{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# GAMA-09 Selection Functions\n",
"## Depth maps and selection functions\n",
"\n",
"The simplest selection function available is the field MOC which specifies the area for which there is Herschel data. Each pristine catalogue also has a MOC defining the area for which that data is available.\n",
"\n",
"The next stage is to provide mean flux standard deviations which act as a proxy for the catalogue's 5$\\sigma$ depth"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This notebook was run with herschelhelp_internal version: \n",
"017bb1e (Mon Jun 18 14:58:59 2018 +0100)\n",
"This notebook was executed on: \n",
"2019-01-24 18:41:29.453288\n"
]
}
],
"source": [
"from herschelhelp_internal import git_version\n",
"print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n",
"import datetime\n",
"print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"#%config InlineBackend.figure_format = 'svg'\n",
"\n",
"import matplotlib.pyplot as plt\n",
"plt.rc('figure', figsize=(10, 6))\n",
"\n",
"import os\n",
"import time\n",
"\n",
"from astropy import units as u\n",
"from astropy.coordinates import SkyCoord\n",
"from astropy.table import Column, Table, join\n",
"import numpy as np\n",
"from pymoc import MOC\n",
"import healpy as hp\n",
"#import pandas as pd #Astropy has group_by function so apandas isn't required.\n",
"import seaborn as sns\n",
"\n",
"import warnings\n",
"#We ignore warnings - this is a little dangerous but a huge number of warnings are generated by empty cells later\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"from herschelhelp_internal.utils import inMoc, coords_to_hpidx, flux_to_mag\n",
"from herschelhelp_internal.masterlist import find_last_ml_suffix, nb_ccplots\n",
"\n",
"from astropy.io.votable import parse_single_table"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"FIELD = 'GAMA-09'\n",
"#FILTERS_DIR = \"/Users/rs548/GitHub/herschelhelp_python/database_builder/filters/\"\n",
"FILTERS_DIR = \"/opt/herschelhelp_python/database_builder/filters/\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Depth maps produced using: master_catalogue_gama-09_20190123.fits\n"
]
}
],
"source": [
"TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n",
"OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n",
"SUFFIX = find_last_ml_suffix()\n",
"#SUFFIX = \"20171016\"\n",
"\n",
"master_catalogue_filename = \"master_catalogue_{}_{}.fits\".format(FIELD.lower(), SUFFIX)\n",
"master_catalogue = Table.read(\"{}/{}\".format(OUT_DIR, master_catalogue_filename))\n",
"\n",
"print(\"Depth maps produced using: {}\".format(master_catalogue_filename))\n",
"\n",
"ORDER = 10\n",
"#TODO write code to decide on appropriate order\n",
"\n",
"field_moc = MOC(filename=\"../../dmu2/dmu2_field_coverages/{}_MOC.fits\".format(FIELD))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Remove sources whose signal to noise ratio is less than five as these will have been selected using forced \n",
"# photometry and so the errors will not refelct the RMS of the map \n",
"for n,col in enumerate(master_catalogue.colnames):\n",
" if col.startswith(\"f_\"):\n",
" err_col = \"ferr{}\".format(col[1:])\n",
" errs = master_catalogue[err_col]\n",
" fluxes = master_catalogue[col]\n",
" mask = fluxes/errs < 5.0\n",
" master_catalogue[col][mask] = np.nan\n",
" master_catalogue[err_col][mask] = np.nan"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## I - Group masterlist objects by healpix cell and calculate depths\n",
"We add a column to the masterlist catalogue for the target order healpix cell per object ."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"#Add a column to the catalogue with the order=ORDER hp_idx\n",
"master_catalogue.add_column(Column(data=coords_to_hpidx(master_catalogue['ra'],\n",
" master_catalogue['dec'],\n",
" ORDER), \n",
" name=\"hp_idx_O_{}\".format(str(ORDER))\n",
" )\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"# Convert catalogue to pandas and group by the order=ORDER pixel\n",
"\n",
"group = master_catalogue.group_by([\"hp_idx_O_{}\".format(str(ORDER))])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"#Downgrade the groups from order=ORDER to order=13 and then fill out the appropriate cells\n",
"#hp.pixelfunc.ud_grade([2599293, 2599294], nside_out=hp.order2nside(13))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## II Create a table of all Order=13 healpix cells in the field and populate it\n",
"We create a table with every order=13 healpix cell in the field MOC. We then calculate the healpix cell at lower order that the order=13 cell is in. We then fill in the depth at every order=13 cell as calculated for the lower order cell that that the order=13 cell is inside."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"depths = Table()\n",
"depths['hp_idx_O_13'] = list(field_moc.flattened(13))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/html": [
"Table length=10 \n",
"
\n",
"idx hp_idx_O_13 \n",
"0 67108864 \n",
"1 67108865 \n",
"2 67108866 \n",
"3 67108867 \n",
"4 67108868 \n",
"5 67108869 \n",
"6 67108870 \n",
"7 67108871 \n",
"8 67108872 \n",
"9 67108873 \n",
"
\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"depths[:10].show_in_notebook()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"depths.add_column(Column(data=hp.pixelfunc.ang2pix(2**ORDER,\n",
" hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[0],\n",
" hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[1],\n",
" nest = True),\n",
" name=\"hp_idx_O_{}\".format(str(ORDER))\n",
" )\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true,
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"Table length=10 \n",
"\n",
"idx hp_idx_O_13 hp_idx_O_10 \n",
"0 67108864 1048576 \n",
"1 67108865 1048576 \n",
"2 67108866 1048576 \n",
"3 67108867 1048576 \n",
"4 67108868 1048576 \n",
"5 67108869 1048576 \n",
"6 67108870 1048576 \n",
"7 67108871 1048576 \n",
"8 67108872 1048576 \n",
"9 67108873 1048576 \n",
"
\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"depths[:10].show_in_notebook()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/html": [
"Table masked=True length=10 \n",
"\n",
"idx hp_idx_O_13 hp_idx_O_10 ferr_ap_megacam_u_mean f_ap_megacam_u_p90 ferr_megacam_u_mean f_megacam_u_p90 ferr_ap_megacam_g_mean f_ap_megacam_g_p90 ferr_megacam_g_mean f_megacam_g_p90 ferr_ap_megacam_r_mean f_ap_megacam_r_p90 ferr_megacam_r_mean f_megacam_r_p90 ferr_ap_megacam_i_mean f_ap_megacam_i_p90 ferr_megacam_i_mean f_megacam_i_p90 ferr_ap_megacam_z_mean f_ap_megacam_z_p90 ferr_megacam_z_mean f_megacam_z_p90 ferr_ap_decam_g_mean f_ap_decam_g_p90 ferr_decam_g_mean f_decam_g_p90 ferr_ap_decam_r_mean f_ap_decam_r_p90 ferr_decam_r_mean f_decam_r_p90 ferr_ap_decam_z_mean f_ap_decam_z_p90 ferr_decam_z_mean f_decam_z_p90 ferr_ap_suprime_g_mean f_ap_suprime_g_p90 ferr_suprime_g_mean f_suprime_g_p90 ferr_ap_suprime_r_mean f_ap_suprime_r_p90 ferr_suprime_r_mean f_suprime_r_p90 ferr_ap_suprime_i_mean f_ap_suprime_i_p90 ferr_suprime_i_mean f_suprime_i_p90 ferr_ap_suprime_z_mean f_ap_suprime_z_p90 ferr_suprime_z_mean f_suprime_z_p90 ferr_ap_suprime_y_mean f_ap_suprime_y_p90 ferr_suprime_y_mean f_suprime_y_p90 ferr_ap_omegacam_u_mean f_ap_omegacam_u_p90 ferr_omegacam_u_mean f_omegacam_u_p90 ferr_ap_omegacam_g_mean f_ap_omegacam_g_p90 ferr_omegacam_g_mean f_omegacam_g_p90 ferr_ap_omegacam_r_mean f_ap_omegacam_r_p90 ferr_omegacam_r_mean f_omegacam_r_p90 ferr_ap_omegacam_i_mean f_ap_omegacam_i_p90 ferr_omegacam_i_mean f_omegacam_i_p90 ferr_ap_gpc1_g_mean f_ap_gpc1_g_p90 ferr_gpc1_g_mean f_gpc1_g_p90 ferr_ap_gpc1_r_mean f_ap_gpc1_r_p90 ferr_gpc1_r_mean f_gpc1_r_p90 ferr_ap_gpc1_i_mean f_ap_gpc1_i_p90 ferr_gpc1_i_mean f_gpc1_i_p90 ferr_ap_gpc1_z_mean f_ap_gpc1_z_p90 ferr_gpc1_z_mean f_gpc1_z_p90 ferr_ap_gpc1_y_mean f_ap_gpc1_y_p90 ferr_gpc1_y_mean f_gpc1_y_p90 ferr_ap_ukidss_y_mean f_ap_ukidss_y_p90 ferr_ukidss_y_mean f_ukidss_y_p90 ferr_ap_ukidss_j_mean f_ap_ukidss_j_p90 ferr_ukidss_j_mean f_ukidss_j_p90 ferr_ap_ukidss_h_mean f_ap_ukidss_h_p90 ferr_ukidss_h_mean f_ukidss_h_p90 ferr_ap_ukidss_k_mean f_ap_ukidss_k_p90 ferr_ukidss_k_mean f_ukidss_k_p90 ferr_ap_vista_z_mean f_ap_vista_z_p90 ferr_vista_z_mean f_vista_z_p90 ferr_ap_vista_y_mean f_ap_vista_y_p90 ferr_vista_y_mean f_vista_y_p90 ferr_ap_vista_j_mean f_ap_vista_j_p90 ferr_vista_j_mean f_vista_j_p90 ferr_ap_vista_h_mean f_ap_vista_h_p90 ferr_vista_h_mean f_vista_h_p90 ferr_ap_vista_ks_mean f_ap_vista_ks_p90 ferr_vista_ks_mean f_vista_ks_p90 \n",
"uJy uJy uJy uJy uJy uJy uJy uJy \n",
"0 67108864 1048576 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.20712729 22.190865898132333 0.23891595 11.457367706298829 0.31425783 40.808209609985354 0.3205096 21.450888633728038 0.22510855 28.52808017730713 0.1811421 20.618700790405278 0.01926224 1.093110775947571 0.034778833 1.8777025938034058 0.030870374 2.207973670959474 0.053353354 4.028220462799073 0.041768204 3.9088841676712036 0.072007015 6.394688367843629 0.06151843 6.307412719726562 0.10487225 9.14298677444458 0.14352015 11.514863014221191 0.25547522 16.634721374511738 0.3888968 63.67387886047371 0.52538955 53.09270019531243 0.10194926 5.193379402160647 0.12590013 7.6650718688964865 0.13300735 8.715188312530517 0.16042137 12.884206199645995 0.23194352 19.81114673614502 0.28397176 21.936244392395018 0.9146511199688802 90.33195380168462 1.4129377104634835 87.22473294297698 2.426566489712307 310.59886159292296 1.9975555268295415 209.93888170771322 2.1769331990034124 192.24658435591698 1.5630501880790477 154.29788934567114 146.9257488416712 599.0112124616078 119.29082726469397 394.5893886961105 68.0845813961089 1101.7424374626748 71.37364667915077 926.2673819532978 3.2966712 280.6819839477539 5.1108465 565.7011718750006 4.862965 535.046569824219 6.1554484 572.4893798828125 4.8178754 427.43753967285147 8.013827 502.00401611328124 6.3801355 367.36008605957045 12.952429 857.0261047363313 0.46263823 6.169202089309692 0.98753554 14.446976852416993 nan nan nan nan 1.9294524192810059 28.43710155487061 2.602437734603882 18.900683403015137 1.7355504155158996 15.964161586761474 3.796893763542175 58.08679122924804 2.36790292603629 26.66351928710938 nan nan \n",
"1 67108911 1048576 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.20712729 22.190865898132333 0.23891595 11.457367706298829 0.31425783 40.808209609985354 0.3205096 21.450888633728038 0.22510855 28.52808017730713 0.1811421 20.618700790405278 0.01926224 1.093110775947571 0.034778833 1.8777025938034058 0.030870374 2.207973670959474 0.053353354 4.028220462799073 0.041768204 3.9088841676712036 0.072007015 6.394688367843629 0.06151843 6.307412719726562 0.10487225 9.14298677444458 0.14352015 11.514863014221191 0.25547522 16.634721374511738 0.3888968 63.67387886047371 0.52538955 53.09270019531243 0.10194926 5.193379402160647 0.12590013 7.6650718688964865 0.13300735 8.715188312530517 0.16042137 12.884206199645995 0.23194352 19.81114673614502 0.28397176 21.936244392395018 0.9146511199688802 90.33195380168462 1.4129377104634835 87.22473294297698 2.426566489712307 310.59886159292296 1.9975555268295415 209.93888170771322 2.1769331990034124 192.24658435591698 1.5630501880790477 154.29788934567114 146.9257488416712 599.0112124616078 119.29082726469397 394.5893886961105 68.0845813961089 1101.7424374626748 71.37364667915077 926.2673819532978 3.2966712 280.6819839477539 5.1108465 565.7011718750006 4.862965 535.046569824219 6.1554484 572.4893798828125 4.8178754 427.43753967285147 8.013827 502.00401611328124 6.3801355 367.36008605957045 12.952429 857.0261047363313 0.46263823 6.169202089309692 0.98753554 14.446976852416993 nan nan nan nan 1.9294524192810059 28.43710155487061 2.602437734603882 18.900683403015137 1.7355504155158996 15.964161586761474 3.796893763542175 58.08679122924804 2.36790292603629 26.66351928710938 nan nan \n",
"2 67108912 1048576 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.20712729 22.190865898132333 0.23891595 11.457367706298829 0.31425783 40.808209609985354 0.3205096 21.450888633728038 0.22510855 28.52808017730713 0.1811421 20.618700790405278 0.01926224 1.093110775947571 0.034778833 1.8777025938034058 0.030870374 2.207973670959474 0.053353354 4.028220462799073 0.041768204 3.9088841676712036 0.072007015 6.394688367843629 0.06151843 6.307412719726562 0.10487225 9.14298677444458 0.14352015 11.514863014221191 0.25547522 16.634721374511738 0.3888968 63.67387886047371 0.52538955 53.09270019531243 0.10194926 5.193379402160647 0.12590013 7.6650718688964865 0.13300735 8.715188312530517 0.16042137 12.884206199645995 0.23194352 19.81114673614502 0.28397176 21.936244392395018 0.9146511199688802 90.33195380168462 1.4129377104634835 87.22473294297698 2.426566489712307 310.59886159292296 1.9975555268295415 209.93888170771322 2.1769331990034124 192.24658435591698 1.5630501880790477 154.29788934567114 146.9257488416712 599.0112124616078 119.29082726469397 394.5893886961105 68.0845813961089 1101.7424374626748 71.37364667915077 926.2673819532978 3.2966712 280.6819839477539 5.1108465 565.7011718750006 4.862965 535.046569824219 6.1554484 572.4893798828125 4.8178754 427.43753967285147 8.013827 502.00401611328124 6.3801355 367.36008605957045 12.952429 857.0261047363313 0.46263823 6.169202089309692 0.98753554 14.446976852416993 nan nan nan nan 1.9294524192810059 28.43710155487061 2.602437734603882 18.900683403015137 1.7355504155158996 15.964161586761474 3.796893763542175 58.08679122924804 2.36790292603629 26.66351928710938 nan nan \n",
"3 67108913 1048576 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.20712729 22.190865898132333 0.23891595 11.457367706298829 0.31425783 40.808209609985354 0.3205096 21.450888633728038 0.22510855 28.52808017730713 0.1811421 20.618700790405278 0.01926224 1.093110775947571 0.034778833 1.8777025938034058 0.030870374 2.207973670959474 0.053353354 4.028220462799073 0.041768204 3.9088841676712036 0.072007015 6.394688367843629 0.06151843 6.307412719726562 0.10487225 9.14298677444458 0.14352015 11.514863014221191 0.25547522 16.634721374511738 0.3888968 63.67387886047371 0.52538955 53.09270019531243 0.10194926 5.193379402160647 0.12590013 7.6650718688964865 0.13300735 8.715188312530517 0.16042137 12.884206199645995 0.23194352 19.81114673614502 0.28397176 21.936244392395018 0.9146511199688802 90.33195380168462 1.4129377104634835 87.22473294297698 2.426566489712307 310.59886159292296 1.9975555268295415 209.93888170771322 2.1769331990034124 192.24658435591698 1.5630501880790477 154.29788934567114 146.9257488416712 599.0112124616078 119.29082726469397 394.5893886961105 68.0845813961089 1101.7424374626748 71.37364667915077 926.2673819532978 3.2966712 280.6819839477539 5.1108465 565.7011718750006 4.862965 535.046569824219 6.1554484 572.4893798828125 4.8178754 427.43753967285147 8.013827 502.00401611328124 6.3801355 367.36008605957045 12.952429 857.0261047363313 0.46263823 6.169202089309692 0.98753554 14.446976852416993 nan nan nan nan 1.9294524192810059 28.43710155487061 2.602437734603882 18.900683403015137 1.7355504155158996 15.964161586761474 3.796893763542175 58.08679122924804 2.36790292603629 26.66351928710938 nan nan \n",
"4 67108895 1048576 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.20712729 22.190865898132333 0.23891595 11.457367706298829 0.31425783 40.808209609985354 0.3205096 21.450888633728038 0.22510855 28.52808017730713 0.1811421 20.618700790405278 0.01926224 1.093110775947571 0.034778833 1.8777025938034058 0.030870374 2.207973670959474 0.053353354 4.028220462799073 0.041768204 3.9088841676712036 0.072007015 6.394688367843629 0.06151843 6.307412719726562 0.10487225 9.14298677444458 0.14352015 11.514863014221191 0.25547522 16.634721374511738 0.3888968 63.67387886047371 0.52538955 53.09270019531243 0.10194926 5.193379402160647 0.12590013 7.6650718688964865 0.13300735 8.715188312530517 0.16042137 12.884206199645995 0.23194352 19.81114673614502 0.28397176 21.936244392395018 0.9146511199688802 90.33195380168462 1.4129377104634835 87.22473294297698 2.426566489712307 310.59886159292296 1.9975555268295415 209.93888170771322 2.1769331990034124 192.24658435591698 1.5630501880790477 154.29788934567114 146.9257488416712 599.0112124616078 119.29082726469397 394.5893886961105 68.0845813961089 1101.7424374626748 71.37364667915077 926.2673819532978 3.2966712 280.6819839477539 5.1108465 565.7011718750006 4.862965 535.046569824219 6.1554484 572.4893798828125 4.8178754 427.43753967285147 8.013827 502.00401611328124 6.3801355 367.36008605957045 12.952429 857.0261047363313 0.46263823 6.169202089309692 0.98753554 14.446976852416993 nan nan nan nan 1.9294524192810059 28.43710155487061 2.602437734603882 18.900683403015137 1.7355504155158996 15.964161586761474 3.796893763542175 58.08679122924804 2.36790292603629 26.66351928710938 nan nan \n",
"5 67108915 1048576 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.20712729 22.190865898132333 0.23891595 11.457367706298829 0.31425783 40.808209609985354 0.3205096 21.450888633728038 0.22510855 28.52808017730713 0.1811421 20.618700790405278 0.01926224 1.093110775947571 0.034778833 1.8777025938034058 0.030870374 2.207973670959474 0.053353354 4.028220462799073 0.041768204 3.9088841676712036 0.072007015 6.394688367843629 0.06151843 6.307412719726562 0.10487225 9.14298677444458 0.14352015 11.514863014221191 0.25547522 16.634721374511738 0.3888968 63.67387886047371 0.52538955 53.09270019531243 0.10194926 5.193379402160647 0.12590013 7.6650718688964865 0.13300735 8.715188312530517 0.16042137 12.884206199645995 0.23194352 19.81114673614502 0.28397176 21.936244392395018 0.9146511199688802 90.33195380168462 1.4129377104634835 87.22473294297698 2.426566489712307 310.59886159292296 1.9975555268295415 209.93888170771322 2.1769331990034124 192.24658435591698 1.5630501880790477 154.29788934567114 146.9257488416712 599.0112124616078 119.29082726469397 394.5893886961105 68.0845813961089 1101.7424374626748 71.37364667915077 926.2673819532978 3.2966712 280.6819839477539 5.1108465 565.7011718750006 4.862965 535.046569824219 6.1554484 572.4893798828125 4.8178754 427.43753967285147 8.013827 502.00401611328124 6.3801355 367.36008605957045 12.952429 857.0261047363313 0.46263823 6.169202089309692 0.98753554 14.446976852416993 nan nan nan nan 1.9294524192810059 28.43710155487061 2.602437734603882 18.900683403015137 1.7355504155158996 15.964161586761474 3.796893763542175 58.08679122924804 2.36790292603629 26.66351928710938 nan nan \n",
"6 67108865 1048576 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.20712729 22.190865898132333 0.23891595 11.457367706298829 0.31425783 40.808209609985354 0.3205096 21.450888633728038 0.22510855 28.52808017730713 0.1811421 20.618700790405278 0.01926224 1.093110775947571 0.034778833 1.8777025938034058 0.030870374 2.207973670959474 0.053353354 4.028220462799073 0.041768204 3.9088841676712036 0.072007015 6.394688367843629 0.06151843 6.307412719726562 0.10487225 9.14298677444458 0.14352015 11.514863014221191 0.25547522 16.634721374511738 0.3888968 63.67387886047371 0.52538955 53.09270019531243 0.10194926 5.193379402160647 0.12590013 7.6650718688964865 0.13300735 8.715188312530517 0.16042137 12.884206199645995 0.23194352 19.81114673614502 0.28397176 21.936244392395018 0.9146511199688802 90.33195380168462 1.4129377104634835 87.22473294297698 2.426566489712307 310.59886159292296 1.9975555268295415 209.93888170771322 2.1769331990034124 192.24658435591698 1.5630501880790477 154.29788934567114 146.9257488416712 599.0112124616078 119.29082726469397 394.5893886961105 68.0845813961089 1101.7424374626748 71.37364667915077 926.2673819532978 3.2966712 280.6819839477539 5.1108465 565.7011718750006 4.862965 535.046569824219 6.1554484 572.4893798828125 4.8178754 427.43753967285147 8.013827 502.00401611328124 6.3801355 367.36008605957045 12.952429 857.0261047363313 0.46263823 6.169202089309692 0.98753554 14.446976852416993 nan nan nan nan 1.9294524192810059 28.43710155487061 2.602437734603882 18.900683403015137 1.7355504155158996 15.964161586761474 3.796893763542175 58.08679122924804 2.36790292603629 26.66351928710938 nan nan \n",
"7 67108898 1048576 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.20712729 22.190865898132333 0.23891595 11.457367706298829 0.31425783 40.808209609985354 0.3205096 21.450888633728038 0.22510855 28.52808017730713 0.1811421 20.618700790405278 0.01926224 1.093110775947571 0.034778833 1.8777025938034058 0.030870374 2.207973670959474 0.053353354 4.028220462799073 0.041768204 3.9088841676712036 0.072007015 6.394688367843629 0.06151843 6.307412719726562 0.10487225 9.14298677444458 0.14352015 11.514863014221191 0.25547522 16.634721374511738 0.3888968 63.67387886047371 0.52538955 53.09270019531243 0.10194926 5.193379402160647 0.12590013 7.6650718688964865 0.13300735 8.715188312530517 0.16042137 12.884206199645995 0.23194352 19.81114673614502 0.28397176 21.936244392395018 0.9146511199688802 90.33195380168462 1.4129377104634835 87.22473294297698 2.426566489712307 310.59886159292296 1.9975555268295415 209.93888170771322 2.1769331990034124 192.24658435591698 1.5630501880790477 154.29788934567114 146.9257488416712 599.0112124616078 119.29082726469397 394.5893886961105 68.0845813961089 1101.7424374626748 71.37364667915077 926.2673819532978 3.2966712 280.6819839477539 5.1108465 565.7011718750006 4.862965 535.046569824219 6.1554484 572.4893798828125 4.8178754 427.43753967285147 8.013827 502.00401611328124 6.3801355 367.36008605957045 12.952429 857.0261047363313 0.46263823 6.169202089309692 0.98753554 14.446976852416993 nan nan nan nan 1.9294524192810059 28.43710155487061 2.602437734603882 18.900683403015137 1.7355504155158996 15.964161586761474 3.796893763542175 58.08679122924804 2.36790292603629 26.66351928710938 nan nan \n",
"8 67108867 1048576 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.20712729 22.190865898132333 0.23891595 11.457367706298829 0.31425783 40.808209609985354 0.3205096 21.450888633728038 0.22510855 28.52808017730713 0.1811421 20.618700790405278 0.01926224 1.093110775947571 0.034778833 1.8777025938034058 0.030870374 2.207973670959474 0.053353354 4.028220462799073 0.041768204 3.9088841676712036 0.072007015 6.394688367843629 0.06151843 6.307412719726562 0.10487225 9.14298677444458 0.14352015 11.514863014221191 0.25547522 16.634721374511738 0.3888968 63.67387886047371 0.52538955 53.09270019531243 0.10194926 5.193379402160647 0.12590013 7.6650718688964865 0.13300735 8.715188312530517 0.16042137 12.884206199645995 0.23194352 19.81114673614502 0.28397176 21.936244392395018 0.9146511199688802 90.33195380168462 1.4129377104634835 87.22473294297698 2.426566489712307 310.59886159292296 1.9975555268295415 209.93888170771322 2.1769331990034124 192.24658435591698 1.5630501880790477 154.29788934567114 146.9257488416712 599.0112124616078 119.29082726469397 394.5893886961105 68.0845813961089 1101.7424374626748 71.37364667915077 926.2673819532978 3.2966712 280.6819839477539 5.1108465 565.7011718750006 4.862965 535.046569824219 6.1554484 572.4893798828125 4.8178754 427.43753967285147 8.013827 502.00401611328124 6.3801355 367.36008605957045 12.952429 857.0261047363313 0.46263823 6.169202089309692 0.98753554 14.446976852416993 nan nan nan nan 1.9294524192810059 28.43710155487061 2.602437734603882 18.900683403015137 1.7355504155158996 15.964161586761474 3.796893763542175 58.08679122924804 2.36790292603629 26.66351928710938 nan nan \n",
"9 67108900 1048576 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.20712729 22.190865898132333 0.23891595 11.457367706298829 0.31425783 40.808209609985354 0.3205096 21.450888633728038 0.22510855 28.52808017730713 0.1811421 20.618700790405278 0.01926224 1.093110775947571 0.034778833 1.8777025938034058 0.030870374 2.207973670959474 0.053353354 4.028220462799073 0.041768204 3.9088841676712036 0.072007015 6.394688367843629 0.06151843 6.307412719726562 0.10487225 9.14298677444458 0.14352015 11.514863014221191 0.25547522 16.634721374511738 0.3888968 63.67387886047371 0.52538955 53.09270019531243 0.10194926 5.193379402160647 0.12590013 7.6650718688964865 0.13300735 8.715188312530517 0.16042137 12.884206199645995 0.23194352 19.81114673614502 0.28397176 21.936244392395018 0.9146511199688802 90.33195380168462 1.4129377104634835 87.22473294297698 2.426566489712307 310.59886159292296 1.9975555268295415 209.93888170771322 2.1769331990034124 192.24658435591698 1.5630501880790477 154.29788934567114 146.9257488416712 599.0112124616078 119.29082726469397 394.5893886961105 68.0845813961089 1101.7424374626748 71.37364667915077 926.2673819532978 3.2966712 280.6819839477539 5.1108465 565.7011718750006 4.862965 535.046569824219 6.1554484 572.4893798828125 4.8178754 427.43753967285147 8.013827 502.00401611328124 6.3801355 367.36008605957045 12.952429 857.0261047363313 0.46263823 6.169202089309692 0.98753554 14.446976852416993 nan nan nan nan 1.9294524192810059 28.43710155487061 2.602437734603882 18.900683403015137 1.7355504155158996 15.964161586761474 3.796893763542175 58.08679122924804 2.36790292603629 26.66351928710938 nan nan \n",
"
\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"for col in master_catalogue.colnames:\n",
" if col.startswith(\"f_\"):\n",
" errcol = \"ferr{}\".format(col[1:])\n",
" depths = join(depths, \n",
" group[\"hp_idx_O_{}\".format(str(ORDER)), errcol].groups.aggregate(np.nanmean),\n",
" join_type='left')\n",
" depths[errcol].name = errcol + \"_mean\"\n",
" depths = join(depths, \n",
" group[\"hp_idx_O_{}\".format(str(ORDER)), col].groups.aggregate(lambda x: np.nanpercentile(x, 90.)),\n",
" join_type='left')\n",
" depths[col].name = col + \"_p90\"\n",
"\n",
"depths[:10].show_in_notebook()"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## III - Save the depth map table"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"depths.write(\"{}/depths_{}_{}.fits\".format(OUT_DIR, FIELD.lower(), SUFFIX), overwrite=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## IV - Overview plots\n",
"\n",
"### IV.a - Filters\n",
"First we simply plot all the filters available on this field to give an overview of coverage."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"{'decam_g',\n",
" 'decam_r',\n",
" 'decam_z',\n",
" 'gpc1_g',\n",
" 'gpc1_i',\n",
" 'gpc1_r',\n",
" 'gpc1_y',\n",
" 'gpc1_z',\n",
" 'megacam_g',\n",
" 'megacam_i',\n",
" 'megacam_r',\n",
" 'megacam_u',\n",
" 'megacam_z',\n",
" 'omegacam_g',\n",
" 'omegacam_i',\n",
" 'omegacam_r',\n",
" 'omegacam_u',\n",
" 'suprime_g',\n",
" 'suprime_i',\n",
" 'suprime_r',\n",
" 'suprime_y',\n",
" 'suprime_z',\n",
" 'ukidss_h',\n",
" 'ukidss_j',\n",
" 'ukidss_k',\n",
" 'ukidss_y',\n",
" 'vista_h',\n",
" 'vista_j',\n",
" 'vista_ks',\n",
" 'vista_y',\n",
" 'vista_z'}"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tot_bands = [column[2:] for column in master_catalogue.colnames \n",
" if (column.startswith('f_') & ~column.startswith('f_ap_'))]\n",
"ap_bands = [column[5:] for column in master_catalogue.colnames \n",
" if column.startswith('f_ap_') ]\n",
"bands = set(tot_bands) | set(ap_bands)\n",
"bands"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Passbands on GAMA-09')"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAAIOCAYAAAC7yXTYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXecFOX9+N/PbLvd63dc4+COend0pahgoUQNKGKi+RprolETY4l8jSaxJNEYWyL61RiM/qLRRBBjQSyJJiZSBOmCwBWOcsDRjutlb9vM8/tjZvf24PrtUo55v1682J155pln53bnM58upJSYmJiYmJiY9D2UE70AExMTExMTk+hgCnkTExMTE5M+iinkTUxMTExM+iimkDcxMTExMemjmELexMTExMSkj2IKeRMTExMTkz6KKeRNTmqEEA8LId7oa+cyMTExOR6YQt6k2wghyoQQzUKIRiHEYSHEa0KIuBO9rr6AEMIuhPiVEKJECNEkhNgvhPinEOLiNsYuFULUCCEcR21/TQghhRCXH7X9WWP7jUdtn2Zs/3kX1ucQQrwqhKgXQhwSQtxz1P5bhBA7jO/GJ0KI/t26ACYmJhHFFPImPeUyKWUcMB6YCDx0gtfTV3gHuBz4HpAMDAaeAy4NHySEGAScD0hgThvzbDfmCI63AlcBO9sY+32gOnx8BzwMDAdygenAz4QQM41zTAMeN9afAuwG3uzCnCYmJlHCFPImvUJKuR/4JzAaQAhxkxCiSAjRIITYJYT4UXCsEKKfEOIjIUStEKJaCLFCCKEY+35uaK0Nhhb7jbDTxAgh3jL2bRRCjAub8xdCiJ3GvkIhxLfD9t0ohPhCCPG0ofHuFkLMCts/WAixzDj230C/sH0xQog3hBBVxnrXCSEy2roGQogRhlZdK4TYJoSYE7bvNSHEH4UQHxvnWSOEGNrOPBcCFwGXSynXSCl9xr9PpJR3HzX8e8Bq4DV0IX00HwLnCSGSjfczga+BQ0edMxb4DnAHMFwIMbGttYXxfeBRKWWNlLII+H/Ajca+2cDbUsptUkof8ChwQXuf18TEJPqYQt6kVwghBgKXAF8ZmyrQb/YJwE3As0KI8ca+nwLlQBqQATwASCFEPnAnMElKGQ98EygLO83lwNvo2uFC4H0hhM3YtxNdo00EHgHeEEJkhR17NlCCLsB/B7wihBDGvoXABmPfo7QWlt835hwIpAK3Ac1tfH4bukD9F5AO3AUsMD5TkKuNtSUDO4DHjp7H4EJgjZSyvJ394XwPWGD8+2YbDyAeYIlx7uD4v7YxzxVAI/r1/ZS2HxgAMB4YsoDNYZs3A6PCh7XxenRHH8TExCR6mELepKe8L4SoBb4AlqGbaZFSfiyl3Cl1lqELv/ONY/zoQiJXSumXUq6QevMEFXAAI4UQNillmZQy3Ky8QUr5jpTSDzwDxADnGOd7W0p5QEqpSSnfAkqBs8KO3SOl/H9SShV43Th/hhAiB5gE/FJK6ZVSLkcX1kH86MJ9mJRSlVJukFLWt3EdzgHigCcNrfu/wEfANWFjFksp10opA+hC+Yx2rmk/wjRtIUSKYR2oE0J4wrafh24u/7uUcgP6g861bcz3V+B7QogkYCrwfhtjvg+8ZVyfhcDVYQ9QRxOMu6gL21YHxBuvPwGuEkKMFUI4gV+huxNc7cxnYmISZUwhb9JTviWlTJJS5kopb5dSNgMIIWYJIVYb5vhadC0/aAb/Pbom+y/DlP8LACnlDmAuur+3Qgix6KiArX3BF1JKDd0a0N843/eEEJsMYViLrjX2Czv2UNixbuNlnHF8jZSyKWzsnrDXf0PXbBcJIQ4IIX7XjvDrD+wz1hU+T3ZbawDctAjLo6lCfwgJrrdaSpkETEB/CAryfeBfUspK4/1C2tDApZRfoFtNHgQ+Cv6NghhWmOnoDx6ga/4xGP5/IcSfjAC6RiHEA+gaP+hWGsJeNxjn+wz4NfAuuiWmzNjXFcuEiYlJFDCFvEnEMKK83wWeBjIMAfUPDLOtlLJBSvlTKeUQ9GCxe4K+dynlQillUEOVwFNhUw8MO4cCDAAOCCFy0X3CdwKpxvm20tpk3B4HgWTDJx0kJ/jCsDQ8IqUcCUxBd0G0FZh2ABgYjC0Im2d/F9ZwNP8BJgkhBrQ3wNCQrwKmGtHth4D/BcaFxyqE8Qa6m6QtU/0N6PeAD415dqEL+e8DSClvk1LGGf8el1LWoF+38POMA7YF30gp/yilHC6lzED/LljR/yYmJiYnAFPIm0QSO7rGeQQIGEFuodQvIcRsIcQwwydeh26m14QQ+UKIGcZDggfd9x2uGU8QQlxhRIjPBbzoQWex6A8ER4z5b6KL/l8p5R5gPfCI0NPWzgMuC1vrdCHEGCGEBahHN99rbUy1Bl07/5kQwib0CPPLgEVdWcdRa/oX8Dm6K+RsY102DNeEwbfQr9tIdLP/GcAIYAVtP4Q8jx7Mt7yNfd9HjxU4I+zflcAlQojUdpb5V+AhIUSyEKIAuBU9+C8YrDha6OQALwPPGQ8HJiYmJwBTyJtEDCllA/AT4O9ADbqf+IOwIcOBz9DNvl8C86WUn6M/GDwJVKKbttOB+8OOWwJ815jzBuAKQ9MuBOYZcx0GxgAru7Hka9ED86rRzczh2m4mejpbPVCEHnfwtzY+sw9dqM8y1j8f+J6Usrgb6wjn2+g+/TeAWvQ0tOvQgxFBF8x/kVLulVIeCv4DXgCuMx6EwtdXLaX8jxH7EEIIcQ661eSP4fNIKT9Ad6mExxSE82v0GIA96Nfk91LKT4x9Meiug0ZgLfrf5Zc9vA4mJiYRQBz12zcxMTExMTHpI5iavImJiYmJSR/FFPImJiYmJiZ9lKgJeaHXt64QQrQZWWsE5zwv9DrXX4cVTDExMTExMTGJANHU5F9DL6XZHrPQA7GGAz8EXoziWkxMTExMTE47oibkjQpi1R0MuRz4q1EZbTWQdFQ5UhMTExMTE5NeYO18SNTIJqySGXpVrGz0YhutEEL8EF3bJzY2dkJBQcFxWaCJiYlJX2HDhg2VUsq0Xs6RbrVa/4xej8KM6TrxaMDWQCBwy4QJEyraGnAihXyXkVK+jF5Yg4kTJ8r169ef4BWZmJiYnFoIIfZ0PqpjrFbrnzMzM0ekpaXVKIpi5l+fYDRNE0eOHBl56NChP9N2y+kT+iS2n7BypeilSntSCtTExMTE5PgwOi0trd4U8CcHiqLItLS0Ojqo9HkihfwH6B2yhFF9q05KeYyp3sTExMTkpEExBfzJhfH3aFeWR81cL4R4E5gG9BNClKOXw7QBSCn/hN645BL0Eppu9N7jJiYmJiYmJhEiakJeStle7evgfgncEa3zm5iYmJiYnO6Y0ZEmJiYmJiZ9lFMiut7ExMTE5OTivnc2D9x+qMEVyTnzMuPdv//OuH3t7S8pKbHPnDlz+Pjx45s2bNgQN3bs2KYf/OAHlb/5zW+yq6qqrK+99tquCRMmeG6++eac4uJiZyAQEA8++OCB66+/vrahoUH57ne/O6ikpMQ5ZMgQz+HDh20vvPDC3gsuuMB93XXX5WzevDnW4/Eol112Wc2zzz57AGDZsmWuuXPn5rjdbsVut8vly5eXVFRUWK+99trBzc3NCsBzzz2396KLLmr66KOP4h955JH+CQkJgZKSEtecOXOqx4wZ0zx//vwMr9crFi9evHPUqFHetj7XlVdeOWj27Nl1N910Uw2Ay+U60+12fxWJa2oKeRMTkz5HINCI1Rp3opdhEgX27dsX89Zbb+2aMGFC2dixY0csWLAgdf369cULFy5Meuyxx7IKCgo806dPr3/77bfLKisrLRMnThwxZ86c+qeffjotKSlJ3blz57Z169bFTJ48eVRwzmeeeWZ/RkaGGggEmDJlSv6aNWuc48aN81x33XVDFyxYsHPq1Knu6upqJS4uTrNarYEVK1Zsd7lccsuWLY5rrrlmyNatW4sAiouLnVu3bt2Wnp4eyM3NHeNwOCq3bNlS9Oijj6bPmzcv/dVXX233ASZamELexCTC+H1e0CS2mBgAfM1u/F4vsUnJJ3hlpwc1NWvY+NW1offDhv6M3NwfncAV9U060rijSXZ2tvess85qBsjLy2ueMWNGvaIojB8/3v3b3/62/6FDh+yffvpp0vPPP58J4PV6xY4dO+yrVq2Ku/vuuysAJk2a5MnLy3MH53z99ddTXnvttX6BQEAcOXLEtnnz5hghBOnp6f6pU6e6AVJSUjSA+vp6cfPNN+cWFhY6FUVhz549juA8Y8aMacrNzfUD5OTkeGfNmlUHMG7cuOZly5bFH69rFI4p5E1MIkB50VZiYuNIGTCQvz/8C6oP7Oc7Dz1KWs5gFj50L3VHDnPTMy+S0C/9RC+1zxMu4AF27PwdaWkX43INPkErMokkdrs9lMKnKAoxMTESwGKxoKqqsFgs8p133tkxbty4Nk3jR1NcXGx/4YUXMjZs2FCUlpamXnnllYM8Hk+78WqPPfZYRnp6uv/dd9/drWkaTqdzQnCfw+Foc22KoqCqqmhvTqvVKlVVBUBVVfx+f7tju4sZeGdi0ksCPh9vPfwLXr/vTj7783wO7SzF1+xm4YM/5fnvfYeq8r0EvF52rFtzopfa56mtbbsa5perL0TTAsd5NcfiP1xBzaK38B80S4JEi+nTp9fPmzcvQ9M0AFauXOkEmDx5cuOiRYuSATZs2BCzfft2J0BNTY3F6XRqKSkp6r59+6xLly5NBBg7dqynoqLCtmzZMpcxTvH7/dTV1VmysrL8FouF+fPnpwaFc2/Izc31bdiwwQWwcOHCpEAgEDEhb2ryJia9pPZwyw17y38+JX3wUC658142/etjNDXAoHHjWbHwNXZvWs+4i2ZisdpO4Gr7Nhs2fjf0Oi42H4lGU1MpAEVFP2fUqHknamk0b9tG2ZXfCb0fUVyElBKtsRFL/Amx5PZJnnzyyQM//OEPcwoKCkZqmiYGDhzo/fzzz3fcd999R6666qpBQ4cOHTV06FDPsGHDPMnJyeqYMWO8o0ePdg8dOnR0VlaWb8KECY0AMTExcsGCBTt/8pOf5Hg8HiUmJkZbvnz59rlz51ZceeWVQxctWpQ6Y8aMOqfTqfV2zXfdddeR2bNnD8vPzx8ZqTmDCD1d/dTBrF1vcrJRunYVH8x7nJm3/y8HS0sYf8nlpPTPbjXmP6++yKZPPwbgsv/9BXnnnHciltrn+c9/hwKQn/cbBgy4rtU2gG/M2Hlc1uHdtQtLQgIVzz5LwsxZxJ1/HkUFI1qNSb3lZtzrN9C8aRNDPvoQx7BhUV2TEGKDlHJib+bYvHlz2bhx4yojtabjSSAQwOfzCZfLJbdt2+a4+OKL83bu3Lk1aFI/ldm8eXO/cePGDWprn6nJm5j0kpqDBwAYNmkyo6Z+o80xuWPODAn5T+b/H0mZ/UkfNOS4rfFUp7p6JV9t+h5nTfqI+PgRbY4p378w9Doo4AHOPXclK1eeG/U1BpGBALsuuTT0vu7d99ocV/XnV0KvPUVFURfypzsNDQ3K+eefn+/3+4WUkmeffXZPXxDwnWEKeROTXlJzcD+xSck4XO2nDA+deDbf+90fsNhs/OV/b6N07ZemkO8GX236HgBr180GYMrkZTidA1qNKSn5ZZvHxjgyQ6+lVBHCEqVV6hSPHtPhfktaP9QjrZVh/36zN1e0SU5O1oKpbieKn//855lLlixJCd92+eWXVz/11FOHonVOU8ibmPSCXRvXcbC0hOSs7A7HCSFIy9Wju1OyB1K5d/fxWF6foK2AuVVfTmX6tCIUxQ7Anr1/Du2bPq2k3bmqqlfQL3VaxNcYJFDZuSU7b8WKY0z3gerqaC3J5CTiqaeeOhRNgd4WZnS9iUkPqT5QzuKnHqGqfC+pAwZ2foBBXEoqTbU1UVxZ38Lnq2hz++dLdUHp8Rxkx44nQtsV5VjdJTtbT6vbvPnmKKywhdLzzu9wf8GWrwEY/sWK0DZrZiZaY1NU12Vy+mIKeROTHlJfeST0OnNoXpePcyUk4q6vi8aS+gyHD39MTe06ADwePeZh9Og/HBM45/fXsnJVSxDj+eeta3O+oUPujdJKW5BHpVJlPzOPgqJChn7yTwbM/yMF27YibHpmhbVfP0YUFzGiuAglLhatsTHq6zM5PTGFvIlJD/E16wWzkjKzGDZpcpePcyUm4a4zhXx7aJqXrdt+wsaNVwNQuuNxAOJi9QepcEG/fEWoDgm5uT/Gbm/l7gxhsyVGa7khyu+4M/Q6be5cEi65BCEE9kGDiJ8xA2FpOxbAEhtnCnmTqGEKeROTHuJz60L+Ow8+Skxc1+ukx8TG4fc0o0WgiEZfpKmptbbu9eguzJiYlkC7iRPeOea4YUM71tYtllgAopU23Lh0aeh1v9u6XkZXiYtDbTKFvEl0MIW8iUkP8XmaAbA7u9eIy2KYbFX1xFdgOxVwxQ7FZkvFYokJbUtMPJNBubcDkDPw5i7lvycmjgfA4ymP+BrDTfWOgoJuHavExpo++V5QVlZmmzlzZrupKpWVlZYnn3wy7Xiu6WTCFPImJj0kqMnbnc5uHWex6oFhWqBvCHmpashAxAp0oWrNodeaFsDnq0TTji1DPnToT/nGjJ0MH/5Al+bNGagH3QV9/JEkPAVuyPuLu3Ws4nQiPZ5IL+m0YdCgQf5PPvlkV3v7q6qqLK+88spp2zTCTKEzMekh3mY3Vpu922VqFUPIq31EyB9+7ivUOi/Zj0yJyHya2iLwVNWNqjaTmnpBr+d1uXIBaGoqJTn57F7PF07Z1df0+Fhht6P5utRL5eTi/TsGUlEY0X7ypI90860/ttvd7vbbb88eOHCg7/777z8CcM899/SPi4tT33zzzX6lpaXb1q9fH3PTTTcN9vv9QtM03n333Z33339/9r59+xwFBQUjp06dWv+73/3uwMyZM4fV1dVZAoGA+NWvfnXg+uuvr23rfHPnzu2fkpIS+NWvflUBcNddd2Wnp6f7f/nLX7ad8nESYmryJiY9xO/1YNE0jvzhhW4dZwkJeX80lnXcCVS4kd7IxReoWouQDwQaUNVGrJbe94aPiclGCAte7+Fez3U0ai/y3IXDgfT6Iriavst1111X/d5774WiK5csWZI8ZcqUkK/jD3/4Q9rtt99+uLi4uPDrr78uGjx4sG/evHnlAwcO9BYXFxe+9NJL5S6XS/v44493FBYWFi1btmz7Aw88MCDYzOZofvzjH1cuWrQoFfTucO+//37yrbfeWhX1DxpBTE3exKSH+CsrweOh8o9/pN/tP243evpogpr/qWKuD9R6UOwWFNexFgvN3fKg0ry1Eufofr0+n6a2mOvd7h34/TU4nV2vQ9AeQliw2VLx+SJbej08kC/7uee6fbxw2JHeU1CT70Djjhbnnntuc1VVlbWsrMx28OBBa2Jiojp48ODQE9LkyZObnn766azy8nL71VdfXTNmzJhjLqymaWLu3LkDVq9eHacoChUVFfby8nJrTk7OMT/I/Px8X1JSUmDlypXOgwcP2kaNGuXOzMw8pSJmTU3e5LRFSsmSTfv5x5aetf0MNDYijPt7zYIFXT7uVDLXB6qaOfzMRg49swHNd+y9rWbxjtDrqgWRqRgarsk3e3Rft9WWFJG57fZ+eH1HOh/YDQ7c97PQ6/gL2+5d0BGKw4H0eqMW9d/XmDNnTs0bb7yRvGDBgpQrrriilQnltttuq16yZMkOp9OpzZ49e/gHH3xwTHu/l156KaWqqsq6ZcuWouLi4sLU1FR/c3Nzu7Lwpptuqvzzn//c7y9/+Uu/m2666ZTS4sHU5E1OEyobvfhVjaxEJ3uqmvjZO1+zo6KRqiZdCfjdd8YyZ1x/fv7u13x30kCmDO1YI/WVleEt24OQEhSFw088iX3wEOLO77y7nOUUEvKNqw8ifSrSp+LdXYczv3UeeqC6RSA7hidH5JzhPvn6uq8AsCiOiMztsPfDF0EhX/PW36n/6KPQ+65ac8IRdv2zSb8fYbdHbG19leuvv7761ltvHVRTU2NdtmxZicfjCfVeLywstI8YMcI7atSoir1799o3bdrkPOuss9xNTU0hIV5XV2fp16+f3+FwyA8//DD+wIEDHV70G264ofaxxx7LDgQC4sorr2w3wO9kxdTkTfo8n5dUMPG3nzH5if8C8MfPd7BmdzWKIrjizGwKMuN5/j+lFB9qYMmmA1z/5zUdzielZOfMWfgOH0IgyV+3FmtGBtV/+UuX1nOqRNdLKWneUoljaCJYBd7SY2OT7P0NX7lVwZoSc8z+nhCuyR88pHdwi4sfFZG5bfZU/L7I1Yk/9Otf93qOYBU86esbMRrRZuLEiZ6mpiYlIyPDl5ub2+qivfHGGyl5eXmjCgoKRhYVFTl/9KMfVWVmZqoTJkxoHD58+Kgf/ehHA2655ZbqzZs3x+bl5Y18/fXXUwcPHtxhakNMTIycMmVK/Zw5c6qt1lNPLz71Vmxi0kXq3H721zZz019aSp1KKfmitJJZozN58Xq9WtrLy3fy+D+K2VOlx+9oEnZUNDIsve1gL61JT52TQqBIPc856YpvU/mnl/AfOICtf/8O16VYTo3AO/+BJtRaLwkX5iB9Gv5Dx+Zya24/1nQXMqBFLPgu3CcfxG5LjcjcdlsKPn9khHygpnX/gazfPtqjeYTNuA2f5N+Hk4nt27cXBl/n5+f7SktLtwE8/vjjhx5//PFjGsB8+OGHrTpCbdq0qbir51JVlY0bN8a9/fbbnRdjOAkxNXmTPofbF2Dj3hrOeeI/XPL8ilb7dlc2caDOw7nDWszxFkX/GRxpaInRWfxV+wVT1Co9cEsCwjg26corQdPYMeMbVL3ySof+1VPFXO8pqgIBMQUpWFJjCFQdK3xVtx8l1opit6BFSshrPoSwYAmLqI9UWVqbLQVN86Cq7l7PVX7nXa3eJ86Z07OJjO+DPMm/D6cjGzZsiMnNzR1z/vnn17cVxHcqYGryJn2OG15Zy4Y9bXd5W1GqC+jzhh3rcw/65ycNSuaDzQe49+J8Gr0B5i7axP2XFDAsXY/h8RTrrUylECiGqdWWnU3c9Ok0fv45Fb9/Gkdefrv++VMh8E7zBGhcfRDHkEQscXasKTE0bz6CVDWERX+wkaqG/2ATMfkpqJoX6Y3M5wn2fFfVllKvwZayvcVq1f+GgUATFkvvUrybN2xo9b6n/nRhCvkTzqFDhyzTpk3LP3r70qVLS8rLy7eciDVFClPIm/Q5ig7WAzCjIJ0LR2Tw6srd7KjQBcavP9hGnMNKbmrLDT4YtVPZ4MVps/DtMwfwwOItrCitpKrJy3+KK6hs8rHkjnMBUI0OclIIHGGm+f5PPoH/0CH23vQDqv/213aF/Kngk6//fB9ao5/E7w8GwJocAxLUOl/I9642+JAeFceQRJq3VaE1R0jIowLdD2DrCsHSuJp2rFWiNxRs29rjY4WRUmkK+RNHZmamWlxcXNj5yFMPU8ib9DnS4h2cMTCJ564+E4ANe2pCQh6g0RtACHHMcVVNPlLj7Mw5oz/zl+7g+f+UYlH0cbuPNBJQNawWJVRnXDrs2OITQsdbEhOxJCaSfN21VP7hBby7duMYMviY8wTz5E9Wn7z/iJvGL/bjmpCBfaCu+VqS9AjwQI2nRcjX65YPS6IDYVXAHxlzvZQaQkRHyCsWvQSx2obfv6cMeHF+j6LqgwR98tJ/cn4fTE5tTJ+8SZ+j2afitLXcdONjOn6WDcr7qiYfKbF24hxWbjgnl/V7alizWw/SqvcE+GCzXvNca9KFfMy4cSht3NyTv/tdhM3Gkeefb/N8IU0+Ul3oDm8DLXL1ORqWliOsCokzB4W2WZINwV7b4pbUgkI+3o6wKUh/ZOrXSxlACAtnnfUxABMnvB2ReQEsiiHktcjVio+bNq1XxwfN9ZiavEkUMIW8SZ+j2a/itLcIX6uhjWcn6Td4u6X11z6o03v9KjFW/biLR2WG9s+9cDhD02J5c+1eAKQaACHQpESxHPsTsvbrR8qNN9Lw6af4Dx0T6BtZn/yeL+HFKbD+1d7PhZ594CmuJmZECpb4Fh+zNVHX5NWasLryDYaQT7AjrJEU8romHx9XwDdm7Ax1j4sEStBcr/ZeyFtS9Yj/tqxC3cL0yZtEEVPIm/Q5PP7WmnyQ68/J5Z93n8/KX8xo87iAJrFa9Bv2oDCf/XnD+jE9P52vy+vwqxqoGlgsSFUNpcMdTeK3vwVS0rhs+TH7Ilq7vtrI6tmzqvdzAVqDD63Jj2Ng60JhwqagxNkIhGnyar0PFFBibbomH6lOdFJFiOjcmlo0+d6b6+2DBuE6u/eNbszAO5NoYgp5kz6FX9Xwq7KVkG82fMUuu4URWQmkxbeunhbUxAKqFvLBCyG4fdpQCjLjmZCbzJgBiXgDGqWHG0FTEYqCpqltmusB7IMHo8TF4S05Nh03orXrG41mK5bIRJ/7D+mpZdbM2GP2WZJjWpnrPdtrQIJQRITN9SpCRCdcyGL45COhyUuPByWm9wWAQoF3flPIm0SeqAp5IcRMIUSJEGKHEOIXbezPEUJ8LoT4SgjxtRDikmiux6TvExTo4eb626YOZdKgZOaM67hIjV+V2MLM7z+bWcAncy9ACMHYAXrt9C37a5GaXspWCwQQSttCXgiBIy8PT8n2Y/ZF1Fxfb9Td9x9bqKYnBAve2NoQ8tYkR0jISynx72/UiwVASJOPRP11KVVElG5NimLEFkQg8E7zeBCREPLBwLuTNBDT5NQmatH1Qg+P/SNwEVAOrBNCfCClDE9TeAj4u5TyRSHESOAfwKBorcmk7+MxmqjEhGnyA1NcvH1b+73Ogy5Vf5gmfzS5KS7iY6xsLq9jmhrU5LU2ffJBHPl51H/0MVLKVn7bXhXDWf40ZJ0Bwy/U3zcYQt4doSpu1R5EjBVL7LEd5yxJDpqLqpBSIo3rHHdBNqALeSSgSrD2zkctUSFK0fVBTT4S5npdk+99Tf1TNfDulyt/OXBHzY6I9pMfljzM/ei5j7bb3a6kpMQ+c+bM4ePHj2/asGFD3NixY5t+8IMfVP7mN7/Jrqqqsr722mu7JkyY4Ln55ptziouLnYFAQDz44IPC5Zk0AAAgAElEQVQHrr/++tqGhgblu9/97qCSkhLnkCFDPIcPH7a98MILey+44AL3ddddl7N58+ZYj8ejXHbZZTXPPvvsAYBly5a55s6dm+N2uxW73S6XL19eUlFRYb322msHB5vaPPfcc3svuuiipo8++ij+kUce6Z+QkBAoKSlxzZkzp3rMmDHN8+fPz/B6vWLx4sU7R40a1WZBnYKCgpHB12VlZTHvvvvu9ksvvbSxrbHdJZopdGcBO6SUuwCEEIuAy4FwIS+BYA5SInAgiusxOQ0IafJt+OQ7I6BJbJa2BZSiCMZkJ7KlvA4pdZ+81oFPHiAmL4/ahkUEDh5sVeo2VNa2uylTG16H/z4Ktlh40Pip1Bv/+yKjyav1PiyJbZv+LUkOCEi0Jn8oJz6o8QurUSDHr4Ve95RgMZxoEElzvX//fvwDI9AC1/TJd4t9+/bFvPXWW7smTJhQNnbs2BELFixIXb9+ffHChQuTHnvssayCggLP9OnT699+++2yyspKy8SJE0fMmTOn/umnn05LSkpSd+7cuW3dunUxkydPDjVEeOaZZ/ZnZGSogUCAKVOm5K9Zs8Y5btw4z3XXXTd0wYIFO6dOnequrq5W4uLiNKvVGlixYsV2l8slt2zZ4rjmmmuGbN26tQiguLjYuXXr1m3p6emB3NzcMQ6Ho3LLli1Fjz76aPq8efPSX3311TYfYII5+gsXLkycN29e5oUXXhiZHzTRFfLZQPgHKgeOjlJ5GPiXEOIuIBa4sK2JhBA/BH4IkJOTE/GFmvQdwv3vXSUo1v2qhlVpX0CNGZDIq1/sJuDQdHN9Bz55AMfw4QB4d+xoLeSNc0jZTR/2mpeMhTZBcy04k1o0eX9k8r61Bh+WhLaFfCjCvtYb0uSDEfjC1iLkcfZuDdEU8orRza63mnwwjdK9enWv18QpWgynI407mmRnZ3vPOuusZoC8vLzmGTNm1CuKwvjx492//e1v+x86dMj+6aefJj3//POZAF6vV+zYscO+atWquLvvvrsCYNKkSZ68vLxQbePXX3895bXXXusXCATEkSNHbJs3b44RQpCenu6fOnWqGyAlJUUDqK+vFzfffHNuYWGhU1EU9uzZEzLnjBkzpinYNCcnJ8c7a9asOoBx48Y1L1u27Ji2t+Fs2bLF8eCDDw5YunTpdofDEbG+wyc68O4a4DUp5QDgEuBvoo2wWinly1LKiVLKiWlpacd9kaczUkrqP9tD5evbdF/0SU5z0FzfDSEfJKDKULpdW2QnOfGrkjpN6Ob6gIrSjk8ewDFsGADe7a398sF69926nk2VULENhl2kv9+3Vs+NDwbeBSIj5NV6X6vUuXCCBXHUOm+r9DkAYaQeRiLCXk+hi86tSQgbQlh6rckHBXLilVf0fk2hYjinlpA/Udjt9tAPR1EUYmJiJIDFYkFVVSGl5J133tlRXFxcWFxcXHjw4MEt48ePb/cPXlxcbH/hhRcyli1btn379u2FM2bMqPN4PO1+AR977LGM9PR0f1FRUeGWLVsK/X5/aGy4cA5fm6IoqKra7s2lrq5Oueqqq4a++OKLe47urNdboink9wPhtqwBxrZwbgb+DiCl/BKIATpu5G0SVTSvilrf4jZq/rqS+s/24imq1gOtTnJ8hpA5Ohe+Q4LR9ZoWSqFriziHfjNu0hTdXK+pKNb2hbwlKQn70KE0LF161On0c3RLk682mmidcQ0oVtj7JTRWQHCOCGjyUpOoje1r8pYwTV5t0O9Dx2ryvS/KoxfDiY6RUQiBojh7XQxH+vSHHOfo0b1fk9UMvIsk06dPr583b16Gpum/jZUrVzoBJk+e3Lho0aJk0BvPbN++3QlQU1NjcTqdWkpKirpv3z7r0qVLEwHGjh3rqaiosC1btsxljFP8fj91dXWWrKwsv8ViYf78+alqBIpaXXPNNYOuu+66ypkzZ0b8JhtNIb8OGC6EGCyEsANXAx8cNWYv8A0AIcQIdCF/JIprMukAKSWVr23l4ONrqVlcCoCnpCWgq7k4cn24o4VqaMcdaeTt4VdlqCNdW8TH6GbVJk0ghNB98h1o8qB3JmtevwHfvtaWTaEo3dPka/fo/6eNgMwxUL4OGgx/fPLgiAh5ze0HVaK0o8krcXo+fKDGi/9AI1gEwqkLqFbm+t4SRU0e9Pr1bbWz7Q7BErTBXvC94VQNvDtZefLJJw8EAgFRUFAwctiwYaMeeuihbID77rvvSFVVlXXo0KGj7r///uxhw4Z5kpOT1cmTJzePHj3aPXTo0NFXXXXVkAkTJjSC3kd+wYIFO3/yk5/k5Ofnj5w2bVqe2+1W5s6dW/Hmm2+m5ufnjywuLo5xOp29+tJv377d/sknnyS/8cYb/QoKCkYWFBSMXL58ecQCGqPmk5dSBoQQdwKfonebeFVKuU0I8RtgvZTyA+CnwP8TQvwvehDejTISOTgm3UZKSeOqA/h21yPsFprWHMI5ph/eXXU4R6eiNvjxbK8h8aLcE73UDgkYgrO9KPm2CB/ZXuAdtGjyjaowAu8CHfrkARLnXMaR//s/6t5fQtpdd7acUyjI7pSiDQr5pBzIGAXbP4U6ox1u6jCo3QtStqQK9ICQdt6OJi+EwJKit5z1H2jCEmsLWSVCQj4S5npURJQa1ACGJh8hId/DznOtML5DUo1QMaE+THjveIB33323rK19Cxcu3HP0sS6XS3vvvfd2u1wuuW3bNsfFF1+cN3z4cN/R84QzdepU9+bNm1sVuxgzZow3vJ/9iy++uB9g9uzZDbNnz24Ibl+7dm1J8PXR+8LJy8vzaZq2oa19kSCqDWqklP9AT4sL3/arsNeFwLnRXINJ12had4i6D3dhH5xAv5tGc/jp9dR9tBu11otj6gD8B5poLq460cvsFLUHQj6cjgLvgjXwm6Si++TVjlPoAGxZWTjPOIOmVataCXlFUbqXU167F1yp4IjTtfmv3oD9G/V96QWw49+g+sHac6GjGW6a9nzyALY0J54ddUhPgPgZLd648Oj63iK16AXega7Jq731yUdSkw8JeVOTjyYNDQ3K+eefn+/3+4WUkmeffXZP0GfelzG70JkAuu/dmuYk7daxCEXgHNOPxpUHQIGYESmodT60pkAo51v6VUQP0tSiTYu5vuvm3nDltyOffEjIawIUpcOytuHYhwymacUXrTcqgqDPsEvU7oUkw4qSPkL/v/B9cCRCXIb+PuDplZBvCaZrP/fbOS6N5q36w549Oy60PZLm+mjmyYNe2ra3rWaDPvlICHmCLh9Tk48qycnJWjDV7UTx85//PHPJkiUp4dsuv/zy6qeeeurYJhcRwhTyJmjeAN7ddcSdm40wNGDnKF3IO0f3w5oUgxJrBU0iPSrNJdVULyoh496J2Pr1Ml8qwvTEXB9OR758l13/uTRU16HW1aGluzo11wNYU/sRqK5uVRRHUZSWoLmuULNH98UD5E4BZwrUlOnbgiVt1e4HbsmAxpFXthJ/Xv+W1rEdaPLOkS1xseFV8SJqro9iq1kAodjRNF+v5oisT97Q5CPYSdDk5OSpp546FE2B3hYnOoXO5CTAU1QNqsRZkBzaZh+UQPw3ckj85iBAb0ICoDb5cX9dCYB/X5suphNKT8z1Iswr35GQD/rrPQcOoTY0oKlqu2Vtw1Hi4iAQCGl/oPvku6zJayrU7dP98QA2J0y8SX+dkB0m5NssptUhapMf3+46qv5WhFrvQzitIYHdFsKiW3mUBHuo/SxE2FxvtJqNFoqwIrXemcYjKeQJWp0CppA3iTymJn+aI6WkYVk51jQn9kGJoe1CEa2C7IJlTrUmP8IoWxqojlxP7kgRMARnjzX5DnzswX0BxRIs2Y6lC5p8sImJbG4Gh24K71Z0ff0BUH2QMqRl2zm36yl0U36iR9qDPqabSG+LYFE7KIQTTsq1BaDJkNUHCLluIiPko63J21AD3X8gCica0fWmJm8SDUxN/jRGc/upfHUr/oNNxE8d2OqmfTRBTV5r9Id8t/7DEau8GDE02f0Uuq765IOafEBYkMGo8i4IeeE0eph7Wh6KhBDIrmryNUaOfMrglm2x/eDyFyAtD6yGDz3QAyHvCxPyHRTCCUcIgTjqYSj44BeZFLrotZoFEMKKlL3LSQ9Vp7P2Xk8KFkciAvnWJiZHY2rypynuTRU0LCvHX+Em8bIhuCakdzheiWvR5NUqXVj5D7s7OuS44vf7aWhoIKD2LoWuQ3O90qLJO0aNBDxd8skrMUa99OaWYC+hKF0vhhMshJM8uO39FkOb7IkmH+ZDV2s82PJTOhjdAUGhH4GqiNFsNQuGuV721lyvHx9sE9srzBQ6kyhiavKnId499VQvKkFrDpB6TQHx52a36pLWFopLv5kF6ryhAK1AZWRKqUaCJUuW8Pzzz1PfqFsXopFCpygCRYAWF489b7ixrQuavNGpTIZr8orSPU1esUHigLb3WwxNvkdCvkUoa43+UOna7iIMK0ckSh/refJR1OQVG5rWW00+aK6PgCYffFA0zfXHjbvuuis7MzNzrMvlOvNEryXamEL+NKTun7uxJNjJuGcCztFdqyKs2C0Im4LPCLazpjlBlSdFPfv6+nq2bt0KwI6du4DomOsBbBaFgFDQDHNyR2Vtg7Ro8keZ67uaJ1+9Sw+6a++Bojea/FHaY3sd6DoleL0joI1KGd0UOkXYem2uD1anExEw14c0eTPw7rjxrW99q3bNmjUnNJ3ueGGa608zNK+Kb0898dMHonSziYsSa8O31xDy6S4CR5r1m3oXtNlIU1lZyd69e8nLy2Pz5s0A2O12qprcgLPHmnxnx9ksCgEE0himdCEfXzF88nuuvZasxx8n6Ypvdz3wTkrdXB8edHc01p5r8hyV8hbsNNdtjOsREU0+il3owPDJ9za6PoJCXiiK/qR5imnyBx54cKC3tDSi/eQdw4e7+z/+WIfd7e67776st99+OzU1NdXfv39/35lnnun+5JNPkkaNGuX+8ssv41VVFS+//PLu6dOnu+vq6pSbb7455+uvv3YBPPDAAwduvPHG2m984xtdDiiKZq/344Ep5E8z/PsbQYI9J6Hbx1qSHai76wGwpbvwbKtCqhIRAbdkR6iqipQSq3FDPXLkCH/6059QVRWHw4GmaeTk5GC1Wimr8AHO7hXD6WIKHeiafgAFhC4cRRfOE66hHXzgAV3Id6Ws7bbFsORO8DXCWT9sf1wwha4ngXeB1kLZmhHbzsiOEUKARUAk4u6iLeQVK1qEfPJEwicPYLGYmnwXWLZsmevDDz9MLiws3Ob1esUZZ5wx8swzz3QDNDc3K8XFxYX//Oc/4374wx8OLi0t3faLX/wiKyEhQQ2WoT1y5Ei3v1jR7PV+PDCF/GmC/3ATWnMAX7muidsHxHVyxLHYMmP12vYOSyjVKhLFTzpC0zT+9re/UVFRwf/8z/8wePBg/vGPf2Cz2ZgzZw4ff/wxiqJw6aWX8sUXX+Dx6Q/Y3ZDxrVA6iU0ImuulYb3oipB3GP77VufpSlnbda/oAh5g0Pntjwvlyfcu8E7EWHpurkdPu+xynEFHa4pygxohbL0PvAtq8hHwyYPxPTrFNPnONO5osGzZsrhZs2bVulwu6XK55EUXXVQb3HfttddWA8yaNauxsbFRqaystCxfvjxh0aJFu4Jj0tLSenSRo9Xr/XhgCvnThJp3SgnUenEMSsCSEoMlrvs382CFM2FpSaGSanS/71u2bKGsrAyAt99+m7Fjx7J7925mzpzJuHHjKCgoQAiB3W7H5XLh9dUA3StrGx5e36mQVwR+FBD6vaIrwsiacmzEuuhKWdtgLveASZB/SfvjelEMJ+iTT7/zDESMtdMAzA5RBETg+xDNVrOgR9f3uuJdMPAuEj55AKvV1OR7ydHf3V59l8OIZq/344EZeHcaEKj14NvXgNbgw1NSg31gfI/mCQp56dfAyIs+2qfbE3w+HyUlJTQ1HWsF27BhA6mpqdxxxx0oisLq1asZPHgwEydOBMDhcGA3OoG5XC78xo0yWj55a0iTNwLvemgyEKILmrynFkZeDrd8Bh3VyA/55Htw/wmmHCY5el2iWFhEZAIxpRbl6Prep9BFNPCOYLaFKeQ7Y+rUqY2ffvppotvtFnV1dcpnn32WFNz35ptvJgN8+umncfHx8Wpqaqo6derU+meffTaUH9wTc300e70fD0whfxrQvKWle5z0qcQMTepgdPvYMvQYG1t2XIsm30shL6VkyZIlvPnmm7z00ks0h+WSV1dXs3fvXs444wzS0tK44447uPXWW7nhhhtC/vlwXC4XmqGWdyu6Pvx1J4fZLAJVtATe9VRb6NJNvblGr1HfGcHo+h5UcQv+/YJlaXuFIiKTJ090ffJKJM31kRLyFovZoKYLTJ061T1z5sy6kSNHjpoxY8bw/Pz85sTERBX0/u8jRowYeeedd+a+9NJLZQBPPPHEwdraWsvw4cNH5efnj/zHP/4RD3DbbbcNyMjIGOvxeJSMjIyx99xzT/+2zhftXu/HA9Ncfxrg2V6NtZ+TQI0HVIljaGLnB7WBEmOl3y2jdd/8Hj0Ar7fm+vLycrZt20Zubi579+7lv//9L5deeimgm+oBxo4dC4DT6SQ7O7vduVwuF0HlWIlmdL2wQNBM31NNvrPoeikNIZ/c/pggvciTDwXK9fB6hSMUERH3TbSL4QR98uENg7pLqAtdJPrJgx54Z7aa7RK//vWvDz3zzDMHGhoalMmTJ+efffbZ7rfeeiv1xhtvrHr11VdbxQkkJiZq7733XtnRc/zpT38q/9Of/lTe2bmi3ev9eGAK+T6ODGj4yuqJnZSJ1zDZW1JiOj+wHWKGGUInQpr8pk2bsFqtXHPNNXz22Wds2LCBcaPHk9ovhbVfriMlLoOEhK5lArhcLiSCTlq8H0P4jd7SyU3fahG6uT68m1w30Xw+I0++g2sX8IIWAEcXXCu9yZM3nooi4r6MlCYv1ZaHqCggFKNWvAwgepgaormbwWaLTIMaTE2+O1x//fW5paWlTq/XK66++uqq88477+QpvXkSYgr5PoxvfyM17+9A+jUcQxNxnZmODGgRCUgJ1irvTaCVz+dj69atjBw5EpvFTv3XiUhV4fWX38TRnEZTQiOWmlz2bK1i4MhYLBYnqupGUZxtfga73Y6G6FRQd0Rn1yYUXR+sXd+Dc+2aOQtx1uiOI9EDhtvC1gU/eS+i60NCORJSPkI++Wg3qFFEUMj7gZ4Jaen3o0RIwAOGJm/65LvChx9+uPvobWvXri3p7bwnotf78cAU8n2Yuk/LQu1gHYMTQ6VpI0GotWgvNPnCwkK8Xi/jx49nX1E1NXv9xMUMpSGpBL+tnhgtGYc/lR2lz7DzyNtGYxEfAwf+gLzhDx4zn9VqRSK6bXkOH95p4J0i8ApLSCj2JNXLf+AAQoztRMgb/nVrF4rThDT5HgTeBYVyhMz1kdHko9tqNqi9a1qALrQeaBOpqhFpThNak6KYDWpOMCei1/vxwBTyfRTN7ce7sxb74ETiJmdFVMADvU6hU1WVFStWEO9KYu8aL844CQK+c8vFlFcOodFbx+TJk1nz/jpE0lv6uaSuqe7b9yqxscPon3kV29ceIqGfk6xhSVitVkOT7/nn6kzW2RRBk2JBGrK9K3nybZ6nszz5gFEC19oF14pi/G17UMUttIRImesj4pOPdqvZcE2+h6iBLnUg7DJWq6nJm0QFU8j3ITw7aqleWIR9YDy2rDhQJUmXDsY+oGcpcx0SlKQ90ORVVeX999+nqqqKhJqRbNm1n5g4G0npLnJHp5JLamhscu526lQoGPQeX39ewdBx+dTJu9m96zlqd53N0jf0Ohc3/HYyVpsVSfeV0nBLdWcBe4oQSETIZ9xRe962sA8ZoufNd5Yn7w8K+S5o8oqi13rvible6g9XEXHhKJEy1weimkKnGJp8byLsZUCFLvQt6CqnYjEck1MDM4WuD+EprEJzB/CU1tKwdB8x+cnYsrtf2a4rhMz1PQgW+vjjj9myZQtjhk/C7tUFuqfRT1YbUf+WuEICzQmsXORl1zoLK97cw9Ch9+L1HWZH8ds4XPpzatGXB0OafG8sz5358xUBWiuffPd+QvacHFR3k35ch4F3QSHfxdx1i62H5noiFHWHUda2d0Jet25oUY+uB91c31OkGkB0VLugu1gtZqtZk6hgCvk+hHdvPY4hifS7cRTOM9JIuaYgYlWfjibUWjTQ/k1dDWjs2VaF22hNq2mST978ko0bNzJlyhT6iWE4YqwMHqd3wsvOa52/L6WkybMBb00+R/bqdSh8zQES4s9BenOwpS5h/CVJDChIZvuaQ1gtPfTJd6PinS7kRci83VVzff+nniTntddQEuLR6ht0c31HArE7PnnQTfY9MtfLiN0FIqPJG3n7xyW6vhdV7wJqRM31QjFT6Eyigynk+wiaT8V/oAl7bgIxecmkXl2AEhNFbagLmvzyRdv56A+bWfjwauqOuPn68z2s27Ych8XFtGnTqDnsJikzlotvHsWlt49l+KSM0LGNjdv57+fD8HoP0S99MopVUHBOJpom2VdYzeGt5+NIPEiN8m1yJ+2mvtLDoV0NaLL7ht7wBjWdyWwLupCXxlm6+hCVePnlxJ5zNpa4OPzl5SA6MdcHo+u74pMHvSJeTzT5XuSKH0MEfPJBE/rxiK7vTZMaPfAukj55M4XuRHLmmWcWnOg1RAtTyPcRfGX1oEnsud3vLtcjQj75tm/qniY/xasOkp2XRMCv8fV/y1mz8UtUazPZ9rHY7XbqjrhJynDiC+yjnodYu/4SPF49uPXIkU/101jimDDtOm595gJGTx0AwNefl1O7cyrDB89HURz47Auw2hX2bq0G0TtzfWeavDDM9d3V5IPULn4fAFlf30ngnaHJ27oq5O2gnVhzfSTK2gZrBxyP6PretJuNtLne1ORPDH6//pv56quvio/n+Y4nZuDdKYzUJE1rD+Ipqsa3rwEl3oZj0PER8p1p8uXFNWia5OzLh7Lu490UFRVxUJYQ05yJr95FwK/SWOMlMV1lw8Zr8PkqADh44B0yM+ewa/f/YbG4mDZ1c2jO5EwXCH3uuOQYcgafC9b7KC39Lf0GV1NzKAmEgkL3BE24jOsshc4SFPJKz3zylvh4As3NoGkdl7UNCnlLFyuqKT31yUfOXI8iwNfbMsfGNTnZo+sjbK7Hopxymvx//lo0sHp/Y0RLvKZkx7m/8b0R7Xa3q6+vV+bMmTPk4MGDdk3TxM9+9rMDDz/88ID169cXZWVlBZYvX+669957B65du7bknnvu6b9r1y5HWVmZo6amxvqTn/zk0E9/+tPKjz76KP7Xv/51/8TERHXXrl0xZWVlW10u15lut/urjz76KP6RRx7pn5CQECgpKXHNmTOnesyYMc3z58/P8Hq9YvHixTtHjRrlPXDggPWmm27K3b9/vx3gmWee2XvxxRe32YI2uI69e/c6srOzvW3l+UcTU5M/hXF/VUHt+zsJVHuwZceR/qNxUTXRh9NSu75tgbq3sAp7jIWMQfEMyE/msL8ESyCWVLUArztAzUE3SFDjXsXvr2LSxPeJjx/Nrt3PsurL6QCoautCVnanlWSjfv6AAr3yXkbGZQAk5Gym5mATUii9ygbrzAqgoJvrgzXyuxtdn/XYb/V5bLaONfmgVq50MfWxh+Z6KWW3P0N7RMInHxTy0a5dr5+rl+b6SPrkLVazQU0XeO+99xIyMzP9JSUlhaWlpduuuOKK+o7GFxUVOb/44ouS1atXF//+97/vX1ZWZgMoLCx0zZ8/f29ZWdnWo48pLi52vvrqq3tLS0u3vvPOO6nbt2+P2bJlS9ENN9xQOW/evHSAH/3oRwPvueeew1u3bi1avHjxzttuu21QR+soLS2NWb58ecnxFvBgavKnNL7yBoTDQsb/TojYjbrLGOZ6v893TA1wqUnKtlSRMzoVxaIQmyFQbW5i64cwfEIm21YcoGJPPbGZW3CrH5KTcysJCWNIST6XhoZjfnOtKJiSxfqPyxh5nl7D3mHvh9OZQ0DbQ2ONF9IVhNAFjZSSVW8vpOTLFVz9yFO4Ejqv2d+Zud4i0AV8MLq+m+Z6i1GiV62oQGZltj8waLq1dFHIK7aemeslEYyuVyIQXR99IR+M3Nd6cr0MZITz5IWiwCnWarYjjTtajB8/vvnBBx8c+OMf/zj78ssvr+usM9ysWbNq4+LiZFxcXGDy5Mn1K1asiE1OTlbHjh3bVFBQ0Gbk5ZgxY5qCLWVzcnK8s2bNqgMYN25c87Jly+IBVq5cmVBaWhpKfWlsbLTU1dUpiYmJbZpjZs6cWRsXF3dC+tCbQv4Uxn+wCVtmbK8EvNvvpsHXQLorvVsBWEIRlFur+ffqz5kkz2LmzJmhfZXljTTX+xg0Wk+PqzX87E61H4PG9jOEfAMpef/GZs1kyOC7AUhLu4i9+14hP+8R6uo2kJ4+65jzjr84l/EX57baFh8/mmrvJgA9ut4w129f/QWr330TgKp9e3CNGtvp5+rMXK9r8mE++e5GgRt+3MChw5CR0f64oL9Y6eJPtMcpdDIyhXDQSwf0tkGNDEbXE01zfe81eSKcJ4/VijwB/tpTjbFjx3o3btxY+O677yb+8pe/zP7ss8/qLRaLDAaxNjc3t/pBttdj3uVytesbcTgcoS+xoijExMTI4GtVVQXoCsTGjRuLXC5Xl77wsbGxJ8wXY5rrT1GklPgPNWHLiu3xHItLFzPlzSlc+M6FXPTORSzZsaTLxx4+fJhPLZtQpcbWra217/3bawDIztfLQFdXV2G327nhoWkkpukPvxX7KnGmlZKWNhOLRd+WmHgm06ZuJTv7akaO/D39+s3o0lri40YR0A6g2NxoUiAMIb9z/ZrQmKZafU1qwM/X//mU2kMHQ/vCbwRdS6FTWsz13Yjvc08AACAASURBVNWCDZOsgI7NsyFzfXSFvNRkREraAhFpUNMSXR/NYjjB6PreaPJqhAPvlFCPepP2KSsrs8XHx2u333579T333HNo06ZNrgEDBvhWrlzpAvj73//eqm3jP//5zyS32y0OHTpkWb16dfx5553Xpt+8u5x33nn1TzzxRKhP/apVq7pY0OL4Y2rypyhqnRfpUbFldi7kvaqX6uZqsuKyQtvKG8p5Yu0TjE0byzcHfZNPdn/CQysfosHXwPUjr+90zi1btiCFZGjiQHbW7SMQCIR6vB8uqyc+NYa4ZD3Hu66ujsTERBLTXPia9RtZs3cjiiVAWtr5reZVuuqDDsMVOxgAW9wRAn4XilUXNJV7y8gals/BHSW462oBKFqxlH+//AcAzv72VZz73Rtan78zIY/UC+GEOs12TxiFtDUpO/bJBwX2cTDXRyqFTlg6yf3v0nqC0fXRLIZjBN71IrqeQITL2losHfcyMAFgw4YNzvvvv3+AoihYrVY5f/78PW63W7ntttsG/eY3v1GnTJnSED5+xIgR7ilTpuTX1NRY77333oODBg3yb926tedtOA1efvnlfbfccktOXl7eSFVVxdlnn90wZcqUvb2dNxp06ZckhMgEcsLHSylXRWtRJh3TXFhF1V8LAbqkyT+w4gH+veffXDb0Mh465yGcViePr3kcRSg8df5TZMVlcVX+Vdzy6S0sKlnUqZD/4osvWLVqFYNFBoPjs9lZt4/6+npSUnTNvfawm+Swh4/6+vpQu1i700pq/krSxr0GQHLy5J5cglY4Y3L0uWOPIBsHITUNKSU1Bw8w7uJZHN69M6TJlxdtA2DAyNGsWfx3hk44G0FL2d/OZLYCqEIgZc988rZsPZZAQMd58kEtP9rm+ggWw4lMnnzQJx/FYjhBIU/PfeBS0xCOCPWSR281a6bQdc6VV15Zf+WVVxYevb2tADqAMWPGNC9evLgsfNvs2bMbZs+e3ephwO12f9XWvvDuduH7srKyAh9//PGurqz5mWeeOdCVcdGi0zuIEOJx4HqgGEK/CglcEsV1mXSAe5OebuYclYq9f8dla1ftX8W/9vyLCRkT+HDnh9gUGxcPupgV+1fw0wk/DWn3NsXGRbkX8dS6pyhvKGdA/IBj5vL5fLz//vsUFhaSlZXFBdWjqERP9fJ69f+lJqk97CZ7eIvVrL6+nszMNEq2P0KMI5OkISsA8Fd9C4ulixXdOsDp1Nc6/ByJ9pnAIjV8zc0E/D5ik1NxJSbSVFeLlJI9W75i2KRz+OaP5/Lirdfz7uO/ojRuGMROAbpR1raHDWpsmZlYEhOx5ORwMC65/YHdNdcr1h5VvNN98idTdL3xGaIaeGcxztULIa8GUCwRzB4z+8mbRImu3EGuBPKklJ7uTi6EmAk8h14o7M9SyifbGHMV8DD6g8NmKeW13T3P6YRUJZ7SWlwTMkj5n7wOx2pS4/frf09OfA4vX/Qy8zfN55Wtr7BkxxKy47K5dkTrSz0lewqsg1UHVnFV/lWt9vn9ft544w327t1LZmYmN954IzV/2ILNeO4LCvmmOh8Bn0Ziuu6iCgQCNDY2Eh9fTnn5XwGwxUNl4SVkpf4wItfEao3Hao0nOb1Zbx6jaTTX1wHgSkgkNimZbUs/Y+eGtXga6hkw+wpiYuO44hcPs3Xpv9m6qRwMw0NnDWr0incK9NQnDwiXiw/OuID/jpzINW4vg11tPOho3Yyut9jB7+583FFI2f00wPbXEAmf/PEohhMJc32Ey9paLGaDmghzvDXo5557LvXFF19sFU07adKkxr/97W8n1IzfFSG/G7of6ir0X+kfgYuAcmCdEOIDKWVh2JjhwP3AuVLKGiFEetuzmQTx7atHNgeIye9ACzT4Yv8X7KjdwRPnP4HdYueOM+/AYXXgDXiZM3QO9qMKrQxOGExWbBYr969sJeT9fj9//etf2bdvH9OnT+ecc87B4XCARWCT+lcjKOQba/RnwfhU3e3V0KBbvuz2cjxe3bTe7NlL48GxJI3qedDg0djtafgDVXq5WRnAXa/74F0JiaHUubjkFM6/+nuMOH8aALljzyB37Bl8fu+joXm65JMPhfb1UMhbLOzup1tQKnz+toW8eipG14veR9cflxS6SGjyke0nj0XRO9uZnLLcfffdVXfffXfViV7H0XTlW9oAbBRCfAaGbRaQUt7TyXFnATuklLsAhBCLgMuBcH/KrcAfpZQ1xpwV3Vj7aYl3l66hxgxL6nCcJjVe3foqmbGZfHPQNwHdJP/jcT9u9xghBFP6T+Ffe/6FJjUUoeDz+XjnnXfYt28fc+bMYfz48S3jrQp24yvUIuT1/+OSdSFfX2/UqhBlxMUVcMYZr1NTtYWCAWeQ1cln6A52exo+7xEQAoGGu87Q5BOTaDT88RMu/Rajp114zLGuhHgIKsFagPrKCla/uwhfczPfvH0uNnuLED62QU33hZGwWFAMjbWuvRv78TLXy5Mtuj6YfXAcNPleCPlI95M3i+GYRIuu3EE+Mf51l2wgvFhCOXD2UWPyAIQQK9GtBQ9LKXtyrtMG/4FGLKkxKK72zbhldf+fvTOPj6uu1//7e85smWzNnqZpmjZd042u0LK0ZbMgslVlVVEUFFGQK6J4ryIIF1RA0XsBfwLFSwHZBMoqCpSylNKVbumSNm3TpM2+zn7O9/fHOTOZSTLJTDITGszzeuWVZOYs30lmznOez/J8qrhl7S3sbNzJTxf+FGscFetzC+by/N7n2du8l2J7MatWraK2tpZzzz03guDB8Cq36kZO2uczfCU6W4IkbxCj2+0GJH7/HrKzlmO35VI4ehmMJqGw2XJpb9+BjkHyng4jguBISyc9J5f6qv1MmDO/930dzhDJr/zRd8nUO0OVzpNPOpnJJ50S2lZBooWPmh0IQVos1GUYRYr/ufcIZ+f2YtKjBwzijjVSMOAWusR54ZAI73qGQMkrQSU/uHnyIpHz5NXhZ4YzguGBfkleSvmIMG59J5oP7ZODcpHocf5JwFKgGHhPCDFTStkSvpEQ4hrgGoCSkpIEnXp4wlfTia2PGfH1rnqufeta3AE3d51yF1+c8MW4jj833yDyTXWb2L1nN8eOHeOSSy5h6tSeQ5qERUEJGAwRMHt8O5o9qFYFu9NCbe3zNDVtJC2tHU1rIyNjdlxriQc2Wy4+XwMSgZASn8dIG9hSUlj+vRtpOlKNM7P3yEF48ZyQOpNPOoVxM0/g7UcfYvX9d/PFH97M1JOXAF1mOH2F6zVdY+2Rtext3st5E86LaF0EQ8lPqa1iw4TpLM1O77G/cRB/7CoeBj6gRia28I7BtoENRU6eBIXrEzlPXhlpoRtBchBLdf2pwP8BRzCClIVCiK9JKT/oZ9cjwNiw34vNx8JRDXwsjUkRB4QQezBI/5PwjaSUfwb+DDB//vzPxBrweIDuCaA1ebAuiO6UdvtHt9Psbeax5Y8xPWd63OcYkzaGUqWUbR9uw1njZPbs2b0SPACqQPFFknxni5fUUXbq6//Bzl0/AWDWbOOimkySt1jS0bROpACBxO8xRrVaHSlYrFbGTC2Pum84URdPmcZ5NxjrbqqpZsPqF3j1gd8iFIUpi07t6pMP7ttLuP6md2/i7cNvA/DA5geYkz+Hv5z9l1ANhCU3h7R2I40x1hGlDUsPxO5bD4McUJPIcD09bI7jwVCY4XTl5I+fPnlhUUEbUfIjSDxi+STdD5wrpTxZSrkY+CJGxXx/+ASYJIQYL4SwAZcCL3fb5kUMFY8QIhcjfB9T7+G/I/w1hk2zNUrb3OH2w6ypXsM3pn9jQAQPBlnPqZ6D7ZCNlJQUli5dGnVboSqoZrg+RPKtPtJyXFTs/jnp6TNALkJVjYtXauqkAa0pFlgsaYA0rNjR8Xs9KKqKGkNxVDghhW9/2uVXcdW9/0v2mLG88vt7ePG3vwZNM+bJi96r6+tcdbx9+G2+Xv51Hv3Co2TYMthct5mdjV2lKGpubsgIxxctvK0HIJ58/4AH1JAwkg+lLgYhSOVQmuEMYqEJnyevqMYxRxA3qqqqrMuXL58Q7fmGhgb17rvvzhvKNR1PiIXkbeEV8VLKXUC/LhBmSP964E1gF/CMlHKHEOJ2IcT55mZvAo1CiJ3AO8DNUsrjrjrxeECg0U3rG1UAUXvjn939LIpQ+PKkLw/4PHv27EHxKnyU/xE5Z+aETGx6hSJQdIPoNPMC1dniJbX4Pfz+Zsqn/Ra3ZzmaZqWw8CKUeMLPcUJVjUr9oJL3edxYHQ6EEEgp2fqvw9Tsbe5133CetqhhoXtFIae4hNOuuApHahqVG9bRUHM4MlzfjSC3NWwDYHnpchYULuDRLzwKGOQfOq7FimYqVX801zvNH3v7HAzC8U4mNCcPDCpk3zVq9vhW8gm3tVXVEVvbAaK0tNT/xhtvRBWHjY2N6iOPPPJv27kVy7t0kxDiIeAJ8/crgM2xHFxK+RrwWrfHfhH2swRuMr9G0AdaXj2A/5iLrIsnoab3vMfq8HXwwr4XOL3kdApS+xh80gdcLhdr1qwhLS2NSZMn8T/b/odl45cxLmNcr9sLs9DKYrF0Kfk2H5b0DaSlzyQtbTIe96dUHfgWZ5354wGtKVZYVOPGRweEkPjcHqwOo1f/wNYG3n92LwBfv2sx6dmRrpbhOXlLL+qsbN6JfP/Rp/nzdd/E5+5AF1m97gtwsO0gAKWZpQDkO41rS727vmsfi4WAGertW8nHQfKqtavtLh4k2AwHDEOkgR4xFK4fiur6wVSzj9ja8uaDvx/bcPhgQufJ544d5/rC926MOt3uuuuuGzN27Fjfz372s3owZrWnpaVpTz31VO7evXt3bNiwwfHNb35zvN/vF7qu8/zzz1f+7Gc/G3P48GH71KlTy5csWdL2m9/8pmb58uUTW1tb1UAgIH7xi1/UXHnllS29ne83v/lN3qOPPpoH0N7erhYXF3s//vjjPYl8zclGLLfL38UIof/E/NoPXJvMRY0gEoFmD55djaQtLiJ1Ye/jSR/d/iit3launnH1gM7R2NjIypUraWxs5KKLLuIXi3+BVbXy8/d/jhbtYmi2TKmqiqZp+DwBJC1Iy+7QcBm3243dnpXUHCsEw/WGo5KCxOfuxGY3yHz7e12lILvXHe35MsIoSe3jwp2Rlxcq6Au2g3d/XYfbD5NlzyLdZhTUjbKPwoqlm5JXCZiheL+McmEPVtfHCtUKWq+TM/uE1EmsrS0Myto2FK4fQGtirEiUkk9kuF6oIzn5WHDFFVc0vfDCC9nB31966aWsxYsXh4bO/PGPf8y77rrrjlVUVOz89NNPd40fP9537733Vo8dO9ZbUVGx8+GHH652Op36q6++um/nzp271qxZs+fWW28tjmYx/ZOf/KS+oqJi59atW3cVFhb6brjhhmND8DITiliq6z3Ab8yvEXwG6NxgvK9ST+xJ8Mc6j/HqgVf5686/cu74c5meG38uvrGxkUceeQSPx8Oll15KWVkZAD9b+DNuff9W3jr0FstLl/fYL2hjGlTynS1enPm7QEhyc5YCBsk7nQm92e8VariSB3xuN1ZHCgGfRs3eFmafPpajB1o5uL2R+eeW9ngdQVj7IPn0nDz8zW5wdvk7dx9Q0+xpJifFGLHbeOQwrz3wO75SU0Tz2IaujSwWAmaoN6qS1/zxVW8PJlyfqJy82qXkB4pQC11SlXxiqusTGa5HVYZdTr4vxZ0snHzyye7GxkZLVVWVtba21pKZmamNHz8+dHe7aNGizt/97nejq6urbZdeemnzzJkzvd2Poeu6uPHGG4vXrVuXpigKdXV1turqaktJSUnUu76rr7567GmnndZ++eWXtybrtSULUe/hhRBPmd83CyE2df8auiWOwF/TgSXfiWVUZJjZq3n5zlvf4f6N91OcVsyNc2+M+9hSSl599VV0Xeeaa65h8uQuq9xzx59LjiOHt6re6n3nbkq+vdGDPaMWUElLMyry3W43KSnJn8IYVPKGMDVa6GwOB7X7WtH8OmPLsxkzeRR1B9sI+CIvptEK77ojIy+fgNdtnidoXh9JkC3eFopaUtn90Vqe+q8fU1dVic0n8O/qiiYItStcHzUnP5BwvdTjz4cnsPAudJzBkPyQDKgRCKEOvro+oUreMuzC9Z8Vzj///OYnnngia9WqVdkXX3xxU/hz3/3ud5teeumlfSkpKfp555036eWXX+7Ro/rwww9nNzY2WrZt27aroqJiZ05Ojr/7HPpwPPDAAznV1dW23/3ud5/poJmBoq9b0ZvN7wOv4hpBQhBocGMt6KmGH976MAdaD/C/Z/wvpxaf2suefcPv9/P888+zf/9+Fi1aRGFhZKRAVVTOKDmD1ftX4wl4cFgcHG4/jMvvYkr2lB5Kvq3RgzWtDputEEUx6gYGRfLeDvC2Q0b/zjmqOSxElwIhJH6vB4czm0O7mlAsgqJJo5BSsunNQxw70MaYcFvgMKK29nHhzsjNA2nk9jWz9K57Tt5/rIUJrwV45bV7AFjx8zv4232/RFR3CQBhseA3VWDfJB+Pkje31f2gxDH0J8G2tjA4JU+I5JM7Bdsg+cH2yScyJz8yTz5WXHnllU3f+c53Spubmy1r1qzZ7fF4Qu/gnTt32qZNm+adPn163aFDh2xbtmxJWbhwoauzszP0QW1tbVVzc3P9drtdrl69Or2mpiZqIfnatWudf/zjHws//PDDir5Secczot69SCmrzR9rgP1Sykrz9ynAwWQvbAQGpKYTaPRgyY0k+aOdR3ls+2NcUHbBgAhe13X+/ve/U1FRwcKFCznzzJ52rwBnjjsTd8DNB0c+QErJD/71Ay555RKe2f2M6QzTpeTbGtxYU9pIcRSGzuHxeHA4BjC+ufIduHcK3DcVXrgGAn3nm7vaoozq+oDPj8Vm5/DOJkaXjcJqVxldlgkCavZF1tiED6VprffQ2dojwgfAqMIihEnKH733LwCOVe6N2Gbye13rPGnFZZTOmoOW78TWGLZ+i4oWVPKJCtcH5xDEmZeXCQzXJzQnn0QzHOP4lgEreSklJLy63gJSjqj5GDB//nxPZ2enUlBQ4Bs3blxEjuqJJ57Injx58vSpU6eW79q1K+Xaa69tLCws1ObNm9cxadKk6ddee23xt7/97aatW7emTp48ufzxxx/PGT9+fNTha3/4wx/yW1tb1VNPPXXK1KlTyy+55JLeq5CPY8TyLl0LnCaEyATeBjZh9Lx/PZkLG4GBQJMHdIklL1INP13xNDo63zshuhd9X/j000/ZuXMnZ599NosXL4663YLCBeSl5PHc3udIs6VR2VpJvjOfe9bfw8npK0GTKIqCruu01ruxFrVjsxufg6DVbdwk37Qfnr4cssZD2TL46E+QMwmW3Bx1l2B4V5fCGGvu9yFRaTzSwUkXGi20dqeVnDFp1OyNJHkRJmVrdrfy999t4tL/WojFFkk0JdNnMX7CZj5oxeiTl/DeqsconW24BDYeOUxqh3GsG1e9GAr929LT0I618vZjDzN96ZkoyVDywXa7eHvlJYmrrk9ETj40aja5hZqDUvJm7jzhtrbBY8c5vvjfEXv27Am1dU+ZMsW3d+/eHQB33XXX0bvuuqtHde3q1asPhP++ZcuWiljO89xzz1UNcqmfOWJ5NylSShfGyNkHpZQXAbOSu6wRBBFoMHLA4STv8rt4ds+znFFyBmPSxsR9zIMHD/L6668zevRoFi1a1Oe2FsXCV6Z8hfePvM+9G+4l057Jr0/+NT7dx4eBT0JK3uv2U7WtAaujHZstFwCPWYkeF8lrAXjpBwbBXfEsfOFOmHY+vH8ftNX2saNBMJoU2L1ZBPx+vJ2GKiopzwltVTRxFEf3t6KFze4OD7mnZjporXez5Z89p0MKRaF4jGHiWDLRqDnoNIfftNYdY+VN30MgUIqzInL7jpRUnB6VzW+s5omf3kBdRxsem6G8o7fQ+eN0vAuG6+NUpwkM1ydSyStJD9dbBkzyoQK5hBbeBdv6RpT8CBKLmEheCLEAoz/+FfOx4ZmcGIYI1Jv2rLldJP9m1Zu0+dq4YtoVcR9v9+7dPPbYY+i6zkUXXRST/ehXJn8Fi2Jhb8tebph7AyeOPpH8lHxe873NEfUoiqLQVNuBrvlBbcNmM8ylgpPp7PY4csRv3wEH34fld0OmeQNz1u0Q8BqKPgqEUJASJAJbIA2/20tnq0ZKupXc4i7zoKJJowj4dBoOdYTt2/U3mLKwiLI5eWx842Bool7EeUzlnV1QBICrrRUt4Mdn2ugCOGeOj9jHmRpZ+7N+73b8FoPAfdEu6logPjOcASp5mUBb20Tk5LuIN9lqVhl44Z2ZO0/sFDol4tgjGFocPXpUnTp1ann3r6NHjw57rovlVvQm4FfAK1LK7UKICRgh/BEMAQKNbhSnJWLq3BtVb1CcVhwaJhMrOjs7efnllykoKODKK68kPT3KcJRuyE3JZeXylWTZsyjJMAYEnV16Nk/seoJvl3zKlZ1XovvtzFhokLnNZijnuEl+12r44Pcw7yqYE3YDkz0eZn4FNjwKp90MKb0NmlHQpXGhVCQE/AE6mv3MWJYbkXMePdGY+Hbg03o6mj0c2d1My1EXYNwI2J025p4zkaptjax5soJzvzcrYn/VLLgLiVUpcbW2ovkNct00qYUVJ58QsbKsgiKa2RL6XaZaCJhK/6jXz/1VR7lhXEHkLHs9AJZ+jSXDXr75/oi3jS6ROXk1EUo++VPowIgUDF7JJ/BGxLxhGFHynw0KCwu1ioqKnf1vOfzQ77tUSvm2lPJcKeWdwpA8x6SU1w3B2kYA6K4ASloXwTe6G/m49mPOGX9O3ENAXnvtNdxuNxdffHHMBB/E7LzZIYIH+MGcH3B/9h3M7yynqr0Kn+bFOcqc/GY1vCriCtfrOrxxK4yeDef0Yslw4rXgd8GOv0c+3noEKt/G+pcvMneDMV4WoYMMoGkqU+ZGjnFNzbQzfnYuG18/yBt/3s72tTU0VIe8NFBUCxm5KSxeUUbVtkY+fjnSLVOR3Ugeoyc/4DfqD+pHeXFaI4ski4rLIn7fplejmeH13S4v9xw4yietnRHbxB2uDxXeDSQnH98u0ZAQJT8Eo2aDxx8sySe08C44/nZEyY8gweiX5IUQfxVCZAghnMA2YJ8QYsSGdoggfRoirADsnwf/iSY1lo/vaU7TFz799FN27NjB0qVLKSgYmO1tOJxWJwtT5vDlxrPQhU5A8WNPMy5QwXa2uJR81XvQeggW/xAsvWxfNAfypsLWp7oe++ev4P5y+L+LUOp3o3UYCj/fthPQGWOroMixu8ehTr1kMlMXFbJ4xUSufWAJpbNyQ88Fc+kzlxZTfmoRG984yKEdXeMUgq714XrL53GFlLymSlItqRHnGzM6cnaG3aeEquuD6MGzerzhepNw4iX5BNradnnXH/9KfjA5+VC4PpEDaoLHGlHyI0gwYok3zZJStgEXAm8B44CrkrmoEXRB92ooYSS/9shaSjNKmTQq9oluO3bs4MUXX6S4uJiTTz45cYtTBQW+HCQSXfixOyNJPqjkYyL5LU+BIxOmntf780LAjBVw+GPY/AT872KjGC+/HC58iMA3V9OiGTcvhcIwnhnn2AoVr/Q4VHq2gzO+Uc6cs0pQLQqO1C4yVUyyFEJw2iWTych18HFYYa5iFoZpUoYK9vweD16XocR1RZJqjST5/NziiN/zWuxo3VSgpXvIXItzCt0Aw/VS9hyyM1CElHxCwvVJrq5XBm6G0xWuT2BOPqTkh5fr3QiOf8TySbIKown5AuAlKaWPQQ2THEE8kD4NYe+6mDS4GxiTPibmUH1tbS3PPfccY8aM4corr+zTmz1eCEWQGxiFFBJNaNicvSv5fsP1UkLlv2DSF8Dax7ZjTzS+v/R9qNsBzlz4xmo44TLIKMIjDXK1YITOLZmj4fD6fl+HEuF4p4b9rDDr9LHUVbXRUG0U6gUL7yRdVfk+t5vmGuPGoi01gMMS+RpsvZgBBbr/H7rzYtzh+mDh3WdYXR/MUQ8LM5xBKPlkhOtDSn6E5EeQWMRC8n8BDgFZwBohRAnQ0fcuI0gUpDcyXN/ibWGUvbfCs97x7rvvYrfbufzyywdmStMHdL8fFRWrYkMqGorVIFdVNUjN6/UihMBq7Yes6iugsx4mLOl7ux0vGN8VC1z9T7j+E0g1Q+2KFa80Xl+Q5NW8idCwt7cjRSJMNSrdLtyTFxagqIKKj4z2PRGWkw/eaPk9bjQzhOuz6DjUvv/OuhDIbird171fPu5wfZDk4xxSI5MzhW6gGLpw/eCVfELD9UElP8z8648HJHue/Jw5c6YOdN/jAbEU3t0vpSySUp5tjoY9DJye/KWNAED3aShhSr7N2xYzydfW1rJ7925OOumkhPvHNz62kvr77wPA5teR6AhhKPfwcL3dbu8/6nDgPeN7aRTnvs2r4KXrYeNK4/eC6TB2AThDw6gQqhWfNF5jOybZ2+wQ8BhE1gfCHe+6e9enpNkonZXLnvVH0TW9KyevS5TguFiPO9TfjQCb2rMq/rI7fstJKy419u0lDH/U2y3MrsVrazvAcL2euHB9Yvrkh6aFblCFd4HE98mHbhhGSD5uJHue/ObNm2MyzjleEfVdKoS4TEr5lBDih1E2eSBJaxpBGKRXDyn5gB6g3d9Opj2zn70MfPjhh9hsNk488cSErslXXU3dvfeSetqVANg7veh2HSmMHHx4uD6m6MH+NTBqHGT14hi59y14qVszR3sv0x7DlHyFHMsJ7Ee12QFpFKP10Y4WfhOi9JLOmDS/gP2b66nZ12rm5BV0RChv7Pd4jNYnk+S6h+sBiiZPo2jyNDqbm9j43js9nl/T3M6FBWF++rp/iBzvZML4tMvxbuDZvC5b26EI1w+wkl1LQuHdMFTyTc/tGes/2pnQEZPWlRKQAAAAIABJREFUwlRX9pcnHzfz5AGcTuccl8u1OZGvcyjR18c7eMXJi/I1giRD6hLp1xA249/U6jWGnGTa+if5trY2duzYwdy5cxOu4tv/+U8IBMi84HwAHH5DuQWkCwBFMc4XVPJ9IuAzlHxZL8GhgBdW32hU1V/yBMz5Giz5KXQcBZ8rYlOhWvCZJL9VM1zpfrmriI+0aaD17kUf2jcsKa30MoVu3IwcLFaFyk11YeH6rsI7LRBA1/VQ2NuuRn/NZ1/7Q+Zc/sUej090drsxiHtATVDJDyQnfzxNoTMJ9Di2tU1K4d2Iko8JQz1P/vOAqFcRKeX/mt//a+iW8/lDTU0NzzzzDKqqsmLFCoqKimLeVwZ0kITC9UGS7y9cL6XkH//4B1JKFi5cOPDFR4F7y1asRUVYcrKABhzYcSNo8DchhA3FJCev19s/yVevB187TDyj53MfPwRt1XDl8zDxTJj2Jdj2nPFcy0HIn9a1rWLDJ41zpWN+5lWV7/j/g2eqmygvi+4LED4TvrdRs1a7yriZOezfXE/qRONiYFSlG/sF/H50TQuRXF8kD5BuyQBA6FooN39HZQ1SSq4fZ7Y3DtjxLt4BNSS+T34w4XqGbkCNPtCcfCDxhXdBv/rhpOT7UtzJwmc1T344I5Y++RIhxG+EEM8IIV4Ifg3F4j4P+OSTT+js7KSlpYXt27fzj3/8g08++SSmfaXXvJiY4foWrxFR6o/kKyoq2L59O6eddhrZ2dl9bjsQuLdsIeWEE7pIzZmDIhUa6mpDRXcQI8nvfQuECuNP63rs6DbY+jSs+Q1MXg5lYTcAWaXG9+aqiMMI1RYK12cIw2L2p7O9pOPmqr9uobo5UvlH7Bv2KeheeBdE2dx8XG0+2jtM9Y7h2a9arWgBvxGiFkZUwNpPVXya2WJnDUSG1n+9P8ybf6gG1OhJcLwbdOGdOK6VfDLC9cK8uRxOJP9ZYajnyQ93xHIVeRn4K0aP/Oc3ppEE+Hw+duzYwfTp02lubqaiooKmJuM9uWDBgn73lz6T5O2RJJ/piB6u13Wdf/3rX+Tm5nLaaadF3S4e6B4Px+6+G8fUaQibjcDRo6SccEKIHOzWUYhAEy31jRSURpJ8Xl4fmR1vB2z6q6HSHZlQv8doj6sOa3tb+rPIcHKW6QvfdCDyWMJCu2lN6zSr6/PSbTxuu5sve2/jG4+u57nvLiYrtWdu3iAUczBKlBDsuBk5qFaFxlbjI6ObSl61WND8QZIX2NX+Cw3tSipIsAQC+KKVCsSbkx9ouD4Z1fWDLLxLtooHEKhIGXXCaJ9IRrg+NHluhOT7xVDOk/88IJa7F5+U8j4p5VtSyn8Fv5K+ss8BKioq8Pl8zJ49m/Hjx4cIPlboppIPmuHEEq7ftWsXDQ0NLFu2bEA98a2vvMr+8y/As7PLxrlp5Upanv4bR2+7jdpbbwUg7fTTQ0repqaiSIWWzvZQ0R0YJG8zp61xbAesezDyZB8+AO4mOO3HULcLHjsHmirhhCu7timK9IHHmQ229J5KXgjcunHuoGGN4khnsnKE/2e7l8PNbr71+Ce4fD1JMJyU1ShK3uawUFKeTWObQaa6mZNXLdZQTl4KsPfm1tcNFquxjaUv1a35h8TxzqgjPH6UPFJLuoqHQZrhhAbUJHiePCNKPhYM5Tx5oP/uoOMcsbxL/yiE+E/gTSCU35BSfpq0VX0O4PP5Qop63LhxKIrCu+++CxBzCD2aku+L5Dds2EBmZibTpk2Luk3U80lJ/R/+gP/wYY7d8xvGPb4SKSWtL6/GMWMGaUuXEmioJ/WkRdiKx6C1NABgVVIRUtDidaMqXRaxPp+vK1z/2k+M6XIlJxkWtVuegjX3wIwvQ9FcuMMcB/u9D42Q/JYnel+kEJBdCs0HejwVDNcHP5Kqw4gqnKhU8MBX53Ddqo1ct2oT/+/r87GGDReJqK7vJScfxKT5BfxzxzGwQ2tLHtnCgWrV0fx+FFUxSF7pn+R1k8Ss/iiErOsYxRjxjJodxICa4yknL7WkV9aDWb0vBxiYTPY8+RH0i6GaJ3/06FE1MzNzWOfqY/k0TQa+DZxDV7heAomJBX9OsWbNGlpbW/nmN7+JoiiMGTOGlJQU3G53yO61P0ifWYQUlpO3KBaclt67Vg4fPsyBAwc444wzIorJ+oP/yBE6P/oIW2kp/sOHsU+bhuvjj+lcvx41LQ3f/v0U3nYbWZdeErmjeVEXig2BoEX3IxRDuQcCAQKBgEHyRzYZBA/wyV+MCvnXbjb64k/5ETz5VeO56RcbPfBBTPpC7wvOHAvNB3s87A32x5tDTpTRs0LPLZ9RyJ0XzeRnL2zj1he28duvzA49F6Hk+yD5CXPzcKwyjt3WWkCGnI/V+hFawI8QVmSUHvnuCJh/t5aMrN43CBJ1PLa2Ax5Qk7hRs4nLyQ+Bkh+MGU4gCeH6kJIfyYgeL6iqqrIuXbp0yve///1eenaHD2Ih+cuAUill331IIwihpaWFdevWMXv2bMaNM3q/LRYL119/Pe+//z7r169HStlvGEj3Gheh8Or6UfZRUfd7//33SUlJiasvXu/s5OA3rsJfXW08oCiMfehBDnz5yxy++tsoGRkoGRmkf+HsnjuHLuqgoNCKhmIqSp/PyIvb7XbY9bKhNKdfCJ8+AzVbDRW1/G54+jLwtMKp/wFLb+069o/3gSOj90Wnj4ZDH/V42C8NorOYBVVKSjrMuRIqjb70yxaWUN3s4n/eqeSiOWNYPNGIOoiwG6JoOXkAVVUoL2qDplQUixfpyzfC9X6/sV+MJB80w9EsUZR6kKiHZEANx90UuiHJyQsL+oBb6IKFd4kM1weV/LAWjcMWR48eVZcuXTql++Pr1q3bVVhYOKzDK7G8S3cA6YSF6kfQN9asWQPAsmXLIh5PTU0lNTUVTdMIBAL92r1Kb6SSD5J8bzh48CC7d+9m6dKlXXnwGND4yCP4q6sRTifS5SJl5kysBQUU/uIX1Nz8Eyx5eRTddSeWrJ6qM1SVrZvKVNVRhPGaIibQHa2DtHxYfg9UfwLHtsFFD8Pbv4bWavjmG1DS7cYkrY+CvYzR4G4GvyfC6z5I8lbz4q2qFkPhBrreuj84fRIvb63hV6t38uoPT8GiKhHV5dGq64PIcviAVOwpzUhvEYpqQQv4aa6qQe0MYFP79yTQ+4uyBIvnkux4FyTjxDneBYlqMEpeHyKSH7iS7/KuT6SSD5rhjCj5zwL/1vPkMQi+Qgjx6kgLXf/QdZ3t27cze/ZsRo3qScjBHHUsIftQTt40w2nxtkR1u1u3bh0pKSlxTZnzHTpE42MryTj3HIr/8AdQVbIuvwyAjLPOYvL6j5nw4t9xlJf3foAgOZjX9HYLCKUXku+og9Q88LQYpjcli+Hv18Ke1+GUm3oSfH9IN70G2msjHvaZKloNFt5ZLKDaI9Stw6ry83PL2X2snVUfHwK6wvVj3Ef6DNcDKMEogcX4/0mpoPn91FcZrpr9tc8BaP2Q/JuP/JkNjWMGOKAmDiUf5OKEmeGYhx2kGc7QkfxxZGsbIvkRJT+CxCKWd+mdSV/F5wjt7e34/X5Gjx7d6/NBm1ePx0N6enSDFjB866ErXN/ibWFcRk/r18bGRioqKli0aFH/w2DCcPT2OxBWK/k//jHWoiKmbNqIEtbXrvQTEQgqQGGKj3aLAIy1BkneZrMZw2dSc+GJiyOr4q2psPSnMa83hPRC84S1kD0+9LDUjXMHw/WqxWKQXzfHuy9ML+DkiTnc99YeVswrRoTd6yr9FFMFHe+Eah5TqqHhNBAbyRvh+t4v5rqmsX3te8AE5ilq7JF0ZSAkb5JxomxthTBu/AZF8kOl5I8zW9tgVOBz7Lw2gs8GsXy8PwTeNtvmqgA7sCaZixrOaGxsBCAnJ6fX58NJvj9Ir2bkSy1dtra9hevff/99VFVl0aJFMa/Te+AAne+/T843r8JquvApscx9D0cwJ28KG00ReE2Sj8jJdzYYIzSbq2C0WfCWPQF+XhNf3jmIDFPJt9VEPKybb+fgm9pQ8rYeLnBCCP7j7Cm0uv08v7E6YkBNf+F6JVSRHSQIFc3vJ6e4hOZx1thy8ubplF7Giro72kM/d7jiIGxFMUyFBhCuT5iSB1DEoKrrGao++QTY2iYyXB9S8oERJT+CxCIWkl8LpAghRgNvA98BHk3qqoYxEkryPmPMrBACKSUt3hYy7JHFaC0tLWzdupV58+b1GxkIR+fatQBkXnBBzPt0R/ecvIJCW8AgwVC43maDzjrDvMaRCZc/A4uuh2++PuDzkm5GSbqF65EmyZtErKoqWOxGkV+3MOjckizmlIzisQ8iW/H6KrwDEOaxdWGQqUQJOd7pUo+xut44x5iaPT2ee6q6PvTz0WNt/R4rAqp1QEo+YTl5zCE1g6yuFxzfSj4Urk9o4d2Ikh9B3/BHa7ntB7GQvCKldAErgAellBcBs/rZ598WTU1NWCyWqIQbC8k3dfpo7vShe7VQj7w74Mav+3so+S1btqDrOosXL45rna7Nm7EUjQ6p+AGhW05eSEGreQEMkbzwGUq6pQpO/bERav/CnV0h94HAkQmWFGjv1g4rzfSBSV6Kxdqnp/u3Th5PVaOLA41dlrdqtIp3E8IkMIkEAkjdUPIS0NGxKbEoeWOdE6o29Hhua0fXWl5+/j18Hne/xwtBscbneBfKyce+S/9rEIMqHpNSi/QZThISYmubjMK7wLAu5B4S3HbbbQWTJk2aPmnSpOm33357/u7du23jx4+fvmLFitLS0tIZ559//vgXX3wxfe7cuVPHjRs345133nECtLW1KV/5yldKZ86cOW3atGnlTzzxxCiA9vZ25dxzz51QVlY2/ayzziqbNWvW1Pfee88JcMUVV5TMmDFj2sSJE6f/6Ec/Cl0s16xZ45wzZ87UKVOmlM+cOXNac3Ozsnv3btu8efOmlJeXTysvL5/21ltvpQK88sor6QsWLJhyxhlnlBUXF8+87rrrxjz44IPZM2fOnDZ58uTyHTt2RA2hrlixovTyyy8vmTVr1tTvfe97xQP5e8VyK6oIIRYAV2CoeGAIbrWHKRobG8nJyYnap94fyW+oauJbKz/hhJIs7nekh9zu2nyGqsuwdSl5KSXbtm2jtLSUzMzYxs8G93Nv2oxz3ryY9+kNEUpeAUUqNJt3m0GSd3gNwxzS8uHEawd1vq4TCyNk33Yk9JCu6UiTrSKUfHBYjOYDIv0Fls8oZHSmgw8qa4BsBP3n5IOFd7qUKIrfKLwzPeh1JNYY0g9d1fU9Cbnp2FFKw37ftfYdZp91br/HBEwlH8eAmiSE6wet5BnKnPxgC+8SH66nlxTOCLqwdu1a55NPPpmzcePGXVJK5s2bN+2MM85oP3z4sONvf/vb/nnz5lXNmjVr2qpVq3I2bNhQ8eSTT4668847Ry9btqzy1ltvHb1s2bK2Z599tqqhoUGdP3/+tPPPP7/td7/7Xd6oUaO0ysrKHZ988olj0aJFIbOO++6770hBQYEWCARYvHjxlI8//jhl9uzZniuuuKJs1apVlUuWLHE1NTUpaWlpusViCaxdu3aP0+mU27Zts1922WUTtm/fvgugoqIiZfv27Tvy8/MD48aNm2m32xu2bdu264477si/99578x999NGow35qa2ttmzZtqrAMMHIUy143Ab8CXpFSbhdCTMAI4Y+gFzQ2NlJQUBD1+b5I/nCTiysf+RiPX2fzwWbkeGeost4TMLZPsXS1aNXW1tLY2Bi3ivdVVhI4dgznSYOcMx9eeKcYw1nqfMY6gyRvrXjR2Hbhd43QeaKQUQRtXeH6gF8PCVPFHK0mFKVPJW9VFX594Qx++dA+SDFcCPuvrjfOousSofjRNYHU/aiqBQ0NRyzV9SFS7Uny9dXGZ11RJLou8HR09Hu8EOIM1ye8hQ4GnZMfuup6ZeDh+hElD8CLL744tq6uLqHz5PPz810XXnhhVMJ79913084999yWjIwMHeCLX/xi8zvvvJM+ZswY78KFC90AkydPdp9++ultiqIwd+5c169//esic9+MN998c9QDDzxQCOD1esW+fftsH374YdoNN9xQB7BgwQLP5MmTQ+G0xx9/PHvlypW5gUBA1NfXW7du3eoQQpCfn+9fsmSJCyA7O1sHaGtrE1dfffW4nTt3piiKwsGDB0MXvJkzZ3YGLXhLSkq855xzTivA7Nmz3WvWrOkzz3rxxRc3D5TgIYZwvZTybSnluVLKO83f90spr4vl4EKI5UKI3UKIfUKIqGXUQogVQggphJgf+9KPP2iaRnNzc5+2tVarFVVVeyX5N7YfxePX+e6SMtq9AdzuAMIsuvOaFeIOS1df+LZt21AUhfJoLW5R0LHWcJ9LO+WUuPbrjlB1vRkmz3BDvdd4XT6fD6vVirL3H8bGk84c1Ll6IGNMpJIPyK6CNsKGrljClXxPnDGtgMXjzCiIIxWlH5c5oQeVPKiqH11T0AMBJDLmnHywhU70QjJ7xhv/y99/4z8BaK3r4dAZHQMN1ycwOi4SUl0/NLa2Aw/XJ7HwbqSFbkCw2WyhN52iKDgcDglGNE/TNAFGBPO5557bV1FRsbOiomJnbW3ttrlz50bNm1ZUVNj+9Kc/FaxZs2bPnj17dp5++umtHo8n6qflzjvvLMjPz/fv2rVr57Zt23b6/f7Qtna7vdf1KYoSWl80pKWlDapQo99PkxBiIoaaLw3fXkrZiwVaxH4q8D/AWUA18IkQ4mUp5c5u26UDNwAfx7v44w0NDQ3ouk5ubm6f2zkcjl5J/t09dUwpSOecGYU8tKYSl8uPI90gKXfAyM2mmGYruq6zbds2Jk2aREpK/wYs4ehc+x62srLB5eMhUskDOZ0K9V7jJtjn82GzWqHJ6B8nNX9w5+qOjCKj8E7XQFEjlLzQ9a68bpB0A9G9nKYVOKEOXBr4NT3C1747REjJ6whFQ9cVdL8f1WpDizUnb7Kq7EXJexxODhaNx2tPYcKU8ezfvCEmd0TA6NseSAtdIqvrVZGAPvnjOyefjMK7kIXxMDLD6UtxJwvLli3r+Na3vlV6xx13HJVS8tprr2WtXLly/+OPP96He1Zo37Z77723YOXKlYcUReGDDz5IOfnkk92LFi3qePrpp7O+9KUvtW/cuNGxZ8+eFIDm5mY1JSVFz87O1g4fPmx59913M5csWdI+a9YsT11dnXXNmjXOJUuWuJqbm5W0tDS9tbVVLS4u9qmqyp/+9Kcc7TiZQxDLu/Q54BHgCULNUjFhIbBPSrkfQAjxNHAB0N1V6A7gHuDmOI59XGLfvn0AjB8/vs/teiP5Dm+A9Qea+NbJ45lSmI4iwOMJILINAvdoxvbBKWd79uyho6ODmTNnxrw+KSVtr7xC54cfkXtdTMGYvmG20AX7zLM6YK+3EzBIPs0mwWW+ztS+b3ziRkaRoVo768HiILB5NRIjTaJIvYu4YjCJ0QN+QCUgBe9U1HH29OhFgcKsfjZy8hpSVwgE/Fhl7NX1WigC0rtqe2fxOQBMmDqR/bvfoq3+GJn5MRQqKtY4W+iM74mcsjV4JT+EA2rQzchBfDcVyQjXB3vuR5R83zjllFNcl19+eePcuXOnAXzta1+rz83NjYmX7r777pprrrmmZOrUqeW6rouxY8d633nnnX0333xz/Ve/+tXSsrKy6WVlZZ6JEyd6srKytJkzZ3pnzJjhKisrmzF69GjfvHnzOgAcDodctWpV5Q9/+MMSj8ejOBwO/b333ttz44031q1YsaLs6aefzjn99NNbU1JSjos7tlg+TbqU8o8DOPYYIPxOrxqISAILIeYCY6WUrwohhj3J7927l/z8/H6L4Hoj+Q/2NeDXJEun5OOwqpTlpeFv1UCNzMk7LA5cLhcvvvgieXl5TJnSw24ZAN3l4thvf4vzhBPIOP98XOs/oWnlSjreeYeU2bPJufpbg369oXC9+RHL7hA0eDvQdA2fz0eK1bx4WuwD64fvC5lmoWnbETj4EfrbD6JzPxAM13dT8n0UpBVNnAy7DuG3Onl2Y3WfJB8s6tMkKKqOrhuOd0jQ0GNzvDPXJkXvF/T6XCPCYss3blqaao7ERvKqLT4lHyTjRArnQefkh2jUrJn3H9D5TLWd0Jx8yBL4uOCF4xq33Xbbsdtuuy1iaExwCh3A888/XxX8OXxCXVpamnzyySd7TLZyOp36Cy+8cMDpdModO3bYzz777MmTJk3ydT9WOJYsWeLaunVrxCS7mTNnesOn4z344INHAM4777z28847L2SAsX79+t3Bn7s/1x3Rzh8PYiH5l4QQ1wB/J3LUbJxNvJEQxifrPuCqGLa9BrgGoKSkZDCnTRq8Xi+HDh2KyZCmO8kHNJ1nPjlMmt3C/FLDI356UQZ6QzvC2q3wTk3hrbfewuv1ctVVV0V1uGt++m+0PPU0rS+9jEhJ4cgPbwAg59tXk3fjjYkZrtGthS6rUxCQOvXuevx+P/bgNdASXzohJgQNcVqPQFMlmrR2hetlWE4+WMTVR2g2d8wY4BAZGWm8U1FHfbuXvPTeiwSDBjZSlwhFRw8Io0de12KvrjfXJtH5waO/5tFLbqAztWftTWeuQewNh6oYf0IMnRDHQbg+IX3yQ6bkg1Pv4rsBDantRPbJW0bmyX9WaG9vV0499dQpfr9fSCm5//77DwZz5p8HxPIu/bb5/b/CHpNAf2x7BBgb9nux+VgQ6cAM4F0zXFgIvCyEOF9KGdFALKX8M/BngPnz5x93f/za2lr+8Y9/oOs6kyZN6nd7h8NBS4sxG76+3ct/PLuV9/bU85PlU0L54PKiDNQtbfhM6grm5C1Y2LlzJ7NmzaKwMLq66zCH5EiXi5qf3AJWK2Wvv46teMygXms4RDBcb/5HRrUbvx/pOILP5yPdYpKHNRkkb76Othpo2m+QfKjwTkcGiSuY6+zDZCR4r5KTaudYm5dVHx/kxjMn97ptV+GdRFEkMphflxKEjNG73iR5oePwecJc9CLxgZJORl4+1RU7WHD+in6PG3e4PlR4dzxV12soQ0LyQSU/gPC4poEQEdMLB72e4LFGWuiGHFlZWXqw1e2zwi233FL40ksvRVRsX3DBBU333HNPHJW3vaPfT5OUcmx/20TBJ8AkIcR4DHK/FLg87LitQChRK4R4F/hxd4I/3hEIBHj22WfxeDycfvrpodGyfcFqteL3+1mzp54fPLkJj1/nnhUzuWRB131TaU4qVqDTDN8Fc/KH9hzC6/VywgknRD2+1tGJa9Mmsq64guZVq5AeDznfvjqhBA90Fd6Z7JrZaXyv7aw1wvVO82KfDJJ35oAtDZoqTZJPJ0iVSrihSgxKPpiTtlkUzpxWwMoPq/jOqRNItff8eAgtLCev6gQ/QrquIYnRu54gyRtrKj28l23TejaW3Nuk8tvicbTV1/V7TCB+x7tgC10COV6oyqCUPFJDKI7+txskwsP18UIGtMQW3UHoeMOphW4EicM999xzNBGE3htiuhUVQkwVQlwshLg8+NXfPtK4Rb4eeBPYBTwjpdwhhLhdCHH+4JZ9/GD9+vU0NTVx0UUXcdppp8VUxGSxWAgEAjy8ppJ0h5XXbzw1guABMlOs2BD4TLnlCXhAwqcbPyU/P5/S0tKox3et+wj8ftLPOovsb30LNSuLrMsuG9Tr7A3BnHzA/J7mNt5ODa4G/H4/NtW82NtSE35uhIDCmXB4PbRW47HlhHWEhRXexaCQFHNbXUq+v6yMFpefp9Yf6v20squFTlFl6CZCmpGC2HLy5vnMOtaz1q7uejJM1fskNKWNSh7JhwbUJFLJM0xy8sFwffxKXmqBxObjGTHDGUHy0O+nSQjxnxih8oeAc4DfA1+O5eBSyteklJOllGVhffa/kFK+3Mu2S4ebipdSsm7dOiZMmBBTmD6IIMlX1ndw4oRsyvLSemyT6bRiAzxhJJ/ly6LuWB0LFy7s82aiY+37KE4nzrlzKPjJzUxa8y7WMQlW8RAih7tPMVz4rAGBXbFQ767H5/PhCF4HbT1fX0JQNAdqt4DU6UwpDSl5oWth4XpTcfWh2NQwkp9TksXC8dk89kEVgV6KoMKVvKpKguaPUkqkILbq+qCPrKnk1fALexjBjbUKdqsOfG4X/hhmHcQbrk/4qFkGr+QlQ5WTH7iSJ6AlnOSHoxnOCIYHYrllvgRYBtRKKb8GzAaSIM2GH5qbm2lra2PatGlx7Rck+WNtXibm906AGQ4LNgRu84Lp1tyUdZRhsViYMWNGn8d3rVuHc+FChDkqVvQzMnYg0KTkV5U13DLbEUaoghxbeojk7Yp5sbcnieRHd6UsmlPKIpV8iEiDCim6YgsuP5i2//Yp4znS4uaVT2t7bKuEmeEoFhkapiKljowzJ6+LnmSYYVG43t6AVfdzXqaFCmnOLuiIoc51oI53ifauH2Th3VB41yuDUvKJD9cbY3oV5IiSH0GCEcunyS2N292AaVxzFOg/8fxvgIMHjW6MWPLw4bBYLIaZCpKJvah4gAzzIuIymcftdTOmYwzl5eUha9ze4K+rw3fwIM4FC+JaUzzQpeSW3dU8VF3PvwqtoWpxXShk29KpdxnV9VbFZM1uk/MShmIzj112Os32kjDHu0AvhXexhevBcMErH53Bb9/cjccfuV94n7xqCQ/XG/vGk5PXe2mhm56WQhY+/IqV8lQ7HnNgjt8T3cyn64VY4nO80xMfrh8+ffKDyMknIVwPGGp+RMmPIMGIheQ3CyFGYYyX3QCsN7/+7XHw4EFSUlL6dbjrjqAPsYJOWRQln2JeeIOFd94aLxbdwpw5c/o8tnvjRgCcCxLvENwe0Lh0SyVF727lidpGLinMZkqbhh7s+1YE2RaD5AFswQZ6e+wjcONCThlc/RZc9jcC0mpOhgua4ZjbhArvolfXq0okyauK4BdfKudIi5s/v7cSCKMXAAAgAElEQVQ/YlvFbJ+SOma43vwImeH6WFrogjl5KXquqTw1hSyzUzXHasVvNaIwfm8M4XrVFt+AmiRV1w+m13uocvIMpro+GeF6jLz8iJIfQaLR56dJGInf26SULVLK/wG+CFwrpfz6kKzuOMehQ4coKSmJOnEuGoIk71ChJDvKfAezeClI8rJa4rV5+40auD7ZgHA6ccTpZx8L7qis4d3mds7Ly+QPU0v4/dSxPL7Rw/iW4Ix1hRyLEa4Hc8wsgGNUtEMOHmMXgsVGQFq7qusjcvKxFN4Z37UwBXrShBzOmVHIg+9Wcripa/wr4Y53FsLIIo7Cu27V9eEQArKlEXJPs1nxW+Ih+TjD9TLx4XoxaFvb4aDkk1Bdj9lGN6LkhwQ/+MEPxhQWFs5yOp19q6bPAfpkJ2lcBd4K+32flHJT0lc1DNDa2kpTU1PcoXroIvlxWY6oPunSb5BGR0CjpaUFpUWhNae13xsK14YNOOfMSYzZjQlNSh46VMdfaxq5tjiPv8wYzyWjsxFCYBECu3ldkoogx5KOK+AiIALYNHMWuiP2MbgDRSDcDAeNHjn5Pi7mSrBvvRs3/dd55SgCfv7i9hAhKlrYgBoLEPKhN75i8643v/dC8t8ak0eWNAjdJQWjnEb7YUwkH++AmiSMmjWU/HCqrh8AqSYrXG+xhLo0RpBcXHjhhS0ff/xx3L3xfn8cha3HCWJhgi1CiDlSys1JX80wQkWF4Wg4eXLvpil9IUjy47Oj59alqeDbAxrbtm1DIHDnufs8rq+qCu+ePWScd17ca+p1DVLyYUsHd+2vZWObizNzMvjphNGRGynB0jNDyeeqRv7drbqxSVPJpyRRyQfPLS2hgS9CasigGowjJ691Y/miUSnc/IUp3LZ6Jy9vreGCE8aEtdBJFFV0Fd7pZuFdDOH6gHme8HD9tH2f8sUzz2aC044mjf9zsyYoSDPSOTHl5ON1vAuFPmLfpT8MFyWvDLJPPinhekWBYeRdv3PXLWM7O/YkdNRsatpkV/m0e/ocfHPzzTePfvbZZ3NycnL8RUVFvjlz5rjeeOONUdOnT3d99NFH6ZqmiT//+c8Hli1b5mptbVWuvvrqkk8//dQJcOutt9ZcddVVLWeccUZnrGtasWJFqd1u17dv3+5cuHBhx1/+8pfqwb7OoUTUT5MQwmL2us/BmCBXCXRiSCQppZw7RGs8LrFr1y7y8vLizscDIeIpyYo+Xz2o5Nt8AbZu/RR3mhtLWvSLn+/QIQ5+4yoUp5PMCwZvQyCl5L/31/LAIaNH+6bSAm4uLezZuqeAIoNe7IIcxSB5j8WDJZgfduYMej39QZOWMDMco09eSomIs4WuO762qJTnNx3hntcr+ML0wpCSl0ElL7py8hBjuD44yS5MyX976WlcMd5wMMwyIyCNGhSmmyQfs5KPP1x/3Cn5hJrp947B9cknJ1yPxRK6uR9B71izZo1z9erVWTt37tzh9XrFCSecUD5nzhwXgNvtVioqKna+/vrraddcc834vXv37vjpT386OiMjQwt6ytfX1w/o7qy2tta2adOmisHMdf+s0NeK1wNzgc+NcU2i0NnZycGDBzllgPPYm93GhWVMZh8kHzDD9b42FFcDzSXNEbPku6Pp/54g0NRE6f/9FWtBwYDWFUS9z893tlexrrWTBRmp/Ki0gGXZ6b335isCi1nWLhVBjjCK7DyqB6tuElMyc/ImNF0FEVTyBslrmoZF9K/ku7fQhUNVBLeeO43L/t86Hv3gAEvMcLgRrhd09cmDFGBR+r8IBE/TkdJVJJeR2fU3ypEuMv3t7HHlUJTmRAfcvhgK6uIdUBPMySeyuj4Ro2Zj+BsOFoPqk09SuF4oyrCaQtef4k4G1qxZk3bOOee0OJ1O6XQ65VlnndUSfO7yyy9vAjjnnHM6Ojo6lIaGBvW9997LePrpp0PVs3l5eQMqerj44oubhyPBQ98kLwCklJVDtJZhgebmZl566SWklJQPsLit0WW8zwrT+1B9JsnrgaMIIahPr2eSGt1wp/PDD0k96SRS+rC7jQXrWjq4cPM+rELw2ynFXDE6JxTO7hWKwCq7WugyMXLIPsWHqgVJPkktdGHQdAWQRo+8lEgh0HU9pnC9zWIox1HO3v8fi8pyOHNaPg++W8lC3dhWR6KoKmrYBz9WW9tguL41zUvLKZN4etwFPBxWmyH0ADM697Gto4AFo1I4BDQmM1yf4D75wbXQ6XQlgJKHweTkDVvbZOTk1ZEpdINAdxGSyBHKaWlpw/Yf01dcLE8IcVO0ryFb4XGG1atXU1NTw3nnncfo0aP736EX1HUYF+Lc1Oj3WDIgkUhSZD1lZWW00x6aJd8dgeZmfJWVOOcPvG2uxR/g8SMNXL29CoCnZk/ga0W5fRM8gBC024y3kd9iIU0aawwoARTNJCZbklrowiB1AUJDRTeHxShoWpixSh8X84IMB3deNINHvhHdW+DGMyfT7gnwis2wH9alobzU4BRA3WjbiydcDzqtRRm0p48iNbwAU/Mzo3M/uzrdjEkx/p5NMfXJDzBcn+A++cHZ2gZCKjuZGMyAGqNPPhnV9eqwUvKfBZYsWdLx5ptvZrpcLtHa2qr885//DIXAnnrqqSyAN998My09PV3LycnRlixZ0nb//ffnB7cZaLh+OKMvkleBNIxpcb19/dvB5XJx4MABTjzxROYPglDrOowPstMS/eIqAzr1og278DJpyjQ8mgeH2nu4PtQbPz+GcaS9wKXpXLR5H7fsqcaj67w1fzKnZMX4L1YE1enG56Y+Kxu7ZkVFxa/4UXQzxJysPvkwSE0i0VGENAnXCNfHouQBrjhxHIWZ0dMhM8ZksnRKHi84y4zDSYmiKFisXRf7KYfSYgvXS1B0wxLHa7beRZC8HmCsrx6PLhllN9bU5I0lXG81Gvhj7bUOOd4lUMoPctQs6ENE8uZgoeOsT35EyfeNJUuWuJYvX95aXl4+/fTTT580ZcoUd2ZmpgbgcDjktGnTyq+//vpxDz/8cBXAf//3f9e2tLSokyZNmj5lypTy1157LR3gu9/9bnFBQcEsj8ejFBQUzLrpppuKPsOXlVT0dUWqlVLePmQrGQbYvXs3Usq4bWy7o7bdx2iMCXbRIAM6lepRdCkoKCnDs9tDSpS57K4NGxE2G46ZM+Neyyetndyy+zC7Oj38fupYzszJJNcWu0qRAq7c46MJkEJB0QUOxWGSvKkqk2VrGw7NGPWqIE0feTNcH0MLXaz49ikTuHK34QEgg0re3tUyp8eYkw9IGRov6zXX5QwnDc1PVYoxa+D5pnacxEHy5v6hm5u+kAQzHKEog8/JH/dKPknhelUdmScfA375y18eve+++2ra29uVRYsWTTnxxBNdf/vb33KuuuqqxkcffTSiTiAzM1N/4YUXqrof46GHHqp+6KGHYqqSf/7553vsP5zQl5JPZKbuc4Fdu3aRmZk54DB9EEdajQt2XySv+QLsV+uo10fRqYFX80YtvHNt3EjKrFkocXrUv1LXwgWb9rKz08MPS/K5dHROXAQPgCJIM7lcUxTQIUVJIaAEEMHqemtCu2x6h6nkVXRTScan5GPB4rIc8gJG541EIISC1dYVnv+4vCkmktdMJQ/gI0jy4Urez5eb3je2NVV2WywkH0wVxBqyD/XJx7Z5TFAw/he9dCrEAimHVsnLeHwFTCQtXK+qxqz6EfSJK6+8ctzUqVPLZ82aNe1LX/pS8ymnnOLqf69/X/T1Tj1jyFYxDODxeKisrGTBggWDCm/quqS61ct8S98kf7juCG7ho1orobGzA6BXkg80N+PZuZPca6+JeQ0eTefuA7WsPNLApFQHvywrYmn2wELqUojQm0hXFNAkDuHAL/wI3QeIBE9AibIOTUcnOJyGrnC9tX9b21ihKIKz2it5MmsWHtVhhOvDSF5XYhxQg0QNkry5rpRwNa0HmO05hFNVCF7y23wxEHe4ko8BMinV9cEaCAZ08yBloCv6kkQI8/80YFvbJAx9GlHysWH16tUHuj+2fv363YM97i233FL40ksvZYc/dsEFFzQla877UCEqyUspm4ZyIcc7du/ejaZpTJ8+fVDHOdbuwRMA+iH5iiP7sEqVaj2ThiDJd8vJay0tHLz0MtA00s86K6bzt/oD/GzvEV441swXcjO4a1IxYxwDv2BJAVYEmhBIRUAAbMJGu9qO8PuHZKIYADpIIQ0lD2E5+aC6TUxB00XNO3kyaxZHHEWIbiQPsYXrNSlRTYL1mzSeElF4ZyjFIruVWq+fTEWhzecz6gD67HQwzx3ra03CgJouj2AZ93GD1sBDY4YTzMnH72AmAwGw9n8zFy9GlPxni3vuuefocCf03jBEV+Dhj+3bt5OZmUlxcXHM+zR2eHlhUzV6WI7yUKMLzfyzRyN5TdPYc+wAJXoeHhQaXQbJd8/Jt/z9RXwHD1J4+69wxFAnoEnJxVv28cKxZr43No/HZ04YFMGDoeStuvFdVxSELrFjJ6AGjGEpQ0TyUpNGW5tJ8lII4++bwHA9QI7fCNfX23Ko96lY7ZF/v3jC9UIHv9RRAGs4eet+UKwhkjeqrjWOevshpOAs+1iH1ITcgxLbJw8MKC8fVNVDams7kHC9349IAsmPKPkRJAMjJB8DXC4XlZWVTJ8+PeZQvZSSG57ewk3PbOUfO7tuDg82uUIDSqKRfF1dHZ6AlxItBx/Q4jFSTt3D9Z3rPsI2sYysr3613/Vsautk7oc72NHhYVZaCv9VlphiUimMcJAuFDNcr2PHjl/xx14Aloh1aDq6CA/XB1voEld4B4CmmUVzgn/VWbDaLRAaOBOPktdRpMCPRoqqRL6vND+oVkbbbRz2+BAWFUXqMZB8nOH6JM2TN9YQf3pkKJW8EAMP1yeL5IWqJuxmdAQjCGKE5GNAZWUluq7HZX7z5PpDvL+vgRSryh/+tS+U/zzc5ApdVaORfE1NDQC5ZKABzW5DPXYP13srdsc0ba7S5WHF5n0A3DFxDK/Nm9x//3uMkIBFmkpeKEh/AKu04hd+Q5EOQX4VDF8BnchwfTKUvNSNOEx6oJ11TSqqVemaRAdYYiAoTUoUXaLqEEAnpfvQIT0AipUZaSnU+QK4UjMRus7R/vLy8aYmgmpb/fdT8ooyiHB90pS8YhjtjGAECcQIyceAQ4cOYbPZYq6qf3HzEW5fvZOTJ+Zw+wXT2VXbxj93GR7wBxtdFI1yYrFYopJ8e3s7ABkWJ+kOC23enko+0NxM4NgxHFOm9rkWl6bzw12HsCqCN+dP4Ttj87AkMDwrhcAiQRcCadpyWnWD5KUWGEIlL9EFIZIPhesTruR1BJJR/hZq3YLOgEbwY6QqSkyRHk2CKiWKFATQcHQnWd34u401UymutExUXae2XyVv3mDEq+STkZMfEMkPpZIfRAtd0pS8ZWSe/AgSjhGSjwEHDx6kuLgYtR8DDF2X/Pdru7jxb1uYPXYUf7h0DhfNGcPY7BQefHcfvoDO2r31zB47qk+S7+jowKHaUS0W0u0W2r3GwJLwnLx3t1FMap86Jfq63V4u2LSXjW0u7pk8lkJ74i9MErBikrwQEDBIXhc6HhnoKgZLNnSJBJRg87eidFPyiTEZCSr5UYFWBLD12BG6SD6216phhut1gSZ7UfJmuL7A/H+50jJQpUadrx9CGnALXWId72CQSn5IBtQEw/UDsLVNGsmPzJP/rDBnzpy+1dIwxgjJ9wO32/3/2XvzOLnqOt/7/TtrbV29Z+nubGRPSEhYZdMrAldGFgXkij76qIMK6lUEBMeFwXEAkSteuYijMnjV6+gomz5BrsM2IYABIQmE7AudpdOddKeX6lrP9nv+OKeqq9PVe3Unan9er7zSXXXq1OlTp87n9/l8N44cOcLs2bOH3M71JLf89g1+9MJePvqOOfzyurOoi5loqsInzpnHhv3d3Pf0TrrSNh88rWlYko9oIdAUoqZGxhmo5LPBqNvQktLXZrftcNFrO9iczHDbvBl8YHr1WP78YeEBmpRIofhE7zhork92SbzJI3lX+iV0hVK5vJIfvq3t6N7HV/KqdFlaBfu6c+SH1IzUZnYlKFKieODiDmrXzwxIPhWNE4FRJN6NkuQnKrt+lJBMppLPJ96N1a6fiBK6qXnyk438fPiNGzduP86HMmH4yxyrM4k4cMBvoDRnzpwht3tm22Ee29jCF9+zkBsvXNjPtv3g6U3c9/RO/mXtHmbEQ5y/sJ5NQ5B8KpUirJoIFCKmRtrOgto/Jp/bvgO1vg6tduAYVyklX9/VQsLx+NaCRj41q34sf/qIIAG92K53XN/xUCCJpH4ylXxR4p0UAtt2fJUq1LKV0OWVPAjOqMuxsy2KECpSgjNC6/fYxDuzlJLXDOp0DQXojcRo6u3mYNntev//ck+h8/c98TF5KSU9T75N8sUW6j61gtD8kU87zMfkTyi7XlFgiLLaEw03bts/a3sqW9ZOV0uiofT/XDp70Ol2iURCufzyy09qbW01PM8Tt95666E77rij6bXXXts2c+ZM54UXXojccssts1599dUdN910U8PevXvN5uZms6urS/vCF77QdvPNN3esWbOm4h//8R8bKisr3b1794aam5vfikQiq9Pp9MY1a9ZUfPOb32yIx+POjh07IpdffnnnihUrMg8++OD0XC4nHn/88T3Lly/PHTp0SPvEJz4xp6WlxQC477779l988cUDZtS7rstJJ5108p/+9KftDQ0Njuu6zJs37+T169dvb2homJQPe0rJD4P9+/ejKAqNjY1Dbvf01sPEQxqfv2DBgLhsRUjn6tP80rurT2tCVcSQSt6yLAyhITSFmKmSdfxpbv2U/I4dg8bjH9h/hEeCMrmJJHg4NvFOIB0b1fGVbVLQl/E9wRCev9BQZJFdbwfnVylj1rLr+a1zETRF9uPg4St5geXZbDm6ZfhdSIkiJaon8PAwjyXZoIROUwT1hkYyXEFYMIrEuxGq0wkYUDMeJc8IYvJSSqyDvWS2d9L77H6SL7YA0PGTzVgHe0f8Vnm7fiy96ycs8U7TpkrohsFjjz0WnzFjhr1jx46tu3bt2nLllVcmhtp+27Zt4RdffHHH+vXrt997770Nzc3NOsDWrVsjDz744P7m5ua3jn3N9u3bww8//PD+Xbt2vfXII4/U7ty5M7R58+ZtH/3oRzu++93vTgP4zGc+M+umm246/NZbb217/PHH91x//fVzS72/qqpcffXVRx966KEagN/97nfxpUuXZiaL4GFKyQ+Lzs5OqqurMYbocOV6kue2H+GCJdPQ1dLrpk+98yT2HU3x/7zDdwSGInnbttEwELpCxNDIpvrH5L1cDmv3bqLnnD3gtY8f7uLOva28u6aCr5w0vva7I4Fv1+eVvG/Xq9In+V5F6VOXEwgpJYpkQMe7vBWHUMtm10vPL4CUCCzvKI6Wxl8rCxQh+N5r3+Oh//rQkPsoTrzzpEvo2GvG68tlmG7q9IajhJEcnqgSujIu9SdKyUtPktncTuLp/TgdmcLj+owodpsvoI48sInGu88bUfKj/x7KqO166XngOBOj5HXdb7TzF4KhFPdE4dRTT8187Wtfm3XDDTc0XnHFFT3vfe97k0Ntf8kll3THYjEZi8Wcs88+O7Fu3bpodXW1u3LlytSSJUtKNpRYsWJFas6cOTbA7Nmzc5dcckkPwCmnnJJZu3ZtBcBLL70U37VrVyFJKplMqj09PUplZeWAeMsNN9zQcfnlly+4/fbbjzz88MN1H//4xzvGcw5GiymSHwaJRIJ4fOh56K/v66IzZXHRshmDbtNYFeannziz8PuwJC9VhCqImRq5RH8l3/3oo0jbJnrmmf1e95+dCb64bT/vqIzyv1fMG2gDTwA8wCAonxPCb/np+TfZlCL64sQTeQyOTyhSUOgkV8iuh0DJlynW6Xoowt9/r53EU/IZ/IKIEeWVtldY37qed8x8x+C7CDreKR54uAOVvOsUCHumqfNGOIaJpMtxybhe/+54xRglyZ9wMflgIXaskvdyDp2/2Ul2y9EBrzHmxQskD9DyDy/S9O3z6f79HpIvH2LGP5yJVll6RLOiaKO26/MkPCEkr2lIe/Q5An9LWLlyZW7Dhg1bH3300cpvfOMbjc8880xCVVXpBd/vTCbT78sx2Iz5SCQy6A3BNM3CxasoCqFQSOZ/dl1XgC8sNmzYsC0SiQx7oS9YsMCuq6tzfv/731ds2rQp+sQTT+wd8R9cBkzZ9cNgJCT/zLbDGKrCuxaP3Bofzq7XUBGaQsRQsbwcAoGhGPQ8+SSH/+lb6A0NRM46q/Canaks173VzIKIOWkEDz7Jq8HUt7ySV2z/vZOKMikk7zj+99UTAtEXaPZj8lBeJe+6iMCu73V6Qc+X0AliRgUzojO4f8P9Qw5oySfeqZ5A4hIakHhnF5R8k2nQFY5hBFUDR4ay7E+E7PpgATI2JR98RkVK3kvbtP/wTbJbBxI8gBo3qPgvs/o9dvAr60i+7PeaaLv7VdKbjpQ+VqGP2q6XwfmfMCU/RfJDorm5Wa+oqPA++9nPdt50001tmzZtijQ1NVkvvfRSBOA3v/lNvwzjp556qiqdTou2tjZ1/fr1Feedd96AuPlYcN555yXuvvvuwpz6l19+ufSI0ACf/OQn26+77rp5l112WaemTa62niL5IeC6Lr29vSMi+XfMryVmjvzDG1bJewJhqMRMDdvLENbCCCHo/On/xpg/n3mPPYoS8pW9lJLPb9tHzpM8vGIeVfrkXUQFqzwooZOOA4EJlpokknftINkO0VdCR3FMXilfTN62UYL3SjhJVF0WlLyu6nx65afZ3LGZlw+9POguPGSfXY9HaICStwuqfHbYIKcZeEHYY8ha+bHY9aLcdfLB/2NQ8nnCVYJ4+dFfbefQP63HbktR9/G+mRHRs/vCUBXvbCJ27tDdGzt/vaPkoksIDTnKZjjS9i/uibPrp0h+KLz++uvhVatWLV2yZMmyO++8s+H2229vvf322w/deuuts08++eSlqqr2+6CXLl2aPueccxafddZZS2+55ZbWuXPnluUE//jHPz6wYcOG6KJFi5bNnz9/+QMPPDCkwrv22mt70um0+ulPf7r0anUCMWXXD4FkMomUksrKykG3OZrMsbc9xTWnzxp0m1IYjORd18XzPDRPRRh+TN7FIqJFcLu7yW7ZQt3nP4da1ZdJvKk3w5u9Ga6fVc/ccGlrcqLgSVAleAi/jM6yUAIl5tv1E388brGSLzRkV/vObzmVvOP4MXkh6LZ70AyBQEUi0BSN989/Pz/c9EN+vf3XnNt4bsl9OFKi4tv1UpbIrg9K6IBCQ5xe009iPjQUyY+64x1lnxAolHEo+cCBEIrO4f+1EbvFD7dGz55JaHHfcLDqKxZgzqtEqw4hVAUlVppwZ3zlDNq+/Wegz8bvd6xCG3Xv+rzSHi/Ju55k/lf/UPi9+dvvQ2gajGTa4N8wrrrqqsRVV1219djHSyXQAaxYsSLz+OOPNxc/dumll/Zeeuml/bI00+n0xlLPFU+3K35u5syZzpNPPjli2/2VV14JL168OL169ersSF9TLkwp+SGQSPiJm0Mp+U0HugE4dfbo6tAHI3nL8pWC5vpKPmqqCCVHSAuTefNNkJLIaacXtnc8yTd3t6AJuHHO9FEdQzngyXx2vQICPMdGQUFHIS0mJyZfUPLF2fWiiOQVrXwldK6LIvzGOz1OL4apUmiGo2roqs6l8y/lxZYX6cyWHuRYsOulb9cPzK7va+IzO0/yIZ/kW7JDDJ8pKPmRDaiRcvST4oZFvnvfmOz6gEClWiD4+htOofqKBQA0fuscGu7wk00jK+sxZvnjkYUQNH37fOLvnVvYV/yiOWhV/dtAH/zKOmSRw6Aoo7fryZP8OEbN2q7Xj+AB5n7lySm7/q8UX/3qV2d86EMfmn/XXXe1HI/3n1LyQ2AkJL9hfxeaIljROLjaL4XBSD6fEa66CoqhEjU1UCwMJURm0xugKIRXnFzY/ueHOljfk+LWeTMm1abPwy226xWBm7VA1wkJjbSigDZ5Sl4KgQjseoFS9sQ7KSW4fdn1WZljekgvtM7Vgzj6++a9j5++9VOe3/88Vy26asB+vELinYBSMfkiuz6v5DvNCJWaSksZ7XpcWfYhgePpeOcFC7HUusOo+Ba8Oafvuyd0FTGEgJaW79bEL5xN/D1+86ppn1/FkQc2FbZp+Vqfoh+bXT9yJf/GgW6u+MFLI963MP6ysutPdNx3332HJvP9vv/979f+8Ic/7Ke0zjjjjOQvfvGL/XfddddxG2E7RfJDYCQkv3F/N0tnxgkbo+vRPizJO3klryEUC0ONktm0CXPRIpRoFIANPSm+vquFs6uifOk4qHjwBZuCn9mOEHiWDVEIo/lK/pjJeRMBx8rH5Pva2kq08tv1+Rs8+b4AkkhEJ9/xTg1IdlH1IhpjjTyz/5mSJO/b9SCkAtIlMqCEzi5Y75W6RtixOGpGaTB1Dg2l5Edr10+Ekh/XFDr//NqHc6jAjC+fPvQLjkVepRedT6OpYuD7uBKhCr+J0QTY9V97fDO/fGX/qPYLsLktRYNt84V/28Dv32zlxgsXcuOFi0a9nykcH3zxi188+sUvfnHSY+7DYcquHwKJRAJN0wiHSydOup7kjQPdrJ498k5beei6PmhMHkD1BMJQiBoqQrHQMcm8+SbhU04BwPI8PrWlmSpd5X8umT3iEbjlhldUsiYReMFNMILqK3l9MkjeP2eeUBAyr+SL7fryJN7lVZYi8CfXKxANGSA0JLKg5IUQXDTnIta3rqc72z1gP670FyMCFYEzsCSuqIQOoC6X4WgoSoNpDB2TH8OAmrIm3VGeOnnZ7X9WWu2QCcsDED7Fz30KL+/fBXL6l07t93vmrXb/WIU+6t71BZI3SpP8gc6NZRwAACAASURBVM70AII3tJHdZp/Z1QlSsmbTQQD+5zO7RnVsU5hCKUwoyQsh3iuE2CGE2C2E+EqJ528SQmwVQrwphHhWCDF079hJRiKRoLKyclAC3Xm4l5Tljonkh0q8A1BRCkoeYaGnHbxkkvDqVQD87kg3LTmb7y2ZzZxJTrbrd7zBvVwK4cfk8yQvlElLvHPsYrs+3zVNxc0P+yiTki+QPBIPX8lHowYCDZCoSt+N/9KTLsXxHJ5qfmrAflwkmvR9h5JK3rX6k7yVoTMcozGkD51dP5YSujGQvGUd5dnn5vPiSyUSC8dRJ+/lE++8sRmMRkOMpm+fjz6tf6dVfXq03++dv/JzqRRFG/WoWWkNnV1//nee7/f7ulvfzf0fWlVy2zfvuLjf706Qh6HJMvV0mMIUmECSF/4sxx8AlwDLgGuFEMcOP98InC6lXAk8Anxnoo5nLOjp6Rk2Hg+jT7oDn+Q9zxtA9E6BSIKYvKH5iXet7SAEsXPPJeW63LW3lZUVYS6qHbq8b6Lh9au1FnjBTTCKIC2USWlra+cCBUg+8U6CVHHc8ra1zbcczTfDkUJSGQuD0AAPrai73+KaxSytWcpvdvxmQPmWK2U+VQ+kQ6Q4Ju95PkkXLY7q7CxdkQqm6RpHbYfcYPkFhQE1I0u881sEjpzk83/Huhf9Jky5XBtHj66lte0Jslk//FkOJY8s/3ji8Mq6AY/5Mfny2fV2UYjioY+dTvO338esmgjvPXkmL33lAjZ846LC883ffh/xkM4tF/fZ8QWSL1OS6BSmABOr5M8Edksp90opLeDXwBXFG0gpn5dSpoNf1wNNE3g8o0Zvby8VFQNjenms39tJXcxkds3oZzSYpn8Tz2fT59Gn5AO73lTRyRBr3k/1tR9Cq6/nf7zdRmvO5s6FTSjHyaYvHK/X120O0ad2I1KSVsSkzJPP5vJ2vZ94pyh+4l3ZlXw+XwKJF9j1VdFoQPIS7ZhhPNcuuZbd3bt5te3Vfo+70t8HQkPg9FfyeYLW+rK3pzlZHFUjpvnnctD2toXEu5GRhPTkiMM8zz43n+eeX8D6Vy7p9/imNz7J1q0389LLQXnaeJR8UXZ9xbtHV5I6HKoumz/gMSH0ssbkv/sfOws/X7isf45MY1WYmujAjPzPX7Cw8HOe5PWiBWluavTsFMaJiST5RqC4t/HB4LHB8PfAQG/zOCKXyxEKlY4p267Hf+44wgVL6scUD8/3ws/lcv0ezyt5VRbZ9YqFroSZ/pWv0JK1+JcD7Vw7s4YzKqMD9jvZKNzL85VTwU0wKqWv5CdhCl0ur+SFACkRivTLsPKNRRStPM1w8p+N6Eu8q4pEkWgIJPox7Vj/7qS/oyZUw//Z+n/6Pe63tQUpVIQ8luSD66FIydcfo8wPDzZXvjBxbxR2vTr8tdvV1bdISaX6iGzunBv6bZezOsan5APCFZ5Kdkfp8sOxQq0YSLCKGINdPwjJb2tN8C9r9wz7+sXTK7hoWekkWSf4rqhF12oyO6XqR4Izzzxz8QsvvDBAbb3rXe9a0NHRMUBp3HTTTQ233377uLOV16xZU/Hud797wXj3M5E4IRLvhBD/D3A6cO8gz39aCPGaEOK19vb2STsuy7LQB4m9/fntTnqzDu9ZOrbrZHgl75O8KS1cTeLWNoGu8/19hwH4wuzjk01/LPqUfHBzD4g16rqTpuRzWf+cSQiU/LEkX97EO1Gk5OOhCF5A7prX/+tkqiYfXPRB1h5cy4FE33q3oOTRB9r1Tl7J95H89IDk7cAuH3KuvKqPLvFuEI7ftOkTPPvcfJ59bj47d/0Tx94qTHMm8+ff0u+x1tZH+5T8uOrkNezWsnQf7YeGfzqn3+9C0ctWQved/9s3jvw9S6YxGP74pXfyk4+VrhqwRd6u77tW3zzYM6rjm0J/rF27dnddXd3ftB0ykTKrBSj23JqCx/pBCHEh8DXgXVLK3LHPA0gpfwz8GOD0008fwwzL0SPfeW6w6XPPbDuCoSmcv3BgrG8kyJP8YEpeQUEYCtkNfwIgUzuXj7/1Nn/sSPDJxjrmRY5fsl0xCiQf/C4DezHq2qS0yVHytpUneYGQEkXxfJK3g0hQuRPvhJ/Jb2gGEd3AE/7cd00MXNBcs/ga/nXzv/KLbb/gq2d9FeiLyXuKjsAlWlLJF9n1gTLvDc7tYCTveRKphFFHWic/SAmdlB5HO18o/J5MbmPp0nvYtu22wmPnnrMWgPdcsIfnnl+KlBaO3dNXJz+OtrbCU4lfPHfUrx8OSlGZq92WQlFMHGd0JDoYydtFf+/Hzpk7puNz83Z90bX6xsFu3j3EouF44suPvDFrZ1tvWefJL5pRkb736lMGnW63Y8cO49JLL124a9euLQC333779GQyWfhgXdflmmuumdvY2Gjdf//9hxobG1fkZ83fdtttM/793/+9rra21m5oaLBWr16dBvjnf/7naT/96U/rVVWVixYtyq5Zs2bvk08+Gbv55ptng18t8/LLL2+vrq4eMiNy7dq1keuvv37uI488smf58uUluex4YCLvwH8GFgoh5uGT+4eADxdvIIRYDfwIeK+UsvQUieOEvMIuRfJSSp7dfphz59cSMcaYCTyIXV+s5BVD5ejLa6EJtkybxbaOBLfNm8HnTxAVD30kzwAlb2EZAlsoTHTqnZ2PySP6K/mgz3jZEu+CXvhqMKAmbEYxNAVXqD7JewONsWmRaVw2/zIe2/UYn175aerCdbj4dfKe4l8DUaWIEJ3geihS8pm2Q0RmJDmSq0IXgsNB69PO1hTbX26ldU83iqqQ6Mig9t7Nf1u+YWTn3C1N8nv23gdAKDSL5cv+B5Z9lPq6i/uRvCha0FRXn0Vn5zr/sfF0vCuEGVQq3jWx6Tm5t3tQYgaeN8IkxQClSD5ru7y4u296qD7KioUKU6M352AHJF9s16dyU3b9SGHbtnj/+98/b9myZZl77rmnX/OZdevWRR5//PGazZs3b7Vtm1WrVi3Lk/z9998/Y9++fZvD4bDMW/vf/e53Z9x///37Lr744lRPT48y1NQ6gKeffjp64403zv7973+/e+HChaO7qCYYE0byUkpHCPF54I/43UIellJuEUL8E/CalPL3+PZ8DPhtENfeL6W8fKKOaTTIN6UpZdfvaU+x72iaT51/0pj3P5hdXxyTx1A4+upL0AQH9BD/tS7Ol+YOPs72eMDN34+C+1qeCCN2FsIh0khG1wtw9LAtDxu/1SxSogivYNdLKX3yKUczHLe/ko+YUXRVwRUaOqAOIqCvW3Edv9vzO36+9efcdNpNBbveDdS6qRQdWz7+XqTk9725kcqTzmBba4TlSYVM+1Eef6KNQ7u6UVTB9LnxQte/Hmc6Le1VzB3BnyNl3+hNKSXPPd8/tHjmGU+g633loQsXfp1du/55wH6WLL6Tl//0TnSjZny96/MDalS97PX7x0IJaShKeUj+n9b0b6WujvLYv3/tKj75v18rmXg3xDDD446hFPfxwGc/+9k573//+zuPJXiA559/PvZ3f/d33RUVFR7AxRdfXGhgsXjx4swHPvCBeZdffnn3Rz7ykW6Ad7zjHclbbrll1jXXXNN57bXXds2fP39Qkt+9e3fos5/97Nynn356Z7kG4JQTExqTl1L+QUq5SEo5X0p5Z/DY7QHBI6W8UEo5XUq5Kvh3QhA8DK3kNwalc2fPrx3w3EgxnJJXENgH9pHs9g0OSzX5WMPYQgMTCdfrmwAnoND2NWplAMiIib9L2ZaLLQIlL/NK3r+0bdsuX1vbojp5iSBqVGBoCk5Qn27UlC5nnB2fzUVzLuKRnY+QdbJ+4h2ioOS14jKuEkoeoLrnKHszLpc91UnDs+2kExZnXXESH//2uVz55dO4+rbT+W9f90vbuhIjdFBdD1SB62YHEDzQj+ABamveVXI3quo3rdm165/LUidPbuJThaxW3673vNG5qqVIfktLf8s/OopplAAXLJlO87ffhysGltA9t+OEMjiPOzRNK8yOB8hms4WL5fTTT0+uW7cunk6nR7XKev7553d97nOfa9+wYUNk9erVS23b5q677mp76KGH9mUyGeX8889fsnHjxkG7ek2bNs02TdNbv359WUMX5cIJkXh3ImIoJb/lUIKIoTK3duzZ7cMqeRR6nniELQt8t6A2Z/Ce41wTXwpucDMXfkN3cBwiOkQDNZKehMYejuXiIH1lKiWq4iGk/z3P5XL+fPIJiMlHQzFCuooTNFTXnMHvLdcsuoZeq5en9z3tK3kBTpBB7xSTfEHJF9XJz15MTc9ReqM6O95Xz39cVseH7ziL0y+ZS7goazwU1THVFIn0yLoMSs9v7/rCuoGJYCef/MCAx6LR0s6VUtQECAW/lHIcbW3FBNTJH4vkCwfHpuRLzJO3j1nQLG8Y2/c0b9f/v2f2hSr2tpc/AfEvGU1NTU5nZ6fW1tamZjIZ8cc//rFgFH7mM5/puPjii3suvfTS+fYxg34uuOCC5B/+8IeqZDIpurq6lKeffroKfFG1Z88e47LLLuv9wQ9+0JJMJtWenh51y5Yt5plnnpm5884721auXJl66623Bv1SxeNx96mnntp1++23N65Zs2bwmuvjhCmSHwRDKfmtrQmWzKgYtS1XjJHE5Pc98zQ/v8xvLdDQeWJ+VI7bF5MXSKTrEtNcIsFqO8VkkLyHI3zxKJAoQqIE8QPLsgIlP/7YZj4UkVfyETNKWFdxhP9Zqvbg6vX0Gaczq2IWj+16LBhQ00fydnHJW17JFzURCsdPpbrHj/laJ1WwPS4GLduMaCky2ZFlQUjHX214Xqbw2IIF/wBATfU5g71sADTNv6/V1V2IEAKhKUhn9J97YSKcnJxrXRHjsOuL7guJbH9CGWuL6XcunQlAxdREkUFhmqa8+eabW88444yl559//qIFCxb0G916xx13HD7llFPSV1555TzX7VvYn3feeekPfOADnSeffPLyCy+8cOHKlStTAI7jiA9/+MPzFi1atOzkk09edt111x2pq6tzv/Od70xbuHDh8kWLFi3TdV1effXVQ2Zozpo1y3nyySd333jjjbOfe+6541/bXISpy2kQ5En+WCXveZJthxK8f/VQJf/DQ9M0VFUdVMkrCtx/2TWkdEEUcHIn5kdl2V4wEET4St51iWkOkYDwJkXJOx4OfhKgIl0U4RVcY5/ky1Mnn08qVJC+kjd8krcD210ZguQVoXDlwiv5/obvY831x9W6pUje7W/XW1mH9v1Jqg1/7oUK9DguCcclrg1UvGE9Q8Ya4RhUTyL0PkKtqjyDObOvY87s60b2+iLEYksLPwtdQdpjUfIOeGo+8DPhUBQDv0/XyFHKru9MlSfPylX9z1NxbM5fOJ11uzqGecXfJr7+9a8f+frXvz5oHON73/teYfpcS0vL5vzP99xzT1upeP3rr7++49jHfvazn40o36B4xvzChQut3bt3bxnJ6yYTJ6Y8PAGQt3uOVfIHuzL05hyWjdGSK4ZpmiWVvEDwRhyeO+NcLqrx3z9rnaAk7/TZ9QKJcF0iapGSn4SYvBsoeceT/px2xVfzkLfry9vxThF+7/qYUUFIV7ACu1oMQ2xXzL8CVahYnoOK6CP54pI3p3/i3dtvdOC6fkzefxP/vz3p0rHksJkjY41ssIt0vULzGoCTT/5fI3pdKSST2+joeMY/RG2MJO/Zk2LV5+HH5K0BbYeHQmHeu9b3fUxb5SnDdvMDjlyXq087oZp/TuEvGCcmc5wAGMyu39rquzbLZo6f5A3DKFknrwiFfzglxvR0inOm67wMZHKTd/MbKaSUOI6HFL6SF/j93SOKTTTIrk5Pgl3v2i6W8HA9iZAe6gAlX6bEu/xwEoLsej2CEKLv5jzMzb4+Us/5TefziJSoisDRDPDAKraMj1HyO189TChmYh+2qFMF6SA88nYmx+r4wDyfsGGT6R7h5D9XIhX/vDQ2fhjTrB/Z64bBWJW862RR3BG6EGWAEjgwUloIMbK+E142gzDNgiWftcvXZ8XV/MWialtUxk6MPhhT8PHqq6+GP/axj80rfswwDO/NN9/cPthrThRMkfwgGCzxbsuhBKoiWDxj/PkVpmmW7HiXUxQsAT9t2cGOYC5fJnvikbwXEI5Ugolq+P3jI8IiEtj0k0LyjiR/FhXpoSiyMFfesqzyJd7l8iTv+Xa97ofe/KxoAdbwf+tlJ13Gb/cqZOxebDXsk3xx21qnL/Euk7Q4sK2TOcur2X4YZmmCdstGAHsHUfKG4WF5ZlA6OLTtLV1JOuzfo1pa/o0li7817PEPhnh8NYnERmA8JJ9BeJNH8jj+d8rzLBRlZKQqMxmUSN/i6kiifD1PIhX+fk3P5oy5NWXb7xTGjzPPPDOzffv2rcNveeJhyq4fBIMq+UMJ5tdHCenjJ91SSt5yHCxF4dK9nSyvrSJtpwFBKidGZStOBtz8iFdNIkRA8lISLlLyyZH2UR8HvJxLLrDnhZSoQhaUfC6XK18znMKCzEMiiOkx/zdFgtBhsJ7yRXhn0ztBqHRlO3A031bPuUXXQNGAmr0b25GepHGRf8Ofo0JzxqLB1GnOlCYX05B4UiuM3x0SnkSq/nlpavzo8NsD7zz/Nd55/oYBj1dWrkJV/fOBro4p8c61MwhXp/LSsfefGBVyeZIfOVF76QxKuC8ccrg3O8TWo8N1F/pDOlfWjdCJmcIURoApkh8Egyn5ra2Jslj1UFrJt2VyuIrCqrYutPo6Mk4GXZh4UqH3BOt+lW/AIlXpq2X83LswOcLSn5meHOUozzEdh+WRDUhdkR6a4qIEl3YymSxfTN4KyEC6BbseAOEBBnIEn48aKMbObAdW4AT0I3knIA0txJF9vYSiOlXT/O2aVOiwHeaEDXYPpuQDfrAywx+LdDw81d/PzIarh90eQNer0fWB7Y1UJYzrpn0HQVOQY7CxPSeL8HS06smxqvO9GEeTYe+l0yjRPiXf0VtGJR/3P2eZyw06U2AKUxgtpkh+EFiWhaZpKEXDQ7K2S2tPlvn1sbK8R6nEu8OZLK6icMaBdrS6OtJOGiNoNtKdOrGaKRVIXvMQRXa9iYVQdSo8j8QoS5TGAs9yyeYT/DyJLlwUxUNXTXp7e8um5L3CZ+XhoRDV/JuyJzyEMHCHGhwTwAncGE/aWKb/+qxTpAatoC7aiNLVlqJ6ZgQlyLqeHVyK1Zo2qJI3TH+jXHoEJO9JXKUXAF2rHnb7oWDZnYCH52XHbtdbGRTPQBiTE5oS+C7dqEg+k0GE+0i+J1O+76QSTLyU2Uy/+oJMmRL7pvC3iSmSHwS2bQ9Q8Ye6/XrixuqRZS8PB8MwBij53pyNKhVCuRRqna/kQwHJd6VPqJbIBZJHc/GLuwBFYMos6FEqPI9et3xKpxQ810M6Eit/V/Q8dOEhFJeQHg5IvkwldEEjFKSLFIKY4S/2pHBBGHiZ4T+fPMmH9AiO5pNF1i4i+fxQHS1MV1ua6hnRQqvYWUGSXEgRdDsunfZAIjfD/rZWegTk40pczV9U6Pr43Kl82Vs22zpmkrfauxGuTu7tiZu8Zi7s6+Jn7fLPteuN3HL30ul+dv1XHtvc7/lTZ1cd+5IRQ+g6qCpetv93Zmqm/BTGgymSHwSWZQ2Ixx/q9m8GDVXlIfljlXzW9UhYFqZU8HIJtJoa0naaiHaCknxQF16s5F1FJewlIRQPSL58MctSsIIxs9lgyIsISF7RXEw9QiKRKJ9dnyuy6+mz62VByQ//+eTHxU6LNyKDTnlZK130B6VAj2LbkmzSJl4XKpD8zMCtyNNncwnL3gj5i61cavjzLl0PT/FzPlR1fP07amrO849NWj7Jj6UZDhbCm9i+9fV/v4LK9/kxf2eXf448Nz3US/rBy6T7Jd4tOSYB95RZYyd58NW8zGb6JU2++nbnuPb514xyzYX/a8YUyQ+CUiTf0u3fDBrLRPJ5JZ/vxbw5mcFzXeKOQCgOQtPIOBmihn9T6R6JOptE9Nn1Dkqg5D1FIeQkwPRJPuFmhtrFuGFlfTXbl13vYuCi6h6GFqajo4OWtjZkOTreWRZC15F5JZ9PvMMFoeNmhyd5NyD56fEmZNApL2sXnSMrBUaETNLfV7jCKISMTOnRaOokg5axe0tY9mbEXzhYyeGJSzoSV0mjqtFC4uRYoar+Neq6qTHXyXuKheIa/Rr0TAgC/hSub487oyB5meqv5Jcek59z23uXjO/QwmG8TLafXb/rSHJc+5zC5OLYlrrHG1MldIOglF3f0p1FCJhRWZ7s13z/etu2MU2TpOOieh6Gp6CE/K952kkTCxTjCafkCyTvIqR/KbmqimF3QtVcKrJtHHEmluTtQMlbgcpV8TCEi6o5GEoY27ZpbTvMNNMa98hbaeX8dqae48fkg8Q53643cbLdw+wB7KDqQDUiBSWfsov6k1spMKJkk/6NIhzTiya7eZwUMTkSlNE1lwgPGBF/4WAlh1byUkpwPFwlha6NP5G0j+QzKHrl2JrhKLZfQqdNMMkHCy3F9b9/rjvy/vBeJtMv8e7xjS0A/J+/P4u05Yy76kYJhZC5/p/dtIoTtGb+ic/N4sjW8g5lmbYszft/MGS3uVJz4bds2WJef/31szs7O7VQKOQ99NBD+1avXp09cOCA9slPfnLO/v37TYAHHnhg30UXXZS68MIL57e2thq5XE65/vrrD99yyy0dAJFIZPVHP/rR9meffbZy2rRp9p133nnwtttum3Xo0CHjnnvu2f+Rj3ykZCzp/vvvr33iiSeq0+m04rqu+POf/zygi97xwpSSHwSl7foM0ytC6Gp5Tlue5POWfcr1UKWLhkCJ+qSZttPEzRhCQNeJpuTzN3LNQRF9Sl63usGMEfc8eieY5PNZ5G5g8aqBkld0m+kxv8mAh1KexDvLQpgmeC4ShUgQU5c4CGHg5Ia3yPMxeUdV/bI7YFfnzr4N7DToUbJBkqUZ1VGUfKmXx7ywSXPGYqah8XYJJW9Eg2tqOLs+6HHgKulC7/nxoJ+S19Wxkbxq+3b9BJO8MIP2sQWSH/k16qXTiPBAJ++8hXVcvHz8Y6BFyPSVfJGU/+3rB8e9378WFM+Ff/rpp3e98cYbUYDrrrtuzoMPPrh/y5Yt2+69996DN9xww2yA66+/fvb555/fu2PHjq1btmzZeuqpp2YBfvnLXzZv2bJl26ZNm7b+6Ec/mt7W1qYCZDIZ5T3veU9i9+7dW6LRqPv1r3+9cd26dTt/+9vf7v7Wt741ZC/zLVu2RH73u9/tOZEIHqaU/KCwbZtYrH8WfUtXhoaq8tWwhoJs2kwmQzweJ+V6KJ6HLnXUwC3IOBkieph4SKf7RFXyuo3iBISnCVQ3A0YFcdej157YKVr5mLzU/N75ivR8u15zMNUYn/rUpzj4k+fLk3iXs3wlLx2kUAip/mfkCQeEiZ3LDNuEJugC7E8cEyrCE2ztKOqxYSXBiJJL+YuXUFTHyeWVvMv8iEmP47I4Hi2ZYa+HQwjcYRPv8jFzV6RQy0nyTtq32x1vRA15+h2TZqO4OuHlYx/hPBIoRr5HvP/5uSO066WUvpIvyq5f0ViJV8b+FUoo7HfV+0uIyQ+juCcCpebCZ7NZZePGjbEPfvCD8/PbWZafivvyyy9XPPLII2+DPy+ktrbWBbjnnnumP/nkk1UAbW1t+pYtW0IzZsxIBcNoEgDLly/PmKbpmaYpzzzzzExLS8uQnZrOP//8xPTp00+4LMkpkh8EJZV8T4aVTeNLrClGfhGRTCaZPn06Sde363VPQasNnrOTRPUo1RH9xFPyBbveRnH9S0kGYQb0MBWeR9azsFwLQ52YTmb5mLzQFLDdQMl7qJqF63o0NjZy2AhBGTKUZTaLYpoI1wbNt95NpU/JS8/DsXLo5uALwXzina0oIEFzFdrTR9jRuYPFNYv77PpAyYeiOmm7z66fF/bVZ7Wu8ufEwAWU0MMYIk1umHGzeaXtksLQxjdsCSgk7rluui+m7ngwCvtaKjaqGUGNTWzXu/DKevj1DsQo7Xpp2+C6/RLvXE+WLREXArs+PbHu118bPM+joqLCGWlHujVr1lSsXbu24rXXXtteUVHhnXnmmYszmYwC/rz6fA6MoiiYpikBVFXFdd0hV6yRSGTi23uOAVN2/SA4NibveZLW7mxZlXxFha+gkkk/sSbtemieiyFBra/Cci16cj3Uh+upihgnnJIvdFXTbJRgPKgw8yQfoSJIKOy1eifsGPJ2vdD991Wkh6646Fqm0HZXN8PoXhZ+9/lxvZeXySAiEZSgi18uWOSIRBKCJLpcemhV6BaTPKC5AkWo/Gr7r4I/KA1GjFywoDMjGqLIrl8a8wlFEYJO26Xn2DI6PYyppIZthlNQ8qTKZNf7x+V6aZTADvdyI19YSSnxRA7sidcd+ez90dr1XspfDBQn3m1tTbC3vXyJcUpFBW5qaob8YCg1Fz4SiXhNTU3Www8/XA3+9+RPf/pTGODcc8/tvffee+vBnwty9OhRtbu7W62srHQrKiq8jRs3hvKW/18rpkh+EByr5DtSOSzXK1tmPfQp+d5enwRTeZK3XfT6etoz7QBMi0wLlPyJRfJeQBSeli10mJN5ktdCk0LyuUyRkgdUXDTFQ1fSRSQfLMw2/mJc7+VlMiihUB/J59v6BkoewMoMTfJ5JW8F2ey6I6gL1/Hk3ifpznZDrtdX8mkHzVRRNaVf4l2TqVOnaySCkcRvH5t8p0cwRIpcZmiCnTCSd9KFmLfMjobkHRASkZm8W5JAQcEcuZLP+IuB4sQ7gL0d5SNlNV6B1+Pndl2xqqFs+/1rwWBz4X/1q1/t/elPf1q3ePHiZQsXLlz+6KOPVgH88Ic/3L927dqK/Lz4jRs3hq666qoex3HESSedtPzLX/5y4ymnnPJXvaqasusHwbEk39IVNMIpI8mbpomu6wUlSL0b0AAAIABJREFUn3JdNNdFdWy0ujra0z7J10fqqY4Y7Dx8YpXSuE6+Tj6Nki/BKpC8OSkkn+m1cQUYAbGo0sNUHHQlQy7nv7+qlcf+9TJp1GgMEZC85ebdOT8mD5BNDv23ukF2vaUoqK6D7giqQ9UcTLbxs60/44vpDojWk2uzCUX8r6dSRPJCCFbHI+wIEuuaMzlWFU+jM2OYSrqQqzAYpO0hkbgyWRaSF0JFUcK4bgol5B/3aJR8nmgVd3L7tgvLGHFM3gtcmrySz3+W5YRSEccNFv1nn1TL7zYdGuYVf3sYbC78unXrdh372KxZs5xnn312z7GPv/DCCwO2BUin0xvzP993332HBnvuWHzhC184Chwd5tCPC6aUfAm4rovnef3s+nI3wsmjoqKij+QdF80LSL6+rqDkT1S7Ph+T99QMamDXy8A2RzWIBySfsBITdgyZhEVOpVC6pEoHU3HRlQxuoOQVvTwkLzNZRCSM4uaVvE9inmohhO/4pXqGLqPLK/mcEIRzWTRXIIXk0pMu5WdbfsYW4UCkllzaKdS855V8vp/C6niE/UFN/oBa+VAVhkhhZYcOD0rLRSoWEgdNHT/Jg59857p9St7Ljrw3gZXqAkBxyvv9Gg6KG8J1Ribk3EBhK3G/d7/tlj8Eq8bjeMkk0vOoikziRL4p/NViiuRLoNQEunxL23KTfCwW6yN520EAqp1Dq6vjSPoI0GfXpywXawydxCYKdtBT2zF6UIL2HdJQkIp/jiZDyad7LdKKxAjKGnXPwVR9Je8ExydD5UmWzGdWK0FjnXxMXvGyOIqvptPdXUPuI19CZyEIZbPorkLayXDbGbdRZ1Zx87Q6EqEKsikbM1DyxXY9wKmBcq/V1YEjZ0OVmCJNLjd0VruXc/E0/5rWxtnSNg+f5DMFJS9HoeTttL84yldpTBYUO4LtjKyNrtPpZ7lrNX6f/z1ljMUXjideAVLiJZNctGyqkduJhkcffTS+ZMmSZcX/LrroovnDv/L4YYrkS6DUBLqW7gwVpkZleLwtVfojFosVYvKZoF5es3Io8Tjt6XY0RaPKrKIq6i84TiQ1b2ddhADHOIqaj8kbAk+Lg2tRIX2imUgln05Y9CILvQt04aEJD11kcYL57iI0cGraWOBlMohQCN0NuuwFJK9Jm6wSBgTJruFI3v8/h6/kdUeQcTNUhar4zvLPcFhT+WbbfwZKfqBdD3BKMHc8pqrsTB9TD6+HMLQcljX0V1tmXVzNt581tTwDlzQ14tv1Y1Dyju1/ByZLycfO9ePdqh3DtkdG8m6n/9mqNf7o3w37h29+NFqoFf6Cy00kUCewve8UxoarrroqsX379q3F/55++ukB4YATCVMkXwKllPzBrnTZVTz0V/KZQJWpwkIIQXumnfpwPUIIqgPr9kQqo7MyDkZYw9bb2R73j8+J6Hh6HbgWlUHKR3eu/DfDPNIJiwQemurfECOmhhCgiVxBySvh8pC8TKdxTBU9KMfLK3ndsckqCooaGjYmbwVEnYOA5BVSQXb3Kr2Kz3d18x+db9KT6MWM+uc0P4XOc/33rdY1ZocMIqrCm72ZQnw+D0P3sBwNb4iYsZdz8PRAyZchJg+QTO2gveNpRNA/fzRKPtPqu1bRBU1lOZbhoATfJ9WKYttDL8zycLt8JZ8n+fYyjpktHFfc/yy8RP+FcW/2xPneT+EvC1MkXwKllPzOw0kWTC+P4ilGRUUFuVwOy7LIBgNOdNW/OR9JH6E+Ug9AdRCfO5Ey7K2sgx5ScZQuzu2ycYVA0cBRasG1MVWDarOa1lTrhLy/9CTZpEVaSFRFoCCJRPwEOI1sIZyghMdvR0sp8bJZcrrADGKx+elgurTJKBIUk1x66PhuNiDevJI3bIW0F5Rwpdr5eE8vq2uWkks7eIZ/HWrBYtOx+khlRUWYlOthCMHPWjr6vUdQ2os9hJKWxXZ9mUg+j0Li3QjG3eaR2rrff601OYl3epP/XVbtGM4o7HolGkUJPo/7ny2ZuzUuqEG83030Xyy+uKuj1OZTmMKwmCL5EshmfWWUbzubyjns70yzZHp5b4bQvyFOLiB5I2go055uZ1p4GgBVgfI4kex6K+tihDRcN8UpmQyOquIoKi7VYKdADzMzNpPW5MSQfDZlIz1IBxPoDFzMiJ8Ap5Ep2PXUjD9k5iWT4HmkQgI9r8ZtD8dz0D2HjJAgTHKpoeO02fxrJUSyGQxHwZEOOTcHqXZU4I4z70DzDF7qeAEpJZrhX4dO0Vji0+JR9mct3lMb5zdtnaTcPtVshIafKe9lXby8XV9mkkcFEdJwkyO/Vl3VXxyFZ4+/NexIEF7sq3HVjmLbPUg5fK6L29lVUPETBTVQ8m6i/8KjNzf+AUtT+NvEFMmXQE+QRVtZ6a+q81OgFs2YOJLv7e3FdnzlZgQNT9oz7QUlXxv0JG8fxY1zomFlHIyQiuumUQ0LFMhi4rhxSHdCpIaGaAOHUhNTBtTT7ivRnoDkTWyiVX5SlCL7Eu/U2nkkiZCaec6Y38vt8e3TTpFDDcbWWq5HT64H3XVICwBjWCWfCVyAlJTEMml0x/8K9lq9kOoAPcL0kL8o2Z7awh+b/4iiqiiqhl2k5C+s9d2JOSGDpOvxxOG+kIgZ9u1yazglH/IXs+Ui+bq6CwHI5dpQ4zpeYuTXqmUfBU+hYsVJZTmWkUKxY4CH4wyfHOp2dqIGSXcTBbXKTxJ1u/qHuO74/ZYJfd8p/PViiuRLoCtInsqT/I42/wZ/7OzocqC+3ifxtrY2PNu/Kcbqa8k6WRJWgmkRX8lPj5tUhDS2tU5cEttoYWVdjIiLlC6KbqEJhywmthPzST5cU1Dysoz9vfPoOeIr0S5F4nkSw8kRq6kDQPN8JS89iWma9FCBN47+9V6grDpEGl365Jm2XLoynRie4y80pEGmd2RKvsN2qUsmMYOWtQkr4ZN8pK6gwOurarj71bvpznajmyZOro/kF0ZM5oYNdqWzLI2G+PmhPjvXiPqW95BKPmkhI/71Vi6SNwy/53x392uocRO3dxRK3uhBteIoenkTW4eDZvl/u2W1D7ut09WFVj1QyZ+/sK58xzNtGmgados/3W7DNy4C/GttChOH1atXj29G8AmMKZIvge7ubuLxOJrmxxa3t/US1lVmVZe/vKeyspJYLMbBlhak698Uo9Om96uRBxBCsLKpks0HRxY/nAzYWQcj4rsPQrMJkSMjQzgZDTKdEKmmIdpA1s3SlRtZctNo0H0kAwK6FUnOcdGcDNHaabi6gWH5Kt9xPEzTRCLw3LFbnvka6XaZxPR8su3J2BzpPETEzdCteAgRJtU9dJJhJj/9DajPZYhY/jXWle2CVDtE68gE5HjtqmtI5BJ89/XvohlGP7teCMFFtXFe7E7ygWnVvNGbYVvS/5tD1b7azPUO3q7VTVh4kQxCqIW+8+NFMukP32ptfRS1whgVyTtmN5pVOfGz5I+BlvUXJtns0CElKSX2vn3oDQO70F11avmSBYWqojc0YB/0Z7/URKdq5ScS+fyrjRs3bj/OhzJhmOp4VwJdXV1UVfXVVu883Mui6TGUCShpEULQ1NTE24cOYVbOBCA2cwb7i7rd5bGisYp/fXEvOcfF1MY3t7ocsDIOejiJBGwlR9xLkiaCc7QL4n1KHqA12UpNqLzxzJ72DG5YxTAU2hNZom6aWHUDTqyGcO4oCA/HcjFNEw+BHBfJ+w5Ku5sg6vnklcjYtB/aT9jLkNY9hFpFLvUWuXSqkBtwLLKehwAkUGvncBz/K9iZ7YSeA1C3iGSXv4hYOmcBH9c/zkObH+J69ZR+dj3Ah2bW8pODHbRZNqqAxw538bVYmNgM/5rpbT0ClG6N6vZaOA2dmMZ0hCgPsTbM/CCJxCY6u15kXtzATVhITxZ6xQ8FK9pKqGceokxjnEcKPU/yuaFDSnbLIbx0GnPRIgAyRcr6gqXTynpMRlMT1oETf7zsN176xqzdXbvLqnwWVC9If+vcbw063S6RSCiXX375Sa2trYbneeLWW289dMcddzS99tpr22bOnOm88MILkVtuuWXWq6++uuOmm25q2Lt3r9nc3Gx2dXVpX/jCF9puvvnmjjVr1lT84z/+Y0NlZaW7d+/eUHNz81uRSGR1Op3euGbNmopvfvObDfF43NmxY0fk8ssv71yxYkXmwQcfnJ7L5cTjjz++Z/ny5blDhw5pn/jEJ+bkJ9Pdd999+y+++OKSsbp3vetdCw4fPmwAtLS0GHfdddeB//7f//ukdcebUvIl0N3d3Y/kd7T1sngCrPo8GhsbaUskMR0LJEQbm9jdvRuAmdGZhe1WNlViu5IdbRPXXGY0yGVdtFAQq3YOM9NuJy0iOC3NkDoCkVoaY/6Es4mIy3cc6CUTEkyrMGlN5KhweqmcPhM3Xk8o66HoGeys65dCChXXGXs+g9PuL7qO2AkUJFFDoSdjczRxGAGE4yooNcFx7R90PxnPwwhIb042TWXOX6x19rZAxy6YsYJklx8rj1aZfGblZ5gbn0u700U22/8esjwW5r/NqOHnhzo4rSLKH9p9tyE0oxFNZOltG9w9cRMWjtmJaZav4cqMGR8AQNdr0GpD4ErcrmHm2gN2NoEdacdMTk75XDG0XBV4CpnM0FNTczt3AhRI3vb6EvV0pby3UWPePHJ79iDd/hZ9Z+rEycc5XnjsscfiM2bMsHfs2LF1165dW6688soh45fbtm0Lv/jiizvWr1+//d57721obm7WAbZu3Rp58MEH9zc3N7917Gu2b98efvjhh/fv2rXrrUceeaR2586doc2bN2/76Ec/2vHd7353GsBnPvOZWTfddNPht956a9vjjz++5/rrr5872DGsXbt29/bt27f+5Cc/aZ45c6b14Q9/eOJqiktgSskfA8dxSCQSVAeWZ0cyR0fSYvGM8nQFK4WmpiZsTSNkWwjPw2yYyR9e+ANz43OZG59b2G5lk58j8ObBnrKOvB0LsikbJ+dixBLYgNuxkSpSWBg4B/fAakC6hUXKwd7yKpNM0qKrLU37TI3aqMn+zgwVdi+1jbOQe2YRPrAZPdJBJmkTrwujaDqeM/ZaY7u1FQyDzkwP86mmMqzT1Zsh7LaiAY21YZKtMwml4OC2t2hcvLT0cbseaqDl50iHQ1mBkILDu/8DkDD7HaReyWFGNIyQBmjccc4d/Ob/foU9h3cM2N+t82bwh/ZuDls2+7IWu9NZFtTMJa7+J4n20rFiL+sgcy696hvU6ReM+ZwcC1X1k0NtuxN9ju9k2G0ptNqh+0u0/WEtVEHInVO2YxkphNQwUg309gw9pTS7ZQsIUSD5zqIE2HI3rQmfspKuX/6S3K5dhJb0hYq/+thm/uWjp5X1vcaDoRT3ROHUU0/NfO1rX5t1ww03NF5xxRU9733ve4dMgrnkkku6Y7GYjMViztlnn51Yt25dtLq62l25cmVqyZIlJVdNK1asSM2ZM8cGmD17du6SSy7pATjllFMya9eurQB46aWX4rt27Spc2MlkUu3p6VEqKytLlmm0trZqH//4x+f9+te/3pOfaT9ZmFLyxyCfWZ9X8jsD1TwRSXd5NDU1gR4mnk2jOw6tXhevH36dS0+6FCH6biCNVWFqosYJEZfvOeLHe/XYEUBhVvYAOg4eYGUVpARWXEOlWcnsitm80vZKWd//0C5/MbzTs4kGHdZq1RyxmlrUmiWoHsSjb5PqDhoMaQbuuEj+EG59NWbOnwpXEzXZ9MqraE/6xDu7NsY+PYSizWDHy+sG3U+X46IKqDc0KmtqMLI2Mdvo6yUw+2x62jNU1PbVi582/TTqamfS3dXOn9v+3G9/jSGDexbPYl/Qy/6ZjgRUzaHKaOdoe+mysNzbPXiKf14sa2Lqr7XpYRBgHRy+9WtPyxsA6B2T28bVXOQv5I1MPZ3da/G80s1tpJR0/OAHqLW1qLEohxNZ/sv/+M/C84ZW3ttoeNUqADKbNgHwgdW+G/Z/twyYyfI3h5UrV+Y2bNiwdcWKFZlvfOMbjbfccstMVVVlfq5Dfi58HsX3z+Lfh5r9np8hD363yVAoJPM/52fKSynZsGHDtnzXuyNHjrw5GME7jsNVV1110m233XbojDPOGN7aKjMmlOSFEO8VQuwQQuwWQnylxPOmEOLfg+dfEULMncjjGQnymfV5Jb92l2/TTqRdr6ka05UZxDNJTFXjyb1PAnDp/Ev7bSeE4NTZVTyz7TBdx9m66w4y29H2I3IVrGIHh4IkQatmHu7J18GMkwF416x38Wrrq6TtkU37Ggm2/6kNI6rxVjZLxPANqZWzaxFCoE87BYDqyN4+ktcNPHfsJJ99czMdM8NUJQ3i06bTVBWiR+/rpLegoYYtqoNQG2nft5dMb2kXsS3nH8OckIE2YzrRRIpoUrA/2QLz3olUDTpaktQ29G+8tKxpFVFb5xsvfYOU3d+2v3J6NVdN96/Xf2s9CkIwY4ZFIh0j1TUw+S67swur2s/ebmz8yJjPSSlUxlcD0N71FOa8StIbjyCH6LwnPUmqfhNatobq1avKeizDofr9CwAIdfsli52dL5fcLvuWX76mhPyF11l3PTuhx6XPmoVaX0fyBX+xWFuUfDcRVSp/SWhubtYrKiq8z372s5033XRT26ZNmyJNTU3WSy+9FAH4zW9+06/G8amnnqpKp9Oira1NXb9+fcV5551XlrGy5513XuLuu+8uJGO8/PLLg9pVn/vc55qWLVuW/vSnP13+7OMRYMJIXgihAj8ALgGWAdcKIZYds9nfA11SygXA94B7Jup4RoruIDu6qqqK3Ud6efjFt7lydSN1MXPC3jPzVgcRqoln0hyoSPGjN37EWTPOKsSzi3HTRYvpydh88//bMiFf+Jd2d/Dpn7/Gud9+jqt/+DI/eH43BzoHknPHgV6E6tLb+2fmbesiQpY/znoPANkVl5Dp7Us8e/esd2N7Ni+2vFiWYzywrZPmzR2EllTiCWjt6CFuJ1i5yl9UqDNPRQJz9Y2FJDZNN5CeW2h0NBrkdu/Gbmnhmfp2GnpjzJy/iHi2nR4tjiN8F+H0uTW0qB7E/MXgz778pX6fz6ZEmqfau9mfseh1Pc6rrsCcP5/KVIbabp1thkH23Bs50txLuseiYVH/cEy8uhYzKziSaOM7f/7OgGO8e1ETVZrKznSOD27ajTzdX+i8/cTj/baTjkd2eyc9S9YCUFdXPrseoK7eL/nasvVLRM9uwO3Okd06eI7R2//6bySnbSR2+DSqL1tY1mMZDlqNT9rV+y8G4I03ryup5ltuvBGAWT/6F77wq/7TRv/0D+U9f+Av5quuvIrkc8/R++yzfOmiRYXnthw6cUpojwdef/318KpVq5YuWbJk2Z133tlw++23t95+++2Hbr311tknn3zyUlVV+90Uly5dmj7nnHMWn3XWWUtvueWW1rlz55alP/CPf/zjAxs2bIguWrRo2fz585c/8MAD9UNsO33t2rWV+YE2v/zlL8vTZ3uEmMiY/JnAbinlXgAhxK+BK4Di4NcVwB3Bz48ADwghhDxOy1Xbtnn77bdRFIWEq/HVxzYTMTS++r7S8dWxQEpJyk5xtLeD9p7DHDq4j1fe2sybZienUc/myk3U5+r5YOSDtLS0UFlZSTgcRg36ly9riPO5dy/g+8/u4lB3lqtPb2Lx9ArqK0xiIQ1TUzBUZYBNdSxczy876806tPZk2Xoowe/faGH93k7qYibnzK9lX2ea+/64lV/88WWWN1ZzwdJpnNZUQSTTTs+GFzh3yR+Z/9rbxNIumaZzyZkSD9hbozNj26nIp3djLqxlRc0yGmON3P3q3cyMzuT/Z+/e46Kq8/+Bv87MMMMMw125ykWRu0CKsmEaYUlaShqmJdp3U0tzWzXU3HLXNS+VmbqZ2eq3NduN0k1Td9VyrZ8iX+0mXuIuYCCJiNwvMwNzOb8/ABcNEBQExtezR4+Yc/2cw4Pe8/mcyyvIMQhSScefDqi6pkXO6avQ6wyorahH7pkSqJ2UyLIxwt5Ui9QS4AFtDgJHL2xcwc4TdV5DMPCXdFzDOuh1b0Lu6AWbsnM4/80u3PfozMbzIwj4JascboPtIJPf2B5TfT1EvQHV+Tm4/PLLuGavgrHWDhpRh2+RgfqTeRBdJyLVOhhPPBMMfxdrPBLkjPPfn8EQAHUVV7Hx6YlwcA/CqBm/xfsFF3HI2gUmaeOf3Oyvn4OqAbDV6uBx1Q7pg2rwz9p8WPxLDalMAp9hN96xbdOv8f8h088E4GPJF3gh9IUbvgTayKRIDB2Ex8/kILmiFsnCAAwaW4vLqXZY9kd/2HgNgsFzMqryfFEtXEClVRKkUivI5V37xIOX5wvIy2v8EmLhJ4esvxJln2TCdrw3VOHOkFhZQBAElJX/H/LOb0KNT+OQtO/Yl7u0HR1ldb8r6r6/Anf36bh8+VMcOx4EJ6fH4eoyGVYlziiYMRNiU478U19ewU9Nl8qGetrBZBLRv5u+/Dv8z7Mo27YNv/zuJQDAN/MX4NlsS3ybV4Yh7ne1RvQqcXFx1XFxcb+6gaK1G+gAICQkRLtv3778ltMmTJhQM2HChBvuXm7Oir953g8//JDd2nqurq6GQ4cOXexIm0VRTOnIct1F6K56KgjCFADjRFGc0/R5JoDfiKL4Uotl0pqW+aXpc17TMm1eKBw+fLh4+vTpTrcn9VAuGk7+9w7v5qM+J81AhaQaJpjQgAYYBRPcDa4INvhDANBPrYC1Qta4fMtTJYrXPx+o/xZ1og5GmCBAgBQSiBBhgnh9pTJZJYwwNk5reoZKaP5HFKAyqqCVNSD44QDUnq9FSXHJDe23sLCAhYUFpFIpZDIZauuNqNDoYTSJONLgDw3+O6Q3SFKG+2SX0Vad/9WxNJFJBVgrZJDoGu8LcRGvYAr2wlboWO/hQ8dJ+EoxBkOKfgYAKEQLyJoGi4wwokJWA5Nw42Urg0SPMpkewUUPwc5oA4Uo/+9ZEwG9oRR1NV8CkEEQpICog1TQ40uH+5FpNRAA4NhQjncsRQQ6/negSGK8DHvNUljgauMz8qIaDSYfQJKHLeJMaE02ECAAEKCykUOu/O/33auaq5BX1cMhJwOiyQS9RIB40x3UJgjY6zoJxZaNr2HdNjMcPv3VeGHbcTye9tcbli21d8JH0xY0tUvE/G8q4FlVAggiTA0CNCYZalQmGKQmqPTWMElM6G9nD6nkv23yDLbBD3tfAQD8v2ElmPzYC5gTMudXv4O56fn4V0klrGVSVBuMkBlE/DvpY/Q3xDUtoYfgsA35I39BYNB6ODjc/lsA25KVvQJSiSV8fV9DfUE1rn1w/vo8xSBbVEUfQUHhf8/RoOo/Y+CkZ7u8HZ2VmvZ7lJQcvv7Zep8U1kcbv/wNPn4MS49fwf5zjf8PyX/r8W5vT82xY/jlxfk3TPNNT4fsNh8zFAQhRRTF4XfSpvPnz+eHhYX1iRfpJyQkuKnVauOqVauu9nRbutv58+f7hYWFebc2r0/cXS8IwgsAXgAAT0/P29qG3E6By7YWEMTmbTb+V6JXQ9lUcC0gRz+ZE/qp+8FSIYOdygK2TcEwEBpr8w2Vs+nH/lf6wdakh1SQAhBhEI2NxV4iASDAJBpRZqiAEgpYCBaQCTLIZXJYyiyhE2Ro0NVjoEKJmKfi4NC/PxDZeNmguLgYVVVV0Gq1qK+vh16vh9FohMFggCiKEEURtfUGPBJ0H6oNUtTVG1BvMKHu2mU0XDWg+Ynslt/jBEGAIAASQYBUIkAmEWBpIYWNpQxWisbksqsXqxrbDWtU1rvhnHQsDIbGY9dDAkv7qzDYqOAgt4NC5YdqhQuuqvwglThAW1KB+4OCIc1JRWVJBaC2AywsIepN0Jv0uGoogUbUwSQaIQIwCXJYW1jCpK6DtcQWtoJl07luPLn6BhVKRTsoZCaIMEJu0Q9ymRIPSo1Q63+BrUKNxQGD4KS+uUfqhyrjp9AXH4CsoQBSoxGiIEeBIgCONqEwmvQw6I1QqGRQO1je8GutLK+EVN8AqYMKcpkUigEDoJRaw6DT4XTFOVzoX4GrDjqsjvFFcYkXdA1G+Dtbw7ufFY689hg2T7+xyKu0tXjo1JewtQ/EUJk3fANcIF6+AtSVQXQOhk4rRVF+HrQ2UuisGoN9+tl7QtZitMPexRZz3vsbMv/vOKqsz15/E+LNNgZ4wMtSjsw6HfQmEwwGE4InxKLihAil8TCsdLsgVTnBPfhzwL577mYP8F91/WeFlw3cVz8A3cVK6ItqIRpE2DvcD239JXh7zYfc4AxFK2+R6wkhQ95D3sVBuHz5M6itfOHo0B9ClBbuGzZAqlbjL0+74C9PD71r7bGOjob/2TMonD8fmm+/g/30ZyBl+myHbdy4sXvep92Gd9991/GDDz644e7RESNG1P7jH/9o+5nau6A7e/KRAFaKovho0+dXAUAUxTdbLHOkaZlvBUGQASgG0L+94frb7ckTdRWjyQidUQcri9ZfeHP87x8i5dB+/HbDB6gqKUY/Dy9ILSyuv1efqCfcaz35e0lP9eR/BOArCMJAAJcBPA1g+k3L/AvA/wD4FsAUAP+vp67HE3WUVCKFlaTtV8E+9OwcPPRs41C64wCPu9UsIqJf6bYiL4qiQRCElwAcASAFsEMUxXRBEFYBOC2K4r8A/A3APwRByAVQjsYvAkRERNQFuvWavCiKhwEcvmnaihY/6wA81Z1tICIiulfxjXdERERmikWeiIjuKb///e/dXVxcQlUq1d17XKKHsMgTEdE9ZdKkSZXff/99Zk+3427oE8/JExFR71L02nKP+pycLs2TV/j6atzeWNtuut3SpUtdP//8c0dHR0e9m5tbw9ChQzVfffWVXXBwsObbb7+1NhqNwvbt23+Ojo7WVFVVSWbPnu35008/qQDgtddeK/rtb39b+fDDD3f4Hfbp6elqfbkGAAAgAElEQVSK6dOnD9RqtZJx48ZVfvjhh87Nb8jrC9iTJyKiPiEpKUn173//2z4jIyP966+/zvnpp5+uP8uq1WolWVlZGZs3by544YUXBgLAH/7wB1cbGxvjhQsXMi5cuJDx+OOP17S99da99NJLHvPnzy+5cOFCxoABA7rk3fd3E3vyRETUabfqcXeHpKQk9fjx4ytVKpWoUqnEsWPHVjbPmz59ejkAjB8/vra2tlZSWloqPXHihM2uXbuuv2O+f//+nc5yP3v2rPo///lPLgDMmTOnbOXKlQO64ljulj5X5FNSUkoFQSi4zdVtAfR8GPut9YZ23q02dOd+unLbXbGtO9lGPwB801jv0hv+Tjuje95j3Eu0lR1/r+tzRV4UxTYj/W5FEITtoii+0JXt6Q69oZ13qw3duZ+u3HZXbOtOtiEIwuk7fSUpda3e8Hd6r4mKiqp98cUXvTQazRW9Xi98/fXXds8+++w1APjss8/sJ06cWHPkyBG1tbW10dHR0RgVFVW9adMmpx07dhQCwLVr16Sd7c3fd999tTt37rR//vnnK3bs2NE7ghY64V67Jv/vnm5AB/WGdt6tNnTnfrpy212xrd7we6Wuw9/nXRYVFaUZN25cVVBQUPCYMWN8/f39tba2tkYAsLS0FAMDA4Neeuklr23btuUDwJtvvnmlsrJS6uvrG+zv7x90+PBhawCYN2/eAGdn51CdTidxdnYOTUhIcGtrn++9917he++95+zn5xeUm5trqVarOz3k35O6LaCGiLoOe/LUG/SGgJqqqiqJra2tqaamRhIZGen/17/+tSAhIcHjnXfeKXzwwQc1Xb2/mpoaiZWVlUkikWD79u32u3fvdvjmm2/yuno/d6LPR80SEbb3dAOIeoMZM2Z45eTkKOvr64Wnn366bNSoUV1e2Fs6efKkauHChZ6iKMLGxsa4c+fO/O7cX1djT56IiDqkN/Tku8uyZctcDhw4cMM19yeeeKJ83bp1xT3Vpo5qryfPIk9ERB1izkW+L2uvyN9rN94RERHdM1jkiYiIzBSLPFEfJQiClSAIpwVBmNDTbSGi3olFnqiXEARhhyAIJYIgpN00fZwgCNmCIOQKgvCHFrOWAfjn3W0lEfUlLPJEvcdOAONaThAEQQrgfQDjAQQBeEYQhCBBEMYCyABQcrcbSdTbRERE+J84ceJXiXhRUVGDS0tLpTdPT0hIcFuxYoXz3Wldz+Jz8kS9hCiKJwRB8L5pcgSAXFEULwKAIAi7ADwBQA3ACo2FXysIwmFRFE13sblEvV5SUlJuT7ehp7HIE/Vu7gBapn39AuA3oii+BACCIPwWQCkLPN1t3/w906P8cm2X5sk7uKs1Dz8b2Ga6XXZ2tnzChAm+OTk56QCwYsUK59ra2us9daPRiKlTp3q7u7s3bN68ucjd3T3k9OnTma6uroZly5a57N69u1/LHHoAWLNmjdNHH33UXyqVin5+frqDBw9ePHTokHrx4sWeQGPQzalTp7Ls7e1/9Tc2efJk7yeffLJy5syZlQAQGxs7cOrUqRUzZsyovHnZnsIiT9SHiaK4s6fbQNQb6PV6YdKkSQODgoK0N7/AJjk5WbVv3z6H1NTUDL1ej/vuuy+ouchv3rzZpaCgIFWpVIrNQ/sbNmxw2bx5c0FMTExdVVWVRKVStfoles6cOaWbNm1ynjlzZmVZWZk0JSVFvXfv3p+7/2g7jkWeqHe7DMCjxecBTdOIelR7Pe6eMH/+fK9Jkya1+oa6Y8eOqR977LFKa2trEwDExMRc72n7+/trJ0+ePDA2NrYyPj6+EgDuv//+2iVLlnhMnTq1/Jlnnqnw8fFptcg//vjjtQsXLvQqKiqSffLJJ/aPP/54hYWFRXcd4m3hjXdEvduPAHwFQRgoCIIcwNMA/tXDbSLqETKZTDSZ/ltvdTrd9Ro2fPjw2uTkZBuNRtOpIPljx47l/O53v7t25swZ1dChQwP1ej3eeOON4g8//LBAq9VKRo8eHXD27FnLttafNm1a2f/+7/86fPLJJ45z587tdW8DZJEn6iUEQfgMwLcA/AVB+EUQhNmiKBoAvATgCIBMAP8URTG9J9tJ1FMGDBhgKC8vlxUXF0u1Wq1w5MgR2+Z5c+fOLY2JiamaMGGCj16vv2G9MWPG1B4+fNiutrZWqKiokBw9etQOaLyGn5eXJ584cWLN+++/f7m2tlZaVVUlTU9PV0RERGjXrl1bHBoaWpeWltZmkZ83b17ptm3bnAEgPDxc102Hfts4XE/US4ii+Ewb0w8DOHyXm0PU6ygUCnHx4sVXRowYEejs7KwfPHjwDUV15cqVV19++WXpk08+OXD//v3Xr42PGjVKM3ny5PIhQ4YEOzo66kNDQ+sAwGAwCNOnTx9YU1MjFUVRmDNnTkm/fv2Mixcvdjt16pSNIAiiv7+/dsqUKVVttcnDw8Pg4+OjmzhxYq+52a4lBtQQEVGHMKDm12pqaiRBQUFB586dy3R0dDT2RBsYUENERNTF9u/fb+3v7x/8/PPPl/RUgb8VDtcTERG144cfflA+++yzA1tOk8vlpp9++ilr0qRJqT3Vro5gkSciImpHRESENisrK6On23E7OFxPRERkpljkiYiIzBSLPBERkZlikSciIjJTLPJEZkIQhPcEQTgjCMKInm4L0d1wL+XC3y4WeSIzIAiCFQAnAHMBTOjh5hBRL8FH6KjPEQRhE4ACURT/0vT5CIBCURTnNH3eAOCyKIobu3CftaIoqrtwe3YApouiuLXpszeAg6IoDunAukoAXwEYI4qiEQBEUawTBMEVwHEAnk1hNl83LWPoqnYTNTvywV88SgsLujRPvp+Hl+bRFxe1m27XWi58enq6Yt68eZ7l5eUyS0tL04cfflgwdOhQXWFhoWzWrFlely5dUgDAli1bCsaOHVv3yCOP+Fy5ckVeX18vmTdv3tUlS5aUAoBKpRo6c+bMa998842tk5OTfu3atb8sW7bMo6ioSL5u3bpL8fHxrb7edtq0aV7nz5+3AoCrV69azJo1q2TDhg1XuvLc3C725KkvOglgJAAIgiAB0A9AcIv5IwGc6oF2dYYdgPm3ue4sAF80F3gAEATBEYAKQA0AgyiKDQC+ATDtThtK1Fu0zIU/evRoTnNhnTNnjtfWrVsvpaenZ65fv/6XF1980RMA5s2b5zl69Oia7OzsjPT09Ixhw4bpACAxMTE/PT0989y5cxnbtm1zLi4ulgKAVquVPPzww9W5ubnpVlZWxj/+8Y/uycnJFz7//PPc1atXu7fVrt27dxdkZWVl/Otf/8q1t7c3zJ07t+xunI+OYE+e+qJTADY1/RwMIA2AqyAI9gA0AAIBnBEEYT8as9gtAbwriuJ2ABAE4S009vzfb/q8EkAtgGIACwDIAXwPYH7LQtq07IzWlmnqiX8J4P/Q+CXjMoAnRFHUCoLwJwAzAFwDUAggBcBwAD6CIJwDcBTA+wCkgiD8783rt3L88QCm3zTtjwDeAfB80zk5BWA/gDcBJN7yjBJ10q163N2htVx4nU4nOXv2rPqpp57yaV6uoaFBAIBTp05Z79mz52cAkMlkaH717Lp165wPHTpkBwDFxcUW6enpli4uLnUWFhbilClTqgEgODhYq1AoTAqFQoyIiNBevnxZ3l7bNBqNEBcX57Nx48ZLfn5+Dd1zBjqPPXnqc0RRLAJgEATBE40F8Vs0FtxINBbP1Kae7CxRFMObpi1o6u0CwG4AU1tscmrT+tMAPCCK4n0AjGgsptcJghB4i2V8AbwvimIwgEoAcU03wcUBCAMwvqktAPAHAHmiKN4niuLStta/+dibhuEHiaKY32Kad9N52I3GONrmUY00ALwJj8yayWSCtbW1ISsrK6P534sXL7YZx3zw4EHrpKQk69OnT2dlZ2dnBAYGarVarQRozKuXSBrLokQigUKhEAFAKpXCaDS2m1M/c+ZMr4kTJ1ZMmjSppgsP746xyFNfdQqNha25yH/b4vPJpmUWCIJwHsB3aOzR+wKAKIpnATgJguAmCEIYgAo0FuFwAD829a4fBjDopn0+fItlfhZF8VzTzykAvAE8AOCAKIo6URRrAPy7nWNqbf2b9UPjF4CW1gBYJTZGSl4v8k2jEA2CIFi3s0+iPqO1XHiVSmUaMGBAw44dO+yBxqL/7bffKgHggQceqFm/fn1/ADAYDCgrK5NWVlZKbW1tjdbW1qazZ89aNg/534k333yzf21trfSNN94ovtNtdTUO11Nf1XxdPgSNPdZCAIsBVAP4SBCEhwA8AiBSFEWNIAjH0Ths3+xzAFMAuKCxBywA+FgUxVfb2eetlqlv8bMRgLKTx9SR9bVocRyCINwH4EkAowRBeL9pXsvADAWAGzK3ifqqtnLhP/vss4vPP/+817p161wNBoMwefLk8sjISO0HH3xw6be//a2Xn59fP4lEgi1bthTExcVVbd++vf+gQYOCBw0apAsLC6u703Zt2bLFxcLCQgwICAgCgFmzZl175ZVXrt3pdrsC8+SpT2oqbl8AuCiK4iNN01IAuAMYgsYe9BxRFCcKghAA4ByAcaIoHm9aNhjA/6KxZxwFwB7AATQOxZcIguAAwFoUxYKm5WsBRLS1zM13xwuCsASAGsAhANvQ+IVEBuAMgO0APgJwRhRFr6blW11fFMWVrRx7IQBfURR1TU8WrBdF8eumec4Azoqi6NZ0eeKkKIoBd3SyiZowT753Yp48maNUNBbo726aViWKYikaHzGTCYKQCeCtm5aDKIrpAKzR+KjdFVEUM9B489p/BEH4CY03w7netM4tl7mZKIo/AvgXgJ/QeGNecxvLAJwUBCFNEIT1nTz2/6Cx5z4GgKq5wDft7yoAddMXkGg0fskgonsUe/JE3UwQBLUoirWCIKgAnADwgiiKZ+5ge8MAvCyK4sxbLPcFgD+IonjhdvdF1NK93pPfu3evzfLlywe0nObh4VF/9OjRvJ5qE9B+T57X5Im633ZBEILQeL384zsp8AAgiuIZQRCOCYIgvfkRv2ZNd+HvZ4En6jpxcXHVcXFxfSpXnkWeqJuJonjzM+1dsc0dt5jfAODvXb1fIupbeE2eiIjITLHIExERmSkWeSIiIjPFIk9ERGSmWOSJiIjMFO+uJyKiTivfc8FDX1zXpXnyFi5WGocpfu2m261cudI5MTGxHwDMnDnz2rRp0yrHjRvnO2zYsLqUlBR1aGho3axZs0pXrVrlXlZWJtu5c+fF6OhoTXV1tWT27NmeWVlZSoPBICxfvrxoxowZlTU1NZJp06Z5Z2dnKwcNGqS7evWqxZYtWy49+OCDmvj4eM/z589b6XQ6ycSJEys2bdpUBABJSUmqRYsWeWo0GolcLhdPnDiRXVJSIps+ffrA5rCbd99999LYsWPrDh48aP3666+72djYGLKzs1WxsbHlISEh2q1btzrX19cL+/btywsODq5v7VjT09MVzdscN25c5Ycffuis0WjOduacssgTEVGfkJycrPr0008dU1JSMkVRRHh4eODDDz9cU1hYaLl79+6L4eHh+aGhoYGJiYmOp0+fzvr000/t1q5d6xodHZ332muvuUZHR1d//vnn+aWlpdLhw4cHxsbGVr/zzjv97ezsjHl5eek//vijZWRkZHOKIzZu3HjZ2dnZaDAYMHLkSP/vv/9eGRYWpouPj/dJTEzMi4qK0pSXl0vUarVJJpMZkpOTL6hUKjE1NVXxzDPPDEpLS8sEgKysLGVaWlq6k5OTwcvLK0ShUJSmpqZmrl692mnDhg1OO3bsaPWLzUsvveQxf/78krlz55a//fbb/W/nnLHIExFRp92qx90djh8/rn7ssccqbWxsTADw+OOPVxw7dsza3d29PiIiQgsAfn5+2jFjxlRLJBIMGzZMs2bNGremdW2OHDlit3nzZhcAqK+vF3Jzc+WnTp1SL1y4sAQARowYofPz89M07+/jjz922LlzZz+DwSBcu3bN4vz585aCIMDJyUkfFRWlAQAHBwcTAFRXVwuzZ8/2ysjIUEokEhQUFCiatxMSElLn5eWlBwBPT8/68ePHVwFAWFiYNikpqc2UyLNnz6r/85//5ALAnDlzylauXDmgrWXbwiJPRER9mlwuv/5+dolEAktLy1/lwIuiiD179uSGhYW1OjR+s6ysLPmWLVucU1JSMvv372+Mi4vz1ul0bd7HtnbtWmcnJyf93r17fzaZTFAqleHN85pz6W9un0QiuWVO/Z3ijXdERNQnREdH1x4+fNiupqZGUl1dLTl8+LB9dHR0TQfXrd6wYYOzyWQCAJw8eVIJAJGRkbW7du2yB4CUlBTLCxcuKAGgoqJCqlQqTQ4ODsbCwkLZ8ePHbQEgNDRUV1JSYpGUlKRqWk6i1+tRVVUldXV11UulUmzdutXRaGz1jdOdct9999Xu3LnTHgB27NjhcDvbYE+eiIj6hFGjRmmmT59eNmzYsECg8ca7fv36daiavvXWW0UvvPCCZ0BAQJDJZBI8PDzqjx07lrt06dJrU6dO9fbx8Qn28fHRDR48WGdvb28MCQmpHzJkiMbHx2eIq6trQ3h4eC0AWFpaiomJiXkLFizw1Ol0EktLS9OJEycuLFq0qCQuLs5n165djmPGjKlSKpWmOz3e9957rzA+Pn7g+vXrXceMGVOtVqs7/c2BKXRERNQh5phCZzAY0NDQIKhUKjE9PV0RExPjl5eXl9Y8pN6TampqJFZWViaJRILt27fb79692+Gbb775VeIdU+iIiIhaUVNTIxk9erS/Xq8XRFHEpk2bCnpDgQeAkydPqhYuXOgpiiJsbGyMO3fuzO/sNljkiYjonmVvb29qftStpyxbtszlwIEDN1xzf+KJJ8rXrVtXnJ2dfUfRthyuJyKiDjHH4Xpz0N5wPe+uJyIiMlMs8kRERGaKRZ6IiMhMscgTERGZKRZ5IiIiM8UiT0REZKb4nDwREXXa/v37PUpKSro0T97JyUkzadIk5sk3iYuL854wYULVc889VwEAKpVqKPPkiYjILN1refJdgUWeiIg67VY97u5wr+XJdwUWeSIi6tPMNU9eJpOJzZG1RqMRer2+09nzvPGOiIj6hHstT97Ly6shJSVFBQCffvqpncFg6HSRZ0+eiIj6hHstT/73v//9tQkTJgz29/cPut1tMqCGiIg6xBwDanpznnxHMU+eiIioFb05T74rsMgTEdE9q7fnyd/ptjlcT0REHWKOw/XmgHnyRERE9yAWeSIiIjPFIk9ERGSmWOSJiKhPi4iI8D9x4sSvwnKioqIGl5aWSm+enpCQ4LZixQrnO91vfn6+xbhx4wbd6Xa6E++uJyIis5SUlJTbndv39vbWf/XVVxe7cx93ij15IiLqE7Kzs+W+vr7XU+JWrFjhnJCQ4Nb82Wg0Ii4uznvBggVuAODu7h5y5coVGdD4mJq3t/eQ8PBw/5ycnOvhMWvWrHHy8fEJ9vPzC5owYcIgADh06JA6ICAgKCAgICgwMDCooqKi1Vp5c3t6I/bkiYio0zIyl3nU1V7o0jx5K7WfJihw3W2l2+n1emHSpEkDg4KCtDc/X56cnKzat2+fQ2pqaoZer8d9990XNHToUA0AbN682aWgoCBVqVSKzUP7GzZscNm8eXNBTExMXVVVlUSlUt3xK2p7CnvyRETU582fP9+rtQIPAMeOHVM/9thjldbW1iYHBwdTTExMZfM8f39/7eTJkwdu3brVwcLCQgSA+++/v3bJkiUea9ascSotLZVaWFjczUPpUuzJExFRp91uj/tOyGQysTlFDgBaRr8OHz68Njk52Uaj0VxVqVQdfsvbsWPHcr788kvrAwcO2L7zzjuu2dnZ6W+88UbxpEmTqg4cOGA7evTogEOHDuUMHTpU18WHc1ewJ09ERH3CgAEDDOXl5bLi4mKpVqsVjhw5Yts8b+7cuaUxMTFVEyZM8NHr9TesN2bMmNrDhw/b1dbWChUVFZKjR4/aAY3X8PPy8uQTJ06sef/99y/X1tZKq6qqpOnp6YqIiAjt2rVri0NDQ+vS0tIs7/Khdhn25ImIqE9QKBTi4sWLr4wYMSLQ2dlZP3jw4Bt61ytXrrz68ssvS5988smB+/fv/7l5+qhRozSTJ08uHzJkSLCjo6M+NDS0DgAMBoMwffr0gTU1NVJRFIU5c+aU9OvXz7h48WK3U6dO2QiCIPr7+2unTJlS1VabBEHo1e+G57vriYioQ/ju+hslJyerEhISPH788cfsnmwH311PRETUhU6cOKGaOXPmoJdeeulqT7elPRyuJyIiascPP/ygfPbZZwe2nCaXy035+flpPdWmjmKRJyIiakdERIQ2Kysro6fbcTs4XE9ERGSmWOSJiIjMFIs8ERGRmWKRJyIiMlMs8kRE1Cd1VS68OWORJyIiMlN8hI6IiDptUeYlj6w6XZdGzQZYWWr+EujZbvDNsmXLXHbv3t3P0dFR7+bm1jB06FBNenq6Yt68eZ7l5eUyS0tL04cfflgwdOhQXWFhoWzWrFlely5dUgDAli1bCsaOHVv3yCOP+Fy5ckVeX18vmTdv3tUlS5aUAoBKpRo6c+bMa998842tk5OTfu3atb8sW7bMo6ioSL5u3bpL8fHxrb7etqamRjJt2jTv7Oxs5aBBg3RXr1612LJly6UHH3xQ05Xn53awJ09ERH1Cy1z4o0eP5pw/f94KAObMmeO1devWS+np6Znr16//5cUXX/QEgHnz5nmOHj26Jjs7OyM9PT1j2LBhOgBITEzMT09Pzzx37lzGtm3bnIuLi6UAoNVqJQ8//HB1bm5uupWVlfGPf/yje3Jy8oXPP/88d/Xq1e5ttWv9+vX97ezsjHl5eelvvPHG5YyMDKu7cT46gj15IiLqtFv1uLtDy1x4AIiJianU6XSSs2fPqp966imf5uUaGhoEADh16pT1nj17fgYAmUwGR0dHIwCsW7fO+dChQ3YAUFxcbJGenm7p4uJSZ2FhIU6ZMqUaAIKDg7UKhcKkUCjEiIgI7eXLl+VttevUqVPqhQsXlgDAiBEjdH5+fj3eg2/GIk9ERH2WyWSCtbW1oaNvpDt48KB1UlKS9enTp7Osra1NERER/lqtVgI05tVLJI0D3BKJBAqFQgQAqVQKo9EodNtBdCMO1xMRUZ/QWi68SqUyDRgwoGHHjh32QGPR//bbb5UA8MADD9SsX7++PwAYDAaUlZVJKysrpba2tkZra2vT2bNnLZuH/O9EZGRk7a5du+wBICUlxfLChQvKO91mV2GRJyKiPqFlLvwjjzzi25wL/9lnn1386KOP+vn7+wf5+voG79271w4APvjgg0tJSUnWfn5+QUOGDAk6e/asZVxcXJXBYBAGDRoUvHTpUvewsLC6O23X0qVLr5WVlcl8fHyCX331VffBgwfr7O3tjXe63a7APHkiIuoQ5sm3zmAwoKGhQVCpVGJ6eroiJibGLy8vL83S0vKuFNj28uR5TZ6IiOgO1NTUSEaPHu2v1+sFURSxadOmgrtV4G+FRZ6IiKgD9u7da7N8+fIBLad5eHjUHz16NC8tLS2zp9rVHhZ5IiKiDoiLi6uOi4vrU7nyvPGOiIjITLHIExERmSkWeSIiIjPFIk9ERGSmWOSJiIh60Ntvv91/y5Ytjt2xbd5dT0RE1INeeeWVa921bRZ5IiLqtKV7zntcKK7p0jx5PxdrzfopYW2m22VnZ8vHjRvnO2zYsLqUlBR1aGho3axZs0pXrVrlXlZWJtu5c+fF8PBw3ezZsz2zsrKUBoNBWL58edGMGTMq28t8j4+P9zx//ryVTqeTTJw4sWLTpk1FAJCUlKRatGiRp0ajkcjlcvHEiRPZJSUlsunTpw9sDrV59913L40dO7bu4MGD1q+//rqbjY2NITs7WxUbG1seEhKi3bp1q3N9fb2wb9++vODg4PrWjishIcFNrVYbV61adbUrzyfAIk9ERH1IYWGh5e7duy+Gh4fnh4aGBiYmJjqePn0669NPP7Vbu3ata0BAgC46Orr6888/zy8tLZUOHz48MDY2tvqdd965nvn+448/WkZGRgY3b3Pjxo2XnZ2djQaDASNHjvT//vvvlWFhYbr4+HifxMTEvKioKE15eblErVabZDKZITk5+YJKpRJTU1MVzzzzzKDmF+FkZWUp09LS0p2cnAxeXl4hCoWiNDU1NXP16tVOGzZscNqxY8ddj+dlkSciok5rr8fdndzd3esjIiK0AODn56cdM2ZMtUQiwbBhwzRr1qxxKy4ulh85csRu8+bNLgBQX18v5ObmytvLfP/4448ddu7c2c9gMAjXrl2zOH/+vKUgCHByctJHRUVpAMDBwcEEANXV1cLs2bO9MjIylBKJBAUFBYrm7YSEhNR5eXnpAcDT07N+/PjxVQAQFhamTUpKsr5b56glFnkiIuoz5HL59XfCSyQSNL8jvjnzXSqVinv27MkNCwtrdWj8ZllZWfItW7Y4p6SkZPbv398YFxfnrdPp2rwpfe3atc5OTk76vXv3/mwymaBUKsOb5zXnz9/cNolE0mN59Ly7noiIzEZ0dHT1hg0bnE0mEwDg5MmTSqDtzPeKigqpUqk0OTg4GAsLC2XHjx+3BYDQ0FBdSUmJRVJSkqppOYler0dVVZXU1dVVL5VKsXXrVkejsVckyraJPXkiIjIbb731VtELL7zgGRAQEGQymQQPD4/6Y8eO5S5duvTa1KlTvX18fIJ9fHx0zZnvISEh9UOGDNH4+PgMcXV1bQgPD68FAEtLSzExMTFvwYIFnjqdTmJpaWk6ceLEhUWLFpXExcX57Nq1y3HMmDFVSqXS1NPH3B7myRMRUYf05Tz5ns58707Mkyciontab858704s8kREZPbs7e1NPZ35vmzZMpcDBw44tJz2xBNPlK9bt664u/bJ4XoiIuqQvjxcb87aG67n3UGD7DgAACAASURBVPVERERmikWeiIjITLHIExERmSkWeSIiIjPFIk9ERNRL6PX6Lt0eizwREfUJ2dnZ8oEDBwbHxcV5e3t7D4mNjR24f/9+62HDhgV4eXkNOXbsmKq6ulry1FNPeYeEhAQGBgYGffLJJ3ZA43Pyjz322CAfH5/gsWPH+oSGhgacOHFCBQDx8fGeQ4YMCRw8eHDwyy+/7Na8v6SkJNXQoUMD/P39g0JCQgIrKiok2dnZ8vDwcP+goKDAoKCgwKNHj1oBwMGDB61HjBjh//DDD/sMGDAgZP78+e4ffPCBQ0hISKCfn19Qenq6ovWjAuLi4rynT5/uGRoaGvDiiy8O6MpzxufkiYio8/b/zgMlGV2aJw+nIA0mvd9uup25Rs1euXJFfubMmSyZrGvLMos8ERH1GeYaNfvkk09WdHWBB1jkiYjodtyix91dzDVqVq1Wd0vQDa/JExGR2WDU7I3YkyciIrPBqNkb8d31RETUIX353fWMmiUiIjJTjJolIiIyU4yaJSIiakdfHq43Z4yaJSIiugexyBMREZkpFnkiIiIzxSJPRERkpljkiYiIzBSLPBERkZlikSciIjJTfBkOERF12p9O/skjtyK3S/PkB9sP1qx+YHWb6XbZ2dnycePG+Q4bNqwuJSVFHRoaWjdr1qzSVatWuZeVlcl27tx5MTw8XDd79mzPrKwspcFgEJYvX140Y8aMypqaGsm0adO8s7OzlYMGDdJdvXrVYsuWLZcefPBBTXx8vOf58+etdDqdZOLEiRWbNm0qAoCkpCTVokWLPDUajUQul4snTpzILikpkU2fPn2gVquVAMC77757aezYsXUHDx60fv31191sbGwM2dnZqtjY2PKQkBDt1q1bnevr64V9+/blBQcHt5qMl56ermje5rhx4yo//PBDZ41Gc7YrzimLPBER9RmFhYWWu3fvvhgeHp4fGhoamJiY6Hj69OmsTz/91G7t2rWuAQEBuujo6OrPP/88v7S0VDp8+PDA2NjY6nfeeae/nZ2dMS8vL/3HH3+0jIyMDG7e5saNGy87OzsbDQYDRo4c6f/9998rw8LCdPHx8T6JiYl5UVFRmvLycolarTbJZDJDcnLyBZVKJaampiqeeeaZQc1v0svKylKmpaWlOzk5Gby8vEIUCkVpampq5urVq502bNjgtGPHjla/wLz00kse8+fPL5k7d27522+/3b8rzxeLPBERdVp7Pe7u5O7uXh8REaEFAD8/P+2YMWOqJRIJhg0bplmzZo1bcXGx/MiRI3abN292AYD6+nohNzdXfurUKfXChQtLAGDEiBE6Pz8/TfM2P/74Y4edO3f2MxgMwrVr1yzOnz9vKQgCnJyc9FFRURoAcHBwMAFAdXW1MHv2bK+MjAylRCJBQUGBonk7ISEhdV5eXnoA8PT0rB8/fnwVAISFhWmTkpKs2zqms2fPqv/zn//kAsCcOXPKVq5cOaCrzheLPBER9Rlyufz6u9glEgmaQ2akUimMRqMglUrFPXv25IaFhbU6NH6zrKws+ZYtW5xTUlIy+/fvb4yLi/PW6XRt3q+2du1aZycnJ/3evXt/NplMUCqV4c3zFApFq22TSCQwGo3C7RzvneKNd0REZDaio6OrN2zY4GwyNca8nzx5UgkAkZGRtbt27bIHgJSUFMsLFy4oAaCiokKqVCpNDg4OxsLCQtnx48dtASA0NFRXUlJikZSUpGpaTqLX61FVVSV1dXXVS6VSbN261dFoNN5xm++7777anTt32gPAjh07HG61fGewyBMRkdl46623igwGgxAQEBA0ePDg4D/+8Y/uALB06dJrZWVlMh8fn+BXX33VffDgwTp7e3tjZGSkdsiQIRofH58hU6dOHRQeHl4LAJaWlmJiYmLeggULPP39/YMeeughP41GI1m0aFHJZ5995ujv7x+UlZVlqVQqTXfa5vfee6/wvffec/bz8wvKzc21VKvVd/7NoQlT6IiIqEP6cgqdwWBAQ0ODoFKpxPT0dEVMTIxfXl5eWm/IlK+pqZFYWVmZJBIJtm/fbr97926Hb775Jq+j67eXQsdr8kREZPZqamoko0eP9tfr9YIoiti0aVNBbyjwAHDy5EnVwoULPUVRhI2NjXHnzp35XbVtFnkiIjJ79vb2puZH3XrKsmXLXA4cOHDDNfcnnniifN26dcXZ2dkZ3bFPDtcTEVGH9OXhenPW3nA9b7wjIiIyUyzyREREZopFnoiIyEyxyBMREZkpFnkiIuqz8vPzLcaNGzeorfmlpaXSt95667ZCX7Kzs+W+vr7Bt16y92KRJyKiPsvb21v/1VdfXWxrfllZmfRvf/ub091sU2/C5+SJiKjTil5b7lGfk9OlefIKX1+N2xtr20y3mz9/vruHh0fDq6++eg0AEhIS3NRqtfGzzz7rl5OTk3769GnL5557bqBerxdMJhP27t2b9+qrr7oXFhYqAgICgqKioqrffvvtonHjxg2uqqqSGgwGYcWKFUUzZsyovFXbMjIy5HFxcYP/+te/5ltZWZlu3k9ISEiHAnHuNvbkiYioT4iPjy//4osvrr9M5sCBA/YjR46sa/783nvv9Z8/f/7VrKysjJ9++ilz4MCBDRs2bPjFw8OjPisrK2Pbtm2/qFQq06FDh3IzMjIyk5KSLrz22msDmsNs2nL+/HlFXFzc4B07dvwcFRWlaW0/3XjYd4Q9eSIi6rT2etzd5YEHHtCWlZXJ8vPzLa5cuSKztbU1tiywkZGRde+8847rL7/8In/66acrWutdm0wmYdGiRQO+++47tUQiQUlJifyXX36ReXp6GlrbZ3l5uWzSpEmD9+zZkxceHq7r6H56C/bkiYioz4iNja345JNP7BMTEx2efPLJ8pbz5s2bV37gwIFcpVJpmjBhgu+//vUv65vX37Ztm0NZWZksNTU1MysrK8PR0VGv1WrbrIXW1tZGNze3hmPHjqk7s5/egj15IiLqM2bMmFH+/PPPe1dUVMiSkpKydTqd0DwvIyNDHhgYWB8cHFxy6dIl+blz55QRERGaurq660W8qqpK2q9fP71CoRD//e9/WxcVFcnb25+FhYX45Zdf5kVHR/uq1WrTvHnzylvbT2xsbE13HvftYpEnIqI+Y/jw4bq6ujqJs7Nzg5eXlz47O/t6kf7kk08c/vnPfzrKZDKxf//++tWrV19xdnY2hoeH1/r6+gaPGTOmauXKlcXjx48f7OfnFxQaGqoZOHCg7lb7tLGxMR05ciT3oYce8rO2tjamp6crb95P9x717WNADRERdQgDanonBtQQERHdgzhcT0RE97Ti4mLpQw895H/z9OPHj2e7uLgYe6JNXYVFnoiI7mkuLi7GrKysjJ5uR3fgcD0REZGZYpEnIiIyUyzyREREZopFnoiIyEyxyBMREfVCb7/9dv8tW7Y43sk2eHc9ERFRL/TKK69cu9NtsMgTEVGnffP3TI/yy7Vdmifv4K7WPPxsYLvpditXrnROTEzsBwAzZ868Nm3atMpx48b5Dhs2rC4lJUUdGhpaN2vWrNJVq1a5l5WVyXbu3HkxOjpaU11dLZk9e7ZnVlaW0mAwCMuXLy+aMWNGZU1NjWTatGne2dnZykGDBumuXr1qsWXLlksPPvigJj4+3vP8+fNWOp1OMnHixIpNmzYVAUBSUpJq0aJFnhqNRiKXy8UTJ05kl5SUyKZPnz6wOezm3XffvTR27Ni6gwcPWr/++utuNjY2huzsbFVsbGx5SEiIduvWrc719fXCvn378oKDg1tNsUtISHBTq9XGVatWXb3dc8oiT0REfUJycrLq008/dUxJSckURRHh4eGBDz/8cE1hYaHl7t27L4aHh+eHhoYGJiYmOp4+fTrr008/tVu7dq1rdHR03muvveYaHR1d/fnnn+eXlpZKhw8fHhgbG1v9zjvv9LezszPm5eWl//jjj5aRkZHBzfvbuHHjZWdnZ6PBYMDIkSP9v//+e2VYWJguPj7eJzExMS8qKkpTXl4uUavVJplMZkhOTr6gUqnE1NRUxTPPPDMoLS0tEwCysrKUaWlp6U5OTgYvL68QhUJRmpqamrl69WqnDRs2OO3YsaPbYntZ5ImIqNNu1ePuDsePH1c/9thjlTY2NiYAePzxxyuOHTtm7e7uXh8REaEFAD8/P+2YMWOqJRIJhg0bplmzZo1b07o2R44csdu8ebMLANTX1wu5ubnyU6dOqRcuXFgCACNGjND5+flpmvf38ccfO+zcubOfwWAQrl27ZnH+/HlLQRDg5OSkj4qK0gCAg4ODCQCqq6uF2bNne2VkZCglEgkKCgoUzdsJCQmp8/Ly0gOAp6dn/fjx46sAICwsTJuUlNStMbUs8kRE1KfJ5fLrSWsSiQSWlpYiAEilUhiNRgEARFHEnj17csPCwlodGr9ZVlaWfMuWLc4pKSmZ/fv3N8bFxXnrdLo2b1Zfu3ats5OTk37v3r0/m0wmKJXK8OZ5CoWi1fZJJJLr7esuvLueiIj6hOjo6NrDhw/b1dTUSKqrqyWHDx+2j46O7lCOe3R0dPWGDRucTSYTAODkyZNKAIiMjKzdtWuXPQCkpKRYXrhwQQkAFRUVUqVSaXJwcDAWFhbKjh8/bgsAoaGhupKSEoukpCRV03ISvV6Pqqoqqaurq14qlWLr1q2ORmPveOU9e/JERNQnjBo1SjN9+vSyYcOGBQKNN97169evQ9X0rbfeKnrhhRc8AwICgkwmk+Dh4VF/7Nix3KVLl16bOnWqt4+PT7CPj49u8ODBOnt7e2NISEj9kCFDND4+PkNcXV0bwsPDawHA0tJSTExMzFuwYIGnTqeTWFpamk6cOHFh0aJFJXFxcT67du1yHDNmTJVSqTR157noKObJExFRh5hjnrzBYEBDQ4OgUqnE9PR0RUxMjF9eXl5a85B6X9Benjx78kREdM+qqamRjB492l+v1wuiKGLTpk0FfanA3wqLPBER3bPs7e1NzY+69ZRly5a5HDhwwKHltCeeeKJ83bp1xXe6bQ7XExFRh5jjcL05aG+4nnfXExERmSkWeSIiIjPFIk9ERGSmWOSJiIjMFIs8ERHd04YOHRrQXdtOTEy0fe2111y6a/u3wkfoiIjonqTX62FhYYGzZ89mddc+4uPjqwBUddf2b4VFnoiIOu3IB3/xKC0s6NI8+X4eXppHX1zUZrpddXW1JDY2dtCVK1fkJpNJeOWVV4pWrlw54PTp05murq6GEydOqJYsWeLxww8/ZCckJLhdvHhRkZ+fr6ioqJAtWLCgePHixaUHDx60/vOf/+xma2trvHjxomV+fn6aSqUaqtFoznY0+72oqEj23HPPeV2+fFkOABs3brwUExNT11qbN2/e7Hj69Gmrv//975e68lx1FIs8ERH1CV988YWNi4uL/vjx47kAUFZWJl25cmWby2dmZipTUlIya2pqpEOHDg2Ki4urAoCMjAzV2bNn0wMCAhpuXqcj2e9z5871SEhIuProo4/W5uTkyB999FHfixcvpnfXcd8JFnkiIuq09nrc3WXYsGHa5cuXe7z44ovuTzzxRNW4ceNq21t+/PjxlWq1WlSr1YbIyMjq5ORkK3t7e2NoaGhdawUe6Fj2+8mTJ21ycnKUzevU1tZKq6qqJLa2tr0ilKYlFnkiIuoTQkND68+cOZOxd+9e2z/96U/uX3/9dbVUKhWb42O1Wu0NN5MLwo1R7c2fVSpVm8W4I9nvoijizJkzmSqVqte/MpZ31xMRUZ+Qn59vYW1tbZo/f355QkJC8blz51QDBgxoOHnypAoA/vnPf9q3XP7LL7+002g0QnFxsfS7776zHjVqVKvXzTtr1KhR1W+++aZT8+dTp04p21u+J7EnT0REfUJKSory1VdfHSCRSCCTycStW7cWaDQaybx587xXrVplHDlyZE3L5QMDAzUjR470r6iokC1ZsuSKt7e3Pi0tzfJO27F9+/bCOXPmePr5+QUZjUbhN7/5Tc3IkSN75Ma6W2FADRERdUhfCqhJSEhwU6vVxlWrVl3t6bZ0NwbUEBER3YM4XE9ERGZn48aNRXdzf++++67jBx984Nxy2ogRI2r/8Y9/9OgwPofriYioQ/rScP29hMP1RERE9yAWeSIiIjPFIk9ERGSmWOSJiIjMFIs8ERH1aREREf4nTpz4VSJeVFTU4NLSUunN0xMSEtxWrFjhfPP0zjp48KB1dHT04DvdTnfiI3RERGSWkpKScnu6DT2NRZ6IiDqtfM8FD31xXZfmyVu4WGkcpvi1mW6XnZ0tnzBhgm9OTk46AKxYscK5trb2ek/daDRi6tSp3u7u7g2bN28ucnd3D2nOml+2bJnL7t27+zk6Ourd3Nwahg4dqgGANWvWOH300Uf9pVKp6Ofnpzt48ODFQ4cOqRcvXuwJNIbanDp1Ksve3r7VUJu6ujrpuHHjBmVnZytDQkI0+/fv/1ki6T2D5CzyRETU5+n1emHSpEkDg4KCtOvWrStuOS85OVm1b98+h9TU1Ay9Xo/77rsvqLnIb9682aWgoCBVqVSKzUP7GzZscNm8eXNBTExMXVVVlaS91LrMzEzluXPnLnp7e+vDw8MDjh49qn700UfbjcC9m1jkiYio09rrcfeE+fPne02aNKn85gIPAMeOHVM/9thjldbW1iYAiImJqWye5+/vr508efLA2NjYyvj4+EoAuP/++2uXLFniMXXq1PJnnnmmwsfHp80iHxISUufj46MHgODgYE1eXp6864/u9vWeMQUiIqJ2yGSy69nxAKDT6a7XsOHDh9cmJyfbaDQaodWV23Ds2LGc3/3ud9fOnDmjGjp0aKBer8cbb7xR/OGHHxZotVrJ6NGjA86ePdtmcl3L/HmpVAqDwdCp/Xc3FnkiIuoTBgwYYCgvL5cVFxdLtVqtcOTIEdvmeXPnzi2NiYmpmjBhgo9er79hvTFjxtQePnzYrra2VqioqJAcPXrUDmi8hp+XlyefOHFizfvvv3+5trZWWlVVJU1PT1dERERo165dWxwaGlrXFfG0PYXD9URE1CcoFApx8eLFV0aMGBHo7OysHzx4sK7l/JUrV159+eWXpU8++eTA/fv3/9w8fdSoUZrJkyeXDxkyJNjR0VEfGhpaBwAGg0GYPn36wJqaGqkoisKcOXNK+vXrZ1y8eLHbqVOnbARBEP39/bVTpkyputvH2lUYUENERB3CgJreiQE1RERE9yAO1xMREbXjhx9+UD777LMDW06Ty+Wmn376Kaun2tRRLPJERETtiIiI0GZlZWX0dDtuB4friYiIzBSLPBERkZlikSciIjJTLPJERERmikWeiIjuaUOHDg3o6TZ0FxZ5IiK6JzW//vbs2bO9/lG428VH6IiIqNP279/vUVJS0qV58k5OTppJkya1mW5XXV0tiY2NHXTlyhW5yWQSXnnllaKVK1cOaM6MP3HihGrJkiUeP/zwQ3ZCQoLbxYsXFfn5+YqKigrZggULihcvXlx68OBB6z//+c9utra2xosXL1rm5+enqVSqoRqN5uzBgwetX3/9dTcbGxtDdna2KjY2tjwkJES7detW5/r6emHfvn15wcHB9UVFRbLnnnvO6/Lly3IA2Lhx46WYmJi61tpcVFQkmzJlysCSkhJ5eHh4bXJysk1KSkqmq6uroSvPXVvYkycioj7hiy++sHFxcdFnZ2dn5OTkpD/55JPV7S2fmZmp/L//+7/s7777Lmv9+vVu+fn5FgCQkZGh2rp166X8/Py0m9fJyspS7tix41JOTk7anj17HC9cuGCZmpqaOXPmzNINGzY4AcDcuXM9EhISrqalpWXu27cvb968ed5tteEPf/iDW1RUVE1ubm76U089VXHlypW7GkXLnjwREXVaez3u7jJs2DDt8uXLPV588UX3J554omrcuHG17S0/fvz4SrVaLarVakNkZGR1cnKylb29vTE0NLQuICCgobV1QkJC6ry8vPQA4OnpWT9+/PgqAAgLC9MmJSVZA8DJkydtcnJylM3rNKXXSWxtbX+VO//DDz+o9+/fnwsAU6ZMqbaxsTHe/hnoPBZ5IiLqE0JDQ+vPnDmTsXfvXts//elP7l9//XW1VCq9njGv1WpvGJ0WhBuj3Zs/q1SqXxXjZi3z4SUSCSwtLcXmn41GowAAoijizJkzmSqVqtcnvHG4noiI+oT8/HwLa2tr0/z588sTEhKKz507pxowYEDDyZMnVQDwz3/+077l8l9++aWdRqMRiouLpd999531qFGjWr1u3lmjRo2qfvPNN52aP586dUrZ1rIjRoyo/cc//uEANF5uqK6ulnZFGzqKPXkiIuoTUlJSlK+++uoAiUQCmUwmbt26tUCj0UjmzZvnvWrVKuPIkSNrWi4fGBioGTlypH9FRYVsyZIlV7y9vfVpaWmWd9qO7du3F86ZM8fTz88vyGg0Cr/5zW9qRo4ceam1Zd96662iKVOmDPL19XUMDw+v7devn97Ozu6uDdkzT56IiDqkL+XJJyQkuKnVauOqVauu9mQ7tFqtIJPJRAsLC3z99ddWL730kldXh920lyfPnjwREVE3yc3NlU+dOtXHZDLBwsJC3LZtW/7d3D+LPBERmZ2NGzcW3c39vfvuu44ffPCBc8tpTdfjL2VmZvZYTC2H64mIqEP60nD9vaS94XreXU9ERGSmWOSJiIjMFIs8ERGRmWKRJyKiPis/P99i3Lhxg9qaX1paKn3rrbf63862s7Oz5b6+vsG337qexyJPRER9lre3t/6rr7662Nb8srIy6d/+9jentuabOxZ5IiLqE+bPn+/+5ptvXu+VJyQkuK1YscK5ubd9+vRpy5CQkMCAgIAgPz+/oNTUVMXixYsHFBYWKgICAoLmzp07oKqqShIZGekXFBQU6OfnF/TJJ5/YtbdPo9GIp59+2mvw4MHBDzzwgG9tba3Q3vK9DR+hIyKiDmn5CF1G5jKPutoLXZonb6X20wQFrmsz3e7kyZPKRYsWef7444/ZAODj4xP8/vvvF/z+97/3ysnJSf+f/9/encU0lS9wHP+3INUOWAEdKggMN4FSCl4bV3DBJRohRIm5D8RAMIKARhND3OKjLwYviTfRB9EbDQmJRm+iBKKSmCi8uDy5IItNnI6D0kttaYWWMrRlXgbi6IgwdDvl+3lrz8k5558+/Hr+Z/mVlyevW7fOcfDgQavL5ZK53W7x/v37eUVFRekGg+G1EEKMjY2JoaEheVxcnLe/vz9y7dq1mUajsVMu//qct7e3N0qn0+V0dHR05eXljRQWFv6jqKjIdujQIasvxz1bvPEOACB569evH7FYLJFGo3Fef39/pEql8qSlpU1Wxubm5jrq6+uX9vX1RZWUlAzm5OSMfrkNr9crO3r06LInT55Ey+VyMTAwENXX1xeZkpLi/qt9JiUljebl5Y0IIYRer3cajUaF/0boe4Q8AGDGpjrj9qddu3YNNjU1xZpMpnl79uz50xl1TU2NdePGjY7bt2+rioqK0i9cuPCLRqP5U9A3NDTEWSyWyFevXnUrFIrxpKSknC8raj8XFRU1Od0dERExPtW6oYiQBwBIRmlpqfXAgQM/DQ4ORra3t/e6XK7Ja+RdXV1RWq12VKfTDbx79y7q+fPnC9asWeN0OByTwWy32yMWL148plAoxltaWmI+fPgQFZyRBIak/pEAAOa2VatWuRwOhzwhIeG31NTUsc+XNTU1xWVkZOgyMzOzuru7F1RXV1vUarVn5cqVw+np6brq6upllZWV1hcvXvyQkZGR1djYGJ+WluYK1lgCgRvvAADTwrvrQxPvrgcAYA7imjwAYE4zmUwRmzdv1nz5/aNHj3rVarUnGMfkK4Q8AGBOU6vVnp6enqB1vvsT0/UAAIQpQh4AgDBFyAMAEKYIeQAAwhQhDwCYU44cOZKkVquXK5VKfbCPxd8IeQDAnFJcXGx7+vRpd7CPIxB4hA4AMGNHu98l9zhcPq2azfxhvvM/2pQpi2+OHz++9NatW/Hx8fFjiYmJv+n1euf9+/cX6XQ65+PHj2M8Ho/s8uXLP2/ZssVpt9vlFRUVKS9fvlQKIcTp06c/7Nu3z7Zt2zbHdI5ncHBQnp2drXv79m2nQqEYt1qt8pycnMnPvhizvxHyAABJaG9vV7a0tMR2dXW9Hh0dla1YsSJLr9c7hRBiZGRE3tPT03Xv3r3oqqqqNIPB8PrUqVNLFy5c6Hnz5k2XEEKYzeaImewvNjbWm5ubO3Tz5k1VWVmZ7erVq3GFhYWDUgl4IQh5AMDf8L0zbn9ob2+PLigosCmVynGlUjm+fft228SyvXv3WoUQoqCgYHh4eFj+8ePHiI6OjoU3btx4O7HOkiVLZvz2uqqqKnNdXZ26rKzM1tTUtPjKlStGnwwmQLgmDwCQPJlMNuXnv2vHjh2Ovr4+RWtra4zH45GtXr1aUq11hDwAQBLy8/OH29raVE6nU2a32+UPHjxYNLHs+vXrsUII0dbWFh0TE+OJj4/35Ofnfzp//vyPE+vMdLp+QklJiWX//v1ppaWlkmvgI+QBAJKQn5/v3Llzpz0rK0u3devWdI1GM6JSqTxCCDF//vxxrVabdfjw4dSGhgajEEKcPXu232azRaSnp+s0Gk3W3bt3Y4QQoqamZllCQsJyl8slT0hIWF5bW5s41X4rKiosnz59iqyoqLD6fZA+Rp88AGBaQqFP3m63y1UqlXdoaEiem5uruXTp0i+1tbXJ9fX1v27atMnpj31eu3Yttrm5edGdO3d+9sf2Z2uqPnluvAMASEZpaWmqwWBYMDo6KispKbFs2LDBL8E+oby8PPnhw4eq1tZWgz/34y+EPABAMlpaWr46m3727FnvbLd78uRJdXNzc9zn3+3evdva2Nj4qxAi4E8S+ArT9QCAaQmF6Xp8barpem68AwAgTBHyAACEKUIeAIAwRcgDABCmCHkAO8/K0wAAAUFJREFUwJwykz75c+fOLbl48WJ8II7LH3iEDgAwpxQXF9uOHTs2oNVqs7+37okTJ8yBOCZ/IeQBADN2/H8vkt+YhnzaJ5+hjnH++1//DJk+eSGEqK2tTYyOjvacOXPm/7MdXzAQ8gAASQh0n3w4IOQBADP2vTNufwhGn7zUceMdAEDy/NUnL3WEPABAEoLVJy9lhDwAQBKC1ScvZRTUAACmJRQKaoLRJx/q6JMHAISFQPfJSx0hDwCQjED3ydfV1Zlmu+1gYroeADAtoTBdj6/RJw8A8AWv1+vl2bQQ8sfv4f3WckIeADBdnWazWUXQhwav1yszm80qIUTnt9bhmjwAYFrcbnelyWT6r8lkyhacJIYCrxCi0+12V35rBa7JAwAQpvgnBgBAmCLkAQAIU4Q8AABhipAHACBMEfIAAISp3wGkoZT7mzPgPQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"for b in bands:\n",
" plt.plot(Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Wavelength']\n",
" ,Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Transmission']\n",
" , label=b)\n",
"plt.xlabel('Wavelength ($\\AA$)')\n",
"plt.ylabel('Transmission')\n",
"plt.xscale('log')\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
"plt.title('Passbands on {}'.format(FIELD))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### IV.a - Depth overview\n",
"Then we plot the mean depths available across the area a given band is available"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"megacam_u: mean flux error: 0.07150787115097046, 3sigma in AB mag (Aperture): 25.571312240890883\n",
"megacam_g: mean flux error: 0.045730601996183395, 3sigma in AB mag (Aperture): 26.05667956705836\n",
"megacam_r: mean flux error: 0.0842747762799263, 3sigma in AB mag (Aperture): 25.392952842464616\n",
"megacam_i: mean flux error: 0.12086670100688934, 3sigma in AB mag (Aperture): 25.001430192125675\n",
"megacam_z: mean flux error: 0.27000483870506287, 3sigma in AB mag (Aperture): 24.12876799535821\n",
"decam_g: mean flux error: 0.27442166209220886, 3sigma in AB mag (Aperture): 24.111150887197574\n",
"decam_r: mean flux error: 0.41227293014526367, 3sigma in AB mag (Aperture): 23.669234813333567\n",
"decam_z: mean flux error: 0.9138184785842896, 3sigma in AB mag (Aperture): 22.805047023697945\n",
"suprime_g: mean flux error: 0.020845327526330948, 3sigma in AB mag (Aperture): 26.909675055087057\n",
"suprime_r: mean flux error: 0.03370736539363861, 3sigma in AB mag (Aperture): 26.387884840969853\n",
"suprime_i: mean flux error: 0.04270967096090317, 3sigma in AB mag (Aperture): 26.13088129920967\n",
"suprime_z: mean flux error: 0.06875191628932953, 3sigma in AB mag (Aperture): 25.61398484431661\n",
"suprime_y: mean flux error: 0.1404762715101242, 3sigma in AB mag (Aperture): 24.8381894337816\n",
"omegacam_u: mean flux error: 0.3014092743396759, 3sigma in AB mag (Aperture): 24.009305334722647\n",
"omegacam_g: mean flux error: 0.10279956459999084, 3sigma in AB mag (Aperture): 25.17721867509895\n",
"omegacam_r: mean flux error: 0.1033104807138443, 3sigma in AB mag (Aperture): 25.171835907289058\n",
"omegacam_i: mean flux error: 0.36547213792800903, 3sigma in AB mag (Aperture): 23.800061178812577\n",
"gpc1_g: mean flux error: 19.483174845946905, 3sigma in AB mag (Aperture): 19.48304754322421\n",
"gpc1_r: mean flux error: 7.047861912884513, 3sigma in AB mag (Aperture): 20.58705339705883\n",
"gpc1_i: mean flux error: 29.392787513330184, 3sigma in AB mag (Aperture): 19.036594925558354\n",
"gpc1_z: mean flux error: 47.3357628828993, 3sigma in AB mag (Aperture): 18.51922341124878\n",
"gpc1_y: mean flux error: 26.317425436384323, 3sigma in AB mag (Aperture): 19.156588360331334\n",
"ukidss_y: mean flux error: 3.873424768447876, 3sigma in AB mag (Aperture): 21.23695904993931\n",
"ukidss_j: mean flux error: 4.748324871063232, 3sigma in AB mag (Aperture): 21.01584580101413\n",
"ukidss_h: mean flux error: 5.464476108551025, 3sigma in AB mag (Aperture): 20.86332553443605\n",
"ukidss_k: mean flux error: 6.157969951629639, 3sigma in AB mag (Aperture): 20.7336029497178\n",
"vista_z: mean flux error: 0.6691363453865051, 3sigma in AB mag (Aperture): 23.14341031311701\n",
"vista_y: mean flux error: 1.5995382752899239, 3sigma in AB mag (Aperture): 22.19721027129976\n",
"vista_j: mean flux error: 2.161272030021322, 3sigma in AB mag (Aperture): 21.87042328044219\n",
"vista_h: mean flux error: 3.233068679472094, 3sigma in AB mag (Aperture): 21.433159537336245\n",
"vista_ks: mean flux error: 3.7030060468028787, 3sigma in AB mag (Aperture): 21.28581081012897\n",
"megacam_u: mean flux error: 0.09553231371503994, 3sigma in AB mag (Total): 25.256821122869063\n",
"megacam_g: mean flux error: 0.0681900727172328, 3sigma in AB mag (Total): 25.62289397927008\n",
"megacam_r: mean flux error: 0.12690751296383557, 3sigma in AB mag (Total): 24.948478530143866\n",
"megacam_i: mean flux error: 0.17291535040142442, 3sigma in AB mag (Total): 24.612612990503102\n",
"megacam_z: mean flux error: 0.3755415066550659, 3sigma in AB mag (Total): 23.770552002426577\n",
"decam_g: mean flux error: 15.896284103393555, 3sigma in AB mag (Total): 19.703957823153807\n",
"decam_r: mean flux error: 4.671145439147949, 3sigma in AB mag (Total): 21.033638389352994\n",
"decam_z: mean flux error: 1.4772803783416748, 3sigma in AB mag (Total): 22.28353953959492\n",
"suprime_g: mean flux error: 0.03702125698328018, 3sigma in AB mag (Total): 26.28606896251555\n",
"suprime_r: mean flux error: 0.058066315948963165, 3sigma in AB mag (Total): 25.797386181094573\n",
"suprime_i: mean flux error: 0.07663461565971375, 3sigma in AB mag (Total): 25.496134404059994\n",
"suprime_z: mean flux error: 0.12170034646987915, 3sigma in AB mag (Total): 24.9939673266285\n",
"suprime_y: mean flux error: 0.2616100609302521, 3sigma in AB mag (Total): 24.163060758312703\n",
"omegacam_u: mean flux error: 0.5340697765350342, 3sigma in AB mag (Total): 23.388201859279\n",
"omegacam_g: mean flux error: 0.14700493216514587, 3sigma in AB mag (Total): 24.788867098164197\n",
"omegacam_r: mean flux error: 0.14138275384902954, 3sigma in AB mag (Total): 24.831205771744514\n",
"omegacam_i: mean flux error: 0.6019576191902161, 3sigma in AB mag (Total): 23.258282073593413\n",
"gpc1_g: mean flux error: 17.807103978500365, 3sigma in AB mag (Total): 19.580713626646194\n",
"gpc1_r: mean flux error: 7.3407055338609535, 3sigma in AB mag (Total): 20.542852355530123\n",
"gpc1_i: mean flux error: 23.960207744071983, 3sigma in AB mag (Total): 19.258470415122922\n",
"gpc1_z: mean flux error: 51.4384529157779, 3sigma in AB mag (Total): 18.428977117971307\n",
"gpc1_y: mean flux error: 29.12357056749225, 3sigma in AB mag (Total): 19.046585316517785\n",
"ukidss_y: mean flux error: 6.214057922363281, 3sigma in AB mag (Total): 20.723758620511795\n",
"ukidss_j: mean flux error: 6.570488929748535, 3sigma in AB mag (Total): 20.663202643414316\n",
"ukidss_h: mean flux error: 9.757233619689941, 3sigma in AB mag (Total): 20.23388010438294\n",
"ukidss_k: mean flux error: 11.032600402832031, 3sigma in AB mag (Total): 20.100502142051305\n",
"vista_z: mean flux error: 1.5829956531524658, 3sigma in AB mag (Total): 22.20849755743233\n",
"vista_y: mean flux error: 3.5141017488422923, 3sigma in AB mag (Total): 21.34266103296556\n",
"vista_j: mean flux error: 5.198858589176382, 3sigma in AB mag (Total): 20.91742685163056\n",
"vista_h: mean flux error: 8.087967051481774, 3sigma in AB mag (Total): 20.437598429774148\n",
"vista_ks: mean flux error: 9.59516103132087, 3sigma in AB mag (Total): 20.252066193941282\n"
]
}
],
"source": [
"average_depths = []\n",
"for b in ap_bands:\n",
" \n",
" mean_err = np.nanmean(depths['ferr_ap_{}_mean'.format(b)])\n",
" print(\"{}: mean flux error: {}, 3sigma in AB mag (Aperture): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n",
" average_depths += [('ap_' + b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n",
" flux_to_mag(3.0*mean_err*1.e-6)[0], \n",
" flux_to_mag(5.0*mean_err*1.e-6)[0])]\n",
" \n",
"for b in tot_bands:\n",
" \n",
" mean_err = np.nanmean(depths['ferr_{}_mean'.format(b)])\n",
" print(\"{}: mean flux error: {}, 3sigma in AB mag (Total): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n",
" average_depths += [(b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n",
" flux_to_mag(3.0*mean_err*1.e-6)[0], \n",
" flux_to_mag(5.0*mean_err*1.e-6)[0])]\n",
" \n",
"average_depths = np.array(average_depths, dtype=[('band', \""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"for dat in data:\n",
" wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n",
" depth = average_depths['5s'][average_depths['band'] == dat[0]]\n",
" #print(depth)\n",
" plt.plot([wav_deets[0],wav_deets[1]], [depth,depth], label=dat[0])\n",
" \n",
"plt.xlabel('Wavelength ($\\AA$)')\n",
"plt.ylabel('Depth')\n",
"plt.xscale('log')\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
"plt.title('Depths on {}'.format(FIELD))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### IV.c - Depth vs coverage comparison\n",
"\n",
"How best to do this? Colour/intensity plot over area? Percentage coverage vs mean depth?"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Depths (5 $\\\\sigma$) vs coverage on GAMA-09')"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAP9CAYAAAAZ387wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XtYU1e6P/DvCoKAhshNqkCAEBICgagwUJWprZfa67QW9Xil3qat1fEyrVNm7Pn1nM7psbZUHYdx1F5ErY61autI7elM2xHEtlBUQgMElIsgAgXlEhEwgfX7IwkDCAgGDMb38zx5Snb2Xuvdic1+s9baazHOOQghhBBCzATWDoAQQgghQwslB4QQQgjphJIDQgghhHRCyQEhhBBCOqHkgBBCCCGdUHJACCGEkE4oOSCEEEJIJ5QcEEIIIaQTSg7uI4yxEsbY9AEqaxNjbN1AlNVN2RmMsdDBKJsQQsjtUXJgRaaLdRNjTMcYq2OMfccYe4kxNiCfy0AmA13K9QQQB2BXh22nGGPNjLHrpke+BVUkAHjT0jjJ4GGMzWOMpTPGGhljP5v+fpkxxrrsd4oxVssYG95lewlj7CZjzKPL9vOMMc4Y8++mzm7L6mY/N8bYZ6bYLjHGFnR5XcEY+5YxVs8Yu8gYm9Xf8yfE1lFyYH1Pc86FAPwAvA3gNQAfWjek21oC4CTnvKnL9tWc85Gmh9yC8v8O4BHG2AMWlDGkMcaGWTuGO8UYewXAnwC8C+ABAF4AXgIwGYBDh/38AfwSAAfwq26KKgYwv8P+YQCce6jzdmV19BcAN01xLQTwV3NLlOl9Pw4gGYAbgBcAfMwYk92mTELuK5QcDBGc83rO+d8B/AeA5xljSgBgjI1ljB1ljFUzxooZY2vMx5h+ff2eMZZr+kW1hzHmaHptPwAxgBOmX/K/Mx02jjGWbfrV9Il5f9MxrzHGyk0tGfmMsWk9hPs4gJQ7PVfGmD1j7C1T/HrTL0XOGMs2vRfNAM4CmNnNsa8xxo502fYnxtj2fp4DGGO+jLFjpvf2KmMs0bRdYfqVWscYy2GM/aovdZue3+7zes10no2MsWGMsXjGWKEp3tyOv2IZYxNMv6R1jLFPTZ/X//Slrm7Otdtz6hDXqz39u+hSjgjGVp2XOedHOOc6bnSec76Qc97SYfc4AD8ASALwfDfF7TftY/Y8gH09nMLtyjLHNwJALID/5Jxf55ynwZhsLjbtEgxgLICtnPNWzvm3AM50eJ0QAgCcc3pY6QGgBMD0braXAlgJY/J2FsD/g/EXmQRAEYCZHY7XAPCF8VfQGQD/01P5pucZMH45ugHIA/CS6TU5gDIAY03P/QEE9hB3NYBfdNl2yrS9xhTHw72c92YYv+h9AYwA8DWAYwAkHfbZDmBLN8f6AbgBQGh6bgegAsCD/TwHOwBqAFtNMTgCiAFgD+AigD+Y3vOpAHSmsnus2/S8L59Xlum8nUzb5pg+DwGMiWEjgDGm4y8BWGuK6TkYfw3/T1/q6nKuPZ7T7f5ddFPWYwAMAIb14d/3RQAvA4gAoAfg1fXfJoB8AArTe3nZ9B5zAP59LavLfuMB3Oiy7VUAJ0x/KwFcB8A6vP5PAJ9Z+/uAHvQYSg9qORiarsD4Jf0LAJ6c8zc55zc550UA3gcwr8O+iZzzMs75NQBvoUMzbQ+2c86vmPY/AWCcaXsrgOEAQhhj9pzzEs55YQ9ljILx4tLRazBeoLwB7IaxxSKw64GMMSGANQAWm+JuBHAUgJvp/Mx0pno64ZxfAnAOgPkX9lQYLwY/9PMcomC8GG7gnDdyzpu58VfmgwBGAnjb9J5/C2MT9Pzb1A307fPabjrvJtP5fGr6PNo4558AuGCK7UEAw0z76znnx2C8gKMfdZn1eE5d4uru30VXHgBqOOcG8wZmHCtTx4zjZx4ybYuB8UJ/mHN+FkAhgAXdlGduPZgBY1JS3nWHfpQF03k2dNlWD0Bo+jsfwM8ANphasB4FMAU9dGcQcr+i5GBo8gZwDcYvxLGmL946xlgdjL/+vDrsW9bh70swXvB6U9nh7xswfpmCc34RwDoA/wXgZ8bYIcZYT2XV4t9ftjAdn86NTcwtnPO9MLYePNHNsQ8BKOKcX+iwzbVLXDCVX9dD/Qfx7wvbAtPz/p6DL4BLHS9yJmMBlHHO2zpsuwTjZ9Jj3Sb9/bzAGItjjGV12F8J4wV4LIByzjnv4di+1NXXcwJ6+HfRjasAPFiHMROc80mc81Gm18zfKc8D+AfnvMb0/CB67lpYAOM4lp66FHosizG2kP17EOyXMLYKuHQ53gWmZJZzrgfwLIAnTef8CoDDMLZaEEJM7tlBUbaKMfYLGL+002D8gi7mnAf1cohvh7/FMLY6mHH0A+f8IICDjDEXGO9E2Izu+2KzAcgA/NhbcQBYN9s9YUwuAACMMQbjL/E/ddlPAeDjHsr+FMB7jDEf07ET7+AcygCIGWPDuiQIVwD4MsYEHS6mYgAFt6vbVObtPq/2z4Qx5gfjr/1pAL7nnLcyxrJgfN8qAHgzxliHBMEXxl/Nfa2rr+fUH98DaAHwDIwtPrdgjDkBmAvAjjFmTjqGAxjFGFNxztXmfTnnlxhjxTAmksvvoKwDAA502H8EgGGMsaAOCagKQE6HOrNhbC0wH/MdgL39eA8IsXnUcjBEMMZcGGNPATgE4GPO+U8wNiPrTIPYnBhjdowxpSmBMFvFGPNhjLkB2Ajgkw6vVcHY1N+X+uWMsanMeJtYM4AmAG097H4Snb9cRzHGZjLGHE2D7BbC2ELwf90cqwEwgTE2zvTFvwnGC+YnHcpzhLFv+Z/dVc45r4ZxjMMeGC+QeXdwDhkwXoDfZoyNMMU+GUA6jL+cf2dqdn4YwNMwfi491t2hzNt9Xh2NMJ17tSn+pTC2HADGi3ArgNWm9/QZGLsb7qSuXs+pPzjndQD+G8AOxthsxpiQMSZgjI0znQ9g/GXeCiAExu6JcTAme6fReQCi2XIAU01dTF31qyxTGccAvGn6XCfDmMjsN+/DGAs3fd7OjLFXYRzjkdS/d4IQG2ftQQ/38wPGQVlNMDZ51sN4QVgFwK7DPmMB/A3GJtBaGAfyTe9w/O8B5MLYBL8XgHOHY5+BcXBjHYyDskrQeYDif8GYiABAOEwXHBi7NJJhGtjXTdweMDbDmgfVecLYiqAz1fUDgBm9nPdGGH/NVsD4pezR5fU5AI7d5r1bDOOFdUOHbX0+B9P+YgCfw9gcXgNjvzsAhMJ4N0a96b2ddbu6+/F5Te+y/1umWGsAbDHVu8L0WiSMAxivw9hicQzGUfi3raubuHo8p97+XfTy3i00vdc3YExu0mG8LdABxqTwvW6OmWuKdVh374Vpn2HoMCCxL2V185qb6XNthPHf/4Iur79rer+uA/gSgNTa3wX0oMdQezDO+9XyTIYQxlgJjBeSr61Q9/8C+Jlzvm0Qyk4HsJxzrhnosu9lpvdlJ+d8j7VjIYTYNhpzQO4I5/wPg1h29GCVfS9hjE2BcXR9DYy/1MPRfVcNIYQMKEoOCBm65DCOpB8B4xwGsznnFdYNiRByP6BuBUIIIYR0QncrEEIIIaQTSg4IIYQQ0sk9MebAw8OD+/v7WzsMQgi5p5w9e7aGc+5pwfGjhw0b9gGM82/Qj0nb0gZAYzAYVkRERPzc9cV7Ijnw9/dHZmamtcMghJB7CmPskiXHDxs27IMHHnhA4enpWSsQCGiAmg1pa2tj1dXVIZWVlR+gm2XQKRMkhBDSE6Wnp2cDJQa2RyAQcE9Pz3r8e1bWzq/f5XgIIYTcOwSUGNgu02fbbR5AyQEhhBBCOqHkgBBCiMUSvsr3+jqvqtNS7l/nVQkTvsrvbhlxMsRRckDaXbq0C9dqv++07Vrt97h0aZeVIiKE3CvGiUfd+O3hLIk5Qfg6r0r428NZknHiUTesHRvpP0oOSDuhSzg0mjXtCcK12u+h0ayB0CXcypERQoa66Qov3Za544p+ezhL8t8ncsb+9nCWZMvccUXTFV46i8uePj0wNDRUIZVKQxMSEjwAwNnZefzy5ct9pVJp6MSJE2VXrlzp8e67qKgo+fLly32VSqVCIpGEpqSkOD/66KOBfn5+yjVr1ow177djxw63sLAwRXBwcMiCBQv8DAYDAGDr1q0e/v7+yrCwMMW8efP84uLixABw8OBBUXh4eLBCoQiZNGmSrKysbBgA1NfXC2bPnu0vk8lCZDJZSFJS0igAWLhwoVipVCqkUmno+vXr2+v19vYOW7VqlXdwcHCIUqlUpKWlOcfExAT5+voq33nnnR5vRU1OThY+8sgjUvPzuLg48fbt293v+I3ugJID0s7NdSKUyu3QaNagsGgrNJo1UCq3w811orVDI4TcA6YrvHSxE3yq95wpGRM7wad6IBIDADhw4EBJTk5OXlZWVu6uXbu8Kisr7ZqamgSRkZGNFy9ezJk8ebIuPj5+bG9lODg4tGk0mrylS5dWz5kzR/r++++XarXanE8++cSjsrLS7ty5c45Hjhxxy8zM1Gq12lyBQMB37tzpXlJSYp+QkDAmPT09LzMzU3vhwgVHc5kzZsy4npWVpc3Ly8udPXv2tTfffPMBAIiPjx/j4uLSWlBQkFtQUJD75JNP6gBgy5Yt5RqNJk+r1eacOXNGmJ6e7mQuSywW39RqtbnR0dHXly1b5n/ixInC9PR07ebNm3s9r8FyT8xzQO4eN9eJ8PZegJKSRPj7r6bEgBDSZ1/nVQmPnrvsuXSyf8XRc5c9J0s9dAORIGzevNnriy++GAUAlZWV9jk5OY4CgQArVqy4BgDLli27+txzz0l7K2PWrFl1AKBSqZqkUmmTn5+fHgB8fX1bioqKHE6dOjVSo9E4q1QqBQA0NzcLRo8ebTh9+vSI6OhonZeXV6upnNqCggJHACguLnZ49tlnfaqrq+1v3rwp8PX1bQGA1NRUl0OHDhWZ6/b09GwFgL1797olJSV5GAwGVl1dba9Wqx2jo6ObAGDu3Ll1ABAWFnajsbFR4Orq2ubq6trm4ODQVlNTY+fh4dFq6fvYH9RyQDq5Vvs9yssPwt9/NcrLD94yBoEQQrpjHmOwZe64ojeeDr1i7mLoOkixv5KTk4UpKSnCzMxMbX5+fq5CoWhqamq65drFGOu1HEdHRw4AAoEAw4cPb789UyAQwGAwMM45mzNnzlWtVpur1WpzS0pKNFu2bLnSW5mrV68Wv/zyyz8XFBTkJiYmXmppaenxmqrVah0SExO9UlJSCgoKCnKnTp1a39zc3L5/x/gcHBw6xafX67s9OXt7e97W1tb+vKWlpfc3oR8oOSDtzGMMlMrtCJSsb+9ioASBEHI7WaV1zh3HGJjHIGSV1jlbUm5dXZ2dSCRqFQqFbefPn3dUq9UjAKCtrQ179uxxBYCkpCT3qKgoi1ooHnvssYbk5GTX8vLyYQBQVVVlV1BQ4BATE9OYnp4urK6uttPr9Th+/Lir+RidTmcnFov15hjM26dMmdKwdevW0ebn1dXVdrW1tXZOTk5tbm5urWVlZcNOnTolsiReAAgMDGy5ePGiU1NTE6upqbFLS0tzsbRMM+pWIO10DdmdxhiYxyDoGrKpe4EQ0qtXZ8qrum6brvCyuFshNja2fvfu3Z4SiSRUIpE0q1SqRgBwcnJqy8jIGPHuu++OdXd31x87dqzodmX1JiIiovn1118vnzZtmqytrQ329vZ8+/btpdOmTWtcv359RWRkpEIkEhmkUmmzSCRqBYCNGzdemT9/fqBIJDLExMToSktLhwPApk2bKpYuXSoOCgoKFQgE/A9/+MOV559/vk6pVN4IDAxUjhkz5mZERMR1S+IFAKlUqn/66adrg4ODQ318fFpCQ0MH7M4QxvnQn/wqMjKS09oKhBDSP4yxs5zzyDs9Xq1Wl6hUqpqBjGmgODs7j79x48b5u1FXfX29QCQSten1esycOVO6ZMmSmri4uLq7UfdgU6vVHiqVyr/r9kHrVmCM+TLG/sUYy2WM5TDG1nZ47TeMMa1p+zuDFQMhhBBiqQ0bNowNDg4OkclkoWKxuGXRokU2kRj0ZjC7FQwAXuGcn2OMCQGcZYz9E4AXgGcAqDjnLYyx0b2WQgghhHTRXavB4sWLxT/++OPIjttWrlxZtXbt2quW1LV79+7LlhxvqYyMDKe4uLiAjtscHBzasrOztYNV56AlB5zzCgAVpr91jLE8AN4Afg3gbc55i+m1W9aRJoQQQvpr//79pdaOYTBERUU1abXa3LtZ5125W4Ex5g9gPIB0ADIAv2SMpTPGUhhjv7gbMRBCCCGkbwb9bgXG2EgARwGs45w3MMaGAXAD8CCAXwA4zBiT8C4jIxljLwB4AQDEYvFgh0kIIYQQk0FtOWCM2cOYGBzgnB8zbb4M4Bg3ygDQBsCj67Gc892c80jOeaSnZ49TS5MBlHipCmm1ne86SqvVIfHSLXcoEUIIsWGDebcCA/AhgDzO+ZYOL30O4BHTPjIADgCG5K0y95txLs54IaekPUFIq9XhhZwSjHOxaA4TQggh95jBbDmYDGAxgKmMsSzT4wkAHwGQMMY0AA4BeL5rlwKxjqyGG1gj9sILOSXYXFSBF3JKsEbshawGWnGVEHIb3/zRC/lfdp4qOf9LIb75o5eVIiIWGLTkgHOexjlnnPNwzvk40+Mk5/wm53wR51zJOZ/AOf92sGIg/TPOxRnbS6sw1c0FWy8Z/7u9tIpaDgght+cTeQOfvSRpTxDyvxTis5ck8ImkXxf3IFpbgbSLcRVijdgLR6tqES0agaNVtVgj9kKMq0XrphBC7gfyx3WYtbMIn70kwZfxY/HZSxLM2lkE+eMWr8o4ffr0wNDQUIVUKg1NSEjwAIwzJC5fvtxXKpWGTpw4UXblypUeB9hHRUXJly9f7qtUKhUSiSQ0JSXF+dFHHw308/NTrlmzpn1J5B07driFhYUpgoODQxYsWOBnMBgAAFu3bvXw9/dXhoWFKebNm+cXFxcnBoCDBw+KwsPDgxUKRcikSZNkZWVlwwDjjIqzZ8/2l8lkITKZLCQpKWkUACxcuFCsVCoVUqk0dP369e31ent7h61atco7ODg4RKlUKtLS0pxjYmKCfH19le+8806Pg+5aW1uxaNEicUBAQOikSZOCpkyZIjWvN2EpSg5Iu7RaHbaXViHWyxXp9Y2I9XLF9tJbBykSQki35I/roJpfjfS/joFqfvVAJAYAcODAgZKcnJy8rKys3F27dnlVVlbaNTU1CSIjIxsvXryYM3nyZF18fPzY3spwcHBo02g0eUuXLq2eM2eO9P333y/VarU5n3zyiUdlZaXduXPnHI8cOeKWmZmp1Wq1uQKBgO/cudO9pKTEPiEhYUx6enpeZmam9sKFC47mMmfMmHE9KytLm5eXlzt79uxrb7755gMAEB8fP8bFxaW1oKAgt6CgIPfJJ5/UAcCWLVvKNRpNnlarzTlz5owwPT3dyVyWWCy+qdVqc6Ojo68vW7bM/8SJE4Xp6enazZs393he+/btcy0rK3O4ePFizqFDh4rPnz8/sqd9+4sWXiLtdqcU4lfeLvj7tQas9/PC3is1+NXwEdidUoiYZ8dZOzxCyFCX/6UQ6r95InplBdR/84Rkim4gEoTNmzd7ffHFF6MAoLKy0j4nJ8dRIBBgxYoV1wBg2bJlV5977jlpb2XMmjWrDgBUKlWTVCpt8vPz0wOAr69vS1FRkcOpU6dGajQaZ5VKpQCA5uZmwejRow2nT58eER0drfPy8mo1lVNbUFDgCADFxcUOzz77rE91dbX9zZs3Bb6+vi0AkJqa6nLo0KH2haA8PT1bAWDv3r1uSUlJHgaDgVVXV9ur1WrH6OjoJgCYO3duHQCEhYXdaGxsFLi6ura5urq2OTg4tNXU1Nh5eHi0dj2n06dPj3zuuedq7ezsIBaLDQ8++OCA/ZKzzZaDtG1AcWrnbcWpxu2kR5ODPLCvtg5rXV3xmmQM1rq6Yl9tHSYH3XKnKSGEdGYeYzBrZxEef/tKexdD10GK/ZScnCxMSUkRZmZmavPz83MVCkVTU1PTLdcu4w1yPXN0dOQAIBAIMHz48PZB8AKBAAaDgXHO2Zw5c65qtdpcrVabW1JSotmyZcuV3spcvXq1+OWXX/65oKAgNzEx8VJLS0uP11StVuuQmJjolZKSUlBQUJA7derU+ubm5vb9O8bn4ODQKT69Xt/7yQ0C20wOvCcAny75d4JQnGp87j3BmlENefqR9njDezR2HcvDln/kY9exPLzhPRr6kfbWDo0QMtRdznTuNMbAPAbhcqZFI5rr6ursRCJRq1AobDt//ryjWq0eAQBtbW0w968nJSW5R0VFWfSr+bHHHmtITk52LS8vHwYAVVVVdgUFBQ4xMTGN6enpwurqaju9Xo/jx4+39+nrdDo7sVisN8dg3j5lypSGrVu3tq8bVF1dbVdbW2vn5OTU5ubm1lpWVjbs1KlTIkviBYCYmJjrn3/+uWtrayvKysqGpaenD9gAMdvsVgh4CJiTZEwIIpcDmR8anwc8ZOXAhrbVfsY7jhrLG7H924tYM1WKF0N9rBwVIeSeMO0/b50tTf64xd0KsbGx9bt37/aUSCShEomkWaVSNQKAk5NTW0ZGxoh33313rLu7u/7YsWNFtyurNxEREc2vv/56+bRp02RtbW2wt7fn27dvL502bVrj+vXrKyIjIxUikcgglUqbRSJRKwBs3Ljxyvz58wNFIpEhJiZGV1paOhwANm3aVLF06VJxUFBQqEAg4H/4wx+uPP/883VKpfJGYGCgcsyYMTcjIiKuWxIvADz//PO1X3/9tVAqlYaOGTPmZmho6I1Ro0bd0v1wJ9i9MMVAZGQkz8zM7P+B374FpL4DPPQ7YOrGgQ/MBn1XWIPVB89jUbQYH6eXInHBeEwKpG4FQu5FjLGznPPIOz1erVaXqFSqITlJnbOz8/juVmYcDPX19QKRSNSm1+sxc+ZM6ZIlS2ri4uKGxLLN5tgqKyvtfvGLXyjOnDmjFYvFhr4er1arPVQqlX/X7bbZcgAYuxIyPzQmBpkfAgG/pJaD2zAnBuaE4MFA907PCSHkfrRhw4axqampLi0tLWzKlCkNixYtGhKJAQDMmDEjqKGhwU6v17MNGzZU9Ccx6I1tJgfmMQbmroSAX3Z+TrqVfbm+UyIwKdADiQvGI/tyPSUHhJAhpbtWg8WLF4t//PHHTrfzrVy5smrt2rVXLalr9+7dly053lIZGRlOcXFxAR23OTg4tGVnZ2szMjLyB6NO20wOys91TgTMYxDKz1FyQAghNmr//v2l1o5hMERFRTVptdrcu1mnbd6tELPu1iQg4CHjdtKjcB8RVh88j+8KjV2M5m6GcB+LB9USQgi5h9hmywG5I+ZuBBqQSAgh9zfbbDkgd2xSoAcWRYux/duLWBQtpsSAEELuQzaZHHyk+QgZFRmdtmVUZOAjzUdWiuje8V1hDT5OL8WaqVJ8nF7a3sVACCHk/mGTyYHSXYlXU15tTxAyKjLwasqrULorrRzZ0Pbd57uwen8GEheMx28flRu7GPZn4LvPd1k7NELIELf93HavU2WnOs3Qd6rslHD7ue1e1orpfqLX6we0PJtMDs4VuGNp0H/i1ZRXkXg+Ea+mvIqlQf+JcwXutz/4PpbNJUi0/xMmCYyDYicJcpFo/ydkc4mVIyOEDHXhnuE3NqZtlJgThFNlp4Qb0zZKwj3Db1haNi3Z3L3k5GRhRESEfOrUqdKgoKAB/fVrk8lBuI8Ifz4JTBr9FHZl78Kk0U/hzydBo+5v4yXPHEx65GnjnBDfvgV8ugSTHnkaL3nmWDs0QsgQ97Dvw7q3Yt4q2pi2UfJ2xttjN6ZtlLwV81bRw74PW7xSIC3Z3LPc3FznHTt2lJaUlGgse5c7s8m7FSYFeuA3TwBb1MegEs3GFyXH8NsnaNT9bZkXrJJON047Hf4fQNoW4xwRhBByGw/7Pqx7OvDp6gN5B8YsVCysGIjEAKAlm3tashkAwsPDG4ODg2/e+bvbPZtsOcioyMCeC3/EY54bkPZjJB7z3IA9F/54yyBF0kXAQ0DMb4Hsw4B4ovG/Mb+liaMIIX1yquyU8EThCc+FioUVJwpPeHYdg3AnaMnm3pdsdnZ2buv1xO+QTSYHe3L2YNqYefgmywVrpkrxTZYLpo2Zhz05e6wd2tBWnGpsKQifC5R+b/xv2pZ/L31NCCE9MI8xeCvmraL4qPgr5i4GSxMEWrLZOmwyOYhyfQ5HCvfhN08Av31Ujt88ARwp3Ico1+esHdrQVn7O2FJw8WvjglUXvzY+Lz9n7cgIIUNcdnW2c8cxBuYxCNnV2c6WlBsbG1tvMBiYRCIJ3bBhg3fXJZuDgoJCU1NThZs2baqwpJ6OSzbLZLKQqVOnysrKyuwDAgL05iWbIyIign19fVu6LtkcGhqqcHd3b1/waNOmTRV1dXV2QUFBoXK5POTkyZPCiRMnNpmXbJ47d65kIJZsHkw2uWTzzpRCDB9ZhD0X/oi58rk4nH8YS4P+Ey3XJXhpSuAgRnqP67pgVdfnhJB7Ci3ZPDCG8pLNluppyWabbDl4ye4ElroNx1z5XOzK3oW58rlY6jYcL9mdsHZoQ1tvC1YRQsh9asOGDWODg4NDZDJZqFgsbhlKSzYPFpu8WwHeE6D/ZBEueHrgxQkv4sK5j6CvroH9f3xs7ciGtu4Wpgp4iFoNCCFDDi3ZbFyyebDqtMnkIMPREQc8PZBQXQP72nroq2vwqqcHFjo6IsrawRFCbMK5ry7halkq5A+qIFaGAwAu59ci//tMCF3rEfXMbCtHeP+hJZsHjk12K2iuarDwiZ2wj3oRSH0H9lEvYuETO6G5OqBzRBBC7mOj/V1QmMXw9/c2oVSTjcv5tUj+8xfIS/kIDwTKrB0eIRaxyZaDZcplxsF0mR8aR91nfoiogF8iSrnM2qERQmyEj9wVT/3mSST/GfjsnbdgN1wFGH7Cr175fXtLAiH3KptsOeg0yn7qRuN/P11C9+sTQgaUj9wV4x+dBM6UaGn4DuMff5ISA2ITbDI5aPx8J5pCX+s06r4p9DU0fr7TuoHoWtXfAAAgAElEQVQNcbTUNSH9czm/Fuf/8R0Y12C4yySc//ILlGqyrR0WIRazyeSgoTYIpW98gMYf0gEAjT+ko/SND9BQG2TlyIY2WuqakL4zjzEwNH6BWb/biGdfXYlhI55sH4NAyL3MJpMDlyeeABjD5dWrUb19Oy6vXg0wZtxOehQ1JgoJUxI6LXWdMCUBUWPoHg9Cuvq5pAGB43j7GAPzGATFlGWoLCywdnh33c/btnnp/vWvTlMl6/71L+HP27Z5WSsmW1dSUmL/2GOPSQajbJtMDkY8GA2fP/8Z3GBAzY6/ghsM8PnznzHiwWhrhzbkRY2J6jR5FCUGhHRvwkw/zFixuNMYAx+5K6YtmXFf3sbopFLduPJavMScIOj+9S/hldfiJU4q1Q1rx2ar/P399f/3f/9XdPs9+88mkwNyZz7SfIR9OftwOP8wXgx/EYfzD2Nfzj4ac0BID3QpZWgu7DxZXnNhHXQpZVaKyHqEjzyiG7v57aIrr8VLKv/3f8deeS1eMnbz20XCRx6xeNnm6dOnB4aGhiqkUmloQkKCB2CcPnn58uW+Uqk0dOLEibIrV670ePddVFSUfPny5b5KpVIhkUhCU1JSnB999NFAPz8/5Zo1a8aa99uxY4dbWFiYIjg4OGTBggV+BoNxuYStW7d6+Pv7K8PCwhTz5s3zi4uLEwPAwYMHReHh4cEKhSJk0qRJsrKysmGAcbrl2bNn+8tkshCZTBaSlJQ0CgAWLlwoViqVCqlUGrp+/fr2er29vcNWrVrlHRwcHKJUKhVpaWnOMTExQb6+vsp33nnHs6fzys/PdwgKCgq18O3tlk0mB40/pOPy6tVg9vbweHklmL09Lq9e3T4GgXRvGBuGhMwErAhbgdXjV2NF2AokZCZgGLPJO14JsUjG8SOo1Vfj2sG89gSh9OtzqNqjhr2PxSsV35OEjzyiEz37THXtvv1jRM8+Uz0QiQEAHDhwoCQnJycvKysrd9euXV6VlZV2TU1NgsjIyMaLFy/mTJ48WRcfHz+2tzIcHBzaNBpN3tKlS6vnzJkjff/990u1Wm3OJ5984lFZWWl37tw5xyNHjrhlZmZqtVptrkAg4Dt37nQvKSmxT0hIGJOenp6XmZmpvXDhgqO5zBkzZlzPysrS5uXl5c6ePfvam2+++QAAxMfHj3FxcWktKCjILSgoyH3yySd1ALBly5ZyjUaTp9Vqc86cOSNMT093MpclFotvarXa3Ojo6OvLli3zP3HiRGF6erp28+bNvZ7XYLHJb/2Gk18AjLV3JThHRePyb36DhpNfUNdCLwzcgFcjX8UHP32AhpsNOJx/GK9GvgoDN9z+YELuMw8EypC87W08Ne9VXDuYh1aJHfTqOtg/6gHHwFHWDs8qdP/6l7D+8+OernGLK+o/P+45YuJE3UAkCJs3b/b64osvRgFAZWWlfU5OjqNAIMCKFSuuAcCyZcuuPvfcc9Leypg1a1YdAKhUqiapVNrk5+enBwBfX9+WoqIih1OnTo3UaDTOKpVKAQDNzc2C0aNHG06fPj0iOjpa5+Xl1Woqp7agoMARAIqLix2effZZn+rqavubN28KfH19WwAgNTXV5dChQ+3N/Z6enq0AsHfvXrekpCQPg8HAqqur7dVqtWN0dHQTAMydO7cOAMLCwm40NjYKXF1d21xdXdscHBzaampq7Dw8PFotfR/7wyaTAwexuNMYA/MYhGbNT1aObGhbZpokquFmA3Zl78KL4S8iLjTOylERMjSJleF4al08kre9jYeU8zHqp1FwUI2C7/QJ1g7NKsxjDMxdCSMmTtQNRNdCcnKyMCUlRZiZmakVCoVtUVFR8qampltavRljvZbj6OjIAUAgEGD48OHtyxELBAIYDAbGOWdz5sy5+pe//KW843H79+/vMdNbvXq1eO3atZULFy6sT05OFr755ps9/srXarUOiYmJXmfPns3z9PRsjY2N9W9ubm4/j47xOTg4dIpPr9f3fnKDwCa7FdxXrLilhWDEg9FwX7HCShHdOzIqMjqNOeg67wEh5N/EynBETZwFx3IH1D1QB7ui1lvGINwvmtRq546JgHkMQpNa7WxJuXV1dXYikahVKBS2nT9/3lGtVo8AgLa2NuzZs8cVAJKSktyjoqIsaqF47LHHGpKTk13Ly8uHAUBVVZVdQUGBQ0xMTGN6erqwurraTq/X4/jx467mY3Q6nZ1YLNabYzBvnzJlSsPWrVtHm59XV1fb1dbW2jk5ObW5ubm1lpWVDTt16pTIkngHm00mB+e+uoTL+bWdtl3Or8W5ry5ZKaJ7g3leg4QpCVg9fnX7bY2UIBDSvdKvz8E1X4S64Aakav4Gw8ThncYg3E9Gr1tX1bWFQPjII7rR69ZVWVJubGxsvcFgYBKJJHTDhg3eKpWqEQCcnJzaMjIyRgQFBYWmpqYKN23aVGFJPREREc2vv/56+bRp02QymSxk6tSpsrKyMvuAgAD9+vXrKyIjIxURERHBvr6+LSKRqBUANm7ceGX+/PmBoaGhCnd39/b+102bNlXU1dXZBQUFhcrl8pCTJ08KJ06c2KRUKm8EBgYq586dK4mIiLhuSbyDjXHOb7/XnRTMmC+AfQC8AHAAuznnf+rw+isAEgB4cs5reisrMjKSZ2Zm9rnuy/m1+Op9DWb+Wgkfuestz0n3PtJ8BKW7stPtixkVGdBc1bR3ORBCjEo12dDu+j8EPzMd4ukTUKrJbh+D4GrvCeEUX2uHCMbYWc555J0er1arS1QqVa/fz9bi7Ow8vrtlmwdDfX29QCQSten1esycOVO6ZMmSmri4OJvIANVqtYdKpfLvun0wxxwYALzCOT/HGBMCOMsY+yfnPNeUODwKYFCW1/SRu2Lmr5X46n0NlA95Q5NaTolBH3SXAESNiaK5DgjpRmVhAYJffKx9ngPzGITKwgKIn7k/xx3Yqg0bNoxNTU11aWlpYVOmTGlYtGiRTSQGvRm05IBzXgGgwvS3jjGWB8AbQC6ArQB+B+D4YNXvI3eF8iFvZJ4sQeQT/pQYEEIGVHcTHYmV4bTw0l3SXavB4sWLxT/++OPIjttWrlxZtXbt2quW1LV79+7LlhxvqYyMDKe4uLiAjtscHBzasrOztYNV5125W4Ex5g9gPIB0xtgzAMo55+reRpcyxl4A8AIAiMXiftd5Ob8WmtRyRD7hD01qObzlrpQgEEKIDdu/f/+gtEZbW1RUVJNWq829m3UO+oBExthIAEcBrIOxq+EPAP7f7Y7jnO/mnEdyziM9PXucIKpbHccYRP9K0t7F0HWQIiGEEEJuNajJAWPMHsbE4ADn/BiAQAABANSMsRIAPgDOMcYeGMh6fy5p6DTGwDwG4eeShoGshhBCCLFJg9atwIx9Bh8CyOOcbwEAzvlPAEZ32KcEQOTt7lborwkz/W7Z5kPdCoQQQkifDGbLwWQAiwFMZYxlmR60ZjIhhBAyxA3m3QppAHqd8pFz7j9Y9RNCCLl7fjhe6OUVILoREO7RPhFScXaNsKq43vnBZwItmgiJ3H02OUMiIYSQu8srQHTjm6RcSXF2jRAwJgbfJOVKvAJEN6wdG+k/m0wOaPrkO3P1gw9uWda68Yd0XP3gAytFRAi5VwSEe+imLQkp+iYpV3L6cMHYb5JyJdOWhBR1bEm4U9OnTw8MDQ1VSKXS0ISEBA/AOEPi8uXLfaVSaejEiRNlV65c6bElPCoqSr58+XJfpVKpkEgkoSkpKc6PPvpooJ+fn3LNmjXtiyXt2LHDLSwsTBEcHByyYMECP4PBOCPy1q1bPfz9/ZVhYWGKefPm+cXFxYkB4ODBg6Lw8PBghUIRMmnSJFlZWdkwwDij4uzZs/1lMlmITCYLSUpKGgUACxcuFCuVSoVUKg1dv359e73e3t5hq1at8g4ODg5RKpWKtLQ055iYmCBfX1/lO++80+PteuvWrRsbHBwcEhwcHDJ69Ojw2bNn+1v2Tv+bTSYHo/1dOt26aL61cbS/i5UjG9oclWEoX7++PUFo/CEd5evXw1EZZuXICLl3ZBw/glJNdqdtpZpsZBw/YqWI7p6AcA+d/MEHqrO/vTxG/uAD1QORGADAgQMHSnJycvKysrJyd+3a5VVZWWnX1NQkiIyMbLx48WLO5MmTdfHx8T2uiAgYJw3SaDR5S5curZ4zZ470/fffL9VqtTmffPKJR2Vlpd25c+ccjxw54paZmanVarW5AoGA79y5072kpMQ+ISFhTHp6el5mZqb2woULjuYyZ8yYcT0rK0ubl5eXO3v27GtvvvnmAwAQHx8/xsXFpbWgoCC3oKAg98knn9QBwJYtW8o1Gk2eVqvNOXPmjDA9Pd3JXJZYLL6p1Wpzo6Ojry9btsz/xIkThenp6drNmzf3eF7btm27otVqc9PS0vJHjRplWLt27c+Wv9tGNrlkM02ffGdGPBgN761bUb5+PVznz0Pt3w7Be+vWW1a4JIT07IFAmXGNhXXxECvD/73mwrp4a4c26Iqza4T5P1R6hk/1qcj/odLTJ9hNNxAJwubNm72++OKLUQBQWVlpn5OT4ygQCLBixYprALBs2bKrzz33nLS3MmbNmlUHACqVqkkqlTb5+fnpAcDX17elqKjI4dSpUyM1Go2zSqVSAEBzc7Ng9OjRhtOnT4+Ijo7WeXl5tZrKqS0oKHAEgOLiYodnn33Wp7q62v7mzZsCX1/fFgBITU11OXToUJG5bk9Pz1YA2Lt3r1tSUpKHwWBg1dXV9mq12jE6OroJAObOnVsHAGFhYTcaGxsFrq6uba6urm0ODg5tNTU1dh4eHq3dnVdbWxvmzJkTsGrVqqpf/vKXA9aFY5MtB0Dn6ZOVD3lTYtBHIx6Mhuv8eajZ8Ve4zp9HiQEhPeipG27EDxl4al08kre9jTOHP+6UKNgy8xiDaUtCin45V3bF3MVgHoNwp5KTk4UpKSnCzMxMbX5+fq5CoWhqamq65drV24y7AODo6MgBQCAQYPjw4e0rDgoEAhgMBsY5Z3PmzLmq1WpztVptbklJiWbLli1Xeitz9erV4pdffvnngoKC3MTExEstLS09XlO1Wq1DYmKiV0pKSkFBQUHu1KlT65ubm9v37xifg4NDp/j0en2PJ/fKK6+MHTNmzE1Lp4juymaTg67TJ9PsiH3T+EM6av92CB4vr0Tt3w7d8uVHCDHqrRtOrAyH6tEn8MPRQ1A9+oTNJwYAUFVc79xxjIF5DEJVcb2zJeXW1dXZiUSiVqFQ2Hb+/HlHtVo9AjD+Yt6zZ48rACQlJblHRUVZ1ELx2GOPNSQnJ7uWl5cPA4Cqqiq7goICh5iYmMb09HRhdXW1nV6vx/Hjx9t/aep0OjuxWKw3x2DePmXKlIatW7e2z+lTXV1tV1tba+fk5NTm5ubWWlZWNuzUqVMiS+IFjGMeUlJSXD766KMyS8vqyiaTA5o++c6Yv9y8t26F55o17V0MlCAQcquO3XDV27e3/78z4sFolGqyof7HSTwYOw/qf5y8ZQyCLXrwmcCqrl0IAeEeOktvY4yNja03GAxMIpGEbtiwwVulUjUCgJOTU1tGRsaIoKCg0NTUVOGmTZsqLKknIiKi+fXXXy+fNm2aTCaThUydOlVWVlZmHxAQoF+/fn1FZGSkIiIiItjX17dFJBK1AsDGjRuvzJ8/PzA0NFTh7u5uMJe1adOmirq6OrugoKBQuVwecvLkSeHEiROblErljcDAQOXcuXMlERER1y2JFwD+9Kc/eVVVVdmPGzdOERwcHLJu3bpex130B+Oc334vK4uMjOSZmZl93v/cV5cw2t+lU1fC5fxa/FzS0O3sicTo6gcfwFEZ1qkrofGHdDRrfoL7ihVWjIyQoat6+3bU7PgrPF5eCc81azqNMeg65uButyAwxs5yziPv9Hi1Wl2iUqkGdAbbgeLs7Dy+u5UZB0N9fb1AJBK16fV6zJw5U7pkyZKauLg4m1i2Wa1We6hUKv+u221yQCJNn3xnuksARjwYTeMOCOlB124456hoVFaVdUoExMpwPLUuHpWFBfdF94It2rBhw9jU1FSXlpYWNmXKlIZFixbZRGLQG5tMDgghZLBd3f8dag/uaO9KcI6KRsV//xmBC16Ge5ckQKwMp8RggHXXarB48WLxjz/+OLLjtpUrV1ZZOlhv9+7dly053lIZGRlOcXFxAR23OTg4tGVnZ2sHq06bTA4yjh/BA4GyTv8zlmqyUVlYgKhnZlsxMkKIrWitLYbTL16EnaccAGDnKYfTL15Ea20xgEnWDe4+tX///lJrxzAYoqKimrRabe7drNMmBySa7zM2DwIy9/k9ECizcmSEEFsxes1CuD8fhmsH81D/jxJcO5gH9+fDMHrNQmuHRojFbLLlwNzHl7ztbagefQLqf5y8L+4zJoTcXY6BozAiegx035ZBONUX+su69u1mzYV10F/WQTjF11phEtJvNtlyAOC+vM+YEHJ3NRfWoTG9AsKpvmhMrwAXMFw7mIfmwrr2168dzIO9j0XzABFy19lkywGAW+4z9g2hAUGEkIFjvvC7LVDAMXAUhgeOwrWDeRj5sC+uHczDiOgxaEyvaH+dkHuJTbYcdLyvePLcRe1dDPfDRCSEkLtDf1nX6cLvGDgKbgsUYG28vathRPSY+yYxSDu0z6vwbEanJpLCsxnCtEP7vKwVU3fy8/MdgoKCQq0dx1Bnk8lBZWFBj/cZE0LIQBBO8b3lwu8YOAr2PsJOXQ3mLgZbNyYo+MaXf3lPYk4QCs9mCL/8y3uSMUHBA7YYELl7bDI5iHpm9i1dCGJlON3GSAgZVB27GkSP+sNtgaLTGARbFhgRpXt81StFX/7lPcm/knaP/fIv70keX/VKUWCEZWseAMD06dMDQ0NDFVKpNDQhIcEDMM6QuHz5cl+pVBo6ceJE2ZUrV3rsJj99+rSzXC4PkcvlIVu2bGlf88BgMODFF1/0USqVCplMFvLuu+96mF/buHHjAzKZLEQul4e8/PLL3gDw3nvveSiVSoVcLg+ZOXNmoE6nEwBAbGys/8KFC8UqlSrYx8cnLDk5WThnzhx/iUQSGhsb69/buW3dutXD399fGRYWppg3b55fXFyc2MK3a0DYZHJACCHW0FNXg/kuBlsXGBGlC31oWvW5L/8+JvShadUDkRgAwIEDB0pycnLysrKycnft2uVVWVlp19TUJIiMjGy8ePFizuTJk3Xx8fE9riuwfPly/23btpXm5+d3mitg27ZtHiKRqFWj0eSp1eq8vXv3emq1WofDhw+7nDx5ctTZs2e1+fn5uW+88UYlACxcuLBWo9Hk5efn58rl8qbt27e3JxP19fXDzp8/r3377bfL5s2bJ92wYUPVhQsXcrRardN3333n1F1cJSUl9gkJCWPS09PzMjMztRcuXHAciPdrIFByQAghd+DcV5duWcyt/oGRyL1Y32mbY+Co++Y2xsKzGcKc1G88Jzz+q4qc1G88u45BuFObN2/2ksvlIREREYrKykr7nJwcR4FAgBUrVlwDgGXLll3NyMgY2d2xNTU1djqdzu7xxx+/bt7X/NrXX3/tcvjwYffg4OCQ8ePHK2pra4fl5uY6/vOf/3RZtGhRjVAobAMALy+vVgA4e/asU0REhFwmk4UcPXrUPScnp/1i/uSTT9YJBAJMmDDhhru7uz4qKqrJzs4OMpmsqbCwcHh3sZ0+fXpEdHS0zsvLq3X48OF81qxZQ2Z1QEoOCCHkDoz2d+m02qt5NdjR/i5Wjsw6zGMMHl/1StEjS164Yu5isDRBSE5OFqakpAgzMzO1+fn5uQqFoqmpqemWaxdjrN9lc87Ze++9V6rVanO1Wm1ueXn5T88991xDT/u/8MILAYmJiaUFBQW5r7322pWWlpb2OBwdHTkA2NnZwcHBoX1FQ4FAAIPB0P/grIySA0IIuQM+ctf25eDT/17Uvkz8/brAW8UFrXPHMQbmMQgVF7TOlpRbV1dnJxKJWoVCYdv58+cd1Wr1CABoa2vDnj17XAEgKSnJPSqq+y4MDw+PVqFQ2PrVV1+NNO3rZn5txowZ9X/96189W1paGABkZ2cPb2hoEMycObPh448/9jCPKaiqqrIDgBs3bgjEYrG+paWFHTp0yK27+vojJiamMT09XVhdXW2n1+tx/PjxIfOPx2bnOSCEkMGUlpYGb29vKB/yRubJEkQ+4Q+9Qx3S0nIQExNj7fDuuph5cVVdtwVGROksHXcQGxtbv3v3bk+JRBIqkUiaVSpVIwA4OTm1ZWRkjHj33XfHuru7648dO1bUUxkffvhhyYoVK/wZY3j44YfbWwbWr19fU1JSMjwsLEzBOWdubm76kydPFs6ePbvh3LlzzuPGjVPY29vz6dOn1ycmJpbHx8dfiYqKUri5uRkmTJhw/fr163aWnFtAQIB+/fr1FZGRkQqRSGSQSqXNIpGo1ZIyBwrjnN9+LyuLjIzkmZmZ1g6DEELaFRcX45NDhyGsC0bk5DBknvkJulFa/Me8uQgICLh9AXcBY+ws5zzyTo9Xq9UlKpWqZiBjGijOzs7ju1uZ8V5TX18vEIlEbXq9HjNnzpQuWbKkJi4u7q7d3qJWqz1UKpV/1+3UrUAIue/oUspuub2wubAOupSyPpdhf3MUhHXB0I3SonFkCXSjtBDWBcP+5v0x6REZGBs2bBgbHBwcIpPJQsViccuiRYuGxH2v1K1ACLnv2PsIO0193HF+gr76uaQBzyx7CAXlQqSmpuKhhx6CzHs8fi5puG/HHdxN3bUaLF68WPzjjz92umth5cqVVWvXrr3add+7LTw8PPjmzZudfpDv27evePfu3ZetFVNv+pQcMMaGA4gF4N/xGM75m4MTFiGEDB7z/AOWrIEwYaYfiouLkZmZiYceegiZmZkICAjAhJlDo0vhfrR///5Sa8fQk+zsbK21Y+iPvrYcHAdQD+AsgJbBC4cQQu6Orsst93cNhOLiYnz66aeYM2cOAgICEBAQ0Ok5IfeyviYHPpzzxwY1EkIIuYu6Lrc8PHBUvxKE8vLyTolAQEAA5syZg/LyckoOyD2vr8nBd4yxMM75T4MaDSGE3AU9Lbfcn66F7m5XNLcgEHKv6zU5YIz9BICb9lvKGCuCsVuBAeCc8/DejieEkKGotzUQ7pcllgnpze1aDp66K1EQQshd1N1aB4797FYgndV/VeLlIBbecFK4t0961JR3VXizVOcsmul/ywRJ1pKfn+/w1FNPBV24cCHH2rEMZb3Oc8A5v8Q5vwTgf8x/d9x2d0IkhJB7T1paGoqLizttKy4uRlpampUiGlwOYuGNa4cLJE15V4WAMTG4drhA4iAW3rB2bPcKg8Fg7RDa9XUSpNCOTxhjdgAiBj4cQgixDd7e3vj000/bEwTz3Q3e3t5WjmxwOCncdW5zZUXXDhdI6k4Ujr12uEDiNldW1LEl4U5Nnz49MDQ0VCGVSkMTEhI8AOMMicuXL/eVSqWhEydOlF25cqXHlvDTp087y+XyELlcHrJly5bR5u0GgwEvvviij1KpVMhkspB33323fQnmjRs3PiCTyULkcnnIyy+/7A0A7733nodSqVTI5fKQmTNnBprXXoiNjfVfuHChWKVSBfv4+IQlJycL58yZ4y+RSEJjY2P9ezs3Z2fn8b/+9a995HJ5yDfffNPtypLW0GtywBj7PWNMByCcMdbAGNOZnv8M4+2NhBBCumG+e+HTTz/Ft99+e1/c5uikcNeNmDC6+vqZK2NGTBhdPRCJAQAcOHCgJCcnJy8rKyt3165dXpWVlXZNTU2CyMjIxosXL+ZMnjxZFx8fP7an45cvX+6/bdu20vz8/NyO27dt2+YhEolaNRpNnlqtztu7d6+nVqt1OHz4sMvJkydHnT17Vpufn5/7xhtvVALAwoULazUaTV5+fn6uXC5v2r59e3syUV9fP+z8+fPat99+u2zevHnSDRs2VF24cCFHq9U6fffdd049xdbU1CSIjo5uzM/Pz505c+b1gXi/BsLtuhU2cc6FAN7lnLtwzoWmhzvn/Pd3KUZCCLknBQQEIDIyEqmpqYiMjLTpxAAwdiU0nvvZc+TksRWN5372NHcxWGrz5s1ecrk8JCIiQlFZWWmfk5PjKBAIsGLFimsAsGzZsqsZGRnd/uquqamx0+l0do8//vh1877m177++muXw4cPuwcHB4eMHz9eUVtbOyw3N9fxn//8p8uiRYtqhEJhGwB4eXm1AsDZs2edIiIi5DKZLOTo0aPuOTk5juaynnzyyTqBQIAJEybccHd310dFRTXZ2dlBJpM1FRYWDu/p3Ozs7LBkyZLagXifBlJfb2X8A2PsOQAxMN69cJpz/vnghUUIIfe+7mZQtNUEwTzGwNyVMFw6SjcQXQvJycnClJQUYWZmplYoFLZFRUXJm5qabvlhyxjrd9mcc/bee++VxsbGNnTc/uWXX7p0t/8LL7wQcOTIkYsTJ05s2r59u3tKSkp78uPo6MgB48XewcGhfUVDgUAAg8HQY3AODg5tw4YNvZUM+jrm4C8AXgLwEwANgJcYY38ZtKgIIeQe13EGxalTp7Z3MXQdpGgrbpbqnDsmAuYxCDdLdc6WlFtXV2cnEolahUJh2/nz5x3VavUIAGhra8OePXtcASApKck9Kqr7paE9PDxahUJh61dffTXStK+b+bUZM2bU//Wvf/VsaWlhAJCdnT28oaFBMHPmzIaPP/7YwzymoKqqyg4Abty4IRCLxfqWlhZ26NAht+7qsxV9TVemAlBw0/rOjLG9AHq9DYQx5gtgHwAvGFsbdnPO/8QYexfA0wBuAigEsJRzPiRWoSKEkIFyv82g2N3tik4Kd52l4w5iY2Prd+/e7SmRSEIlEkmzSqVqBAAnJ6e2jIyMEe++++5Yd3d3/bFjx4p6KuPDDz8sWbFihT9jDA8//HB7K8H69etrSkpKhoeFhSk458zNza/SNy0AACAASURBVE1/8uTJwtmzZzecO3fOedy4cQp7e3s+ffr0+sTExPL4+PgrUVFRCjc3N8OECROuX79+3c6ScxvKmOl63/tOjCUDWGW6hRGMMT8AiZzzp3s5ZgyAMZzzc4wxIYzrMjwLwAfAt5xzA2NsMwBwzl/rrf7IyEiemZnZ13MihBACgDF2lnMeeafHq9XqEpVKVTOQMQ0UZ2fn8d2tzEj6R61We6hUKv+u2/vaciAEkMcYy4CxFSAKQCZj7O8AwDn/VdcDOOcVACpMf+sYY3kAvDnn/+iw2w8AZvfnRAghhBAyuPqaHPw/SyphjPkDGA8gvctLywB80sMxLwB4AQDEYrEl1RNCCLEx3bUaLF68WPzjjz92umth5cqVVWvXrr3add+7LTw8PPjmzZudxvnt27evOCoqqslaMfWmT8kB5zzF1JUQxDn/mjHmBGAY5/y2fUmMsZEAjgJYxzlv6LB9IwADgAM91LkbwG7A2K3QlzgJIYTcv/bv319q7Rh6kp2drbV2DP3Rp7sVGGO/BnAEwC7TJh8At72VkTFmD2NicIBzfqzD9iUwrtuwkPdl0AMhhBBC7pq+3sq4CsBkAA0AwDm/AGB0bwcw402nHwLI45xv6bD9MQC/A/ArzjnNuU0IsUmXLu3CtdrvO227Vvs9Ll3a1cMRhAwdfU0OWjjnN81PGGPDYByY2JvJABYDmMoYyzI9ngCQCOMAx3+atu28k8AJIWQoE7qEQ6NZ054gXKv9HhrNGghdaKV7MvT1NTlIYYz9AYATY2wGgE8BnOjtAM55Gueccc7DOefjTI+TnHMp59y3w7aXLD0JQsi9yVorF96Net1cJ0Kp3A6NZg0Ki7ZCo1kDpXI73FwnDlgdQ8k333zjlZ+f32m65Pz8fOE333zjZa2YupOfn+8QFBQUevs97299TQ7iAVTDOEPiiwBOAnh9sIIihNwfrLVy4d2q1811Iry9F6CkJBHe3gtsNjEAAB8fnxufffaZxJwg5OfnCz/77DOJj48PdR/fg/p6t0IbY+xzAJ9zzqsHOSZCyH2i48qFkZGRyMzMvCsrF96teq/Vfo/y8oPw91+N8vKDcHV90GYTBLlcrps1a1bRZ599JlGpVNVqtdpz1qxZRXK5fECWbK6oqHBoaWkRvPTSS1WvvvpqjbOz8/j58+fXpKSkuHh6euqPHj1aNHbsWEN3x58+fdp5xYoV/gA6zZBoMBiwatUqnzNnzghv3rzJfv3rX/+8YcOGGsC4ZPOnn37qxhjDtGnT6nfs2FH+3nvveezZs8dTr9czf3//liNHjhQLhcK22NhYf0dHxzaNRuN89epV+507d5bs3bvX/ezZsyPGjx/fePTo0ZLu4jpw4IDoj3/8ozcANDc3C/R6PSsvL//J0vdrINxuyWbGGPsvxlgNgHwA+YyxasaYRfMeEEKImbVWLhzses1jDJTK7QiUrG/vYug6SNGWyOVynUqlqk5PTx+jUqmqByIxAGx3yeaFCxfWa7XaXK1WmxsSEnJj9erVlQPxfg2E23UrrIdxYOEvOOdunHM3ANEAJjPG1g96dIQQm9d15cK7tTDRYNera8juNMbAPAZB15A9oPUMJfn5+UK1Wu0ZHR1doVarPbuOQbhTtrxkMwC8/vrrXo6Ojm2///3vh0zL/O26FRYDmME5b59bm3NexBhbBOAfALYOZnCEENvWceVC83LGHZ/fy/X6+b14yzY314k2261gHmNg7kqQSCS6js/vtFxbX7L5888/F37++eduP/zww5CaJOl2LQf2HRMDM9O4A/vBCYkQcr/obeVCW6zXll2+fNm5YyJgHoNw+fJlWrK5BwUFBQ7r1q3zO3r0aOHIkSOH1ISAt2s5uHmHrxFCyG3FxMTcss38S94W67Vl06ZNu2XJZrlcrrN03IEtL9m8a9cu9/r6ertnnnlGCgBeXl43U1JSLlpS5kD5/+zde1hTV9o3/u8KEkNsQE5yiAQIIZADpgoFUarWU3WqHZXq29pKFa0zVOuho1Ofdtrf83b6tEWZ6niaaltL62Bt7Vgd7WjntRUo2oKowJCQICdRDgoKGBGQkP37A8KDCAoCAeX+XBeXZLP3yr236L6z1trrvmfJZsZYE4Dajn4EQMBxnFV6D6hkMyHkYXLx4i6I7EfdMYRwveoXGG9kdTjc0FeoZDO5n85KNt9zWIHjOBuO4+w7+BJZKzEghJCHDa2OSB52XS3ZTAghpIvaro4oFi9EScm+R3p1xP5AJZv7FiUHhBDSB9qujujjs5ISAyugks29p6vLJxNCCOmG9qsjPsqLH5FHDyUHhBDSywbj6ojk0ULJASGE9LLBuDoiebTQnANCCOllg211RPLooZ4DQgghPZaf/xe3isof76ilUFH5oyg//y9u/RVTX1uzZo3noUOHeqV+xEBDyQEhhJAes3d4/JZOt05qSRAqKn8U6XTrpPYOj9/q79j6gslkwpYtW0rnzJnTK5UnBxpKDgghg972i1eQUnXn//EpVUZsv3jXisCkE64uU4xKZVyBTrdOmpv7Z0+dbp1UqYwrcHWZ0uOb59SpU/1UKpVCJpOp4uLiXIDmFRKXLl3qJZPJVOHh4fLS0tJOh8nfe++9EX5+fiq5XK6cNWuWFABef/11z3feeae1V8Pf319lMBj4BoOB7+vrq3r22Wd9pVKpasaMGVJLjQWxWBwUExMjViqVij179jhGRkb6WOo7iMXioBUrVogDAwOVarVakZKSIoyIiPD38vJSb9y40dXyPm+//babWq1WyOVy5dq1azstMw0A69ev9/Dx8VEHBwcHzJ4927dtvH2NkgNCyKD3uL0Qy7VFrQlCSpURy7VFeNy+RzWDBh1XlylGD/d5FZcux3t4uM+r6I3EAAASEhKKtFptTkZGhm7Xrl1u5eXlNnV1dbyQkJDavLw87fjx440bNmzo9Ea7detW9+zsbF1ubq4uPj7+4v3er6ioSLBy5cqrBQUFWpFIZN60aVPrzd3Z2dmk0+lyli9fXtX+OIlEcluv1+vCwsJuRkdH+xw5ciQ/NTVVHxsb6wkABw8etM/LyxNkZWXl5OTk6DIyMoTHjh3rsNR0UlKS8MiRI446nU574sSJC1lZWcO6drV6ByUHhBCrunhx112P9F2v+gUXL+7qp4iACEcRdqt8sFxbhNiCMizXFmG3ygcRjo/kcHKfqaj8UVRWftDVa+TisrLyg67t5yA8qNjYWLeAgABlcHCwory83Far1Qp4PB6WLVt2HQCio6OvpaWldXiTBYCAgIC6uXPn+u7cudPJ1tb2vtUP3d3db0+fPr0WABYtWnTt9OnTrW1HRUXdlRRYLFiwoBoAgoKCbo0ZM6bW0dHR7OnpaeLz+ebKykqb48eP2ycnJ9srlUqlSqVS5ufnC/R6vaCjtpKSkh6bOXNmtVAo5BwdHc3Tpk2rvl/cvYmSA0KIVQ3UugMRjiK87OmCzRev4GVPF0oMuskyx0CpjCuQy98utQwx9DRBOHr0qCgpKUmUnp6uNxgMOoVCUVdXV3fXvYsx1mkbJ0+evLBixYqKc+fOCUePHq1obGzEkCFDOLPZ3LqPpWxzR221fS0SiczohEAg4ACAx+OBz+e3JiE8Hg+NjY2M4zisWbOmTK/X6/R6va64uDh77dq1A7KwFSUHhBCralt3IL9gc+tiQf39mN+G4zrsybqMtd5u+KK0EilVRpzOr8THSfn9GtfD4kZNhrDtHAPLHIQbNRk9Gpuprq62cXBwaBKJRObz588LMjMzhwGA2WyGZbw/Pj7eOTQ0tMMhjKamJuTn5/Nnz55t3LFjR8nNmzdtampqbHx8fBoyMjKGAUBKSoqwpKRkqOWYsrIy/okTJ4YBQEJCgtO4ceNu9uQcLGbOnHlj7969LjU1NTwAKCwstC0pKelwrsTEiRNv/vDDDw63bt1iNTU1vBMnTgzvjRi6itY5IIRY3UCoO7Anew/UzmqEeoQipcqI7+prYZNRgZuP6bE7eA6WJunBz6zCrpfGWD22h5Gf3x/umr3p6jLF2NN5B5GRkTW7d+92lUqlKqlUWq/RaGoBwM7OzpyWljZs06ZNns7Ozo0HDx4s6Oh4k8nEFi5c6Gs0Gm04jmPLli276uLi0hQVFVWVkJDgLJPJVKNHj6719vautxzj4+NTv23bthHLly8X+vv7169bt66iJ+dgMW/evBtarVbwxBNPBAKAUCg0JyQkFIrFYlP7fSdOnHhrxowZNUqlUuXs7NwYEBBQ5+Dg0NQbcXQF47j7Dr/0u5CQEC49Pb2/wyCE9BLLUEJ/VixMK0vDuqR1iJsYh7Tb3hA0FmP3yb+irnQhloT74fNfLmLmNF9sHOdv1bh6E2PsLMdxIQ96fGZmZpFGoxmQ3d5CoXB0R5UZe8pgMPBnzZrlf+HCBW1vt91dNTU1PAcHB7PRaOSFh4cHfPzxxxcjIiJ69dHQzMxMF41G49N+O/UcEEKsqm3dASfHcDg6ju2XoYVQj1DETYzDuqR1WBCwAF8avsH2WXFI+Y8Dtv6Uh1WTZXj9IU4MyMPvpZde8r5w4YJdQ0MDe/7556/1dmJwL5QcEEKs6l51B6zdexDqEYoFAQuwK2sXfjfqdzDdkuLvqeexarIMf08txlg/Z4zzc7FqTKRrOuo1WLRokeTMmTN3PLUQExNzZfXq1de62m5AQMBta/YalJeX20yaNCmg/fbExETDkSNHCq0VR3uUHBBCrGog1R1IK0vDN4Zv8LtRv8OX6b9iV6kUu14KxTg/F4z1c8bKfeexfeHoLicIKSkpEIvF8PX1bd1WWFiIkpISRERE9NVpkBZ79+4t7u8Yusvd3b1Jr9fr+juO9uhpBULIoJRWloZ//8+r2Gy/FCtHr8Q092Ww89yHoYbvce3TTzHOzwXbF45G1uWaLrcpFotx4MABFBY2f+ArLCzEgQMHIBaL++o0COkT1HNACBmUsq9lY+ZvXoPoz7tQ6xSI/5k9CfP+dRG2//1XCLb+DQAwzs+lW8MKvr6+mD9/Pg4cOICQkBCkp6dj/vz5d/QkEPIwoOSAEDIoRaujATVQ6xSIkrVr4fjC8xB9tR/irX/DsLFhD9Tm9otX8PhwF4SEhCA5ORkTJkxAyXAXfH/xClZ6P7LFCckjiIYVCCGD2rCxYXB84XlU7vwbHF94/oESg3M/XMRlQxUetxdiWVYBDhryMVoVigPaC1iWVUA1GshDh5IDQsigVvtrKqq+2g+XV2NQ9dV+1P6a2u02RvjY44dPssH/TyGm6tLw78AnsL/KGT+qwzBVlwZx9YBcKqBXfVBQ5vbvypo7lkr+d2WN6IOCske2y2TNmjWehw4deiTX2abkgBAyaNX+moqStWsh3rwZrqtWQbx5M0rWru12gjAywBFPv6LGqWNZ+I29CsEXGnDSfyiWervhDzOmoqSkpI/OYOAIthfeei2nWGpJEP5dWSN6LadYGmwvtNqz+dZkMpmwZcuW0jlz5vRK5cl7MZvNaGqy2uKIACg5IIQMYvXZ/4F48+bWoYRhY8Mg3rwZ9dn/6XZbIwMcIbG/hRPaUpz1E7TWaDhfdQP8a+W9HfqAM93FwbhNISl4LadY+vaFy56v5RRLtykkBdNdHHp885w6daqfSqVSyGQyVVxcnAvQvELi0qVLvWQymSo8PFxeWlra6Ry69957b4Sfn59KLpcrZ82aJQWA119/3fOdd95p7dXw9/dXGQwGvsFg4Pv6+qqeffZZX6lUqpoxY4bUaDTyAEAsFgfFxMSIlUqlYs+ePY6RkZE+lvoOYrE4aMWKFeLAwEClWq1WpKSkCCMiIvy9vLzUGzdubC35/Pbbb7up1WqFXC5Xrl27ttMy0waDge/j46OeO3euj1wuV+Xn5/N7eh27g5IDQsigc+3TT1H7ayqcly1rTQxqf03FtU8/xbCxYXBetqzbbV42VCHttiu+e9ITc1MK8GKjAO8JzVh3pRaXvQbHSovTXRyMC9wdKz65XOmxwN2xojcSAwBISEgo0mq1ORkZGbpdu3a5lZeX29TV1fFCQkJq8/LytOPHjzdu2LCh0xvt1q1b3bOzs3W5ubm6+Pj4i/d7v6KiIsHKlSuvFhQUaEUikXnTpk2tN3dnZ2eTTqfLWb58+V2lmyUSyW29Xq8LCwu7GR0d7XPkyJH81NRUfWxsrCcAHDx40D4vL0+QlZWVk5OTo8vIyBAeO3as01LTxcXFQ1euXFmRl5enlcvlt+9/pXoPJQeEkEFHoA5Cydq1+PWTn3HZUNU6vCBQB+GyoQrnfrjv/eMOlw1V+OGTbNg/Mxp/cRsGr6JvcCjubyjd9iHi3Iah1Nm9j85kYPl3ZY3om/Iq11dGupR9U17l2n4OwoOKjY11CwgIUAYHByvKy8tttVqtgMfjYdmyZdcBIDo6+lpaWlqnN9mAgIC6uXPn+u7cudPJ1tb2vgWF3N3db0+fPr0WABYtWnTt9OnTrW1HRUXdlRRYLFiwoBoAgoKCbo0ZM6bW0dHR7OnpaeLz+ebKykqb48eP2ycnJ9srlUqlSqVS5ufnC/R6vaCz9jw8PG5PmTKl9n7x9gV6lJEQMuhYhg+u/2krjme8DLXhCwRt3owqRzl++CQbT7+i7lZ7V4tu4OlX1BgZ4AgAODXzGfz6j/3wfnwm5o3R9MUpDDiWOQaWoYQnHUXG3hhaOHr0qCgpKUmUnp6uF4lE5tDQ0IC6urq7Ptgyxjpt4+TJkxeOHTsmOnz4sENcXJyHwWDQDhkyhDObza37NDQ0tDbQvq22r0UikRmdEAgEHADweDzw+fzWJITH46GxsZFxHIc1a9aUrV+/vkszVIVCYafv1df6rOeAMebFGDvJGNMxxrSMsdUt250YY/+PMXah5U/HvoqBEEI6M2xsGPyeDYPy7HZkB7yM7KuurYmB5SbfVWOe9m49pjg7C5n//hfGRj6Pq/mnUJyd1e3YLl7chetVv9yx7XrVL7h4cVe327KWszduCdsmApY5CGdv3OrRc5zV1dU2Dg4OTSKRyHz+/HlBZmbmMKB5kp5lvD8+Pt45NDS0wwSkqakJ+fn5/NmzZxt37NhRcvPmTZuamhobHx+fhoyMjGEAkJKSIiwpKRlqOaasrIx/4sSJYQCQkJDgNG7cuJs9OQeLmTNn3ti7d69LTU0NDwAKCwttS0pKBuSH9L4cVjAB+APHcUoAYwGsYIwpAWwA8CPHcf4Afmx5TQghVmV5hNF/4VR4lvyM9H8VQT1B3O3EoK3i7Cwc3fIhZq3ZgPELXsKsNRtwdMuH3U4Qvqkbg/1ZO1oThOtVv2B/1g58UzfmgWPra/8l9bjSvodguouD8b+kHld60m5kZGSNyWRiUqlUtX79erFGo6kFADs7O3NaWtowf39/VXJysuiDDz4o6+h4k8nEFi5c6CuXy5VqtVq5bNmyqy4uLk1RUVFVVVVVNjKZTPXXv/51hLe3d73lGB8fn/pt27aNkEqlqurq6iHr1q2r6Mk5WMybN+/G/Pnzrz/xxBOBcrlcOXfuXL/q6mqb3mi7tzGOu+/wS++8EWOHAWxv+ZrEcVwZY8wDQCLHcXdVpGorJCSES09Pt0aYhJBBoO0jjFWOchzfeR6eF0+i1PspzHh19AMnCGmHv4W7nxwS9ajWbcXZWSjPz0Xob5/rcjspVUa88p88vMb9BU97BeOHS2exjf0BnwTJEOHY9WF8xthZjuNCunUSbWRmZhZpNJoBuUiDUCgc3VFlxp4yGAz8WbNm+VuzMmN/yszMdNFoND7tt1ulO4Mx5gNgNIBUAG4cx1kyvHIAj+wCGYSQgWnXzwV4/M1YCFvmGMx4dTRyc21RklH+wEMLADpMACTqUXckC10R4SjCJ0EyLMtahf8UHcZJm1X4tJuJASE90efJAWPsMQD/ALCG47gbbSd2cBzHMcY67LpgjC0HsBwAJBJJX4dJCBlExs6bhpX7zmN1bSmefkWN4iFNWJdRj+0Ln4LEZIOrRTd6NLzQG5TIxhTuBP7B5iOSOwIlmgBYv6z1QNVRr8GiRYskZ86cueOphZiYmCurV6++1tV2AwICbluz16C8vNxm0qRJd/WeJyYmGtzd3a278lEbfZocMMZs0ZwYJHAcd7Bl8xXGmEebYYWrHR3LcdxuALuB5mGFvoyTEDK4WMoxr9x3HtechuDvqcXYvnB0awXG/k4MLHMMfuL9AWtHuiH+8iyosv6C50cBTo6UIHRm7969xf0dQ3e5u7s36fV6XX/H0V5fPq3AAHwGIIfjuI/a/OifAF5u+f5lAIf7KgZCCOnMOD8XvBQmwdaf8vBSmKRbpZn72skrRa1zDN6QeuCTIBm2sT/g5JWi/g6NDBJ9+bTCeACLAExmjGW0fP0GwIcApjHGLgCY2vKaEEKs6nR+Jf6eWoxVk2X4e2oxTucPnHl3ZXaT75h8aJmDUGY3uZ8jI4NFnw0rcByXAqCzVSmm9NX7EkJIh1K2AOIxgO8EnM6vxMp95/Hl5HqouWMYu/AlrNx3/o6hha7qrScU2lrpffc87QhHEU1IJFZDyycTQgYH8RjgwGKgMBlZl2uaE4NTqwHxmNY5CFmXa7rdrLuf/I61DCxrHbj7yXv5BAixHkoOCCGDg+8EYH48cGAxft+0vzkxmB/fvB3NcxB+P9Gv281K1KNaFzs69c3fWxdB6u7jiw+7uB8MbidyrtzRtXEi54oo7gfDI/u4+po1azwPHTrUZ905o0ePDuyrtu+HkgNCyODhOwEIWQokb2z+syUx6CmJehSeHPU8Cr4/Dc3037QmBvX51TAmXeqV9xjoHpcMv/X6NxlSS4JwIueK6PVvMqSPS4bf6u/Y+oLJZMKWLVtK58yZ0yuVJzty/vx5fV+1fT+UHBBCBo/CZCD9M2DCH5v/LEzulWaLs7Ogy0nGBK8FuHwyA8XZWajPr8b1fTmwHTk45glMVbgZP1rweMHr32RI/+8Rrefr32RIP1rweMFUhVuPb55Tp071U6lUCplMpoqLi3MBmldIXLp0qZdMJlOFh4fLS0tLO51D9957743w8/NTyeVy5axZs6QA8Prrr3u+8847rb0a/v7+KoPBwDcYDHxfX1/Vs88+6yuVSlUzZsyQGo1GHgCIxeKgmJgYsVKpVOzZs8cxMjLSx1LfQSwWB61YsUIcGBioVKvVipSUFGFERIS/l5eXeuPGja0ln99++203tVqtkMvlyrVr13ZaZtpyjj27cg+OkgNCyOBQmNw852B+PDD5rdYhhp4mCJY5BuErouC25HGMGzEHF3b/iIovs+G0UAGB3/BeCP7hMFXhZowcM7Li81NFHpFjRlb0RmIAAAkJCUVarTYnIyNDt2vXLrfy8nKburo6XkhISG1eXp52/Pjxxg0bNnR6o926dat7dna2Ljc3VxcfH3/fetxFRUWClStXXi0oKNCKRCLzpk2bWm/uzs7OJp1Ol7N8+fK7SjdLJJLber1eFxYWdjM6OtrnyJEj+ampqfrY2FhPADh48KB9Xl6eICsrKycnJ0eXkZEhPHbsWKelpvsTJQeEkMGh5Nwdcwxa5yCUnOtRs+X5ua1zDAR+w2E/fiQChCG46WIcVIkB0DyU8I9zl12XjPcp+8e5y67t5yA8qNjYWLeAgABlcHCwory83Far1Qp4PB6WLVt2HQCio6OvpaWldXqTDQgIqJs7d67vzp07nWxtbe+7qJ67u/vt6dOn1wLAokWLrp0+fbq17aioqLuSAosFCxZUA0BQUNCtMWPG1Do6Opo9PT1NfD7fXFlZaXP8+HH75ORke6VSqVSpVMr8/HyBXq8XdOdaWMuALBVJCCG9LmLN3dt8J/R43kHbxxXr86tRm1oG0WQv8FLLUJ9fPWgSBMscA8tQwniZi7E3hhaOHj0qSkpKEqWnp+tFIpE5NDQ0oK6u7q4Ptm2X5m/v5MmTF44dOyY6fPiwQ1xcnIfBYNAOGTKEM5vNrfs0NDS0NtC+rbavRSKRGZ0QCAQcAPB4PPD5/NYkhMfjobGxkXEchzVr1pStX79+4Cyq0QnqOSCEkF5gmWPgtFABh+k+cFqowPV9OajPr+7v0Kwio7ha2DYRsMxByCiuFvak3erqahsHB4cmkUhkPn/+vCAzM3MYAJjNZljG++Pj451DQ0M7TECampqQn5/Pnz17tnHHjh0lN2/etKmpqbHx8fFpyMjIGAYAKSkpwpKSkqGWY8rKyvgnTpwYBgAJCQlO48aNu9mTc7CYOXPmjb1797rU1NTwAKCwsNC2pKRkQH5IH5BBEULIw6bxsvGOOQYCv+FwWqhA4+XBMbyw7umAK+23TVW4GXs67yAyMrJm9+7drlKpVCWVSus1Gk0tANjZ2ZnT0tKGbdq0ydPZ2bnx4MGDBR0dbzKZ2MKFC32NRqMNx3Fs2bJlV11cXJqioqKqEhISnGUymWr06NG13t7e9ZZjfHx86rdt2zZi+fLlQn9///p169ZV9OQcLObNm3dDq9UKnnjiiUAAEAqF5oSEhEKxWGzqjfZ7E+O4gV/TKCQkhEtPT+/vMAgh5KHCGDvLcVzIgx6fmZlZpNFoBmQXuFAoHN1RZcaeMhgM/FmzZvlbszJjf8rMzHTRaDQ+7bfTsAIhhBBC7kDDCoQQ0ouMSZdgO1J0x1BCfX41Gi8bIZro1Y+RPVo66jVYtGiR5MyZM3c8tRATE3Nl9erV17rabkBAwG1r9hqUl5fbTJo0KaD99sTERIO7u3uTteJoj5IDQgjpRbYjRa0TEwV+w++YqEj61t69e4v7O4bucnd3b9Lr9br+jqM9Sg4IIaQXWSYiXt+Xg2FhHqhNLRt0iyGRhx/NOSCEkF4m8BuOYWEeMP50CcPCPLqdGFy8uAvXq365Y9v1ql9w8eKu3gyTkE5RckAIIb2s7WJItS2LIXWHyH4UsrNXtSYI16t+QXb2KojsB1elR9J/aFiBEEJ6Uds5BgK/4RjqrQMyDAAAIABJREFUN/yO113h5BgOtXorsrNXQSxeiJKSfVCrt8LJMbyPoyekGfUcEEJIL7rXYkhdlZKSgppqd4jFC1FUtB1i8ULUVLsjJSWlr8LuuR//7AbDsTtrKRiOifDjn906OeKht2bNGs9Dhw49kmU3KTkghJBeJJrodVcPgcBveLceYxSLxTh2fAuKi/fCx2cliov34tjxLRCLxb0dbu8ZGXIL3/1e2pogGI6J8N3vpRgZcqufI+sTJpMJW7ZsKZ0zZ06vVJ4caCg5IISQAcZheDkUip+Rk/MkLhZpkJPzJBSKn+EwvLy/Q+tcwEwj5n5cgO9+L8WxDZ747vdSzP24AAEze3zznDp1qp9KpVLIZDJVXFycC9C8QuLSpUu9ZDKZKjw8XF5aWtrpMPl77703ws/PTyWXy5WzZs2SAsDrr7/u+c4777T2avj7+6sMBgPfYDDwfX19Vc8++6yvVCpVzZgxQ2o0GnkAIBaLg2JiYsRKpVKxZ88ex8jISB9LfQexWBy0YsUKcWBgoFKtVitSUlKEERER/l5eXuqNGze2lnx+++233dRqtUIulyvXrl3baZnpjRs3ugYGBioDAwOVYrE4KCwsTN7T69gdlBwQQsgAY7yRBY1mBwIDfovk5GQEBvwWGs0OGG9k9Xdo9xYw0wjNCxVI/ZsHNC9U9EZiAAAJCQlFWq02JyMjQ7dr1y638vJym7q6Ol5ISEhtXl6edvz48cYNGzZ0eqPdunWre3Z2ti43N1cXHx9/8X7vV1RUJFi5cuXVgoICrUgkMm/atKn15u7s7GzS6XQ5y5cvv6t0s0Qiua3X63VhYWE3o6OjfY4cOZKfmpqqj42N9QSAgwcP2ufl5QmysrJycnJydBkZGcJjx451WGr6j3/8Y4Ver9dlZmbmuLu73169evVdtSv6EiUHhBAywHh7/w411e5IT0/HhAkTkJ6ejppqd3h7/66/Q7s3wzERMr9yRVhMGTK/cr1rDsIDio2NdQsICFAGBwcrysvLbbVarYDH42HZsmXXASA6OvpaWlpahzdZAAgICKibO3eu786dO51sbW3vW1DI3d399vTp02sBYNGiRddOnz7d2nZUVNRdSYHFggULqgEgKCjo1pgxY2odHR3Nnp6eJj6fb66srLQ5fvy4fXJysr1SqVSqVCplfn6+QK/XC+4Vy9KlS70mTJhgXLhwYc394u5N9LQCIYQMMO9/dwZXdKlYs3A+fH194evriy37voebMgxvzn2iv8PrmGWOgWUoQTrR2BtDC0ePHhUlJSWJ0tPT9SKRyBwaGhpQV1d31wdbxlinbZw8efLCsWPHRIcPH3aIi4vzMBgM2iFDhnBms7l1n4aGhtYG2rfV9rVIJDKjEwKBgAMAHo8HPp/fmoTweDw0NjYyjuOwZs2asvXr13epmNXWrVudL1++zP/iiy+svvIj9RwQQsgA48JqkdgoQ5m5+YN3mVmExEYZXFhtP0d2D5fThXckApY5CJfThT1ptrq62sbBwaFJJBKZz58/L8jMzBwGAGazGZbx/vj4eOfQ0NAOE5Cmpibk5+fzZ8+ebdyxY0fJzZs3bWpqamx8fHwaMjIyhgFASkqKsKSkZKjlmLKyMv6JEyeGAUBCQoLTuHHjbvbkHCxmzpx5Y+/evS41NTU8ACgsLLQtKSnp8EP6zz//LNy2bZv7gQMHCm1sbHrj7buFeg4IIWSAWe6SAfXUUVi57zxeCpPg76nF+NtUPsYhA8Ck/g6vY1PevntMPGCmsafzDiIjI2t2797tKpVKVVKptF6j0dQCgJ2dnTktLW3Ypk2bPJ2dnRsPHjxY0NHxJpOJLVy40NdoNNpwHMeWLVt21cXFpSkqKqoqISHBWSaTqUaPHl3r7e1dbznGx8enftu2bSOWL18u9Pf3r1+3bl1FT87BYt68eTe0Wq3giSeeCAQAoVBoTkhIKBSLxab2+/71r38dUVNTY/Pkk08GAIBGo6n9+uuv7ztforcwjrvv8Eu/CwkJ4dLT0/s7DEIIsY7CZODAYnzkswtbz93GqjF8vF70O2B+POA7ocvNMMbOchwX8qBhZGZmFmk0mi51gVubUCgc3VFlxp4yGAz8WbNm+VuzMmN/yszMdNFoND7tt9OwAiGEDDS+E3B63Kf4+/lrWCUtx9/PX8PpcZ92KzEgpCdoWIEQQgaY545uhEH7GHYFN2Jc9jsYG/wufnfqOgKq0/HtrD/2d3gDQke9BosWLZKcOXPmjqcWYmJirqxevfpaV9sNCAi4bc1eg/LycptJkyYFtN+emJhocHd3b7JWHO1RckAIIQPMcLMPeO5xwKXrwIQ/ApnbwHN3wnDzuv4ObUDbu3ev1Wf195S7u3uTXq/X9Xcc7VFyQAghA8ynQe44feg6Vjg7QQEb5Dg74W/XrmPcBPf+Do0MEjTngBBCBpqScxg3Zw8UI+fhP5cSoBg5D+Pm7AFKzvV3ZGSQoOSAEEIGmog1+MxkRlbJPxHk9SKySv6Jz0xmIGJNf0dGBgkaViCEkAHmswuJ2Pzrm1g79n0s9Z+Ezy6MxeZf3wTQ/JqQvkY9B4QQMsD8Up7VmhgAwFL/SVg79n38Uj5wCy9tPbfVLfFS4h21FBIvJYq2ntvq1tkxD7s1a9Z4Hjp0qFfqRww0lBwQQsgA8+mTq+7qIVjqPwmfPrmqfwLqglGuo269lfKW1JIgJF5KFL2V8pZ0lOuoW/0dW18wmUzYsmVL6Zw5c3ql8uRAQ8kBIYSQHpvkNcn4PxH/U/BWylvSD9M+9Hwr5S3p/0T8T8Ekr0k9vnlOnTrVT6VSKWQymSouLs4FaF4hcenSpV4ymUwVHh4uLy0t7XSY/L333hvh5+enksvlylmzZkkB4PXXX/d85513Wns1/P39VQaDgW8wGPi+vr6qZ5991lcqlapmzJghNRqNPAAQi8VBMTExYqVSqdizZ49jZGSkj6W+g1gsDlqxYoU4MDBQqVarFSkpKcKIiAh/Ly8v9caNG1tLPr/99ttuarVaIZfLlWvXru20zPSaNWs833333RGW16+99pr4z3/+84jO9u9tlBwQQgjpFZO8Jhln+82uSMhJ8JjtN7uiNxIDAEhISCjSarU5GRkZul27drmVl5fb1NXV8UJCQmrz8vK048ePN27YsKHTG+3WrVvds7Ozdbm5ubr4+Pj71icoKioSrFy58mpBQYFWJBKZN23a1Hpzd3Z2Nul0upzly5ffVbpZIpHc1uv1urCwsJvR0dE+R44cyU9NTdXHxsZ6AsDBgwft8/LyBFlZWTk5OTm6jIwM4bFjxzosNR0TE1O5f/9+Z6C5eNShQ4ccX3nllS4v5tRTlBwQQgjpFYmXEkVH8o+4vqh4sexI/hHX9nMQHlRsbKxbQECAMjg4WFFeXm6r1WoFPB4Py5Ytuw4A0dHR19LS0jq8yQJAQEBA3dy5c3137tzpZGtre9+CQu7u7renT59eCwCLFi26dvr06da2o6Ki7koKLBYsWFANAEFBQbfGjBlT6+joaPb09DTx+XxzZWWlzfHjx+2Tk5PtlUqlUqVSKfPz8wV6vV7QScy3hw8fbjp16pTdd999Z69SqW5Zc8XEPntagTG2B8AsAFc5jlO3bHscwMcABABMAF7lOC6tr2IghBBiHZY5BpahhLEeY429MbRw9OhRUVJSkig9PV0vEonMoaGhAXV1dXd9sGWMddrGyZMnLxw7dkx0+PBhh7i4OA+DwaAdMmQIZzabW/dpaGhobaB9W21fi0QiMzohEAg4AODxeODz+a1JCI/HQ2NjI+M4DmvWrClbv359l4pZLVmypPLTTz91uXr1qu2SJUus1msA9G3PQTyAGe22bQTwfzmOexzAOy2vCSGEtPFxUj5O5995/zidX4mPk/L7KaL7y6rIErZNBCxzELIqsoQ9abe6utrGwcGhSSQSmc+fPy/IzMwcBgBmsxmW8f74+Hjn0NDQDhOQpqYm5Ofn82fPnm3csWNHyc2bN21qampsfHx8GjIyMoYBQEpKirCkpGSo5ZiysjL+iRMnhgFAQkKC07hx42725BwsZs6ceWPv3r0uNTU1PAAoLCy0LSkp6fRD+qJFi6pPnjzpkJmZOSwyMrKmN2Loqj7rOeA4Lpkx5tN+MwD7lu8dAJT21fsTQsjDatRIB6zcdx7bF47GOD8XnM6vbH09UK0as+pK+22TvCYZezrvIDIysmb37t2uUqlUJZVK6zUaTS0A2NnZmdPS0oZt2rTJ09nZufHgwYMFHR1vMpnYwoULfY1Gow3HcWzZsmVXXVxcmqKioqoSEhKcZTKZavTo0bXe3t71lmN8fHzqt23bNmL58uVCf3//+nXr1lX05Bws5s2bd0Or1QqeeOKJQAAQCoXmhISEQrFYbOpof4FAwI0bN+7G8OHDm4YMse6yRIzj7jv88uCNNycHR9sMKygA/ACAobnXYhzHcR1ODmGMLQewHAAkEknwxYv3nUNCCCGPhpQtyGZ+iPpJgJfCJPh7ajG+nFwPNZffrVUSGWNnOY4LedAwMjMzizQaTZe6wK1NKBSO7qgyY08ZDAb+rFmz/K1ZmbEzTU1NUKlUygMHDuQHBQU19MV7ZGZmumg0Gp/22609ITEGwFqO47wArAXwWWc7chy3m+O4EI7jQlxdXTvbjRBCHj3iMVCfWo3/CryKrT/l4b8Cr0J9ajUgHtPfkRErOXv2rMDb2zvoySefvNFXicG9WHv55JcBrG75/gCAT638/oQQMvD5TkD2+L9i6v97Fftl8xGgPYDsaTuh9p3Q35ENGB31GixatEhy5syZO55aiImJubJ69eouT+YLCAi4bc1eg/LycptJkyYFtN+emJhouHz58n+sFUd71k4OSgFMBJAIYDKAC1Z+f0IIGfBO51di5U8CHA6Kwtj/bMeloJWI+kmA7e6VGOfn0t/hDVh79+4t7u8Yusvd3b1Jr9fr+juO9vpsWIEx9hWAXwAEMMYuM8aWAngFwF8YY5kA3kfLnAJCCCH/K+tyDb6cXA+v/K+ACX+EV/5X+HJyPbIuW3XCOhnE+vJphRc6+VFwX70nIYQ8Cn4vKQEOrAbmxwO+EwDfJ6E+sBjq+fEA/Po5OjIY0AqJhBAy0JSc+9/EAGj+c35883ZCrMDacw4IIYTcT0ePK/pO+N9kgZA+Rj0HhBBCeuzqli1uxpMn76ilYDx5UnR1yxa3zo4hAxclB4QQQnrMTqO5VfrGBqklQTCePCkqfWOD1E6judXfsZHuo+SAEEJIj4meesroGfthQekbG6Tl77/vWfrGBqln7IcFoqee6nHZ5qlTp/qpVCqFTCZTxcXFuQDNKyQuXbrUSyaTqcLDw+WlpaWdDpOfPn3aTqPRBMrlcuW0adP8KioqbAAgNDQ0YOnSpV5qtVohlUpVSUlJwunTp/t5e3urV61a1VoCeufOnU5BQUGKwMBA5cKFC71NpubVjjdv3uzi4+OjDgoKUjz//PPeUVFREgDYt2+fw6hRowIVCoVy3Lhx8kuXLg0BgJqaGt5zzz3nI5fLlXK5XBkfHz8cAF588UWJWq1WyGQy1dq1a1vfVywWB61YsUIcGBioVKvVipSUFGFERIS/l5eXeuPGjZ2uDnj06FHRU089JbO8joqKkmzdutW5O9eckgNCCCG9QvTUU0aHOb+tqPpyr4fDnN9W9EZiAAAJCQlFWq02JyMjQ7dr1y638vJym7q6Ol5ISEhtXl6edvz48cYNGzZ4dnb84sWLfd9///3Lubm5OpVKVffGG2+07svn883Z2dk5S5YsqZg/f77sk08+Kdbr9dqvv/7apby83ObcuXOCb7/91ik9PV2v1+t1PB6P+/jjj52Liops4+LiPFJTU3PS09P1Fy5caC29PG3atJsZGRn6nJwc3XPPPXf93XffdQeADRs2eNjb2zfl5ubqcnNzdc8884wRAD766KOS7OzsHL1erz116pQoNTXVztKWRCK5rdfrdWFhYTejo6N9jhw5kp+amqqPjY3t9Hx7A01IJIQQ0iuMJ0+Kag4ddnWMWlRWc+iw67DwcGNvJAixsbFu33///XAAKC8vt9VqtQIej4dly5ZdB4Do6Ohr8+bNk3V07LVr12yMRqPNM888cxMAXnnllWvz58+XWn4+d+7cagDQaDR1MpmsztvbuxEAvLy8GgoKCviJiYmPZWdnCzUajQIA6uvreSNGjDD9/PPPw8LCwoxubm5NLe1U5ebmCgCgsLCQP2fOnJEVFRW2t2/f5nl5eTUAQHJysv3+/ftbC0S5uro2AcAXX3zhFB8f72IymVhFRYVtZmamICwsrA4AFixYUA0AQUFBt2pra3mOjo5mR0dHM5/PN1dWVtq4uLg09fT6duShSA7Onj1byRh71CsvuQAYkAVOrIyuA10DC7oOzXpyHbx7M5B7scwxsAwlDAsPN/bG0MLRo0dFSUlJovT0dL1IJDKHhoYG1NXV3dXrzRh7oPYFAgEHADweD0OHDm2tRMjj8WAymRjHcWz+/PnXduzYUdL2uL179w7vrM2VK1dKVq9eXf7iiy/WHD16VPTuu+92+ilfr9fzt2/f7nb27NkcV1fXpsjISJ/6+vrW82sbH5/PvyO+xsbGDk/a1taWM5vNra8bGhq6fXEeiuSA47hHvvISYyy9J9XTHhV0HegaWNB1aPawXIe6zExh20TAMgehLjNT2JPkoLq62sbBwaFJJBKZz58/L8jMzBwGAGazGZ9//rnj8uXLq+Lj451DQ0M7fA9nZ+cme3v7puPHjz82Y8aMm5999plzeHj4za6+/4wZM27MmzdP9uabb14Ri8WmK1eu2NTU1NhERETUbtiwwauiosJm+PDhTYcPH3ZUKBR1AGA0Gm0kEkkjAMTHx7eO9U+cOPHG5s2bR+zZs+cSAFRUVNhUVVXZ2NnZmZ2cnJouXbo0JDEx0WHixIk96m3x8/NryMvLs6urq2O1tbW8lJQU+/Hjx3f5nIGHJDkghBAysI1Ys+ZK+22ip57q8bBCZGRkze7du12lUqlKKpXWazSaWgCws7Mzp6WlDdu0aZOns7Nz48GDBws6a+Pzzz8vjImJ8V61ahVPIpE0fPXVV0Vdff/g4OD6P/3pTyVTpkyRm81m2Nraclu3bi2eMmVK7dq1a8tCQkIUDg4OJplMVu/g4NAEAG+99VbpCy+84Ofg4GCKiIgwFhcXDwWADz74oGzJkiUSf39/FY/H4958883Sl19+uVqtVt/y8/NTe3h43A4ODu7WTbwjMpmscfbs2VWBgYGqkSNHNqhUqm4/McI4jrv/XqTPPSyfDvoaXQe6BhZ0HZr153XIzMws0mg0A3JoRygUju6oMqM11dTU8BwcHMyNjY14+umnZYsXL66Mioqq7s+YuiszM9NFo9H4tN9OTysMHLv7O4ABgq4DXQMLug7N6DoMUOvXr/cMDAxUyuVylUQiaXjppZceqsTgXqjngBBCSIcGcs9BRxYtWiQ5c+bMY223xcTEXFm9evW1/oqpL6WlpdlFRUX5tt3G5/PNWVlZ+q620VnPAc05IIQQ8kjYu3dvcX/HYE2hoaF1er1e1xdt07ACIYQQQu5AyYGVMcZmMMYMjLE8xtiGDn7+OmNMxxjLYoz9yBiz2nPK1nS/69Bmv0jGGMcYe+QmpnXlGjDGFrT8PmgZY/usHaM1dOHfhIQxdpIxdr7l38Vv+iPOvsQY28MYu8oYy+7k54wxtrXlGmUxxsZYO0YyuFByYEWMMRsAOwDMBKAE8AJjTNlut/MAQjiOGwXgWwAbrRtl3+vidQBjTARgNYBU60bY97pyDRhj/gD+C8B4juNUADqo4/tw6+Lvwp8AfMNx3GgAzwPYad0orSIewIx7/HwmAP+Wr+UA/maFmMggRsmBdYUCyOM4roDjuNsA9gP4bdsdOI47yXGc5ZnUXwGMtHKM1nDf69DizwBiAdRbMzgr6co1eAXADo7jqgCA47irVo7RGrpyHTgA9i3fOwAotWJ8VsFxXDKA6/fY5bcAvuSa/QpgOGPMwzrRkcGIkgPrEgO41Ob15ZZtnVkK4FifRtQ/7nsdWrpNvTiO+96agVlRV34X5ADkjLFTjLFfGWP3+mT5sOrKdfhvAC8xxi4D+BeA16wT2oDS3f87rO7Xw/luhVmVorbbCrMqRb8eznfrr5jIg6PkYIBijL0EIATApv6OxdoYYzwAHwH4Q3/H0s+GoLkbeRKAFwB8whjrdD33R9gLAOI5jhsJ4DcA9rb8jpABxM3X4daP8TqpJUEozKoU/Rivk7r5OnR7dT7S/+gfmHWVAPBq83pky7Y7MMamAngLwLMcxzVYKTZrut91EAFQA0hkjBUBGAvgn4/YpMSu/C5cBvBPjuMaOY4rBJCL5mThUdKV67AUwDcAwHHcLwAEaC5GNJh06f+O/uQ7ysU4ZbGy4Md4nfTnb3I9f4zXSacsVhb4jnLpcVXGqVOn+qlUKoVMJlPFxcW5AM0rJC5dutRLJpOpwsPD5aWlpZ0+mn/69Gk7jUYTKJfLldOmTfOrqKiwAYDQ0NCApUuXeqnVaoVUKlUlJSUJp0+f7uft7a1etWpVa7GknTt3OgUFBSkCAwOVCxcu9DaZTACAzZs3u/j4+KiDgoIUzz//vHdUVJQEAPbt2+cwatSoQIVCoRw3bpz80qVLQ4DmFRWfe+45H7lcrpTL5cr4+PjhAPDiiy9K1Gq1QiaTqdauXdv6vmKxOGjFihXiwMBApVqtVqSkpAgjIiL8vby81Bs3buy05lBTUxNeeuklia+vr2rcuHH+EydOlH3++eeO3bnmlBxY1xkA/owxX8YYH82Tq/7ZdgfG2GgAu9CcGDyKY8zAfa4Dx3E1HMe5cBznw3GcD5rnXjzLcVx6/4TbJ+77uwDgEJp7DcAYc0HzMEOn68c/pLpyHYoBTAEAxpgCzclBhVWj7H//BBDV8tTCWAA1HMeV9XdQ7fmOcjEGjHWvyPrpskfAWPeK3kgMACAhIaFIq9XmZGRk6Hbt2uVWXl5uU1dXxwsJCanNy8vTjh8/3rhhw4ZOKx8uXrzY9/3337+cm5urU6lUdW+88Ubrvnw+35ydnZ2zZMmSivnz58s++eSTYr1er/36669dysvLbc6dOyf49ttvndLT0/V6vV7H4/G4jz/+2LmoqMg2Li7OIzU1NSc9PV1/4cIFgaXNadOm3czIyNDn5OTonnvuuevvvvuuOwBs2LDBw97evik3N1eXm5ure+aZZ4wA8NFHH5VkZ2fn6PV67alTp0Spqal2lrYkEsltvV6vCwsLuxkdHe1z5MiR/NTUVH1sbGyn5/vll186Xrp0iZ+Xl6fdv39/4fnz5x/rbN/O0CJIVsRxnIkxthLADwBsAOzhOE7LGHsXQDrHcf9E8zDCYwAOtJQgLeY47tl+C7oPdPE6PNK6eA1+ADCdMaYD0ARgPcdxj9RKb128Dn9A85DKWjRPTlzMPWJLuzLGvkJzIujSMrfi/wNgCwAcx32M5rkWvwGQB+AWgCX9E+m9FWZVigy/lruOmjyyzPBruevIQCdjbyQIsbGxbt9///1wACgvL7fVarUCHo+HZcuWXQeA6Ojoa/PmzZN1dOy1a9dsjEajzTPPPHMTAF555ZVr8+fPl1p+Pnfu3GoA0Gg0dTKZrM7b27sRALy8vBoKCgr4iYmJj2VnZws1Go0CAOrr63kjRoww/fzzz8PCwsKMbm5uTS3tVOXm5goAoLCwkD9nzpyRFRUVtrdv3+Z5eXk1AEBycrL9/v37WxN8V1fXJgD44osvnOLj411MJhOrqKiwzczMFISFhdUBwIIFC6oBICgo6FZtbS3P0dHR7OjoaObz+ebKykobFxeXpvbn/PPPPz82b968KhsbG0gkEtPYsWO7/XdAyYGVcRz3LzT/Q2+77Z0230+1elD94H7Xod32SdaIydq68LvAAXi95euR1YXroAMw3tpxWRPHcS/c5+ccgBVWCueBWOYYWIYSRgY6GXtjaOHo0aOipKQkUXp6ul4kEplDQ0MD6urq7ur1bvkw1W0CgYADAB6Ph6FDh7YmnTweDyaTiXEcx+bPn39tx44ddwzj7N27t9P5PytXrpSsXr26/MUXX6w5evSo6N133+30U75er+dv377d7ezZszmurq5NkZGRPvX19a3n1zY+Pp9/R3yNjY0PdtJdQMMKhBBCeuxKYY2wbSJgmYNwpbBG2JN2q6urbRwcHJpEIpH5/PnzgszMzGEAYDabYRlHj4+Pdw4NDe0wAXF2dm6yt7dvOn78+GMA8NlnnzmHh4d3uSzyjBkzbhw9etSxpKRkCABcuXLFJjc3lx8REVGbmpoqqqiosGlsbMThw4dbx/SNRqONRCJptMRm2T5x4sQbmzdvHmF5XVFRYVNVVWVjZ2dndnJyarp06dKQxMREh+5dobtFRETcPHTokGNTUxMuXbo0JDU1VXT/o+5EPQeEEEJ6bOxv/a603+Y7yqXHwwqRkZE1u3fvdpVKpSqpVFqv0WhqAcDOzs6clpY2bNOmTZ7Ozs6NBw8e7HQ+zueff14YExPjvWrVKp5EImn46quvirr6/sHBwfV/+tOfSqZMmSI3m82wtbXltm7dWjxlypTatWvXloWEhCgcHBxMMpms3sHBoQkA3nrrrdIXXnjBz8HBwRQREWEsLi4eCgAffPBB2ZIlSyT+/v4qHo/Hvfnmm6Uvv/xytVqtvuXn56f28PC4HRwc3OXEpTMvv/xy1YkTJ0QymUzl4eFxW6VS3Ro+fPhdww/3QlUZCSGEdGggV2UUCoWjb926db4/Y6ipqeE5ODiYGxsb8fTTT8sWL15cGRUVNSDKNltiKy8vt3niiScUp06d0kskElP7/agqIyGEENKL1q9f75mcnGzf0NDAJk6ceOOll14aEIkBAEybNs3/xo0bNo2NjWz9+vVlHSUG90LJASGEkIdOR70GixYtkpw5c+YLWUWMAAAgAElEQVSOx/ZiYmKurF69uk+e8tm9e/flvmi3q9LS0uyioqJ8227j8/nmrKwsfVpamqEnbVNyQAYFxpg7gC0AngBQDeAKgDUcx+X2a2CEkF6zd+/e4v6OwZpCQ0Pr9Hq9ri/apqcVyCOPNT/j9B2ARI7j/DiOC0ZztcNeX/OdMUYJNyHkoUfJARkMngLQ2LKYDACA47hMACmMsU2MsWzG2H8YY/8HABhj+xljz1j2ZYzFM8aeY4zZtOx/hjGWxRj7XcvPJzHGfmaM/ROArmXbIcbYWcaYljG2vE1bSxljuYyxNMbYJ4yx7S3bXRlj/2hp+wxj7JF+rp8QMrDRpxwyGKgBnO1g+zwAjwPQoHmt/jOMsWQAXwNYAOD7liV9pwCIQfMa/zUcxz3BGBsK4BRj7N8tbY0BoG6pgQAA0RzHXWeM2bW0+w8AQwG83bKvEcBPADJb9v8rgM0cx6UwxiRoXjFQ0XuXgBBCuo6SAzKYRQD4iuO4JgBXGGNJaJ6TcAzAX1sSgBkAkjmOq2OMTQcwijH2XMvxDmguhHQbQFqbxAAAVjHG5rZ879WynzuAJI7jrgMAY+wAmuslAMBUAMo2q7zZM8Ye4ziux888E0JId9GwAhkMtACCu7ozx3H1ABIBPA3g/6C5JwEAGIDXOI57vOXLl+M4S89BreV4xtgkNN/swzmO0wA4j+ZiQffCAzC2TdtiSgzIwyRl/5du+WfT7liJL/9smihl/5e9PreHdF1jY+MDHUfJARkMfgIwtN3Y/yg0P7Xwf1rmErgCmAAgrWWXr9Fc3OZJAMdbtv0AIIYxZtvShpwxNqyD93MAUMVx3C3GWCCaS04DzRUIJzLGHFsmLka2OebfAF5rE9/jPTpjQqzMwz/w1rEdf5FaEoT8s2miYzv+IvXwD7zV07apZHP3SjYfPXpUFBwcHDB58mSZv7+/+kGuOSUH5JHXUrRmLoCpjLF8xpgWwAcA9gHIQvO4/08A/shxXHnLYf8GMBHACY7jbrds+xTNEw7PMcay0Vxau6P/kI4DGMIYywHwIZpLToPjuBIA76M5ATkFoAhATcsxqwCEtEx01AH4fS+dPiFW4Rccapy54g8Fx3b8RXoyfrfnsR1/kc5c8YcCv+COax50B5Vs7l7JZgDQ6XTCnTt3FhcVFWU/yDWnOQdkUOA4rhTNkwzbW9/y1X7/RgBO7baZAbzZ8tVWYsuXZb8GADM7CWUfx3G7W3oOvgNwqOWYSjQPYRDy0PILDjWqJkypOHfsnx5jZj5b1huJAUAlm4HulWwGgFGjRtUGBgbe7uhnXUE9B4RY138zxjIAZAMoREtyQMijIP9smkib/KPrmJnPlmmTf3RtPwfhQbQt2WwwGHQKhaKuP0o26/V6nV6v1xUVFWV/9NFHpfdqc+XKlZJXX331am5urm779u0XGxoaOr3XWko2JyUl5ebm5uomT55c0xslm4VCoblrV6BjlBwQYkUcx61rmXAYyHHcKo4qn5FHhGWOwcwVfyh4avHyUssQQ08TBCrZ3D8oOSCEENJjZRf0wrZzDCxzEMou6IU9aTcyMrLGZDIxqVSqWr9+vbh9yWZ/f39VcnKy6IMPPijrrI3PP/+88I033hgpl8uVWVlZdh9++OE9P/m31bZks1wuV06ePFl+6dIlW19f30ZLyebg4OBALy+vhvYlm1UqlcLZ2bm14NEHH3xQVl1dbePv768KCAhQ/utf/xKFh4fXWUo2L1iwQNobJZt7A5VsJoQQ0iEq2XxvA7lkc1d1VrKZeg4IIYSQB7B+/XrPwMBApVwuV0kkkoaBVLK5p+hpBUIIIQ8dKtl875LNPW2bkgNCCCGPBCrZ3HtoWIEQQgghd6DkgBBCCCF3oOSAEEIIIXeg5IAQQgghd6DkgBBCCCF3oOSAEEJIj9X8UORWl3PtjqWS63KuiWp+KHLrr5gGq6KiItsZM2ZI779n5yg5IIQQ0mN8iejW9W9ypZYEoS7nmuj6N7lSvkR0q79jG2x8fHwajx8/XnD/PTtHyQEhhJAes1M4G50WyAuuf5MrrT6S73n9m1yp0wJ5gZ3Cucdlm6dOneqnUqkUMplMFRcX5wI0L5+8dOlSL5lMpgoPD5eXlpZ2um7P6dOn7TQaTaBcLldOmzbNr6KiwgYAQkNDA5YuXeqlVqsVUqlUlZSUJJw+fbqft7e3etWqVZ6W43fu3OkUFBSkCAwMVC5cuNDbZGoul7B582YXHx8fdVBQkOL555/3joqKkgDAvn37HEaNGhWoUCiU48aNk1+6dGkI0Lzc8nPPPecjl8uVcrlcGR8fPxwAXnzxRYlarVbIZDLV2rVrW99XLBYHrVixQhwYGKhUq9WKlJQUYUREhL+Xl5d648aNrp2dr8Fg4Pv7+6t6cs0pOSCEENIr7BTOxmFjRlTcPFXqMWzMiIreSAwAICEhoUir1eZkZGTodu3a5VZeXm5TV1fHCwkJqc3Ly9OOHz/euGHDBs/Ojl+8eLHv+++/fzk3N1enUqnq3njjjdZ9+Xy+OTs7O2fJkiUV8+fPl33yySfFer1e+/XXX7uUl5fbnDt3TvDtt986paen6/V6vY7H43Eff/yxc1FRkW1cXJxHampqTnp6uv7ChQsCS5vTpk27mZGRoc/JydE999xz19999113ANiwYYOHvb19U25uri43N1f3zDPPGAHgo48+KsnOzs7R6/XaU6dOiVJTU+0sbUkkktt6vV4XFhZ2Mzo62ufIkSP5qamp+tjY2E7PtzfQComEEEJ6RV3ONVHtuauuj433LKs9d9V1qGy4sTcShNjYWLfvv/9+OACUl5fbarVaAY/Hw7Jly64DQHR09LV58+bJOjr22rVrNkaj0eaZZ565CQCvvPLKtfnz57eOx8+dO7caADQaTZ1MJqvz9vZuBAAvL6+GgoICfmJi4mPZ2dlCjUajAID6+nreiBEjTD///POwsLAwo5ubW1NLO1W5ubkCACgsLOTPmTNnZEVFhe3t27d5Xl5eDQCQnJxsv3///tbufldX1yYA+OKLL5zi4+NdTCYTq6iosM3MzBSEhYXVAcCCBQuqASAoKOhWbW0tz9HR0ezo6Gjm8/nmyspKGxcXl6aeXt+OUM8BIYSQHrPMMXBaIC8YPtuv1DLE0H6SYncdPXpUlJSUJEpPT9cbDAadQqGoq6uru+vexRh7oPYFAgEHADweD0OHDm0tU8zj8WAymRjHcWz+/PnX9Hq9Tq/X64qKirI/+uije5Z8XrlypeTVV1+9mpubq9u+ffvFhoaGTu+1er2ev337drekpKTc3Nxc3eTJk2vq6+tb928bH5/PvyO+xsbGBzvpLqDkgBBCSI/dLjYK284xsMxBuF1sFPak3erqahsHB4cmkUhkPn/+vCAzM3MYAJjNZnz++eeOABAfH+8cGhraYQ+Fs7Nzk729fdPx48cfA4DPPvvMOTw8/GZX33/GjBk3jh496lhSUjIEAK5cuWKTm5vLj4iIqE1NTRVVVFTYNDY24vDhw46WY4xGo41EImm0xGbZPnHixBubN28eYXldUVFhU1VVZWNnZ2d2cnJqunTp0pDExESH7l2hvkHJASGEkB5zeNrnSvshBDuFs9HhaZ8rPWk3MjKyxmQyMalUqlq/fr1Yo9HUAoCdnZ05LS1tmL+/vyo5OVn0wQcflHXWxueff/7/s3evYU1e+d74f0kQIXCLCJGDyCGEHIGo0HRTbdWKdTutjkqr7WPBA+xR7LROPcwwtfW/WzePpUK3m7o7xV4tDEjH2hYVvWodaytoO7sxCkESEkEmFYeEgghEEhQS/i+604dQ0JGgQfv9XJcvvA9rreRNvtxr3ev39z/84Q9hQqFQWlNT4/3mm2/e8i//gRISEnpeffXVf8ybN08oFAqljz/+uLCpqWlcVFRU78svv2xMTEyUJCQkiKdOnXrDz8/PRkS0bdu25ueeey5aJpNJAgIC+hxt7dy509jR0cGJiYmRiUQi6eeff84kJSVZY2NjLdHR0bHLly/nJyQk/NPB5W5i9ff33/4qAAD4xVGr1Qa5XN7m7nEMhcvlTh+qbPO91NnZyfbz87P39vbSggULBKtXr25LS0vrcOeY7pRarQ6Uy+WRg4/jyQEAAMAIbN26NVQsFkuFQqEsPDz8xvPPP39fBYNbwdsKAABw3xnqqUFqamr42bNnfQcey8zMbNm4cePVuzGGvXv3Xrkb7f6zlEqld1paWtTAY56envaamhqdq20jHAAAwAOhpKTksrvHcC8pFAqrTqfT3o22Ma0AAAAAThAOAAAAwAnCAQAAADhBOAAAAAAnCAcAAOCykydPBun1eqetkvV6PXPy5Mkgd41ptB07dsxXKpVKPDw8Ehy7Mz6oEA4AAMBlYWFhloMHD/IdAUGv1zMHDx7kh4WFWdw9ttHC5/NvFhYWGhYtWnRXXo0cSxAOAADAZSKRyLx06dLGgwcP8o8dOxZ68OBB/tKlSxtFIpHLVRmTk5OjZTKZRCAQyHJzcwOJftwhMT09fapAIJAlJSUJm5ubh301v6KigisUCqVisVi6bt26sJiYGBkRUX5+fsC8efOiFQqFKCIiInbz5s0hjnv27NkTIBQKpSKRSLpkyZKo//2MNx9++GErm337n06bzUbPP/98eFRUlOyRRx6JmT17tuB+etqAcAAAAKNCJBKZ5XJ563fffRcil8tbRyMYEBGVlpYaNBpNXXV1tbagoCDIZDJxrFYrOzExsbuhoUEzc+ZMc1ZWVuhw92dkZES9++673+t0Oi2Hw3GqGVBTU+NTXl7eoNFoNOXl5ZMqKyu5KpXKKzc3N6SiouKiXq/XFhQU3PH+CcXFxf5NTU2eDQ0Nmv379/+9qqrK9/Z3jR0IBwAAMCr0ej2jVqt5Dz/8sFGtVvMGr0EYqZycnCCRSCRNSEiQmEymcRqNxovNZlNGRkY7EdHatWuvKpXKIX9829raON3d3ezk5ORuIqJVq1a1Dzw/a9asruDgYJuvr2//k08+ee3UqVO+x48fn7Bo0aJrISEhfUREQUFBtjsd8+nTp32XLVt2jcPhUHh4eN+//Mu/jEpQulewQyIAALjMscbAMZXA5/PNozG1cPToUaaiooJRqVQ6hmHsCoVCZLVaf/aHLYvFGlH7g+8baTsPGjw5AAAAl125coU7MAg41iBcuXKF60q7HR0dHD8/PxvDMPaqqiovtVrtQ0Rkt9vJMYdfVFQUoFAohgwggYGBNh8fH/tXX33lQ0RUUlIyaeD5M2fOTGhpaeFcv36d9fnnn0+cPXv29QULFnQdOXLE32QycYiIWlpaOHc67lmzZl0/dOiQv81mo6amJo/vvvtuVJ6i3Ct4cgAAAC6bN29ey+BjIpHI7Oq6g5SUlM69e/fy+Hy+jM/n98jl8m4iIm9vb7tSqfTZtWtXaEBAQG9ZWVnjcG0UFBQY1q9fH8FmsykpKcnMMMxP0wTx8fHdixcvjjaZTJ5PP/301ccee8xCRLR582bjo48+Kmaz2f2xsbGWzz77zFBRUcFdvny5oKuri3Py5MmJ2dnZoQ0NDZqh+ly1atW1L7/8khEIBLKQkJCbMpnMMnHixDuennAXVn9//+2vAgCAXxy1Wm2Qy+Vt7h7HULhc7vShKjMOpbOzk+3n52cnInrllVeCjUbjuMLCwqb8/PwAlUrlU1xcfFcKNjn6NZlMnIceekjyzTff6MLDw/vuRl8jpVarA+VyeeTg43hyAAAAD7QDBw745eXlhdhsNtaUKVNufPTRR4Z70e/8+fNjurq6OL29vaytW7cax1owuBU8OQAAgCGN5ScHQ0lNTQ0/e/as01sLmZmZLRs3brxrmxYplUrvtLS0qIHHPD097TU1Nbq71edowpMDAAB4oJWUlNyV6YFbUSgUVp1Op73X/d5teFsBAAAAnCAcAAAAgBOEAwAAAHCCcAAAAC67dCkvqLXtpNNGP61tJ5lLl/JQsvk+hHAAAAAum+A3zaLVbuE7AkJr20lGq93Cn+A37Rdfsrm3t/duDemuQTgAAACX8QLnmaXS3Eatdgv/4sUdoVrtFr5UmtvIC5z3iyzZfPToUSYhIUH0+OOPC2JiYmJd/Q7uNYQDAAAYFbzAeeaQ4GWtTVeKQkKCl7WORjAguj9LNhMRabVa7rvvvnvZYDDUjuR+d0I4AACAUdHadpIxmsp4U8NWG42mMt7gNQgjdT+WbCb6sW6DWCy+OZJ73Q2bIAEAgMscawwcUwn+kx4xj8bUwv1cspnL5dpHrbF7DE8OAADAZV2d1dyBQcCxBqGrs/oXWbL5focnBwAA4LLo6M0/K9nMC5xndnXdwf1asvl+h8JLAAAwpLFceOl+KNl8P0DhJQAA+EVyV8nm+xmeHAAAwJDG8pODoaBk853DkwMAAHigoWTz6MHbCgAAAOAE4QAAAACcIBwAAACAE4QDAAAAcIJwAAAALtvZaAz6a1unUy2Fv7Z1MjsbjUHuGtNoO3bsmK9UKpV4eHgkOHZnHI7BYBj3r//6r/x7NbbRhnAAAAAuS5jAtbxYd5nvCAh/betkXqy7zE+YwLW4e2yjhc/n3ywsLDQsWrTotq9GRkZG9n7xxRfD7to41iEcAACAy54I9DO/IwlvfLHuMv+1+iuhL9Zd5r8jCW98ItDP5bLNycnJ0TKZTCIQCGS5ubmBRD/ukJienj5VIBDIkpKShM3NzcO+ml9RUcEVCoVSsVgsXbduXVhMTIyMiCg/Pz9g3rx50QqFQhQRERG7efPmEMc9e/bsCRAKhVKRSCRdsmRJFBGRSCS6+fDDD1vZ7Nv/dOr1ek9HP/cjhAMAABgVTwT6mZcH+7e+f6UtZHmwf+toBAMiotLSUoNGo6mrrq7WFhQUBJlMJo7VamUnJiZ2NzQ0aGbOnGnOysoKHe7+jIyMqHffffd7nU6n5XA4Tjv/1dTU+JSXlzdoNBpNeXn5pMrKSq5KpfLKzc0NqaiouKjX67UFBQW/uO2VEQ4AAGBU/LWtkzlgusb7t7BA4wHTNd7gNQgjlZOTEyQSiaQJCQkSk8k0TqPReLHZbMrIyGgnIlq7du1VpVLpO9S9bW1tnO7ubnZycnI3EdGqVavaB56fNWtWV3BwsM3X17f/ySefvHbq1Cnf48ePT1i0aNG1kJCQPiKioKAg21BtP8iwQyIAALjMscbAMZXwqD9jHo2phaNHjzIVFRWMSqXSMQxjVygUIqvV+rM/bFks1ojaH3zfSNt50ODJAQAAuOxcl4U7MAg41iCc67JwXWm3o6OD4+fnZ2MYxl5VVeWlVqt9iIjsdjs53hgoKioKUCgUQwaQwMBAm4+Pj/2rr77yISIqKSmZNPD8mTNnJrS0tHCuX7/O+vzzzyfOnj37+oIFC7qOHDnibzKZOERELS0tHFc+w/0ITw4AAMBlf+SHtAw+9kSgn9nVdQcpKSmde/fu5fH5fBmfz++Ry+XdRETe3t52pVLps2vXrtCAgIDesrKyYd8MKCgoMKxfvz6CzWZTUlKSmWGYn6YJ4uPjuxcvXhxtMpk8n3766auPPfaYhYho8+bNxkcffVTMZrP7Y2NjLZ999pmhoqKCu3z5ckFXVxfn5MmTE7Ozs0MbGho0rny+sQpVGQEAYEhjuSojl8udbrFYqv6Zazs7O9l+fn52IqJXXnkl2Gg0jissLGzKz88PUKlUPsXFxb+4BYcOqMoIAAC/SAcOHPDLy8sLsdlsrClTptz46KOPDO4e01iHJwcAADCksfzkYCipqanhZ8+edXprITMzs2Xjxo233bRopJRKpXdaWlrUwGOenp72mpoa3d3qczThyQEAADzQSkpK7vn0gEKhsOp0Ou297vduw9sKAAAA4AThAAAAAJwgHAAAAIAThAMAAABwgnAAAAAuyz2uD/qyrsWplsKXdS1M7nF9kLvGNNqOHTvmK5VKJR4eHgmO3RkfVAgHAADgsmnhEy2bDlTzHQHhy7oWZtOBav608IkWd49ttPD5/JuFhYWGRYsW3bVXI8cKhAMAAHBZsiTI/PbyaY2bDlTzXz+iCd10oJr/9vJpjcmSIJfLNicnJ0fLZDKJQCCQ5ebmBhL9uENienr6VIFAIEtKShI2NzcP+2p+RUUFVygUSsVisXTdunVhMTExMiKi/Pz8gHnz5kUrFApRRERE7ObNm0Mc9+zZsydAKBRKRSKRdMmSJVFERCKR6ObDDz9sZbNv/9P5u9/9LlQsFkvFYrF08uTJ8U8//XSkq9/DvYRwAAAAoyJZEmROmRHWWviNISRlRljraAQDIqLS0lKDRqOpq66u1hYUFASZTCaO1WplJyYmdjc0NGhmzpxpzsrKCh3u/oyMjKh33333e51Op+VwOE47/9XU1PiUl5c3aDQaTXl5+aTKykquSqXyys3NDamoqLio1+u1BQUFd7x/wu7du5t1Op32zJkz+okTJ/Zt3Ljxh5F8dndBOAAAgFHxZV0L89n5K7w1MyONn52/whu8BmGkcnJygkQikTQhIUFiMpnGaTQaLzabTRkZGe1ERGvXrr2qVCp9h7q3ra2N093dzU5OTu4mIlq1alX7wPOzZs3qCg4Otvn6+vY/+eST106dOuV7/PjxCYsWLboWEhLSR0QUFBRkG6rt27Hb7fTMM89EvfDCCy2PPvrofTW9gh0SAQDAZY41Bo6phJmCQPNoTC0cPXqUqaioYFQqlY5hGLtCoRBZrdaf/WHLYrFG1P7g+0bazlA2b94cGhIScvNubt98t+DJAQAAuKz6cgd3YBBwrEGovtzBdaXdjo4Ojp+fn41hGHtVVZWXWq32Ifrxr3LHGwNFRUUBCoViyAASGBho8/HxsX/11Vc+REQlJSWTBp4/c+bMhJaWFs7169dZn3/++cTZs2dfX7BgQdeRI0f8TSYTh4iopaWFc6fj/uijj/wqKiomfPjhh013eu9YgCcHAADgsi0LRC2DjyVLgsyurjtISUnp3Lt3L4/P58v4fH6PXC7vJiLy9va2K5VKn127doUGBAT0lpWVNQ7XRkFBgWH9+vURbDabkpKSzAzD/DRNEB8f37148eJok8nk+fTTT1997LHHLEREmzdvNj766KNiNpvdHxsba/nss88MFRUV3OXLlwu6uro4J0+enJidnR3a0NCgGarP//qv/wpqaWkZN23aNAkR0b/+67927N69u9mV7+JeQlVGAAAY0liuysjlcqdbLJaqf+bazs5Otp+fn52I6JVXXgk2Go3jCgsLm/Lz8wNUKpVPcXHxPS/YNFagKiMAAPwiHThwwC8vLy/EZrOxpkyZcuOjjz4yuHtMYx2eHAAAwJDG8pODoaSmpoafPXvW6a2FzMzMlru5IFCpVHqnpaVFDTzm6elpr6mp0d2tPkcTnhwAAMADraSk5J5PDygUCqtOp9Pe637vNrytAAAAAE4QDgAAAMAJwgEAAAA4QTgAAAAAJwgHAADgupM7gkh/zLmWgv4YQyd3BLlpRKPu2LFjvlKpVOLh4ZHg2J3xQYVwAAAArgtLtNDB9fyfAoL+GEMH1/MpLPG+Kjh0K3w+/2ZhYaFh0aJF912thDuFcAAAAK4TLTTT0vca6eB6Ph3LCqWD6/m09L1GEi10uWxzcnJytEwmkwgEAllubm4g0Y87JKanp08VCASypKQkYXNz87Cv5ldUVHCFQqFULBZL161bFxYTEyMjIsrPzw+YN29etEKhEEVERMRu3rw5xHHPnj17AoRCoVQkEkmXLFkSRUQkEoluPvzww1Y2+/Y/nUuXLo0sKSmZ6Pj/4sWLo/bt2zfxVveMJQgHAAAwOkQLzSR/rpW++1MIyZ9rHY1gQERUWlpq0Gg0ddXV1dqCgoIgk8nEsVqt7MTExO6GhgbNzJkzzVlZWaHD3Z+RkRH17rvvfq/T6bQcDsdp57+amhqf8vLyBo1GoykvL59UWVnJValUXrm5uSEVFRUX9Xq9tqCg4I73T8jIyGj785//HEBEdPXqVc65c+d8V6xY0XHnn949EA4AAGB06I8xpP4Ljx7ONJL6L7yfrUEYoZycnCCRSCRNSEiQmEymcRqNxovNZlNGRkY7EdHatWuvKpVK36HubWtr43R3d7OTk5O7iYhWrVrVPvD8rFmzuoKDg22+vr79Tz755LVTp075Hj9+fMKiRYuuhYSE9BERBQUF2YZq+1aefPLJ6waDwau5udnjgw8+mPTkk09eGzdu3J1/eDfBDokAAOA6xxoDx1QCf7Z5NKYWjh49ylRUVDAqlUrHMIxdoVCIrFbrz/6wZbFYI2p/8H0jbWcoK1asuPr+++9P+uyzzyYVFhYaRq3hewBPDgAAwHVXVFynIOBYg3BFxXWl2Y6ODo6fn5+NYRh7VVWVl1qt9iEistvt5HhjoKioKEChUAwZQAIDA20+Pj72r776yoeIqKSkZNLA82fOnJnQ0tLCuX79Ouvzzz+fOHv27OsLFizoOnLkiL/JZOIQEbW0tHBGMvb169e3FRQUBBERJSQk9IykDXfBkwMAAHDdvNdafnZMtNDs6rqDlJSUzr179/L4fL6Mz+f3yOXybiIib29vu1Kp9Nm1a1doQEBAb1lZWeNwbRQUFBjWr18fwWazKSkpycwwzE/TBPHx8d2LFy+ONplMnk8//fTVxx57zEJEtHnzZuOjjz4qZrPZ/bGxsZbPPvvMUFFRwV2+fLmgq6uLc/LkyYnZ2dmhDQ0NmuH6nTp1al90dHTPokWL7pu1Bg6oyggAAEMay1UZuVzudIvFUvXPXNvZ2cn28/OzExG98sorwUajcVxhYWFTfn5+gEql8ikuLr4rBZvMZjNbKpVKq6ur6wICAu543cK9MFxVRkwrAADAA+3AgQN+YrFYGhMTI/v22299s7OzjXe7z0OHDjEikUj2b//2bz+M1WBwK3hyAAAAQxrLTw6GkpqaGn727FmntxYyMzNbNm7ceNc2LVIqld5paWlRA4hASogAACAASURBVI95enraa2pqdHerz9E03JMDrDkAAIAHQklJyV2ZHrgVhUJh1el02nvd792GaQUAAABwgnAAAAAAThAOAAAAwAnCAQAAADhBOAAAAJfln88POtV0yqmWwqmmU0z++fwgd43pdvLz8wPS0tLCBx9/6623eHv27AkYfFyv13s6Kjo+6BAOAADAZfG8eMu2M9v4joBwqukUs+3MNn48L97i7rHdqd///vetv/3tb+/a64/3A4QDAABw2Zypc8zZs7Ibt53Zxn9T+WbotjPb+NmzshvnTJ3jctnm5OTkaJlMJhEIBLLc3NxAoh93SExPT58qEAhkSUlJwubm5mFfzVcoFKLKykouEZHRaPSYMmVK3OBr9u/f7zdt2jSx0Wj02LRpU+j27duDiIhOnz7NFYlEUpFIJH377bcnO65XqVRecXFxErFYLBUKhdILFy6M7+rqYs+ZM0cgEomkMTExsvfff99/qPGUl5czycnJ0Y7/Hzx4cML8+fOjh7rWXRAOAABgVMyZOse8KHpRa2ldacii6EWtoxEMiIhKS0sNGo2mrrq6WltQUBBkMpk4VquVnZiY2N3Q0KCZOXOmOSsrK3Sk7RcXF0/ctWtX8IkTJ+odZZod0tPTI3fv3n1Zr9c77WXwzjvv8DZs2NCi0+m0NTU1dVFRUTfLysomBAcH9+r1em19fb1m2bJlXUP199RTT5kvXbrk5Qg0H374YcCaNWvG1GZTCAcAADAqTjWdYo5cOsJbKVlpPHLpCG/wGoSRysnJCRKJRNKEhASJyWQap9FovNhsNmVkZLQTEa1du/aqUqn0vV07Q/nmm2+YvLy84BMnTtTzeDynbY7b2to4ZrOZs3DhwuuOfhznkpKSuvPy8kK2bdsWXF9f7+nr69s/Y8YM6+nTpydkZmZO+eKLL3yH2zaZzWbT8uXLr77//vuT2traOOfPn/d95plnOkcy/rsF4QAAAFzmWGOQPSu7MUuR1eyYYnA1IBw9epSpqKhgVCqVTq/XayUSidVqtf7st4vFYg3bhoeHR7/N9uPvtMVicbowIiLiRnd3N6e2ttbrTsa1fv369sOHDzd4e3vbn3rqqZjy8nImPj7+xvnz57VxcXHW1157bcqWLVtChrs/MzPz6oEDBwI++OCDSYsWLbo2bty4O+n+rkM4AAAAl9W01nAHrjFwrEGoaa3hutJuR0cHx8/Pz8YwjL2qqspLrVb7EBHZ7XYqLCz0JyIqKioKUCgUw05hTJ069YZSqfQhIiotLXVaBxAWFnbzk08+ubRmzZoolUrlFBACAwNtDMPYjh8/7vu//UxynNNqtZ4SieTGq6+++sOCBQs6qqurvQ0GwziGYewbNmxo37Rpk6m6unrYzx4ZGdkbFBTUm5eXF/Kb3/xmTE0pECEcAADAKHhpxkstg9cYzJk6x/zSjJdaXGk3JSWls6+vj8Xn82Vbt26dIpfLu4mIvL297Uql0icmJkZWWVnJ7Ny5c9hKi1lZWS0ffPABTyKRSNva2n62cHH69Ok9xcXFjStWrIjWaDTjB5774IMPDC+99FK4WCyW9vf3//TUYd++fZOEQqFMLBZL6+rqvNetW3f13Llz3tOmTZOIxWJpdnZ26Pbt229Z/fHZZ5+9GhIScnPGjBk9d/7N3F2oyggAAEMay1UZuVzudIvFUuXucbgiLS0tfPr06ZaXX37Zbd8xqjICAACMETKZTOLt7W0vKChocvdYhoJwAAAA952hnhqkpqaGnz171umthczMzJaNGze6bUOj+fPnRzc1NTlNVWRnZ1/RaDR17hrTPwPhAAAAHgglJSWX3T2GwU6cOHHJ3WMYCSxIBAAAACcIBwAAAOAE4QAAAACcIBwAAACAE4QDAABw2Q+7dweZv/7aaatk89dfMz/s3h3krjHdTn5+fkBaWlr44ONvvfUWb8+ePQGDj+v1es+YmBjZaPS9YsWKiHPnzt3Rls33Et5WAAAAl3nL5ZbmP2TxQ3PebGTmzjWbv/6acfzf3WO7U7///e9b73YfH3/88fd3uw9X4MkBAAC4jJk71xya82Zj8x+y+Kb/+39DBwYFV9tOTk6OlslkEoFAIMvNzQ0k+nGHxPT09KkCgUCWlJQkdJQ/HopCoRBVVlZyiYiMRqPHlClT4gZfs3//fr9p06aJjUajx6ZNm0K3b98eRER0+vRprkgkkopEIunbb7892XG9SqXyiouLk4jFYqlQKJReuHBhfFdXF3vOnDkCkUgkjYmJkb3//vv+g/sZakxjEcIBAACMCmbuXLPfkl+3XisuCfFb8uvW0QgGRESlpaUGjUZTV11drS0oKAgymUwcq9XKTkxM7G5oaNDMnDnTnJWVFTrS9ouLiyfu2rUr+MSJE/UhISF9A8+lp6dH7t69+7Jer9cOPP7OO+/wNmzY0KLT6bQ1NTV1UVFRN8vKyiYEBwf36vV6bX19vWbZsmVdIx2TuyEcAADAqDB//TXTeegwzz8t1dh56DBv8BqEkcrJyQkSiUTShIQEiclkGqfRaLzYbDZlZGS0ExGtXbv2qlKp9L1dO0P55ptvmLy8vOATJ07U83g828BzbW1tHLPZzFm4cOF1Rz+Oc0lJSd15eXkh27ZtC66vr/f09fXtnzFjhvX06dMTMjMzp3zxxRe+AQEBtsH93S8QDgAAwGUD1xgEv/JKs2OKwdWAcPToUaaiooJRqVQ6vV6vlUgkVqvV+rPfLhaLNdTtRETk4eHRb7P9+DttsVicLoyIiLjR3d3Nqa2tvaPFgevXr28/fPhwg7e3t/2pp56KKS8vZ+Lj42+cP39eGxcXZ33ttdembNmyJeRO2hxLEA4AAMBlVrWaO3CNgWMNglWtdmlevaOjg+Pn52djGMZeVVXlpVarfYiI7HY7FRYW+hMRFRUVBSgUimGnMKZOnXpDqVT6EBGVlpY6rQMICwu7+cknn1xas2ZNlEqlcgoIgYGBNoZhbMePH/f9334mOc5ptVpPiURy49VXX/1hwYIFHdXV1d4Gg2EcwzD2DRs2tG/atMlUXV09ZtcU3A7eVgAAAJdN/t3vWgYfY+bONbu67iAlJaVz7969PD6fL+Pz+T1yubybiMjb29uuVCp9du3aFRoQENBbVlY27FsRWVlZLStWrOAXFRXx5s+f3zH4/PTp03uKi4sbV6xYEV1eXt4w8NwHH3xgyMjIiGSxWDRnzpyf1hDs27dv0oEDBwI8PDz6eTxe744dO4xnzpzx+eMf/xjGZrPJw8Oj/913373lGwm3etrhbqz+/n53jwEAAMYgtVptkMvlbe4ex1C4XO70oSoz3i+EQqG0vLy8QSwW33TnONRqdaBcLo8cfBzTCgAAAPfQI488EiMSiazuDga3gmkFAAC47wz11CA1NTX87NmzTm8tZGZmtmzcuPHq4Gvvlfnz50c3NTWNH3gsOzv7SkpKyph+zRHhAAAAHgglJSWX3T2GwU6cOHHJ3WMYCUwrAAAAgBOEAwAAAHCCcAAAAABOEA4AAADACcIBAAC47H8OXwr6e02b01bJf69pY/7n8KUgd43pdvLz8wPS0tLCBx9/6623eHv27AkYfFyv13vGxMTIRqPvKVOmxBmNxjH7UgDCAQAAuCwoys9yskjLdwSEv9e0MSeLtPygKD+Lu8d2p37/+9+3/va3v3Xb649jAcIBAAC4LCo+0DxvtbTxZJGWf/rAxdCTRVr+vNXSxqj4QJfLNicnJ0fLZDKJQCCQ5ebmBhL9uENienr6VIFAIEtKShI2NzcP+1e4QqEQVVZWcomIjEajx5QpU+IGX7N//36/adOmiY1Go8emTZtCt2/fHkREdPr0aa5IJJKKRCLp22+/PdlxvUql8oqLi5OIxWKpUCiUXrhwYXxXVxd7zpw5ApFIJI2JiZG9//77/oP7Geitt96aLJVKJUKhUFpVVXVHhZ/uNoQDAAAYFVHxgWbRvwS31nx1JUT0L8GtoxEMiIhKS0sNGo2mrrq6WltQUBBkMpk4VquVnZiY2N3Q0KCZOXOmOSsrK3Sk7RcXF0/ctWtX8IkTJ+pDQkL6Bp5LT0+P3L1792W9Xq8dePydd97hbdiwoUWn02lramrqoqKibpaVlU0IDg7u1ev12vr6es2yZctuudFRYGBgn1arrVu7dm3rm2++OaamXxAOAABgVPy9po3R/4+JF/94mFH/Pybe4DUII5WTkxMkEomkCQkJEpPJNE6j0Xix2WzKyMhoJyJau3btVaVS6Xu7dobyzTffMHl5ecEnTpyo5/F4toHn2traOGazmbNw4cLrjn4c55KSkrrz8vJCtm3bFlxfX+/p6+vbP2PGDOvp06cnZGZmTvniiy98AwICbIP7G+j//J//c42ISKFQWAbvouhuCAcAAOAyxxqDeauljY8uFzY7phhcDQhHjx5lKioqGJVKpdPr9VqJRGK1Wq0/++26VYVDDw+Pfpvtx99pi8XidGFERMSN7u5uTm1t7R091l+/fn374cOHG7y9ve1PPfVUTHl5ORMfH3/j/Pnz2ri4OOtrr702ZcuWLSG3asPLy6vfMb6+vr4xVaIR4QAAAFzW8vdO7sA1Bo41CC1/7+S60m5HRwfHz8/PxjCMvaqqykutVvsQEdntdiosLPQnIioqKgpQKBTDTmFMnTr1hlKp9CEiKi0tdVoHEBYWdvOTTz65tGbNmiiVSuUUEAIDA20Mw9iOHz/u+7/9THKc02q1nhKJ5Marr776w4IFCzqqq6u9DQbDOIZh7Bs2bGjftGmTqbq62qXP7k5j9jUKAAC4f/zLr6NbBh+Lig80u7ruICUlpXPv3r08Pp8v4/P5PXK5vJuIyNvb265UKn127doVGhAQ0FtWVtY4XBtZWVktK1as4BcVFfHmz5/fMfj89OnTe4qLixtXrFgRXV5e3jDw3AcffGDIyMiIZLFYNGfOnJ/WEOzbt2/SgQMHAjw8PPp5PF7vjh07jGfOnPH54x//GMZms8nDw6P/3Xff/d6Vz+5OrP7+fnePAQAAxiC1Wm2Qy+Vt7h7HULhc7vShKjPCnVGr1YFyuTxy8HFMKwAAAIATTCsAAMB9Z6inBqmpqeFnz551emshMzOzZePGjW7b0Gj+/PnRg99EyM7OvpKSknLL1xzdDeEAAAAeCCUlJZfdPYbBTpw4ccndYxgJTCsAAACAE4QDAAAAcIJwAAAAAE4QDgAAAMAJwgEAALjszP7ioEvnlE5bJV86p2TO7C8eUwWFBsrPzw9IS0sLH3z8rbfe4u3Zsydg8HG9Xu8ZExMjG42+p0yZEmc0GsfsSwEIBwAA4LKQGLHl2H/n8R0B4dI5JXPsv/P4ITFii7vHdqd+//vft/72t7912+uPYwHCAQAAuCw6QWFe+MLmxmP/ncf/umhv6LH/zuMvfGFzY3TC8DUP/lnJycnRMplMIhAIZLm5uYFEP+6QmJ6ePlUgEMiSkpKEzc3Nw/4VrlAoRJWVlVwiIqPR6DFlypS4wdfs37/fb9q0aWKj0eixadOm0O3btwcREZ0+fZorEomkIpFI+vbbb092XK9Sqbzi4uIkYrFYKhQKpRcuXBjf1dXFnjNnjkAkEkljYmJk77//vv/gfga7fv0667HHHovJy8sLHMl3c7cgHAAAwKiITlCYZY/Naz1/rDxE9ti81tEIBkREpaWlBo1GU1ddXa0tKCgIMplMHKvVyk5MTOxuaGjQzJw505yVlRU60vaLi4sn7tq1K/jEiRP1ISEhfQPPpaenR+7evfuyXq/XDjz+zjvv8DZs2NCi0+m0NTU1dVFRUTfLysomBAcH9+r1em19fb1m2bJlt9zoqKuri/3EE0/ELF++vH3z5s1japtqhAMAABgVl84pGU3lSd6MhYuNmsqTvMFrEEYqJycnSCQSSRMSEiQmk2mcRqPxYrPZlJGR0U5EtHbt2qtKpdL3du0M5ZtvvmHy8vKCT5w4Uc/j8WwDz7W1tXHMZjNn4cKF1x39OM4lJSV15+XlhWzbti24vr7e09fXt3/GjBnW06dPT8jMzJzyxRdf+AYEBNgG9zfQ4sWLBampqW1jcQoD4QAAAFzmWGOw8IXNjXNX/6bZMcXgakA4evQoU1FRwahUKp1er9dKJBKr1Wr92W8Xi8Uatg0PD49+m+3H32mLxeJ0YURExI3u7m5ObW2t15A3D2P9+vXthw8fbvD29rY/9dRTMeXl5Ux8fPyN8+fPa+Pi4qyvvfbalC1btoTcqo2HHnro+vHjx/3sdvuddH1PIBwAAIDLjPU67sA1Bo41CMZ6HdeVdjs6Ojh+fn42hmHsVVVVXmq12oeIyG63U2FhoT8RUVFRUYBCMfwUxtSpU28olUofIqLS0lKndQBhYWE3P/nkk0tr1qyJUqlUTgEhMDDQxjCM7fjx477/288kxzmtVuspkUhuvPrqqz8sWLCgo7q62ttgMIxjGMa+YcOG9k2bNpmqq6tv+dl37drVPHHixL6h3phwN4QDAABw2axn01oGrzGITlCYZz2b1uJKuykpKZ19fX0sPp8v27p16xS5XN5NROTt7W1XKpU+MTExssrKSmbnzp3G4drIyspq+eCDD3gSiUTa1tb2s4WL06dP7ykuLm5csWJFtEajcSqS9MEHHxheeumlcLFYLO3v7//pqcO+ffsmCYVCmVgsltbV1XmvW7fu6rlz57ynTZsmEYvF0uzs7NDt27cPOyaHDz/8sKmnp4e9fv36sDv7Zu4uVn9/v7vHAAAAY5BarTbI5fIxtVDOgcvlTh+qMiPcGbVaHSiXyyMHH8eTAwAAAHAyZndnAgAAGM5QTw1SU1PDz5496/TWQmZmZsvGjRvd9jbA/Pnzo5uampymKrKzs6+kpKTc8jVHd0M4AACAB0JJSclld49hsBMnTlxy9xhGAtMKAAAA4AThAAAAAJwgHAAAAIAThAMAAABwgnAAAAAu6zxuCLLWXXXaKtlad5XpPG4IcteYbmfFihUR586dG3bb5Pz8/ACDwTDuXo5prEA4AAAAl3mGM5b2Axf5joBgrbvKtB+4yPcMZyzuHttwPv744+8TEhJ6hju/b9++wMuXLyMcAAAAjIS3JMA8abmwsf3ARX7HkUuh7Qcu8ictFzZ6SwJcLtucnJwcLZPJJAKBQJabmxtI9OMOienp6VMFAoEsKSlJ2NzcPOSr+VVVVV5xcXESx//1er2nUCiUEhEpFApRZWUlt6+vj1JSUiJjYmJkQqFQ+vrrr08uLCz0r62t5aalpfHFYrH0+vXrrC1btoTExsZKYmJiZM8991zEcAWTDAbDOLFYLHX843A4CRcvXvR09Xu4lxAOAABgVHhLAsw+Mya3Xv+mOcRnxuTW0QgGRESlpaUGjUZTV11drS0oKAgymUwcq9XKTkxM7G5oaNDMnDnTnJWVFTrUvdOnT+/p7e1l6XQ6TyKi4uLiSUuWLLk28Jq//e1vXKPROK6+vl5z8eJF7QsvvHB1zZo112JjYy3FxcWNOp1O6+vr279169Yfamtr6+rr6zVWq5W9f/9+v6H6jIyM7NXpdFqdTqddtWpV64IFC64JhcKbo/Fd3CsIBwAAMCqsdVeZ7vM/8Hxnhhq7z//AG7wGYaRycnKCRCKRNCEhQWIymcZpNBovNptNGRkZ7UREa9euvapUKn2Hu3/JkiXtxcXFk4iIDh486J+amto+8LxYLL7R1NQ0ftWqVVM//fTTCf7+/rah2jl27BgTHx8vFgqF0m+//Zapra31vtW4//rXv/r8+c9/5v3lL38x3OlndjeEAwAAcJljjcGk5cLGiYuimx1TDK4GhKNHjzIVFRWMSqXS6fV6rUQisVqt1p/9drFYrKFuJyKi1NTUa4cOHfKvqakZz2KxKC4u7sbA8zwez1ZbW6udO3eu+b333uM9++yzkYPbsFgsrM2bN0eUlZVdunjxovb5559v6+npGfY39Pvvvx+3bt26yAMHDlzy8/Mbev5hDEM4AAAAl928bOYOXGPgWINw87KZ60q7HR0dHD8/PxvDMPaqqiovtVrtQ0Rkt9upsLDQn4ioqKgoQKFQDDuFIZPJbrDZbNq+fXvo0qVL2wefNxqNHjabjVavXt2xc+fOf1y4cIFLROTr62vr7OzkEBFZLBY2EVFwcHBfZ2cn+8iRI/7D9Xfjxg3WsmXL+Dt27PhHfHz8jeGuG8sQDgAAwGV+CyJbBq8x8JYEmP0WRLa40m5KSkpnX18fi8/ny7Zu3TpFLpd3ExF5e3vblUqlT0xMjKyyspLZuXOn8VbtLFu2rP3w4cOTUlNTrw0+ZzAYxs2aNUskFoulqamp/DfeeOMKEVFaWlrbiy++GCEWi6VeXl72lStXtkokEtncuXOFjnEM5csvv/Spra31+Y//+I9Qx6LE++2VSFZ/f7+7xwAAAGOQWq02yOXyNnePYyhcLnf6UJUZ4c6o1epAuVweOfg4nhwAAACAE5RsBgCA+85QTw1SU1PDz5496/TWQmZmZsvGjRuv3q1xuKPPewHhAAAAHgglJSWXfwl93guYVgAAAAAnCAcAAADgBOEAAAAAnCAcAAAAgBOEAwAAcNnJkyeD9Hq901bJer2eOXnyZJC7xnQ7K1asiDh37pzXcOfz8/MD7rfNi0YLwgEAALgsLCzMcvDgQb4jIOj1eubgwYP8sLAwi7vHNpyPP/74+4SEhJ7hzu/bty/w8uXLCAcAAAAjIRKJzEuXLm08ePAg/9ixY6EHDx7kL126tFEkErlctjk5OTlaJpNJBAKBLDc3N5Doxx0S09PTpwoEAllSUpKwubl5yFfzq6qqvOLi4iSO/+v1ek+hUCglIlIoFKLKykpuX18fpaSkRMbExMiEQqH09ddfn1xYWOhfW1vLTUtL44vFYun169dZW7ZsCYmNjZXExMTInnvuuQi7feh6ShqNZrxUKv2pzwsXLjj9/36AcAAAAKNCJBKZ5XJ563fffRcil8tbRyMYEBGVlpYaNBpNXXV1tbagoCDIZDJxrFYrOzExsbuhoUEzc+ZMc1ZWVuhQ906fPr2nt7eXpdPpPImIiouLJy1ZssSpvsLf/vY3rtFoHFdfX6+5ePGi9oUXXri6Zs2aa7GxsZbi4uJGnU6n9fX17d+6desPtbW1dfX19Rqr1crev3+/31B9ymSyGwzD2L799ltvIqKCgoLAlStX3lebIiEcAADAqNDr9YxareY9/PDDRrVazRu8BmGkcnJygkQikTQhIUFiMpnGaTQaLzabTRkZGe1ERGvXrr2qVCp9h7t/yZIl7cXFxZOIiA4ePOifmprqVJlRLBbfaGpqGr9q1aqpn3766QR/f3/bUO0cO3aMiY+PFwuFQum3337L1NbWeg/X5+rVq9vef//9wL6+Pjp8+LB/eno6wgEAAPyyONYYLF26tHHhwoXNjikGVwPC0aNHmYqKCkalUun0er1WIpFYrVbrz367WCzWsG2kpqZeO3TokH9NTc14FotFcXFxTmWUeTyerba2Vjt37lzze++9x3v22WcjB7dhsVhYmzdvjigrK7t08eJF7fPPP9/W09Mz7G/oqlWrrn399dd++/fvnxgXF2cJDg4eMnCMVQgHAADgsitXrnAHrjFwrEG4cuUK15V2Ozo6OH5+fjaGYexVVVVearXah4jIbrdTYWGhPxFRUVFRgEKhGHYKQyaT3WCz2bR9+/bQpUuXtg8+bzQaPWw2G61evbpj586d/7hw4QKXiMjX19fW2dnJISKyWCxsIqLg4OC+zs5O9pEjR/xvNW4ul9s/e/bszk2bNoWvXr16TFa2vBWEAwAAcNm8efNaBq8xEIlE5nnz5rW40m5KSkpnX18fi8/ny7Zu3TpFLpd3ExF5e3vblUqlT0xMjKyyspLZuXOn8VbtLFu2rP3w4cOTUlNTrw0+ZzAYxs2aNUskFoulqamp/DfeeOMKEVFaWlrbiy++GCEWi6VeXl72lStXtkokEtncuXOFjnHcSlpaWjuLxaJly5Z1jfTzuwurv7/f3WMAAIAxSK1WG+Ry+Zj8q5fL5U4fqjLjWLJ9+/agzs5Ozn/91381u3ssw1Gr1YFyuTxy8HFUZQQAABhl8+fPj/7+++/HV1RUXHT3WEYC4QAAAO47Qz01SE1NDT979qzTWwuZmZktGzduvGtvCgzX54kTJy7drT7vBYQDAAB4IJSUlFz+JfR5L2BBIgAAADhBOAAAAAAnCAcAAADgBOEAAABcdulSXlBr20mn3RBb204yly7l/SJLNv/ud78LPXTo0KhsH+0OCAcAAOCyCX7TLFrtFr4jILS2nWS02i38CX7TfpElm3fv3t28ZMmSUSk85Q4IBwAA4DJe4DyzVJrbqNVu4V+8uCNUq93Cl0pzG3mB835xJZuJiFJSUiId2zvfjxAOAABgVPAC55lDgpe1Nl0pCgkJXtY6GsGA6P4r2fwgQDgAAIBR0dp2kjGaynhTw1YbjaYy3uA1CCN1P5Zsvt8hHAAAgMscawyk0txGofC1ZscUg6sB4X4t2Xy/e2A/GAAA3DtdndXcgWsMHGsQujqrf5Elm+932D4ZAABcFh29+WelmXmB88yurjtISUnp3Lt3L4/P58v4fH7P4JLNu3btCg0ICOgtKytrvFU7y5Yta9+xY0dYTk7OPwafMxgM49LT0yPtdjuLiGhwyeatW7faVSpVnaNkM4/H6/tnSjazWKz7tuwxSjYDAMCQULJ55B5//HHByy+/3LJo0aIx/TrjcCWbMa0AAAAwip555plIq9XKfuKJJ667eywjhWkFAAC474z1ks13s897AeEAAAAeCCjZPHowrQAAAABOEA4AAADACcIBAAAAOEE4AAAAACcIBwAA4LKdjcagv7Z1Om2V/Ne2TmZnozHIXWO6nRUrVkScO3fOa7jz+fn5AQaDYUQlmx0VH0c+OvdCOAAAAJclTOBaXqy7zHcEhL+2dTIv1l3mJ0zgWtw9tuF8/PHH3yckPTc8LwAAIABJREFUJPQMd37fvn2Bly9fHlE4uN8hHAAAgMueCPQzvyMJb3yx7jL/tforoS/WXea/IwlvfCLQz+UdApOTk6NlMplEIBDIcnNzA4l+3CExPT19qkAgkCUlJQmbm5uHfDW/qqrKKy4uTuL4v16v9xQKhVKi//fXfV9fH6WkpETGxMTIhEKh9PXXX59cWFjoX1tby01LS+OLxWLp9evXWVu2bAmJjY2VxMTEyJ577rkIu91+y3H/5S9/8Y+Li5NERkbGfvHFF8NWjRyLEA4AAGBUPBHoZ14e7N/6/pW2kOXB/q2jEQyIiEpLSw0ajaauurpaW1BQEGQymThWq5WdmJjY3dDQoJk5c6Y5KysrdKh7p0+f3tPb28vS6XSeRETFxcWTlixZcm3gNX/729+4RqNxXH19vebixYvaF1544eqaNWuuxcbGWoqLixt1Op3W19e3f+vWrT/U1tbW1dfXa6xWK3v//v1+txp3X18f68KFC3U5OTlNb7zxxpDjG6sQDgAAYFT8ta2TOWC6xvu3sEDjAdM13uA1CCOVk5MTJBKJpAkJCRKTyTROo9F4sdlsysjIaCciWrt27VWlUjnsX+ZLlixpLy4unkREdPDgQf/U1FSnyoxisfhGU1PT+FWrVk399NNPJ/j7+9uGaufYsWNMfHy8WCgUSr/99lumtrbW+1bjfuaZZ64RET3yyCPdV65c8bzTz+1OCAcAAOAyxxqDdyThjTtiwpodUwyuBoSjR48yFRUVjEql0un1eq1EIrFardaf/XaxWKxh20hNTb126NAh/5qamvEsFovi4uJuDDzP4/FstbW12rlz55rfe+893rPPPhs5uA2LxcLavHlzRFlZ2aWLFy9qn3/++baenp5b/oZ6eXn1ExF5eHiQzWYbfoBjEMIBAAC47FyXhTtwjYFjDcK5LotLK/Y7Ojo4fn5+NoZh7FVVVV5qtdqHiMhut1NhYaE/EVFRUVGAQqEYdgpDJpPdYLPZtH379tClS5e2Dz5vNBo9bDYbrV69umPnzp3/uHDhApeIyNfX19bZ2ckhIrJYLGwiouDg4L7Ozk72kSNH/F35XGMdaisAAIDL/sgPaRl87IlAP7Or6w5SUlI69+7dy+Pz+TI+n98jl8u7iYi8vb3tSqXSZ9euXaEBAQG9ZWVljbdqZ9myZe07duwIy8nJ+cfgcwaDYVx6enqk3W5nERG98cYbV4iI0tLS2l588cWIrVu32lUqVd3KlStbJRKJjMfj9TnG8aBi9ff3u3sMAAAwBqnVaoNcLm9z9ziGwuVypw9VmRHujFqtDpTL5ZGDj2NaAQAAAJxgWgEAAO47Qz01SE1NDT979qzTWwuZmZktGzduvHq3xuGOPu8FhAMAAHgglJSUXP4l9HkvYFoBAAAAnCAcAAAAgBOEAwAAAHCCcAAAAABOEA4AAMBlucf1QV/WtThtlfxlXQuTe1wf5K4x3c6KFSsizp075zXc+fz8/ACDwTCiks2Oio8jH517IRwAAIDLpoVPtGw6UM13BIQv61qYTQeq+dPCJ1rcPbbhfPzxx98nJCT0DHd+3759gZcvXx5ROLjfIRwAAIDLkiVB5reXT2vcdKCa//oRTeimA9X8t5dPa0yWBLlctjk5OTlaJpNJBAKBLDc3N5Doxx0S09PTpwoEAllSUpKwubl5yFfzq6qqvOLi4iSO/+v1ek+hUCgl+n9/3ff19VFKSkpkTEyMTCgUSl9//fXJhYWF/rW1tdy0tDS+WCyWXr9+nbVly5aQ2NhYSUxMjOy5556LsNvttx27zWajlJSUyJdeeil0qH5c/W7uFoQDAAAYFcmSIHPKjLDWwm8MISkzwlpHIxgQEZWWlho0Gk1ddXW1tqCgIMhkMnGsVis7MTGxu6GhQTNz5kxzVlZW6FD3Tp8+vae3t5el0+k8iYiKi4snLVmy5NrAa/72t79xjUbjuPr6es3Fixe1L7zwwtU1a9Zci42NtRQXFzfqdDqtr69v/9atW3+ora2tq6+v11itVvb+/fv9bjXu3t5e1pIlS6IEAkFPfn5+81D9jMb3czcgHAAAwKj4sq6F+ez8Fd6amZHGz85f4Q1egzBSOTk5QSKRSJqQkCAxmUzjNBqNF5vNpoyMjHYiorVr115VKpW+w92/ZMmS9uLi4klERAcPHvRPTU11qswoFotvNDU1jV+1atXUTz/9dIK/v79tqHaOHTvGxMfHi4VCofTbb79lamtrvW817g0bNkRIpVJrTk6O6U76GQsQDgAAwGWONQZvL5/W+P8tkjU7phhcDQhHjx5lKioqGJVKpdPr9VqJRGK1Wq0/++1isVjDtpGamnrt0KFD/jU1NeNZLBbFxcXdGHiex+PZamtrtXPnzjW/9957vGeffTZycBsWi4W1efPmiLKysksXL17UPv/88209PT23/A1NTEy8fvr06QkWi4X1z/YzViAcAACAy6ovd3AHrjFwrEGovtzh0or9jo4Ojp+fn41hGHtVVZWXWq32ISKy2+1UWFjoT0RUVFQUoFAohp3CkMlkN9hsNm3fvj106dKl7YPPG41GD5vNRqtXr+7YuXPnPy5cuMAlIvL19bV1dnZyiIgsFgubiCg4OLivs7OTfeTIEf/bjX3dunVtTzzxROdTTz0V3dvbO2w/YxFqKwAAgMu2LBC1DD6WLAkyu7ruICUlpXPv3r08Pp8v4/P5PXK5vJuIyNvb265UKn127doVGhAQ0FtWVtZ4q3aWLVvWvmPHjrCcnJx/DD5nMBjGpaenR9rtdhYR0RtvvHGFiCgtLa3txRdfjNi6datdpVLVrVy5slUikch4PF6fYxy38+///u8tL7/8MmfZsmVRr7zyimmofsYiVn9/v7vHAAAAY5BarTbI5fI2d49jKFwud/pQlRnhzqjV6kC5XB45+DimFQAAAMAJphUAAOC+M9RTg9TU1PCzZ886vbWQmZnZsnHjxrv2yqA7+rwXEA4AAOCBUFJScvmX0Oe9gGkFAAAAcIJwAAAAAE4QDgAAAMAJwgEAAAA4QTgAAADXndwRRPpjzlsl648xdHJHkJtGBC5AOAAAANeFJVro4Hr+TwFBf4yhg+v5FJZocfPIYAQQDgAAwHWihWZa+l4jHVzPp2NZoXRwPZ+WvtdIooUubZ+s1+s9o6KiZCkpKZGRkZGxixcvjjp06BAzY8YMcUREROzXX3/N7erqYj/zzDORcXFxEolEIt23b99EIiKz2cz+1a9+xY+OjpbNnz8/Oj4+XlxZWcklIlq5cmV4bGysRCAQyF5++eWfyj1XVFRwp0+fLhaJRNK4uDjJtWvX2Hq93jMhIUEklUolUqlUcuLECR+iH4tCPfTQQ6J58+ZFh4WFxW3YsGHKn/70p0lxcXESoVAo1Wg044f7XCkpKZGO2hBEP+746Mr3NNqwzwEAAIwO0UIzyZ9rpe/+FEIPZxpdDQYOTU1NXh9//HFjQkKCIT4+XlJaWhqgUql0H3300cTs7OwQsVjcM3fu3K5PPvnE0NbWxklMTJQsXry4Kzc3lzdx4kTbpUuXNGfPnvVKSkqSOdp8++23/xEUFGTr6+ujRx55RPTdd995y+XynpUrV0aXlpZemj17tqW9vZ3t6+tr9/Dw6Dt9+vRFLpfbf+HChfHPPfccv7a2to6ISKfTedfW1momT57cFxERETd+/Pi2Cxcu1O3YsWNyXl7e5A8//LBpNL6Dew3hAAAARof+GEPqv/Do4Uwjqf/CI/5s82gEhClTptxQKBRWIiKhUGh9/PHHu9hsNs2YMcPyH//xH6Emk8nz+PHjE/Pz84OJiG7cuMFqaGjw/Pbbb303btz4AxHRQw891CMUCn+a4vjzn/88qaioKLCvr4/V2to6Tq1We7FYLJo8eXLv7NmzLUREkyZNshMRdXV1sdLT0yO0Wq03m82m77///qcnAnFxcd0RERG9RETh4eE3Fi5c2ElEJJfLrRUVFS6Vq3YnhAMAAHCdY42BYyqBP9s8WlMLnp6eP1UIZLPZ5OXl1U9ExOFwyGazsTgcTv+nn37aIJfLb/wz7el0Os89e/YEnTt3ro7H49lSUlIie3p6hp1mz87ODpo8eXLvZ5999ne73U7e3t4JjnPjx48fcmxsNptsNhtruDY9PDz6bTYbERHZbDbq7e0d9lp3wJoDAABw3RUV1ykIONYgXFFx73bXc+fO7crLywuy2+1ERPTNN994ExElJSVd379/vz8R0blz57wuXrzoTUR07do1jre3t33SpEm2pqYmj1OnTvkREcXHx/f88MMP4yoqKrj/ex27t7eXOjs7OSEhIb0cDofefffdAMePuisiIiJunjt3jktE9NFHH03s6+sbU+EATw4AAMB1815r+dkx0cJRmVa4nTfffLP5N7/5TbhYLJba7XbW1KlTb3z99dcNW7dubV2+fHlkdHS0LDo6ukcgEPT4+/vb4uLibsTGxlqio6NjQ0JCbiYkJFwnIvLy8uovLS299NJLL4X39PSwvby87JWVlRd/97vf/ZCSkhK9f//+gMcff7zT29vb7uqYX3zxxdannnpKIBKJpKPV5mhi9ff33/4qAAD4xVGr1Qa5XN7m7nGMVF9fH928eZPF5XL7NRrN+CeeeEJ46dKlWsejfyBSq9WBcrk8cvBxPDkAAIAHktlsZj/66KOi3t5eVn9/P/3nf/7n9wgG/xyEAwAAeCD5+/vbHa8cussf/vCH4MOHD08aeOzXv/51e05OjsldY/pnYFoBAACGdL9PK8DtDTetgLcVAAAAwAnCAQAAADhBOAAAAAAnCAcAAADgBOEAAABcln8+P+hU0ymnWgKnmk4x+efzg9w1Jhg5hAMAAHBZPC/esu3MNr4jIJxqOsVsO7ONH8+Lt9zuXhh7EA4AAMBlc6bOMWfPym7cdmYb/03lm6HbzmzjZ8/KbpwzdY5L2yfr9XrPqKgoWUpKSmRkZGTs4sWLow4dOsTMmDFDHBEREfv1119zu7q62M8880xkXFycRCKRSPft2zeR6MdNkH71q1/xo6OjZfPnz4+Oj48XV1ZWcomIVq5cGR4bGysRCASyl19+OdTRX0VFBXf69OlikUgkjYuLk1y7do2t1+s9ExISRFKpVCKVSiUnTpzwISI6evQo89BDD4nmzZsXHRYWFrdhw4Ypf/rTnybFxcVJhEKhVKPRjB/6UxFpNJrxcrlcLBQKpS+99FIol8ud7sr3NNqwCRIAAIyKOVPnmBdFL2otrSsNWSlZaXQ1GDg0NTV5ffzxx40JCQmG+Ph4SWlpaYBKpdJ99NFHE7Ozs0PEYnHP3Llzuz755BNDW1sbJzExUbJ48eKu3Nxc3sSJE22XLl3SnD171ispKUnmaPPtt9/+R1BQkK2vr48eeeQR0Xfffectl8t7Vq5cGV1aWnpp9uzZlvb2dravr6/dw8Oj7/Tp0xe5XG7/hQsXxj/33HN8x+ZKOp3Ou7a2VjN58uS+iIiIuPHjx7dduHChbseOHZPz8vImf/jhh01Dfabf/va3Uzds2PDDunXr2t966y3eaHxPowlPDgAAYFScajrFHLl0hLdSstJ45NL/z969RzV1pn3jv5IgSbZEzudIkEBO5CCk4EDxUcBDcZ5q21TnVVZnzTv19cB0tGXqOK3Trv60TrWKTh0H3tpnUTst1hNVZ6yOpb6ciqOtiAjhDEWxgqIiCYZDTr8/bByxYJ1uLGi/n7VciyQ7e987/+Trfd25r3/4370G4YcKDQ3tj4+P7+XxeCSTyXpTUlJMXC6XYmNjLRcvXuQXFRVN2Lp1a7BCoVAlJSXJ+/v7OU1NTe4nTpzwWLhw4XUiori4uD6ZTHa7xPHBBx/4fDsToGpsbBRUVlYKzp07JwgICLBOmzbNQkTk4+PjGDduHA0MDHAWLVoULpPJVPPnz5c2NzcLXOfRaDQ3JRKJVSgUOsPCwvrT0tK6iYh0Ol3vhQsX3Ie7p4qKCo9f//rX14mIFi9efG0kPqeRhJkDAABgzbXGwFVK+Fnwz8wjVVpwd3e/vZUvl8slV38EHo9Hdrudw+PxnPv372/S6XT993O+uro69+3btweWl5fX+vv72w0GQ3hfX9+w/1lev359YEBAgDU/P/9rh8NBQqFQ73qNz+cPOTYul0t2u31MtWH+T2DmAAAAWDvXeY65Mwi41iCc6zzHPOhrJycnm7KysgIdjltdj8vKyoRERAkJCT27d+/2JiIqLy8XNDQ0CImIurq6eEKh0OHj42Nva2tzKyoq8iQi0mq1fVeuXBlXXFzMfHsc12q1Und3Ny84ONjK4/EoOzvb1263sx7z5MmTe3bu3OlNRJSbm+vzfcf/2DBzAAAArK2IXXH57uemT5xuHql1B/eyYcOGS0uWLAlTKBQqh8PBmThxYn9hYWHTqlWrOhcsWBAulUqjpVJpX2RkZJ+3t7ddo9H0q9Vqi1QqVQcHBw/o9foeIiKBQODMy8trXrFiRVhfXx9XIBA4SkpKGl588cUrBoNBunv3bt+UlJRuoVDoYDvmv/zlL23p6emTNm3aFJySkmLy8PBgnzhGEBovAQDAkB72xks2m40GBgY4DMM4jUYjf9asWbLm5ubqsdC22Ww2c8ePH+/gcrm0Y8cO7z179vgcP368+ccex3CNlzBzAAAAjySz2cydOnWq3Gq1cpxOJ23duvX8WAgGRERlZWXMypUrw5xOJ02YMMG+c+fO1tEe050QDgAA4JHk7e3tcP3kcLSsXr066NChQ4PWFMybN+/6xo0bO+rr62tGa1zfB2UFAAAY0sNeVoDvN1xZAb9WAAAAgEEQDgAAAGAQhAMAAAAYBOEAAAAABkE4AAAA1q78+c+B5sLCQb0UzIWFoit//nPgaI3pYWG1Wkd7CN+BcAAAAKwJdTrLpdV/iHAFBHNhoejS6j9ECHU6y/e9914e1ZbNBoMhfNGiRWFarVaxfPlyMZvP6EHAPgcAAMCaKDnZHLJxQ8ul1X+I8HxqXmf3wUP+IRs3tIiSk1lvn/wotmwmImpvb3c/c+ZMnZvb2PsqHnsjAgCAh5IoOdns+dS8zq6/fRjs/cvn2kciGBD9u2UzEX2nZfObb74Z0tHR4X7s2DGvbdu2BRER3dmyeeXKlVeIhm7ZvHPnTj+bzcbp7OwcV1lZKeBwOHR3y2YiIpPJxHn++eclNTU1Qi6XS+fPn789I+Bq2UxEdHfL5uLi4nu2rH7mmWe6xmIwIEI4AACAEWIuLBR1Hzzk7/3L59q7Dx7yH5+QYB6JgPCotmz28PBg3cDpQcGaAwAAYM21xiBk44aWoFdfveQqMdy9SPFBeBhbNo91CAcAAMBab2Ulc+caA9cahN7KSuZBX3vDhg2XbDYbR6FQqCIjI6P/+Mc/hhIRrVq1qvPatWtuUqk0+pVXXgl1tWxOSEjodbVsXrBgQcRQLZvlcrlq+vTpMovFwn3xxRevfPzxx75yuVxVV1cnGImWzWMdeisAAMCQHvbeCmO5ZfNYgZbNAADwkzKWWzaPdQgHAADwSBrrLZtHa0z3A2UFAAAY0sNeVoDvh5bNAAAAcF8QDgAAAGAQhAMAAAAYBOEAAAAABkE4AAAAgEEQDgAAgLWTh5oDvz53ddBWyV+fuyo6eag5cLTGNJa9/fbb/tu3b/cd7XEMB+EAAABYC5zkaTm+sybCFRC+PndVdHxnTUTgJE/L9733p+j3v/995wsvvHBttMcxHIQDAABgbZLWz5z6K1XL8Z01EaV7G0KO76yJSP2VqmWS1o9VV8b6+nr3SZMmRRsMhvDw8HD13LlzJx08eFAUGxurkEgk6sLCQsZkMnHnz58frtFolEqlUvXRRx95Ed3aIXHOnDkRUqk0eubMmVKtVqsoKSlhiIjS09PD1Gq1MjIyMvqll14KcV2vuLiYiYmJUcjlcpVGo1F2dXVx6+vr3fV6vVylUilVKpWyoKBgPBHR4cOHRXFxcfLU1FSpWCzWZGRkhObk5PhoNBqlTCZTGY1G/tB3RZSZmRny+uuvj9lZFeyQCAAAI2KS1s8s/1lQ57n/dzFYmyJuZxsMXNra2gR79uxp0ev1rVqtVpmXl+d7+vTpul27dnmtX78+WKFQ9CUnJ5v27dvXevXqVd5jjz2mnDt3rmnz5s3+Xl5e9ubmZuNXX30lSEhIiHadc8uWLd8EBgbabTYbJSYmyk+dOiXU6XR96enp0ry8vOZp06ZZrl+/zvXw8HC4ubnZSktLGxiGcVZVVfEXLlwY4dp5sa6uTlhdXW0MCAiwSSQSDZ/Pv1pVVVW7bt26gKysrIDc3Ny2kfgMfmwIBwAAMCK+PndVVH+yw1+bIm6vP9nhL1b4mEciIISGhvbHx8f3EhHJZLLelJQUE5fLpdjYWMubb74Z0tHR4X7s2DGvbdu2BRER9ff3c5qamtxPnDjhsXLlyitERHFxcX0ymex2ieODDz7w2blzp5/NZuN0dnaOq6ysFHA4HAoICLBOmzbNQkTk4+PjICIymUyc559/XlJTUyPkcrl0/vz52zMCGo3mpkQisRIRhYWF9aelpXUTEel0ut7i4uIH3q76QUE4AAAA1lxrDFylBLHCxzxSpQV3d/fb+/xzuVxyNU/i8Xhkt9s5PB7PuX///iadTtd/P+erq6tz3759e2B5eXmtv7+/3WAwhPf19Q1bZl+/fn1gQECANT8//2uHw0FCoVDveo3P5w85Ni6XS3a7nfND7ncswJoDAABg7fLX3cydQcC1BuHy193Mg752cnKyKSsrK9DhcBARUVlZmZCIKCEhoWf37t3eRETl5eWChoYGIRFRV1cXTygUOnx8fOxtbW1uRUVFnkREWq2278qVK+OKi4uZb4/jWq1W6u7u5gUHB1t5PB5lZ2f72u32B31Low4zBwAAwNrP5kkv3/3cJK3fiJQVvs+GDRsuLVmyJEyhUKgcDgdn4sSJ/YWFhU2rVq3qXLBgQbhUKo2WSqV9kZGRfd7e3naNRtOvVqstUqlUHRwcPKDX63uIiAQCgTMvL695xYoVYX19fVyBQOAoKSlpePHFF68YDAbp7t27fVNSUrqFQqHjQd/TaENXRgAAGNLD3pXRZrPRwMAAh2EYp9Fo5M+aNUvW3Nxc7Zr6h+G7MmLmAAAAHklms5k7depUudVq5TidTtq6det5BIP7g3AAAACPJG9vb4frJ4ejZfXq1UGHDh3yufO5efPmXd+4cWPHaI3pfqCsAAAAQ3rYywrw/YYrK+DXCgAAADAIwgEAAAAMgnAAAAAAgyAcAAAAwCAIBwAAwNoXu/8W2Fz+5aBeAs3lX4q+2P23Mdt5EIaHcAAAAKwFRyksR/+aFeEKCM3lX4qO/jUrIjhKYfm+98LYg3AAAACsSfXx5rTf/K7l6F+zIgp37gg5+tesiLTf/K5Fqo9ntX1yfX29+6RJk6INBkN4eHi4eu7cuZMOHjwoio2NVUgkEnVhYSFjMpm48+fPD9doNEqlUqn66KOPvIhubYI0Z86cCKlUGj1z5kypVqtVlJSUMERE6enpYWq1WhkZGRn90ksvhbiuV1xczMTExCjkcrlKo9Eou7q6uPX19e56vV6uUqmUKpVKWVBQMJ6I6PDhw6K4uDh5amqqVCwWazIyMkJzcnJ8NBqNUiaTqYxGI3/ouyJSKBQq1z+BQBD76aeferD5nEYaNkECAIARIdXHm6P/K7XzzNG/B8emzW1nGwxc2traBHv27GnR6/WtWq1WmZeX53v69Om6Xbt2ea1fvz5YoVD0JScnm/bt29d69epV3mOPPaacO3euafPmzf5eXl725uZm41dffSVISEiIdp1zy5Yt3wQGBtptNhslJibKT506JdTpdH3p6enSvLy85mnTplmuX7/O9fDwcLi5udlKS0sbGIZxVlVV8RcuXBjh2lyprq5OWF1dbQwICLBJJBINn8+/WlVVVbtu3bqArKysgNzc3Lah7qmurq6GiGjXrl2eWVlZQTNmzLg5Ep/VSEE4AACAEdFc/qXIWHLcPzZtbrux5Lh/mGayeSQCQmhoaH98fHwvEZFMJutNSUkxcblcio2Ntbz55pshHR0d7seOHfPatm1bEBFRf38/p6mpyf3EiRMeK1euvEJEFBcX1yeTyW6XOD744AOfnTt3+tlsNk5nZ+e4yspKAYfDoYCAAOu0adMsREQ+Pj4OIiKTycR5/vnnJTU1NUIul0vnz5+/PSOg0WhuSiQSKxFRWFhYf1paWjcRkU6n6y0uLh60BuNuVVVV/DVr1oiLiooa7mz9PBYgHAAAAGuuNQauUkKYZrJ5pEoL7u7ut784uVwuufoj8Hg8stvtHB6P59y/f3+TTqfrv5/z1dXVuW/fvj2wvLy81t/f324wGML7+vqGLbOvX78+MCAgwJqfn/+1w+EgoVCod71255f6nWPjcrlkt9s5w52zu7ubu2DBAmlOTs55V7gYS7DmAAAAWGtvrGPuDAKuNQjtjXXMg752cnKyKSsrK9DhuNVJuaysTEhElJCQ0LN7925vIqLy8nJBQ0ODkIioq6uLJxQKHT4+Pva2tja3oqIiTyIirVbbd+XKlXHFxcXMt8dxrVYrdXd384KDg608Ho+ys7N97XY76zEvXLgwPD09/eoTTzzRw/pkDwBmDgAAgLWk//XLy3c/J9XHj0hZ4fts2LDh0pIlS8IUCoXK4XBwJk6c2F9YWNi0atWqzgULFoRLpdJoqVTaFxkZ2eft7W3XaDT9arXaIpVK1cHBwQN6vb6HiEggEDjz8vKaV6xYEdbX18cVCASOkpKShhdffPGKwWCQ7t692zclJaVbKBQ62Iy3oaHB/Z///Kd3S0uL4KOPPvIjItqxY0frf/3Xf42ZX3ag8RIAAAzpYW+8ZLPZaGBggMMwjNNoNPJnzZola25urkbb5n8brvESZg4AAOCRZDabuVOnTpVbrVaO0+mkrVu3nkcwuD8IBwAA8Ejy9vZ2uH5fGS8eAAAgAElEQVRyOFpWr14ddOjQIZ87n5s3b971jRs3dozWmO4HygoAADCkh72sAN9vuLICfq0AAAAAgyAcAAAAwCAIBwAAADAIwgEAAAAMgnAAAACsdR9rDeytvTaol0Bv7TVR97HWwJG8TmZmZsjrr78+oueE70I4AAAA1tzDRJbrexsiXAGht/aa6Prehgj3MNGY2fUP7h/CAQAAsCZU+pp9Fsharu9tiLjxj+aQ63sbInwWyFqESl/W2yevXr06KDw8XK3X6+WNjY18IiKj0cifOnVqVHR0tFKv18srKioERERtbW1uM2fOlMrlcpVcLlcVFBSMJyKaMWOGNDo6WhkZGRm9efNmP9e5GYaJWbp0qTgyMjI6MTFRVlhYyMTHx8vFYrEmLy/Pc7gxmc1m7pw5cyKkUmn0zJkzpVqtVlFSUvLA+0j8WBAOAABgRAiVvubxsQGdPWWXgsfHBnSORDAoLS1lDhw44FNVVVVTUFDQWFlZOZ6IaPHixZLs7OwLRqOxdtOmTReXL18eRkS0bNmysKlTp5rr6+trjEZjTWxsbB8RUV5eXqvRaKw9e/ZszbvvvhvY0dHBIyLq7e3lpqammpqamozjx4+3//GPfwwtLS1t2LdvX9O6detChxvXpk2b/L28vOzNzc3GP/3pT9/U1NSMZ3uvYwl2SAQAgBHRW3tNdPPMFX+Px0Pab5654s+P9DKzDQiFhYUec+bMuSESiRxERLNmzbrR19fHraio8Jg/f77UddzAwACHiOjEiROi/fv3f01E5ObmRr6+vnYioo0bNwZ++umnXkREHR0d44xGoyAoKOjmuHHjnM8++6yJiCg6OrqXz+c7+Hy+Mz4+vvebb75xH25cJ06c8Fi5cuUVIqK4uLg+mUz2SJVPEA4AAIA11xoDVymBH+llHsnSwp0cDgeJRCJbXV1dzf0cf/jwYVFxcbHo9OnTdSKRyBEfHy/v7e3lEhG5ubk5udxbk+hcLpf4fL6TiIjH45HdbueM5LgfJigrAAAAawMXzMydQcC1BmHggplVHT4lJaXnyJEjXj09PZyuri5uQUGBF8MwDrFYPJCbm+tNdCss/Otf/xISET3++OPmTZs2+RPd6sp47do13o0bN3ienp52kUjkqKioELhKE2wkJCT07N6925uIqLy8XNDQ0CBke86xBOEAAABY85wdfvnuGQKh0tfsOTv8MpvzJiUlWZ5++unrarU6esaMGVFarfYmEdHHH3/c8v777/vJ5XJVVFRUdH5+vhcRUU5OzoXi4mKRTCZTqdVqVUVFhcBgMHTbbDZORERE9KpVq0J1Ot1NNmMiIlq1alXntWvX3KRSafQrr7wSGhkZ2eft7W1ne96xAo2XAABgSGi8NDybzUYDAwMchmGcRqORP2vWLFlzc3P1w9YSerjGS1hzAAAA8B8ym83cqVOnyq1WK8fpdNLWrVvPP2zB4F4QDgAAAIaRn58/Yc2aNeI7n5s4cWJ/QUFBc3V1de1ojetBQzgAAAAYhsFgMBkMhvv6VcSjBAsSAQAAYBCEAwAAABgE4QAAAAAGQTgAAACAQRAOAACAtePHjwfW19eL7nyuvr5edPz48cCRvE5mZmbI66+/PqLnhO9COAAAANbEYrHlwIEDEa6AUF9fLzpw4ECEWCx+pBoSDcVqtY72EEYcwgEAALAml8vNTz/9dMuBAwcijh49GnLgwIGIp59+ukUul7NuurR69eqg8PBwtV6vlzc2NvKJiIxGI3/q1KlR0dHRSr1eL6+oqBAQEbW1tbnNnDlTKpfLVXK5XFVQUDCeiGjGjBnS6OhoZWRkZPTmzZv9XOdmGCZm6dKl4sjIyOjExERZYWEhEx8fLxeLxZq8vDzP4ca0bds235SUlMif/exnssTERDnbexxrEA4AAGBEyOVys06n6zx16lSwTqfrHIlgUFpayhw4cMCnqqqqpqCgoNHVNGnx4sWS7OzsC0ajsXbTpk0Xly9fHkZEtGzZsrCpU6ea6+vra4xGY01sbGwfEVFeXl6r0WisPXv2bM27774b2NHRwSMi6u3t5aamppqampqM48ePt//xj38MLS0tbdi3b1/TunXrQu81NqPRyBw6dKj5q6++qmd7n2MNNkECAIARUV9fL6qsrPSfMmVKe2VlpX9ERISZbUAoLCz0mDNnzg2RSOQgIpo1a9aNvr4+bkVFhcf8+fOlruMGBgY4REQnTpwQ7d+//2siIjc3N/L19bUTEW3cuDHw008/9SIi6ujoGGc0GgVBQUE3x40b53z22WdNRETR0dG9fD7fwefznfHx8b3ffPON+73GNnXqVFNgYOAj02zpTggHAADAmmuNgauUEBERYR7J0sKdHA4HiUQiW11d3X3tXHj48GFRcXGx6PTp03UikcgRHx8v7+3t5RIRubm5ObncW5PoXC6X+Hy+k4iIx+OR3W7n3Ou8DMM4WN7KmIWyAgAAsHbx4kXmziDgWoNw8eJFhs15U1JSeo4cOeLV09PD6erq4hYUFHgxDOMQi8UDubm53kS3wsK//vUvIRHR448/bt60aZM/0a3OideuXePduHGD5+npaReJRI6KigqBqzQBw0M4AAAA1lJTUy/fPUMgl8vNqampl9mcNykpyfL0009fV6vV0TNmzIjSarU3iYg+/vjjlvfff99PLperoqKiovPz872IiHJyci4UFxeLZDKZSq1WqyoqKgQGg6HbZrNxIiIioletWhWq0+lushnTTwHH6XxkOkwCAMAIqqysbNXpdFdHexzw4FRWVvrpdLrwu5/HzAEAAAAMggWJAAAAw8jPz5+wZs0a8Z3PTZw4sb+goKB5tMb0Y0A4AAAAGIbBYDAZDIb7+lXEowRlBQAAABgE4QAAAAAGQTgAAACAQRAOAAAAYBCEAwAAYK25OSuw8+px0Z3PdV49LmpuzgocyetkZmaGvP766yN6TvguhAMAAGBtgudkS03NyxGugNB59biopubliAmeky2jPTb4zyEcAAAAa/5+qWaVanNLTc3LEQ0N60Jqal6OUKk2t/j7pbJuurR69eqg8PBwtV6vlzc2NvKJiIxGI3/q1KlR0dHRSr1eL6+oqBAQEbW1tbnNnDlTKpfLVXK5XFVQUDCeiGjGjBnS6OhoZWRkZPTmzZv9XOdmGCZm6dKl4sjIyOjExERZYWEhEx8fLxeLxZq8vDzP4cb0i1/8QqJQKFQKhULl7e2t+93vfhfM9j7HEoQDAAAYEf5+qebgoGc62y7uDA4OeqZzJIJBaWkpc+DAAZ+qqqqagoKCRlfTpMWLF0uys7MvGI3G2k2bNl1cvnx5GBHRsmXLwqZOnWqur6+vMRqNNbGxsX1ERHl5ea1Go7H27NmzNe+++25gR0cHj4iot7eXm5qaampqajKOHz/e/sc//jG0tLS0Yd++fU3r1q0LHW5ce/bsOV9XV1fz97//vcnb29u2dOnSa2zvdSzBJkgAADAiOq8eF7V3fOI/Ufyr9vaOT/y9fRLNbANCYWGhx5w5c26IRCIHEdGsWbNu9PX1cSsqKjzmz58vdR03MDDAISI6ceKEaP/+/V8TEbm5uZGvr6+diGjjxo2Bn376qRcRUUdHxzij0SgICgq6OW7cOOezzz5rIiKKjo7u5fP5Dj6f74yPj+/95ptv3O81NovFwjEYDNItW7ZckMlkA2zuc6xBOAAAANZcawxcpQRvn0TzSJYW7uRwOEgkEtnq6urua+fCw4cPi4qLi0WnT5+uE4lEjvj4eHlvby+XiMjNzc3J5d6aROdyucTn851ERDwej+x2O+de533uueckTz75ZNdTTz01ovc3FqCsAAAArJm6zzJ3BgHXGgRT91mGzXlTUlJ6jhw54tXT08Pp6uriFhQUeDEM4xCLxQO5ubneRLfCwr/+9S8hEdHjjz9u3rRpkz8Rkc1mo2vXrvFu3LjB8/T0tItEIkdFRYXAVZpg46233vLv6enh/elPf+pge66xCOEAAABYk0p/d/nuGQJ/v1SzVPq7y2zOm5SUZHn66aevq9Xq6BkzZkRptdqbREQff/xxy/vvv+8nl8tVUVFR0fn5+V5ERDk5OReKi4tFMplMpVarVRUVFQKDwdBts9k4ERER0atWrQrV6XQ32YyJiGj79u1B9fX1QteixLffftuf7TnHEo7T6RztMQAAwBhUWVnZqtPpro72OODBqays9NPpdOF3P4+ZAwAAABgECxIBAACGkZ+fP2HNmjXiO5+bOHFif0FBQfNojenHgHAAAAAwDIPBYDIYDPf1q4hHCcoKAAAAMAjCAQAAAAyCcAAAAACDIBwAAABrb7W0B352tXtQy+bPrnaL3mppH5PtlWNiYhSjPYaxDOEAAABY009gLL+tvRDhCgifXe0W/bb2QoR+AjOmWjZbrVYiIqqoqKgb5aGMaQgHAADA2iw/T/NflGEtv629EPFa48WQ39ZeiPiLMqxllp8nq74DJpOJO3369EjXTojvvfeed2hoqKa9vd2NiKikpISJj4+XExFlZmaGPPXUU5MmT56skEgk6qysLD+iW70V9Hq9PCUlJTIqKkpNdKtVs+u1uLg4eWpqqlQsFmsyMjJCc3JyfDQajVImk6mMRiOfiOjSpUtus2fPlqrVaqVarVZ+9tlnw27BfOnSJbfExMSoyMjI6F/84heSkJCQ2+N9WCAcAADAiJjl52leEOTd+d7Fq8ELgrw72QYDIqJPPvlkQlBQkLW+vr6msbHR+Mwzz5judXxtba3wiy++qD958mTdpk2bQlpbW8cREdXU1DDZ2dkXWltbq+9+T11dnTA3N/dCY2Nj9f79+30bGhoEVVVVtc8999zVrKysACKipUuXTszMzLxcXV1de+DAgeZly5aFDzeGP/zhDyHTpk0zNzU1GefPn9/V3t5+z+6OY9FDlWQAAGDs+uxqt2hvR5f//xH7te/t6PKf6i0ysw0IsbGxvWvWrJm4fPny0Hnz5nU/8cQTPfc6Pi0t7YaHh4fTw8PDlpCQYCotLR3v7e1t12q1NxUKxZBtlTUazU2JRGIlIgoLC+tPS0vrJiLS6XS9xcXFIiKisrKyCY2NjULXe3p6enjd3d1cT09Px93n+/LLLz0OHjzYRET07LPPmiZMmGD/4Z/A6EA4AAAA1lxrDFylhKneIvNIlBa0Wm3/mTNnavLz8z1fe+210M8//9zE4/GcDset72RX62UXDmdwl2XXY4ZhvvMl7uJq00x0q22zQCBwuv52tW12Op105syZWoZhfhINiVBWAAAA1spNFubOIOBag1BusrBq2dza2jpOJBI5MjIyrmdmZnacPXuWEYvFA2VlZQwR0d69e73vPP7o0aNeFouF09HRwTt58qQoKSmJdQdGIqKkpCTTW2+9FeB6fOLECeFwx8bFxfV8+OGHPkS3yiImk4k3EmP4MWHmAAAAWHslIvg7rZln+XmyLiuUl5cLX3nlFTGXyyU3Nzdndnb2eYvFwl22bFn42rVr7YmJiYPOr1QqLYmJifKuri63l19+uT08PNxaXV0tYDMGIqIdO3a0LV68OEwmk6nsdjtnypQp5sTExAtDHbthw4ZLzz77bERUVJSvXq/v8fPzs3p5eT1UpQW0bAYAgCE9bC2bMzMzQzw8POxr1679TlD5MfX29nLc3Nyc48aNo88//3z8Cy+8IKmrqxuT/RmGa9mMmQMAAIAR1NTU5L5gwQKpw+GgcePGOd99993W0R7TfwrhAAAAHglbtmy59GNe75133vHNyckZtAPkt+sNLtTW1o7JmYL7hbICAAAM6WErK8B/briyAn6tAAAAAIMgHAAAAMAgCAcAAAAwCMIBAAAADIJwAAAArG0+Vh/4ee1l0Z3PfV57WbT5WH3gcO8ZTTExMYrRHsNYhnAAAACsTQ7zsmTuPRvhCgif114WZe49GzE5zMsy2mO7k9VqJSKiioqKuh/zeg8bhAMAAGBthjLQvGXB5JbMvWcj/r9/GEMy956N2LJgcssMZSCr7ZNNJhN3+vTpkXK5XBUVFRX93nvveYeGhmra29vdiIhKSkqY+Ph4OdGtHRKfeuqpSZMnT1ZIJBJ1VlaWHxHR4cOHRXq9Xp6SkhIZFRWlJiJiGCbG9VpcXJw8NTVVKhaLNRkZGaE5OTk+Go1GKZPJVEajkU9EdOnSJbfZs2dL1Wq1Uq1WKz/77LPxw43ZNY7Y2FjFM888M4nN/Y8WbIIEAAAjYoYy0GyIFXe+X9Ya/L8fD29nGwyIbjUuCgoKshYVFTUREV27do33xhtvDHt8bW2tsLy8vNZsNvNiYmJUBoOhm4iopqaGqaioMA7Vtrmurk5YXV1tDAgIsEkkEg2fz79aVVVVu27duoCsrKyA3NzctqVLl07MzMy8PHv27J7Gxkb32bNnR7W0tBiHG0djY6Pg1KlTdR4eHg/lZkIIBwAAMCI+r70syj9z0f9/Px7enn/mov/jkX5mtgEhNja2d82aNROXL18eOm/evO4nnnii517Hp6Wl3fDw8HB6eHjYEhISTKWlpeO9vb3tWq325lDBgIhIo9HclEgkViKisLCw/rS0tG4iIp1O11tcXCwiIiorK5vQ2Nh4uxNjT08Pr7u7m+vp6TlkK+gnnnjixsMaDIgQDgAAYAS41hi4SgmPR/qZR6K0oNVq+8+cOVOTn5/v+dprr4V+/vnnJh6P53Q4bn0n9/b2DiqPczgcGuoxwzBDfokTEfH5/Ntf4lwulwQCgdP1t91u5xAROZ1OOnPmTC3DMPf1hT9+/Phhr/cwwJoDAABg7eyFG8ydQcC1BuHshRsMm/O2traOE4lEjoyMjOuZmZkdZ8+eZcRi8UBZWRlDRLR3717vO48/evSol8Vi4XR0dPBOnjwpSkpKusnm+i5JSUmmt956K8D1+MSJE8J7Hf+ww8wBAACw9vJs+XfaJM9QBrIuK5SXlwtfeeUVMZfLJTc3N2d2dvZ5i8XCXbZsWfjatWvtiYmJg86vVCotiYmJ8q6uLreXX365PTw83FpdXS1gMwYioh07drQtXrw4TCaTqex2O2fKlCnmxMTEC2zPO1ah8RIAAAzpYWu8lJmZGeLh4WFfu3btd4IKDA2NlwAAAOC+oKwAAACPhC1btlz6Ma/3zjvv+Obk5AzaATIuLq7nww8/fOjLDSgrAADAkB62sgL851BWAAAAgPuCcAAAAACDIBwAAADAIAgHAAAAMAjCAQAAsHd8XSDVHxUNeq7+qIiOrwsc5h2jKiYmRvGgzp2Xl+f56quvBj2o8/8Y8FNGAABgT/yYhQ4si6Cn/28LydPMVH9UdPvxGGK1WmncuHFUUVFR96CukZ6e3k1E3Q/q/D8GzBwAAAB78jQzPf1/W+jAsgg6+oeQQUGBBZPJxJ0+fXqkXC5XRUVFRb/33nveoaGhmvb2djciopKSEiY+Pl5OdGuHxKeeemrS5MmTFRKJRJ2VleVHRHT48GGRXq+Xp6SkREZFRamJiBiGiXG9FhcXJ09NTZWKxWJNRkZGaE5Ojo9Go1HKZDKV0WjkExFdunTJbfbs2VK1Wq1Uq9XKzz77bPxwY962bZvvL3/5yzA29z3aMHMAAAAjQ55mJt3CTjqVE0xTlrezDQZERJ988smEoKAga1FRURMR0bVr13hvvPHGsMfX1tYKy8vLa81mMy8mJkZlMBi6iYhqamqYiooK41Btm+vq6oTV1dXGgIAAm0Qi0fD5/KtVVVW169atC8jKygrIzc1tW7p06cTMzMzLs2fP7mlsbHSfPXt2VEtLi5Ht/Y1VCAcAADAy6o+KqPJjf5qyvJ0qP/aniGlmtgEhNja2d82aNROXL18eOm/evO4nnnii517Hp6Wl3fDw8HB6eHjYEhISTKWlpeO9vb3tWq325lDBgIhIo9HclEgkViKisLCw/rS0tG4iIp1O11tcXCwiIiorK5vQ2Nh4uxNjT08Pr7u7m+vp6flQt2YeDsIBAACwd+caA3mamSKmmUeitKDVavvPnDlTk5+f7/naa6+Ffv755yYej+d0OG59J/f29g4qj3M4HBrqMcMww36J8/n821sFc7lcEggETtffdrudQ0TkdDrpzJkztQzD/CS2FcaaAwAAYO/iaWZQEHCtQbh4mmFz2tbW1nEikciRkZFxPTMzs+Ps2bOMWCweKCsrY4iI9u7d633n8UePHvWyWCycjo4O3smTJ0VJSUk32VzfJSkpyfTWW28FuB6fOHFCeK/jH3aYOQAAAPZSX/tum2R5GuuyQnl5ufCVV14Rc7lccnNzc2ZnZ5+3WCzcZcuWha9du9aemJg46PxKpdKSmJgo7+rqcnv55Zfbw8PDrdXV1QI2YyAi2rFjR9vixYvDZDKZym63c6ZMmWJOTEx86BssDQeNlwAAYEgPW+OlzMzMEA8PD/vatWu/G1RgSGi8BAAAAPcFZQUAAHgkbNmy5dKPeb133nnHNycnZ9AOkHFxcT0ffvjhQ19uQFkBAACG9LCVFeA/h7ICAAAA3BeEAwAAABgE4QAAAAAGQTgAAACAQRAOAACAtW1ntgUWtRWJ7nyuqK1ItO3MtsDh3jOaYmJiFKM9hrEM4QAAAFjT+msta75YE+EKCEVtRaI1X6yJ0PprLaM9tjtZrVYiIqqoqKgb5aGMaQgHAADA2vSJ083rk9a3rPliTcSGLzeErPliTcT6pPUt0ydOZ7V9sslk4k6fPj1SLperoqKiot977z3v0NBQTXt7uxsRUUlJCRMfHy8nurVD4lNPPTVp8uTJColEos7KyvIjIjp8+LBIr9fLU1JSIqOiotRERAzDxLhei4uLk6empkrFYrEmIyMjNCcnx0ej0ShlMpnKaDTyiYguXbrkNnv2bKlarVaq1WrlZ599Nn64MU+bNi1SoVCoFAqFSiQSTf7LX/7iy+YzGA3YBAkAAEbE9InTzU9Kn+zMq80LTlemt7MNBkREn3zyyYSgoCBrUVFRExHRtWvXeG+88cawx9fW1grLy8trzWYzLyYmRmUwGLqJiGpqapiKigrjUG2b6+rqhNXV1caAgACbRCLR8Pn8q1VVVbXr1q0LyMrKCsjNzW1bunTpxMzMzMuzZ8/uaWxsdJ89e3ZUS0uLcagxFBcXNxERlZaWMs8//3z4okWLbrD9HH5smDkAAIARUdRWJPpH8z/805Xp7f9o/of/3WsQfojY2Nje0tLSCcuXLw/95z//6eHr62u/1/FpaWk3PDw8nMHBwbaEhARTaWnpeCIirVZ7c6hgQESk0WhuSiQSq1AodIaFhfWnpaV1ExHpdLreCxcuuBMRlZWVTVi5cmWYQqFQPfnkk5E9PT287u7uYb9D29vb3X71q19NysvLa/m+MY9FmDkAAADWXGsMXKWEnwX/zDwSpQWtVtt/5syZmvz8fM/XXnst9PPPPzfxeDynw+EgIqLe3t5BX9AcDoeGeswwjGO4a/D5/NtbBXO5XBIIBE7X33a7nUNE5HQ66cyZM7UMw3zvtsI2m40MBkPE6tWrL8XFxfXd982OIZg5AAAA1s51nmPuDAKuNQjnOs8xbM7b2to6TiQSOTIyMq5nZmZ2nD17lhGLxQNlZWUMEdHevXu97zz+6NGjXhaLhdPR0cE7efKkKCkp6Sab67skJSWZ3nrrrQDX4xMnTgiHO/Y3v/mNWKVSWZYsWdI1EtceDZg5AAAA1lbErvhOm+TpE6eb2a47KC8vF77yyitiLpdLbm5uzuzs7PMWi4W7bNmy8LVr19oTExMHnV+pVFoSExPlXV1dbi+//HJ7eHi4tbq6WsBmDEREO3bsaFu8eHGYTCZT2e12zpQpU8yJiYlDNljasWNHYGRkZJ9CoZhARPTaa699k56e3s12DD8mNF4CAIAhPWyNlzIzM0M8PDzsa9eu/U5QgaGh8RIAAADcF5QVAADgkbBly5ZLP+b13nnnHd+cnJxBO0DGxcX1fPjhh0OWGx4mKCsAAMCQHrayAvznUFYAAACA+4JwAAAAAIMgHAAAAMAgCAcAAAAwCMIBAACwduXPfw40FxYO6qVgLiwUXfnznwOHe89oiomJUYz2GMYyhAMAAGBNqNNZLq3+Q4QrIJgLC0WXVv8hQqjTWUZ7bHeyWq1ERFRRUVE3ykMZ0xAOAACANVFysjlk44aWS6v/ENHxpz+FXFr9h4iQjRtaRMnJrLZPNplM3OnTp0fK5XJVVFRU9HvvvecdGhqqaW9vdyMiKikpYeLj4+VEt3ZIfOqppyZNnjxZIZFI1FlZWX5ERIcPHxbp9Xp5SkpKZFRUlJqIiGGYGNdrcXFx8tTUVKlYLNZkZGSE5uTk+Gg0GqVMJlMZjUY+EdGlS5fcZs+eLVWr1Uq1Wq387LPPxg81XrvdThKJRH3p0iU31+OwsLDbjx8WCAcAADAiRMnJZs+n5nV2/e3DYM+n5nWyDQZERJ988smEoKAga319fU1jY6PxmWeeMd3r+NraWuEXX3xRf/LkybpNmzaFtLa2jiMiqqmpYbKzsy+0trZW3/2euro6YW5u7oXGxsbq/fv3+zY0NAiqqqpqn3vuuatZWVkBRERLly6dmJmZebm6urr2wIEDzcuWLQsf6vo8Ho+effbZa//zP//jQ0R06NChCUqlsjckJMTG9rP4MSEcAADAiDAXFoq6Dx7y9/7lc+3dBw/5370G4YeIjY3tLS0tnbB8+fLQf/7znx6+vr72ex2flpZ2w8PDwxkcHGxLSEgwlZaWjici0mq1NxUKxcBQ79FoNDclEolVKBQ6w8LC+tPS0rqJiHQ6Xe+FCxfciYjKysomrFy5MkyhUKiefPLJyJ6eHl53d/eQ36HLly+/unv3bl8iotzcXL9f/epXD91GUg/VNAcAAIxNrjUGrlLC+IQE80iUFrRabf+ZM2dq8vPzPV977bXQzz//3MTj8ZwOh4OIiHp7ewd9QXM4HBrqMcMwjuGuwefzb28VzOVySSAQOF1/2+12DhGR0yMbN9gAACAASURBVOmkM2fO1DIM873bCkdGRlr9/Pxsf//730Vnz54df/DgwZb7vuExAjMHAADAWm9lJXNnEHCtQeitrGTYnLe1tXWcSCRyZGRkXM/MzOw4e/YsIxaLB8rKyhgior1793rfefzRo0e9LBYLp6Ojg3fy5ElRUlLSTTbXd0lKSjK99dZbAa7HJ06cEN7r+F//+tedixcvnvTkk09ed3N7+P4f/vCNGAAAxpyAF1/8TptkUXKyme26g/LycuErr7wi5nK55Obm5szOzj5vsVi4y5YtC1+7dq09MTFx0PmVSqUlMTFR3tXV5fbyyy+3h4eHW6urqwVsxkBEtGPHjrbFixeHyWQyld1u50yZMsWcmJg4bIOlhQsXdr/wwgu8JUuWXGN77dGAxksAADCkh63xUmZmZoiHh4d97dq13wkqP7aSkhLmpZdemlheXl4/2mO5l+EaL2HmAAAAYAS9+uqrQTt37vR///33vx7tsfxQmDkAAIAhPWwzBz+2d955xzcnJ2fQDpBxcXE9H3744bDlhrFmuJkDhAMAABgSwsGjb7hwgF8rAAAAwCAIBwAAADAIwgEAAAAMgnAAAAAAgyAcAAAAaycPNQd+fe7qoF4KX5+7Kjp5qDlwuPfA2IVwAAAArAVO8rQc31kT4QoIX5+7Kjq+syYicJKnZbTHBv85hAMAAGBtktbPnPorVcvxnTURpXsbQo7vrIlI/ZWqZZLWj3Xb5jfeeCMwKioqOioqKnrt2rUB9fX17pMmTYo2GAzh4eHh6rlz5046ePCgKDY2ViGRSNSFhYUMEZHJZOLOnz8/XKPRKJVKpeqjjz7yIiIym83cOXPmREil0uiZM2dKtVqtoqSkhCEiSk9PD1Or1crIyMjol156KcQ1huLiYiYmJkYhl8tVGo1G2dXVxa2vr3fX6/VylUqlVKlUyoKCgvFERIcPHxbFxcXJU1NTpWKxWJORkRGak5Pjo9FolDKZTGU0GvnD3avBYAh///33b/eLYBgmhu3n90Ngh0QAABgRk7R+ZvnPgjrP/b+LwdoUcftIBIPS0lJm165dvuXl5bVOp5P0er0yNTXV3NbWJtizZ0+LXq9v1Wq1yry8PN/Tp0/X7dq1y2v9+vXBycnJza+++mpwcnKyad++fa1Xr17lPfbYY8q5c+eaNm/e7O/l5WVvbm42fvXVV4KEhIRo1/W2bNnyTWBgoN1ms1FiYqL81KlTQp1O15eeni7Ny8trnjZtmuX69etcDw8Ph5ubm620tLSBYRhnVVUVf+HChRHV1dW1RER1dXXC6upqY0BAgE0ikWj4fP7Vqqqq2nXr1gVkZWUF5ObmtrH9bB4khAMAABgRX5+7Kqo/2eGvTRG315/s8BcrfMxsA0JRUZHHnDlzbkyYMMFBRPTzn/+8q7CwUBQaGtofHx/fS0Qkk8l6U1JSTFwul2JjYy1vvvlmyLfvnXDs2DGvbdu2BRER9ff3c5qamtxPnDjhsXLlyitERHFxcX0ymex26eODDz7w2blzp5/NZuN0dnaOq6ysFHA4HAoICLBOmzbNQkTk4+PjICIymUyc559/XlJTUyPkcrl0/vz52zMCGo3mpkQisRIRhYWF9aelpXUTEel0ut7i4uJBazPGIoQDAABgzbXGwFVKECt8zCNZWribu7v77e19uVwuCQQCJxERj8cju93OISJyOp20f//+Jp1O138/56yrq3Pfvn17YHl5ea2/v7/dYDCE9/X1DVt+X79+fWBAQIA1Pz//a4fDQUKhUO96jc/nDzk+Lpd7e3xDcXNzc9rtdiIistvtZLVahz32QcKaAwAAYO3y193MnUHAtQbh8tfdDJvzJicn9xw5csTLbDZzTSYT98iRI97J99kGOjk52ZSVlRXocDiIiKisrExIRJSQkNCze/dubyKi8vJyQUNDg5CIqKuriycUCh0+Pj72trY2t6KiIk8iIq1W23flypVxxcXFzLfHca1WK3V3d/OCg4OtPB6PsrOzfV1f6mxIJJKB8vJyhoho165dXjabbVTCAWYOAACAtZ/Nk36nTfIkrR/rskJSUpJl0aJF12JjY5VERM8991ynn5/ffX0Lb9iw4dKSJUvCFAqFyuFwcCZOnNhfWFjYtGrVqs4FCxaES6XSaKlU2hcZGdnn7e1t12g0/Wq12iKVStXBwcEDer2+h4hIIBA48/LymlesWBHW19fHFQgEjpKSkoYXX3zxisFgkO7evds3JSWlWygUOtjcKxHRb3/7287//u//jpTL5aqROucPgcZLAAAwpEe18ZLNZqOBgQEOwzBOo9HInzVrlqy5ubnaNfX/UzJc4yXMHAAAwE+K2WzmTp06VW61WjlOp5O2bt16/qcYDO4F4QAAAH5SvL29Ha6fHI6W1atXBx06dMjnzufmzZt3fePGjR2jNaY7oawAAABDelTLCvBvw5UV8GsFAAAAGAThAAAAAAZBOAAAAIBBEA4AAABgEIQDAABg7YvdfwtsLv9yUM+A5vIvRV/s/lvgaI0JfjiEAwAAYC04SmE5+tesCFdAaC7/UnT0r1kRwVEKy/e9F8YehAMAAGBNqo83p/3mdy1H/5oVUbhzR8jRv2ZFpP3mdy1SfTzrpktvvPFGYFRUVHRUVFT02rVrA+rr690nTZoUbTAYwsPDw9Vz586ddPDgQVFsbKxCIpGoCwsLGSIik8nEnT9/frhGo1EqlUrVRx995EV0axOkOXPmREil0uiZM2dKtVqtoqSkhCEiSk9PD1Or1crIyMjol156KcQ1huLiYiYmJkYhl8tVGo1G2dXVxa2vr3fX6/VylUqlVKlUyoKCgvFERIcPHxbFxcXJU1NTpWKxWJORkRGak5Pjo9FolDKZTGU0GvlD3ScRkdFo5Ot0OoVMJlOtWLEihGGYGLaf3w+BTZAAAGBESPXx5uj/Su08c/TvwbFpc9tHIhiUlpYyu3bt8i0vL691Op2k1+uVqamp5ra2NsGePXta9Hp9q1arVebl5fmePn26bteuXV7r168PTk5Obn711VeDk5OTTfv27Wu9evUq77HHHlPOnTvXtHnzZn8vLy97c3Oz8auvvhIkJCREu663ZcuWbwIDA+02m40SExPlp06dEup0ur709HRpXl5e87Rp0yzXr1/nenh4ONzc3GylpaUNDMM4q6qq+AsXLoxwba5UV1cnrK6uNgYEBNgkEomGz+dfraqqql23bl1AVlZWQG5ubttQ9/vCCy9MzMjIuLJ06dLrb7/9tj/bz++HwswBAACMiObyL0XGkuP+sWlz240lx/3vXoPwQxQVFXnMmTPnxoQJExyenp6On//8512FhYWi0NDQ/vj4+F4ej0cymaw3JSXFxOVyKTY21nLx4kX+t++dsHXr1mCFQqFKSkqS9/f3c5qamtxPnDjhsXDhwutERHFxcX0ymex26eODDz7w+XYmQNXY2CiorKwUnDt3ThAQEGCdNm2ahYjIx8fHMW7cOBoYGOAsWrQoXCaTqebPny9tbm4WuM6j0WhuSiQSq1AodIaFhfWnpaV1ExHpdLreCxcuuA93vxUVFR6//vWvrxMRLV68+Brbz++HwswBAACw5lpj4ColhGkmm0eytHA3d3f329v7crlccvVG4PF4ZLfbOURETqeT9u/f36TT6frv55x1dXXu27dvDywvL6/19/e3GwyG8L6+vmH/E71+/frAgIAAa35+/tcOh4OEQqHe9Rqfzx9yfFwu9/b4xjLMHAAAAGvtjXXMnUHAtQahvbGOYXPe5OTkniNHjniZzWauyWTiHjlyxDs5Ofm+wkZycrIpKysr0OG41fW4rKxMSESUkJDQs3v3bm8iovLyckFDQ4OQiKirq4snFAodPj4+9ra2NreioiJPIiKtVtt35cqVccXFxcy3x3GtVit1d3fzgoODrTwej7Kzs33t9vvqJH1PkydP7tm5c6c3EVFubq7P9x3/oGDmAAAAWEv6X7+8fPdzUn28me2sQVJSkmXRokXXYmNjlUREzz33XKefn999fQtv2LDh0pIlS8IUCoXK4XBwJk6c2F9YWNi0atWqzgULFoRLpdJoqVTaFxkZ2eft7W3XaDT9arXaIpVK1cHBwQN6vb6HiEggEDjz8vKaV6xYEdbX18cVCASOkpKShhdffPGKwWCQ7t692zclJaVbKBQ62NwrEdFf/vKXtvT09EmbNm0KTklJMXl4eLBPHD8AGi8BAMCQHtXGSzabjQYGBjgMwziNRiN/1qxZsubm5uqx0LbZbDZzx48f7+ByubRjxw7vPXv2+Bw/frz5QV1vuMZLmDkAAICfFLPZzJ06darcarVynE4nbd269fxYCAZERGVlZczKlSvDnE4nTZgwwb5z587W0RgHwgEAAPykeHt7O1w/ORwtq1evDjp06NCgNQXz5s27vnHjxo76+vqa0RqXC8oKAAAwpEe1rAD/NlxZAb9WAAAAgEEQDgAAAGAQhAMAAAAYBOEAAAAABkE4AAAA1rqPtQb21l4b1Euht/aaqPtYa+BojelhZ7VaR+3aCAcAAMCae5jIcn1vQ4QrIPTWXhNd39sQ4R4msnzfe7/PT6lls8FgCF+0aFGYVqtVLF++XMz2s/uhsM8BAACwJlT6mn0WyFqu722IGB8b0HnzzBV/nwWyFqHSl9X2yT+1ls1ERO3t7e5nzpypc3Mbva9ohAMAABgRQqWveXxsQGdP2aVgj8dD2tkGA6LBLZuJiO5u2UxE32nZ/Oabb4Z8+94Jx44d89q2bVsQEdGdLZtXrlx5hWjols07d+70s9lsnM7OznGVlZUCDodDd7dsJiIymUyc559/XlJTUyPkcrl0/vz52zMCrpbNRER3t2wuLi6+ZyvrZ555pms0gwERwgEAAIyQ3tproptnrvh7PB7SfvPMFX9+pJd5JALCUB7lls0eHh6sGzixhTUHAADAmmuNgc8CWYvXk9JLrhLD3YsU/1M/tZbNYwVmDgAAgLWBC2bmzjUGrjUIAxfMDJvZg59ay+axAr0VAABgSI9qb4Wx3LL5x4aWzQAAADS2WzaPFQgHAADwkzLWWzaP1pjuhLICAAAM6VEtK8C/oWUzAAAA3BeEAwAAABgE4QAAAAAGQTgAAACAQRAOAAAAYBCEAwAAYO348eOB9fX1g7ZKrq+vFx0/fjxwtMb0MHr77bf9t2/f7jva40A4AAAA1sRiseXAgQMRroBQX18vOnDgQIRYLLZ833vh337/+993vvDCC9dGexwIBwAAwJpcLjc//fTTLQcOHIg4evRoyIEDByKefvrpFrlczror4xtvvBEYFRUVHRUVFb127dqA+vp690mTJkUbDIbw8PBw9dy5cycdPHhQFBsbq5BIJOrCwkKGiMhkMnHnz58frtFolEqlUvXRRx95Ed3aIXHOnDkRUqk0eubMmVKtVqsoKSlhiIjS09PD1Gq1MjIyMvqll14KcY2huLiYiYmJUcjlcpVGo1F2dXVx6+vr3fV6vVylUilVKpWyoKBgPBHR4cOHRXFxcfLU1FSpWCzWZGRkhObk5PhoNBqlTCZTGY1G/lD3SUSUmZkZ8vrrr4/6bAt2SAQAgBEhl8vNOp2u89SpU8FTpkxpH4lgUFpayuzatcu3vLy81ul0kl6vV6ampprb2toEe/bsadHr9a1arVaZl5fne/r06bpdu3Z5rV+/Pjg5Obn51VdfDU5OTjbt27ev9erVq7zHHntMOXfuXNPmzZv9vby87M3NzcavvvpKkJCQEO263pYtW74JDAy022w2SkxMlJ86dUqo0+n60tPTpXl5ec3Tpk2zXL9+nevh4eFwc3OzlZaWNjAM46yqquIvXLgwwrXzYl1dnbC6utoYEBBgk0gkGj6ff7Wqqqp23bp1AVlZWQG5ubltbD+bBwnhAAAARkR9fb2osrLSf8qUKe2VlZX+ERERZrYBoaioyGPOnDk3JkyY4CAi+vnPf95VWFgoCg0N7Y+Pj+8lIpLJZL0pKSkmLpdLsbGxljfffDPk2/dOOHbsmNe2bduCiIj6+/s5TU1N7idOnPBYuXLlFSKiuLi4PplMdrv08cEHH/js3LnTz2azcTo7O8dVVlYKOBwOBQQEWKdNm2YhIvLx8XEQEZlMJs7zzz8vqampEXK5XDp//vztGQGNRnNTIpFYiYjCwsL609LSuomIdDpdb3FxMas21j8GhAMAAGDNtcbAVUqIiIgwj2Rp4W7u7u639/7ncrnkapzE4/HIbrdziIicTift37+/SafT9d/POevq6ty3b98eWF5eXuvv7283GAzhfX19w5bf169fHxgQEGDNz8//2uFwkFAo1Lte4/P5Q46Py+XeHt9YhjUHAADA2sWLF5k7g4BrDcLFixcZNudNTk7uOXLkiJfZbOaaTCbukSNHvJOTk+8rbCQnJ5uysrICHQ4HERGVlZUJiYgSEhJ6du/e7U1EVF5eLmhoaBASEXV1dfGEQqHDx8fH3tbW5lZUVORJRKTVavuuXLkyrri4mPn2OK7VaqXu7m5ecHCwlcfjUXZ2tq/dbmdzq2MKZg4AAIC11NTUy3c/J5fLWZcVkpKSLIsWLboWGxurJCJ67rnnOv38/O7rW3jDhg2XlixZEqZQKFQOh4MzceLE/sLCwqZVq1Z1LliwIFwqlUZLpdK+yMjIPm9vb7tGo+lXq9UWqVSqDg4OHtDr9T1ERAKBwJmXl9e8YsWKsL6+Pq5AIHCUlJQ0vPjii1cMBoN09+7dvikpKd1CodDB5l7HEnRlBACAIT2qXRltNhsN/P/t3WtYU2e6N/AnCRDJEAIkMYAgJEiOciqWioei2DLQ4gHt5Xas7djxRPGwNdit217D6ztq1blwnI3bjji2455Ntx27W6TUA1VfRKetOlY5SEhAEJUhAcIhJiRoSPJ+6MQhCLa6ooD8f5/MWsl6nlx+WH/Wc+e579+nsVgsR3V1NTMlJUVcX19/3fnofzQZrCsjnhwAAMCoYjQa6dOnT5dYrVaaw+Ege/fuvTUag8GjIBwAAMCo4u/vb3f+5HCobNq0KbCoqCig77G5c+d27N69WzdUc+oLywoAADCg53VZAf5psGUF/FoBAAAAXCAcAAAAgAuEAwAAAHCBcAAAAAAuEA4AAICy+vo9gjb9WZeeAW36s+z6+j1D3mGQEELWrl07LjAwMJrFYsUN9VxGAoQDAACgzJcTa1apNoqcAaFNf5atUm0U+XJizT/22Wdh3rx5XZcuXRrSny+OJNjnAAAAKOPzZhnl8twGlWqjKChwfptW9wVfLs9t4PNmUW669N577wV99tlnXC6Xaw0ODr4fFxdnPnXqlJ9CoTB/9913bJvNRjt48ODNmTNnmg0GA33ZsmXjKysrWYQQsmXLlualS5d2zZo1q/unjlddXc1cvHix0GKx0FNTU7sOHTokMJvN16h+j5EETw4AAMAt+LxZxqDA+W13mg4HBQXOb3NHMCgrK2MVFxf7q1Sq6jNnztRVVlb+zHnOYrHQ1Wq1Ki8v79bKlSuFhBCyefPmIF9fX1ttba2qtrZW9frrrz/2HNasWROalZXVWltbqwoJCbFS/Q4jEcIBAAC4RZv+LFur+4IfGrJUq9V9we9fg/AkysrKfNLS0rpYLJbD39/f/uqrr3Y5zy1evLiDEELS0tJMJpOJrtfrGefPn/fdsGFDq/M9fD7/sVslXrt2zedXv/pVByGELF++vJ3qdxiJEA4AAIAyZ42BXJ7bIBb/utm5xOCOgDAYGo32yNfw5BAOAACAsruGclbfGgNnDcJdQzmLynWTkpJMJSUlHLPZTDMYDPQzZ874Oc8dOXLEnxBCSkpKfNhsto3L5dqSkpLu7t27d6zzPW1tbYzHHTM2NtZ0+PBhf0II+fjjjwN+7P3PI4QDAACgLCIiu6V/jQGfN8sYEZHdQuW6SUlJ5tTUVINcLlckJydHSiQSC4fDsRFCyJgxYxwymUy+Zs2asPz8/EZCCNm5c6e2q6uLERkZqZBIJPITJ06wCSEkMzMzRCAQRPf09NAFAkG0UqkMHmzMffv23dm3b59ALBbLb9y4McbHx+exlyZGOjReAgCAAQ2XxksGg4HO4XDsRqORnpiYKDlw4MAtpVIZmpube+fll192+08ljUYj/Wc/+5mdTqeTgwcP+v/lL38JOHv2bL27xxkOBmu8hJ8yAgDAsLZkyZKwuro673v37tEWLVrUPm3atKe6d8I333zD+td//dfxDoeD+Pr62g4fPtz4NMcbjhAOAABgWCsuLr7Z/9jly5c1VK+7adOmwKKiIpeagrlz53bs3r1bp9FoVFSvP5JhWQEAAAY0XJYV4OkZbFkBBYkAAADgAuEAAAAAXCAcAAAAgAuEAwAAAHCBcAAAAJTtbNAKvtYbXLZK/lpvYO9s0AqGak59rV27dlxgYGA0i8WKG+q5jAQIBwAAQFm8L8u8tua2yBkQvtYb2GtrbovifVlPdU+Cn2revHldly5dqnncz1mto7IpI/Y5AAAA6lJ4HOM+2fiGtTW3RQsD/duO6jr5+2TjG1J4HMptm997772gzz77jMvlcq3BwcH34+LizKdOnfJTKBTm7777jm2z2WgHDx68OXPmTLPBYKAvW7ZsfGVlJYsQQrZs2dK8dOnSrlmzZnX/1PEWLFgQzmQy7devX2clJCSYDh061ET1O4w0CAcAAOAWKTyOcWGgf9sfm/RBK0J4WncEg7KyMlZxcbG/SqWqvnfvHi02NlYeFxdnJoQQi8VCV6vVqpMnT/qsXLlSWFdXV7158+YgX19fW21trYqQJ2u8RAghWq3W6+rVq2oPj9F5m8SyAgAAuMXXegP7qK6TvyKEpz2q6+T3r0F4EmVlZT5paWldLBbL4e/vb3/11Ve7nOcWL17cQQghaWlpJpPJRNfr9Yzz58/7btiwodX5Hj6f/0RNk+bPn985WoMBIQgHAADgBs4ag32y8Q3bIkOanUsM7ggIg6HRaI98TYWPj4/dbRcbgRAOAACAsu/vmll9awycNQjf3zWzqFw3KSnJVFJSwjGbzTSDwUA/c+aMn/PckSNH/AkhpKSkxIfNZtu4XK4tKSnp7t69e8c63/OkywqjHcIBAABQ9u+ioJb+NQYpPI7x30VBLVSum5SUZE5NTTXI5XJFcnJypEQisXA4HBshhIwZM8Yhk8nka9asCcvPz28khJCdO3dqu7q6GJGRkQqJRCI/ceIEmxBCMjMzQwQCQXRPTw9dIBBEK5XKYCrzet6h8RIAAAxouDReMhgMdA6HYzcajfTExETJgQMHbimVytDc3Nw7L7/88rD4qeRINVjjpdFbbQEAACPCkiVLwurq6rzv3btHW7RoUfu0adMQCJ4yhAMAABjWiouLb/Y/dvnyZQ3V627atCmwqKgooO+xuXPnduzevVtH9dojHZYVAABgQMNlWQGensGWFVCQCAAAAC4QDgAAAMAFwgEAAAC4QDgAAADKcks0gjM1LS67IZ6paWHnlmhGXMvm3/72t/z//M//5D6LeQ1XCAcAAEBZ7Hg/s/JoucgZEM7UtLCVR8tFseP9hsXPDh+nZfO//du/ta1Zs6b9ac9pOMNPGQEAgLJXZALj7xbGNiiPlosWvBDS9vnVJv7vFsY2vCITjLiWzUqlMtjHx8f2m9/8htLujiMZwgEAALjFKzKBccELIW1/+qYx6J2p4Vp3BIOhatk82mFZAQAA3OJMTQv786tN/Hemhms/v9rE71+D8CSGqmXzaIdwAAAAlDlrDH63MLbh/8xWNDuXGNwREAbzNFs2j3YIBwAAQFn57S5W3xoDZw1C+e0utGwegRAOAACAso0/l7T0rzF4RSYwbvy5BC2bRyD0VgAAgAENl94KaNn89KBlMwAAjEho2fzsIRwAAMCwhpbNzx6WFQAAYEDDZVkBnh60bAYAAICfBOEAAAAAXCAcAAAAgAuEAwAAAHCBcAAAANSd3SYgmpOuWyVrTrLJ2W2CIZqRi7Vr144LDAyMZrFYcUM9l5EA4QAAAKgLmWQmhZmiBwFBc5JNCjNFJGTSsNiTYN68eV2XLl2qGep5jBTY5wAAAKiTpBlJxoEGUpgpIjG/aCMVR/gk40ADkaRRbtv83nvvBX322WdcLpdrDQ4Ovh8XF2c+deqUn0KhMH/33Xdsm81GO3jw4M2ZM2eaDQYDfdmyZeMrKytZhBCyZcuW5qVLl3bNmjWr+6eOJ5VK5c5/NzY2jvn8889rX3/9dRPV7zGSIBwAAIB7SNKMJOYXbeTSH4LIS+9q3REMysrKWMXFxf4qlar63r17tNjYWHlcXJyZEEIsFgtdrVarTp486bNy5UphXV1d9ebNm4N8fX1ttbW1KkKerPGSWq1WEULI//zP/3D27NkT+Morr/zkYPG8QDgAAAD30Jxkk4ojfPLSu1pScYRPRElGqgGhrKzMJy0trYvFYjlYLJbj1Vdf7XKeW7x4cQchhKSlpZlMJhNdr9czzp8/7/vpp582ON/D5/NtTzJuVVUV8/333w85d+5cLZPJHHW7BaLmAAAAqHPWGGQcaCBpu5ofLDH0L1J0IxqN9sjXT8pgMNAXLlwY8Yc//OFWWFiY1S0XHWEQDgAAgLqmKyyXGgNnDULTFRaVyyYlJZlKSko4ZrOZZjAY6GfOnPFznjty5Ig/IYSUlJT4sNlsG5fLtSUlJd3du3fvWOd7nmRZ4Re/+EX4m2++qU9NTR1VdQZ9IRwAAAB1s37d8tASgiTNSGb9uoXKZZOSksypqakGuVyuSE5OjpRIJBYOh2MjhJAxY8Y4ZDKZfM2aNWH5+fmNhBCyc+dObVdXFyMyMlIhkUjkJ06cYBNCSGZmZohAIIju6emhCwSCaKVSGTzQeLW1tV6nTp3yLygo4EmlUrlUKpWfP3+eUsAZidB4CQAABjRcGi8ZDAY6h8OxG41GemJiouTAgQO3lEplaG5u7p2XX355WPxUcqQarPESp9omSgAAIABJREFUChIBAGBYW7JkSVhdXZ33vXv3aIsWLWqfNm0aAsFThnAAAADDWnFx8c3+xy5fvqyhet1NmzYFFhUVBfQ9Nnfu3I7du3frqF57pMOyAgAADGi4LCvA0zPYsgIKEgEAAMAFwgEAAAC4QDgAAAAAFwgHAAAA4ALhAAAAKMu7mic4d+ecy1bJ5+6cY+ddzRMM1Zz6Wrt27bjAwMBoFosVN9RzGQkQDgAAgLJofrT5/b++L3IGhHN3zrHf/+v7omh+9LDYk2DevHldly5dqhnqeYwU2OcAAAAomxE6w7hj2o6G9//6vmh2xOy24vpi/o5pOxpmhM6g3Lb5vffeC/rss8+4XC7XGhwcfD8uLs586tQpP4VCYf7uu+/YNpuNdvDgwZszZ840GwwG+rJly8ZXVlayCCFky5YtzUuXLu2aNWvWT2q73NnZSZ84caKioaHhOpPJdHR0dNCjoqIevKb6XUYKPDkAAAC3mBE6wzg7YnbbJzWfBM2OmN3mjmBQVlbGKi4u9lepVNVnzpypq6ys/JnznMVioavValVeXt6tlStXCgkhZPPmzUG+vr622tpaVW1trer1119/rDn4+/vbExMTjUePHuUQQsjHH38c8Nprr3WOpmBACMIBAAC4ybk759jF9cX8N2Vvaovri/n9axCeRFlZmU9aWloXi8Vy+Pv721999dUu57nFixd3EEJIWlqayWQy0fV6PeP8+fO+GzZsaHW+h8/n2x53zJUrV7YdPnyYSwghBQUFvJUrV466jaAQDgAAgDJnjcGOaTsaNidsbnYuMbgjIAyGRqM98vWTSklJ6W5qamJ+9dVXbJvNRnvxxRd73HLhEQThAAAAKKtsq2T1rTFw1iBUtlVSaneclJRkKikp4ZjNZprBYKCfOXPGz3nuyJEj/oQQUlJS4sNms21cLteWlJR0d+/evWOd72lra2M8ybiLFi1q/9WvfiVcsmTJqHtqQAjCAQAAuMG6F9a19K8xmBE6w7juhXUtVK6blJRkTk1NNcjlckVycnKkRCKxcDgcGyGEjBkzxiGTyeRr1qwJy8/PbySEkJ07d2q7uroYkZGRColEIj9x4gSbEEIyMzNDBAJBdE9PD10gEEQrlcrgR427bNmy9rt373osW7asg8r8Ryo0XgIAgAENl8ZLBoOBzuFw7EajkZ6YmCg5cODALaVSGZqbm3vn5Zdffio/lfzTn/7kX1RU5Hfs2LGHOkI+TwZrvISfMgIAwLC2ZMmSsLq6Ou979+7RFi1a1D5t2rSnunfCL3/5y9DS0lLOV199Vfc0xxnOEA4AAGBYKy4ufuiv98uXL2uoXnfTpk2BRUVFAX2PzZ07t+O//uu/7hBC7lC9/kiGZQUAABjQcFlWgKdnsGUFFCQCAACAC4QDAAAAcIFwAAAAAC4QDgAAAMAFwgEAAFDW+vvfC4ylpS5bJRtLS9mtv/+94GmMl5CQIDl//vxDuy8mJSVN0Ov1D+2KqFQqg3Nycp7KXJ5HCAcAAECZd0yMuXnTZpEzIBhLS9nNmzaLvGNinuqeBP2VlZXd4PF4j91sCVwhHAAAAGXsmTONwbt3NTRv2izSffBBcPOmzaLg3bsa2DNnUmrbrNFovCIjIxXO1zk5OYK+Wx/bbDayYMGC8HXr1gUTQsi4ceOitFqtByE/7GMQHh4+MT4+XlJXV8d0fmb79u1jIyIiFGKxWJ6eni4ihJDjx4/7SKVSuVQqlctkMnlnZ+eA98eMjIzw//7v/37Q32HOnDnCgoICv4HeO5JhEyQAAHAL9syZRs68uW2df/7vIP+339JSDQY/xmq10ubNmyeUy+WW3bt36/qeu3DhAquwsDCgqqpKZbVaSWxsrDwuLs5MCCF5eXmBt27dqvL29nY4lyD27NkTmJeXdyslJaXbYDDQWSyWfaAxly9frt+7d6/grbfe6mpvb2d8//33Pp9//vlzt8UynhwAAIBbGEtL2YZjRXz/t9/SGo4V8fvXILhbVlZW2EDBgBBCSktLfV577bUuNpttDwgIsKekpHQ5z0kkEktGRobwww8/DPD09HQQQsjkyZNNGzduDN2+fftYvV7P8PT0HHDM119/3dTY2DimubnZ46OPPgp4/fXXOwd770iGcAAAAJQ5awyCd+9qCNyypdm5xEA1IHh4eDjs9n/+Ed/T0/PgvjVp0iTThQsXfM1mM+1xrllaWlq3evXqtqtXr7Li4uJkVquVfPDBB7pDhw7dslgs9OnTp0uvXbs2ZrDP/8u//Ev7H//4x4CCggLuqlWrnssdJBEOAACAMktFBatvjYGzBsFSUfHQLwoeR0hISG9HR4eHTqdjWCwWWklJCcd5btWqVfqUlBRDenp6hNVqdflccnKy6cSJE34mk4nW2dlJP336tB8hP9Qo1NfXe82ePdu4f//+v5tMJobBYGBUV1czExISLDt27NBFR0d3X79+fdBwkJmZqc/PzxcQQkh8fHwPle83XKHmAAAAKBu7fn1L/2PsmTONVOsOmEymIzs7W/viiy/KBAKBdcKECS43461bt7Zs2LCBMX/+fGHf9srTpk0zZ2RkdEycOFHB5XKt0dHR3YQQ0tvbS1u8eLHQaDQyHA4Hbfny5a08Hs+WnZ0d/O233/rSaDSHRCKxvPHGG4bB5hQaGtobERHRM3v27K7B3jPSofESAAAMCI2XBmY0GulyuVxeXl5ew+VyR/TPJtF4CQAAgKJjx46xJRKJYsWKFa0jPRg8CpYVAAAA+rl8+bL322+/Lex7zMvLy15ZWameN29e1VDN61lBOAAAAOgnISHBolarVUM9j6GCZQUAAABwgXAAAAAALhAOAAAAwAXCAQAAALhAOAAAAMouFtULblbqXbZKvlmpZ18sqhc8jfESEhIk58+ff2j3xaSkpAnOZkp9KZXK4JycHMpzaWxs9ExNTRVRvc5wh3AAAACUCYQc89nDKpEzINys1LPPHlaJBEKO+VnOo6ys7AaPx3tq+w+Eh4dbT5061fC0rj9cIBwAAABlwmiecdZSecPZwyrRhaO1wWcPq0SzlsobhNE8StsnazQar8jISIXzdU5OjkCpVAY7X9tsNrJgwYLwdevWBRNCyLhx46K0Wq0HIYRs2rQpMDw8fGJ8fLykrq6O6fzM9u3bx0ZERCjEYrE8PT1dRAghx48f95FKpXKpVCqXyWTyzs7OAe+P/efzvMI+BwAA4BbCaJ5RMjmwrfL/NQVFJ4doqQaDH2O1Wmnz5s0TDtS2+cKFC6zCwsKAqqoqldVqJbGxsfK4uDgzIYTk5eUF3rp1q8rb29vhXILYs2dPYF5e3q2UlJRug8FAZ7FY9oHGHC3w5AAAANziZqWerbmo40cnh2g1F3X8/jUI7paVlRU2UDAghJDS0lKf1157rYvNZtsDAgLsKSkpD5okSSQSS0ZGhvDDDz8M8PT0dBBCyOTJk00bN24M3b59+1i9Xs/w9PR8mlMf9hAOAACAMmeNwayl8obpC8XNziUGqgHBw8PDYbf/84/4np6eB/etSZMmmS5cuOBrNptpj3PN0tLSutWrV7ddvXqVFRcXJ7NareSDDz7QHTp06JbFYqFPnz5deu3atUFbNo8GCAcAAEBZy00Dq2+NgbMGoeWm4aFfFDyOkJCQ3o6ODg+dTsewWCy0kpISjvPcqlWr9CkpKYb09PQIq9Xq8rnk5GTTiRMn/EwmE62zs5N++vRpP0J+qFGor6/3mj17tnH//v1/N5lMDIPBwKiurmYmJCRYduzYoYuOju6+fv36qA4HqDkAAADKJs+NaOl/TBjNM1KtO2AymY7s7Gztiy++KBMIBNYJEyb09D2/devWlg0bNjDmz58vPHbs2E3n8WnTppkzMjI6Jk6cqOByudbo6OhuQgjp7e2lLV68WGg0GhkOh4O2fPnyVh6PZ8vOzg7+9ttvfWk0mkMikVjeeOMNw2BzotFoDirfaSSgORzP/XcEAIAnUFFR0RgTE6Mf6nkMJxcuXGAplcrQv/3tb5qhnos7VFRU8GJiYsL7H8eyAgAAwE9w/vx51ltvvSVas2bNQ09JnjdYVgAAAOjn8uXL3m+//baw7zEvLy97Y2Pj9aGa07OEcAAAANBPQkKCRa1Wq4Z6HkMFywoAAADgAuEAAAAAXCAcAAAAgAuEAwAAAHCBcAAAAJT99dM/C+q/v+yyVXL995fZf/30z4KnMV5CQoLk/PnzD+2+mJSUNMHZTKkvpVIZnJOTQ3kuX331FXvmzJkTqF5nuEM4AAAAyoIipeaT+/eInAGh/vvL7JP794iCIqXmZzmPsrKyGzwez/Ysx3weIRwAAABlEfEJxrTV2Q0n9+8RlR4+GHxy/x5R2urshoj4BErbJ2s0Gq/IyEiF83VOTo5AqVQGO1/bbDayYMGC8HXr1gUTQsi4ceOitFqtByGEbNq0KTA8PHxifHy8pK6ujun8zPbt28dGREQoxGKxPD09XUQIIcePH/eRSqVyqVQql8lk8s7OzkHvj93d3YzU1FSRUChUzJkzR9i3MdTzAvscAACAW0TEJxgVL89qu3ryy6AX0uZoqQaDH2O1Wmnz5s0TDtS2+cKFC6zCwsKAqqoqldVqJbGxsfK4uDgzIYTk5eUF3rp1q8rb29vhXILYs2dPYF5e3q2UlJRug8FAZ7FYg97xa2pqvMvLyxvCw8Ot8fHx0tOnT/v8/Oc/Nz3N7/qs4ckBAAC4Rf33l9nV58/yX0ibo60+f5bfvwbB3bKyssIGCgaEEFJaWurz2muvdbHZbHtAQIA9JSWly3lOIpFYMjIyhB9++GGAp6engxBCJk+ebNq4cWPo9u3bx+r1eoanp+eg40ZFRXVHRERYGQwGUSgU5vr6eq+n8gWHEMIBAABQ5qwxSFud3TBz6cpm5xID1YDg4eHh6PvYvqen58F9a9KkSaYLFy74ms1m2uNcs7S0tG716tVtV69eZcXFxcmsViv54IMPdIcOHbplsVjo06dPl167dm3Qls1MJvNBx0IGg0F6e3sfa/yRAOEAAAAo09apWX1rDJw1CNo69UO/KHgcISEhvR0dHR46nY5hsVhoJSUlHOe5VatW6VNSUgzp6ekRVqvV5XPJycmmEydO+JlMJlpnZyf99OnTfoT8UKNQX1/vNXv2bOP+/fv/bjKZGAaDgVFdXc1MSEiw7NixQxcdHd19/fr1QcPBaICaAwAAoGzaorcf6lQYEZ9gpFp3wGQyHdnZ2doXX3xRJhAIrBMmTOjpe37r1q0tGzZsYMyfP1947Nixmw/mM22aOSMjo2PixIkKLpdrjY6O7iaEkN7eXtrixYuFRqOR4XA4aMuXL2/l8Xi27Ozs4G+//daXRqM5JBKJ5Y033jBQmfdIR3M4HD/+LgAAGHUqKioaY2Ji9EM9D3h6KioqeDExMeH9j2NZAQAAAFxgWQEAAKCfy5cve7/99tvCvse8vLzslZWV6qGa07OEcAAAANBPQkKCRa1Wq4Z6HkMFywoAAADgAuEAAAAAXCAcAAAAgAuEAwAAAHCBcAAAAJQZShoFlpp2l62SLTXtbENJo+BpjJeQkCA5f/78Q7svJiUlTXA2U+pLqVQG5+TkUJ7LV199xZ45c+YEqtcZ7hAOAACAMq/xbHPH0VqRMyBYatrZHUdrRV7j2eZnOY+ysrIbPB7P9izHfB4hHAAAAGXeMq4xYKG4oeNorairuD6442itKGChuMFbxqW0fbJGo/GKjIxUOF/n5OQIlEplsPO1zWYjCxYsCF+3bl0wIYSMGzcuSqvVehBCyKZNmwLDw8MnxsfHS+rq6pjOz2zfvn1sRESEQiwWy9PT00WEEHL8+HEfqVQql0qlcplMJu/s7PzR+2NZWRlLJpPJq6urmT/23pEG+xwAAIBbeMu4xp+9MLbN9E1zkM/UYC3VYPBjrFYrbd68ecKB2jZfuHCBVVhYGFBVVaWyWq0kNjZWHhcXZyaEkLy8vMBbt25VeXt7O5xLEHv27AnMy8u7lZKS0m0wGOgsFss+0JhOp0+f/tn69evHf/nllzciIyPvP71vOTTw5AAAANzCUtPO7r7ayveZGqztvtrK71+D4G5ZWVlhAwUDQggpLS31ee2117rYbLY9ICDAnpKS0uU8J5FILBkZGcIPP/wwwNPT00EIIZMnTzZt3LgxdPv27WP1ej3D09Nz0HFv3LgxJisrK/z48ePPZTAgBOEAAADcwFljELBQ3OA3O6LZucRANSB4eHg47PZ//hHf09Pz4L41adIk04ULF3zNZjPtca5ZWlpat3r16rarV6+y4uLiZFarlXzwwQe6Q4cO3bJYLPTp06dLr127NmjL5rFjx1qZTKb94sWLlNpRD2cIBwAAQNn920ZW3xoDZw3C/dtGSjfQkJCQ3o6ODg+dTsewWCy0kpISjvPcqlWr9CkpKYb09PQIq9Xq8rnk5GTTiRMn/EwmE62zs5N++vRpP0J+qFGor6/3mj17tnH//v1/N5lMDIPBwKiurmYmJCRYduzYoYuOju6+fv36oOHA19fXdvLkybqcnJxxX3311VN9OjJUUHMAAACUcX4e3tL/mLeMa6Rad8BkMh3Z2dnaF198USYQCKwTJkzo6Xt+69atLRs2bGDMnz9feOzYsZvO49OmTTNnZGR0TJw4UcHlcq3R0dHdhBDS29tLW7x4sdBoNDIcDgdt+fLlrTwez5adnR387bff+tJoNIdEIrG88cYbhkfNKzQ0tPf48eM30tLSIlksVmNycnI3le853NAcDsdQzwEAAIahioqKxpiYGP1QzwOenoqKCl5MTEx4/+NYVgAAAAAXWFYAAADo5/Lly95vv/22sO8xLy8ve2VlpXqo5vQsIRwAAAD0k5CQYFGr1aqhnsdQwbICAAAAuEA4AAAAABcIBwAAAOAC4QAAAABcIBwAAABlZ8+eFWg0GpfdAjUaDfvs2bMCd4/V2NjomZqaKhrsvF6vZ+zatYvv7nFHE4QDAACgLCQkxFxYWChyBgSNRsMuLCwUhYSEmN09Vnh4uPXUqVMNg51vb29nfPTRR2PdPe5ognAAAACUSSQSY0ZGRkNhYaHo5MmTwYWFhaKMjIwGiURCafvkrKyscTt37nzwFECpVAbn5OQIIiMjFYQQcuXKlTFRUVEyqVQqF4vF8qqqKmZ2dnbInTt3mFKpVL5q1aoQg8FAT0xMFMvlcplYLJYXFBT4DTbeb3/7W75UKpVLpVL5uHHjol566SUxlfmPVNg+GQAABvQk2yefPHky+NKlS0EvvfSSNi0trZnqHL755hvv9evXj//b3/6mIYSQiIgIxf79+2+tXbs2rK6urvqXv/xl6OTJk7vffffdjp6eHlpvby/5+9//7pmenh5ZV1dXTQghVquVGI1GekBAgF2r1Xq89NJL0sbGxut0+uB/H9+7d482ZcoUcXZ2tm7x4sWP7LMwkg22fTI2QQIAALfQaDTsiooK/ksvvaStqKjgi0QiI9UnB1OnTrW0t7d7NDY2emq1Wg8Oh2MTCoX3necTExO7c3Nzg5qamrwWLVrUGRUVda//Nex2O239+vUhFy9e9KHT6aS1tdWrqanJY/z48b2Djbts2bLQl19+2fg8B4NHwbICAABQ5qwxyMjIaEhLS2t2LjH0L1J8EnPmzOksKCjw/+STTwLmz5/f0fdcZmZmR1FR0Q1vb297enp65JdffvnQePn5+QHt7e0eVVVVNWq1WsXlcq0Wi2XQ+19eXh63qanJKzc3l/KTj5EKTw4AAICypqYmVt8aA2cNQlNTE4vq04MlS5Z0rFixIryzs9OjrKxM09PTQ3OeU6lUXjKZ7J5CoWi9ffu2V3l5uXdCQoK5u7v7wc3fYDAweDyelclkOoqLi9nNzc1eg4114cIF1r59+wK//fZbNYPBoDLtEQ3hAAAAKJs1a1ZL/2MSiYTysgIhhEyaNKmnu7ubLhAI7oeFhVk1Gs2Dm3tBQUHA0aNHuR4eHg4+n2/dtm2bViAQ2OLj402RkZGK5ORkw9atW3VpaWkTxGKxPDo62iwUCnsGG+s//uM/xhoMBsb06dMlhBASExPT/Ze//OUW1e8w0qAgEQAABvQkBYkwsgxWkIiaAwAAAHCBZQUAABh1dDodY8aMGZL+x8+dO6cJDAy0DcWchhOEAwAAGHUCAwNtarVaNdTzGK6wrAAAAAAuEA4AAADABcIBAAAAuEA4AAAAABcIBwAAQFl9/R5Bm/6sy9bFbfqz7Pr6PQJ3j9XY2OiZmpoqGuy8Xq9n7Nq1iz/YefhxCAcAAECZLyfWrFJtFDkDQpv+LFul2ijy5cSa3T1WeHi49dSpUw2DnW9vb2d89NFHY9097miCcAAAAJTxebOMcnlug0q1UVRbuy1YpdookstzG/i8WZS2T87Kyhq3c+fOB08BlEplcE5OjiAyMlJBCCFXrlwZExUVJZNKpXKxWCyvqqpiZmdnh9y5c4cplUrlq1atCjEYDPTExESxXC6XicVieUFBgd9g461fvz74N7/5zYNgsXbt2nHbtm0bdUED4QAAANyCz5tlDAqc33an6XBQUOD8NqrBgBBC3nzzzY4vvvgiwPm6qKjIf8qUKd3O1/v27eNnZWW1qNVqVWVlZY1QKLy/Z8+eptDQ0HtqtVqVn5/fxGKx7MePH7+hUqlqysrKards2RJit9sHHO/dd9/Vf/rpp1xCCLHZbOTYsWP+K1asaKf6PUYabIIEAABu0aY/y9bqvuCHhizVanVf8P0DphipBoSpU6da2tvbPRobGz21Wq0Hh8OxCYXC+87ziYmJ3bm5uUFNTU1eixYt6oyKirrX/xp2u522fv36kIsXL/rQ6XTS2trq1dTU5DF+/Pje/u+VSCT3/fz8er/55htvrVbrqVAozKNxx0SEAwAAoMxZY+BcSvAPmGJ019LCnDlzOgsKCvx1Op3n/PnzO/qey8zM7Jg+fXp3YWEhJz09PXLfvn23JBKJS0DIz88PaG9v96iqqqphMpmOcePGRVkslkGfnL/zzjv6Q4cO8VpbWz3feeedUffUgBCEAwAAcIO7hnJW3yDgrEG4ayhnUQ0HS5Ys6VixYkV4Z2enR1lZmaanp4fmPKdSqbxkMtk9hULRevv2ba/y8nLvhIQEc3d394Obv8FgYPB4PCuTyXQUFxezm5ubvQYe6QdvvfVW144dO8b19vbSFixYMGjh4/MM4QAAACiLiMhu6X+Mz5tFeVmBEEImTZrU093dTRcIBPfDwsKsGo3mwc29oKAg4OjRo1wPDw8Hn8+3btu2TSsQCGzx8fGmyMhIRXJysmHr1q26tLS0CWKxWB4dHW0WCoU9jxpvzJgxjilTptz18/OzeXiMztskzeFwDPUcAABgGKqoqGiMiYnRD/U8njWbzUYUCoX8s88+qx+ohuF5UlFRwYuJiQnvfxy/VgAAAPiH77//fkxYWFjU9OnT7z7vweBRRufzEgAAGNV0Oh1jxowZkv7Hz507p2lqaqoaijkNJwgHAAAw6gQGBtrUarVqqOcxXGFZAQAAAFwgHAAAAIALhAMAAABwgXAAAAAALhAOAACAsp0NWsHXegO777Gv9Qb2zgatwN1jNTY2eqampooGO6/X6xm7du3iD3b+x8TFxUmf9LPPC4QDAACgLN6XZV5bc1vkDAhf6w3stTW3RfG+LLO7xwoPD7eeOnVq0G2N29vbGR999NETt1m+du2a+kk/+7xAOAAAAMpSeBzjPtn4hrU1t0W/rmsKXltzW7RPNr4hhcehtH1yVlbWuJ07dz54CqBUKoNzcnIEkZGRCkIIuXLlypioqCiZVCqVi8VieVVVFTM7Ozvkzp07TKlUKl+1alWIwWCgJyYmiuVyuUwsFssLCgr8HjUmi8WKozLn5wHCAQAAuEUKj2NcGOjf9scmfdDCQP82qsGAEELefPPNji+++CLA+bqoqMh/ypQp3c7X+/bt42dlZbWo1WpVZWVljVAovL9nz56m0NDQe2q1WpWfn9/EYrHsx48fv6FSqWrKyspqt2zZEmK326lO7bmGTZAAAMAtvtYb2Ed1nfwVITztUV0nf7o/20g1IEydOtXS3t7u0djY6KnVaj04HI5NKBTed55PTEzszs3NDWpqavJatGhR50BbHtvtdtr69etDLl686EOn00lra6tXU1OTx/jx43upzO15hicHAABAmbPGYJ9sfMO2yJBm5xJD/yLFJzFnzpzOgoIC/08++SRg/vz5HX3PZWZmdhQVFd3w9va2p6enR3755ZcPjZefnx/Q3t7uUVVVVaNWq1VcLtdqsVhw/3sEPDkAAADKvr9rZvWtMXDWIHx/18yi+vRgyZIlHStWrAjv7Oz0KCsr0/T09NCc51QqlZdMJrunUChab9++7VVeXu6dkJBg7u7ufnDzNxgMDB6PZ2UymY7i4mJ2c3Oz18AjgRPCAQAAUPbvoqCW/sdSeBzKywqEEDJp0qSe7u5uukAguB8WFmbVaDQPbu4FBQUBR48e5Xp4eDj4fL5127ZtWoFAYIuPjzdFRkYqkpOTDVu3btWlpaVNEIvF8ujoaLNQKOx51Hg0Gu1Rp0cFmsPhGOo5AADAMFRRUdEYExOjH+p5PEs6nY7xwgsvyJubm0dFZ8aKigpeTExMeP/jWHMBAAAgP2yuNHnyZNnq1asfegoy2mBZAQAARh2dTseYMWOGpP/xixcv1gQGBtqGYk7DCcIBAACMOoGBgTa1Wq0a6nkMV1hWAAAAABcIBwAAAOAC4QAAAABcIBwAAABluSUawZmaFpfdCc/UtLBzSzQjqmWzRqPxcjZ1Gs0QDgAAgLLY8X5m5dFykTMgnKlpYSuPlotix/uNuJbNgHAAAABu8IpMYPzdwtgG5dFy0f8trg5WHi0X/W5hbMMrMsGIa9lss9nIokWLwiZMmKCYOnVqpMlkGnVbJiIcAACAW7wiExgXvBDS9qdvGoMWvBDSRjUYEDI0LZvX2amNAAAFJklEQVRv3749Zt26da03btyo5nA4tj//+c/+VL/HSIN9DgAAwC3O1LSwP7/axH9narj286tN/KkTeEaqAWEoWjaPGzfu3pQpUyyEEBIXF2dubGxkUvkOIxGeHAAAAGXOGoPfLYxt+D+zFc3OJYb+RYpP4lm3bPby8nrQdIjBYDh6e3tH3bICnhwAAABl5be7WH1rDJw1COW3u1hUnx6gZfOzh3AAAACUbfy55KFmRa/IBJSXFQh59i2bAS2bAQBgEKOxZfNog5bNAAAA8JNgWQEAAEadwVo2nzt3ToOWzQgHAAAwCqFl86NhWQEAAABcIBwAAACAC4QDAAAAcIFwAAAAAC4QDgAAgLqz2wREc9J162LNSTY5u03g7qEaGxs9U1NTRYOd1+v1jF27dvEHO/8oGo3Gy9nxcTRDOAAAAOpCJplJYaboQUDQnGSTwkwRCZlkdvdQ4eHh1lOnTjUMdr69vZ3x0UcfjXX3uKMJwgEAAFAnSTOSjAMNpDBTRE5uDiaFmSKScaCBSNIobZ+clZU1bufOnQ+eAiiVyuCcnByB86/7K1eujImKipJJpVK5WCyWV1VVMbOzs0Pu3LnDlEql8lWrVoUYDAZ6YmKiWC6Xy8RisbygoMDvp4z9j74N8rKyMtZA41D5XsMdwgEAALiHJM1IYn7RRi79IYjE/KKNajAghJA333yz44svvghwvi4qKvKfMmVKt/P1vn37+FlZWS1qtVpVWVlZIxQK7+/Zs6cpNDT0nlqtVuXn5zexWCz78ePHb6hUqpqysrLaLVu2hNjt9keOW1FRwVywYMGEjz/++GZSUpJ5oHGofrfhDJsgAQCAe2hOsknFET556V0tqTjCJ6IkI9WAMHXqVEt7e7tHY2Ojp1ar9eBwOLa+N+bExMTu3NzcoKamJq9FixZ1RkVF3et/DbvdTlu/fn3IxYsXfeh0OmltbfVqamryGD9+fO9AY3Z0dHjMmzdvwv/+7//Wx8fH9/zUcZ4neHIAAADUOWsMMg40kLRdzQ+WGPoXKT6BOXPmdBYUFPh/8sknAfPnz+/oey4zM7OjqKjohre3tz09PT3yyy+/fGi8/Pz8gPb2do+qqqoatVqt4nK5VovFMuj9j81m24KDg++Xlpb6PM44zxM8OQAAAOqarrBcagycNQhNV1hUnx4sWbKkY8WKFeGdnZ0eZWVlmp6eHprz3D/qAu4pFIrW27dve5WXl3snJCSYu7u7H9z8DQYDg8fjWZlMpqO4uJjd3NzsNfBIP/D09HScPHmyfubMmZE+Pj72zMzMjoHGmTNnDuVlk+EK4QAAAKib9euWh45J0igvKxBCyKRJk3q6u7vpAoHgflhYmFWj0Ty4uRcUFAQcPXqU6+Hh4eDz+dZt27ZpBQKBLT4+3hQZGalITk42bN26VZeWljZBLBbLo6OjzUKhsOfHxvT19bWXlJTcmDFjhpjNZtuqq6u9+49D9XsNZzSHwzHUcwAAgGGooqKiMSYmRj/U84Cnp6KighcTExPe/zhqDgAAAMAFlhUAAGDU0el0jBkzZkj6Hz937pwmMDDQNhRzGk4QDgAAYNQJDAy0qdVq1VDPY7jCsgIAAAzGbrfbaT/+NhiJ/vF/O+BuUAgHAAAwmOttbW0cBITnj91up7W1tXEIIdcHOo9lBQAAGFBvb+9ynU53SKfTTST4Y/J5YyeEXO/t7V0+0En8lBEAAABcIAkCAACAC4QDAAAAcIFwAAAAAC4QDgAAAMAFwgEAAAC4+P88hdgHubJZiAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"for dat in data:\n",
" wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n",
" depth = average_depths['5s'][average_depths['band'] == dat[0]]\n",
" #print(depth)\n",
" coverage = np.sum(~np.isnan(depths['ferr_{}_mean'.format(dat[0])]))/len(depths)\n",
" plt.plot(coverage, depth, 'x', label=dat[0])\n",
" \n",
"plt.xlabel('Coverage')\n",
"plt.ylabel('Depth')\n",
"#plt.xscale('log')\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
"plt.title('Depths (5 $\\sigma$) vs coverage on {}'.format(FIELD))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (herschelhelp_internal)",
"language": "python",
"name": "helpint"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}