoBQFpamkNoaGiXPRQODg7NNjY2zd9++601AHz44YcO4eHhN3p6/VmzZtVlZGTYXblyZQQAVFZW8ouLi80jIyPrc3JyhFqtlt/Y2IivvvrKzniOTqfje3p6NhpjM26fNm1a3fbt20cbX2u1Wv7169f5lpaWBnt7++bS0tIRWVlZtr27Q/2DhhUIIWSIKas+gTHt5hhM8luGE63bMVSHF6L+WnnHNvETJg8rxMbG1u7cudNJJBJJfX19b8rl8noAsLS0NCiVSkuZTOYiFAqbDx482O3s/NTU1IsrV64cu2bNGp6np+etTz75RNPT6wcHB998/fXXr0RFRYkMBgPMzMy45OTkS1FRUfXr1q0rf+SRRySjR49uFIlEeltb22YA2LhxY9lTTz3l6+zsfDskJKT+0qVLIwFg8+bN5cuWLfP09/eX8Xg8bsOGDWVLliypCQwMbPD395d5enreCg4O7nHi0p/Y3bpGhoqQkBBOoVAMdhiEEDKsMMZOcRwXcr/n5+fna+RyeVVfxtRXBALBhK7KNg+k2tpanq2traGxsRGPP/6439KlS6vi4uJqBjOm3srPz3eUy+VenbfTsAIhhBByH1599dUxAQEBUpFIJPP09Lz17LPPDqvE4G5oWIEQFZG40gAAIABJREFUQsiw01WvweLFiz1Pnjxp3X7bypUrK9euXVvdHzHs3Lnzcn+021O5ubmWcXFx3u23mZubGwoKCtSmtk3JASGEkAdCenr6pcGOYSCFhobq1Wq1qj/apmEFQgghhHTQb8kBY+wjxthVxtjZdtvsGWM/MMbOtf7X7m5tEEIIIWTg9WfPQRqAWZ22JQLI5DjOH0Bm62tCCCGEDCH9lhxwHHcUwLVOm/8I4OPW3z8GMKe/rk8IIYSQ+zPQcw6cOY4rB4DW/46+x/EPBV12KW5e6PgEzM0LNdBllw5SRIQQ0jvJp5Ods0qzOiyVnFWaJUw+new8WDH1tSNHjlhLpVLJiBEjgo2rMz6ohuyERMbY84wxBWNModVqBzucfmXmLsS1vYVtCcLNCzW4trcQZu4mLUlOCCEDZrzT+IaNxzf6GBOErNIs4cbjG33GO41vGOzY+oqPj8/t1NRUTUxMTL88GjmUDHRyUMkYcwWA1v9e7e5AjuN2chwXwnFciJNTt2WrHwgWvqNg/7QE1/YWovZ7Da7tLYT90xJY+I4a7NAIIaRHpnlM022avKlk4/GNPltyt4zZeHyjz6bJm0qmeUwzuSrjjBkzfGUymcTPz0+WlJTkCLSskJiQkOAulUol4eHhorKysm4fzc/OzhaIRCJpUFBQwAsvvODu7+8vA4Dk5GSHqKgo38jISH8vL6/A9evXuxrP2bFjh4NIJJKKxWLpnDlzvAFALBbfDgsL0/N49/7obG5uxrPPPuvp5+cne+yxx/ymTp3qN5x6GwY6OTgEYEnr70sAfDXA1x+yLHxHwSrMFbp/l8IqzJUSA0LIsDPNY5ouxjdGu6dwj2uMb4y2LxIDANizZ49GqVQW5uXlqVJSUpwrKir4er2eN3HixAaVSlUYERGhS0xMHNPd+fHx8d7vvffeb3l5eWo+n9+hZkBBQYHVZ599VnL27FnloUOH7I8ePSpQKBQWSUlJrtnZ2cVFRUWqlJSUXq+fsHv3brvS0lLzoqIi5ccff6w5c+aM9b3PGjr681HGTwD8AkDMGLvMGHsOwBYA0YyxcwCiW18TtAwl1OeUQzjdA/U55XfMQSCEkKEuqzRL+PWFr52ekTxT/vWFr506z0G4X1u3bnUWi8XS4OBgSUVFhZlSqbTg8XiIj4+/BgDLly+vzs3N7fLDt6qqil9fX8+Ljo6uB4AlS5Z0mCg/efLkOhcXl2Zra2tu9uzZ17Oysqy/++47m5iYmOuurq5NAODs7Nzc25iPHTtmPW/evOt8Ph+enp5Njz76aJ8kSgOl31ZI5DjuqW52RfXXNYcr4xwD41DCSN9RNLRACBlWjHMMjEMJj7o+quuLoYWMjAxhdna2UKFQqIVCoSE0NFSs1+vv+GLLGOvy/HsVF+x8HmMMHMeBMWZSVcLhUNTwbobshMSHSeNlXYdEwDgHofHysEo0CSEPsQJtgaB9ImCcg1CgLRCY0m5NTQ3f1ta2WSgUGs6cOWORn59vBQAGgwHGMfy0tDSH0NDQLv/BdHJyaraysjJkZmZaAUB6erp9+/3Hjx+3qays5N+4cYMdPnx41NSpU2/MmjWr7tChQ/YVFRV8AKisrOT3Nu7IyMgbX375pV1zczNKS0tH5OTkDKsZ5lRbYQgQTvW4Y5uF7yjqNSCEDBtrJq6p7Lxtmsc0nanzDmJjY2t37tzpJBKJpL6+vjflcnk9AFhaWhqUSqWlTCZzEQqFzQcPHizpro2UlBTNihUrxgoEAkNERIROKBS2DROEhITcWLRokbdGo7GIjY2tnjJlSgMArF+/vjwyMjKAx+NxgYGBDQcOHNBkZ2cLFi5c6FdXV8fPzMwctWnTpjHnz59XdnXNJUuWXP/xxx+FIpFI5u3tfVMul9ePGjWq18MTg4UNh66PkJAQTqFQDHYYBMDx48fh5uYGb+//FgK7ePEirly5gsmTJw9iZISQzhhjpziOC7nf8/Pz8zVyubyqL2PqKwKBYEJXlRm7Ultby7O1tTUAwIYNG1zKy8vNUlNTS5OTkx0UCoXV7t27+6Vgk/G6FRUV/EceeUTy888/qz09PZv641r3Kz8/31Eul3t13k49B6RX3Nzc8Nlnn2HBggXw9vbGxYsX214TQshQtH//fttt27a5Njc3Mzc3t1t79+7VDMR1o6Oj/evq6viNjY3s1VdfLR9qicHdUM8B6TVjQhASEgKFQtGWKBBChpYHueegK4sXL/Y8efJkh6cWVq5cWbl27dp+W7QoNzfXMi4ursM/gObm5oaCggJ1f12zL1HPAekz3t7eCAkJwdGjRzFlyhRKDAghQ0J6enq/DA/cTWhoqF6tVqsG+rr9jZ5WIL128eJFKBQKTJkyBQqFAhcvXhzskAghhPQhSg5Ir7SfYzB9+nQsWLAAn332GSUIhBDyAKHkgPTKlStXOswx8Pb2xoIFC3DlypVBjowQQkhfoTkHpFe6elzR29ub5h0QQsgDhHoOCCGEmOzqO+846376qcMqgLqffhJefecd58GKqa8dOXLEWiqVSkaMGBE8nCos3g9KDgghhJjMUi5vKHst0ceYIOh++klY9lqij6Vc3jDYsfUVHx+f26mpqZqYmJhePRrZ1DRsljdoQ8kBIYQQkwkfe0w3ZuuWkrLXEn0q3nxzTNlriT5jtm4pET72mMlFYmbMmOErk8kkfn5+sqSkJEegZYXEhIQEd6lUKgkPDxeVlZV1O0yenZ0tEIlE0qCgoIAXXnjB3d/fXwYAycnJDlFRUb6RkZH+Xl5egevXr3c1nrNjxw4HkUgkFYvF0jlz5ngDgFgsvh0WFqbn8e790ZmRkSEMCwsTxcTEeIvFYpmp92Cg0ZwDQgghfUL42GM62zl/1F7fne5qF7e4vC8SAwDYs2ePxtnZufnGjRtswoQJ0mefffa6Xq/nTZw4sWHXrl2XX3nlFdfExMQx3S2DHB8f7/3+++9roqOj61etWuXWfl9BQYHVr7/+qrS2tjZMmDBB+sc//rFWIBAYkpKSXH/55Re1q6tr0/0UXjK2febMGWVAQMDt+zl/MFHPASGEkD6h++knYe2XXznZxS0ur/3yK6fOcxDu19atW53FYrE0ODhYUlFRYaZUKi14PB7i4+OvAcDy5curc3Nzrbs6t6qqil9fX8+Ljo6uB4AlS5Zca79/8uTJdS4uLs3W1tbc7Nmzr2dlZVl/9913NjExMdddXV2bAMDZ2fm+CiaNHz++fjgmBsAw6Tk4depUFWPstz5u1hHAcFgWdLjECVCs/WW4xDpc4gQenljH9mUgd2OcY2AcSrAKD9f1xdBCRkaGMDs7W6hQKNRCodAQGhoq1uv1d3yxZYx1ef69SgR0Po8xBo7jwBgzubaAQCAwmNrGYBkWyQHHcU593SZjTGHKmuMDZbjECVCs/WW4xDpc4gQo1v6gz88XtE8EjHMQ9Pn5AlOSg5qaGr6trW2zUCg0nDlzxiI/P98KAAwGA1JTU+2ef/7562lpaQ6hoaFdXsPJyanZysrKkJmZaRUVFVWfnp5u337/8ePHbSorK/lWVlaGw4cPj/rXv/6lEQgEhvnz5/tt2LCh0sXFpbmyspJ/v70Hw9WwSA4IIYQMbaNfeqmy8zbhY4/pTJ13EBsbW7tz504nkUgk9fX1vSmXy+sBwNLS0qBUKi1lMpmLUChsPnjwYEl3baSkpGhWrFgxViAQGCIiInRCobDtgz4kJOTGokWLvDUajUVsbGz1lClTGgBg/fr15ZGRkQE8Ho8LDAxsOHDggCY7O1uwcOFCv7q6On5mZuaoTZs2jTl//rzSlPc3VFFyQAghZMiytLTkjh49eq6rff/85z/LAJTdq43g4GB9cXGxCgA2bNjgYkwwAMDR0bGpq4mML774YvWLL77Y4ZHFqVOnNlRWVhb0JO7f//73ut///vd9MiFzMDzMycHOwQ6gh4ZLnADF2l+GS6zDJU6AYn2o7N+/33bbtm2uzc3NzM3N7dbevXs1gx3TUMfuNVmDEELIwyk/P18jl8uHy8RNLF682PPkyZMdnlpYuXJl5dq1a3u1aFFv5ObmWsbFxXVYP97c3NxQUFCg7q9r9qX8/HxHuVzu1Xn7w9xzQAgh5AGSnp7e5ToH/Sk0NFSvVqtVA33d/kbrHBBCCCGkgwc+OWCMzWKMFTHGzjPGErvYv4Ix9itjLI8xdpwxJh2KcbY7bj5jjGOMDdqjTT24p0sZY9rWe5rHGIsfjDhbY7nnfWWMLWSMqRhjSsbY3oGOsTWGe93Tt9vdz2LGWM1gxNkay71i9WSM/cQYO8MYK2CM/W4w4myN5V6xjmWMZbbGmcUYcx+kOD9ijF1ljJ3tZj9jjCW3vo8CxtjEgY6RPFwe6OSAMcYH8B6AJwBIATzVxYf/Xo7jxnEcFwTgLQDbBzjMnsYJxpgQwBoAOQMbYYcYehQrgE85jgtq/fnXgAbZqiexMsb8AfwFQATHcTIALw3FODmOW2e8nwDeBXBwoOMEevzn/zqA/RzHTQDwJID3BzbKFj2MNQnAbo7jxgN4A8DmgY2yTRqAWXfZ/wQA/9af5wH87wDERB5iD3RyACAUwHmO40o4jrsNYB+AP7Y/gOO4unYvrQAMxgzNe8bZ6u9oSWBuDmRwnfQ01qGgJ7EmAHiP47jrAMBx3NUBjhHo/T19CsAnAxLZnXoSKwfApvV3W/TgUbN+0pNYpQAyW3//qYv9A4LjuKMArt3lkD+iJYnhOI77D4BRjDHXuxxPiEke9OTADUBpu9eXW7d1wBj7E2PsAlo+eNcMUGzt3TNOxtgEAB4cx2UMZGBd6NE9BRDb2v35OWPMY2BCu0NPYhUBEDHGfmaM/Ycxdrdvb/2lp/cUjLGxALwB/HsA4upKT2L9HwDPMsYuAzgM4MWBCe0OPYk1H0Bs6+9zAQgZYw4DEFtv9fjvyGD5z1cXnC8WVHWopXCxoEr4n68uOA9WTH3tyJEj1lKpVDJixIjg1NRUu7sdq9FozGbNmuUzULH1tQc9Oehqse07egY4jnuP4zhfAK+hpUt0oN01TsYYD8DbANYPWETd68k9/RqAV2tX7Y8APu73qLrWk1hHoKWrdhpavpH/izE2qp/j6qxHf09bPQngc47jBmsp157E+hSANI7j3AH8DkB669/hgdaTWF8BMJUxdgbAVABXADT1d2D3oTd/RwaFs7dtQ2aayseYIFwsqBJmpql8nL1tGwY7tr7i4+NzOzU1VRMTE3PPRyO9vLwav/32225XbRzqHvTk4DKA9t9a3XH3Ls59AOb0a0Rdu1ecQgCBALIYYxoAjwI4NEiTEu95TzmOq+Y47lbry10Aggcots568ud/GcBXHMc1chx3EUARWpKFgdSbv6dPYvCGFICexfocgP0AwHHcLwAs0FI8aKD15O9qGcdx81rnR2xs3VY7cCH2WG//LRtw3uMddVFLpSWZaSqfY/uLx2SmqXyilkpLvMc7mrxK4IwZM3xlMpnEz89PlpSU5AgAAoFgQkJCgrtUKpWEh4eLysrKun00Pzs7WyASiaRBQUEBL7zwgru/v78MAJKTkx2ioqJ8IyMj/b28vALXr1/fNlSzY8cOB5FIJBWLxdI5c+Z4A4BYLL4dFham5/Hu/dFZVFRkbrzOcPSgJwcnAfgzxrwZY+Zo+Yf1UPsDWiekGc0G0OUynf3srnFyHFfLcZwjx3FeHMd5AfgPgD9wHKcYarECQKex0D8AKBzA+Nq7Z6wAvgTwGAAwxhzRMsww0Nl+T+IEY0wMwA7ALwMcX3s9ifUSgCgAYIxJ0JIcaAc0yhY9+bvq2K5X4y8APhrgGHvqEIC41qcWHgVQy3Fc+WAH1Zn3eEed+FEXbcG/L7uKH3XR9kViAAB79uzRKJXKwry8PFVKSopzRUUFX6/X8yZOnNigUqkKIyIidImJiWO6Oz8+Pt77vffe+y0vL0/N5/M79LgUFBRYffbZZyVnz55VHjp0yP7o0aMChUJhkZSU5JqdnV1cVFSkSklJGfD1EwbbA70IEsdxTYyx1QC+A8AH8BHHcUrG2BsAFBzHHQKwmjE2A0AjgOsAlgzROIeEHsa6hjH2B7R0z14DsHQIx/odgJmMMRWAZgCvchzXb6upmRAn0NJdv48bxGVNexjregC7GGPr0NL1vXQwYu5hrNMAbGYt5XmPAvjTQMcJAIyxT1pjcWydq/H/AJgBAMdxH6Bl7sbvAJwH0ABg2WDEeS8XC6qERf+pcBo/3b286D8VTu4B9rq+SBC2bt3q/M0334wCgIqKCjOlUmnB4/EQHx9/DQCWL19ePW/ePL+uzq2qquLX19fzoqOj6wFgyZIl13744Ye2ocPJkyfXubi4NAPA7Nmzr2dlZVnz+XzExMRcd3V1bQKAh60iI/CAJwcAwHHcYbT8j9V+29/a/b52wIPqwr3i7LR92kDE1J0e3NO/oOVb2KDrQawcgJdbfwZNT/78OY77n4GMqTs9uKcqABEDHVdXehDr5wA+H+i4OuM47ql77OcwSIlLTxnnGBiHEtwD7HV9MbSQkZEhzM7OFioUCrVQKDSEhoaK9Xr9Hb3ejHU1LQO4V17a+TzGGDiOQ2vC+NB60IcVCCGEDIDKi7WC9omAcQ5C5cVagSnt1tTU8G1tbZuFQqHhzJkzFvn5+VYAYDAYYHxiIC0tzSE0NLTLBMTJyanZysrKkJmZaQUA6enp9u33Hz9+3KayspJ/48YNdvjw4VFTp069MWvWrLpDhw7ZV1RU8AGgsrKSb8p7GI4e+J4DQggh/e/RP/pWdt7mPd7R5GGF2NjY2p07dzqJRCKpr6/vTWO5ZUtLS4NSqbSUyWQuQqGw+eDBg93OFUpJSdGsWLFirEAgMEREROiEQmHbMEFISMiNRYsWeWs0GovY2NjqKVOmNADA+vXryyMjIwN4PB4XGBjYcODAAU12drZg4cKFfnV1dfzMzMxRmzZtGnP+/HmlKe9vqKKqjIQQQro0lKsyCgSCCQ0NDWd6cmxtbS3P1tbWAAAbNmxwKS8vN0tNTS1NTk52UCgUVrt3737oJhwaUVVGQgghD6X9+/fbbtu2zbW5uZm5ubnd2rt3r2awYxrqqOeAEEJIl4Zyz0FXFi9e7Hny5Enr9ttWrlxZuXbt2n57Aik3N9cyLi7Ou/02c3NzQ0FBgbq/rtmXqOeAPNQYYy4A3gHwCIBbADQAXuI4rngw4yKE9J309PQBHx4IDQ3Vq9Vq1UBft7/R0wrkgcdanlX6AkAWx3G+HMdJAWwA0OdrvrdWAiSEkGGNkgPyMHgMQGPrYjIAAI7j8gAcZ4z9gzF2ljH2K2NsEQAwxj5ljP3OeCxjLI0xFssY47cef7K1qNQLrfunMcZ+YoztBfBr67YvGWOnGGNKxtjz7dp6jjFWzBjLYoztYoztaN3uxBg70Nr2ScbYkFgngBDycKJhBfIwCARwqovt8wAEAZCjZe3/k4yxo2ipsbEIwOHWZXejAKxES82AWo7jHmGMjQTwM2Ps+9a2QgEEttZnAIDlHMddY4xZtrZ7AMBIAH8FMBGADi2VFfNbj/8ngLc5jjvOGPNEy6p+kr67BYQQ0nOUHJCH2WQAn7RWOKxkjGWjZU7CEQDJrQnALABHOY7TM8ZmAhjPGJvfer4tWoo03QaQ2y4xAFqWkJ7b+rtH63EuALI5jrsGAIyxz9BSywEAZgCQtlutzYYxJuQ4rk/WpieEkN6gYQXyMFCi68qQXa63ynHcTQBZAB5HSw/CvnbHv8hxXFDrjzfHccaeg/q2RhmbhpYP+3CO4+QAzqCl+FDX67u24LUeb2zbjRIDMpwc37fb+cKpXGH7bRdO5QqP79vd53N7BsuRI0espVKpZMSIEcHG1RkfVJQckIfBvwGMZIwlGDcwxh5BS6GtRa1zCZwATAGQ23rIPrQUt4lESxc/Wv+7kjFm1tqGiDFm1cX1bAFc5ziugTEWgJYS22hteypjzI4xNgJAbLtzvgewul18QSa9Y0IGmKt/QMOR97b5GBOEC6dyhUfe2+bj6h/QMNix9RUfH5/bqampmpiYmAEtzjYYKDkgD7zWojVzAUQzxi4wxpQA/gfAXgAFaBn3/zeAP3McV9F62vdoSRZ+5Djuduu2fwFQATjNGDsLIAVdD819C2AEY6wAwN/RUmIbHMddAfAmgBwAP7a2Vdt6zhoAIa0THVUAVvTR2ydkQPgGh+qe+NP6kiPvbfP5KW3nmCPvbfN54k/rS3yDu6550BszZszwlclkEj8/P1lSUpIj0LJCYkJCgrtUKpWEh4eLysrKuh0mz87OFohEImlQUFDACy+84O7v7y8DgOTkZIeoqCjfyMhIfy8vr8D169e3lZvfsWOHg0gkkorFYumcOXO8AUAsFt8OCwvT83j3/uh86aWXxgQEBEgDAgKko0ePHj9//nwvU+/DQKI5B+ShwHFcGYCFXex6tfWn8/GNABw6bTOg5RHIDZ0Oz2r9MR53C8AT3YSyl+O4na09B1+gJQkBx3FVaBnCIGTY8g0O1cmmRGlPHznkOvGJP5T3RWIAAHv27NE4Ozs337hxg02YMEH67LPPXtfr9byJEyc27Nq16/Irr7zimpiYOKa7ZZDj4+O933//fU10dHT9qlWr3NrvKygosPr111+V1tbWhgkTJkj/+Mc/1goEAkNSUpLrL7/8onZ1dW26n8JL77zzThmAsurqan54eLh47dq1V+/z7Q8K6jkgZGD9D2MsD8BZABcBfDnI8RDSZy6cyhUqj2Y6TXziD+XKo5lOnecg3K+tW7c6i8ViaXBwsKSiosJMqVRa8Hg8xMfHXwOA5cuXV+fm5lp3dW5VVRW/vr6eFx0dXQ8AS5YsudZ+/+TJk+tcXFyara2tudmzZ1/Pysqy/u6772xiYmKuu7q6NgGAs7Nzc1dt34vBYMD8+fO9//SnP1VGRkYOq+EV6jkgZABxHPfKYMdASH8wzjEwDiV4jgvS9cXQQkZGhjA7O1uoUCjUQqHQEBoaKtbr9Xd8sW33pE8H9yoR0Pk8xhg4jgNjzOTaAuvXrx/j6up6uz+Xb+4v1HNACCHEZOXn1IL2iYBxDkL5ObXAlHZramr4tra2zUKh0HDmzBmL/Px8K6DlW7nxiYG0tDSH0NCuExAnJ6dmKysrQ2ZmphUApKen27fff/z4cZvKykr+jRs32OHDh0dNnTr1xqxZs+oOHTpkX1FRwQeA+xlW+OSTT2yzsrJsPvroo9LenjsUUM8BIYQQk01+Mq6y8zbf4FCdqfMOYmNja3fu3OkkEomkvr6+N+VyeT0AWFpaGpRKpaVMJnMRCoXNBw8eLOmujZSUFM2KFSvGCgQCQ0REhE4oFLYNE4SEhNxYtGiRt0ajsYiNja2eMmVKAwCsX7++PDIyMoDH43GBgYENBw4c0GRnZwsWLlzoV1dXx8/MzBy1adOmMefPn1d2dc133nnH+erVq2ZBQUESAJg1a1ZN6zyEYYGqMhJCCOnSUK7KKBAIJjQ0NJzpybG1tbU8W1tbAwBs2LDBpby83Cw1NbU0OTnZQaFQWHU3kfFhQFUZCSGEPJT2799vu23bNtfm5mbm5uZ2a+/evZrBjmmoo54DQgghXRrKPQddWbx4sefJkyc7PLWwcuXKyv6cEJibm2sZFxfn3X6bubm5oaCgQN1f1+xL1HNACCHkgZaenj7gwwOhoaF6tVqtGujr9jd6WoEQQgghHVByQAghhJAOKDkghBBCSAeUHBBCCCGkA0oOCCGEmKz2O42zvrC6Qy0FfWG1sPY7jfNgxdTXjhw5Yi2VSiUjRowINq7O+KCi5IAQQojJzD2FDdf2F/sYEwR9YbXw2v5iH3NP4bAqOHQ3Pj4+t1NTUzUxMTHDrlZCb1FyQAghxGSWEged/UJRybX9xT41X18Yc21/sY/9QlGJpcTB5LLNM2bM8JXJZBI/Pz9ZUlKSI9CyQmJCQoK7VCqVhIeHi8rKyrp9ND87O1sgEomkQUFBAS+88IK7v7+/DACSk5MdoqKifCMjI/29vLwC169f72o8Z8eOHQ4ikUgqFoulc+bM8QYAsVh8OywsTM/j3fujc86cOd7/93//N8r4+g9/+IP3nj17bE24DQOKkgNCCCF9wlLioLOaOFp74+cyV6uJo7V9kRgAwJ49ezRKpbIwLy9PlZKS4lxRUcHX6/W8iRMnNqhUqsKIiAhdYmLimO7Oj4+P937vvfd+y8vLU/P5/A4r/xUUFFh99tlnJWfPnlUeOnTI/ujRowKFQmGRlJTkmp2dXVxUVKRKSUnp9foJCQkJ2rS0NAcAqK6u5p86dcp64cKFtb1/94ODkgNCCCF9Ql9YLaw/fdXJOmJMef3pq06d5yDcr61btzqLxWJpcHCwpKKiwkypVFrweDzEx8dfA4Dly5dX5+bmWnd1blVVFb++vp4XHR1dDwBLliy51n7/5MmT61xcXJqtra252bNnX8/KyrL+7rvvbGJiYq67uro2AYCzs3NzV23fzezZs2/89ttvFleuXBnx4Ycf2s+ePfu6mZlZ79/8IKEVEgkhhJjMOMfAOJQw0m+Uri+GFjIyMoTZ2dlChUKhFgqFhtDQULFer7/jiy1jrMvz71UioPN5jDFwHAfGmMm1BRYuXFj9r3/9y/7AgQP2H330kcbU9gYS9RwQQggx2e1LOkH7RMA4B+H2JZ3AlHZramr4tra2zUKh0HDmzBmL/Px8KwAwGAwwPjGQlpbmEBradWloJyenZisrK0NmZqYVAKSnp9u333/8+HGbyspK/o0bN9jhw4dHTZ069casWbPqDh06ZF9RUcEHgMrKSv79xL5ixYqqlJQUZwAICQm5eT9tDBbqOSCEEGIy28e9Kjtvs5Q46EyddxAbG1u7c+dOJ5FIJPX19b0pl8vrAcDS0tKgVCotZTKZi1AobD548GBJd22kpKRoVqxYMVYgEBgiIiJ0QqGwbZggJCTkxqJFi7x6zrYPAAAgAElEQVQ1Go1FbGxs9ZQpUxoAYP369eWRkZEBPB6PCwwMbDhw4IAmOztbsHDhQr+6ujp+ZmbmqE2bNo05f/68srvrenh4NPn6+t6MiYmpMeUeDAaqykgIIaRLQ7kqo0AgmNDQ0HCmJ8fW1tbybG1tDQCwYcMGl/LycrPU1NTS5ORkB4VCYbV79+5+Kdik0+l4UqlUmpeXV+jg4NDreQsDobuqjDSsQAgh5IG2f/9+24CAAKm/v7/sxIkT1ps2bSrv72t++eWXQpFIJEtISLg6VBODu6GeA0IIIV0ayj0HXVm8eLHnyZMnOzy1sHLlysq1a9f226JFubm5lnFxcd7tt5mbmxsKCgrU/XXNvtRdzwHNOSCEEPJASE9P75fhgbsJDQ3Vq9Vq1UBft7/RsAIhhBBCOqDkgBBCCCEdUHJACCGEkA4oOSCEEEJIB5QcEEIIMVlmZqZzUVFRh1oKRUVFwszMTOfBiulekpOTHeLi4jw7b3/rrbecduzY4dB5e1FRkbmxouODjpIDQgghJnN3d2/44osvfIwJQlFRkfCLL77wcXd3bxjs2Hrrz3/+s3b16tX99vjjcEDJASGEEJOJxWLd3LlzS7744gufI0eOjPniiy985s6dWyIWi00u2zxjxgxfmUwm8fPzkyUlJTkCLSskJiQkuEulUkl4eLiorKys20fzQ0NDxUePHhUAQHl5+Qg3N7dxnY/Zt2+fbVBQUEB5efmIl19+eczf/vY3ZwA4duyYQCwWS4OCggK2b98+2ni8QqGwGDdunCQgIEAqEomkv/7668i6ujretGnT/MRisdTf31+2a9cuu67i+eqrr4TR0dG+xtdffPGFzcyZM327OnawUHJACCGkT4jFYp1cLtfm5OS4yuVybV8kBgCwZ88ejVKpLMzLy1OlpKQ4V1RU8PV6PW/ixIkNKpWqMCIiQpeYmDjmftvfvXv3qH/84x8uP/zwwzljmWaj5557zmv79u2X8vLyOixq9O677zqtWrWqUq1WqwoKCgq9vb1vHzx40MbFxaWxqKhIde7cOeW8efPqurpeTEyM7vz58xbGhOajjz5yWLp06ZBabIqSA0IIIX2iqKhImJ+f7xQWFlaen5/v1HkOwv3aunWrs1gslgYHB0sqKirMlEqlBY/HQ3x8/DUAWL58eXVubq71vdrpyokTJ4Tbtm1z+eGHH845OTl1WOa4urqar9Pp+LNnz75hvI5xX3h4eP22bdtcN27c6HLu3Dlza2trbuLEifpjx47ZrFy50u3bb7+17m7ZZB6Ph4ULF1bv2rXLvqqqin/69GnrBQsW1N5P/P2FkgNCCCEmM84xmDt3bskTTzxRZhxiMDVByMjIEGZnZwsVCoW6qKhIJZFI9Hq9/o7PLsZYt22MGDGCa25u+ZxuaGjocKCnp+et+vp6/tmzZy06n8dxXLftrlix4tpXX3113tLS0vDEE0+IDh06JBw/fvyt06dPq8aNG6ffuHGj2yuvvOLaXUwrV66s3r9/v8OHH35oHxMTc93MzKzb+AcDJQeEEEJMdvnyZUH7OQbGOQiXL18WmNJuTU0N39bWtlkoFBrOnDljkZ+fbwUABoMBqampdgCQlpbmEBoa2u0QhoeHx63c3FwrANizZ0+HeQDu7u63Dxw4cH7ZsmXeCoWiQ4Lg6OjYbG1t3fzdd99Zt17H3rhPpVKZSySSW6+//vrVmTNn1uTl5VlqNBozoVBoWLVq1bWXXnqpMi8vr9v37uXl1ejs7Ny4bds214SEhCE1pABQbQVCCCF9ICoqqrLzNrFYrDN13kFsbGztzp07nUQikdTX1/emXC6vBwBLS0uDUqm0lMlkLkKhsPngwYMl3bWRmJhYuWjRIp99+/Y5REZG3jEPQC6X39q9e3fJokWLfA8dOnS+/b4PP/xQEx8f72VpaWmYPn1627np6en2n332mcOIESM4Jyenxs2bN5cdP37c6i9/+Ys7j8fDiBEjuPfff/+3u723J598svq9994bERwcfLP3d6Z/UVVGQgghXRrKVRkFAsGEhoaGM4Mdhyni4uI8J0yY0LBu3bpBu8dUlZEQQggZImQymcTS0tKQkpJSOtixdIWSA0IIIcNOV70Gixcv9jx58mSHpxZWrlxZuXbt2kFb0Cg6Otq3tLR0ZPttmzZtuqxUKgsHK6aeoOSAEELIAyE9Pf3SYMfQ2Q8//HBhsGO4H/S0AiGEEEI6oOSAEEIIIR1QckAIIYSQDig5IIQQYrILF7Y5a6syO6yGqK3KFF64sI1KNndh0aJFY0+dOnXHqoxDBU1IJIQQYjIb26AGleoVH6k0qcTJMUqnrcoUGl8Pdmy99ec//1nb39f49NNP77pA0mCjngNCCCEmc3KM0kmlSSUq1Ss+xcV/H9M+UTC17QetZHPnmIYiSg4IIYT0CSfHKJ2ryzxt6eU0V1eXedq+SAyAB69k83BAyQEhhJA+oa3KFJZXHHTycF9aXl5x0KnzHIT79aCVbB4OKDkghBBisvZzDESiv5YZhxhMTRAe1JLNQx0lB4QQQkxWV5snaD/HwDgHoa62+7LFPfGglmwe6uhpBUIIISbz9V1/R8lmJ8conanzDh7kks136+0YbFSymRBCSJeoZHP/EYlE0kOHDp0PCAi4PZhxdFeymYYVCCGEkAE0adIkf7FYrB/sxOBuaFiBEELIsDPcSzbHxsYO6cccKTkghBDyQKCSzX2HhhUIIYQQ0gElB4QQQgjpgJIDQgghhHRAyQEhhBBCOqDkgBBCiMk2l5Q7f19V22Gp5O+raoWbS8qdByume0lOTnaIi4vz7Lz9rbfectqxY4dD5+1FRUXm/v7+sr64tpub27jy8vIh+1AAJQeEEEJMFmwjaHix8JKPMUH4vqpW+GLhJZ9gG0HDYMfWW3/+85+1q1evHrTHH4cCSg4IIYSYbKajre5diWfJi4WXfP567vKYFwsv+bwr8SyZ6WhrctnmGTNm+MpkMomfn58sKSnJEWhZITEhIcFdKpVKwsPDRWVlZd1+Cw8NDRUfPXpUAADl5eUj3NzcxnU+Zt++fbZBQUEB5eXlI15++eUxf/vb35wB4NixYwKxWCwNCgoK2L59+2jj8QqFwmLcuHGSgIAAqUgkkv76668j6+rqeNOmTfMTi8VSf39/2a5du+w6X6e9t956a7RUKpWIRCLpmTNn7ij8NJgoOSCEENInZjra6ha62Gl3Xa5yXehip+2LxAAA9uzZo1EqlYV5eXmqlJQU54qKCr5er+dNnDixQaVSFUZEROgSExPH3G/7u3fvHvWPf/zD5Ycffjjn6ura1H7fc88957V9+/ZLeXl56vbb3333XadVq1ZVqtVqVUFBQaG3t/ftgwcP2ri4uDQWFRWpzp07p5w3b95dFzpydHRsUqlUhcuXL9du2bJlSA2/UHJACCGkT3xfVSvcX3HdKcHdsXx/xXWnznMQ7tfWrVudxWKxNDg4WFJRUWGm/P/Zu9ewps58b/y/BBQSs8TI+SBEDgk5EYERi+JTUavFji1KW2st1gMdxU6rRX1qZcZ/62GmjOJMndmytXuKW2SqVtFWummrjiKVOsopkIRTpRQsh4KcggkISf4vutOHILHVUEHn+7kur8ustXKve+XN+rLue90/tdqRzWZTQkJCGxHRqlWrbl69epX3U+0MJT8/n0lNTfU4e/Zstaurq2Hgvps3b9pptVq7p556qtt8HvO+yMjIW6mpqZ7Jycke1dXVY3k8niksLEyfl5c3PjEx0fuzzz7jOTs7Gwafb6AXX3yxnYgoIiJCN3gVxZGGcAAAADYzzzH4q9i3ZkeQT4N5iMHWgJCdnc3k5uYyBQUFFZWVlRqxWKzX6/V33LvuVuHQ3t7eZDD8cJ/W6XQWB/r6+vbeunXLTqVS3fFY32QyWW137dq1bR9//PHXHA7HGBMTI/zkk0+YkJCQ3qKiIo1cLtcnJyd7b9q0yfNu1+bo6Ggy96+/v39UlWhEOAAAAJsVdum4A+cYmOcgFHbpuLa029HRYefk5GRgGMZYXFzsqFQqxxERGY1GSk9P5xMRHTp0yDkiIsLqEMakSZN6r169Oo6IKDMz02IegI+Pz+2TJ09+vXLlyskFBQUWAcHFxcXA4/EMn3/+Oe9/zzPRvE+j0YwVi8W9v/vd776fN29eR0lJCae2tnYMwzDGdevWtW3YsKG5pKTEpmsfSaP2NQoAAHh4vOXv2Tx42zwXJ62t8w7i4uI6Dx486CoUCiUBAQE9CoXiFhERh8MxqtVqjlQq9WAYxpCVlVVjrY0tW7Y0L1myxP/o0aPOM2fOvGMegEKh6D18+HDNkiVLAj755JOvB+77+9//XpuQkCDgcDjG2bNn//jdjIyMiR999JGzvb29ydXVte+Pf/xjw5dffjnurbfe8mGz2WRvb2/av3//t7Zc+0himUymke4DAACMQkqlslahULSOdD+GwuVyQ4eqzAj3RqlUuigUCsHg7RhWAAAAAAsYVgAAgIfOUE8N4uPjfa9du2bx1kJiYmLz+vXrR2xBoyeeeCJg8JsIu3btuhEXF3fX1xxHGsIBAAA8EjIyMupGug+DnT179vpI9+F+YFgBAAAALCAcAAAAgAWEAwAAALCAcAAAAAAWEA4AAMBmez6vdD9X3myxVPK58mZmz+eVo6qg0ED79u1zXr58ue/g7X/6059c//a3vzkP3l5ZWTk2KChIOhzn9vb2ljc2No7alwIQDgAAwGZTfCfoko6X+JsDwrnyZibpeIn/FN8JupHu2736v//3/7b89re/HbHXH0cDhAMAALDZXLG7du/zU2qSjpf4v3NG7ZV0vMR/7/NTauaK3W0u2zx37twAqVQqDgwMlO7Zs8eF6IcVEl955RUfiUQijoyMFDY0NFj9KzwiIkJ06dIlLhFRY2Ojvbe3t3zwMUePHnWaMmVKcGNjo31SUpLXtm3b3ImI8vLyuCKRSDJlypTgvXv3upmPLygocJTL5eLg4GCJUCiUlJWVOXR1dbFnzZoVKBKJJEFBQdL333+fP/g8g3V3d7NmzpwZlJqa6nI/v80vBeEAAACGxVyxuzYuzKcl/XKtZ1yYT8twBAMioszMzFq1Wl1eUlKiOXDggHtTU5OdXq9nh4WF6TQaTfmMGTO0W7Zs8brf9g8fPjxh9+7dHmfPnq329PTsH7hv9erVgr1799aVlJRUDNz+17/+1XXdunXNFRUVmtLS0vLJkyffzsrKGu/h4dFXWVmpqa6uVi9evPiuCx11dXWx582bF7RkyZK2jRs3jqplqhEOAABgWJwrb2ZOFt1wXTlD0Hiy6Ibr4DkI9yslJcVdJBJJwsPDxU1NTWPUarUjm82mhISENiKiVatW3bx69Srvp9oZSn5+PpOamupx9uzZaldXV8PAfTdv3rTTarV2Tz31VLf5POZ9kZGRt1JTUz2Tk5M9qqurx/J4PFNYWJg+Ly9vfGJiovdnn33Gc3Z2Ngw+30BPP/10YHx8fOtoHMJAOAAAAJuZ5xjsfX5Kzf+3UNpgHmKwNSBkZ2czubm5TEFBQUVlZaVGLBbr9Xr9HfcuFotltQ17e3uTwfDDfVqn01kc6Ovr23vr1i07lUrlOPh7JpPJartr165t+/jjj7/mcDjGmJgY4SeffMKEhIT0FhUVaeRyuT45Odl706ZNnne7tqlTp3Z/9tlnTkaj8W6HjQiEAwAAsFlJXQd34BwD8xyEkroOri3tdnR02Dk5ORkYhjEWFxc7KpXKcURERqOR0tPT+UREhw4dco6IiLA6hDFp0qTeq1evjiMiyszMtJgH4OPjc/vkyZNfr1y5cnJBQYFFQHBxcTHweDzD559/zvvf80w079NoNGPFYnHv7373u+/nzZvXUVJSwqmtrR3DMIxx3bp1bRs2bGguKSm567Xv3r27YeLEif3x8fF3vDEx0hAOAADAZpvmi5oHzzGYK3bXbpovaral3bi4uM7+/n6WUCiUbN261UuhUNwiIuJwOEa1Ws2RSqXiS5cuMX/84x8brbWxZcuW5r///e+uoaGhwa2trXdMXFQoFL2HDx+uWbJkSYBarbYokvT3v/+99vXXX/edMmVKMIfDMZm3Z2RkTBQKhdLg4GBJdXW145o1a24WFhZypkyZIg4ODpakpKR4btu2zWqfBrRf39vby167dq3Pvf0yvyyWyWT66aMAAODfjlKprFUoFKNqopwZl8sNHaoyI9wbpVLpolAoBIO348kBAAAAWBi1qzMBAABYM9RTg/j4eN9r165ZvLWQmJjYvH79+hF7G+CJJ54IqK+vtxiq2LVr1424uLi7vuY40hAOAADgkZCRkVE30n0Y7OzZs9dHug/3A8MKAAAAYAHhAAAAACwgHAAAAIAFhAMAAACwgHAAAAC2O7/DnSpzLJdKrsxh6PwO9xHq0U9asmSJX2Fh4R3LJpvt27fPuba2dsyD7NNogXAAAAC28/mVjk6t9f8xIFTmMHRqrT/5/Eo3wj2z6tixY9+Gh4f3WNt/5MgRl7q6OoQDAACA+yKK0dKi/6yhU2v9KWeLF51a60+L/rOGRDE2l22eO3dugFQqFQcGBkr37NnjQvTDComvvPKKj0QiEUdGRgobGhqGfDW/qKjIUS6Xi82fKysrxwqFQgkRUUREhOjSpUvc/v5+iouLEwQFBUmFQqHknXfecUtPT+erVCru8uXL/YODgyXd3d2sTZs2ecpkMnFQUJB06dKlftYKJtXW1o4JDg6WmP/Z2dmFV1VVjbX1d3iQEA4AAGB4iGK0pFjaQv9K8yTF0pbhCAZERJmZmbVqtbq8pKREc+DAAfempiY7vV7PDgsL02k0mvIZM2Zot2zZ4jXUd8PCwnr6+vpYGo1mLBHR4cOHJ8bGxrYPPOarr77iNjY2jqmurlZXVVVpXn311ZsrV65sl8lkusOHD9dUVFRoeDyeafPmzd+rVKry6upqtV6vZx89etRpqHMKBIK+iooKTUVFhebll19umT9/frtQKLw9HL/Fg4JwAAAAw6MyhyHlh640LbGRlB+63jEH4T6lpKS4i0QiSXh4uLipqWmMWq12ZLPZlJCQ0EZEtGrVqptXr17lWft+bGxs25EjRyYSEZ06dYofHx/fNnB/cHBwb319vcPLL7886cSJE+P5fL5hqHZycnKYkJCQYKFQKMnPz2dUKhXnbv3+4osvxh0+fNj1ww8/rL3Xax5pCAcAAGA78xyDRf9ZQzHvNvw4xGBjQMjOzmZyc3OZgoKCisrKSo1YLNbr9fo77l0sFstqG/Hx8e2nT5/ml5aWOrBYLJLL5b0D97u6uhpUKpUmOjpau3//frcXXnhBMLgNnU7H2rhxo19WVtb1qqoqzUsvvdTa09Nj9R767bffjlmzZo3g2LFj152cnIYefxjFEA4AAMB2Nwq4FnMMzHMQbhRwbWm2o6PDzsnJycAwjLG4uNhRqVSOIyIyGo2Unp7OJyI6dOiQc0REhNUhDKlU2stms2nbtm1eixYtahu8v7Gx0d5gMNCKFSs6du7c+V1ZWRmXiIjH4xk6OzvtiIh0Oh2biMjDw6O/s7OTfebMGb618/X29rIWL17sv2PHju9CQkJ6rR03mqG2AgAA2G7O75vv2CaK0do67yAuLq7z4MGDrkKhUBIQENCjUChuERFxOByjWq3mSKVSD4ZhDFlZWTV3a2fx4sVtO3bs8ElJSflu8L7a2toxq1evFhiNRhYR0fbt228QES1fvrz1tdde89u8ebOxoKCgfNmyZS0SiUTq4+Nz29yPoZw7d26cSqUat3PnTq+dO3d6ERF99tln1QKBoM+W3+JBYplMppHuAwAAjEJKpbJWoVC0jnQ/hsLlckOHqswI90apVLooFArB4O0YVgAAAAALGFYAAICHzlBPDeLj432vXbtm8dZCYmJi8/r162/+Uv0YiXM+CAgHAADwSMjIyKj7dzjng4BhBQAAALCAcAAAAAAWEA4AAADAAsIBAAAAWEA4AAAAm+0r2ud+sf6ixVLJF+svMvuK9rmPVJ9+ypIlS/wKCwsdre3ft2+fc21tLUo2AwAA3I8Q1xBd8pfJ/uaAcLH+IpP8ZbJ/iGuIbqT7Zs2xY8e+DQ8P77G2/8iRIy51dXUIBwAAAPdj1qRZ2l1Ru2qSv0z2f/fqu17JXyb774raVTNr0iybyzbPnTs3QCqVigMDA6V79uxxIfphhcRXXnnFRyKRiCMjI4UNDQ1DvppfVFTkKJfLxebPlZWVY4VCoYSIKCIiQnTp0iVuf38/xcXFCYKCgqRCoVDyzjvvuKWnp/NVKhV3+fLl/sHBwZLu7m7Wpk2bPGUymTgoKEi6dOlSP6Nx6HpKarXaQSKR/HjOsrIyB6lUKh7y4FEK4QAAAIbFrEmztAsDFrZklmd6LgxY2DIcwYCIKDMzs1atVpeXlJRoDhw44N7U1GSn1+vZYWFhOo1GUz5jxgztli1bvIb6blhYWE9fXx9Lo9GMJSI6fPjwxNjY2PaBx3z11VfcxsbGMdXV1eqqqirNq6++enPlypXtMplMd/jw4ZqKigoNj8czbd68+XuVSlVeXV2t1uv17KNHjzoNdU6pVNrLMIwhPz+fQ0R04MABlxdffPGhWhQJ4QAAAIbFxfqLzJnrZ1yXiZc1nrl+xnXwHIT7lZKS4i4SiSTh4eHipqamMWq12pHNZlNCQkIbEdGqVatuXr16lWft+7GxsW1HjhyZSER06tQpfnx8vEVlxuDg4N76+nqHl19+edKJEyfG8/l8w1Dt5OTkMCEhIcFCoVCSn5/PqFQqjrVzrlixovX999936e/vp48//pi/evVqhAMAAPj3Yp5jsCtqV82WiC0N5iEGWwNCdnY2k5ubyxQUFFRUVlZqxGKxXq/X33HvYrFYVtuIj49vP336NL+0tNSBxWKRXC63KKPs6upqUKlUmujoaO3+/fvdXnjhBcHgNnQ6HWvjxo1+WVlZ16uqqjQvvfRSa09Pj9V76Msvv9x+4cIFp6NHj06Qy+U6Dw+PIQPHaIVwAAAANittKeUOnGNgnoNQ2lLKtaXdjo4OOycnJwPDMMbi4mJHpVI5jojIaDRSeno6n4jo0KFDzhEREVaHMKRSaS+bzaZt27Z5LVq0qG3w/sbGRnuDwUArVqzo2Llz53dlZWVcIiIej2fo7Oy0IyLS6XRsIiIPD4/+zs5O9pkzZ/h36zeXyzU9/vjjnUlJSb4rVqwYlZUt7wa1FQAAwGavh73ePHjbrEmztLbOO4iLi+s8ePCgq1AolAQEBPQoFIpbREQcDseoVqs5UqnUg2EYQ1ZWVs3d2lm8eHHbjh07fFJSUr4bvK+2tnbM6tWrBUajkUVEtH379htERMuXL2997bXX/DZv3mwsKCgoX7ZsWYtEIpH6+PjcNvfjbpYvX96Wk5PDX7x4cdf9Xf3IYZlMppHuAwAAjEJKpbJWoVCMyr96uVxu6FCVGUeTbdu2uXd2dtq99957DSPdF2uUSqWLQqEQDN6OJwcAAADD7Iknngj49ttvHXJzc6tGui/3A+EAAAAeOkM9NYiPj/e9du2axVsLiYmJzevXr//F3hSwds6zZ89e/6XO+SAgHAAAwCMhIyOj7t/hnA8C3lYAAAAACwgHAAAAYAHhAAAAACwgHAAAAIAFhAMAALDZ93/5i7v2wgWLpZK1Fy4w3//lL+4j1aefsmTJEr/CwkJHa/v37dvnXFtbe18lmzds2OB1+vTpYaktMRIQDgAAwGYchULX8OYWf3NA0F64wDS8ucWfo1DoRrpv1hw7duzb8PDwHmv7jxw54lJXV3df4eAvf/lLQ2xs7LBUpRwJCAcAAGAzJjpa65Xybk3Dm1v8m/7wB6+GN7f4e6W8W8NER9t8g5w7d26AVCoVBwYGSvfs2eNC9MMKia+88oqPRCIRR0ZGChsaGoZ8Nb+oqMhRLpeLzZ8rKyvHCoVCCRFRRESE6NKlS9z+/n6Ki4sTBAUFSYVCoeSdd95xS09P56tUKu7y5cv9g4ODJd3d3axNmzZ5ymQycVBQkHTp0qV+RqPRap/j4uIE5toPDyOEAwAAGBZMdLTWKfaZlvbDGZ5Osc+0DEcwICLKzMysVavV5SUlJZoDBw64NzU12en1enZYWJhOo9GUz5gxQ7tlyxavob4bFhbW09fXx9JoNGOJiA4fPjwxNja2feAxX331FbexsXFMdXW1uqqqSvPqq6/eXLlyZbtMJtMdPny4pqKiQsPj8UybN2/+XqVSlVdXV6v1ej376NGjTsNxfaMRwgEAAAwL7YULTOfpj135y+MbO09/7Dp4DsL9SklJcReJRJLw8HBxU1PTGLVa7chmsykhIaGNiGjVqlU3r169yrP2/djY2LYjR45MJCI6deoUPz4+3qIyY3BwcG99fb3Dyy+/POnEiRPj+Xz+kOWVc3JymJCQkGChUCjJz89nVCoVZziubzRCOAAAAJuZ5xh4pbxb47F1a4N5iMHWgJCdnc3k5uYyBQUFFZWVlRqxWKzX6/V33LtYLJbVNuLj49tPnz7NLy0tdWCxWCSXy3sH7nd1dTWoVCpNdHS0dv/+/W4vvPCCYHAbOp2OtXHjRr+srKzrVVVVmpdeeqm1p6fnkb2HPrIXBgAAD45eqeQOnGNgnoOgVyq5trTb0dFh5+TkZGAYxlhcXOyoVCrHEREZjUYyj+kfOnTIOSIiwuoQhlQq7WWz2bRt2zavRYsWtQ3e39jYaG8wGGjFihUdO3fu/K6srIxLRMTj8QydnZ12REQ6nY5NROTh4dHf2dnJPnPmzEM7n+DnQG0FAACwmduGDc2DtzHR0Vpb5x3ExcV1Hjx40FUoFEoCAgJ6FArFLSIiDodjVKvVHKlU6sEwjCErK6vmbu0sXry4bceOHT4pKSnfDd5XW1s7ZvXq1QKj0cgiItq+ffsNIqLly5e3vvbaa36bN282FhQUlC9btqxFIpFIfUjOQEoAACAASURBVHx8bpv7cTcsFst0f1c98lgm00PbdwAA+AUplcpahULROtL9GAqXyw0dqjLjaDF79uzAN954o3nhwoWj+nVGpVLpolAoBIO3Y1gBAABgGD333HMCvV7PnjdvXvdI9+V+YVgBAAAeOkM9NYiPj/e9du2axVsLiYmJzevXr7/5S/VjJM75ICAcAADAIyEjI6Pu3+GcDwKGFQAAAMACwgEAAABYQDgAAAAACwgHAAAAYAHhAAAAbHbl4+vu35S2WiyV/E1pK3Pl4+vuI9Wnn7JkyRK/wsJCR2v79+3b51xbW3tfJZvNFR/vv3cjC+EAAABs5j7ZSXf+kMbfHBC+KW1lzh/S+LtPdtKNdN+sOXbs2Lfh4eE91vYfOXLEpa6u7r7CwcMO4QAAAGw2OcRFO2eFpOb8IY1/3vEqr/OHNP5zVkhqJoe42LxC4Ny5cwOkUqk4MDBQumfPHheiH1ZIfOWVV3wkEok4MjJS2NDQMOSr+UVFRY5yuVxs/lxZWTlWKBRKiP7fX/f9/f0UFxcnCAoKkgqFQsk777zjlp6ezlepVNzly5f7BwcHS7q7u1mbNm3ylMlk4qCgIOnSpUv9jEbjXfv94Ycf8uVyuVggEMg+++wzq1UjRyOEAwAAGBaTQ1y0osc8Wkr/ecNT9JhHy3AEAyKizMzMWrVaXV5SUqI5cOCAe1NTk51er2eHhYXpNBpN+YwZM7RbtmzxGuq7YWFhPX19fSyNRjOWiOjw4cMTY2Nj2wce89VXX3EbGxvHVFdXq6uqqjSvvvrqzZUrV7bLZDLd4cOHayoqKjQ8Hs+0efPm71UqVXl1dbVar9ezjx496nS3fvf397PKysrKU1JS6rdv3z5k/0YrhAMAABgW35S2MpVXmlxDZvs0Vl5pch08B+F+paSkuItEIkl4eLi4qalpjFqtdmSz2ZSQkNBGRLRq1aqbV69etfqXeWxsbNuRI0cmEhGdOnWKHx8fb1GZMTg4uLe+vt7h5ZdfnnTixInxfD7fMFQ7OTk5TEhISLBQKJTk5+czKpWKc7d+P/fcc+1ERNOnT79148aNsfd63SMJ4QAAAGxmnmMwZ4WkZubzwgbzEIOtASE7O5vJzc1lCgoKKiorKzVisViv1+vvuHexWCyrbcTHx7efPn2aX1pa6sBisUgul/cO3O/q6mpQqVSa6Oho7f79+91eeOEFweA2dDoda+PGjX5ZWVnXq6qqNC+99FJrT0/PXe+hjo6OJiIie3t7MhgM1js4CiEcAACAzZq/6eQOnGNgnoPQ/E2nTTP2Ozo67JycnAwMwxiLi4sdlUrlOCIio9FI6enpfCKiQ4cOOUdERFgdwpBKpb1sNpu2bdvmtWjRorbB+xsbG+0NBgOtWLGiY+fOnd+VlZVxiYh4PJ6hs7PTjohIp9OxiYg8PDz6Ozs72WfOnOHbcl2jHWorAACAzR57JqB58LbJIS5aW+cdxMXFdR48eNBVKBRKAgICehQKxS0iIg6HY1Sr1RypVOrBMIwhKyur5m7tLF68uG3Hjh0+KSkp3w3eV1tbO2b16tUCo9HIIiLavn37DSKi5cuXt7722mt+mzdvNhYUFJQvW7asRSKRSH18fG6b+/GoYplMppHuAwAAjEJKpbJWoVC0jnQ/hsLlckOHqswI90apVLooFArB4O0YVgAAAAALGFYAAICHzlBPDeLj432vXbtm8dZCYmJi8/r162/+Uv0YiXM+CAgHAADwSMjIyKj7dzjng4BhBQAAALCAcAAAAAAWEA4AAADAAsIBAAAAWEA4AAAAm3159LD79cKrFkslXy+8ynx59LD7SPXppyxZssSvsLDQ0dr+ffv2OdfW1t5XyWZzxcf7793IQjgAAACbeQYF63L+I9XfHBCuF15lcv4j1d8zKFg30n2z5tixY9+Gh4f3WNt/5MgRl7q6uvsKBw87hAMAALBZQHiENubVjTU5/5Hqf+HQQa+c/0j1j3l1Y01AuPWaBz/X3LlzA6RSqTgwMFC6Z88eF6IfVkh85ZVXfCQSiTgyMlLY0NAw5Kv5RUVFjnK5XGz+XFlZOVYoFEqI/t9f9/39/RQXFycICgqSCoVCyTvvvOOWnp7OV6lU3OXLl/sHBwdLuru7WZs2bfKUyWTioKAg6dKlS/2MRuNP9t1gMNDixYsFr7/+utdQ57H1t/mlIBwAAMCwCAiP0Er/z5yWopxPPKX/Z07LcAQDIqLMzMxatVpdXlJSojlw4IB7U1OTnV6vZ4eFhek0Gk35jBkztFu2bPEa6rthYWE9fX19LI1GM5aI6PDhwxNjY2PbBx7z1VdfcRsbG8dUV1erq6qqNK+++urNlStXtstkMt3hw4drKioqNDwez7R58+bvVSpVeXV1tVqv17OPHj3qdLd+9/X1sWJjYycHBQX17Nu3r2Go8wzH7/NLQDgAAIBhcb3wKqO+dN41LObpRvWl866D5yDcr5SUFHeRSCQJDw8XNzU1jVGr1Y5sNpsSEhLaiIhWrVp18+rVqzxr34+NjW07cuTIRCKiU6dO8ePj4y0qMwYHB/fW19c7vPzyy5NOnDgxns/nG4ZqJycnhwkJCQkWCoWS/Px8RqVSce7W73Xr1vlJJBJ9SkpK072cZzRAOAAAAJuZ5xjEvLqxJnrFbxrMQwy2BoTs7GwmNzeXKSgoqKisrNSIxWK9Xq+/497FYrGsthEfH99++vRpfmlpqQOLxSK5XN47cL+rq6tBpVJpoqOjtfv373d74YUXBIPb0Ol0rI0bN/plZWVdr6qq0rz00kutPT09d72H/upXv+rOy8sbr9PpWD/3PKMFwgEAANissbqCO3COgXkOQmN1hU0z9js6OuycnJwMDMMYi4uLHZVK5TgiIqPRSOnp6XwiokOHDjlHRFgfwpBKpb1sNpu2bdvmtWjRorbB+xsbG+0NBgOtWLGiY+fOnd+VlZVxiYh4PJ6hs7PTjohIp9OxiYg8PDz6Ozs72WfOnOH/VN/XrFnTOm/evM5f//rXAX19fVbPMxqhtgIAANgs6oXlzYO3BYRHaG2ddxAXF9d58OBBV6FQKAkICOhRKBS3iIg4HI5RrVZzpFKpB8MwhqysrJq7tbN48eK2HTt2+KSkpHw3eF9tbe2Y1atXC4xGI4uIaPv27TeIiJYvX9762muv+W3evNlYUFBQvmzZshaJRCL18fG5be7HT3n77beb33jjDbvFixdP3rp1a9NQ5xmNWCaTaaT7AAAAo5BSqaxVKBStI92PoXC53NChKjPCvVEqlS4KhUIweDuGFQAAAMAChhUAAOChM9RTg/j4eN9r165ZvLWQmJjYvH79+l/slcGROOeDgHAAAACPhIyMjLp/h3M+CBhWAAAAAAsIBwAAAGAB4QAAAAAsIBwAAACABYQDAACwWefnte768psWSyXry28ynZ/Xug/neZKSkry2bds2rG3CnRAOAADAZmN9GV3b8Sp/c0DQl99k2o5X+Y/1ZXQj3Te4dwgHAABgM47YWTvxeWFN2/Eq/44z173ajlf5T3xeWMMRO9tctvnNN9/0EAgEsunTpwurq6sdiIjUarXDzJkzg6RSqTg8PFxUXFzsSERUX19v/8QTTwSIRCKJSCSSnD17dhwR0dy5cwOkUqk4MDBQumfPHhdz21wuNzQxMdFbKpWKp0+fLrxw4QI3IiJC5OPjI8/MzLRaklmr1bIXLFjgLxQKJU899ZR/SEhI8KVLl0ZtrYR7hXAAAADDgiN21o4Lc2vpvtzgOS7MrWU4gkFeXh731KlTE8vKyjTZ2dlfmwsvJSQk+O3fv79OrVaX7969+0ZiYqIvEdHatWt9Z86cqa2srNSo1WpNWFhYDxFRZmZmrVqtLi8pKdEcOHDAvampyY6ISK/Xs6Ojo7Vqtbp83Lhxht/97nfeeXl5VR999NHXO3bs8LbWr927d7tOmDDBUFVVpXn77bcbNBrNOFuvdTTBIkgAADAs9OU3mVtF37vyZng13ir63tUhcILW1oBw4cIF3oIFCzoYhjESEc2bN6+jp6eHXVxczHvuuecCzMfdvn2bRUSUn5/PnDhx4hsiInt7e3J2djYQEaWkpLh/+umnE4iImpqaxqjVakcPD49bY8aMMT377LNdRERSqVTv4OBgdHBwMEVEROi/++67sdb6lZ+fz1u/fv33RERTp07tEQqFj9TwCcIBAADYzDzHwDyU4BA4QTtcQwssFsvis9FoJIZh+isqKjQ/5/vZ2dlMbm4uU1BQUMEwjDEiIkKk1+vZRET29vYmNvuHh+hsNpscHBxMRER2dnZkMBhY1tp81IsWYlgBAABsdrtOyx0YBMxzEG7XaW0ah589e3b3p59+OqG7u5vV3t7OPnv27AQul2v08fG5/cEHH/CJfggLX331FYeIaMaMGdrdu3e7EhH19/dTW1sbu6Ojw87JycnAMIyxuLjY0Tw0YYvp06d3Hz16lE9EVFhY6FhVVcWxtc3RBOEAAABs5jRf0Dz4CQFH7Kx1mi9otqXdqKgo3aJFi9pkMpn017/+dUBEREQ3EdGHH35Yk56e7iISiSRBQUHSkydPTiAiSktLq8vNzWWEQqFEJpNJioqKOHFxcZ39/f0soVAo2bp1q5dCobhlS5+IiDZv3txy8+ZNe6FQKNm1a5eHSCTS8/l8g63tjhasR/3RCAAA3B+lUlmrUChaR7ofo1F/fz/dvn2bxeVyTWq12mHevHnC69evqxwdHR+qm6pSqXRRKBSCwdsx5wAAAOAeabVa9syZM0V9fX0sk8lEf/7zn7992ILB3SAcAAAAWHHy5MnxycnJPgO3TZo0qffs2bPXVSpV+Uj165eGcAAAAGBFXFxcV1xc3M96K+JRggmJAAAAYAHhAAAAACwgHAAAAIAFhAMAAACwgHAAAAA2O3/+vHtlZSUzcFtlZSVz/vx59+E8T1JSkte2bduGtU24E8IBAADYzMfHR3fq1Cl/c0CorKxkTp065e/j4/NIFSQaSl9f30h3YdghHAAAgM1EIpF20aJFNadOnfLPycnxOnXqlP+iRYtqRCKRzWWb33zzTQ+BQCCbPn26sLq62oGISK1WO8ycOTNIKpWKw8PDRcXFxY5ERPX19fZPPPFEgEgkkohEIsnZs2fHERHNnTs3QCqVigMDA6V79uxxMbfN5XJDExMTvaVSqXj69OnCCxcucCMiIkQ+Pj7yzMxMJ2t92rdvn3NMTIz/7NmzA2fOnCm09RpHG4QDAAAYFiKRSKtQKFr+9a9/eSoUipbhCAZ5eXncU6dOTSwrK9NkZ2d/bS6alJCQ4Ld///46tVpdvnv37huJiYm+RERr1671nTlzprayslKjVqs1YWFhPUREmZmZtWq1urykpERz4MAB96amJjsiIr1ez46Ojtaq1erycePGGX73u9955+XlVX300Udf79ixw/tufSsqKuJ9+OGH31y5cqXK1uscbbAIEgAADIvKykpGqVS6Tps2rVGpVLr6+/trbQ0IFy5c4C1YsKCDYRgjEdG8efM6enp62MXFxbznnnsuwHzc7du3WURE+fn5zIkTJ74hIrK3tydnZ2cDEVFKSor7p59+OoGIqKmpaYxarXb08PC4NWbMGNOzzz7bRUQklUr1Dg4ORgcHB1NERIT+u+++G3u3vs2cObPL3d39kSm2NBDCAQAA2Mw8x8A8lODv768drqEFFotl8dloNBLDMP0VFRU/a+XC7OxsJjc3lykoKKhgGMYYEREh0uv1bCIie3t7E5v9w0N0NptNDg4OJiIiOzs7MhgMrLs0S1wu13g/1/MwwLACAADY7MaNG9yBQcA8B+HGjRtcW9qdPXt296effjqhu7ub1d7ezj579uwELpdr9PHxuf3BBx/wiX4IC1999RWHiGjGjBna3bt3uxL9UDmxra2N3dHRYefk5GRgGMZYXFzsaB6aAOsQDgAAwGZz5sxpHvyEQCQSaefMmdNsS7tRUVG6RYsWtclkMumvf/3rgIiIiG4iog8//LAmPT3dRSQSSYKCgqQnT56cQESUlpZWl5ubywiFQolMJpMUFRVx4uLiOvv7+1lCoVCydetWL4VCccuWPv07YJlMj0yFSQAAGEZKpbJWoVC0jnQ/4JejVCpdFAqFYPB2PDkAAAAAC5iQCAAAYMXJkyfHJycn+wzcNmnSpN6zZ89eH6k+PQgIBwAAAFbExcV1xcXF/ay3Ih4lGFYAAAAACwgHAAAAYAHhAAAAACwgHAAAwEMDJZsfDIQDAACw2fXrqe4treeZgdtaWs8z16+n4kb+EEI4AAAAm413mqLTaDb5mwNCS+t5RqPZ5D/eaYrO1rZHY8nmJUuW+AUHB0uCg4MlfD5fsXHjRk9br3M0wQqJAAAwpHtdIdEcCDw9Frc0NmW5SiR7alxd5thUdCkvL4+7evVqQWFhYUVfXx9NmTJFsmLFipazZ886HTx48Fu5XN77z3/+c9zWrVu9r1y5UvXUU0/5T5s2rXvbtm3f9/f3U2dnp52zs7OhubnZzt3d3dDd3c0KDQ2V5OXlVXh4eBhYLFb4sWPHqp9//vmuJ554IkCn07H/+c9/fl1UVOS4cuXKyT9V3Kmqqmrs/Pnzgz7//PNqoVB425ZrHQnWVkjEOgcAADAsXF3maD09FrfU3zjkOclnRaOtwYBodJds1ul0rLi4uIA///nPdQ9jMLgbhAMAABgWLa3nmcamLNdJPisaG5uyXPkTp2uHIyCM1pLN8fHxfgsXLmyPjY21+RpHG8w5AAAAm5mHFCSSPTVC4e8bJJI9NQPnINyv0Vqy+Y9//KNrd3e33R/+8IcmW9sajRAOAADAZl2dJdyBcwxcXeZoJZI9NV2dJVxb2h2tJZv/9re/eVRWVnLMkxL/9Kc/udra5miCCYkAADAklGx+9KFkMwAAAPwsmJAIAABgBUo2AwAAgAWUbAYAAAAghAMAAAAYBOEAAAAALCAcAAAAgAWEAwAAsNkfaxrdv2jttFgN8YvWTuaPNY2jsmRzaGho8Ej3YTRDOAAAAJuFj+fqXiuv8zcHhC9aO5nXyuv8w8dzbS7ZPJz6+/uJiKi4uLhihLsyqiEcAACAzea5OGn/Kvatea28zv/31Te8Xiuv8/+r2LdmnouTTUWJurq62LNmzQo0L5P8/vvv8729veWNjY32RESXLl3iRkREiIiIkpKSvGJjYyc/9thjQj8/P1lqaqoL0Q+Fl6ZNmyZcuHDhZJFIJCUi4nK5oeZ9U6dOFS1YsMBfIBDI1q1b552WljZRLpeLhUKhRK1WOxARNTQ02M+fPz9AJpOJZTKZ+IsvvrBan6GhocF++vTpQRKJRPziiy/6eXl5/djfhwXCAQAADIt5Lk7a5z34Le/faPV83oPfYmswICLKysoa7+Hh0VdZWamprq5WL168uOtux5eXl3POnTtXfeXKlYrdu3d71dbWjiEiKi0tHbd79+7vrl+/rh78nYqKCk5aWlp9eXm5+sSJE85VVVWOZWVl5fHx8a2pqaluRERr1qyZlJSU1KxSqcpPnTp1fe3atQJrfdiyZYvX448/rtVoNOWLFy9ub2xsvGvp59HooUoyAAAwen3R2skcb2p3fcXHpfF4U7vrTD6jtTUghIWF6ZOTkyclJiZ6P/PMM51PPvlk992Oj4mJ6eDxeCYej9cfGRnZlZeXN47P5xtCQkJuBQcH3x7qO3K5/Jafn18fEZGvr29vTExMJxGRQqHQ5+bmMkREly9fHl9dXc0xf6e7u9uuvb2dzefzjYPbu3r1Ku/06dNfExE9++yzXePHjzfc/y8wMhAOAADAZuY5BuahhJl8RjscQwshISG9RUVFmpMnTzolJyd7nzt3rsvOzs5kNP5wT9br9RZPwFksFg31mcvl3nETN3NwcPixAiGbzSZHR0eT+f8Gg4FFRGQymaigoKCcx+P9ZLXCR6GgIYYVAADAZoVdOu7AIGCeg1DYpbOpZHNtbe0YhmGM69ata9uwYUNzSUkJ18fH5/bly5e5RETHjx/nDzw+Jydngk6nYzU1NdlduXKFiYqKsrk8MxFRVFRUV0pKipv5c35+PsfasREREd0ZGRkTiX4YFunq6rIbjj48SHhyAAAANnvL37N58LZ5Lk42DysUFhZy3nrrLR82m0329vam/fv3f6vT6dhr164VpKSk9IWHh1vc/ENDQ2/NmTMnqKGhYeymTZsaBQJBn0qlcrSlD0REBw8erE9ISPAVCoUSg8HAmjZtmnb69Ol1Qx377rvvNjz77LP+EomEHxkZ2e3q6to3YcKEh2pogfUoPP4AAIDhp1QqaxUKRetI9+PnSkpK8uLxeIbt27ffEVQeJL1ez7K3tzeNGTOGzp07N+63v/2tX0VFxags3qRUKl0UCoVg8HY8OQAAABhGX3/99djnn38+wGg00pgxY0wHDhyoHek+3SuEAwAAeCTs3bu34UGe77333nNOS0uzWAFy6tSp3RkZGXXl5eWj8knBz4VhBQAAGNLDNqwA987asALeVgAAAAALCAcAAABgAeEAAAAALCAcAAAAgAWEAwAAsNmezyvdz5U3MwO3nStvZvZ8Xulu7TsjKTQ0NHik+zCaIRwAAIDNpvhO0CUdL/E3B4Rz5c1M0vES/ym+E3Qj3beB+vv7iYiouLi44kGcr6+v70GcZtghHAAAgM3mit21e5+fUpN0vMT/nTNqr6TjJf57n59SM1fsbtPyyV1dXexZs2YFikQiSVBQkPT999/ne3t7yxsbG+2JiC5dusSNiIgQEf2wQmJsbOzkxx57TOjn5ydLTU11ISLKzs5mpk2bJly4cOFkkUgkJSLicrmh5n1Tp04VLViwwF8gEMjWrVvnnZaWNlEul4uFQqFErVY7EBE1NDTYz58/P0Amk4llMpn4iy++GGetz0lJSV5Lly71mzFjRtDixYsn23L9IwWLIAEAwLCYK3bXxoX5tKRfrvVcOUPQaGswIPqhcJGHh0ffxYsXvyYiunnzpt3bb79t9fjy8nJOYWFhuVartQsNDZXExcV1EhGVlpaOKy4uVg9VtrmiooJz4sSJGjc3t34/Pz+5g4NDa1lZWfmOHTvcUlNT3T744IP6NWvWTEpKSmqeP39+d3V19dj58+cH1dTUqK31o7S0lPuvf/2r4udUcRyNEA4AAGBYnCtvZk4W3XBdOUPQeLLohuuMQBetrQEhLCxMn5ycPCkxMdH7mWee6XzyySe773Z8TExMB4/HM/F4vP7IyMiuvLy8cXw+3xASEnJrqGBARCSXy2/5+fn1ERH5+vr2xsTEdBIRKRQKfW5uLkNEdPny5fHV1dU/VmLs7u62a29vZ/P5/CFLQT/55JMdD2swIEI4AACAYWCeY2AeSpgR6KIdjqGFkJCQ3qKiIs3JkyedkpOTvc+dO9dlZ2dnMhp/uCfr9XqL4XEWi0VDfeZyuUPexImIHBwcfryJs9lscnR0NJn/bzAYWEREJpOJCgoKyn/uDX/cuHFWz/cwwJwDAACwWUldB3dgEDDPQSip6+Da0m5tbe0YhmGM69ata9uwYUNzSUkJ18fH5/bly5e5RETHjx/nDzw+Jydngk6nYzU1NdlduXKFiYqKujV0y/cmKiqqKyUlxc38OT8/n3O34x92eHIAAAA22zRfdEeZ5Llid5uHFQoLCzlvvfWWD5vNJnt7e9P+/fu/1el07LVr1wpSUlL6wsPDLW7+oaGht+bMmRPU0NAwdtOmTY0CgaBPpVI52tIHIqKDBw/WJyQk+AqFQonBYGBNmzZNO3369Dpb2x2tUHgJAACG9LAVXkpKSvLi8XiG7du33xFUYGgovAQAAAA/C4YVAADgkbB3796GB3m+9957zzktLc1iBcipU6d2Z2RkPPTDDRhWAACAIT1swwpw7zCsAAAAAD8LwgEAAABYQDgAAAAACwgHAAAAYAHhAAAAbHd+hztV5jAW2ypzGDq/w93KN0ZUaGho8C/VdmZmptPWrVs9fqn2HwS8yggAALbz+ZWOTq31p0X/WUOiGC1V5jA/fh5F+vv7yd7enoqLiyt+qXMsW7ask4g6f6n2HwQ8OQAAANuJYrS06D9r6NRaf8rZ4mURFGzQ1dXFnjVrVqBIJJIEBQVJ33//fb63t7e8sbHRnojo0qVL3IiICBHRDyskxsbGTn7ssceEfn5+stTUVBciouzsbGbatGnChQsXThaJRFIiIi6XG2reN3XqVNGCBQv8BQKBbN26dd5paWkT5XK5WCgUStRqtQMRUUNDg/38+fMDZDKZWCaTib/44otx1vq8b98+5+XLl/vact0jDU8OAABgeIhitKRY2kL/SvOkaYmNtgYDIqKsrKzxHh4efRcvXvyaiOjmzZt2b7/9ttXjy8vLOYWFheVardYuNDRUEhcX10lEVFpaOq64uFg9VNnmiooKzokTJ2rc3Nz6/fz85A4ODq1lZWXlO3bscEtNTXX74IMP6tesWTMpKSmpef78+d3V1dVj58+fH1RTU6O29fpGK4QDAAAYHpU5DCk/dKVpiY2k/NCV/B/X2hoQwsLC9MnJyZMSExO9n3nmmc4nn3yy+27Hx8TEdPB4PBOPx+uPjIzsysvLG8fn8w0hISG3hgoGRERyufyWn59fHxGRr69vb0xMTCcRkUKh0Ofm5jJERJcvXx5fXV39YyXG7u5uu/b2djafz3+oSzNbg3AAAAC2GzjHQBSjJf/HtcMxtBASEtJbVFSkOXnypFNycrL3uXPnuuzs7ExG4w/3ZL1ebzE8zmKxaKjPXC7X6k3cwcHhx6WC2Ww2OTo6msz/NxgMLCIik8lEBQUF5Twe799iWWHMOQAAANvdKOBaBAHzHIQbBVxbmq2trR3DMIxx3bp1bRs2bGguKSnh+vj43L58+TKXiOj48eP8gcfn5ORM0Ol0rKamJrsrV64wUVFRt4Zu+d5ERUV1paSkuJk/5+fnc+52/MMOTw4AAMB2c35/Z5lkn2OqmQAAIABJREFUUYzNwwqFhYWct956y4fNZpO9vb1p//793+p0OvbatWsFKSkpfeHh4RY3/9DQ0Ftz5swJamhoGLtp06ZGgUDQp1KpHG3pAxHRwYMH6xMSEnyFQqHEYDCwpk2bpp0+ffpDX2DJGhReAgCAIT1shZeSkpK8eDyeYfv27XcGFRgSCi8BAADAz4JhBQAAeCTs3bu34UGe77333nNOS0uzWAFy6tSp3RkZGQ/9cAOGFQAAYEgP27AC3DsMKwAAAMDPgnAAAAAAFhAOAAAAwALCAQAAAFhAOAAAAJvtK9rnfrH+IjNw28X6i8y+on3u1r4zkkJDQ4NHug+jGcIBAADYLMQ1RJf8ZbK/OSBcrL/IJH+Z7B/iGqIb6b4N1N/fT0RExcXFFSPclVEN4QAAAGw2a9Is7a6oXTXJXyb7v3v1Xa/kL5P9d0Xtqpk1aZZNyyd3dXWxZ82aFSgSiSRBQUHS999/n+/t7S1vbGy0JyK6dOkSNyIiQkT0wwqJsbGxkx977DGhn5+fLDU11YWIKDs7m5k2bZpw4cKFk0UikZSIiMvlhpr3TZ06VbRgwQJ/gUAgW7dunXdaWtpEuVwuFgqFErVa7UBE1NDQYD9//vwAmUwmlslk4i+++GKctT4//vjjgcHBwZLg4GAJwzBT/vrXvzrb8huMBCyCBAAAw2LWpFnahQELWzLLMz2XiZc12hoMiIiysrLGe3h49F28ePFrIqKbN2/avf3221aPLy8v5xQWFpZrtVq70NBQSVxcXCcRUWlp6bji4mL1UGWbKyoqOCdOnKhxc3Pr9/Pzkzs4OLSWlZWV79ixwy01NdXtgw8+qF+zZs2kpKSk5vnz53dXV1ePnT9/flBNTY16qD7k5uZ+TUSUl5fHXb16teDFF1/ssPV3eNDw5AAAAIbFxfqLzJnrZ1yXiZc1nrl+xnXwHIT7ERYWps/LyxufmJjo/dlnn/GcnZ0Ndzs+Jiamg8fjmTw9PfsjIyO78vLyxhERhYSE3BoqGBARyeXyW35+fn0cDsfk6+vbGxMT00lEpFAo9HV1dWOJiC5fvjx+/fr1vsHBwZKFCxcGdnd327W3t1u9hzY2NtqvWLFicmZmZs1P9Xk0wpMDAACwmXmOgXko4THPx7TDMbQQEhLSW1RUpDl58qRTcnKy97lz57rs7OxMRqORiIj0er3FDZrFYtFQn7lcrtHaORwcHH5cKpjNZpOjo6PJ/H+DwcAiIjKZTFRQUFDO4/F+clnh/v5+iouL83/zzTcbpk6d2vOzL3YUwZMDAACwWWlLKXdgEDDPQShtKeXa0m5tbe0YhmGM69ata9uwYUNzSUkJ18fH5/bly5e5RETHjx/nDzw+Jydngk6nYzU1NdlduXKFiYqKujV0y/cmKiqqKyUlxc38OT8/n2Pt2FdffdVHIpHofvOb37QPx7lHAp4cAACAzV4Pe/2OMsmzJs3S2jrvoLCwkPPWW2/5sNlssre3N+3fv/9bnU7HXrt2rSAlJaUvPDzc4uYfGhp6a86cOUENDQ1jN23a1CgQCPpUKpWjLX0gIjp48GB9QkKCr1AolBgMBta0adO006dPH7LA0sGDB90DAwN7goODxxMR/f73v/9u2bJlnbb24UFC4SUAABjSw1Z4KSkpyYvH4xm2b99+R1CBoaHwEgAAAPwsGFYAAIBHwt69exse5Pnee+8957S0NIsVIKdOndqdkZEx5HDDwwTDCgAAMKSHbVgB7h2GFQAAAOBnQTgAAAAACwgHAAAAYAHhAAAAACwgHAAAgM2+/8tf3LUXLljUUtBeuMB8/5e/uFv7zkgKDQ0NHuk+jGYIBwAAYDOOQqFreHOLvzkgaC9cYBre3OLPUSh0I923gfr7+4mIqLi4uGKEuzKqIRwAAIDNmOhorVfKuzUNb27xb/rDH7wa3tzi75Xybg0THW3T8sldXV3sWbNmBYpEIklQUJD0/fff53t7e8sbGxvtiYguXbrEjYiIEBH9sEJibGzs5Mcee0zo5+cnS01NdSEiys7OZqZNmyZcuHDhZJFIJCUi4nK5oeZ9U6dOFS1YsMBfIBDI1q1b552WljZRLpeLhUKhRK1WOxARNTQ02M+fPz9AJpOJZTKZ+Isvvhg3VH8NBgP5+fnJGhoa7M2ffX19Zeb+PiwQDgAAYFgw0dFap9hnWtoPZ3g6xT7TYmswICLKysoa7+Hh0VdZWamprq5WL168uOtux5eXl3POnTtXfeXKlYrdu3d71dbWjiEiKi0tHbd79+7vrl+/rh78nYqKCk5aWlp9eXm5+sSJE85VVVWOZWVl5fHx8a2pqaluRERr1qyZlJSU1KxSqcpPnTp1fe3atYKhzm9nZ0fPPvvszf/6r/+aSET08ccfjxeLxXpPT89+W3+LBwnhAAAAhoX2wgWm8/THrvzl8Y2dpz92HTwH4X6EhYXp8/LyxicmJnp/9tlnPGdnZ8Pdjo+Jieng8XgmT0/P/sjIyK68vLxxREQhISG3goODbw/1HblcfsvPz6+Pw+GYfH19e2NiYjqJiBQKhb6urm4sEdHly5fHr1+/3jc4OFiycOHCwO7ubrv29vYh76GJiYmtR48edSYi+uCDD1xWrFjx0C0k9VA95gAAgNHJPMfAPJQwLjJSOxxDCyEhIb1FRUWakydPOiUnJ3ufO3euy87OzmQ0GomISK/XW9ygWSwWDfWZy+UarZ3DwcHhx6WC2Ww2OTo6msz/NxgMLCIik8lEBQUF5Twe7yeXFQ4MDOxzcXHp/+STT5ji4uJxp0+frvnZFzxK4MkBAADYTK9UcgcGAfMcBL1SybWl3dra2jEMwxjXrVvXtmHDhuaSkhKuj4/P7cuXL3OJiI4fP84feHxOTs4EnU7Hampqsrty5QoTFRV1a+iW701UVFRXSkqKm/lzfn4+527Hr1q1qiUhIWHy008/3WZv//D9Hf7w9RgAAEYdtw0b7iiTzERHa22dd1BYWMh56623fNhsNtnb25v279//rU6nY69du1aQkpLSFx4ebnHzDw0NvTVnzpyghoaGsZs2bWoUCAR9KpXK0ZY+EBEdPHiwPiEhwVcoFEoMBgNr2rRp2unTp1stsLR06dLO3/72t3a/+c1vbtp67pGAwksAADCkh63wUlJSkhePxzNs3779jqDyoF26dIn7xhtvTCosLKwc6b7cjbXCS3hyAAAAMIy2bt3qcejQIdf09PRvRrov9wtPDgAAYEgP25ODB+29995zTktLs1gBcurUqd0ZGRlWhxtGG2tPDhAOAABgSAgHjz5r4QBvKwAAAIAFhAMAAACwgHAAAAAAFhAOAAAAwALCAQAA2OzKx9fdvylttail8E1pK3Pl4+vu1r4DoxfCAQAA2Mx9spPu/CGNvzkgfFPaypw/pPF3n+ykG+m+wb1DOAAAAJtNDnHRzlkhqTl/SOOfd7zK6/whjf+cFZKaySEuNpdtfvvtt92DgoKkQUFB0u3bt7tVVlaOnTx5snTJkiV+QUFB0qeffnry6dOnmbCwsGA/Pz/ZhQsXuEREXV1d7Oeee04gk8nEYrFYcuTIkQlERFqtlr1gwQJ/oVAoeeqpp/xDQkKCL126xCUiWrZsma9MJhMHBgZK33jjDS9zH3Jzc7mhoaHBIpFIIpfLxe3t7ezKysqx4eHhIolEIpZIJOKzZ8+OIyLKzs5mpk6dKlqwYIG/QCCQrVu3zjstLW2iXC4XC4VCiVqtdrB2rXFxcYL09PQf60VwudxQW3+/+4EVEgEAYFhMDnHRih7zaCn95w3PkNk+jcMRDPLy8rj/+Mc/nAsLC8tNJhOFh4eL58yZo62vr3c8duxYTXh4+LchISHizMxM54KCgop//OMfE3bt2uUZHR19fevWrZ7R0dFdH330UW1ra6vdr371K/HTTz/dtWfPHtcJEyYYqqqqNNeuXXOMjIyUms+3d+/e79zd3Q39/f00ffp00b/+9S+OQqHoWbZsWUBmZub1xx9/XNfW1sbm8XhGe3v7/ry8vCoul2sqKytzWLp0qb9KpSonIqqoqOCcOHGixs3Nrd/Pz0/u4ODQWlZWVr5jxw631NRUtw8++KDe1t/ml4RwAAAAw+Kb0lam8kqTa8hsn8bKK02uPsETtbYGhIsXL/IWLFjQMX78eCMR0VNPPdV+4cIFxtvbuzciIkJPRCQUCvWzZ8/uYrPZFBYWptu5c6fX/353/Oeffz5h3759HkREvb29rK+//npsfn4+b/369d8TEU2dOrVHKBT+OPTx3//93xMPHTrk0t/fz2ppaRmjVCodWSwWubm59T3++OM6IqKJEycaiYi6urpYq1ev9tNoNBw2m03ffvvtj08E5HL5LT8/vz4iIl9f396YmJhOIiKFQqHPzc21mJsxGiEcAACAzcxzDMxDCT7BE7XDMbRgbRXfsWPH/riDzWaTo6OjiYjIzs6ODAYDy/zdEydOfK1QKHp/TpsVFRVj//a3v7kXFhaWu7q6GuLi4gQ9PT1sk8lELBbrji/t2rXL3c3Nre/kyZPfGI1G4nA44eZ9Dg4OQ/aPzWb/2L+h2NvbmwwGAxERGY1G6uvrs3rsLwlzDgAAwGbN33RyBwYB8xyE5m86uba0O3v27O7/+Z//maDVatldXV3s//mf/+FH/8wy0NHR0V2pqanuRqORiIguX77MISKaPn1699GjR/lERIWFhY5VVVUcIqL29nY7DodjnDhxoqG+vt7+4sWLTkRECoWip7m5eWxubi73f49j9/X1UWdnp52np2efnZ0d7d+/39l8U7eFn5/f7cLCQi4RUWZm5oT+/v4RCQd4cgAAADZ77JmAO8okTw5xsXlYISoqSvfiiy/eDAsLExMRxcfHt7i4uPysu/C7777b8Jvf/MY3ODhYYjKZWD4+Pr0XLlz4evPmzS3PP/+8QCgUSmQymU4kEun5fL5BLpf3ymQyXVBQkNTX17c3PDy8m4jI0dHRlJmZef3111/37enpYTs6OhovXbpUtWHDhu/j4uICTp8+zY+KitJyOByjLddK/397dx7X1JX/Af8kASKRsIewyRLMDgTERkFaQFvG4Ip2HOvSace6lKpVsGMf5/WzPlOttS+wvx92bHXajjPFLi6DFBEZ68M2+lIrRUCWgFCoDAEJSwgEMCR5/piJQxBs9aKAfN5/Nffm3nOu/eN+OOfkfAkhW7ZsaV24cOH0oKAg8XPPPdc1Gvd8FCi8BAAAw3paCy8NDAyQu3fv0lgslqm8vJwZGxsrqK2tvWke+p9MRiq8hJEDAACYVLRaLf3ZZ58V6vV6mslkIh9++GHDZAwGD4JwAAAAk4qTk5PR/JPDsbJz5073jIwM58HHlixZ0n7gwIHmserTYJhWAACAYT2t0wrwXyNNK+DXCgAAAGAB4QAAAAAsIBwAAACABYQDAAAAsIBwAAAAlP3z679xa4uuWdQMqC26xv7n13/jjlWf4NEhHAAAAGUefJEu+08pPHNAqC26xs7+UwrPgy/S/dy1MP4gHAAAAGUBYXKt4o2kuuw/pfByjx31zP5TCk/xRlJdQJicctnmPXv2cPl8vpTP50v/+Mc/uimVSht/f3/pb37zG18+ny9dvHix/5kzZ9gzZswQ+fr6Bubm5rIIIaSrq4v+61//2i8wMFAsFoslaWlpjoT8exOkuLg4nkAgkCxYsIAXHBwsKigoYBFCyOrVq30CAwPF06dPl27fvt3T3If8/HxWaGioSCgUSoKCgsQdHR10pVJpExYWJpRIJGKJRCK+cOHCVEIIOXv2LPuZZ54RxsXF8fz8/AITEhK8Pv74Y+egoCCxQCCQlJeXM4d7TkIIKS8vZ8pkMlFgYKB427ZtniwWK5Tqv9+jwCZIAAAwKgLC5Frpc/Naf8j+1mOGYrFqNIJBYWEh68svv3QpKiqqNJlMJCwsTDxv3jzt7du3p3zzzTd1YWFhDcHBweLjx4+7XL9+verLL7903Ldvn0dMTEztrl27PGJiYrpOnjxZr1arGTNnzhQvXry4Kzk5mePo6Giorq6u+P7776eEh4dLze0dPHjwX1wu1zAwMEAiIiKEV69etZXJZH2rV68OOH78eG1UVJSuvb2dbmdnZ7SyshooLCysZrFYprKyMuZLL73EM2+uVFVVZXvq1Kk6Nze3AV9f3yAmk6kuKyurfPfdd91SUlLcPv/889vDPe/mzZunJSQk3Nm4cWP7Bx98wKH67/eoMHIAAACjorboGru84CJnhmKxqrzgImfoGoRHkZeXZxcXF9dpb29vdHBwMC5YsKAjNzeX7eXl1S+Xy3sZDAYRCAS9c+fO7aLT6WTGjBm6xsZG5n+utf/www89RCKRJDIyUtjf30+7deuWzeXLl+1eeumldkIIeeaZZ/oEAsG9qY+//vWvzv8ZCZDU1NRMKSkpmVJaWjrFzc1NHxUVpSOEEGdnZ6O1tTW5e/cubdWqVX4CgUDy61//OqC2tnaK+T5BQUE9vr6+eltbW5OPj0+/QqHQEEKITCbr/emnn2xGet7i4mK73/3ud+2EEPLaa6+1Uf33e1QYOQAAAMrMawzMUwk+QSHa0ZhaGGkXXxsbm3sn6HQ6MddGYDAYxGAw0MzXnjp16pZMJuv/Jfesqqqy+eijj7hFRUWVHA7HsHz5cr++vj66yWQiNBrtvov27dvHdXNz058+ffpHo9FIbG1tw8znmEzmsP2j0+n3+jeeYeQAAAAoU9VUsQYHAfMaBFVNFYvKfefOndt97tw5R61WS+/q6qKfO3fOKSYm5heFjZiYmK6UlBSu0fjvqseXLl2yJYSQiIiI7q+//tqJEEKKioqmVFdX2xJCSEdHB8PW1tbo7OxsuH37tlVeXp4DIYTIZLK+lpYWm/z8fNZ/vkfX6/VEo9EwPDw89AwGgxw+fNjFYPhFlaQfKCQkpPvYsWNOhBDy+eefO//c9x8XjBwAAABlkStfbhl6LCBMrqW67iAyMlK3atWqthkzZogJIWTt2rWtrq6uv+gt/P777zdt2LDBRyQSSUwmE83b27s/Nzf31ltvvdW6YsUKP4FAIAkMDNQJhcJeJycnQ1BQUH9gYKCOz+dLfXx8+sPCwroJIWTKlCmm48eP127dutWnr6+PPmXKFGNBQUH1tm3b7ixfvjzgzJkzTpGRkVpbW1sjlWclhJBDhw7dXr16tX9qaqp7bGxsp52dHfXE8QhQeAkAAIb1tBZeGhgYIHfv3qWxWCxTeXk5MzY2VlBbW3tzPJRt1mq19KlTpxrpdDo5evSo0zfffON88eLF2sfV3kiFlzByAAAAk4pWq6U/++yzQr1eTzOZTOTDDz9sGA/BgBBCLl26xHrzzTd9TCYTsbe3Nxw7dqx+LPqBcAAAAJOKk5OT0fyTw7Gyc+dO94yMDIs1BUuWLGk/cOBAs1KprBirfplhWgEAAIb1tE4rwH+NNK2AXysAAACABYQDAAAAsIBwAAAAABYQDgAAAMACwgEAAFCmyann9la2WdRS6K1sY2ty6rlj1aeJTq/Xj1nbCAcAAECZjQ9b136immcOCL2Vbez2E9U8Gx+27ueu/TmTqWTz8uXL/V577TXvWbNmCRISEryp/ts9KuxzAAAAlNmKXbTOKwR17SeqeVNnuLX2/HCH47xCUGcrdqG0ffJkK9lMCCG1tbVTLl26VG1lNXavaIQDAAAYFbZiF+3UGW6t3ZeaPOzmeKqoBgNCLEs2E0LI0JLNhJD7Sjbv3bvX8z/X2ufk5Dimpqa6E0LI4JLNb7755h1Chi/ZfOzYMdeBgQFaa2urdUlJyRQajUaGlmwmhJCuri7aunXrfCsqKmzpdDppaGi4NyJgLtlMCCFDSzbn5+c/sJT1smXLOsYyGBCCcAAAAKOkt7KN3fPDHY7dHE9Vzw93OMzpjlqqAWEylmy2s7OjXMCJKqw5AAAAysxrDJxXCOocFwU0macYhi5SfFiTrWTzeIGRAwAAoOzuT1rW4DUG5jUId3/SsqiMHky2ks3jBWorAADAsJ7W2grjuWTzk4aSzQAAAGR8l2weLxAOAABgUhnvJZvHqk+DYVoBAACG9bROK8B/oWQzAAAA/CIIBwAAAGAB4QAAAAAsIBwAAACABYQDAAAAsIBwAAAAlF28eJGrVCottkpWKpXsixcvcseqTxPRBx98wPnoo49cxrofCAcAAECZt7e3Lj09nWcOCEqlkp2ens7z9vbW/dy18F+///3vWzdv3tw21v1AOAAAAMqEQqE2Pj6+Lj09nZedne2Znp7Oi4+PrxMKhZTLNu/Zs4fL5/OlfD5f+sc//tFNqVTa+Pv7S3/zm9/48vl86eLFi/3PnDnDnjFjhsjX1zcwNzeXRQghXV1d9F//+td+gYGBYrFYLElLS3Mk5N87JMbFxfEEAoFkwYIFvODgYFFBQQGLEEJWr17tExgYKJ4+fbp0+/btnuY+5Ofns0JDQ0VCoVASFBQk7ujooCuVSpuwsDChRCIRSyQS8YULF6YSQsjZs2fZzzzzjDAuLo7n5+cXmJCQ4PXxxx87BwUFiQUCgaS8vJw53HMSQkhiYqLn7t27x3y0BTskAgDAqBAKhVqZTNZ69epVj1mzZqlGIxgUFhayvvzyS5eioqJKk8lEwsLCxPPmzdPevn17yjfffFMXFhbWEBwcLD5+/LjL9evXq7788kvHffv2ecTExNTu2rXLIyYmpuvkyZP1arWaMXPmTPHixYu7kpOTOY6Ojobq6uqK77//fkp4eLjU3N7Bgwf/xeVyDQMDAyQiIkJ49epVW5lM1rd69eqA48eP10ZFRena29vpdnZ2Risrq4HCwsJqFotlKisrY7700ks8886LVVVVtqdOnapzc3Mb8PX1DWIymeqysrLKd9991y0lJcXt888/v0313+ZxQjgAAIBRoVQq2SUlJZxZs2apSkpKODweT0s1IOTl5dnFxcV12tvbGwkhZMGCBR25ublsLy+vfrlc3ksIIQKBoHfu3LlddDqdzJgxQ7d3717P/1xrn5OT45iamupOCCH9/f20W7du2Vy+fNnuzTffvEMIIc8880yfQCC4N/Xx17/+1fnYsWOuAwMDtNbWVuuSkpIpNBqNuLm56aOionSEEOLs7GwkhJCuri7aunXrfCsqKmzpdDppaGi4NyIQFBTU4+vrqyeEEB8fn36FQqEhhBCZTNabn59PqYz1k4BwAAAAlJnXGJinEng8nnY0phZG2uLfxsbm3gk6nU7MhZMYDAYxGAw087WnTp26JZPJ+n/JPauqqmw++ugjblFRUSWHwzEsX77cr6+vj24ymQiNRrvvon379nHd3Nz0p0+f/tFoNBJbW9sw8zkmkzls/+h0+r3+jWdYcwAAAJQ1NjayBgcB8xqExsZGFpX7zp07t/vcuXOOWq2W3tXVRT937pxTTEzMLwobMTExXSkpKVyj0UgIIeTSpUu2hBASERHR/fXXXzsRQkhRUdGU6upqW0II6ejoYNja2hqdnZ0Nt2/ftsrLy3MghBCZTNbX0tJik5+fz/rP9+h6vZ5oNBqGh4eHnsFgkMOHD7sYDAYqjzquYOQAAAAomzdvXsvQY0KhkPK0QmRkpG7VqlVtM2bMEBNCyNq1a1tdXV1/0Vv4/fffb9qwYYOPSCSSmEwmmre3d39ubu6tt956q3XFihV+AoFAEhgYqBMKhb1OTk6GoKCg/sDAQB2fz5f6+Pj0h4WFdRNCyJQpU0zHjx+v3bp1q09fXx99ypQpxoKCgupt27bdWb58ecCZM2ecIiMjtba2tkYqzzqeoCojAAAM62mtyjgwMEDu3r1LY7FYpvLycmZsbKygtrb2pnnofzIZqSojRg4AAGBS0Wq19GeffVao1+tpJpOJfPjhhw2TMRg8CMIBAABMKk5OTkbzTw7Hys6dO90zMjKcBx9bsmRJ+4EDB5rHqk+DYVoBAACG9bROK8B/jTStgF8rAAAAgAWEAwAAALCAcAAAAAAWEA4AAADAAsIBAABQVlubwm1VX7SoGdCqvsiurU0Z8wqDhBCyZcsWL3d392AWixU61n2ZCBAOAACAMnuHEF1FxQ6eOSC0qi+yKyp28OwdQnQ/d+2TsHTp0s6rV6+O6c8XJxLscwAAAJRxXOdpJZLkuoqKHTwP92Wtqua/cySS5DqO6zzKZZvfeustj1OnTjl7eHjcdXFxGQgNDdWdP3/eMTAwUFdcXDy1u7ubcfTo0R9jYmJ0Go2Gvm7dOp/S0lIWIYTs2rWr6ZVXXumcN29ezy9tr7y8nLlq1Sp/g8FAe/755zVHjx7l6nS6YqrPMZFg5AAAAEYFx3We1sN9WevtxmMeHu7LWkcjGBQUFLAyMzOdysrKKrKysmpLS0unms/pdDp6cXFxVWpqasOGDRv8CSHk7bff9rC3tzdUV1dXVFdXVyxYsOCh+7B58+ZpCQkJd27evFnp6empp/oMExHCAQAAjIpW9UW2qvnvnGner6hUzX/nDF2D8Cjy8vLsFApFp52dncnJycn4wgsvdJrPrVq1qp0QQhQKRXd3dzddrVYzCgoK7Ldv337H/B0Oh/PQpRKLi4vtfve737UTQshrr73WRvUZJiKEAwAAoMy8xkAiSa4TCP6nyTzFQDUgPGgXXxqNdt9nk8l033F4eAgHAABAWZfmBmvwGgPzGoQuzQ0WlftGR0d35+TkOOh0OppGo6F/9913juZzX331lRMhhOTk5Nix2WyDi4uLITo6uuvgwYNu5u+0trYyHrbNkJCQ7mPHjjkRQsjnn3/u/HPffxohHAAAAGUBAUktQ9cYcFznaQMCklqo3DcqKko3f/58jUQikcbFxQUEBwf3ODg4GAghxMnJyRAaGiravHmz75EjR+oJIWT//v2qzs5OBp/PlwqFQsm5c+fYhBCyadMmby6XG9zX10fncrnBiYmJniO1eejQoduHDh3iBgUFiVUqlbWdnd1DT01MdCi8BAAAwxovhZc0Gg0w8Mx4AAAgAElEQVTdwcHBqNVq6eHh4cJPPvmkITExcVpycvLt5557btR/KqnVaulTp0410ul0cvToUadvvvnG+eLFi7Wj3c54MFLhJfyUEQAAxrU1a9b41tTU2Pb399NWrlzZFhkZ+Vj3Trh06RLrzTff9DGZTMTe3t5w7Nix+sfZ3niEcAAAAONaZmbmj0OPXbt2TUn1vjt37nTPyMiwWFOwZMmS9gMHDjQrlcoKqvefyDCtAAAAwxov0wrw+Iw0rYAFiQAAAGAB4QAAAAAsIBwAAACABYQDAAB46qFk88NBOAAAAMr216m4/1BrLLZK/odaw95fp+KOVZ8Ge9SSzXr9pKy7hJ8yAgAAdWH2LN2Wyp94h8Q+dbGuDtp/qDVs82eq937SJZuXL1/u5+TkNFBWVsYKDg7W/fnPf26k+gwTDcIBAABQFuvqoD0k9qnbUvkTb4W7U+uJ5g6OOShQue/gks16vZ4WEhIiCQ0N1RHy35LN2dnZdhs2bPCvqakpH1yymZBHq61ACCG1tbVTLl26VG1lNTlfk5PzqQEAYNTFujpoV7g7tf65Ue2x3ttVRTUYEGJZspkQYvolJZu//vrre6MVj1KymRBCli1b1jFZgwEhWHMAAACj5B9qDftEcwdnvber6kRzB2foGoRHMVYlm+3s7IyUbzKBIRwAAABlg9cYvMv3bjJPMVANCGNRshkQDgAAYBQUdelYg9cYmNcgFHXpWFTuOxYlmwG1FQAAYATjpbbCky7ZPJmgZDMAAExIT7pkMyAcAADAODcWJZup3nuiw7QCAAAMa7xMK8Djg5LNAAAA8IsgHAAAAIAFhAMAAACwgHAAAAAAFhAOAACAsuQcJfe7yhaL3RC/q2xhJ+cox0XJ5i1btni5u7sHs1is0J/77gcffMD56KOPXJ5Ev8YrhAMAAKAsxMdRl3jiBs8cEL6rbGEnnrjBC/FxHBd7EixdurTz6tWrlb/ku7///e9bN2/e3Pa4+zSeYZ8DAACg7HkxV3twRUhd4okbvOUzvFtP/9DIObgipO55MZdyZca33nrL49SpU84eHh53XVxcBkJDQ3Xnz593DAwM1BUXF0/t7u5mHD169MeYmBidRqOhr1u3zqe0tJRFCCG7du1qeuWVVzrnzZvX80vbS0xM9LSzszP88Y9/bKHa94kK4QAAAEbF82KudvkM79a/XKr3eHWOn2o0gkFBQQErMzPTqaysrEKv19NCQkIkoaGhOkII0el09OLi4qrs7Gy7DRs2+NfU1JS//fbbHvb29obq6uoKQlB46VFhWgEAAEbFd5Ut7NM/NHJeneOnOv1DI2foGoRHkZeXZ6dQKDrt7OxMTk5OxhdeeKHTfG7VqlXthBCiUCi6u7u76Wq1mlFQUGC/ffv2O+bvcDgcA9U+TEYIBwAAQJl5jcHBFSF17yySNpmnGKgGhAft4kuj0e77bDKZ7jsODw/hAAAAKLvxUydr8BoD8xqEGz91UirZHB0d3Z2Tk+Og0+loGo2G/t133zmaz3311VdOhBCSk5Njx2azDS4uLobo6OiugwcPupm/g2mFR4NwAAAAlO34lbBl6BqD58Vc7Y5fCSkt6ouKitLNnz9fI5FIpHFxcQHBwcE9Dg4OBkIIcXJyMoSGhoo2b97se+TIkXpCCNm/f7+qs7OTwefzpUKhUHLu3Dk2IYRs2rTJm8vlBvf19dG5XG5wYmKiJ5V+Pe1QeAkAAIY1XgovaTQauoODg1Gr1dLDw8OFn3zySUNiYuK05OTk288999y4+KnkRDVS4SX8WgEAAMa1NWvW+NbU1Nj29/fTVq5c2RYZGYlA8JghHAAAwLiWmZn549Bj165dU1K9786dO90zMjKcBx9bsmRJ+4EDB5qp3nuiw7QCAAAMa7xMK8DjM9K0AhYkAgAAgAWEAwAAALCAcAAAAAAWEA4AAADAAsIBAABQd/FdLlFmW26VrMxmk4vvcseoRxa2bNni5e7uHsxisULHui8TAcIBAABQ5z1TR9I38e4FBGU2m6Rv4hHvmeNiT4KlS5d2Xr16tXKs+zFRYJ8DAACgTqjQkvhP6kj6Jh6RvdRKSr7ikPhP6ohQQbls81tvveVx6tQpZw8Pj7suLi4DoaGhuvPnzzsGBgbqiouLp3Z3dzOOHj36Y0xMjE6j0dDXrVvnU1payiKEkF27djW98sornfPmzev5pe2JRCKJ+b/r6+unnD59unrBggXdVJ9jIkE4AACA0SFUaInspVZy9WMPMut11WgEg4KCAlZmZqZTWVlZhV6vp4WEhEhCQ0N1hBCi0+noxcXFVdnZ2XYbNmzwr6mpKX/77bc97O3tDdXV1RWEPFrhpaqqqgpCCPnyyy8dUlJS3J9//vlfHCyeFggHAAAwOpTZbFLyFYfMel1FSr7iEF6UlmpAyMvLs1MoFJ12dnYmQojphRde6DSfW7VqVTshhCgUiu7u7m66Wq1mFBQU2H/99dd15u9wOBzDo7RbVlbG/MMf/uCdm5tbzWQyJ91ugVhzAAAA1JnXGMR/UkcU7zfdm2IYukjxIT1oF18ajXbfZ5PJdN/xh9XV1UVfsWJFwMcff9zg5+enp3SzCQrhAAAAqGu8zrJYY2Beg9B4nUXlttHR0d05OTkOOp2OptFo6N99952j+dxXX33lRAghOTk5dmw22+Di4mKIjo7uOnjwoJv5O48yrbBy5Uq/1atXq+fPnz+p1hkMhnAAAADUzfuflvumEIQKLZn3Py1UbhsVFaWbP3++RiKRSOPi4gKCg4N7HBwcDIQQ4uTkZAgNDRVt3rzZ98iRI/WEELJ//35VZ2cng8/nS4VCoeTcuXNsQgjZtGmTN5fLDe7r66NzudzgxMREz+Haq66utjl//rxTWlqaq0gkkohEIklBQQGlgDMRofASAAAMa7wUXtJoNHQHBwejVqulh4eHCz/55JOGxMTEacnJybefe+65cfFTyYlqpMJLWJAIAADj2po1a3xramps+/v7aStXrmyLjIxEIHjMEA4AAGBcy8zM/HHosWvXrimp3nfnzp3uGRkZzoOPLVmypP3AgQPNVO890WFaAQAAhjVephXg8RlpWgELEgEAAMACwgEAAABYQDgAAAAACwgHAAAAYAHhAAAAKEv9IZWbdzvPYqvkvNt57NQfUrlj1afBtmzZ4uXu7h7MYrFCx7ovEwHCAQAAUBbMCdb94Z9/4JkDQt7tPPYf/vkHXjAneFzsSbB06dLOq1evVo51PyYK7HMAAACURU+L1u6L3Ff3h3/+gbcoYFFrZm0mZ1/kvrroadGUyza/9dZbHqdOnXL28PC46+LiMhAaGqo7f/68Y2BgoK64uHhqd3c34+jRoz/GxMToNBoNfd26dT6lpaUsQgjZtWtX0yuvvNI5b968X1R2uaOjgx4YGCitq6u7yWQyTe3t7fSgoKB7n6k+y0SBcAAAAKMielq0dlHAotbjlcc9VotXq0YjGBQUFLAyMzOdysrKKvR6PS0kJEQSGhqqI4QQnU5HLy4ursrOzrbbsGGDf01NTfnbb7/tYW9vb6iurq4g5OELLzk5ORnDw8O1J06ccFi7dm3n559/7hwXF9cxmYIBIZhWAACAUZJ3O4+dWZvJWS1ercqszeQMXYPwSPfMy7NTKBSddnZ2JicnJ+MLL7zQaT63atWqdkIIUSgU3d3d3XS1Ws0oKCiw3759+x3zdzgcjuFh29ywYUPrsWPHXAghJC0tzXXDhg2TbiMohAMAAKDMvMZgX+S+urflbzeZpxioBoQH7eJLo9Hu+2wyme47/rBiY2N7GhsbmVlZWXYGg4H2zDPP9FG64QSEcAAAAJSVtpayBq8xMK9BKG0tpVTuODo6ujsnJ8dBp9PRNBoN/bvvvnM0n/vqq6+cCCEkJyfHjs1mG1xcXAzR0dFdBw8edDN/52GnFcxWrlzZ9uqrr/LWrFkz6UYNCEE4AACAUbB1xtaWoWsMoqdFa7fO2NpC5b5RUVG6+fPnayQSiTQuLi4gODi4x8HBwUAIIU5OTobQ0FDR5s2bfY8cOVJPCCH79+9XdXZ2Mvh8vlQoFErOnTvHJoSQTZs2eXO53OC+vj46l8sNTkxM9HxQu+vWrWvr6uqyWrduXTuV/k9UKLwEAADDGi+FlzQaDd3BwcGo1Wrp4eHhwk8++aQhMTFxWnJy8u3nnnvusfxU8i9/+YtTRkaG45kzZ+6rCPk0GanwEn6tAAAA49qaNWt8a2pqbPv7+2krV65si4yMfKx7J/z2t7+dlpub63D27Nmax9nOeIZwAAAA41pmZuZ9f71fu3ZNSfW+O3fudM/IyHAefGzJkiXtf/3rX28TQm5Tvf9EhmkFAAAY1niZVoDHZ6RpBSxIBAAAAAsIBwAAAGAB4QAAAAAsIBwAAACABYQDAACg7M7//i9Xm5trsVWyNjeXfed//5f7ONqTy+XCgoKC+3ZfjIqKmq5Wq+/bFTExMdFz9+7dj6UvTyOEAwAAoMxWJtM17XybZw4I2txcdtPOt3m2Mtlj3ZNgqPz8/Fuurq4PXWwJLCEcAAAAZeyYGK3ngffrmna+zWt+7z3Ppp1v8zwPvF/HjomhVLZZqVTa8Pl8qfnz7t27uYO3PjYYDGTZsmV+W7du9SSEEC8vryCVSmVFyL/3MfDz8wuMiIgQ1NTUMM3X7N271y0gIEAqEAgkCxcu5BFCSFZWlp1IJJKIRCKJWCyWdHR0DPt+XLp0qX9aWtq9+g6LFy/2P378uAOVZxyPsAkSAACMCnZMjNZh6ZLWjr994eH08loV1WDwc/R6PW3p0qX+Eomk98CBA82DzxUWFrLS09Ody8rKKvR6PQkJCZGEhobqCCEkNTXVvaGhoczW1tZknoJISUlxT01NbYiNje3RaDR0FotlHK7N9evXt3744YfcNWvWdLa1tTGKiorsTp8+/dRtsYyRAwAAGBXa3Fy25kwGx+nltSrNmQzO0DUIoy0hIcF3uGBACCG5ubl2cXFxnWw22+js7GyMjY3tNJ8TCoW98fHx/ocPH3a2trY2EULI7Nmzu3fs2DFt7969bmq1mmFtbT1smwsWLOhuaGiY8q9//cvqs88+c16wYEHHSN+dyBAOAACAMvMaA88D79e579rVZJ5ioBoQrKysTEbjf/+I7+vru/femjlzZndhYaG9TqejDXctjTbsYZKbm1vzxhtvtBYVFU2VyWQSvV5P3nvvveZPP/20obe3lx4RESEuLi6eMlKfVqxY0fbpp586p6WluWzYsOGp3EES4QAAACjrLSlhDV5jYF6D0FtSct8vCh6Gt7f3QHt7u1VzczOjt7eXlpOTc29+f+PGjerY2FjNwoULA/R6vcV1c+fO7c7KynLs7u6mdXR00C9cuOBIyL/XKNTW1tosWrRIe/jw4UatVsvQaDSM8vJyplwu7923b19zUFBQz82bN0cMB5s2bVIfOXKESwghM2fO7KPyfOMV1hwAAABlbtu2tQw9xo6J0VJdd8BkMk1JSUkquVwu9vb27p8+fbrFy3jPnj0t27dvZyxbtsx/cHnlyMhIXXx8fHtgYKDUy8urXy6XdxNCyMDAAG3VqlX+Wq2WYTKZaBs3bmxxdXU1JCUleV6+fNmeTqebBAJB74svvqgZqU/Tpk0bCAgI6Fu0aFHnSN+Z6FB4CQAAhoXCS8PTarV0iUQiuXHjRqWLi8uE/tkkCi8BAABQdObMGbZAIJCuX7/+zkQPBg+CaQUAAIAhrl27Zvvyyy/7Dz5mY2NjLC0trVq6dGnZWPXrSUE4AAAAGEIul/dWVVVVjHU/xgqmFQAAAMACwgEAAABYQDgAAAAACwgHAAAAYAHhAAAAKLuSUcv9sVRtsVXyj6Vq9pWMWu7jaE8ulwsLCgru230xKipqurmY0mCJiYmeu3fvptyX+vp66/nz5/Oo3me8QzgAAADKuP4OuovHKnjmgPBjqZp98VgFj+vvoHuS/cjPz7/l6ur62PYf8PPz058/f77ucd1/vEA4AAAAyvyDXbXzXpHUXTxWwSs8Ue158VgFb94rkjr/YFdK2ycrlUobPp8vNX/evXs3NzEx0dP82WAwkGXLlvlt3brVkxBCvLy8glQqlRUhhOzcudPdz88vMCIiQlBTU8M0X7N37163gIAAqUAgkCxcuJBHCCFZWVl2IpFIIhKJJGKxWNLR0THs+3Fof55W2OcAAABGhX+wq1Y427219P9r9Aie662iGgx+jl6vpy1dutR/uLLNhYWFrPT0dOeysrIKvV5PQkJCJKGhoTpCCElNTXVvaGgos7W1NZmnIFJSUtxTU1MbYmNjezQaDZ3FYhmHa3OywMgBAACMih9L1WzllWZO8FxvlfJKM2foGoTRlpCQ4DtcMCCEkNzcXLu4uLhONpttdHZ2NsbGxt4rkiQUCnvj4+P9Dx8+7GxtbW0ihJDZs2d379ixY9revXvd1Go1w9ra+nF2fdxDOAAAAMrMawzmvSKpe3aFoMk8xUA1IFhZWZmMxv/+Ed/X13fvvTVz5szuwsJCe51ORxvuWhpt2MMkNze35o033mgtKiqaKpPJJHq9nrz33nvNn376aUNvby89IiJCXFxcPGLJ5skA4QAAAChr+VHDGrzGwLwGoeVHzX2/KHgY3t7eA+3t7VbNzc2M3t5eWk5OjoP53MaNG9WxsbGahQsXBuj1eovr5s6d252VleXY3d1N6+jooF+4cMGRkH+vUaitrbVZtGiR9vDhw41arZah0WgY5eXlTLlc3rtv377moKCgnps3b07qcIA1BwAAQNnsJQEtQ4/5B7tqqa47YDKZpqSkJJVcLhd7e3v3T58+vW/w+T179rRs376dsWzZMv8zZ878aD4eGRmpi4+Pbw8MDJR6eXn1y+XybkIIGRgYoK1atcpfq9UyTCYTbePGjS2urq6GpKQkz8uXL9vT6XSTQCDoffHFFzUj9YlGo5moPNNEQDOZnvpnBACAR1BSUlIvk8nUY92P8aSwsJCVmJg47fvvv1eOdV9GQ0lJiatMJvMbehzTCgAAAL9AQUEBa+3atbzNmzffN0rytMG0AgAAwBDXrl2zffnll/0HH7OxsTHW19ffHKs+PUkIBwAAAEPI5fLeqqqqirHux1jBtAIAAABYQDgAAAAACwgHAAAAYAHhAAAAACwgHAAAAGX//Ppv3NqiaxZbJdcWXWP/8+u/cR9He3K5XFhQUHDf7otRUVHTzcWUBktMTPTcvXs35b6cPXuWHRMTM53qfcY7hAMAAKDMgy/SZf8phWcOCLVF19jZf0rhefBFuifZj/z8/Fuurq6GJ9nm0wjhAAAAKAsIk2sVbyTVZf8phZd77Khn9p9SeIo3kuoCwuSUtk9WKpU2fD5fav68e/dubmJioqf5s8FgIMuWLfPbunWrJyGEeHl5BalUKitCCNm5c6e7n59fYEREhKCmpoZpvmbv3r1uAQEBUoFAIFm4cCGPEEKysrLsRCKRRCQSScRisaSjo2PE92NPTw9j/vz5PH9/f+nixYv9BxeGelpgnwMAABgVAWFyrfS5ea0/ZH/rMUOxWEU1GPwcvV5PW7p0qf9wZZsLCwtZ6enpzmVlZRV6vZ6EhIRIQkNDdYQQkpqa6t7Q0FBma2trMk9BpKSkuKempjbExsb2aDQaOovFGvGNX1lZaXvjxo06Pz8/fVhYmOjChQt2v/rVr7of57M+aRg5AACAUVFbdI1dXnCRM0OxWFVecJEzdA3CaEtISPAdLhgQQkhubq5dXFxcJ5vNNjo7OxtjY2M7zeeEQmFvfHy8/+HDh52tra1NhBAye/bs7h07dkzbu3evm1qtZlhbW4/YblBQUE9AQICewWAQqVSqq62ttXksDziGEA4AAIAy8xoDxRtJdTGvbGgyTzFQDQhWVlamwcP2fX19995bM2fO7C4sLLTX6XS04a6l0YY9THJzc2veeOON1qKioqkymUyi1+vJe++91/zpp5829Pb20iMiIsTFxcUjlmxmMpn3KhYyGAwyMDAwfEMTGMIBAABQpqqpYg1eY2Beg6CqqbrvFwUPw9vbe6C9vd2qubmZ0dvbS8vJyXEwn9u4caM6NjZWs3DhwgC9Xm9x3dy5c7uzsrIcu7u7aR0dHfQLFy44EvLvNQq1tbU2ixYt0h4+fLhRq9UyNBoNo7y8nCmXy3v37dvXHBQU1HPz5s0Rw8FkgDUHAABAWeTKl++rVBgQJtdSXXfAZDJNSUlJKrlcLvb29u6fPn163+Dze/bsadm+fTtj2bJl/mfOnPnxXn8iI3Xx8fHtgYGBUi8vr365XN5NCCEDAwO0VatW+Wu1WobJZKJt3LixxdXV1ZCUlOR5+fJlezqdbhIIBL0vvviihkq/JzqayWT6+W8BAMCkU1JSUi+TydRj3Q94fEpKSlxlMpnf0OOYVgAAAAALmFYAAAAY4tq1a7Yvv/yy/+BjNjY2xtLS0qqx6tOThHAAAAAwhFwu762qqqoY636MFUwrAAAAgAWEAwAAALCAcAAAAAAWEA4AAADAAsIBAABQpsmp5/ZWtllsldxb2cbW5NRzH0d7crlcWFBQcN/ui1FRUdPNxZQGS0xM9Ny9ezflvpw9e5YdExMznep9xjuEAwAAoMzGh61rP1HNMweE3so2dvuJap6ND1v3JPuRn59/y9XV1fAk23waIRwAAABltmIXrfMKQV37iWpeZ2atZ/uJap7zCkGdrdiF0vbJSqXShs/nS82fd+/ezU1MTPQ0fzYYDGTZsmV+W7du9SSEEC8vryCVSmVFCCE7d+509/PzC4yIiBDU1NQwzdfs3bvXLSAgQCoQCCQLFy7kEUJIVlaWnUgkkohEIolYLJZ0dHT87PsxPz+fJRaLJRUVFU9dVUbscwAAAKPCVuyinTrDrbX7UpOH3RxPFdVg8HP0ej1t6dKl/sOVbS4sLGSlp6c7l5WVVej1ehISEiIJDQ3VEUJIamqqe0NDQ5mtra3JPAWRkpLinpqa2hAbG9uj0WjoLBbLOFybZhcuXJi6bds2n2+//fYWn8+/+/iecmxg5AAAAEZFb2Ubu+eHOxy7OZ6qnh/ucIauQRhtCQkJvsMFA0IIyc3NtYuLi+tks9lGZ2dnY2xsbKf5nFAo7I2Pj/c/fPiws7W1tYkQQmbPnt29Y8eOaXv37nVTq9UMa2vrEdu9devWlISEBL+srKynMhgQgnAAAACjwLzGwHmFoM5xUUCTeYqBakCwsrIyGY3//SO+r6/v3ntr5syZ3YWFhfY6nY423LU02rCHSW5ubs0bb7zRWlRUNFUmk0n0ej157733mj/99NOG3t5eekREhLi4uHjEks1ubm56JpNpvHLlCqVy1OMZwgEAAFB29ycta/AaA/MahLs/aSm9QL29vQfa29utmpubGb29vbScnBwH87mNGzeqY2NjNQsXLgzQ6/UW182dO7c7KyvLsbu7m9bR0UG/cOGCIyH/XqNQW1trs2jRIu3hw4cbtVotQ6PRMMrLy5lyubx33759zUFBQT03b94cMRzY29sbsrOza9555x2vs2fPPtbRkbGCNQcAAECZw6/8WoYesxW7aKmuO2AymaakpCSVXC4Xe3t790+fPr1v8Pk9e/a0bN++nbFs2TL/M2fO/Gg+HhkZqYuPj28PDAyUenl59cvl8m5CCBkYGKCtWrXKX6vVMkwmE23jxo0trq6uhqSkJM/Lly/b0+l0k0Ag6H3xxRc1D+rXtGnTBs6ePXtLoVDwWSxW/dy5c3uoPOd4QzOZTGPdBwAAGIdKSkrqZTKZeqz7AY9PSUmJq0wm8xt6HNMKAAAAYAHTCgAAAENcu3bN9uWXX/YffMzGxsZYWlpaNVZ9epIQDgAAAIaQy+W9VVVVFWPdj7GCaQUAAACwgHAAAAAAFhAOAAAAwALCAQAAAFhAOAAAAMouXrzIVSqVFrsFKpVK9sWLF7mj3VZ9fb31/PnzeSOdV6vVjPfff58z2u1OJggHAABAmbe3ty49PZ1nDghKpZKdnp7O8/b21o12W35+fvrz58/XjXS+ra2N8dlnn7mNdruTCcIBAABQJhQKtfHx8XXp6em87Oxsz/T0dF58fHydUCiktH3y66+/7jV4FCAxMdHznXfe4fL5fCkhhFy/fn1KUFCQWCQSSQQCgaSsrIyZlJTkffv2baZIJJJs3LjRW6PR0MPDwwUSiUQsEAgkaWlpjiO198EHH3BEIpFEJBJJvLy8gmbNmiWg0v+JCtsnAwDAsB5l++Ts7GzPq1evesyaNUulUCiaqPbh0qVLttu2bfP5/vvvlYQQEhAQIP3oo48atm7d6ltTU1P+29/+dtrs2bN7Xn/99fa+vj7awMAA+de//mW9cOFCfk1NTTkhhOj1eqLVaunOzs5GlUplNWvWLFF9ff1NOn3kv4/7+/tpERERgqSkpOZVq1Y9sM7CRDbS9snYBAkAAEaFUqlkl5SUcGbNmqUqKSnh8Hg8LdWRgzlz5vS2tbVZ1dfXW6tUKisHBwcDj8e7az4fHh7ek5yc7NHY2GizcuXKjqCgoP6h9zAajbRt27Z5X7lyxY5Op5M7d+7YNDY2Wvn4+AyM1O66deumPffcc9qnORg8CKYVAACAMvMag/j4+DqFQtFknmIYukjxUSxatKgjLS3N6fjx487Lly9vH3xu06ZN7RkZGbdsbW2NCoVC8O23397X3pEjR5zb2tqsysrKKquqqipcXFz0vb29I77/UlNTXRobG22Sk5Mpj3xMVBg5AAAAyhobG1mD1xiY1yA0NjayqI4erF27tn39+vV+HR0dVvn5+cq+vj6a+VxFRYWNWCzul0qld+rq6pg3btywlcvlup6ennsvf41Gw3B1ddUzmUxTZmYmu6mpyWaktgoLC1mHDh1yv3z5chWDwaDS7QkN4QAAACibN29ey9BjQqGQ8rQCIYTMnDmzr6enh87lcu/6+vrqlUrlvZf7F1984Xzy5EkXKysrE9k6E+AAAA3fSURBVIfD0e/fv7+Jy+UawsLCuvl8vnTu3LmaPXv2NCsUiumBgYFiqVSq8/f37xuprf/7v/9z02g0jGeffVZICCEymaznm2++aaD6DBMNFiQCAMCwHmVBIkwsIy1IxJoDAAAAsIBpBQAAmHSam5sZ0dHRwqHH8/LylO7u7oax6NN4gnAAAACTjru7u6GqqqpirPsxXmFaAQAAACwgHAAAAIAFhAMAAACwgHAAAAAAFhAOAACAstraFG6r+qLF1sWt6ovs2toU7mi3VV9fbz1//nzeSOfVajVjcCVHeHgIBwAAQJm9Q4iuomIHzxwQWtUX2RUVO3j2DiG60W7Lz89Pf/78+bqRzre1tTE+++wzt9FudzJBOAAAAMo4rvO0EklyXUXFDl519bueFRU7eBJJch3HdR6l7ZNff/11r8GjAImJiZ7vvPMOl8/nSwkh5Pr161OCgoLEIpFIIhAIJGVlZcykpCTv27dvM0UikWTjxo3eGo2GHh4eLpBIJGKBQCBJS0tzHKm9N9980/Pdd9+9Fyy2bNnitXfv3kkXNBAOAABgVHBc52k93Je13m485uHhvqyVajAghJA1a9a0nz592tn8OSMjw2n27Nk95s+HDh3iJCQktFRVVVWUlpZW+vv7301JSWmcNm1af1VVVcWRI0caWSyWMSsr61ZFRUVlfn5+9a5du7yNRuOw7SUkJKi/+uorF0IIMRgM5MyZM06vvfZaG9XnmGiwCRIAAIyKVvVFtqr575xp3q+oVM1/5zg5R2ipBoQ5c+b0trW1WdXX11urVCorBwcHA4/Hu2s+Hx4e3pOcnOzR2Nhos3Llyo6goKD+ofcwGo20bdu2eV+5csWOTqeTO3fu2DQ2Nlr5+PgMDP2uUCi86+joOHDp0iVblUplLZVKdZNxx0SEAwAAoMy8xsA8leDkHKEdramFRYsWdaSlpTk1NzdbL1++vH3wuU2bNrU/++yzPenp6Q4KhUJw+PDheqFQaBEQjhw54tzW1mZVVlZWyWQyTV5eXkG9vb0jjpy/+uqr6k8//dT1zp071q+++uqkGzUgBOEAAABGQZfmBmtwEDCvQejS3GBRDQdr165tX79+vV9HR4dVfn6+sq+vj2Y+V1FRYSMWi/ulUumduro65o0bN2zlcrmup6fn3stfo9EwXF1d9Uwm05SZmcluamqyGb6le+117tu3z2tgYIC2fPnyERc+Ps0QDgAAgLKAgKSWocc4rvMoTysQQsjMmTP7enp66Fwu966vr69eqVTee7l/8cUXzidPnnSxsrIycTgc/f79+5u4XK4hLCysm8/nS+fOnavZs2dPs0KhmB4YGCiWSqU6f3//vge1N2XKFFNERESXo6Ojwcpqcr4maSaTaaz7AAAA41BJSUm9TCZTj3U/njSDwUCkUqnk5MmTtcOtYXialJSUuMpkMr+hx/FrBQAAgP8oKiqa4uvrG/Tss892Pe3B4EEm53gJAABMas3NzYzo6Gjh0ON5eXnKxsbGsrHo03iCcAAAAJOOu7u7oaqqqmKs+zFeYVoBAAAALCAcAAAAgAWEAwAAALCAcAAAAAAWEA4AAICy/XUq7j/UGvbgY/9Qa9j761Tc0W6rvr7eev78+byRzqvVasbgSo4PKzQ0VPSo1z4tEA4AAICyMHuWbkvlTzxzQPiHWsPeUvkTL8yepRvttvz8/PTnz58fcVvjtrY2xmefffbIZZaLi4urHvXapwXCAQAAUBbr6qA9JPap21L5E+9/aho9t1T+xDsk9qmLdXWgtH3y66+/7jV4FCAxMdHznXfe4fL5fCkhhFy/fn1KUFCQWCQSSQQCgaSsrIyZlJTkffv2baZIJJJs3LjRW6PR0MPDwwUSiUQsEAgkaWlpjg9qk8VihVLp89MA4QAAAEZFrKuDdoW7U+ufG9UeK9ydWqkGA0IIWbNmTfvp06edzZ8zMjKcZs+e3WP+fOjQIU5CQkJLVVVVRWlpaaW/v//dlJSUxmnTpvVXVVVVHDlypJHFYhmzsrJuVVRUVObn51fv2rXL22g0Uu3aUw2bIAEAwKj4h1rDPtHcwVnv7ao60dzBedaJraUaEObMmdPb1tZmVV9fb61SqawcHBwMPB7vrvl8eHh4T3JyskdjY6PNypUrO4bb8thoNNK2bdvmfeXKFTs6nU7u3Llj09jYaOXj4zNApW9PM4wcAAAAZeY1BofEPnXv8r2bzFMMQxcpPopFixZ1pKWlOR0/ftx5+fLl7YPPbdq0qT0jI+OWra2tUaFQCL799tv72jty5IhzW1ubVVlZWWVVVVWFi4uLvre3F++/B8DIAQAAUFbUpWMNXmNgXoNQ1KVjUR09WLt2bfv69ev9Ojo6rPLz85V9fX0087mKigobsVjcL5VK79TV1TFv3LhhK5fLdT09Pfde/hqNhuHq6qpnMpmmzMxMdlNTk83wLYEZwgEAAFD2//A8WoYei3V1oDytQAghM2fO7Ovp6aFzudy7vr6+eqVSee/l/sUXXzifPHnSxcrKysThcPT79+9v4nK5hrCwsG4+ny+dO3euZs+ePc0KhWJ6YGCgWCqV6vz9/fse1B6NRnvQ6UmBZjKZxroPAAAwDpWUlNTLZDL1WPfjSWpubmbMmDFD0tTUNCkqM5aUlLjKZDK/occx5wIAAED+vbnS7NmzxW+88cZ9oyCTDaYVAABg0mlubmZER0cLhx6/cuVKpbu7u2Es+jSeIBwAAMCk4+7ubqiqqqoY636MV5hWAAAAAAsIBwAAAGAB4QAAAAAsIBwAAABlyTlK7neVLRa7E35X2cJOzlFOqJLNSqXSxlzUaTJDOAAAAMpCfBx1iSdu8MwB4bvKFnbiiRu8EB/HCVeyGRAOAABgFDwv5moPrgipSzxxg/f/ZpZ7Jp64wTu4IqTueTF3wpVsNhgMZOXKlb7Tp0+Xzpkzh9/d3T3ptkxEOAAAgFHxvJirXT7Du/Uvl+o9ls/wbqUaDAgZm5LNP/3005StW7feuXXrVrmDg4Phb3/7mxPV55hosM8BAACMiu8qW9inf2jkvDrHT3X6h0bOnOmuWqoBYSxKNnt5efVHRET0EkJIaGiorr6+nknlGSYijBwAAABl5jUGB1eE1L2zSNpknmIYukjxUTzpks02Njb3ig4xGAzTwMDApJtWwMgBAABQduOnTtbgNQbmNQg3fupkUR09QMnmJw/hAAAAKNvxK+F9xYqeF3MpTysQ8uRLNgNKNgMAwAgmY8nmyQYlmwEAAOAXwbQCAABMOiOVbM7Ly1OiZDPCAQAATEIo2fxgmFYAAAAACwgHAAAAYAHhAAAAACwgHAAAAIAFhAMAAKDu4rtcosy23LpYmc0mF9/ljnZT9fX11vPnz+eNdF6tVjMGV3J8GEql0sZc8XEyQzgAAADqvGfqSPom3r2AoMxmk/RNPOI9UzfaTfn5+enPnz9fN9L5trY2xmeffeY22u1OJggHAABAnVChJfGf1JH0TTyS/bYnSd/EI/Gf1BGhgtL2ya+//rrX4FGAxMREz3feeYdr/uv++vXrU4KCgsQikUgiEAgkZWVlzKSkJO/bt28zRSKRZOPGjd4ajYYeHh4ukEgkYoFAIElLS3P8JW3/p26DJD8/nzVcO1Sea7xDOAAAgNEhVGiJ7KVWcvVjDyJ7qZVqMCCEkDVr1rSfPn3a2fw5IyPDafbs2T3mz4cOHeIkJCS0VFVVVZSWllb6+/vfTUlJaZw2bVp/VVVVxZEjRxpZLJYxKyvrVkVFRWV+fn71rl27vI1G4wPbLSkpYS5fvnz6Z5999mNUVJRuuHaoPtt4hk2QAABgdCiz2aTkKw6Z9bqKlHzFIbwoLdWAMGfOnN62tjar+vp6a5VKZeXg4GDg8Xj3Xszh4eE9ycnJHo2NjTYrV67sCAoK6h96D6PRSNu2bZv3lStX7Oh0Orlz545NY2OjlY+Pz8Bwbba3t1stXbp0+smTJ2tnzpzZ90vbeZpg5AAAAKgzrzGI/6SOKN5vujfFMHSR4iNYtGhRR1pamtPx48edly9f3j743KZNm9ozMjJu2draGhUKheDbb7+9r70jR444t7W1WZWVlVVWVVVVuLi46Ht7e0d8/7HZbIOHh8fdvLw8u4dp52mCkQMAAKCu8TrLYo2BeQ1C43UW1dGDtWvXtq9fv96vo6PDKj8/X9nX10czn/vPuoB+qVR6p66ujnnjxg1buVyu6+npuffy12g0DFdXVz2TyTRlZmaym5qabIZv6d+sra1N58+fr42JieHb2dkZN23a1D5cO4sXL6Y8bTJeIRwAAAB18/6n5b5jQgXlaQVCCJk5c2ZfT08Pncvl3vX19dUrlcp7L/cvvvjC+eTJky5WVlYmDoej379/fxOXyzWEhYV18/l86dy5czV79uxpVigU0wMDA8VSqVTn7+/f93Nt2tvbG3Nycm5FR0cL7OzsjOXl5VOGtkP1ucYzmslkGus+AADAOFRSUlIvk8nUY90PeHxKSkpcZTKZ39DjWHMAAAAAFjCtAAAAk05zczMjOjpaOPR4Xl6e0t3d3TAWfRpPEA4AAGDScXd3N1RVVVWMdT/GK0wrAADASIxGo5H281+Dieg//2+H3Q0K4QAAAEZys7W11QEB4eljNBppra2tDoSQm8Odx7QCAAAMa2Bg4LXm5uZPm5ubAwn+mHzaGAkhNwcGBl4b7iR+yggAAAAWkAQBAADAAsIBAAAAWEA4AAAAAAsIBwAAAGAB4QAAAAAs/P/QyKDE29gd5QAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for dat in data:\n",
" wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n",
" depth = average_depths['5s'][average_depths['band'] == dat[0]]\n",
" #print(depth)\n",
" coverage = np.sum(~np.isnan(depths['ferr_{}_mean'.format(dat[0])]))/len(depths)\n",
" plt.plot(coverage, depth, 'x', label=dat[0])\n",
" \n",
"plt.xlabel('Coverage')\n",
"plt.ylabel('Depth')\n",
"#plt.xscale('log')\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
"plt.title('Depths (5 $\\sigma$) vs coverage on {}'.format(FIELD))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (herschelhelp_internal)",
"language": "python",
"name": "helpint"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}