{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# ELAIS-S1 Selection Functions\n",
"## Depth maps and selection functions\n",
"\n",
"The simplest selection function available is the field MOC which specifies the area for which there is Herschel data. Each pristine catalogue also has a MOC defining the area for which that data is available.\n",
"\n",
"The next stage is to provide mean flux standard deviations which act as a proxy for the catalogue's 5$\\sigma$ depth"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This notebook was run with herschelhelp_internal version: \n",
"017bb1e (Mon Jun 18 14:58:59 2018 +0100)\n",
"This notebook was executed on: \n",
"2018-06-25 12:22:39.200682\n"
]
}
],
"source": [
"from herschelhelp_internal import git_version\n",
"print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n",
"import datetime\n",
"print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"#%config InlineBackend.figure_format = 'svg'\n",
"\n",
"import matplotlib.pyplot as plt\n",
"plt.rc('figure', figsize=(10, 6))\n",
"\n",
"import os\n",
"import time\n",
"\n",
"from astropy import units as u\n",
"from astropy.coordinates import SkyCoord\n",
"from astropy.table import Column, Table, join\n",
"import numpy as np\n",
"from pymoc import MOC\n",
"import healpy as hp\n",
"#import pandas as pd #Astropy has group_by function so apandas isn't required.\n",
"import seaborn as sns\n",
"\n",
"import warnings\n",
"#We ignore warnings - this is a little dangerous but a huge number of warnings are generated by empty cells later\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"from herschelhelp_internal.utils import inMoc, coords_to_hpidx, flux_to_mag\n",
"from herschelhelp_internal.masterlist import find_last_ml_suffix, nb_ccplots\n",
"\n",
"from astropy.io.votable import parse_single_table"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"FIELD = 'ELAIS-S1'\n",
"#FILTERS_DIR = \"/Users/rs548/GitHub/herschelhelp_python/database_builder/filters/\"\n",
"FILTERS_DIR = \"/opt/herschelhelp_python/database_builder/filters/\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Depth maps produced using: master_catalogue_elais-s1_20180416.fits\n"
]
}
],
"source": [
"TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n",
"OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n",
"SUFFIX = find_last_ml_suffix()\n",
"#SUFFIX = \"20171016\"\n",
"\n",
"master_catalogue_filename = \"master_catalogue_{}_{}.fits\".format(FIELD.lower(), SUFFIX)\n",
"master_catalogue = Table.read(\"{}/{}\".format(OUT_DIR, master_catalogue_filename))\n",
"\n",
"print(\"Depth maps produced using: {}\".format(master_catalogue_filename))\n",
"\n",
"ORDER = 10\n",
"#TODO write code to decide on appropriate order\n",
"\n",
"field_moc = MOC(filename=\"../../dmu2/dmu2_field_coverages/{}_MOC.fits\".format(FIELD))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Remove sources whose signal to noise ratio is less than five as these will have been selected using forced \n",
"# photometry and so the errors will not refelct the RMS of the map \n",
"for n,col in enumerate(master_catalogue.colnames):\n",
" if col.startswith(\"f_\"):\n",
" err_col = \"ferr{}\".format(col[1:])\n",
" errs = master_catalogue[err_col]\n",
" fluxes = master_catalogue[col]\n",
" mask = fluxes/errs < 5.0\n",
" master_catalogue[col][mask] = np.nan\n",
" master_catalogue[err_col][mask] = np.nan"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## I - Group masterlist objects by healpix cell and calculate depths\n",
"We add a column to the masterlist catalogue for the target order healpix cell per object ."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"#Add a column to the catalogue with the order=ORDER hp_idx\n",
"master_catalogue.add_column(Column(data=coords_to_hpidx(master_catalogue['ra'],\n",
" master_catalogue['dec'],\n",
" ORDER), \n",
" name=\"hp_idx_O_{}\".format(str(ORDER))\n",
" )\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"# Convert catalogue to pandas and group by the order=ORDER pixel\n",
"\n",
"group = master_catalogue.group_by([\"hp_idx_O_{}\".format(str(ORDER))])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"#Downgrade the groups from order=ORDER to order=13 and then fill out the appropriate cells\n",
"#hp.pixelfunc.ud_grade([2599293, 2599294], nside_out=hp.order2nside(13))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## II Create a table of all Order=13 healpix cells in the field and populate it\n",
"We create a table with every order=13 healpix cell in the field MOC. We then calculate the healpix cell at lower order that the order=13 cell is in. We then fill in the depth at every order=13 cell as calculated for the lower order cell that that the order=13 cell is inside."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"depths = Table()\n",
"depths['hp_idx_O_13'] = list(field_moc.flattened(13))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/html": [
"Table length=10 \n",
"
\n",
"idx hp_idx_O_13 \n",
"0 579756256 \n",
"1 579803943 \n",
"2 579756257 \n",
"3 579756258 \n",
"4 579756259 \n",
"5 579756260 \n",
"6 579756261 \n",
"7 579756262 \n",
"8 579756263 \n",
"9 579756264 \n",
"
\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"depths[:10].show_in_notebook()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"depths.add_column(Column(data=hp.pixelfunc.ang2pix(2**ORDER,\n",
" hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[0],\n",
" hp.pixelfunc.pix2ang(2**13, depths['hp_idx_O_13'], nest=True)[1],\n",
" nest = True),\n",
" name=\"hp_idx_O_{}\".format(str(ORDER))\n",
" )\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true,
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"Table length=10 \n",
"\n",
"idx hp_idx_O_13 hp_idx_O_10 \n",
"0 579756256 9058691 \n",
"1 579803943 9059436 \n",
"2 579756257 9058691 \n",
"3 579756258 9058691 \n",
"4 579756259 9058691 \n",
"5 579756260 9058691 \n",
"6 579756261 9058691 \n",
"7 579756262 9058691 \n",
"8 579756263 9058691 \n",
"9 579756264 9058691 \n",
"
\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"depths[:10].show_in_notebook()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/html": [
"Table length=10 \n",
"\n",
"idx hp_idx_O_13 hp_idx_O_10 ferr_ap_wfi_b_mean f_ap_wfi_b_p90 ferr_wfi_b_mean f_wfi_b_p90 ferr_ap_wfi_b123_mean f_ap_wfi_b123_p90 ferr_wfi_b123_mean f_wfi_b123_p90 ferr_ap_wfi_v_mean f_ap_wfi_v_p90 ferr_wfi_v_mean f_wfi_v_p90 ferr_ap_wfi_r_mean f_ap_wfi_r_p90 ferr_wfi_r_mean f_wfi_r_p90 ferr_ap_irac_i3_mean f_ap_irac_i3_p90 ferr_irac_i3_mean f_irac_i3_p90 ferr_ap_irac_i4_mean f_ap_irac_i4_p90 ferr_irac_i4_mean f_irac_i4_p90 ferr_ap_decam_g_mean f_ap_decam_g_p90 ferr_decam_g_mean f_decam_g_p90 ferr_ap_decam_r_mean f_ap_decam_r_p90 ferr_decam_r_mean f_decam_r_p90 ferr_ap_decam_i_mean f_ap_decam_i_p90 ferr_decam_i_mean f_decam_i_p90 ferr_ap_decam_z_mean f_ap_decam_z_p90 ferr_decam_z_mean f_decam_z_p90 ferr_ap_decam_y_mean f_ap_decam_y_p90 ferr_decam_y_mean f_decam_y_p90 ferr_ap_irac_i1_mean f_ap_irac_i1_p90 ferr_irac_i1_mean f_irac_i1_p90 ferr_ap_irac_i2_mean f_ap_irac_i2_p90 ferr_irac_i2_mean f_irac_i2_p90 ferr_ap_vista_y_mean f_ap_vista_y_p90 ferr_vista_y_mean f_vista_y_p90 ferr_ap_vista_j_mean f_ap_vista_j_p90 ferr_vista_j_mean f_vista_j_p90 ferr_ap_vista_h_mean f_ap_vista_h_p90 ferr_vista_h_mean f_vista_h_p90 ferr_ap_vista_ks_mean f_ap_vista_ks_p90 ferr_vista_ks_mean f_vista_ks_p90 ferr_ap_vista_z_mean f_ap_vista_z_p90 ferr_vista_z_mean f_vista_z_p90 \n",
"uJy uJy uJy uJy uJy uJy uJy uJy \n",
"0 579661755 9057214 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.10586841352369333 2.036264116795251 0.17562586939400462 3.0839124404755855 0.14919463410890824 3.100395399126548 0.3073946109077909 7.492644699872381 0.2095996150881277 4.555816184652934 0.435095117601232 8.29587060688078 0.4131408864967625 7.424160496057169 0.8057193578763671 13.58614990060725 0.9621373913737008 9.481623489032547 2.2142936711552696 17.14441298186984 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan \n",
"1 579661759 9057214 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.10586841352369333 2.036264116795251 0.17562586939400462 3.0839124404755855 0.14919463410890824 3.100395399126548 0.3073946109077909 7.492644699872381 0.2095996150881277 4.555816184652934 0.435095117601232 8.29587060688078 0.4131408864967625 7.424160496057169 0.8057193578763671 13.58614990060725 0.9621373913737008 9.481623489032547 2.2142936711552696 17.14441298186984 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan \n",
"2 579661757 9057214 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.10586841352369333 2.036264116795251 0.17562586939400462 3.0839124404755855 0.14919463410890824 3.100395399126548 0.3073946109077909 7.492644699872381 0.2095996150881277 4.555816184652934 0.435095117601232 8.29587060688078 0.4131408864967625 7.424160496057169 0.8057193578763671 13.58614990060725 0.9621373913737008 9.481623489032547 2.2142936711552696 17.14441298186984 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan \n",
"3 579661758 9057214 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 0.10586841352369333 2.036264116795251 0.17562586939400462 3.0839124404755855 0.14919463410890824 3.100395399126548 0.3073946109077909 7.492644699872381 0.2095996150881277 4.555816184652934 0.435095117601232 8.29587060688078 0.4131408864967625 7.424160496057169 0.8057193578763671 13.58614990060725 0.9621373913737008 9.481623489032547 2.2142936711552696 17.14441298186984 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan \n",
"4 579661806 9057215 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 11.351818181818182 2007.48 9.131818181818183 1205.59 7.557272727272727 316.98 6.734545454545454 404.88 0.1117633689557505 6.8119181402314855 0.15158880988431847 11.334188148333375 0.158809126626115 13.404624122238094 0.27602555848544585 23.325181612351173 0.2042677236910098 21.096973994337382 0.3796106854158977 36.44002799936304 0.39062223259970513 39.68385521832558 0.7777992774745999 68.17488396212829 1.0307218276996757 268.5665308166574 1.8166164900835104 398.801688598933 1.7189565217391305 323.8600000000001 1.5052173913043478 245.3780000000002 1.9040259740259742 180.61800000000022 1.9772727272727273 149.86200000000008 nan nan nan nan 3.094108415974511 582.1039123535156 7.327802605099148 658.3484008789067 3.896970685790567 631.9167541503906 10.801349773406983 765.8167846679689 4.387109133932325 514.135986328125 12.606568295022715 654.0425781250001 nan nan nan nan \n",
"5 579661783 9057215 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 11.351818181818182 2007.48 9.131818181818183 1205.59 7.557272727272727 316.98 6.734545454545454 404.88 0.1117633689557505 6.8119181402314855 0.15158880988431847 11.334188148333375 0.158809126626115 13.404624122238094 0.27602555848544585 23.325181612351173 0.2042677236910098 21.096973994337382 0.3796106854158977 36.44002799936304 0.39062223259970513 39.68385521832558 0.7777992774745999 68.17488396212829 1.0307218276996757 268.5665308166574 1.8166164900835104 398.801688598933 1.7189565217391305 323.8600000000001 1.5052173913043478 245.3780000000002 1.9040259740259742 180.61800000000022 1.9772727272727273 149.86200000000008 nan nan nan nan 3.094108415974511 582.1039123535156 7.327802605099148 658.3484008789067 3.896970685790567 631.9167541503906 10.801349773406983 765.8167846679689 4.387109133932325 514.135986328125 12.606568295022715 654.0425781250001 nan nan nan nan \n",
"6 579661814 9057215 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 11.351818181818182 2007.48 9.131818181818183 1205.59 7.557272727272727 316.98 6.734545454545454 404.88 0.1117633689557505 6.8119181402314855 0.15158880988431847 11.334188148333375 0.158809126626115 13.404624122238094 0.27602555848544585 23.325181612351173 0.2042677236910098 21.096973994337382 0.3796106854158977 36.44002799936304 0.39062223259970513 39.68385521832558 0.7777992774745999 68.17488396212829 1.0307218276996757 268.5665308166574 1.8166164900835104 398.801688598933 1.7189565217391305 323.8600000000001 1.5052173913043478 245.3780000000002 1.9040259740259742 180.61800000000022 1.9772727272727273 149.86200000000008 nan nan nan nan 3.094108415974511 582.1039123535156 7.327802605099148 658.3484008789067 3.896970685790567 631.9167541503906 10.801349773406983 765.8167846679689 4.387109133932325 514.135986328125 12.606568295022715 654.0425781250001 nan nan nan nan \n",
"7 579661813 9057215 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 11.351818181818182 2007.48 9.131818181818183 1205.59 7.557272727272727 316.98 6.734545454545454 404.88 0.1117633689557505 6.8119181402314855 0.15158880988431847 11.334188148333375 0.158809126626115 13.404624122238094 0.27602555848544585 23.325181612351173 0.2042677236910098 21.096973994337382 0.3796106854158977 36.44002799936304 0.39062223259970513 39.68385521832558 0.7777992774745999 68.17488396212829 1.0307218276996757 268.5665308166574 1.8166164900835104 398.801688598933 1.7189565217391305 323.8600000000001 1.5052173913043478 245.3780000000002 1.9040259740259742 180.61800000000022 1.9772727272727273 149.86200000000008 nan nan nan nan 3.094108415974511 582.1039123535156 7.327802605099148 658.3484008789067 3.896970685790567 631.9167541503906 10.801349773406983 765.8167846679689 4.387109133932325 514.135986328125 12.606568295022715 654.0425781250001 nan nan nan nan \n",
"8 579661804 9057215 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 11.351818181818182 2007.48 9.131818181818183 1205.59 7.557272727272727 316.98 6.734545454545454 404.88 0.1117633689557505 6.8119181402314855 0.15158880988431847 11.334188148333375 0.158809126626115 13.404624122238094 0.27602555848544585 23.325181612351173 0.2042677236910098 21.096973994337382 0.3796106854158977 36.44002799936304 0.39062223259970513 39.68385521832558 0.7777992774745999 68.17488396212829 1.0307218276996757 268.5665308166574 1.8166164900835104 398.801688598933 1.7189565217391305 323.8600000000001 1.5052173913043478 245.3780000000002 1.9040259740259742 180.61800000000022 1.9772727272727273 149.86200000000008 nan nan nan nan 3.094108415974511 582.1039123535156 7.327802605099148 658.3484008789067 3.896970685790567 631.9167541503906 10.801349773406983 765.8167846679689 4.387109133932325 514.135986328125 12.606568295022715 654.0425781250001 nan nan nan nan \n",
"9 579661781 9057215 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 11.351818181818182 2007.48 9.131818181818183 1205.59 7.557272727272727 316.98 6.734545454545454 404.88 0.1117633689557505 6.8119181402314855 0.15158880988431847 11.334188148333375 0.158809126626115 13.404624122238094 0.27602555848544585 23.325181612351173 0.2042677236910098 21.096973994337382 0.3796106854158977 36.44002799936304 0.39062223259970513 39.68385521832558 0.7777992774745999 68.17488396212829 1.0307218276996757 268.5665308166574 1.8166164900835104 398.801688598933 1.7189565217391305 323.8600000000001 1.5052173913043478 245.3780000000002 1.9040259740259742 180.61800000000022 1.9772727272727273 149.86200000000008 nan nan nan nan 3.094108415974511 582.1039123535156 7.327802605099148 658.3484008789067 3.896970685790567 631.9167541503906 10.801349773406983 765.8167846679689 4.387109133932325 514.135986328125 12.606568295022715 654.0425781250001 nan nan nan nan \n",
"
\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"for col in master_catalogue.colnames:\n",
" if col.startswith(\"f_\"):\n",
" errcol = \"ferr{}\".format(col[1:])\n",
" depths = join(depths, \n",
" group[\"hp_idx_O_{}\".format(str(ORDER)), errcol].groups.aggregate(np.nanmean),\n",
" join_type='left')\n",
" depths[errcol].name = errcol + \"_mean\"\n",
" depths = join(depths, \n",
" group[\"hp_idx_O_{}\".format(str(ORDER)), col].groups.aggregate(lambda x: np.nanpercentile(x, 90.)),\n",
" join_type='left')\n",
" depths[col].name = col + \"_p90\"\n",
"\n",
"depths[:10].show_in_notebook()"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## III - Save the depth map table"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"depths.write(\"{}/depths_{}_{}.fits\".format(OUT_DIR, FIELD.lower(), SUFFIX), overwrite=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## IV - Overview plots\n",
"\n",
"### IV.a - Filters\n",
"First we simply plot all the filters available on this field to give an overview of coverage."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"{'decam_g',\n",
" 'decam_i',\n",
" 'decam_r',\n",
" 'decam_y',\n",
" 'decam_z',\n",
" 'irac_i1',\n",
" 'irac_i2',\n",
" 'irac_i3',\n",
" 'irac_i4',\n",
" 'vista_h',\n",
" 'vista_j',\n",
" 'vista_ks',\n",
" 'vista_y',\n",
" 'vista_z',\n",
" 'wfi_b',\n",
" 'wfi_b123',\n",
" 'wfi_r',\n",
" 'wfi_v'}"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tot_bands = [column[2:] for column in master_catalogue.colnames \n",
" if (column.startswith('f_') & ~column.startswith('f_ap_'))]\n",
"ap_bands = [column[5:] for column in master_catalogue.colnames \n",
" if column.startswith('f_ap_') ]\n",
"bands = set(tot_bands) | set(ap_bands)\n",
"bands"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5,1,'Passbands on ELAIS-S1')"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAE/CAYAAACevBBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl4VOXZP/DvfWbLNiQkhIQlAVlCCFsjGBcEBZdKC1VeXFpBcS9aFUXrwkupra9FxKWgQOFVqSAqL1hFoWpxg8jmDwmCCQmbAQJJgGwkmSSznOf3xzkzmSSznJnMJCS5P9eVK5k52zOx5c79bDcJIcAYY4yxtiW1dwMYY4yxrogDMGOMMdYOOAAzxhhj7YADMGOMMdYOOAAzxhhj7YADMGOMMdYOOACzCxIRPUdE73a2ZzHGmBMHYKYZERUSUR0R1RBRKRGtIqKY9m5XR0dE/YlIqL9X96/b1OP/JKL/8XE9EdExIsrzcOxbIrrP7fVcIvpZvX8REa3zcV8jEb2inlejXvea2/GHiWgPETUQ0T+D/gUw1kVxAGaBmiKEiAFwMYBLAMxr5/Z0JnFCiBi3L6/BsZnxAHoCGEBEl3g7iYhmArgDwLXqf8MxAL7ycd9n1XOyAJgBTACQ43b8NID/AfC2xnYyxtxwAGZBEUKcAvAZgOEAQER3E9FBIqpWs7HfO88loh5EtImIKomonIiyiUhSjz1NRKfU6wqI6Bq3x0QQ0Tr12F4iGuV2z2eI6Kh6LI+Iprodu4uIviOil4moQs3cJrkdv4iItqrXbgHQw+1YBBG9S0Rlanv/HxElefodENFQNcOsJKJcIvqN27F/EtFSItqsPmc3EQ1sze/ch5kANgL4t/qzN5cA+EIIcRQAhBAlQoiVfs7/SAhxWigKhRCrnQeFEP8SQnwMoKz1H4GxrocDMAsKEaUA+BUaM6IzACYD6AbgbgCvEdHF6rEnABQBSASQBGAuAEFEQwA8DOASIYQZwC8BFLo95kYA6wHEA3gPwMdEZFCPHQUwDkAsgL8AeJeIerldeymAAijB9SUAbxERqcfeA/CDeux5NA1aM9V7pgBIADALQJ2Hz28A8CmA/0DJPh8BsFb9TE6/U9vWHcARAC80v09rEVEUgJsBrFW/fktERi+n7wJwJxH9kYjGEJHOz+13AZhDRA8R0Qi33x9jLAQ4ALNAfUxElQC+A7AVwN8AQAixWQhxVM2UtkIJTOPUa2wAegHoJ4SwCSGyhbIJuQOACUAGERnUDOuo27N+EEJsEELYALwKIALAZerz1quZmax21R6G0lXqdFwI8b9CCAeAd9TnJxFRKpTM7k9CiAYhxDYogdTJBiXwDhJCOIQQPwghznv4PVwGIAbAi0IIqxDiawCboARdp38JIb4XQtihBMdf+PndnlOzaefXUD/nA8B/AWiA8vveBEAP4NeeThRCvAvlD4VfQvlvd4aInvFx7wUAFgKYDmAPgFNqNzZjLAQ4ALNA3SSEiBNC9BNCPCSEqAMAIppERLvULuZKKNmxs2t3EZQM8D9q9/QzACCEOALgMQDPQQkGHxBRb7dnnXT+IISQoWTRvdXn3UlE+5zBCkpXeA+3a0vcrrWoP8ao11cIIWrdzj3u9vMaAF8A+ICIThPRS25Zt7veAE6q7XK/Tx9PbQBgUZ/vSw/1d+v8OujnfEDJ2P9PCGEXQjQA+Bd8dEMLIdYKIa4FEAclu/8rEf2SiMZR4+SvXPVchxBiqRBirHr+CwDe1viHAWPMDw7ArNWIyATgQwAvA0gSQsRBGY8kABBCVAshnhBCDAAwBUq35jXqsfeEEFcC6AdAQMm4nFLcniEB6AvgNBH1A/C/ULqvE9Tn/eR8nh/FALoTUbTbe6nOH9QM/S9CiAwAV0DpVr/Tw31OA0hxjmW73eeUhjaEBBH1BTARwAwiKiGiEijd0b8ioh6+rlU/53oA+wEMV3slnJO/hnk4v04IsRRABYCM0H8axroeDsAsFIxQupLPArCrE56udx4koslENEgdQzwPpevZQURDiGiiGsDroYy1OtzuO5qI/ouI9FAy5QYo45LRUIL1WfX+d0OdDOaPEOI4lO7Uv5CyzOZKKH8UONs6QR3v1KlttTVrk9NuALUAniIiAxFdrd7nAy3tCIJOnSDm/DJCmdF8CMAQKN3bvwCQBqWn4HfNb6BOTvs1EZmJSFL/Ow1TP0sLRPQYEV1NRJFEpFe7n81Qx/3V9yIA6Nzapw/9R2esc+IAzFpNCFEN4FEA/wclQ7odwCdupwwG8CWAGgA7ASwTQnwLJWi/COAclO7anlAmaDltBHCbes87APyXmrnlAXhFvVcpgBEAtgfQ5NuhTNIqB/BnAKvdjiUD2AAl+B6EMlbaYpMOIYQVwG8ATFLbvwzAnUKI/ADa0VwlNV0HPMft2DNQ/kBxfn0Npat5mTqb2fUF4B/w3A19Hsrv9wSASiiT0x4UQnznpT11UH7PJepn/AOAaUKIY+rxeeo5zwCYof7My9IY04iUuTCMMcYYa0ucATPGGGPtgAMwY4wx1g44ADPGGGPtgAMwY4wx1g46xJKBHj16iP79+7d3MxhjrEP54YcfzgkhEltxfU+9Xv8mlGV+nLAFRgbwk91uv2/06NFnPJ3QIQJw//79sWfPnvZuBmOMdShEdNz/Wd7p9fo3k5OThyYmJlZIksRLZgIgyzKdPXs2o6Sk5E0oSxZb4L9oGGOMeTM8MTHxPAffwEmSJBITE6vgY5MgDsCMMca8kTj4Bk/93XmNsxyAGWOMsXYQ1gBMRHFEtIGI8kkp1n45EcUT0RYiOqx+7x7ONjDGGGMXonBnwIsBfC6ESAcwCsreus8A+EoIMRjAV+prxhhjTJPCwkLDDTfcMMDb8XPnzulefPHFoGd/Z2Zmpgd7bSDCFoCJqBuA8QDeApTN64UQlQBuhFIgHer3m8LVBsYYY51P//79bZ9//vkxb8fLysp0b731Vs9g75+Tk9OaoiqahXMZ0gAo5eJWEdEoAD8AmA2lXmwxAAghionI4y+JiB4A8AAApKamejqFMcZYG/njhh9TDpVUR4XynmnJZsuim0ed9HXOgw8+2Kdfv37WZ5555iwAzJkzp7fZbHa89957PQ4fPpy7Z8+eiLvvvvsim81Gsizjww8/PPrss8/2OXnypCk9PT3jqquuOv/SSy+dvuGGGwZVVVXp7HY7zZ8///SMGTMqvT0zKioq02Kx5ITys3oSzi5oPYCLASwXQmRCqZ2qubtZCLFSCDFGCDEmMTHonoSwKi08j7pqa3s3gzHGOq0ZM2aUf/jhh/HO1xs3bux+2WWX1Tpfv/7664kPPfRQaX5+ft7+/fsPXnTRRdZXXnmlKCUlpSE/Pz9vxYoVRVFRUfLmzZuP5OXlHdy6deuhuXPn9pVluX0+kJtwZsBFAIqEEM5i3xugBOBSIuqlZr+9AHjcIaQt2c6cQdEfHkbvBX+DadAgTdfYbQ5seHEPuveKxu1/vjTMLWSMsfblL1MNl7Fjx9aVlZXpCwsLDcXFxfrY2FjHgAEDXJnP5ZdfXvvyyy/3KioqMv72t7+tGDFiREPze8iyTI899ljfXbt2xUiShDNnzhiLior0qamp9rb9NE2FLQNWC4OfJKIh6lvXAMiDUqjdWSx8JpSi6+2qdvsO1B84gLJVqzRfc6pA6b2oKK71cyZjjLHWmDJlSsW7777bfe3atfHTpk0rdz82a9as8o0bNx6JjIyUJ02alPbJJ5+Ym1+/YsWK+LKyMv2BAwcO5ufn5yUkJNjq6urafRluuLeifATAWiIyAjgG4G4oQf//iOheACcA3BLmNvjlqFKHAhzauyS2bzgMAIiKNYajSYwxxlR33HFH+f3339+/oqJCv3Xr1oL6+npyHsvLyzMOHTq0YdiwYWeOHTtm2rdvX2RWVpaltrbWFWCrqqp0PXr0sJlMJvHpp5+aT58+fUH8wx3WACyE2AdgjIdD14TzuYGyF5cAAIRdW2+EEALny+oBAJJE+HJVHgaN6Yn+I3qErY2MMdZVjRkzpr62tlZKSkqy9uvXz1ZQUOAKoGvWrIlfv359gl6vF4mJibYFCxacTkpKcowePbpm8ODBwyZOnFj13HPPlUyaNGnQ8OHDhw4bNsxy0UUX1ft6HhH5OhwyHaIYQ7jZSpQA7KioQPWXXyLmmmt8/gewNTjgsCnZcm1lAwp2l6Bgdwn+8I+JbdJexhjrag4dOpTn/HnIkCHWw4cP5wLAggULShYsWFDS/PxPP/30Z/fX+/bt07S0qKSkRBcbG9smY8Pt3gd+IbCVFAMAardvR9HDj6Bq40bIsow1a9bg4MGDLc532JXga4rSQ/AuqYwx1ikUFhYaLrvssqF/+MMfStvieZwBA7CfLm7yuvrzL2C//HIcPXoUR48exXPPPdfkuDP7jTQb0WBp10l0jDHGglBSUqK7+uqrhzR/f9euXQeTk5MdbdGGLh+AhdUK+7lzTd6r+fZbNCxeDBg9j9PbXQHYgEq3v5NkhwxJx50KjDF2oUtOTnbk5+fn+T8zfLp0tBAOB+oLDgFCQBcf3+SYvaDA63XODDjK3DRA11bxphyMMca06dIBuHThQhTeoqyCihg+rMkx2e69B8I5BhzZLADXVLRY/80YY4x51KUDcNWH/3L9HDliZJNj7nOrmm9ZZreqAbhb8wDsc2Y7Y4wx5tKlA7Cz29k0ZAhMgwc3OeYecuvq6pocc3VBNwvAVWcsoW8kY4yxTqlLB2BHRQXifvdb9P/gfehiuzU5JovGEGyxNA2sdnvLMeCYeBMqSjgAM8ZYKIWzNu/atWtj586dmwwAn332WUxGRsZQvV4/etWqVd3D9Ux3XXYWtLBaIdfUQJ+YCCkyElK35gG48efa2lq4V2RyZcBu21B2T4pCZSkHYMYYCyVPtXntdjv0+taHr+nTp1cBqAKAAQMGWFetWlX44osvJrX6xhp12QBsr1D2f9ar3dC62Ngmx2W3HTaaZ8AOmzJBK9JsABHQf2QPxMSZkL+7BEKINtvGjDHG2szHf0jBmbyQ1gNGzwwLblrqs8qSszbvpk2bzM8//3yvnj172vLy8qKOHj2ae+211w4sLi42NjQ0SLNmzSp98sknzwHAhg0bus2fP7+Pw+Gg+Ph4+86dOw95uveSJUsS9uzZE7169eoTQ4YMsQKAJLVdx3CXDcCOygoAgC5O6WnQNcuAhRCQJAmyLLfsglYzYJ1ehweWXAVJIuRsOQFbvQN2mwyDUdcGn4AxxrqW/fv3R+fk5OSmp6dbAWDt2rWFSUlJjpqaGsrMzMyYMWNGhSzL9PDDD/f/9ttv89PT062lpaUX7D/IXTcAV6gBOF4JwFJMDAwpKbCdVP4YkyEQFxeH8vJy1NY2LTnoXIakN0jQG5T/thHRBgBAfY0NhvgL9r83Y4wFx0+m2hZGjhxZ6wy+ALBw4cKkzZs3xwFASUmJITc3N6K0tFSflZVV7TwvKSmpTXa1CkaXnYTlKFdKSuq7KwGYJAkD//OF67gsBCIjI0FE+Oabb1BWVuY65sqADY2/vogYNQDX2sLedsYY64qioqJcs2M3bdpk3rp1q3nPnj35BQUFeUOHDq2rq6uTOtIwYJcNwPZyNQPu3jjZzf0/miwAg8GAzMxMAMCuXbtcxxyuLujG8yOilADcwAGYMcbCrrKyUhcbG+swm81yTk5OxI8//hgNABMmTKjdvXu3OT8/3wgAF3IXdJcNwI7yMoCoSQB2JwsZRqMRkydPRu/evVFa2rjps8MmQ5Koyb7Pzgy4vNgCaz0XaGCMsXCaNm1ald1up7S0tIy5c+f2HjVqVC0A9O7d275kyZLCqVOnDhoyZEjG1KlTB2i539atW6OSkpJG/vvf/+7++OOP9xs0aNAw/1e1TpcdA7aXlUPXvTtI5/mPI1kARqMRkiQhOTkZ+fmNM+HtdrlJ9zPQOAacve4Qju07g5sevzh8jWeMsS7CYrHkAMDkyZOrJ0+eXO18PzIyUmzbtu2wp2tuvfXW87feeqvfQguPPvpoGYAyALjqqqsspaWl+0PUbE26bAZsP3sW+oR4r8dlIcNgUIJqt27dYLFYYLcrma3D5iEAmw2un08VVIahxYwxxjqTLpsBNxw5goihQ70el2UBo1qO0Gw2AwBqamoQFxcHu02GvlkA1jUrQyjLApLUMSYCMMZYZ7Z48eKE5cuXN9lg45JLLqlZs2bNifZqE9BFA7Dj/HnYTpxA3NSbvJ4ji8YAHBMTA0DZESsuLk7JgPW+Ow8sVVbEdDeFrtGMMcaCMnv27LLZs2eX+T+zbXXJLui6/QcAAJGjRnk9RwAwmZQAGhERAQCor1eqHXnqggaArCkXuX6ureTShIwxxrzrkgHYVlQEADAOHOj1HEHkynydAdhZFclTFzQAXPLri3Dr3EsAcABmjDHmW5cMwK5tKL0sQQIAkDL5CgAiIyMBNGbAdqsDei/bTUbHKVlzDQdgxhhjPnTJAGwvL4cUEwPJaPR6jgAhJSUFQMsuaGu9HcYIzwE4MsYASUecATPGGPMprAGYiAqJ6AAR7SOiPep78US0hYgOq9/bpO6iO0dFpe/sF0r261yGZDAYIEmSqwvaWu+AIcLz/DWSCFGxRtRU1oe20YwxxjBnzpze8+fPb7OSgeHUFhnwBCHEL4QQY9TXzwD4SggxGMBX6us25aio8BuAJbcNOogIkZGRrgzYVm+HMdL7BPLuydEoP13r9ThjjDHWHsuQbgRwtfrzOwC+BfB0WzbAUV4OfWKiz3OkZjtkRUREuHVBO2A0ed9eNDElBvu+PAmH3f9yJcYY6wj+tP1PKUcqjoS0HvCg7oMsz4993m+Vpaeffjp53bp1PXr37m1NSEiwZWZmWnJzc02zZs1KLS8v10dERMhvvvnm8czMzPqTJ0/q77nnnn4nTpwwAcAbb7xx/Lrrrqv1Vjs4Kioqc+bMmWe2bdvWLTY21vHCCy8UPf300ymnT582Lly48MT06dOrPLXptttu6+fcf7q0tNRwzz33nHnllVeKA/n84Y4OAsB/iOgHInpAfS9JCFEMAOr3nmFuQwv2Sv8ZMDXbWCMyMhJ1dXVwOGQ4bDKMkT4CcGo3yA6Bc0U1IWkvY4x1VdnZ2VEfffRR/IEDB/I2bdp0xBn07rvvvn7Lli07kZube3DRokVFDz74YCoAzJo1K3XcuHHVBQUFebm5uXkXX3xxPaDUDs7NzT24b9++vBUrViSVlJToAKCurk6aMGFCdW5u7sHo6GjHvHnz+mRnZx9av379keeff76Pt3atW7fueH5+ft4nn3xyJC4uzv773/8+4HXG4c6AxwohThNRTwBbiCjf7xUqNWA/AACpqakhbZSjvAK6eO/bUAJKeUJ3RqMRVqsVtnqltKS3MWAASExVds4qO1WDpP7dWtlaxhhrf1oy1XD45ptvYn71q19Vms1mGQCuv/76yvr6eiknJyfmlltuca0ltVqtBAA7duwwb9iw4WcA0Ov1SEhIcACeawcnJyfXGgwGcfPNN58HgGHDhtWZTCbZZDKJrKysulOnTnmfqQvAYrHQtGnTBr722msn0tLSrL7O9SSsAVgIcVr9foaIPgKQBaCUiHoJIYqJqBeAM16uXQlgJQCMGTNGhKpNcl0dRH09dN3jfJ4nSU0zXJPJhOrqaljrlP2gvc2CBgBzQgQkHaGy1NL6BjPGWBfXvL6vLMswm832/Px8vwUXgKa1g81ms5yVlTWkrq5OAgC9Xi8kNeGSJAkmk0kAgE6ng8Ph8Lmf8B133NFvypQpFTfddFO1r/O8CVsXNBFFE5HZ+TOA6wH8BOATADPV02YC2BiuNnjiKC8HAOj9dUEbmv5t4syArWoGbPSRAUsSITYxkgMwY4y10sSJE2s2b94cV1NTQxUVFdKWLVvioqKi5L59+1rffvvt7oASkHfu3BkJAGPHjq1etGhRIgDY7XaUl5dL3moHt8aCBQsSa2pqdH/7299Kgr1HOMeAkwB8R0Q/AvgewGYhxOcAXgRwHREdBnCd+rrN2CuUSkX+uqAlY9N9nE0mExoaGmCrd2bAvjsPYntGoepsXStayhhj7Morr7RMnTq1fPjw4cMmT548MCsrqwYA3n///WOrVq3qMWTIkIzBgwcP+/DDD+MAYPny5Se2bt1qTktLyxg+fHjG3r17I73VDm6NN954I7mgoCAyPT09Iz09PeOll17yPbPXg7B1QQshjgFosdmyEKIMwDXheq4/jgp1F6w4PxmwqWkAdmbADWoXtMFHFzQAdOsRgaKCCgghWnSfMMYY027hwoUlCxcubJFpZmdnt6gHnJKSYv/qq6+ONn/fW+1gZ71hAHj11VdPezvW3KlTpw74a7c/XW6NjKNC7YKO9xyADZdeCgDQ6Zv+bWIymSDLMuotyg5X/jLgbgmRsDc4UF9ra22TGWOMdUJdMAD73gc68q9/AdBy0N9ZmtBSq6wF9rUMCVAmYgHA+XO8IxZjjHVUH374YTdnN7Pz67rrrvNeyScAXa4esL28AtDpIJnNnk/Q62HT62FA04nXzgBcb1ECqrdiDE7deigBuLqsnpciMcZYBzVt2rTz06ZN0zTbOlBdMgPWde/eYp2vkyzLAFpmwM7awA1WZamXp3rA7swJSgWl82U8EYsxxlhLXTIA632sAXYF4GYrj50ZsNWqjAH722LSFKmHKUqP6jLugmaMMdZSlwvA9opynzOghVAib/OJy84M2Gq1giSCJPmf2WxOiOAAzBhjzKMuF4AdFZU+1wDLsgzhYdmQKwO2WaHTa1tW1C0hEuc5ADPGGPOg6wXg8nKf21C6MmB4HgO22WyaKxwpGXCd656MMcYCk5mZmR6ue69duzZ27ty5yQDw3HPPJQ0cOHBYWlpaxuWXX5526NAhn/tAh0KXCsBCluGoqoIuTsMYcLP3nRmwzW4NKADbrTLqqnktMGOMBSMnJ6dFER+73R6Se0+fPr3KuZXk6NGjLfv27Tt46NChvJtuuqni8ccf7xuSh/jQpZYhyZY6QJahM3tfFuQtW3VlwHYr9FoDcLyyFKmmoh5R3cL+xxRjjIXN6bn/ndJw+HBI6wGbBg+29P7bCz6rLEVFRWVaLJacTZs2mZ9//vlePXv2tOXl5UUdPXo011uN3w0bNnSbP39+H4fDQfHx8fadO3ce8nTvJUuWJOzZsyd69erVJ6ZMmeIqqHDllVfWrFu3LiGUn9WTrhWAa5Tfr2SO8X6OOgbcfBmSTqeDTqeD3W6Dyc8SJCdn0K2r4QyYMcZaa//+/dE5OTm56enpVkCp8ZuUlOSoqamhzMzMjBkzZlTIskwPP/xw/2+//TY/PT3dWlpa6nvTBg9WrFiReO2111aF/hM01bUCcLUSgHXeNuGAewbcMhM2mUywO2yaJ2FFmg0AgLrqgMtEMsbYBcVfptoWRo4cWesMvoDnGr+lpaX6rKysaud5SUlJjkCesWzZsvgff/wxasWKFQWhbX1LXSoAO6prAABSjO8MGGg5Bgwo48B2i13zGHCkWc2Az3MGzBhjrRUVFSU7f/ZW47c1BXA+/vhj88svv9wrOzu7IDIyMuyzZ7vUJCy51n8AdmXAHn71BoMBDln7LGiDSQedQeIMmDHGQsxbjd8JEybU7t6925yfn28EAK1d0Nu3b4985JFH+m3cuPFInz59QjPLy48ulQFr6YL2NgYMKAG4XtggaeyCJiJEmg0cgBljLMSmTZtWtXLlysS0tLSMgQMH1jtr/Pbu3du+ZMmSwqlTpw6SZRkJCQm2HTt2eCxF6O6Pf/xjisVi0d1yyy0D1ftYv/766yPh/AxdKgC7uqA1jAGThxRYr9dDFvUBdW9EmY2w8DIkxhgLirMm7+TJk6snT57smqkcGRkpvNX4vfXWW8/feuutfgsoPProo2UAygBgx44dHmdKh1PX6oJWZ0HrNIwBexoFNhgMkIWsaRtKJ2OkHta6NunNYIwx1oF0rQy4pgaQJFCU96VssixDgudJWAaDATIcoAACsN6oQ30tZ8CMMdZeFi9enLB8+fIk9/cuueSSmjVr1pxorzYBXSwAy9U1kGJifHYhCyE87gUNOLugHS0KNfhiMEqwNQQ0C54xxlgIzZ49u2z27Nll7d2O5rpYF3QNpJho3+f4WIZkMBggIAecAdutsv8TGWOMdSldKwDX1UHy0f0MeN+KElAz4EC7oE062K2cATPGGGuqiwVgC6SISN/n+M2AHQHNgjYYJdg4ADPGGGumSwVgUVcPKdJ3APY3Biwgg0j7Bil6ow6yXUB2cDc0Y4yxRl0qAMv19aDICN/n+MmAAUAEEoANyiYsdhsHYMYYC7W33367+4ABA4Zdeumladu2bYu66667Utq7TVp1rVnQdRYYevXyeY6/MWAAENDepSzplFAuO8K+rShjjHU5q1at6rF48WJXOcHx48dbtFxns9lcSVV7CXsAJiIdgD0ATgkhJhPRRQA+ABAPYC+AO4QQbbJXo5Yu6MYMuGXAbMyAOQAzxrqWr1YfTCk/VRPSesDxfWIs19w51GeVpXnz5iVFRESIefPmnbn33ntTcnNzI3ft2nVo48aN5qlTp6ZFRETIjzzySL9NmzZVTpkypeqVV15J+uabbzxuITlnzpzexcXFhhMnThjj4+Ptn3766c+h/DyBaosu6NkADrq9XgjgNSHEYAAVAO5tgzYAUGZB++uCbhwDbtkJ7cqASXt3cmMA5i5oxhgL1IQJE2q2b98eAwD79u2Lqq2t1TU0NNC2bdtiFi5ceHz48OGW1atXH1uxYkWRlvvt378/6osvvjjS3sEXCHMGTER9AfwawAsA5pAyfXgigNvVU94B8ByA5eFsh5NcXw8p0vcfcFrGgGUEEoCVv3E4A2aMdWT+MtVwufLKKy0zZ86MrqiokEwmkxg5cmRNdnZ21M6dO82vv/76ifXr1ycEcr8bbrihMiYm5oL4BzncXdB/B/AUAGf1gwQAlUII5+bIRQD6eLqQiB4A8AAApKamtrohQgiIujpIGidhwcNYsGu8QASTAV8Q/70ZY6xDMZlMom/fvg1Lly7tkZWVVTNq1Ki6L7/80nz8+HFTZmZmfaD3i44IomvPAAAgAElEQVSOvmC6I8PWBU1EkwGcEUL84P62h1M9RiYhxEohxBghxJjExMRWt0c0NABCgPysAxZCAEQeA7CzC1rmMWDGGGszV1xxRc3SpUuTrr766uprr722+p133knMyMiwSFLHXsgTztaPBfAbIiqEMulqIpSMOI6InJl3XwCnw9gGF7muDgA0T8LyxDUJK5hZ0D7uyxhjzLurrrqq+uzZs4aJEyfWpqSk2E0mkxg7dmxNe7ertTR1QRNRMoBU9/OFEDt8XSOEeBbAs+r1VwN4UggxnYjWA7gZSlCeCWBjUC0PkHAFYP+TsJQ83UcGHFAXNI8BM8ZYa9x4443Vdrt9r/N1YWHhT86fv//++wLnz81rBjf36quvtknCp5XfAExEfwMwA0A+4Er9BIBfBfnMpwF8QET/AyAHwFtB3icgzgyYNGXA5HE9cOMkLO6CZowx1jpaMuBpANKEEAEPdjsJIb4F8K368zEAWcHeK1hyndJ8LVtReqs36FqGJIIJwNwFzRhjbeFCrf/bnJYA/DM6wZaVoj7AMWAPCWswXdA6NQA7OANmjLE2caHW/21OSwCuBpBDRF8CaHC+KYSYE7ZWhYGrCzpC4xhwyLqgeQyYMcZYS1oC8OfqV4cW2Cxoz8uQdDqlsEIgXdDO2sGCAzBjjDE3fgOwEOItddnQIPWtI24baXQYQmMA9jUGLJEECMARyBiw5FyGxAGYMcZYIy2zoMcBWAPgFJTO2WQiukMIsT3cjQsl5yQsfxtx+NoJS8gACR1EAGPArgyYAzBjjDE3WiZXvQbgV0KIsUKIK6Ds7bw4vM0KPdmiVKiSon3vBe1rHbAsBAAJckBd0Oq1HIAZYyzkAqkHPGfOnN7z589P8nRs3Lhxg81m8y8mTJgwyP393/zmNxf1799/+ODBg4fdcsst/RsaGggA3n333bi0tLSM9PT0jOHDhw/94osvYgJtu5YAbBRC5DlfCCEOAjAG+qD25grArVgHLGQBEhIccuBd0L7qDDPGGAuOsx7w7t27D40fP97yz3/+M6iiEU8++WTJihUrWlRImj59evmxY8d+KigoyK2vr6e///3vPQBgypQp5/Pz8/Py8/Pz3nrrrcJZs2b1C/SZWiZh7SWiFVC6oQFgOpQNNDoUuc4CiogAqROpvJ4ny17HgJ0BWA5gCJzI2QWtva2MMXah+WL531POnTwe0nrAPVL6WX754GNtVg8YUMoRXnbZZWnFxcXGRx99tOSJJ544Byi7bW3atMnc/PzbbrutyvnzmDFjaouKiowAEBsb6/pXvbq6WiIvccMXLRnwLABHoVQ1ehrAMQC/D/hJ7Uy2WPxmv4BbpuohYRUyABFcFzRnwIwxFrhQ1wM+ePBg5Jdffnl4165d+YsWLepdWFho0HJdQ0MDrVu3LuHXv/61KyCvXr067qKLLho2bdq0wStXriwM9LNpmQVdD+Al9avDEhYLpCj/f7y5MmBPXdAi8C7oxgyYAzBjrOPyl6mGS6jrAU+aNKkyJiZGxMTE2C+//PLz2dnZ0f3796/0d93MmTNTL7vsspobbrjBVQTizjvvrLzzzjsrP/vss5j58+f3ufbaaw8F0havGTARva9+zyGivc2/AnnIhUDWGIB9bcQhywIECXIgAVjiLmjGGAtW83rA48ePr2lNPeDmXcVauo6feOKJXufOndP/7//+r8c/QiZNmlRz/PhxU3FxsaYCR06+uqD/qH6/GcAtHr46FLk2gAzYY9nixi5oXgfMGGNtJ5T1gD/77LM4i8VCJSUlul27dpmvvPLKWl/nv/rqqz2+/vrr2I8//viYzm0O0U8//WRyLlv97rvvomw2GyUlJQW0R4bXaC2EcPannwZQL4QQRDQQwBAA/wnkIRcC2WLxuwQJULuZvWTAzi7o4DJgDsCMMRaMq666qnrJkiXJEydOrO3WrZvcmnrAmZmZtddcc83g06dPG5988sni/v372wBg9OjRQ44dOxZRV1enS0pKGrls2bLCadOmnX/qqaf69erVq2HMmDFDAWDy5MkVL7/8cvH777/ffd26dQl6vV5ERETIa9asORboHwRa0uVsAOOJKBbAVigzoH8L4M6AntTOZIsFuh7+hwoaM2Bfy5AaWhzzpnESluZLGGOMuWmLesA//PBDgaf37Xb7D57ef+GFF0peeOGFEn9t90VLuJaEEBYoZQnfEEJMATCyNQ9tD3JdXQBjwJ7XAcvOAOzgSViMMcZaR0sGLBHRJQBuB/CA+p7vxbQXIGUZUgCzoD0RAIQuuC5oToEZY6xNdKZ6wHMA/AXAZiHET0Q0AEq3dIcS0CxowOM6YOcsaJscyEYcjdcyxhgLv05TD1gI8TWArwGAlP7UUiHEQ+FuWCgJhwNCYxe0z3XAzp2wHA51spb/6esST8JijDHmgd8xYCJaTUTdiCgKQC6An4loTvibFjrOSkih2IgDQoKA0DwO3NgFHUCDGWOMdXpaJmGNEEKcB3ATlOVHfQHcFc5GhZpsUZZ5aV2G5PWYDJBQfmV2u7ZuaGeSzBkwY4wxd5qqIRGRHsCNAD4WQlgBdKh9nYSzEpLGDJi8ZMDOWdBAAAGYu6AZY4x5oCUAvwngBIDuALYSUSqAoBZAtxe5rg6AtgDsaytKIZRJWABgs9k0PZuIAM/xnDHGWBAKCwsNN9xwwwBvx8+dO6d78cUXE9uyTcHQMgnrNQCvOV8T0UkAE8PZqFBz1gImDdWQtGxFCWjPgAFAIuJZ0IyxDq18w6EUW0ltSMsRGpKjLfE3pwVc5KF///62zz///Ji342VlZbq33nqr5zPPPHO2dS0ML1/FGH6nfn/U/QvAI1BKFHYYcgBd0M4MWPjYCQsILACTRNwFzRhjQXjwwQf7uGezc+bM6f3nP/85afDgwcMAYM+ePREjRowYmp6enpGWlpZx4MAB0xNPPNH35MmTpvT09Izf//73fauqqqTLL788LSMjY2haWlrGu+++G+fteS+99FJienp6Rnp6ekafPn1GXHrppWnh+my+MuDu6veg0ngiigCwDYBJfc4GIcSfiegiAB8AiAewF8Ad6rhy2Mi1gY0B+1uGBGjvgga83o4xxjqMYDLVUJgxY0b5Y489lurMZjdu3Nj9jTfeOP7ee+/1AIDXX3898aGHHip98MEHy+vr68lut+OVV14pmjx5cmR+fn4eoPx7vXnz5iPx8fFycXGx/tJLL02//fbbKz3t3fzUU0+dfeqpp842NDTQFVdckTZ79uzScH02X8UYlqnf/xTkvRsATBRC1BCRAcB3RPQZlI09XhNCfEBE/wBwL4DlQT5DE2FT4jsZjf7PFQKkpMAtyOoyJIAzYMYYawtjx46tKysr0xcWFhqKi4v1sbGxjgEDBriStssvv7z25Zdf7lVUVGT87W9/WzFixIgWm/XLskyPPfZY3127dsVIkoQzZ84Yi4qK9KmpqV7/Ib/33ntTxo8fX3377bdXheuz+R0DViddPQygv/v5Qoj/8nWdUNbzOCdrGdQvAWX8+Hb1/XcAPIdwB2Crkq1KGgKwr60olQxY2YWTAzBjjLWNKVOmVLz77rvdS0pKDNOmTSt3PzZr1qzycePG1X700UexkyZNSlu2bFnhkCFDmgThFStWxJeVlekPHDhw0GQyiT59+oyoq6vzOgS7ZMmShKKiIuM777wT1q0rtWxF+QmA1QC2IMDlR0SkA/ADgEEAlgI4CqBSCOGMXkUA+ni59gGoe0+npqYG8tgWnBkwDAb/57q2ovTUBY2AZ0EDSkUkDsCMMRacO+64o/z+++/vX1FRod+6dWtBfX29K0vKy8szDh06tGHYsGFnjh07Ztq3b19kVlaWpba21hVgq6qqdD169LCZTCbx6aefmk+fPu01G8vOzo56/fXXk3fs2JHvXv83HLQEYKsQ4tVgbi6EcAD4BRHFAfgIwFBPp3m5diWAlQAwZsyYVkUvYVUCcEAZsI96wECAs6AlAsdfxhgLzpgxY+pra2ulpKQka79+/WwFBQWuf8zXrFkTv379+gS9Xi8SExNtCxYsOJ2UlOQYPXp0zeDBg4dNnDix6rnnniuZNGnSoOHDhw8dNmyY5aKLLqr39qzFixf3rKqq0o0bN24IAIwaNap23bp1x8PxubQE4NeJaB6AL6CM6wIAhBD7tT5ECFFJRN8CuAxAHBHp1Sy4LwCv9RlDRajZKmnNgH1MwgpqDNhLeUPGGGPaHDp0KM/585AhQ6yHDx/OBYAFCxaULFiwoEVd3k8//fRn99f79u3L1/KcDRs2FLayqZppCcBpAO4DMAmNXdACwHhfFxFRIgCbGnwjAVwLYCGAbwDcDGUm9EwAG4NrunbODFjLJCzXTlie7iPDNQZstWqfuE3EXdCMMcaa0hKAbwXQXwjRYmaZH70AvKOOA0sA/k8IsYmI8gB8QET/AyAHwFsB3jdgzgwYev8fV+mCBjz1jMtuk7ACCsA8CYsxxi4oJSUluquvvnpI8/e//fbbguTkZO1F31tBSwDeD8AMt+5nLdQu6kwP7x8DkBXIvVpLWK0go1FT+UBnF7SnLmPnEiWdTo+GBu2/DiUAB9RkxhhjYZScnOxwrhNuL1oCcAKAfCLajaZjwD6XIV1IhM2mafwXcC/G4OE+ahZrNBgCzoB5K0rGGGPutATgF8LeijCT1QzYn8as18sYsHrYYDAGFIAlibfCYowx1pSWALwDQL0QQhDRQABDoNQF7jC0ZsBKIQb4ngUNQJKkxnM1IAICOJ0xxlgXoKUcYTaASCLqBWArgAcBvB3WVoWYCDQD9lKOUA42AEu8DIkxxsLh7bff7j5gwIBhl156adq2bdui7rrrrpT2bpNWWjJgSQhhIaJ7ALwhhHiRiPaFu2GhFGgGTCSFOAPmWdCMMRYOq1at6rF48eITU6ZMqQaA8ePHW9q7TVppCsBEdAmU/ZsfUN8L7/5coWa3a9+EA/A2BOyKyZIu0AyY1wEzxjq2jz/+OOXMmTMhrQfcs2dPy0033eSzytK8efOSIiIixLx5887ce++9Kbm5uZG7du06tHHjRvPUqVPTIiIi5EceeaTfpk2bKqdMmVL1yiuvJH3zzTdHmt/H4XAgNTV1xI8//pjXo0cPBwCkpqYO3759e35KSor2nZVCSEsX9BwAfwGwWQjxExENgNIt3WEImx3Q+/+bwZUBw88YMAUWgCWJeAyYMcaCMGHChJrt27fHAMC+ffuiamtrdQ0NDbRt27aYhQsXHh8+fLhl9erVx1asWFHk6z46nQ7XX3995dq1a+MA4Ouvv47u27evtb2CL6AhAxZCfA3ga7fXxwA8FM5GhZpwOED6QDJggvCwDsl5XBdwBsxjwIyxjs1fphouV155pWXmzJnRFRUVkslkEiNHjqzJzs6O2rlzp/n1118/sX79+gSt97r99tvL//rXv/aePXt22dq1a+ObV1Zqa34zYCIaRETLiOjfRPQf51dbNC5UhN0G0lDVouksaA/3cR7mMWDGGGsTJpNJ9O3bt2Hp0qU9srKyasaPH1/z5Zdfmo8fP27KzMz0WlTBk2uuuab2+PHjptOnT+s///zzuOnTp1eEq91aaBkD3gBlu8h3AbTJ9lwhZ3eANGxD6cxSvW2Y5ZwFrQt4FjQ4A2aMsSBdccUVNUuXLk1avnx54ejRo+vmzp3bd/jw4RZJ0jKK2kiSJEyaNKnyoYceShk0aFBdW2056bU9Gs6RhRCvCyF2CCF2O7/C3rIQEvbAxoBDvw6Yt6JkjLFgXXXVVdVnz541TJw4sTYlJcVuMpnE2LFja4K51/Tp08s3btwYf/PNN7dr9gtoy4A3EtEDUOr5um9FeT5srQox4XBA0jAG7DcAOzNkSQoooyWJINs5AjPGWDBuvPHGarvdvtf5urCw8Cfnz99//32B8+fJkydXT548udrXvcaPH28RQvwQnpYGRksAvk/9/ie39wSA1NA3Jzy0jgE3dkF7K0fY2EUdSACWJMDOY8CMMcbcaJkF3WF2FfHK7gAZNJYiBAAvy5CchyUKbNyByxEyxljbWbx4ccLy5cuT3N+75JJLatasWXOivdrkiZYMGESUDiADQITzPSHEe+FqVKgJux3QaZ+E5a8LGgFmwMoyJM2nM8YYa4XZs2eXzZ49u6y92+GP36hERPMAXA8gHcAXAH4J4DsAHSoAa5kF3bgVpZd1wLIAkXo8kABMXI6QMcZYU1r6Um8DMAFAsRDiDgCjoDFzvmDY7QGNAXtbhyRkJZsNNABL3AXNGGOsGS0BuE4I4QBgJyIzgBIAA8LbrNASdjsQwBgwed2IQwQVgHkvaMYYY81pyWRziCgOSgnCPQDOA9jr+5ILi3A4QCEYA5ZFYwAOBI8BM8YYa85nVCIl0jwnhKgEsJSIvgDQTQjRsQJwEGPA3jbikNTYG+gYMGfAjDHWenPmzOkdExPj+Otf/1ra3m1pLZ9d0EKJMpvcXh/paMEXgDIGHMBWlF7HgEVwY8C8FSVjjHVeNpstqOu0dEF/T0QXd8jAqwp0K0oieM2AiYKYhMWzoBljHVzewadTamsOhbQecHRMmiVj6EK/VZaefvrp5HXr1vXo3bu3NSEhwZaZmWnJzc01zZo1K7W8vFwfEREhv/nmm8czMzPrT548qb/nnnv6nThxwgQAb7zxxvHrrruu9tprrx1YXFxsbGhokGbNmlX65JNPngOAqKiozJkzZ57Ztm1bt9jYWMcLL7xQ9PTTT6ecPn3auHDhwhPTp0+v8tSmJUuWJHz22WexDQ0NksVikXbt2nUo0M/vNQATkV4IYQdwJYD7iegogFoo5eqFEOLiQB/WXrSWI2zcilLyHoClIJYhSbwXNGOMBSM7Ozvqo48+ij9w4ECezWbDL37xi4zMzEzLfffd12/lypXHR4wY0fD1119HP/jgg6m7du06NGvWrNRx48ZVz58//6jdbkdVVZUOANauXVuYlJTkqKmpoczMzIwZM2ZUJCcnO+rq6qQJEyZUL1++/NR11103cN68eX2ys7MP7d27N+Luu+++yFsABoC9e/fG7N+/PzcpKSmoog6+MuDvAVwM4KZgbnyhEEIEtQzJ6zrgYCdhcQbMGOvAtGSq4fDNN9/E/OpXv6o0m80yAFx//fWV9fX1Uk5OTswtt9wy0Hme1WolANixY4d5w4YNPwOAXq9HQkKCAwAWLlyYtHnz5jgAKCkpMeTm5kYkJyfXGgwGcfPNN58HgGHDhtWZTCbZZDKJrKysulOnThl9tW3cuHHngw2+gO8ATAAghDgazI2JKAXAagDJAGQAK4UQi4koHsA6AP0BFAK4VQgRvqoUDuV3E8hWlN4CrCyUNb1AMDthcQBmjLFgNP83WZZlmM1me35+fp6W6zdt2mTeunWrec+ePflms1nOysoaUldXJwGAXq8XzrKGkiTBZDIJANDpdHA4HD6zraioqFb1bfqahJVIRHO8fWm4tx3AE0KIoQAuA/AHIsoA8AyAr4QQgwF8pb4OG2G3Kz8EtAwJ3tcBBzUGDB4DZoyxIEycOLFm8+bNcTU1NVRRUSFt2bIlLioqSu7bt6/17bff7g4oAXnnzp2RADB27NjqRYsWJQKA3W5HeXm5VFlZqYuNjXWYzWY5Jycn4scff4xuz8/k5CsA6wDEADB7+fJJCFHsnLglhKgGcBBAHwA3AnhHPe0dhLmLW9jVDDigZUhexoAFjwEzxlhbuvLKKy1Tp04tHz58+LDJkycPzMrKqgGA999//9iqVat6DBkyJGPw4MHDPvzwwzgAWL58+YmtW7ea09LSMoYPH56xd+/eyGnTplXZ7XZKS0vLmDt3bu9Ro0bVtu+nUviKSsVCiL+G4iFE1B9AJoDdAJKEEMWAEqSJqKeXax4A8AAApKa2ovKhXZkeThpmQfstxiAjqAyYx4AZYyx4CxcuLFm4cGFJ8/ezs7MPN38vJSXF/tVXX7UYOt22bVuLcwHAYrHkOH9+9dVXT3s71tyjjz5aBqBVBR98ZcCBzTTydhOiGAAfAnhMCHFe63VCiJVCiDFCiDGJiYlBP1+oY8AIdCMOT/fiSViMMcZCxFdUuqa1NyciA5Tgu1YI8S/17VIi6qVmv70AnGntc3xxjgEHthUlfCxDCmISlueEmjHG2AXuww8/7Pbf//3ffd3fS0lJadiyZUtQE5TdeY1KQojy1txY3cbyLQAHhRCvuh36BMBMAC+q3ze25jl+OQNwCMaAZVlACnoMmCMwY4x1NNOmTTs/bdo0TbOtAxXOsoJjAdwB4AAR7VPfmwsl8P4fEd0L4ASAW8LYhsYMOIAxYK9d0EFuRSlJBJlTYMYYY27CFoCFEN/B+zhyq7u3NbcjiDFgdS/KlvcSjcuQAuG8nfN6xhhjTEs94A5N2AIfA/aW4SrrgIPrgnZezxhjjAFdIADDoQbgAHbCUmZNtTwe9CQsVwDWfAljjLFOrtMH4MadsAKohiR5/rXIsjKeG8wYMAAeB2aMsVaaM2dO7/nz5ye1dztCoQsEYOdOWP6rIbm6oJUXLY+7rQMObBkSd0EzxhhrKpyzoC8IIoCdsFxd0JKXnbCEgKQLZiMO9XoOwIyxDuqxgydS8mvrQ1oPOD06wvL3oakdsh7w6NGjh7z++usnrrjiijoAuPjii9OXL19+/NJLL63T+vk7fQbsqoakYRZ0k2VIId6K0nk9Y4wx7dzrAW/atOmIs5DCfffd12/ZsmUncnNzDy5atKjowQcfTAUAZz3ggoKCvNzc3LyLL764HlDqAefm5h7ct29f3ooVK5JKSkp0AOCsB5ybm3swOjra4awHvH79+iPPP/98H2/tuuuuu869+eabPQBg//79JqvVSoEEX6BLZMBBjAGT579LlGIMweyEFfg1jDF2IdGSqYbDhVoP+K677qpYtGhRr4aGhqJ//OMfPW6//fZzgX62LhOAAxkD9rkVZTDlCNV4ziUJGWMscBdiPWCz2SyPGzfu/HvvvRf3ySefxP/www8B75bV6bugA9kJyz0DFh7WIbVmK0qAu6AZYyxQF3I94FmzZp17+umnU0aNGlWblJTkCPT6Th+AgxkD9r4OGEFXQ2pyf8YYY5pcyPWAx40bZ4mOjnbcfffdAXc/A12hC9rmHAMOoBiDl3XAzjFgXobEGGNt50KsBwwAhYWFBiEETZ06VXOpXXedPgN2dUFr2AmryV7NPsaAnedqxWPAjDHWubzxxhsJl1122dD58+ef0mmY5OtJp8+AXVtRapwFLUmS90lYQlnTy3tBM8ZY1+CrHvDDDz9c1pp7d/oA7FqGpLEakiRJXtcBy3KQ1ZB4EhZjjHVI4awH3AW6oAObhKUEVy/1gGXh2gvaeb4WvA6YMcZYc10gADu3otSeASsXetsLOvCA6irGwF3QjDHGVJ0+ALuWIWkYA3ZlwEQe1wG7lyN0nq+J8xKOv4wxxlSdPgC7liEZ/O+E1TgJy/M6YFk0XQfMGTBjjLFgdf4AHNQsaC+TrETTSViax4B5FjRjjIXEhVIPeNu2bVF33XVXSmvu0TVmQRMF1gWtvGhxXJYFJGq5L6k/XI6QMcY6l/Hjx1vGjx9vac09On0Aht2haQkSoGEdsBxcFzRvRckY6+j+uOHHlEMl1SGtB5yWbLYsunlUh6wHvGnTJvMrr7yS9M033xwJ9vN3/i5ou13TDGhACZC+uqCDnYQlkXMMWNPpjDHGVBdqPeBQ6PQZsHDYNXU/A0oG7HcrytZkwNwFzRjroLRkquFwodYDDoVOH4ARQAbsdycsoZQjBAdgxhhrMxdiPeBQCFsXNBG9TURniOgnt/fiiWgLER1Wv3cP1/OdRABjwO47YXlaBwwZAJFrsw5ZY58ycTEGxhgLyoVcD7i1wjkG/E8ANzR77xkAXwkhBgP4Sn0dVoGMAftbhqRkwMGvA+aNOBhjLDAXcj3g1gpbF7QQYhsR9W/29o0ArlZ/fgfAtwCeDlcbAAABjgE3bkXZ9JgQAhBKbA52L2jOgBljLHAXYj3gyZMnV0+ePLnaX9t9aetZ0ElCiGIAUL/3DPcDhS2wWdDOrSibjwE7x29JauyC1pwB69QA7OAAzBhjTHHBTsIiogcAPAAAqampQd9HOEKzDthZStB9FrTWMWCdXh0zdvA6JMYY60h81QNu7b3bOgCXElEvIUQxEfUCcMbbiUKIlQBWAsCYMWOCTh1DNQYsqwE5qDFgNQN22DkDZoyxjqQz1QP+BMBM9eeZADaG/Yl27WPAvraidHVBU+Bd0JwBM8YYay6cy5DeB7ATwBAiKiKiewG8COA6IjoM4Dr1dVgJux0wtH4dsPOlez1grV3Qkp4zYMYYY02Fcxb077wcuiZcz/TYDocDpAtwK0r4mIQVRDUknY4zYMYYY011gb2gbQGNAbtmQTe/j9ss6IDHgF0ZMAdgxhhjik4fgGF3BD4JCy33zHCu4ZUkBLwTluTKgLkLmjHGApGZmZkernuvXbs2du7cuckA8NJLLyWmpaVlpKenZ4wePXrIDz/8EBGu5zpdsMuQQkXY7YBe+yQs1yxoDcuQAtkJiyTiDJgxxgKUk5OT3/w9u90OvcbEyhe11GAVANx3331lTz311FlACcyPPfZYiqeNPkKp8wfgAMaAm3RBt5iEFXwXNADodASZJ2Exxjqqj/+QgjN5Ia0HjJ4ZFty01GeVpaioqEyLxZKzadMm8/PPP9+rZ8+etry8vKijR4/meqvxu2HDhm7z58/v43A4KD4+3r5z585Dnu69ZMmShD179kSvXr36RHx8vCtDqqmp0TUvABEOnT8AW60gg0HTuU024mh+H9ckLAS8DAkAJL0EB0/CYoyxoO3fvz86JycnNz093QooNX6TkpIcNTU1lJmZmTFjxowKWZbp4Ycf7v/tt9/mp6enW0tLS7V1gQJYsGBB4rJly5JsNpu0ZcuWgvB9EkXXCMAmk7Zzfa0D9pABa0QGB34AACAASURBVB0DBgCdnjNgxlgH5idTbQsjR46sdQZfwHON39LSUn1WVla187ykpCSH1vs/++yzZ5999tmz//jHP+L//Oc/9/rXv/5VGPIP4abTT8ISVivIGFgG7GkdsHMCVTDLkABlHJgzYMYYC15UVJTrH1H3Gr8FBQV5Q4cOraurq5OaJFJBuv/++8u3bNkS1+oG+9FFArBR07mNs6A9BGDnLGhd4DthAUoXNGfAjDEWGt5q/E6YMKF29+7d5vz8fCMAaO2CPnDggKurdN26dbH9+vVrCE/LG3WJLmhJYwBuUg2pGWcGrNNJQXZB8xgwY4yFyrRp06pWrlyZmJaWljFw4MB6Z43f3r1725csWVI4derUQbIsIyEhwbZjxw6/s5lfffXVntnZ2d30er2IjY21//Of//w53J+hSwTgwDNgD+uAHY0ZMILpguZZ0IwxFjBnTd7m9XcjIyOFtxq/t9566/lbb73VbwGFRx99tAxAGQCsWrWqzce4O3UAFkJA2GwgQ4AB2Fc94CADMGfAjDHG3HXuAGxVJstpzYB9d0ErwVPSkbIdFgKfBe2wcQBmjLG2tnjx4oTly5cnub93ySWX1KxZs+ZEe7UJ4ADchGsWtESAo+nMdYdrDJggB5EBG0w6WOs1z4ZnjDEWIrNnzy6bPXt2WXu3o7lOPQvaFYBN2gKww+GATqcD9HplC0v3e7nGgKWgliHpjTrYrRyAGWOMKbpGANaQAQshIMsydDodSG8AZBnCrYvZtQ5YCm4ZksGkg62BAzBjjDFFlwjAWpYhOcdzlQCs9sy7ZcHus6CDWYbEAZgxxpi7LhGAtWTADnXMV5IkkEEJwO7d0A63SVhBdUFzAGaMMeamUwdgOYgArNPpAJ2ycYp7ABauesDBBWCDUQe7VXbdhzHGmH9tVQ/YadWqVd2JaPS2bdtCW/nJg849C7ohuABMemXvaOGxC1qCRIEvQzKYlKBuszpgjOjUv3bGGAuZtqoHDAAVFRXS0qVLe44cObK21TfXoFNHAlcXtIaNOJoGYA9d0Ha3LmgReAZsjFADcD0HYMZYx/On7X9KOVJxJKRZ4aDugyzPj33+gqgHDABPPPFEnyeeeKLktddeS/Z0fqh16kggbNqXITWZhGVoOQnLrm6iYTDqYLMGHoAjuyltsFRbER2nrTwiY4yxRuGsB7x9+/bIU6dOGX/3u99VcQAOgWAmYXnNgNUArDNK0MvKcXuztcK+RJmVNtSdt/o5kzHGLjz+MtW2EK56wA6HA48//njqmjVrwl6AwV2nnoQVyDIkZzCVJAnQtQzANnUTDb1eglG9n9WqPZhGxTZmwIwxxgIXrnrAlZWVusOHD0dMnDhxSJ8+fUb8+OOP0TfffPOgcE/E6hIBWEsGbLPZAABGoxFkVCdhNTSWg3RYZegMyjaVwQVgpdu5uqxe8zWMMcY8C2U94ISEBEdFRcWPp06dOnDq1KkDo0aNqt2wYcOR8ePHW8L5GTp1F3Qgy5Aa1GBrMpmgi4sDADiqXJPjYLc6oDcqf69IkgSdTucK2loYjDp06xGBslM1mq9hrSeEQHXZWVSWlKC+thr1NTVoqK2BraFBLbwB6A1G1FSUI6FPCkZee0P42yQLVKw/BNsZC4RzbbgESBF6mCemIjI9HgBgqapE+aki1FSWwxgRCUmnQ/9RFze5V22DHfkl1ThYfB4lVfWwOmSkJ5tRa3XgVEUd7h7bH0ndIlq04eCO0zh5sAJCCFiqrBBCwGEXcNhlyHYZpig9+qbHI/P61BaTBu12O7Kzs3Hy5EnU1dUBAIgIDocDer0effv2xS9/+UvXjnGMhUOo6wG3h3YJwER0A4DFAHQA3hRCvBiO5wSyDMmZzRqNRujjlX8AHeXlruP1tTZERBtcr41GY0AZMAAkpppRcuw8hCyUgg8s5BostTiWswcnc/fj3MnjKDt5HFY1SGjRs/8AJA9Ka/KeLNvR0FACh6MWDocFDrkesqMesmyFLNcrr+UG1NefhkQG1CMde0r6o9Zmwvk6O87VNCAhxgiJCHqJIJ234nROCdbDir/3siFBJ8MEI3qWmFGzMRdJA8cg+7svkbtiZYuymLc99yL6Dh3uev3HDT/i3wdKAAASAXpJgtWt7OXh0mq8ddclTe7hsMnYvuEIGix2xCZGIjrOBCKCKUoHnV6CTk+orWzAnn8XoqHWhvG/G9Lk+h07dmDr1q0AgMTERERFRcFgMECn06GiogK7d+/G4MGDMWjQIM2/d58aqgGHTf2yql+2xu+SDojtC0T3UP57NTSgdvsOgAD7mbOwl5ZAF9cd+uQk6GJiAJ0eurhYGHr3hs5sDk0bWdi0VT1gd99//31BK5qsWZsHYCLSAVgK4DoARQD+HxF9IoTw+8sKlFyjZJtSdLTfc2trlWVfUVFR0KkB23bmjOu4pdrmmkgFADExMTh//nxA7RmY2RNH955F7nenMWxc74DHKZhnssOBwv17sf/LL/Bzzh7IDjvizb2Q1HsQBlz8C8R274loc3cYJBP0kgE66EEOgmx1QFgdkOtskBscOHvsZ1S//TPkmAoIqwx9QgQS7hmKffl3oKpqr6a22GUJC75/HIUe/qdh0BHssmgSUx8vq0SvoStRba3GzdbrcO+ZqRj5+QeY9tkOmGJi8f3YCZgy9BfI0jvw/dJX8N0Hq3HbcwtBRKi3OfB1/hmkJ5vxxu0XY2BiNIQACkqrEW3U45MfT+Hl/xzCgaIqjOgb63pm4YFzaLDYMeWRUUgdluD1s3yzNh+520/j4hv6I6a7MoTicDiwZ88epKam4p577mn5+e12LFq0CAcOHGhdAD5fDLwzBagrBywaithIBpyx34HKL3Yq+7pr+f8mERLuvx89/3B/Y2CX7fj/7d17VFTXvQfw729mYAaYkbegPEUZhMEgF0XB2CgxiSSaxpC2tNGm3phGchvjMu1qYqxNm1qTamqzEmtNo6aJNrZq4rPRGqNoNNwrKqggLwkoCPJ+P+a17x8zWEIY3vMg/j5rsZw5e59z9mE7/Gafx/5BIjP/SLu9Nv8QobSpFF+Uf4EWbQuMwggjjDAKI4QQ0As9dAYddEYd9EY9DMIAvVH/nx9h+ldKUrjIXDDObRyivKPwncDvwNXJ6vM+MAdjjxFwPIAiIUQxABDRbgDfBTDiAVhbWgqJUgmJ4pun4Hq6ffs2nJycoFQqQURwCg5Gw0e74bFoEaTu7vAa53bnFDQA+Pv7o6ioCFqt9s414f5M/C9fBJzxQPrf81FX3vKNkQUbnKbqKhx/bzOqvrqOtsYGuLp7YF7sUnhKxgLVekAL4Jb5Bx0woAMGAJAQyFkKiVwCcpaaXjvLoPBRobq8BPWiFK6eHfAoj8XNNz9FY2IWJkx8AW5ukyCVuEAqdYFEooBEIodUavpXa3DC87uvobJJi5KmTqRGfIzH7nGG3Pf3WPTnc1g1NRCPNXXiZt0N+DX44sSYAqxvGg+h9cXSgJ2gUGcUvPcXvNO2F0/ur4V7SwNyvhOLnHEeyG6XApAiaeaDiPv8E2x+cQWqOyRo0xnhrozF6iULMWmsEoAplXXkuDEAgB8nhuLd08V4asf/QTN+DGLLDQh1kaOmvAUqLwUCJ3v2+fuNeygE185WYN8fMgHPBjRQKdr0jejs7MQjjzzS6zoymQwajQaXLl1CY2MjZDIZ4uPjoVare63/Da01wIH/AW5dAlpuA9FPAP7RgEwBSJ27/Tih8v1PoS2rhtB2wlhZhI66o5CPd4di+lyokudD5ukJmY8PZP7+MDQ0QH/7NiTXdkNy6wugsxnG2gpIa38DrH+132adcHXBP1VKNEqlyHV2gujx5VlCEkhgmqRHLpVDJpFBKpGa/iUpnCROkJL0znKjMKJN14YTN05AZ9TBVeaKaJ9oyKXffERxbcJa+LvZ5KmYby3OB/wfAQC6385eBmBGz0pE9FMAPwWA4ODgIe3IOTgIHikpA6rr7e2N6dOn37luNe6119B05AgkStMftu+kfv0PyIwZMxASEjKo61wSqQQLV0zFtXMV8BjrMuD1WO+cXVzRWl+HkHtiET49AWFx09F0sAS6221QPOAJ5yAVJC4ykLwryJoDrqz3PvM1RqP1+Ke4WZgOp8DP0VpRDJ+GBEwK/zlCQp7tsy0ygxF1bRK4u7jhlYfHI0x/CnLpbMQGeyL/d/Ohz65BzRfF0Ak9irxLkB92GU97uSKnMAwtnXooSQWJXgeF0EHqEYDE5EVY/uhD+G3GayhuS0dS1Bpc9FahsLUJMRU3AG0LPEjgyRnBuHeST69tGqNwwp9Sp+L9c6Vo7tDB2GGERCVBaLQ3YuYFQyLt+//uGB8XJP14MvIzKlHTVguDxAiNRoOQkJA+A+q8efNARKiurkZbW9ugHteDTAE0lQN+0cDCt4CIZItVjU6ZMKIF5DYG0mA5PEPLMfbxWEie+OYVLZm3N2Te3kCdF1AvAcaMg9EnGK1XS6GrJQghgcf3UyH18AKEATAaTKNh809HUwGaG69BRTI8LXHD95tb4GvQQ7p4P8i17y8yfdEb9ciqysLh4sO43nAdrbpvTsBkEDyH/HA5aj5gGsxkEiOyQ6LvAXhICLHM/H4JgHghxPOW1pk2bZrIzMy0VRMZY+xbgYguCCGmDXX97OzskpiYmJqRbNPdJjs72ycmJia0tzJ73KZYBiCo2/tAmE8SMsYYY3cLewTg8wDCiWgCETkDSAVw0A7tYIwxxuzG5teAhRB6IvoZgGMwPYa0XQiRY+t2MMYYY/ZklyflhRD/EkKohRAThRDr7NEGxhhjo9/27ds9w8LCNDNmzFCfPn3a9Sc/+UmQpbqrVq0av3btWj9L5bb2rZ4JizHG2Lfbjh07fN56660bCxcubAYAa08fOZI4ADPGGOvXrdWvBHUWFo7obCHy8PC28b9f12eWpTVr1vgpFAqxZs2aqqeffjooJyfHJSMjo+DAgQOqRYsWqRUKhfH5558POXz4cMPChQsb33zzTb+TJ08WWdre5cuXXWfOnKmuqKhwXrFiReWLL75ot7u8ebJWxhhjDmvu3LktZ8+eVQJAVlaWa2trq7Szs5NOnz6tfOONN0qjo6PbPvjgg+KtW7eWDWR7165dc/nss88KMzIy8jZs2DC+pKTEqf+1rINHwIwxxvrV30jVWu699962p556yq2+vl4il8vFPffc03LmzBnXL7/8UvX222/f2LNnj+X5VHuRnJzcoFQqhVKp1CckJDSdOXPGLTQ0tMFa7e/LqAjAFy5caCKi4WSzcAfQ2G+twdcfSL2+6lgqs7TcB4AjPhQ/2N+vrbZrr34fSp9bKuM+t+76tujzvsqt/VkPGYFt2JVcLheBgYGdmzdv9omPj2+JiYlp/+yzz1SlpaXy2NjYQed37TkHvz3n5B8VARjAP4QQPx3qykT07mDWH2j9gdTrq46lsj6WZw5nVhtrGezv11bbtVe/D6XPLZVxn1t3fVv0eV/lo+2zbi+JiYktmzdv9tuyZUtJXFxc++rVqwOjo6PbhpLy8tNPP/VYt25dRVNTkyQjI0O1adOmcis0eUBGyzXgQzZef6D1B1KvrzqWyoZ7vLZmrfaO1n4fSp8PZv+OgPt8ZMpHU5/bzX333ddcXV3tlJSU1BoUFKSXy+Vi1qxZQ0quHhsb23r//feHz5gxI/LnP/95RWho6MATu48wm88FzYaOvxXffbjP706O0u88F/TwOdpc0Gzo3rV3A5jNcZ/fnbjf7wKj5RowAyCE4A/lXYb7/O7E/T48jpr/tyc+Bc0YY6xXfAp6+PgUNGOMMeZgOAAzxhhjdsABeBQjokgi+gsR7SWiNHu3h9kGEbkR0QUiWmDvtjDrI6I5RHTG/FmfY+/2sJHDAdjBENF2Iqoioqs9ls8nonwiKiKilwBACHFNCLEcwPcB2P2RBTY0g+lzs18C+KdtW8lG0iD7XABoAaAAMKD5jtnowAHY8bwPYH73BUQkBbAZQDKAKAA/JKIoc9mjAL4AcMK2zWQj6H0MsM+JaB6AXAC3bd1INqLex8A/52eEEMkwffH6jY3b6ZBKSkqc5s+fH2apvKamRvr666/7DmXb+fn5zuHh4Zqht27gOAA7GCHEaQB1PRbHAygSQhQLIbQAdgP4rrn+QSFEIoAnbdtSNlIG2edzAcwE8CMAzxARf4ZHocH0uRDCaC6vByC3YTMdVmhoqO7o0aPFlspra2ul27ZtG2vLNg0FPwc8OgQA6J6JpAzADPP1oMdh+lD+yw7tYtbTa58LIX4GAET0EwA13f44s9HP0uf8cQAPAfAA8I49GgYAJz64FlRX3jKi+YC9ApRt9/84ss8sS2lpaQEhISHal156qRoAVq1aNV6lUhn+/ve/+xQWFuZkZmYqli5dOkGn05HRaMS+ffuuv/zyywE3b96UT548Oeq+++5r+sMf/nBr/vz5kxobG6V6vZ7Wrl17a/HixRYzIBkMBqSmpoZkZmYq/fz8tMeOHStSKpUj/swuf3seHXpL1yGEEKeEECuEEM8KITbbvFXMmnrt8zsvhHhfCHHYhu1h1mfpc/6x+TP+AyHEKVs3yt4WL15ct2/fPq+u9wcOHPCcOXNma9f7t99+2/e55567nZeXl3v58uVrEyZM0L755ptlQUFBnXl5eblbt24tc3V1NR45cqQoNzf3Wnp6esHq1asDjUbL311v3LihWLFiRVVRUVGOu7u74YMPPvC0xrHxCHh0KAMQ1O19IIBbdmoLsw3u87uPQ/d5fyNVa5k1a1Z7bW2trKSkxKmiokLm7u5uCAsL03aVJyQktG7cuHFcWVmZc2pqav2UKVM6e27DaDTSypUrAzMyMpQSiQRVVVXOZWVlsuDgYH1v+wwICOhMTExsB4DY2Ni2kpISq5z65xHw6HAeQDgRTSAiZwCpAA7auU3MurjP7z7c5xYsXLiwfufOnZ67du3ySklJ+dq18+XLl9cdOHCgyMXFxZicnKw+ePCgquf6W7du9aqtrZVduXLlWl5eXq63t7euvb3dYvxzdna+c7ZJKpUKvV5vlaTBPAJ2MET0EYA5AHyIqAzAr4UQ24joZwCOAZAC2C6EyLFjM9kI4j6/+3CfD86SJUvqnnnmmdD6+npZenp6fkdHx52AmJub6xwZGdmp0WiqiouL5VlZWS7x8fFtra2tdwJsY2Oj1MfHRyeXy8WhQ4dUt27dcrbPkXwdB2AHI4T4oYXl/wLfaPWtxH1+9+E+H5xp06Z1tLa2Svz8/LQhISG6/Pz8OwH0ww8/9NqzZ4+3TCYTvr6+uvXr19/y8/MzxMXFtYSHh2uSkpIaX3311crk5ORJ0dHRkRqNpm3ChAkd9jyeLpyMgTHGWK84GcPwcTIGxhhjzMHwKWjGGGN3ncrKSumcOXMiei4/depUvr+/v8EWbeAAzBhj7K7j7+9vyMvLy7VnG/gUNGOMMWYHHIAZY4wxO+AAzBhjjNkBB2DGGGPMDjgAMzaKEdHbRHSRiKbbuy2M2Yo18wHbEgdgxkYpInIDMBbAswAW2Lk5jNkM5wNmzIaIaBOAUiHEn8zvjwG4KYRYZn7/JoByIcQfR3CfLUII5QhuzwPAj4QQfza/DwVwWAgRPYB1XQAcBZAkhDAAgBCilYjGATgFINg8gf9n5jq9ZnlhbKiObflTUM3N0hHNB+wTFNL2UNpKh8oH/MILL4z38fHR/+pXv6oCgOeffz7Az89Pt2bNmqqRPHaAR8Bs9DgHIBEAiEgCwAeAplt5IoCzdmjXYHgAeG6I6/43gI+7gi8AEJE3AFcAzQAMQggtgBMAfjDchjLmKGydD/i5556r+eijj7wBwGAwYP/+/Z7Lli2rtcax8QiYjRZnAWwyv9YAuApgHBF5AmgDEAngEhHthymnqgLAW0KIdwGAiN6AaQTdNfp8FabAdRvACgDOAP4XwHPdg5y57uLe6phHsJ8C+AKmLwDlAL4rhGgnol8BeBLATQA1AC4AmAZgIhFlATgOYDMAKRH9tef6vRz/kwB+1GPZGgAbATwDIAqmLyn7AawHsKvf3yhjg9DfSNVabJ0POCIiQuvh4aE/e/asS0VFhZNGo2mz1sxYPAJmo4IQ4hYAPREFwxSsvoQpGCbAFNgum0eA/y2EiDMvW2EeJQLAbnx9ZPh9AJnmZbOEEFMBGGAKdHcQUWQ/dcIBbBZCaAA0AEghomkAUgDEAnjc3BYAeAnAdSHEVCHELyyt3/PYzaeWw4QQJd2WhZp/D/8AcA3/ORtwFQDfkMW+VWydD3jp0qU17733ns+OHTt8li5dapXRL8AjYDa6nIUp6CQC+COAAPPrRphGf4Ap6C4yvw6CKcDVCiEuEdFYIhoPwBdAPYApAOIAnCciAHAB0PM6z/391PlKCJFlfn0BQChMp8cPdI1kiehQH8fU2/o9+cAUnLv7HYDfCiEEEd0JwOaRuZaIVEKI5j72y9ioYet8wEuWLGlYt25dgF6vp5SUFIs3ew0XB2A2mnRdB54C00jvJoAXATQB2E5EcwDMA5AghGgjolMwnYrushfAEwD8YRoRE4C/CSFe7mOf/dXpfrrLAFOAJgt1B7p+T+3odhxENBWmkfW9RLTZXHalW305AIfId8rYSLB1PmCFQiESExObPDw8DDKZ9cIkB2A2mpyFKeAWm6/T1pnvLNbAdB10FoB6c/CdDGBmj/V3A/grTCPK+wB4AjhARJuEEFVE5AVAJYQo7bbOiQHU6ekLAFuJaD1Mn7FHzPttBvCN02P9EULUE5GUiBRCiA4AbwBYKIQ4AQBE5Afgkvm1N4BqIYRusPthzJEVFBTcSZwQERGhLSwszAGA9evXV65fv76yZ/1Dhw591f19VlZW3kD3ZTAYcPHiReWePXuuD6fN/eFrwGw0uQJT8MzosaxRCFED02M6MiK6DOC1HvUghMiBKQCWCyEqhBC5MN3I9G/zOscBjOuxTr91ehJCnAdwEEA2gI9hutbcKISoBXCWiK4S0YZBHvu/YRrxJgFw6wq+5v3dBuBm/nIwF8C/BrltxpjZhQsXFCEhIVNmz57d1NsNXSOJhBDW3D5jdyUiUgohWojIFcBpAD8VQlwcxvZiAawSQizpp97HAF4WQuQPdV+MdcnOzi6JiYmpsXc7rMFW+YCzs7N9YmJiQnsr41PQjFnHu0QUBdP12b8NJ/gCgPkmspNEJO35mFQX893S+zn4MtY/R8gHzAGYMSsQQvR8Zncktrm9n3ItgA9Ger+MMevga8CMMcaYHXAAZowxxuyAAzBjjDFmBxyAGWOMjRqrVq0av3btWj97t2Mk8E1YjDHG+lW3tyBIV9k6oukInfzd2ryeUNslyYMj4BEwY4wxh/bLX/7SPzQ0NDoxMVFdWFgoB4CcnBz57NmzwzUaTWRcXFzEpUuXFABw8+ZN2QMPPDAxIiIiKiIiIur48eNuADBv3ryJGo0mctKkSZqNGzf6dG3b1dU1Ni0tLUCj0UQmJiaqT5486RofHx8RGBg4ZdeuXe6W2tTc3Cx5+OGHw9RqddQjjzwSds8990w+ffr0oL6g8AiYMcZYv+w1Uj1z5ozrJ5984nXlypVcnU6HqVOnRsXGxrYtW7Ys5N133y2dMmVK5+eff+6WlpYWnJGRUbB8+fLg2bNnN69du/a6Xq9HY2OjFAB27dpV4ufnZ2hpaaHY2NioxYsX1/v7+xva29slc+fObd6yZUv5Aw88MHHNmjUBZ86cKbh48aJi6dKlE5588snG3tq1YcMGXw8PD0NBQUHu+fPnFQkJCZre6vWFAzBjjDGHdfLkSeXDDz/coFKpjADw4IMPNnR0dEguXbqk/N73vjexq55WqyUAOHfunGrv3r1fAYBMJoO3t7cBAN544w2/I0eOeABAZWWlU05OjsLf37/VyclJPPHEE00AoNFo2uVyuVEul4v4+Pj28vJyi1mTzp07p3zhhReqAGD69OkdarW6bbDHxgGYMcaYQzOnAr3DaDRCpVLpBzqT1eHDh1Xp6emqzMzMPJVKZYyPj4/oygcsk8mERGK6GiuRSCCXywUASKVSGAwGi5nNRmIaZ74GzBhjzGElJSW1HDlyxKOlpYXq6+slx48f93B1dTUGBgZqt2/f7gmYAvKXX37pAgCzZs1q3rBhgy8A6PV61NXVSRoaGqTu7u4GlUplvHTpkiI7O9ttuO1KTExs2b17tydgSuBQUFDQWyrRPnEAZowx5rDuvffetkWLFtVFR0drFixYMDE+Pr4FAD766KPiHTt2+ERERESFh4dr9u3b5wEAW7ZsuZGenq5Sq9VR0dHRURcvXnRJSUlp1Ov1pFaro1avXj0+Jiamdbjt+sUvflFdW1srU6vVUevWrfOPiIho9/T0HFQSB86GxBhjrFff5mxIw6XX66HVasnV1VXk5OTIH3zwQfX169evKhSKrwVVzobEGGOMjaDm5mbJ7NmzI3Q6HQkhsGnTptKewbc/HIAZY4wxC/bt2zfmlVdeCey+LCgoqPP48ePXr169em042+YAzBhjjFmQkpLSlJKSYpW8wXwTFmOMMWYHHIAZY4wxO+AAzBhjjNkBB2DGGGPMDjgAM8YYG1VKSkqc5s+fH2apvKamRvr666/7DmXb+fn5zuHh4YNOrDAUfBc0Y4yxfu3fvz+oqqpqRPMBjx07tu2xxx4bdJal0NBQ3dGjR4stldfW1kq3bds29qWXXqoeXguti0fAjDHGHFZaWlpA99HsqlWrxv/617/26xqlZmZmKqZMmRI5efLkKLVaHXXlyhX5iy++GHjz5k355MmTo5599tnAxsZGSUJCgjoqKipSrVZH7dy502Mg+87NzXWOjIyMSk9Pd+1tP8M9Np6KkjHGWK8cYSrKs2fPuqxcuTL4/Pnz+QAwceJEzTvvvFO6YsWKkMLCwpynnnoqaObMma1paWl1HR0dpNfrUV5e7rRgwYLwwsLCPaPMGwAAAq1JREFUHADQ6XRobm6WeHl5GSsqKmQzZsyYXFJScrUrC1J3+fn5zgsWLAjfu3dvUWpq6sRt27Z9lZiY2N7bfpRKZb8BlKeiZIwxNirNmjWrvba2VlZSUuJUUVEhc3d3N4SFhWm7yhMSElo3btw4rqyszDk1NbV+ypQpnT23YTQaaeXKlYEZGRlKiUSCqqoq57KyMllwcLC+t33W1dXJHnvssUl79uy5Pm3atI6B7mew+BQ0Y4wxh7Zw4cL6nTt3eu7atcsrJSWlrnvZ8uXL6w4cOFDk4uJiTE5OVh88eFDVc/2tW7d61dbWyq5cuXItLy8v19vbW9eVD7g3KpXKMG7cOO2pU6eUg9nPYPEImDHGmENbsmRJ3TPPPBNaX18vS09Pz+/o6KCuMvN12k6NRlNVXFwsz8rKcomPj29rbW29E2AbGxulPj4+OrlcLg4dOqS6deuWc1/7c3JyEkePHr0+d+7ccKVSaVy+fHldb/t59NFHm4dzXByAGWOMObRp06Z1tLa2Svz8/LQhISG6/Pz8OwH0ww8/9NqzZ4+3TCYTvr6+uvXr19/y8/MzxMXFtYSHh2uSkpIaX3311crk5ORJ0dHRkRqNpm3ChAkd/e1zzJgxxmPHjhXNmTNHrVQqjTk5OYqe+xnucfFNWIwxxnrlCDdhjXZ93YTF14AZY4wxO+BT0Iwxxu46lZWV0jlz5kT0XH7q1Kl8f39/gy3awAGYMcaYJUaj0UgSieRbd63S39/fkJeXZ5U8v12MRiMBMFoq51PQjDHGLLlaXV3tbg4kbBCMRiNVV1e7A7hqqQ6PgBljjPVKr9cvq6ysfK+ysjIaPGAbLCOAq3q9fpmlCnwXNGOMMWYH/I2GMcYYswMOwIwxxpgdcABmjDHG7IADMGOMMWYHHIAZY4wxO/h/CvrV03bsE20AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for b in bands:\n",
" plt.plot(Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Wavelength']\n",
" ,Table(data = parse_single_table(FILTERS_DIR + b + '.xml').array.data)['Transmission']\n",
" , label=b)\n",
"plt.xlabel('Wavelength ($\\AA$)')\n",
"plt.ylabel('Transmission')\n",
"plt.xscale('log')\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
"plt.title('Passbands on {}'.format(FIELD))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### IV.a - Depth overview\n",
"Then we plot the mean depths available across the area a given band is available"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"wfi_b: mean flux error: 0.054431844502687454, 3sigma in AB mag (Aperture): 25.867564235024993\n",
"wfi_b123: mean flux error: 0.05326399952173233, 3sigma in AB mag (Aperture): 25.89111242841839\n",
"wfi_v: mean flux error: 0.107560895383358, 3sigma in AB mag (Aperture): 25.128060841147864\n",
"wfi_r: mean flux error: 0.09393284469842911, 3sigma in AB mag (Aperture): 25.27515317600831\n",
"irac_i3: mean flux error: 5.835037230082685, 3sigma in AB mag (Aperture): 20.792087784754706\n",
"irac_i4: mean flux error: 5.767967869343094, 3sigma in AB mag (Aperture): 20.804639782035217\n",
"decam_g: mean flux error: 0.12409217093119666, 3sigma in AB mag (Aperture): 24.972835907210573\n",
"decam_r: mean flux error: 0.1606534612428858, 3sigma in AB mag (Aperture): 24.692471646286343\n",
"decam_i: mean flux error: 0.24771897329838952, 3sigma in AB mag (Aperture): 24.222298684814298\n",
"decam_z: mean flux error: 0.48429203397132253, 3sigma in AB mag (Aperture): 23.494428549508463\n",
"decam_y: mean flux error: 1.2032902616833396, 3sigma in AB mag (Aperture): 22.506270858355045\n",
"irac_i1: mean flux error: 0.720426178615064, 3sigma in AB mag (Aperture): 23.063223148981827\n",
"irac_i2: mean flux error: 0.9236782654664204, 3sigma in AB mag (Aperture): 22.793395051667382\n",
"vista_y: mean flux error: 0.14550178476193182, 3sigma in AB mag (Aperture): 24.800026061897675\n",
"vista_j: mean flux error: 2.333885304387101, 3sigma in AB mag (Aperture): 21.786998089642687\n",
"vista_h: mean flux error: 3.2412973330384074, 3sigma in AB mag (Aperture): 21.430399683510664\n",
"vista_ks: mean flux error: 4.157712518793808, 3sigma in AB mag (Aperture): 21.160060720347722\n",
"vista_z: mean flux error: 0.11121916679827804, 3sigma in AB mag (Aperture): 25.091747770143492\n",
"wfi_b: mean flux error: 0.07615247368812561, 3sigma in AB mag (Total): 25.502986825089174\n",
"wfi_b123: mean flux error: 0.07194452732801437, 3sigma in AB mag (Total): 25.56470245409468\n",
"wfi_v: mean flux error: 0.15643367171287537, 3sigma in AB mag (Total): 24.72137126592505\n",
"wfi_r: mean flux error: 0.13188579678535461, 3sigma in AB mag (Total): 24.906701794537362\n",
"irac_i3: mean flux error: 5.814713966138103, 3sigma in AB mag (Total): 20.79587597309908\n",
"irac_i4: mean flux error: 6.187252024048002, 3sigma in AB mag (Total): 20.728452347183413\n",
"decam_g: mean flux error: 0.17293168328544636, 3sigma in AB mag (Total): 24.61251044109948\n",
"decam_r: mean flux error: 0.2678574498755784, 3sigma in AB mag (Total): 24.137437538604665\n",
"decam_i: mean flux error: 0.4593448690155973, 3sigma in AB mag (Total): 23.551849689269936\n",
"decam_z: mean flux error: 0.9517604251369653, 3sigma in AB mag (Total): 22.760877756774924\n",
"decam_y: mean flux error: 2.062134010955861, 3sigma in AB mag (Total): 21.921404650299245\n",
"irac_i1: mean flux error: 0.8774210574046896, 3sigma in AB mag (Total): 22.849176730913975\n",
"irac_i2: mean flux error: 1.105609095260832, 3sigma in AB mag (Total): 22.59819285631172\n",
"vista_y: mean flux error: 0.30577073858104614, 3sigma in AB mag (Total): 23.993707057508367\n",
"vista_j: mean flux error: 4.964516844951413, 3sigma in AB mag (Total): 20.967504391636815\n",
"vista_h: mean flux error: 7.973414665953241, 3sigma in AB mag (Total): 20.453085986627165\n",
"vista_ks: mean flux error: 10.637262667214141, 3sigma in AB mag (Total): 20.14012215455127\n",
"vista_z: mean flux error: 0.23762176437678417, 3sigma in AB mag (Total): 24.26748132255576\n"
]
}
],
"source": [
"average_depths = []\n",
"for b in ap_bands:\n",
" \n",
" mean_err = np.nanmean(depths['ferr_ap_{}_mean'.format(b)])\n",
" print(\"{}: mean flux error: {}, 3sigma in AB mag (Aperture): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n",
" average_depths += [('ap_' + b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n",
" flux_to_mag(3.0*mean_err*1.e-6)[0], \n",
" flux_to_mag(5.0*mean_err*1.e-6)[0])]\n",
" \n",
"for b in tot_bands:\n",
" \n",
" mean_err = np.nanmean(depths['ferr_{}_mean'.format(b)])\n",
" print(\"{}: mean flux error: {}, 3sigma in AB mag (Total): {}\".format(b, mean_err, flux_to_mag(3.0*mean_err*1.e-6)[0]))\n",
" average_depths += [(b, flux_to_mag(1.0*mean_err*1.e-6)[0], \n",
" flux_to_mag(3.0*mean_err*1.e-6)[0], \n",
" flux_to_mag(5.0*mean_err*1.e-6)[0])]\n",
" \n",
"average_depths = np.array(average_depths, dtype=[('band', \""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for dat in data:\n",
" wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n",
" depth = average_depths['5s'][average_depths['band'] == dat[0]]\n",
" #print(depth)\n",
" plt.plot([wav_deets[0],wav_deets[1]], [depth,depth], label=dat[0])\n",
" \n",
"plt.xlabel('Wavelength ($\\AA$)')\n",
"plt.ylabel('Depth')\n",
"plt.xscale('log')\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
"plt.title('Depths on {}'.format(FIELD))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### IV.c - Depth vs coverage comparison\n",
"\n",
"How best to do this? Colour/intensity plot over area? Percentage coverage vs mean depth?"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5,1,'Depths (5 $\\\\sigma$) vs coverage on ELAIS-S1')"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAJgCAYAAABx1+EFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XlcVPX6B/DPIy6IjIgysgwii86wiQsEmgtqmnnLm0qauWVZZOU1LUvLfnW73Upvpl6vt9LSNjNzzSy9pqYgqRBuxDYYiwoMBoI4Ai7I9/fHzNCADNvMMMPwvF+veck5c5bnnEGe+X6/55yHhBBgjDHGWOvUztIBMMYYY6z5OJEzxhhjrRgncsYYY6wV40TOGGOMtWKcyBljjLFWjBM5Y4wx1opxImeMMcZaMU7kjDHGWCvGibyNIaIcIhpjom29R0QLTbGtOradQERB5tg2Y4zZEk7kFqZNrBVEpCaiq0R0nIjmEZFJPhtTJu5a25UCmA1gvd68o0R0g4iua19KI3axEsA/jI2TmYfe7+11vdc6vffq/Z3T/q6UEFGnOrY7Rm96mPb/RCkRFRPRL0R0Tz3bNbg8Ec0nokQiuklEnxt1AhizIpzIrcMEIYQEQG8AywEsAbDRsiE1aA6AfUKIilrz5wshHLUvhRHb/x7AKCJyN2IbVo2I2ls6BiNN0PusHYUQ8xuzEhF5AxgOQAD4az3LdQXwA4D/AOgOQAbgLQA3m7l8PoB/AtjUmDgZay04kVsRIUSpEOJ7AI8CeJyIggGAiDyIaCcRFRJRNhEt0K2jbcG8SkSp2hbOZ0Rkr33vKwBeAPZqW0yvaFcbQERJ2lbLt7rltessIaI8bQ+BkojuMxDueAAxzT1WIupARO9o479NREL7Oqc9FzcAnAJwfx3rLiWiHbXm/ZuI1jbxGEBEvYhol/bcXtFrVQZoW41XiSiFiP7amH1rpxv6vJYQURKAMiJqr91mpjbeVCKapLf8ICI6o31vu/bz+mdj9lXHsdZ5THpxLTb0e2FiswGcBPA5gMfrWU4OAEKIb4QQd4QQFUKIn4QQSc1ZXgixSwjxHYArJjsSxqyBEIJfFnwByAEwpo75FwE8C82XrVMA3gDQEYAvgCwA4/TWTwbQC5pWyC8A/mlo+9rpBAAe2uXTAMzTvqcAcAmAh3baG4CfgbgLAdxTa95R7fwibRwj6znuFdD8Me8FoAuAQwB2AfDVW2YtgFV1rNsbQDmArtppOwAqAIObeAx2AM4BWK2NwR7AMAAdAPwO4DXtOR8NQK3dtsF9a6cb83md1R53Z+28KdrPox00X+LKALhr178A4AVtTJMB3NJ9vg3tq9axGjymhn4vmvJ729B72vd/B/AcgFAAtwG41rUugK7QJN0voPni6NzA/6VGLQ9Nq/xzS//f5xe/TPXiFrn1yofmD+o9AKRCiH8IIW4JIbIAfAJgmt6y64QQl4QQxQDeAfBYA9teK4TI1y6/F8AA7fw7ADoBCCSiDkKIHCFEpoFtdIMmEehbAk0ykQHYAE1PgF/tFYlIAmABgFnauMsA7ATQXXt8OmrtfmoQQlwAcBrARO2s0QDKhRAnm3gM4dAkrpeFEGVCiBtCiDhovhA4AliuPec/Q9Nl+1gD+wYa93mt1R53hfZ4tms/jyohxLcAzmtjGwygvXb520KIXdAkWzRhXzoGj6lWXHX9XhjynbZ1r3s93cDyIKJh0HwZ2iaEOAUgE8D0upYVQlyD5ouV0B5XIRF9T0SuplieMVvBidx6yQAUQ/NHz0P/DyY0rSr9P06X9H6+AE1yqk+B3s/l0PyBhxDidwALAfwdwB9EtJWIDG2rBIBEf4YQIl4IoRZC3BRCfAFNq/wvdaw7AkCWEOK83jznWnFBu/2rBva/BX8moena6aYeQy8AF4QQlbXmewC4JISo0pt3AZrPxOC+tZr6eYGIZhPRWb3lgwG4aOPIE0IIA+s2Zl+NPSbAwO9FPSYKIbrpvT5pYHlA05X+kxCiSDu9BfV0rwsh0oQQc4QQntCcFw8Aa4hoBv15kd3+hpZvRFyMtVqcyK0Qaa6ylQGIg+YPd3atP5gSIYR+guyl97MXNK15nSYVnBdCbBFC6FpNApou8LokQTsmWd/mAFAd86XQfBEAABARAZgETQtRXwA0Xd912Q5gJBF5atetTqZNOIZLALzo7ovO8gH0opp3DngByGto32jc51X9mRBRb2haj/MB9BBCdINmqISg6bKXac+Pjv5n3Zh9NfaYzI6IOgOYCiCSiAqIqADAIgD9iah/Q+sLIdKhGVcPFkJ8Lf68yG58Q8ub6hgYs0acyK0IEXUloocAbAWwWQjxGzRdqde0F0h1JiI7IgqmmrfgPE9EnkTUHZoW2bd6712Gpru7MftXENFo0twSdANABTRd1XXZByBSb91uRDSOiOy1F3DNgKblfaCOdZMBDCKiAdo/7u9Bk9y+1dteJ2jGUA/WtXMhRCE0Y/KfQZPM0ppxDAnQJMvlRNRFG/tQAPHQjFO/QpqL8kYCmADN52Jw33rbbOjz0tdFe+yF2vifwJ+J54Q29vnac/owNF3uzdlXvcdkBh2051P3ag/NcMQdAIHQdNsPgObL2jFoLoCrgYj8iegl7RcmEFEvaHpCTtZetjHLa8+hPTTXNdjpxcVY69YSA/H8MvyC5uKeCmjGg0uh+eP9PAA7vWU8AHwDTddnCTR/mMborf8qgFRouqG/AOCgt+7D0Fw4dxXAYtx98dvfofnSAAAh0CQHNTTd+j9Ae9FYHXG7AMjFnxdsSQH8ql33qjbGsfUc9zJoWokqaFpNLrXenwJgVwPnbhY0SfBlvXmNPgbt8l4AdFcyF0EzTgwAQdBclV+qPbeTGtp3Ez6vMbWWf0cbaxGAVdr9PqV9Lwyai+OuQ9MTsAvA/zVmX3XEZfCY6vu9aOD39rrea7fee6LW658A/gfggzq2NVUbf3vUvNhNBmAbNL0GZdp/10N7oWEd26l3ee0x1Y7r75b+G8Avfhn7IiGa1PPKrAwR5UDzR/+QBfb9LoA/hBAmH4MkongAc4UQyabedmumPS8fCyE+s3QsjDHrwN1KrNmEEK+ZcdsR5tp2a0JEkQCU0LTWZ0DT4/A/iwbFGLMqnMgZs24KaLqLHaG5VesRIYTKsiExxqwJd60zxhhjrRhftc4YY4y1YpzIGWOMsVasVYyRu7i4CG9vb0uHwRhjrcqpU6eKhBBSI9bv2b59+0+hebYBN/wsowpAcmVl5VOhoaF/1LVAq0jk3t7eSExMtHQYjDHWqhDRBWPWb9++/adubm4BUqm0pF27dnxBlQVUVVVRYWFhYEFBwacwUPaXv2ExxhgzJFgqlV7jJG457dq1E1KptBT1PGqYEzljjDFD2nEStzztZ2AwX3MiZ4wxxloxTuSMMcbatPz8/PYhISH+AQEBgf/73/8cIyMj+xQVFdnVtaxSqezYt2/foJaOsT6cyBljjBlt5QGl66G0yxL9eYfSLktWHlC6Wiqmxvrhhx8kffr0uZGWlpb6wAMPXI+JifndxcXFUNVEq8OJnLUdcWuA7Nia87JjNfMZY0YZ4NWt/MVtZ311yfxQ2mXJi9vO+g7w6lZu7LbHjBnjFxQUFNCnT5+glStXugCAg4PDwKefftozMDAwYMiQIfL8/Pw678LKy8trHxQUFAAAJ06c6ExEoefPn+8IAL169Qo+ePBglzfffNPzyJEjTv7+/oHXr18nmUzWT6VSGbyrq7KyEpMnT/aWy+WBDzzwgK9arbZoLrXJRP5xTCaOZxbVmHc8swgfx2RaKCJmFWSDgO1z/kzm2bGaadkgS0bFmE0YE+CqXjV1QNaL2876vrU3xePFbWd9V00dkDUmwFVt7La//vrrnJSUlLSzZ8+mrl+/3rWgoMCuoqKi3aBBg8pTU1PThg4dql66dKlHXevKZLLKmzdvtisuLm535MgRx6CgoPJDhw45ZmRkdOzRo0fl2LFjy1599dX8CRMmlKSnp6c6Ojo2eHFfTk6O/bx58wozMjJSJRJJ1fvvv9/se/VNwSYTeYinE+ZvOVOdzI9nFmH+ljMI8XSycGTMonxGAFM+1yTvn9/R/Dvlc818xpjRxgS4qqMGeRZ+9kuOe9Qgz0JTJHEAWLFihatCoQgMDQ0NKCgo6JCSkmLfrl07PPXUU8UA8OSTT15JSEhwNLR+WFjY9UOHDjnGxcVJXnnlFdWxY8ckhw4dchw8ePD15sTj5uZ26/777y8DgFmzZl05fvy4wX23BJtM5Pf6uWDd9IGYv+UMVv2kxPwtZ7Bu+kDc6+di6dCYpfmMAMLmArH/0vzLSZwxkzmUdlmy83Su9Imh3qqdp3OltcfMm+OHH36QxMTESBITE9OVSmVqQEBARUVFxV25i4gMbmPYsGHXY2NjJbm5uR1nzJhxNSUlpXNcXJxjZGRks75o1N5XfftuCTaZyAFNMp8Z4YW1P/+OmRFenMSZRnYskLgRGPGK5t/aY+aMsWbRjYmvmjog680JQfm6bnZjk/nVq1ftnJyc7kgkkqozZ87Ynzt3rgsAVFVV4bPPPnMGgM8//7xHeHi4waQ8duxY9c6dO7v7+PjctLOzQ7du3SqPHDniNGbMmGa1yFUqVcdDhw51AYAtW7Z0v/fee5u1HVOx2UR+PLMIm+MvYsHoPtgcf/GuMXPWBunGxKd8Doxe9mc3Oydzxox29uJVB/0xcd2Y+dmLVx2M2W5UVFRpZWUlyeXywNdee82jf//+ZQDQuXPnqpSUlM5BQUEBsbGxkvfee09laBsKheIWAAwfPlwNAEOGDLkukUjuSKXSZl2Z7uvre2PTpk095HJ5YElJSfvFixcXNmc7ptIq6pGHhYWJpjxrXTcmrutOrz3N2qi4NZoL2/S707NjgbzTwLCFlouLMTMholNCiLDmrn/u3Lmc/v37W2UryMHBYWB5efkZS8fRUs6dO+fSv39/77reaxVFU5oqKbe0RtLWjZkn5ZZyIm/L6krWPiN4nJwx1qrZZCKfF+l317x7/Vw4iTPGmI2oqzU+a9Ysr19//bXGFeTPPvvs5RdeeOFKU7dfUFBgN3LkSEXt+UePHlW6ublZ1cNibDKRM8YYa3u++uqri6balpub25309PRUU23PnGz2YjfGGGOsLTBbIieiXkR0hIjSiCiFiF7Qzv87EeUR0Vnt6y/mioExfesuXEZcSc07VOJK1Fh34bKFImKMMeOZs0VeCeAlIUQAgMEAnieiQO17q4UQA7SvfWaMgbFqA7o6IDolpzqZx5WoEZ2SgwFdjbo7hjHGLMpsiVwIoRJCnNb+rAaQBkBmrv3pu3BhPYpLTtSYV1xyAhcurG+J3TMrNcxZgg1B3ohOycGKLBWiU3KwIcgbw5yNfvgUY4xZTIuMkRORN4CBAOK1s+YTURIRbSIiZ1PvT9I1BMnJC6qTeXHJCSQnL4Cka4ipd8VamWHOEjzu4YLVFy7jcQ8XTuKMMZPVI3/33XelXl5ewUQUql897aOPPuoul8sD5XJ54MCBA/1PnDjRGQDKy8upX79+AQqFIrBPnz5BixYtqrPwS0PMnsiJyBHATgALhRDXAHwEwA/AAAAqAB8YWC+aiBKJKLGwsGkPzenuPATBwWuRnLwAmVmrkZy8AMHBa9HdeYhxB8NavbgSNb7IL8Ki3q74Ir/orjFzxlgzHX7bFcr9Nb8ZK/dLcPjtNlOPPDIy8vrBgwczPDw8bunP79Onz81ffvlFmZGRkfrqq6/mP/PMM70BwN7eXsTFxSmVSmVqSkpK6uHDh7sePny4S1P3a9ZETkQdoEniXwshdgGAEOKyEOKOEKIKwCcAwutaVwixQQgRJoQIk0qbXiGuu/MQyGTTkZOzDjLZdE7irHpMfEOQN5b4uld3s3MyZ8wEPMPKsXueb3UyV+6XYPc8X3iGtZl65EOHDq3QPQ5W39ixY8t0j4MdNWpUWUFBQUcAaNeuHZycnKoA4NatW1RZWUnNKcBizqvWCcBGAGlCiFV68931FpsEINkc+y8uOYG8vC3w9p6PvLwtd42Zs7bn7LXyGmPiujHzs9eM/jvDGFOMV2PSx1nYPc8X+5d6YPc8X0z6OAuK8VyPXM9//vMfl1GjRpXqpisrK+Hv7x/o6uraPzIy8tro0aPLGrstHXM+EGYogFkAfiOis9p5rwF4jIgGABAAcgA8Y+od68bEdd3pzs6DuXudYX7vu3v4hjlLeJycMVNRjFej/2OFiP/IHRHPqkyRxAFNPfIff/yxGwAYqkc+efLkPobWr12P/H//+5+TEAKmqke+du3angAavI917969ks2bN7scP348XTevffv2SE9PTy0qKrJ78MEH/X799Vf7e+6550ZT4jFbIhdCxAGoq4/A7Lebqa8l1UjaujFz9bUkTuSMMWYuyv0SnPtGiohnVTj3jRS+kWpjk7l+PXKJRFIVHh6uMLYe+QcffOAGQEyYMKHU4Er1aE498vj4+M7PPfdc7x9//PF8XY94dXFxuTNs2DD13r17nZqayG3yyW69ez9zV8Lu7jwEvXubvPHPGGMM+HNMfNLHWRi/PL+6m732BXBNZAv1yM+fP99xypQpfps2bcoOCQm5qZufn5/fXnd1/PXr1+no0aNdAwICmpTEARtN5Iy1pCuffoqyk/E15pWdjMeVTz+1UESMWUBuokONMXHdmHluYpupR/7Pf/6zp6ura8jly5c79u/fP/DRRx/tDQCvv/66+9WrV9v/7W9/6+3v7x8YHBwcAACXLl3qMHz4cIX2trTAUaNGXXvsscea3Etgk/XIGWtJZSfjkbdoEWSrV6PL4Ii7phmzFK5HbjvaXD1yxlpSl8ERkK1ejbxFi+D82DSUfLOVkzhjrMVwImfMBLoMjoDzY9NQ9OFHcHnuWU7ijJkZ1yP/Eydyxkyg7GQ8Sr7ZCpfnnkXJN1vhEB7ByZyxFtZW65FzImfMCJuSN6H/RTtI3l5f3Z1+sY8TMhc8C7+1H3EyZ4yZHV+1zpgRgnsEY/++/0D9f8+gy+AIJKgSsOjaRtz++wu4kfybpcNjjLUB3CJnZhEXFweZTAYfH5/qednZ2cjLy8OwYcMsGJlphbuHA8s+xKKYxZh6Ro1tym1YGbkSoe51lhBgjDGT4xY5MwuZTIbt27cjOzsbgCaJb9++HTJZi5Skb1Hh7uGYqpiK9UnrMVUxVZPcGWOshXAiZ2bh4+ODKVOmYPv27fj555+xfft2TJkypUYL3VYkqBKwTbkNz4Q8g23KbUhQJVg6JMZa3NrTa12PXjpa4yluRy8dlaw9vdbqy5g2pR65NeJEzszGx8cHYWFhiI2NRVhYmM0m8cUxi7EyciXmD5yPlZErsThmMSdz1uaESEPKl8Ut89Ul86OXjkqWxS3zDZGGWH15QVPVI7cUTuTMbLKzs5GYmIgRI0YgMTGxupvdliRfScbKyJXV3enh7uFYGbkSyVfMUp2XtQHqmEu4kXm1xrwbmVehjrlkoYgaZ2Svkep3hr2TtSxume/yhOUey+KW+b4z7J2skb1GGl0BzZrqkT/77LOy5cuXV5ctffHFFz3efPNNi/Y6cCJnZqEbE58yZQpGjx5d3c1ua8n8yeAn7xoTD3cPx5PBT1ooItbadfCUoHhLWnUyv5F5FcVb0tDB0/rL7Y7sNVI9wW9C4ddpX7tP8JtQaIokDlhXPfKZM2cW79y5s7tues+ePc4zZ84sMcVxNhcncmYWeXl5NcbEdWPmeXl5Fo7MDOLWANmxNedlx2rmM9ZE9n7d0H16AIq3pKH0pxwUb0lD9+kBsPfrZunQGnT00lHJ3sy90hkBM1R7M/dKa4+ZN9eKFStcFQpFYGhoaICheuQJCQmOhtavXY/82LFjkkOHDjk2px750KFDK65cudI+Jyenw4kTJzo7OTnd6du37y1jjs9YfPsZM4u6bjHz8fGxyXFyyAYB2+cAUz4HfEZokrhumrFmsPfrhi4R7lD/fAmS0b1aTRLX704f7D5YbYrudWusRz5hwoSSzZs3OxcUFHSIiooqbs42TIlb5IwZy2eEJmlvnwP8/E7NpM5YM9zIvIqyeBUko3uhLF5115i5NUoqTHLQT9q6MfOkwiSjyphaYz3yWbNmFe/cubP7Dz/8YPFudYBb5IyZhs8IIGwuEPsvYMQrnMRZs+nGxHXd6Z38urWK7vUFgxZcrj1vZK+RamPHyaOioko3bNgglcvlgX5+fjfqqEfuJpFI7uzatSvL0DbqqkeuUqk6NrceeVhY2I2ysrJ2rq6ut3r37n27OdswJa5Hzkzqyqefwj64X41njJedjMeN5N/Q46mnLBiZmem608PmAokbuUXOmk0dcwkdPCU1kvaNzKu4nauGJLJXk7bF9chtR331yLlrnZmUfXA/5C1ahLKT8QA0STxv0SLYB/ezcGRmpD8mPnrZn93stS+AY6wRJJF3j4nb+3VrchJnbQd3rTOT6jI4ArLVq5G3aBGcH5uGkm+2VlcFs1Unjx2E49B/I1jXAvcZgeSh/8b1YwcxmFvljJkF1yP/EydyZnJdBkfA+bFpKPrwI7g896xNJ3EAqBr6AmZvOYN1bkW4188FxzOLMP9ne6yb/oKlQ2OtUFspOGQObbUeOXetM5MrOxmPkm+2wuW5Z1HyzdbqbnZbda+fC9ZNH4j5W85g1U9KzN9yBuumD8S9fi6WDo21Qm2p4BAzDW6RM5PSjYnrutMdwiNqTNuqe/1cMDPCC2t//h0LRvfhJM6aTb/gUFhYGBITE2224BAzDW6RM5O6kfxbjaStGzO/kfybhSMzr+OZRdgcfxELRvfB5viLOJ5plRf6slbg9IEL6HCrW42CQx1udcPpAxcsHRqzUmZrkRNRLwBfAnADUAVggxDi33rvLwbwPgCpEIL/6tmIum4x6zI4wqZb48czi2p0pw/268Hd66zZenp3xf6Pz6G0mxIjRozA6WNKZF5th/Hz+ls6NGalzNkirwTwkhAiAMBgAM8TUSBQneTHAjDZhQmMWUpSbmmNpK0bM0/KbdbTH1kbd7vjVZR2S4PT1QB0ue4Np6sBKO2Whtsdrfvpbn+sWeOqPnKkxrPV1UeOSP5Ys4brkZuZ2RK5EEIlhDit/VkNIA2A7mqN1QBeAWD9T6NhrAHzIv3uannf6+eCeZF+FoqItWZ5eXmImv0AQkZ5IXFfDkJGeSFq9gNWX3Coc//+5flLlvrqkrn6yBFJ/pKlvp3797fZeuRVVVW4c8fyd6K1yBg5EXkDGAggnoj+CiBPCHGuJfbNGGOtybBhw9DhVjckx+Yh7C/eSI7NQ4db3az+1jPJqFFqjxXLs/KXLPUtePddj/wlS309VizPkowaZVP1yJVKZUdfX9+gmTNnegUFBQVmZmZ2NPb4jGX2RE5EjgB2AlgITXf7MgBvNGK9aCJKJKLEwsJCM0fJGGPWIVdZggOfJGPc08GI+Ksvxj0djAOfJCNXafHaHA2SjBqldpr4cGHJl1+5O018uNAUSRywrnrkAJCTk2P/xBNPXElLS0uVy+UWLWEKmDmRE1EHaJL410KIXQD8APgAOEdEOQA8AZwmIrfa6wohNgghwoQQYVKp1JxhMsaY1fgj5xrGPR0MT4UzAMBT4YxxTwfjj5xrFo6sYeojRySl3+2ROs+epSr9bo+09ph5c1lTPXIAcHd3v3XfffeVNfd4TM2cV60TgI0A0oQQqwBACPEbgJ56y+QACOOr1hljTGPQuN53zfNUOFcndmulGxPXdad3GTJEbYrudWusR+7g4FDVnPXMxZwt8qEAZgEYTURnta+/mHF/jDHGLKTi3DkH/aStGzOvOHfO5uqRWxuztciFEHEADH9F0izjba79M8YYazk9Fy68qx65ZNQotbHj5NZYj9zacD1yxhizUVyP3HZwPXLGGGPMRnHRFGYWCXt2wM1PDq/gkOp5F5OTUJCZgfCHH7FgZIwxW8D1yP/EiZyZhZufHD+sWY6HFi6FV3AILiYnVU8zxgy7cGE9JF1D0N15SPW84pITUF9LQu/ez1gwMuvH9cgZMyGv4BA8tHApflizHL9s21wjqTPGDJN0DUFy8gIUl5wAoEniyckLIOnK/3dY3bhFzszGKzgE/e//C07u3IrBUdM4iTPWCN2dhyA4eC2SkxdAJpuOvLwtCA5eW6OFzpg+bpEzs7mYnIRzP+3D4KhpOPfTPlxMTrJ0SIxZvYQ9O3A9rwtksunIyVkHmWw6rud1QcKeHZYOjVkpTuTMLPTHxIdOnVndzc7JnLH6ufnJ8f3qfyItfju8vecjLX47vl/9T7j5yS0dGrNSnMiZWRRkZtQYE9eNmRdkZlg4Msasm6OsDN5jcpFzyBMFiVLkHPKE95hcOMqs5tHedTq5J9M1O6moxrPVs5OKJCf3ZFq8HvnChQs9vvvuO5M8970uAwcO9AeAjIyMjkFBQQH+/v6Bffr0CfrXv/7VIoVC+IEwjDFmRXRXracdzKy+viRgrF+zrlpvyQfCZCcVSQ5/nup735zALJ8QF3Xt6ebGYE6VlZVo3950l4rduHGDhBDo3LmzKC0tbRcYGBj0yy+/pHt7e982dtv8QBjGGGslevd+BtfzutS4vuR6Xherv/XMJ8RFfd+cwKzDn6f6HtuW4WHKJG5MPXIAiIqK8tY9l10mk/VbvHixe2hoqGLTpk3OH3zwgUtwcHCAQqEIHDdunJ9arW4HAJcuXWo/duxYP4VCEahQKAIPHjzYxdD2HRwcBgKAvb296Ny5swCAiooKqqpqmdoqnMiZacWtAbJja87LjtXMZ4w1qDVfX+IT4qJWDHYrTPo5110x2K3QVC1xY+qR18Xe3r7q1KlTyujo6JIZM2aUJCcnpymVylSFQlGxdu1aFwCYN2+e1/Dhw9VKpTI1JSUlddCgQTcas+3ff/+9g1wuD/Tx8QlZsGBBgSla4w3hRM5MSzYI2D7nz2SeHauZlg2yZFSMtRqt+fqS7KQiifJkgTRktKdKebJAWnvMvLmMrUde2+zZs0t0P586dapzaGioQi6XB+7cubNHSkqKPQAcP35c8vLLLxcCQPv27dGjR49GPc2tT58+tzMyMlLT0tKSt2zZ4nLp0iWz3+bFDIuJAAAgAElEQVTNiZyZls8IYMrnmuT98zuaf6d8rpnPGGtQ+MOP3PXMBa/gEKt/tLH+mPjwqfJ8XTe7sclcvx65UqlMDQgIqGhqPfLaJBJJdZ93dHS0z7p16y5mZGSkLlmyJP/mzZsmyYve3t63FQpFxaFDh8x2kZ0OJ3Jmej4jgLC5QOy/NP9yEmfM5l3OLnXQHxPXjZlfzi61eD3y+pSXl7fz8vK6ffPmTdq6dWt33fyhQ4eq33//fSmguSiuuLi4wXyZmZnZ4fr16wQAhYWFdomJiY5BQUGN6pI3Bj/ZjZlediyQuBEY8YrmX5/hnMwZs3GDH/a7qx65T4iL2thxclPUI6/P0qVL88PDwwNkMtmtgICA8uvXr9sBwEcffXRxzpw5veVyuUu7du2wbt26C2PGjKn3HsCkpKTOS5Ys8SQiCCEwf/78gvDw8IrmxNUUfPsZMy3dmLiuO732NGOsxXA9ctvBt5+xlpN3umbS1o2Z5522ZFSMMWazuGudmdawhXfP8xnBrXHGmEmZux55bdZcn5wTOWOMMZtgynrktVlzfXLuWmeMMcZaMU7kjDHGWCvGiZwxxhhrxTiRM8YYY60YJ3LGGGNGi9v6pWvmqYQajyPNPJUgidv6ZZupR65TXFzcrmfPniGzZ8/2Mtc+9ZktkRNRLyI6QkRpRJRCRC9o579NRElEdJaIfiKiRlesYYwxZp3c+/qX7//vB766ZJ55KkGy/78f+Lr39S+3dGxr1qzJnzhx4l1PmKusrDTJ9s+cOZOuP/3SSy/JIiIiWqwGuzlb5JUAXhJCBAAYDOB5IgoE8L4QIkQIMQDADwDeMGMMjDHWqqhjLuFG5tUa825kXoU65pKFImocv9Bw9fjnX8ra/98PfI98vsFj/38/8B3//EtZfqHNewa6vtZSjxwAjh075lBYWNhh7Nix14w97sYyWyIXQqiEEKe1P6sBpAGQCSH0D64LAOt/RixjjLWQDp4SFG9Jq07mNzKvonhLGjp4mr2IltH8QsPVQSPuKzy9/3v3oBH3FZoiiQOtpx75nTt38NJLL/Vas2ZNi37rapEHwhCRN4CBAOK10+8AmA2gFMColoiBMcZaA3u/boi9zw1DNqei2xAPlMWr0H16ABK72+HshcuY39viQ84GZZ5KkKTEHpYOGv9XVUrsYalXvwFqUyTzFStWuP7444/dAMBQPfLJkyf3aez2atcjf+ONN2RqtdqurKzMLjIyshTQ1CPfsWNHNtD4euQrVqyQ3n///Vf79Olzu6nHaAyzX+xGRI4AdgJYqGuNCyGWCSF6AfgawHwD60UTUSIRJRYWFpo7TMYYsxqeAS74xrM91D9fQpcIdyR2t0N0Sg4GdDWqIqhZ6cbExz//UtaoOdH5um722hfANVVrqkd+8uRJx40bN/aUyWT93nzzTc9du3b1eO6552TN3V5jmTWRE1EHaJL410KIXXUssgVAVF3rCiE2CCHChBBhUqnUnGEyxphVCSu+g8dyK7G5bycUHs/Df2POY0OQN4Y5W2/3uup8uoP+mLhuzFx1Pr3N1CP//vvvs1Uq1W95eXm/vfXWW7mTJ0++8uGHH+Y1J66mMFvXOmm+Hm0EkCaEWKU3v68Q4rx28q8A0utanzHG2iLdmLjrzEAQVeCF03n499kKePa7AzhbOjrDhk2bfVc9cr/QcKO71ltTPXJLMVs9ciIaBuAYgN8A6LoxXgMwF4BCO+8CgHlCiHq/sXA9csZYW6GOuYQOnpLq7vTHPVxwNkmFV+27IuSBRg8DA+B65LakvnrkZmuRCyHiANQ1aLHPXPtkjLHWThLZC3ElakSn5FR3p8c5O2JaSg42lKitunudWQaXMWWMMStz9lp5jTHxYc4SbAjyxtlr5ZzItbge+Z8alciJqBM0F6V5668jhPiHecJijLG2q65bzIY5SziJN6Ct1iNvbIt8DzT3fJ8CcNN84TDGGGOsKRqbyD2FEA+YNRLGGGOMNVlj7yM/TkT9zBoJY4wxxpqs3hY5Ef0GzbPQ2wN4goiyoOlaJwBCCBFi/hAZY4wxZkhDXesPtUgUjDHGWrXSAzmuHb0k5Z0DelQ/AKYi7Yrk1kW1g9M477seFmMpSqWy40MPPdT3/PnzKZaOxVTq7VoXQlwQQlwA8E/dz/rzWiZExhhj1q6jl6S8eFuGb0XaFQmgSeLF2zJ8O3pJLF6P3NY1dow8SH+CiOwAhJo+HMYYY61R54Ae6u5T5VnF2zJ8r+7N9CjeluHbfao8S7+F3lzG1iM/duyYg0KhCBwwYID/qlWreurmV1ZW4plnnvEMDg4OkMvlge+//76L7r3XX3/dVS6XByoUikBd4RNDtcujoqK8Z8yY4RURESH39PTs9+OPPzpOmTLF29fXNygqKsq7vmNbvXq1i7e3d3B4eLhi2rRpvWfPnu3V1PNTbyInoleJSA0ghIiuEZFaO/0HNLekMcZY48StAbJja87LjtXMZzahc0APdZdBPQuv/5Lv3mVQz0JTJHHA+Hrkc+fO9V61atXFs2fP1qjtsWbNGhcnJ6c7ycnJaefOnUv74osvpOnp6R23bdvW9ccff3Q+depUulKpTH3zzTcLAMBQ7XIAKC0tbX/ixImM5cuXX3r00Uf7vvzyy5fPnz+fkp6e3vn48eOd64orJyenw8qVK93j4+PTjh07lnH+/Hn75pyfhrrW3xNCSAC8L4ToKoSQaF89hBCvNmeHjLE2SjYI2D7nz2SeHauZlg2yZFTMhCrSrkjKTv8hdRzqoSo7/YdU181urBUrVrgqFIrA0NDQAEP1yBMSEhzrWvfKlSt2arXa7sEHH7yuW1b33qFDh7pu27ath7+/f+DAgQMDSkpK2qemptofPHiw68yZM4t05U5dXV3vAJra5aGhoQq5XB64c+fOHikpKdWJ98EHH7zarl07DBo0qLxHjx63w8PDK+zs7CCXyysyMzM71RXbsWPHukRERKhdXV3vdOrUSUyaNKmkruUa0tj7yF8joskAhkFzFfsxIcR3zdkhY6yN8hkBTPlck7zD5gKJGzXTPiMsHBgzBd2YuK47vVOfbmpTdK/r1yOXSCRV4eHhiqbUIxdC1PceffDBBxejoqKu6c/ft29f17rWiY6O9tmxY8fvQ4YMqVi7dm2PmJiY6i8q9vb2AgDs7OzQsWPH6mpk7dq1Q2VlZZ0BmKpoWWPHyP8LYB40lcySAcwjov+aJALGWNvhM0KTxGP/pfmXk7jNuHVR7aCftHVj5rcuqi1aj9zFxeWOo6PjnQMHDjhql62uOT527NjSjz76SHrz5k0CgKSkpE7Xrl1r98ADD1z76quvXHRj4JcvX7YDDNcub67hw4eXxcfHSwoLC+1u376NPXv2NKtQbWNb5JEAgoX26wMRfQFNUmeMscbLjtW0xEe8ovnXZzgncxtR1y1mnQN6qI0dJzdFPfKNGzfmPPXUU96dO3euGj16dHXre9GiRUU5OTmd+vXrFyCEoO7du9/et29f5iOPPHLt9OnTDgMGDAjo0KGDGDNmTOm6devyDNUuby4fH5/bixYtUt1zzz0BPXv2vC2XyyucnJyaXIClUfXIiWgXgEXa285ARL0BLBdCPNbkyJuB65EzZgN0Y+K67vTa08zkuB659SstLW3n5ORUdfv2bYwbN67PnDlzimbPnn219nL11SNvbNd6DwBpRHSUiI4CSAUgJaLviej75h4AY6wNyTtdM2nrxszzTlsyKsYs6uWXX/bw9/cPlMvlQV5eXjdnzpx5VxJvSGO71t9o6oYZY6yGYQvvnuczglvjrFlauh65sUJCQvxv3bpVo/H85ZdfZm/YsCHX2G03KpELIWK03el9hRCHiKgzgPZCCJPcI8gYs33rLlzGgK4ONWpqx5WocfZaeZ31txlrKnPWIzdWUlJSesNLNU+jutaJ6GkAOwCs187yBMC3nzHGGm1AVwdEp+QgrkTz/T+uRI3olBwM6GrURc2MtXmNHSN/HsBQANcAQAhxHkDPetdgjDE9w5wl2BDkjeiUHKzIUiE6JQcbgrwxzFmCTcmbkKBKqLF8gioBm5I3WShaxlqPxibym0KIW7oJImoPzYNhGGOs0YY5S/C4hwtWX7iMxz1cqrvZg3sEY3HM4upknqBKwOKYxQjuEWzJcC0mLi4O2dnZNeZlZ2cjLi7OQhExa9bYRB5DRK8B6ExEYwFsB7DXfGExxmxRXIkaX+QXYVFvV3yRX1TdzR7uHo6VkSuxOGYx1p1Zh8Uxi7EyciXC3cMtHLFlyGQybN++vTqZZ2dnY/v27ZDJZBaOrPVTKpUd+/btG9Twkq1HYxP5UgCF0DwE5hkA+wC8bq6gGGO2RzcmviHIG0t83au72fWT+VTFVKxPWo+piqltNokDgI+PD6ZMmYLt27fj559/xvbt2zFlyhT4+PhYOjSDDh8+7KpUKms8W12pVEoOHz7MVzI2UmVlZbPWa1QiF0JUQXNx23NCiEeEEJ8IUz0kljHWJpy9Vl49Jg78OWZ+9pqmXHWCKgHblNvwTMgz2KbcdteYeVvj4+ODsLAwxMbGIiwszKqTOAB4enqW796921eXzJVKpWT37t2+np6eRtcjt+Uypg4ODgMXLlzoERIS4n/48OE6C780pKEypkREfyeiIgDpAJREVEhEfF85Y6xJ5vd2rXHrGaBJ5vN7u1aPia+MXIn5A+dXd7O35WSenZ2NxMREjBgxAomJiXeNmVsbhUKhnjRpUtbu3bt99+/f77F7927fSZMmZSkUCqNvU7bVMqYAUFFR0S44OLgiKSkpfdy4cdebc34aapEvhOZq9Xu0pUu7A4gAMJSIFjVnh4wxVtv62CzM8X23ujs93D0cc3zfxfpYg4/Ptmm6MfEpU6Zg9OjR1d3srSGZ9+/fvzA+Pt69f//+haZI4oDtljEFNNXS5syZ06zypToNJfLZAB4TQlT/9gghsgDM1L5nEBH1IqIjRJRGRClE9IJ2/vtElE5ESUS0m4i6GXMAjLHWb27YGKw7UIHjmZrHeh/PLMK6AxWYGzbGwpFZRl5eXo0xcd2YeV5enoUjq59SqZScO3dOGhERoTp37py09ph5c+iXMVUqlakBAQEVpi5jmp6enpqenp6al5f32+TJk68ZWic6Otpn3bp1FzMyMlKXLFmSf/Pmzeo4mlPGFAA6duxY1b59Yx+yWreGEnkHIcRdD8wXQhQC6NDAupUAXhJCBAAYDOB5IgoEcBCaSmohADIAvNr0sBljtuRePxesmz4Q87ecwaqflJi/5QzWTR+Ie/1cGl7ZBg0bNuyuMXEfHx8MGzbMQhE1TDcmPmnSpKzx48fn67rZjU3mtlzG1FQa+hpwq5nvQQihAqDS/qwmojQAMiHET3qLnQTwSGMCZYzZtnv9XDAzwgtrf/4dC0b3abNJHAA+jslEiKdTjXNwPLMISbmlmBfpZ8HIDMvNzXXQHxPXjZnn5uY6GNPFbstlTE2l3jKmRHQHQFldbwGwF0I01CrXbccbQCw0LfFrevP3AvhWCLG5vvW5jCljtu94ZhHmbzmDmRFe2Bx/sU23yHXnQncOak83FpcxtR31lTGtt0UuhDD62wYROQLYCWBhrSS+DJru968NrBcNIBoAvLy8jA2DMWbFaieqwX492nT3uv5QA3+xYQ0xboS9AUTUAZok/rUQYpfe/McBPATgPkP3owshNgDYAGha5OaMkzFmWUm5pTUSlS6RJeWWttnkxUMN9bOVMqbh4eEVxm7bbImcNJf8bQSQJoRYpTf/AQBLAEQKIYx+UABjrPWra9z3Xj+XNp28jmcWYXP8RSwY3Qeb4y9isF+PNn0+GqOtljE1Z4t8KIBZAH4jorPaea8BWAugE4CD2sv7Twoh5pkxDsYYa1V4qIE1hdkSuRAiDpqL4mrbZ659MsaYLeChBtYUZh0jZ4wx1nQ81MCaorHVzxhjjDFmhTiRM8YYazOsrR55ZGRkn6KiIqNu9eZEzhhjzGiZmR+4FhYdrvE41sKiw5LMzA+4Hnk9YmJifndxcbljzDY4kTPGGDNaV6cB5ampi311ybyw6LAkNXWxb1enAVyPvB4ymayfSqUy6no1TuSMMcaMJnW5Tx0YuDIrNXWxb0bG2x6pqYt9AwNXZkld7uN65PXUIzcFTuSMMcZMQupyn9rdbXLhpdzP3d3dJheaIokDtl2P3BT49jPGGGMmUVh0WKIq2CXt5TlHpSrYJXXufq/a2GSuX49cIpFUhYeHK0xdjzwqKuqa/vx9+/Z1NVSPfMeOHb8PGTKkYu3atT1iYmKqrwlobj1yU+AWOWOMMaPpxsQDA1dmyeX/l6/rZq99AVxTcT3yhnGLnDHGmNGulZ510B8T142ZXys962BMq5zrkTes3nrk1oLrkTPGWNNxPXLbUV89cu5aZ4wxxlox7lpnjDHW6nA98j9xImeMMWYT2mo9cu5aZ4wxK3PhwnoUl5yoMa+45AQuXFhvoYiYNeNEzhhjVkbSNQTJyQuqk3lxyQkkJy+ApGuIhSNj1oi71hljzMp0dx6C4OC1SE5eAJlsOvLytiA4eC26Ow+xdGjMCnGLnDHGrFB35yGQyaYjJ2cdZLLpnMSZQZzIGWPMypw+cAEZSQeRl7cF3t7zkZe3BRlJB3H6wAVLh9bqWVs9clPgRM4YY1bG0T0DOXkvw83pXfj5LoKb07vIyXsZju4Zlg7NoPeyVK4/FZXWeBzrT0WlkveyVFyP3Mw4kTPGmJXp5JQFb9n7OPalPeK/z8KxL+3hLXsfnZwMPoXU4kK7OpT/Le2iry6Z/1RUKvlb2kXf0K4OXI/cgK+//trJ398/0N/fP9Db2ztYJpP1a8754UTOGGNWpnfvZyAPGYvgETIk7stB8AgZ5CFj0bv3M5YOzaD7XZzU/wnwyvpb2kXf/zuf6/G3tIu+/wnwyrrfxYnrkRuoRz5jxozS9PT01PT09NTAwMDy+fPnFzTn/HAiZ4wxK5SrLEFybB7C/uKN5Ng85CpLLB1Sg+53cVJPdXMu/CS3yH2qm3OhKZI4YPv1yF9//XVXe3v7qldffbWwOeeHbz9jjDErk6sswYFPkjHu6WB4KpwhUzjXmLZWPxWVSrYVlEif9nRRbSsokQ53lqiNTea2Xo98z549ku+++677yZMnm/3kN26RM8aYlfkj51qNpO2pcMa4p4PxR861Bta0HN2Y+H8CvLLe7uuZr+tmr30BXFPZcj3yjIyMji+88ELvHTt2ZDo6Oja7FKnZWuRE1AvAlwDcAFQB2CCE+DcRTQHwdwABAMKFEFyflDHG9Awa1/uueZ4KZ6tujZ+6Vu6gPyauGzM/da3cwZhWuS3XI1+/fn2P0tJSu4kTJ/YBAFdX11sxMTG/N3U7ZqtHTkTuANyFEKeJSALgFICJAAQ0iX09gMWNSeRcj5wxxpqO65HbjvrqkZutRS6EUAFQaX9WE1EaAJkQ4iBgeDyDMcYYY43XIhe7EZE3gIEA4ltif4wxxmwb1yP/k9kTORE5AtgJYKEQotFXahBRNIBoAPDy8jJTdIwxxmwF1yM3AyLqAE0S/1oIsasp6wohNgghwoQQYVKp1DwBMsbajIQ9O3AxOanGvIvJSUjYs8NCETFmGmZL5KQZBN8IIE0Iscpc+2GMscZw85PjhzXLq5P5xeQk/LBmOdz85BaOjDHjmLNrfSiAWQB+I6Kz2nmvAegE4D8ApAB+JKKzQohxZoyDMcbgFRyChxYuxQ9rlqP//X/BuZ/24aGFS+EVHGLp0BgzijmvWo8DYOjS9N3m2i9jjBniFRyC/vf/BSd3bsXgqGmcxJlN4Ce7McbajIvJSTj30z4MjpqGcz/tu2vMnNk+rkfOGGOtlG5M/KGFSzF06szqbnZO5qax8oDS9VDa5RqPYz2Udlmy8oCS65GbGSdyxlibUJCZUWNMXDdmXpCZYeHIbMMAr27lL24766tL5ofSLkte3HbWd4BXN65HbsDq1atd5s6d20s3/cEHH7g89dRTnk09P5zIGWNtQvjDj9w1Ju4VHILwhx+xUES2ZUyAq3rV1AFZL2476/vW3hSPF7ed9V01dUDWmABXrkduoB753Llzi3/66ScnXdGWzZs3u0RHRzf54TWcyBljjJnEmABXddQgz8LPfslxjxrkWWiKJA7Ybj3yrl27Vg0dOlT97bffOp05c8b+9u3b1JwnvXE9csYYYyZxKO2yZOfpXOkTQ71VO0/nSof2cVEbm8xtvR55dHR00TvvvOMml8tvzJw5s1kFarhFzhhjFqCOuYQbmVdrzLuReRXqmEsWisg4ujHxVVMHZL05IShf181e+wK4prLleuQAMHr06DKVStVx9+7dPebOnVvcnG1wi5wxxiygg6cExVvS0H16AOz9uuFG5tXq6dbo7MWrDvpj4rox87MXrzoY0yq35XrkOhMnTixJSkpykEqld5qzvtnqkZsS1yNnjNkiXfLuEuGOsnhVdVI3Fa5H3jqMGjWqz8KFCy8//PDDBr/w1FePnLvWGWPMQuz9uqFLhDvUP19Clwh3kyZxZv2KiorsvL29g+3t7avqS+IN4a51xhizkBuZV1EWr4JkdC+UxavQya8bJ/NGspV65Dk5OcnGbpsTOWOMWYD+mLi9Xzd08utWY5o1HdcjZ4wx1mJu56prJG17v27oPj0An6VsQoIqocayCaoEbEreZIkwWSvAiZwxxixAEtnrrpa3vV83hN4zDItjFlcn8wRVAhbHLEZwj2BLhMlaAe5aZ4wxKxLuHo6VkSuxOGYxpiqmYptyG1ZGrkS4e7ilQ2NWilvkjDFmZcLdwzFVMRXrk9ZjqmIqJ3FWL07kjDFmZRJUCdim3IZnQp7BNuW2u8bMWdMsXLjQ47vvvjPqCXP1GThwoL/u5+HDh/eVSCQDRo0a1cdc+6uNu9YZY8yK6MbEdd3p4W7hNaat1uG3XeEZVg7F+D/vh1bulyA30QH3/d9lC0aGNWvW5Nc1v7KyEu3bG58Gz5w5U31F+uLFiwvKysraffLJJ1KjN9xI3CJnjBl0+sAFvLppPvae+KZ6Xq6yBB9//iHe+naRBSOzXclXkmskbd2YefIVo283Ni/PsHLsnucL5X5Ny1e5X4Ld83zhGWbxeuRRUVHeuueyy2SyfosXL3YPDQ1VbNq0ydlQjfFLly61Hzt2rJ9CoQhUKBSBBw8e7GJo+w4ODgN1Pz/88MPqrl27Vhl7zE3BiZwxZlBP766wO++OfySvwN4T31Qn8Y23N2CQlxW3DluxJ4OfvKvlHe4ejieDn7RQRI2kGK/GpI+zsHueL/Yv9cDueb6Y9HFWjRZ6Mxlbj7w2e3v7qlOnTimjo6NLDNUYnzdvntfw4cPVSqUyNSUlJXXQoEE3jD0Oc+GudcaYQZ4KZ8yb8xzwOfAPrEBgwR6k+qbjjeAlmDDkMUuHx6yNYrwa/R8rRPxH7oh4VmWKJA5o6pH/+OOP3QDAUD3yyZMnN3pMevbs2SW6n0+dOtX5jTfekKnVaruysjK7yMjIUgA4fvy4ZMeOHdkA0L59e/To0aNZBU1aArfIGWP16nxsJyZKA+Gfp8BprxSMdojAaPLFlU8/tXRozNoo90tw7hspIp5V4dw30upudiPo1yNXKpWpAQEBFU2pR14XiURS3fUdHR3ts27duosZGRmpS5Ysyb9582ary4utLmDGWMtSO3nD7vO3QHfSMOhiEFTpJ5A9/znYB/ezdGjMmujGxCd9nIXxy/Oru9mNTObG1iNviKEa40OHDlW///77UkBzUVxxcbHV5kurDYwxZnm5yhJ8ejoeqx+uwiv7O+CN24OwaE87/Gv8bfwsDJZ/Zm1RbqJDjTFx3Zh5bqKDMZuNiooqraysJLlcHvjaa6951FGPPCA2Nlby3nvvqZqzfV2N8eHDh8v79u1bPQ7+0UcfXYyJiZHI5fLA4ODgwNOnT3duzPZCQ0MVs2bN8j1x4kRXV1fXkJ07d3ZtTlxNwfXIGWMGnT5wAdvz3se9AUMx+NdCFH34ETpOfQIHfR1xufN5vPnoakuHyOrB9chtR331yPliN8aYQYPG9cYgrEPZyXjkffMfuDz3LEq+2YpZq1ejy+DnLB0eYwxmTORE1AvAlwDcAFQB2CCE+DcRdQfwLQBvADkApgohSgxthzFmWWUn45G3aBFkq1ejy+AIOIRH1JhmzBJauh55QUGB3ciRIxW15x89elTp5uZm0SvazdkirwTwkhDiNBFJAJwiooMA5gA4LIRYTkRLASwFsMSMcTDGjHAj+bcaSbvL4AjIVq/GjeTfOJEzq2LOeuRubm530tPTU821fWOYLZELIVQAVNqf1USUBkAG4GEAI7WLfQHgKDiRM2a1ejz11F3zugyO4CTOmJVokavWicgbwEAA8QBctUlel+x7GlgnmogSiSixsLCwJcJkjDHGWh2zJ3IicgSwE8BCIcS1xq4nhNgghAgTQoRJpS327HnGmA248umnKDsZX2Ne2cl4fogNs0lmTeRE1AGaJP61EGKXdvZlInLXvu8O4A9zxsAYa3vsg/shb9Gi6mSuu2CPH2LDbJHZEjlpnpe3EUCaEGKV3lvfA3hc+/PjAPaYKwbGWNukuyAvb9EiFK5dy1fZt3EtVY/8+PHjnQcMGODfp0+fILlcHvjJJ584m2uf+sx51fpQALMA/EZEZ7XzXgOwHMA2IpoL4CKAKWaMgTHWRnUZHAHnx6ah6MOP4PLcs5zEzWzt6bWuIdKQ8pG9RlY/KvXopaOSpMIkhwWDFrSJeuSOjo5VX331VXa/fv1u5uTkdLjnnnsCJk2adM3FxcWst6eZrUUuhIgTQpAQIkQIMUD72ieEuCKEuE8I0Vf7b7G5YmCMtV1lJ+NR8s3W6ofY1B4zZ6YVIg0pXxa3zPfopaMSQJPEl8Ut8w2RhrSZeuQhISE3+/XrdxMAvL29b3fv3r1SpVKZ/cFr/Kx1xib9RhkAACAASURBVJjN0X+IjXTBgupudk7m5jOy10j1O8PeyVoWt8x3ecJyj2Vxy3zfGfZOln4LvblaYz3yI0eOONy+fZsCAwNvNvV4m4of0coYszn8EBvLGNlrpHqC34TCr9O+dp8RMENliiQOtL565BcuXOjwxBNP+G7cuDHbzs6usas1GydyxpjN4YfYWMbRS0clezP3SmcEzFDtzdwrHew+WG1sMtevRy6RSKrCw8MVpq5HvmPHjt+HDBlSsXbt2h4xMTFGXRRXXFzcbvz48X3eeOONvPvuu6/MmG01FnetM8YYM5puTPydYe9kLQ1fmq/rZteNmTdXa6pHfuPGDXrwwQf7TJs27cqTTz7ZYjVEOJEzxhgzWlJhkoP+mLhuzDypMKnN1CPftGmT86+//uq4ZcsWF39//0B/f//A48ePN6qOuTG4HjljjNkorkduO+qrR84tcsYYM9LpAxeQq6zZk5qrLMHpAxcsFBFrS/hiN8YYM1JP76448Ekyxj0dDE+FM3KVJdXTzDy4HvmfOJEzxpiRPBXOGPd0MA58kozgETIkx+ZVJ3XWctpqPXLuWmeMMRPwVDgjeIQMiftyEDxCxkmctRhO5IwxZgK5yhIkx+Yh7C/eSI7Nu2vMnDFz4UTOGGNG0h8Tj/irb3U3Oydz1hI4kTPGmJH+yLlWY0xcN2b+R841C0fG2gJO5IwxZqRB43rfNSbuqXDGoHG9LRRRy/tjzRpX9ZEjNZ7ipj5yRPLHmjWuloqpIY8++mjvU6dO2Rt6f+3atT1ycnI6tGRMzcGJnDHGmNE69+9fnr9kqa8umauPHJHkL1nq27l/f6PLmJrLt99+eyE0NNRgVbPNmze7XLx4kRM5Y4wx2ycZNUrtsWJ5Vv6Spb4F777rkb9kqa/HiuVZklGjjK6AZkw98tOnT9v369cvQDetVCo7yuXyQAAIDw9XxMbGOlRWViIqKsq7b9++QXK5PPCtt97q+dlnnzknJyc7zJ4929ff3z/w+vXrtHjxYvfg4OCAvn37Bj322GO9q6qq6tolUlJSOgUGBlbv87fffusUFBQUUOfCJsCJnDHGmElIRo1SO018uLDky6/cnSY+XGiKJA4YV4980KBBN27fvk2pqakdAeDLL7/sPnHixBpXIZ44ccJBpVJ1OH/+fEpGRkbq888/f+WJJ54oCQ4OLv/yyy+z0tPTUx0dHcXLL7/8R3Jyctr58+dTKioq2m3dutWprn0GBQXdlEgkd3TPWV+/fr3L9OnTjX4ojSGcyBljjJmE+sgRSel3e6TOs2epSr/bI609Zt5cK1ascFUoFIGhoaEBhuqRJyQkOBpaf+LEicWbN2/uDgC7d+92njVrVrH++/7+/jcvXbrU6fHHH++1Y8eOrs7OznU+qW3//v2SkJAQf7lcHnj8+HFJcnKywYIoc+bMKfrkk09cKisrsWfPHue5c+dyImeMMWa9dGPiHiuWZ7m99lq+rpvd2GSuX49cqVSmBgQEVDS1HvmsWbNKvvvuO+ekpKRORIR+/frd1H9fKpXeSU5OTh01apT6ww8/7Dlt2jTv2tsoLy+nl156qfeuXbsyMzIyUmfOnFl048YNgzn08ccfLzly5IjT1q1bu/Xr16/cnI9xbRWPaD116lQREVlb9QEXAFZZFcgK8LmpG58Xw/jcGGbMuWmxy+Yrzp1z0B8T142ZV5w752BMF3tD9cijo6NLGqpHHhQUdLNdu3Z44403PCZNmlRc+32VStW+U6dOVXPmzLkql8tvPvnkkz4A4OjoeKe0tNQO0NQtBwA3N7fK0tLSdnv37nWeMGGCwQcFODg4iMjIyNIXX3zRa926dTnNPf7GaBWJXAghtXQMtRFRojHlAW0Zn5u68XkxjM+NYa3l3PRcuPBy7XmSUaPUxo6TR0VFlW7YsEEql8sD/fz8btRRj9xNIpHc2bVrV1Z925k8eXLx22+/7blixYq82u/l5OR0mDt3rndVVRUBwD/+8Y9cAJg9e3bR3/72t94vv/xyVWJiYtqMGTMKAwMDgzw9PW/p4qjP7Nmzi/fv3+88efJksz5QoFXUI7dGreU/lyXwuakbnxfD+NwYZslzw/XIjfPGG2+4lpaW2v373//ON3Zb9dUjbxUtcsYYY6w1GTt2rN+FCxc6xcTEZJh7X5zIm2+DpQOwYnxu6sbnxTA+N4bxualDS9cjN8TQPg8ePJhprn3Wxl3rjDHG6mTNXettTX1d63z7GWOMMdaKcSJvABE9QERKIvqdiJbW8f6LRJRKRElEdJiI2kSVhIbOi95yjxCRIKI2cyFTY84NEU3V/t6kENGWlo7RUhrx/8mLiI4Q0Rnt/6m/WCLOlkZEm4joDyJKNvA+EdFa7XlLIqJBLR0js16cyOtBRHYA/gtgPIBAAI8RUWCtxc4ACBNChADYAeBfLRtly2vkeQERSQAsABDfshFaTmPODRH1BfAqgKFCiCAAC1s8UAto5O/N6wC2CSEGApgG4MOWjdJiPgfwQD3vjwfQV/uKBvBRC8TEWglO5PULB/C7ECJLCHELwFYAD+svIIQ4IoTQVfc5CcCzhWO0hAbPi9bb0HyxMVhdyAY15tw8DeC/QogSABBC/NHCMVpKY86NANBV+7MTAKNv22kNhBCxAO56UImehwF8KTROAuhGRO4tEx2zdpzI6ycDcElvOlc7z5C5APabNSLr0OB5IaKBAHoJIX5oycCsQGN+Z+QA/r+9e4+Lss7///+6AEVHRzwwDSAqDjoDg4KK4dlE+rixGxWRHdZq7df20c6l7dbHdlt/n46WdrC0bNvVT+aamotmG51I1Gy18gDKYTBGUuQQeMBBUDlc3z9gXDTwwDXADDzut1u3lWG4rvfMqk+v9/ua99OsKMp2RVF2KIpysSuxjuRy3pv5InKnoigFIvKpiDzcNkNze1f6d1Gb27Exz3gwo+y87VgPZpTpd2zM65R95I899ljQhg0bXLLX/KUQ5BfX1Oa9Td7mryjKnSIyWkReadURuYeLvi+KoniJyGsiMrfNRuQ+Luf3jI/UT5FOEZE7ROQ9RVF6t/K43MHlvDd3iMgKVVWDReTXIrKy4fdTZ3fZfxe1F+Ngv8rUFVkmZ5gfzCjTp67IMhkH+3XKPvLXX3+98KabbnJJ+9ul8Afk4gpEZECjr4Oliak+RVGuFZGnReQGVVXPXPj9DuhS74teRIaJSJqiKPkiMlZEPu4kN7xdzu+ZAhHZqKpqtaqqB0XEJvXB3tFdzntzr4isFRFRVfXfItJN6vca7+wu6++i9jQ40t8RN9NqT12RZdq2NjcodUWWKW6m1T440r/T9ZGLiCQlJYUsX768j9bXfjkI8ov7XkSGKooyWFGUrlJ/883HjZ/QMIW8TOpDvLOsdV70fVFVtVxVVX9VVUNUVQ2R+nsHblBV9Yf2GW6buuTvGRHZICKxIiKKovhL/VT7RfeJ7iAu5705JCJxIiKKooRLfZCXtuko3dPHInJ3w93rY0WkXFXVovYe1IUGR/o7LGMDSjO+Lgi0jA0odUWIi3heH3lbI8gvQlXVGhF5SEQ+F5Fsqb+bNlNRlP9VFOWGhqe9IiI9RWSdoih7FUW58C+mDucy35dO6TLfm89F5KiiKFkisllE/qCqaqvtPOUuLvO9mSsi9ymKki4iq0VkptoJdq1SFGW1iPxbRCyKohQoinKvoiizFUWZ3fCUT6X+H3s/ishfReSBdhrqRR3MKNPbdhQbIqcGF9l2FBsuXDNvKU/sI29LbNF6Caqqfir1f4gaP/ZMo19f2+aDcgOXel8ueHxKW4zJXVzG7xlVROY0/NepXMZ7kyUiE9p6XO1NVdU7LvF9VUQebKPhtIhzTdw5nR4c1tfhiun1xn3ker2+LiYmxtKSPvLp06ebbr/99uMX6yNPTk7utXTp0qvWrFnTd926dfmNn+PsI9+5c2fWkCFDqufMmRN0sT7ytuQWgwAAeLaSg+W6xqHtXDMvOViu03LcS/WRi4i4oo+8trZWZs6ceeK55547sm/fPp3IpfvItbwuV+KKHACg2dgbQ3/RRz440t+hdZ3ck/vIFUVpk2UhSlMAAE1y59IUd+8jnzp16pDHH3+8JCEhwSU3/FGaAgBAG5k+fXpIVVWV17Rp0yra4nxMrQMAPI6795G35jkvRJCjU1AUJUBEXheRq0XkjIjki8hjqqrmtue4ALjOypUrD3WGc16IqXV0eEr951KSRSRNVdVQVVWtIjJPRFy+B3RDwxcAtBmCHJ1BrIhUq6r6jvMBVVX3isg3iqK8oijKfkVR9imKcpuIiKIoaxr3YCuKskJRlCRFUbwbnv99Qyf0rIbvT2no0P6HiOxreGyDoii7GvrG/7vRse5VFCVXUZQ0RVH+qijKWw2PGxRFWd9w7O8VRel0n6UG0DJMraMzGCYiu5p4/GYRGSEiUVK/n/f3iqJslfp6zdtE5NOGrUTjROR+qd8HvFxV1asVRfEVke2KonzRcKwYERnWsHe6iMj/p6rqMUVRujccd72I+IrIn0VklIg4RORrEUlveP4bIvKaqqrfKIoyUOp3Pzu3PzQANIcgR2c2UURWq6paKyIliqJskfo19BQRWdwQ1teJyFZVVasURZkmIpGKotzS8PN+Ul92clZEvmsU4iIijyiKktjw6wENzwsQkS2qqh4TEVEUZZ3U77MuInKtiFgb7U7VS1EUvaqqbdKeBMBzMbWOziBTRKKbeLzJPR1VVT0tImki8iupvzL/sNHzH1ZVdUTDf4NVVXVekZ/bHEJRlClSH8zjVFWNEpE9Ul/+0fwekvV/Fsc1OnZ/Qhye5JsP3zfm7fruvL3V83Z9p//mw/c7ZR+5s1mt5aO7fAQ5OoOvRcRXUZT7nA8oinK1iBwXkdsa1r4NIjJZRL5reMqHInKPiEyS+mluafjf+xVF6dJwDLOiKD2aOJ+fiBxXVbVSUZQwqa9xlYZjX6MoSh9FUXxEJKnRz3wh9YUizvGN0PSKgTYWODSsMmXJIpMzzPN2fadPWbLIFDg0rFP2kbclghwdXkPhRKKI/JeiKHmKomSKyHwR+YeIZEj9OvXXIvJHVVWLG37sC6kP9q9UVT3b8Nh7IpIlIrsVRdkv9fW1TS1PfSYiPoqiZIjIs1Jf4yqqqh4RkRdEZKeIfNVwrPKGn3lEREY33ESXJSKzf3FUwI2FRsc44h+ca09Zssi0ecW7QSlLFpniH5xrD41ufg/0y+WJfeQiIqtXr+4zfPjw8JCQkGGfffZZs+1sWhHk6BRUVS1UVfXWho+fRaiq+htVVQ+oqvoHVVWHqao6XFXVNY2eX62qaj9VVe9p9FidqqrzGp47TFXV2Ibu9TRVVa9v9LwzqqrGq6oaqarqdFVVp6iqmtbw7X+oqmqW+qn3YBH5oeFnylRVva3hZ6yqqhLk8Dih0TGOiMlxpbtTPg6MmBxX6ooQF/HcPvKamhpl37592QsWLDj8v//7v02OzxUIcqBtzVcUZa+I7BeRgyKyoZ3HA7hM3q7v9JlbUw2j4m8oytyaarhwzbylPLWPfPr06cdFRMaPH3+qoKCg65W+7stFkANtSFXVJxpuZgtTVfURldYidBDONfH4B+faY2f+d6Fzml1rmDfuI7fZbFnh4eFVLekj37BhQ5+MjAzfi/WRx8bGOpYuXXrV7bffHnLhMZx95P/85z/zcnNzs+68886yS/WRd+vWTRUR8fHxkdra2ovd7KoJQQ4A0KzoQI6u8Zq4c8286EAOfeStjM+RAwA0m3j73b/oIw+NjnFoXSf35D7ytkIfOQCgSfSRuw/6yAEA6KCYWgcAeBz6yP+DIAcAdAj0kQMAAI9DkAMA4MEIcgAAPBhBDgCAByPIAQCalX+eb6zKPnredqxV2Uf15Z/n00feyghyAIBmXQfqK4+tzTU5w7wq+6j+2NpcU9eBevrIWxlBDgDQrHt4P0ffW832Y2tzTSc25QUdW5tr6nur2d49vF+n7SMXEamtrZWbb7455JFHHglq6jxa3xsRghwA4CLdw/s5eoy6qrRie2Fgj1FXlboixEU8t4+8urpauemmmwYPHTr09OLFiwubOo8r3h+CHADgElXZR/Wndv9s6DkhqOjU7p8NF66Zt5Sn9pE/8MADg6xWa9WCBQuKr+Q8V4ogBwBo5lwT73ur2d47IbTQOc2uNcw9uY989OjRFdu2betVWVmpXO55WoIgBwBodvaQQ9d4Tdy5Zn72kKPT9pHPmjWrbNq0aeXXX399aHV1dbPn0Yq91gEAmvn9KuQXfeTdw/s5tK6Te3of+fz580sef/xx75tvvnnwvHnzips6j1b0kQMAmkQfufugjxwAgA6KqXUAgMehj/w/CHIAQIdAHzkAAPA4BDkAAB6MIAcAwIMR5AAAeDCCHACgWWpqqtFms523HavNZtOnpqZ2yj7ytkSQAwA0Cw4OrkxOTjY5w9xms+mTk5NNwcHB9JG3MoIcAKCZxWJxJCYm2pOTk00pKSlBycnJpsTERLvFYul0feT5+fldwsLCrM7/vL29o3Nzc7tqfR+aQ5ADAFzCYrE4oqKiSnfu3BkYFRVV6ooQF/G8PvKQkJDqnJycrJycnKzf/e53pb/61a+Om83ms654L5pCkAMAXMJms+nT09MNY8aMKUpPTzdcuGbeUp7aR/7FF1/0eP/99w2rV6/Ov9LXfCUIcgCAZs418cTERHt8fHyhc5pda5h7ah/5Tz/91GXWrFkha9asyfPz82t6Dt5FCHIAgGYFBQW6xmvizjXzgoKCTtdHfubMGeXmm282Pfvss0ciIyPPNPc8V2GvdQCAZnFxcb/oI7dYLA6t6+Se2Ef+1Vdf9di/f3+P5557Lui5554LEhH57LPPDoSEhFRreS+aQx85AKBJ9JG7D/rIAQDooJhaBwB4HPrI/4MgBwB0CPSRAwAAj0OQAwDgwQhyAAA8GEEOAPBYf//73/uYTKaIMWPGmLdu3aqbOXPmgOaeO2fOnKBnnnnGbWtVW4qb3QAAmuXlLTL28htRafCPO7cBTGlZqv5k+V5daOjcX2wW4yrLly/3f+ONNw4lJCQ4REQmT57strWprYUrcgCAZr38RlRmZT1hKi1L1YvUh3hW1hOmXn4jNAXrn/70J+Nzzz13lYjIvffeO2Ds2LFmEZGNGzfqvby8onft2tXz4YcfHjRr1qzgTz75RB8bGzvkYsfLyMjQjR071jxo0KBhixYt8tcyNndBkAMANDP4xzms1oX2rKwnTLm5zwZlZT1hsloX2htfobdEbGxsxfbt23uKiOzdu1d36tQp7zNnzihbt27tuWDBgp+cVaPLli0ruJzjZWdnd//qq68O7NixI+eVV14Jys/P76JlfO6AIAcAuITBP84RGHBz6eGCFYGBATeXag1xEZGJEydW7tu3r8fx48e9fH191dGjR1ds27ZN9+9//1s/derUiis9Xnx8/ImePXuqgYGBNePGjTu5bdu2HlrH2N4IcgCAS5SWpeqLiv9pGBA8s6io+J8G5zS7Fr6+vmpwcPCZJUuW+MfExFRMnjy54quvvtL/9NNPviNHjjx9pce7sO70YvWnnoIgBwBo5lwTt1oX2s3mPxc6p9ldEebjx4+vWLJkiXHKlCmOa6+91vF///d/BqvVWunldeURlpKS0ruyslIpLi723rFjh37ixInNtph5CoIcAKDZyfK9usZr4s4185PlezX1kYuIXHPNNY7S0tIuU6dOPTVgwIAaX19fdcKECVc8rS4iMnLkyFNxcXFDx4wZE/7EE08UtVa1aFuixhQA0CR3rjHtbKgxBQCgg2JDGABAh/LGG2/0e/vtt8/bwe3qq6+ucIemstbA1DoAoElMrbsPptYBAOigCHIAADwYQQ4AgAcjyAEA8GAEOQDAY7mqj3zSpElD9Xr9iAvb02644YbBISEhw4YOHRoxffr0kDNnzigiIh988EFvs9lsDQsLsw4bNiz8888/7+naV3b5CHIAgGYv2ouMX5SVn7cd6xdl5foX7UVNBqerOPvId+7cmTt58uTKFStWHG7JcZ544oniZcuWHbzw8RkzZhyz2+37bTZb5unTp5XXX3/dX0QkISHhZE5OTlZOTk7W3/72t/zZs2cP0vpaWoogBwBoFt1LV/lw9iGTM8y/KCvXP5x9yBTdS+cRfeQ33nijo1evXnUXPv+2224r9/LyEi8vLxk9evSpgoKCriIifn5+dc693h0Oh1d7lq8Q5AAAzab5+zneDB9ofzj7kOnPBwqCHs4+ZHozfKB9mr9fh+gjP3PmjLJmzZp+v/nNb8qdj73//vu9Bw8eHJGUlDT03XffzW/RC3QBghwA4BLT/P0ctwb0Kf1rQVngrQF9SrWGuIj79JH/7ne/Gzh27NiK66677tw577777hMHDx7M/PDDD3985pln+l/pWFyFIAcAuMQXZeX6tcXHDfcF+xetLT5uuHDNvCXcoY987ty5gWVlZT5//etfm1x/j4+Pr/jpp598i4qK2mXbc4IcAKCZc038zfCB9meHBhc6p9ldEebt2Uf+6quv+n/99dd+GzZssHt7e597fP/+/b51dfVL6t98842uurpaMRqNNVc8IBegNAUAoNmuk5W6xmvizjXzXScrdVqn2K+55hrH4sWLA6ZOnXqqV69eda7oIy8sLOzauI88OjraYrfbu1VVVXkbjcbIpUuX5iclJZ384x//OCgwMPDM6NGjw0VErr/++uMLFy4sWr16dZ81a9b08/HxUbt161a3cuVKe0v+YeEKlKYAAJpEaYr7oDQFAIAOiql1AECHQh85AADC1Lo7YWodAIAOiiAHAMCDEeQAAHgwghwAAA9GkAMAPNaV9JF3VHz8DACg2cLPbcYRA3tXXhtuPLeL21fZJfq9h07onviVpaS1zuvsI09ISHCIiEyePFlTbaon4oocAKDZiIG9K+es3Wv6KrtEL1If4nPW7jWNGNjbLfrIa2trpX///sPLysrObZg+cODAYYcPH/b4C1qCHACg2bXhRsert46wz1m71/T/b8oMmrN2r+nVW0fYG1+ht4Sr+si9vb1l2rRpJ1atWtVbROTrr7/uERwcfHbAgAHtUnTiSgQ5AMAlrg03OpJGBZcu354fmDQquFRriIu4to/8t7/97bGPPvqor4jIqlWr+iYlJR3TOj53QJADAFziq+wS/frdBYZ7JoQUrd9dYHBOs2vhyj7yuLi4Uz/99JNvYWGhz2effdZ7xowZx7WOzx0Q5AAAzZxr4q/eOsL+l4SIQuc0uyvC3FV95F5eXhIfH3/igQceGDBkyJCqgICAWq1jcwcEOQBAs72HTugar4k718z3Hjqh03rsa665xlFaWtpl6tSppwYMGFCjpY98xowZxzZu3Nj3lltu6RBX4yKUpgAAmkFpivugNAUAgA7K4z8/BwBAY/SRAwAgTK27E6bWAQDooAhyAAA8GEEOAIAHI8gBAPBgBDkAwGPRR87HzwAArpD6rFGCR1eKJf4/RSm2FL0U/KCTuD+7XR95dXW1dOnSpbWG1aa4IgcAaBc8ulKSZ5vEllK/t7otRS/Js00SPNot+shFRObMmRN0xx13DJowYcLQm2++ebCWcbkTghwAoJ0l3iGJ79glebZJUp4KkuTZJkl8x37eFXoLuKqP3CkjI0P3+eef/7hp06aDWsblTghyAIBrWOIdEnVHqex8O1Ci7ijVGuIiru0jFxG57rrrTvTs2bND7YRGkAMAXMOWopf01QYZc3+RpK82nJtm18CVfeQiIj169KjTOiZ3Q5ADALRzroknvmOX+JcKz02zuyDMXdVH3lHxLgAAtCv4QXfemrhzzbzgB7fqI++IKE0BADSJ0hT3QWkKAAAdFBvCAAA6FPrIAQAQptbdCVPrAAB0UAQ5AAAejCAHAMCDEeQAAHgwghwA4LZGjhwZ1lrHXrVqld+8efMCRERefvllg9lstoaFhVmjo6Mtu3bt6tZa53U17loHADTpSu5aX7x7sTHSEFk5ZcCUc0UpaYfT9BmlGbpHRj3i0j7ympoa8fFx7aenjx075tW3b986kfqAf+edd67atm3bAZeeRAPuWgcAtKpIQ2Tl0988bUo7nKYXqQ/xp7952hRpiNTUR67T6UaKiHzyySf6MWPGmBMSEgZbLJYIEZFrr702NCIiInzIkCERCxcu9Hf+zEcffdTLarWGWywW67hx48zNHXvx4sX97r777oEiIs4QFxGpqKjwVhRFy7DbFBvCAAA0mzJgiuP5ic/bn/7maVNCaELpprxNhucnPm9vfIWuVUZGRo89e/ZkhoWFnRURWbVqVb7RaKytqKhQRo4cab3zzjuP19XVKQ899FBIWlpaTlhY2NmSkhLvyz3+iy++aFi6dKmxurra68svv7S5atytjStyAIBLTBkwxZEQmlC6KntVYEJoQqkrQ1xEJDIy8pQzxEVEFixYYLRYLNbo6Ojw4uLiLpmZmd3S0tJ6xMTEOJzPMxqNtZd7/P/5n/8pPXz48P758+cX/OUvfwl05dhbE0EOAHCJtMNp+k15mwwzwmcUbcrbZHBOs7uKTqc7N/39ySef6Lds2aL/4Ycfcmw2W1Z4eHhVVVWVl6qqonVa/L777jv25Zdf9tY84DZCkAMANHOuiT8/8Xn7UzFPFTqn2V0d5k4nTpzw9vPzq9Xr9XV79uzplp6e3kNEJDY29tTOnTv1OTk5XUVELndqfd++fb7OX69Zs8Zv0KBBZ1pj3K2BNXIAgGYZpRm6xmvizjXzjNIMnaun2EVEkpKSyt99912D2Wy2hoaGno6KijolIhIUFFSzePHi/MTExCF1dXXSr1+/6m+//faSd5+/+uqrV23btq2Xj4+P6ufnV7NixYqDrh5za+HjZwCAJlGa4j74+BkAAB0UU+sAgA6to/eTM7UOAGgSU+vug6l1AAA6KIIcAAAPRpADAODBCHIAADwY3JW2/wAAHFFJREFUQQ4AcFtt1UfutHz58j6KokRv3bpV11rndTU+fgYA0Ozn1183do+KqtTHxp7bxc2xebO+Kj1dd9Vjj7W4j3zPnj05Fz7mqj7yGTNmlItIufPr48ePey1ZsuSqyMjIU5oP3oa4IgcAaNY9Kqqy8MmnTI7Nm/Ui9SFe+ORTpu5RUR7RRy4iMnfu3P5z584t9vX19ajPZXNFDgDQTB8b6wha8JK98MmnTH433VhavmGjIWjBS/bGV+hatWYf+fbt27sfOXKk6x133FH+2muvBVz6J9wHQQ4AcAl9bKzD76YbS4+/vzKwz913FbkyxEWa7iP/17/+1VtExNlHXlJS4nOlfeS1tbXy+OOPD1y5cqXHFKU0xtQ6AMAlHJs368s3bDT0ufuuovINGw3OaXZXaa0+8hMnTngfOHCg29SpUy39+/cfnp6e3uOWW24Z4ik3vBHkAADNnGviQQtesgfMm1fonGZ3dZg7ubKPvF+/frXHjx9PP3LkyL4jR47si4qKOvXRRx/9OHnyZE3r+22FIAcAaFaVnq5rvCbuXDOvSk9vlavapKSk8pqaGsVsNlvnzZsX1FQfucVisSYmJppa4/zuhNIUAECTKE1xH5SmAADQQXHXOgCgQ6OPHADQKTG17j6YWgcAoIMiyAEA8GAEOQAAHowgBwDAgxHkAADNdmzMMx7MKDtvF7eDGWX6HRvzjM39TEvMmTMn6JlnnnHpMT0dQQ4A0Mw42K8ydUWWyRnmBzPK9KkrskzGwX4esc2pJyPIAQCaDY70d8TNtNpTV2SZtq3NDUpdkWWKm2m1D47019yA9uSTTwaEhIQMGz9+vPnAgQO+IiKZmZm+kyZNGhoREREeHR1t2bNnTzcRkcOHD/v813/9V6jFYrFaLBbrl19+2UOk+e5ynU438v777+8fERERPn78ePPmzZt1MTExluDg4OGrVq3ya25MDofD69e//rXJbDZbf/Ob35giIyPD2qtkhSAHALjE4Eh/h2VsQGnG1wWBlrEBpa4I8W3btumSk5P77tu3L+uTTz750VmO8vvf/37Q0qVLD2VmZma/8sorBffff/9AEZHZs2cPnDRpksNms2VlZmZmjRo16rRIfXd5ZmZm9t69e7OWLVtmLC4u9hYRqaqq8oqNjXVkZmZm9+jRo/ZPf/pT/23btuWuW7fux2effbZ/c+N65ZVXDL17967Nzc3Nmj9/fmFWVlYPra+1pdjZDQDgEgczyvS2HcWGyKnBRbYdxYbgsL4OrWG+efPmnr/+9a9P6PX6OhGRadOmnTh9+rTXnj17ek6fPj3U+byzZ88qIiLffvut/qOPPjooIuLj4yP9+vWrFWm6uzwgIOBUly5d1FtuueWkiEhERESVr69vna+vrxoTE1N15MiRrs2N69tvv+356KOP/iwicvXVV582m83ttoRAkAMANHOuiTun04PD+jpcNb1+Yb94XV2d6PX6mpycnKzL+fnG3eV6vb4uJibGUlVV5SUi4uPjo3p51U9Oe3l5ia+vryoi4u3tLbW1tc0Wm7vTrqhMrQMANCs5WK5rHNrONfOSg+Wa1o2nTp1a8a9//at3RUWFcvz4ca8vv/yyt06nqwsODj7797//vY9IfbD/+9//7i4iMmHCBMcrr7xiEBGpqamRY8eOeTXXXa7F+PHjKz788MM+IiK7du3qlpub213rMVuKIAcAaDb2xtCSC6+8B0f6O8beGFqi5bgTJ06sTExMPDZs2LCI66+/PjQmJqZCRGT16tX25cuX+1ssFuvQoUMj1q9f31tE5O233z60ZcsWvdlstg4bNsy6e/fu7s11l2vxhz/8ofTo0aM+ZrPZ+vzzzwdYLJaqPn361Go9bktQmgIAaBKlKc2rqamRs2fPKjqdTs3MzPSdNm2aOS8vb3+3bt1aJVQvVprCGjkAAFfI4XB4TZo0yVJdXa2oqiqvvfbaT60V4pdCkAMA0Iz169f3evrpp4MbPzZgwIAzX375Zd7+/fuz22tcjRHkAAA0Iykp6WRSUtJl3R3fXrjZDQAAD0aQAwDgwQhyAAA8GEEOAIAHI8gBAJp98+H7xrxd353XR5636zv9Nx++Tx95KyPIAQCaBQ4Nq0xZssjkDPO8Xd/pU5YsMgUODevwfeTV1dXten6CHACgWWh0jCP+wbn2lCWLTJtXvBuUsmSRKf7BufbQ6JgO2Ue+ePHifvHx8aapU6cOmTRpklnra9SCIAcAuERodIwjYnJc6e6UjwMjJseVuiLE3bWPXERk9+7dPVevXn1wx44duVpfpxZsCAMAcIm8Xd/pM7emGkbF31CUuTXVMHD4CIfWMHfXPnIRkUmTJp00Go3tUpTSGEEOANDMuSbunE4fOHyEw1XT6+7YRy4iotPp6lryelyNqXUAgGZFB3J0jUPbuWZedCCnQ/aRuxOuyAEAmk28/e5f9I6HRsdonlpv3Efev3//M437yO+7775BCxYsCKypqVESExOPjRs3rurtt98+NHPmzEFms9nfy8tL3nrrrZ+SkpLK3333XYPZbLaGhoaedkUfuTuhjxwA0CT6yN3HxfrImVoHAMCDMbUOAEAzLtZH3l5juhBBDgBAM+gjBwAArYogBwDAgxHkAAB4MIIcAAAPRpADADQr/zzfWJV99Lw+8qrso/ryz/M7ZB/51q1bdTNnzhzQ3uMQIcgBAC7QdaC+8tjaXJMzzKuyj+qPrc01dR2o75B95JMnT65csWLF4fYehwhBDgBwge7h/Rx9bzXbj63NNZ3YlBd0bG2uqe+tZnv38H4dso/8k08+0cfGxg7R+tpcgSAHALhE9/B+jh6jriqt2F4Y2GPUVaWuCHF37iN3F2wIAwBwiarso/pTu3829JwQVHRq988G3yG9HVrD3J37yN0FQQ4A0My5Ju6cTvcd0tvhqul1d+0jdxdMrQMANDt7yKFrHNrONfOzhxz0kbcyghwAoJnfr0JKLrzy7h7ez+H3q5Bf9JRficZ95Ndff31o4z7y5cuX+1ssFuvQoUMj1q9f31tE5O233z60ZcsWvdlstg4bNsy6e/fu7klJSeU1NTWK2Wy2zps3L4g+cgBAp0AfufugjxwAgA6Km90AAGgGfeQAAHgw+sgBAECrIsgBAPBgBDkAAB6MIAcAwIMR5AAAzVJTU402m+28PnKbzaZPTU3tkH3k7oQgBwBoFhwcXJmcnGxyhrnNZtMnJyebgoODO2QfuTshyAEAmlksFkdiYqI9OTnZlJKSEpScnGxKTEy0WyyWDtlHfttttw0KCwuzhoWFWfv06RM1d+7cQK2vs6UIcgCAS1gsFkdUVFTpzp07A6OiokpdEeLu2ke+Zs2an3JycrI+/vjjH3v37l0za9aso1pfa0uxIQwAwCVsNps+PT3dMGbMmKL09HSDyWRyaA1zd+4jr6ysVJKSkkJfe+21Q2az+ayW16kFQQ4A0My5Ju6cTjeZTA5XTa+7ax/5XXfdNSghIeH4TTfdpHnmQQum1gEAmhUUFOgah7ZzzbygoKBD9pG/+OKLhoqKCu8XXnihWOuxtCLIAQCaxcXFlVx45W2xWBxxcXEdso/8rbfeCrDZbN2dN7y9/PLLBq3HbCn6yAEATaKP3H3QRw4AQAfFzW4AADSDPnIAADwYfeQAAKBVEeQAAHgwghwAAA9GkAMAPAY1pr9EkAMANMvLW2QsLUs9r4+8tCxVn5e3iNBtZQQ5AECzXn4jKrOynjA5w7y0LFWflfWEqZffCM195O5YYxodHW359ttvuzu/HjVqVNjOnTu7N/f81kSQAwA0M/jHOazWhfasrCdMubnPBmVlPWGyWhfaDf5xmgpF3LXGdObMmWXvvfeev4hIRkaG79mzZ5UxY8ZUaXmtLcXnyAEALmHwj3MEBtxcerhgReCA4JlFWkNcxH1rTGfOnHn8lVdeCTxz5kzBO++84//b3/623bayJcgBAC5RWpaqLyr+p2FA8MyiouJ/Gvr0He9wRZi7Y42pXq+vmzRp0sl//OMfvT/++OO+u3btardNY5haBwBo5lwTt1oX2s3mPxc6p9kvvAHuSrlrjamIyOzZs8uefPLJAVFRUaeMRmOtK47ZEgQ5AECzk+V7dY3XxJ1r5ifL92rqI3fXGlMRkUmTJlX26NGj9p577mnXhjhqTAEATaLG9OLy8/O7TJkyxZKXl7ff29u7Vc9FjSkAAC701ltv9Rs7dmz4M888c6S1Q/xSuNkNAIBmXKzG9KGHHjraXuNqjCAHAKAZ1JgCAIBWRZADAODBCHIAADwYQQ4AgAcjyAEAbmvkyJFhrXXsVatW+c2bNy9ARCQlJaWn1WoN9/HxiV6+fHmf1jpna+CudQCAZi/ai4zRvXSV0/z9zu2t/kVZuX7XyUrd/5gCS1p63D179uRc+FhNTY34+GiPrxkzZpSLSLmIiMlkOrt8+fL8l156yeP607kiBwBoFt1LV/lw9iHTF2XlepH6EH84+5ApupdOUx+5TqcbKVJffDJmzBhzQkLCYIvFEiHSfMf4Rx991MtqtYZbLBbruHHjzM0de/Hixf3uvvvugSIiFovl7JgxY6qcBSqehCtyAIBm0/z9HG+GD7Q/nH3IdGtAn9K1xccNb4YPtDe+QtcqIyOjx549ezLDwsLOitR3jBuNxtqKigpl5MiR1jvvvPN4XV2d8tBDD4WkpaXlhIWFnS0pKWnfbdfaAEEOAHCJaf5+jlsD+pT+taAs8L5g/yJXhriISGRk5ClniIs03TFeUlLiExMT43A+rz1bydqK580hAADc0hdl5fq1xccN9wX7F60tPm5wTrO7ik6nq3P+unHHuM1mywoPD6+qqqryUlX1F/3lHR1BDgDQzLkm/mb4QPuzQ4MLndPsrg5zp+Y6xmNjY0/t3LlTn5OT01VEpDNMrRPkAADNdp2s1DVeE3eume86Wampj7w5zXWMBwUF1SxevDg/MTFxiMVisSYmJpou53hbtmzRGY3GyE8//bTP448/PmjIkCERrTHu1kAfOQCgSfSRuw/6yAEA6KC4ax0A0KG98cYb/d5+++3zNnq5+uqrK1auXHmovcbkSkytAwCaxNS6+2BqHQCADoogBwDAgxHkAAB4MIIcAAAPRpADANxWW/WRz58/3xgaGhphNput48aNM+fm5nZtrfO6GkEOANBs4ec241fZJedtx/pVdol+4ec2Tf3ezfWRu8KMGTPKX3jhhWIRkejo6Mq9e/dm5+bmZt10003HH3/88WCXnKQNEOQAAM1GDOxdOWftXpMzzL/KLtHPWbvXNGJgb4/oI09ISHDo9fo6EZGJEydWFBUVecwVORvCAAA0uzbc6Hj11hH2OWv3mpJGBZeu311gePXWEfZrw40e10e+bNkyw7XXXlvuqnG3NoIcAOAS14YbHUmjgkuXb88PvGdCSJErQ1ykbfrIly5d2jc9PV23bNkymyvH3pqYWgcAuMRX2SX69bsLDPdMCClav7vAcOGauVat3Ue+YcMG/cKFCwM//fTTH7t37+4x254S5AAAzZxr4q/eOsL+l4SIQuc0u6vD3MnVfeTbt2/v/vDDDw/auHHjj/3793fN3XRthKl1AIBmew+d0DVeE3eume89dELn6il2kfo+8nfffddgNputoaGhp5vqI6+rq5N+/fpVf/vttwcudbw//OEPAyorK72nT58e2nCcs19//fWPrh53a6A0BQDQJEpT3AelKQAAdFBMrQMAOjT6yAEAnRJT6+6DqXUAADooghwAAA9GkAMA4MEIcgAAPBhBDgDwKPn5+V2uu+46U3PfLysr837ppZcMbTmm9kSQAwC0S33WKLaU87djtaXoJfVZTX3kTQkJCan+7LPP7M19/+jRo95/+9vfrnL1ed0VQQ4A0C54dKUkzzadC3Nbil6SZ5skeLSmPvL777+/f+Or6zlz5gT95S9/MQ4dOjRCROSHH37oNnz48PCwsDCr2Wy27tu3z3fu3LnBhw8f9g0LC7POmjUruLy83GvcuHFmq9UabjabrR988EHv5s736KOPBj377LPn/hHw8MMP93/uuefc+h8FfI4cANCkK/4cuTO8o+4olfTVBkl8xy6WeE37rG/fvr37Y489NvD777+3iYiEhoZGvPXWWz898sgjgw4cOJD5u9/9bsDYsWNP3X///cdOnz6t1NTUyJEjR7pcf/31Qw8cOJApIlJdXS0Oh8Orb9++dUVFRT5jxowJy8/P3+/l9ctrWZvN1jUxMTE0Kysru7a2VkJCQoZ9//332QEBAVdUh+pqF/scOTu7AQBcwxLvkKg7SmXn24Ey5v4irSEuIjJhwoSqo0eP+uTn53cpKiry8fPzqzWZTOc6yceNG3dq4cKFgQUFBV1vv/3248OHDz9z4THq6uqUxx57LHjHjh09vby85Oeff+5aUFDgM3DgwF+0nFkslrO9e/eu2b59e/eioqIuERERle0d4pdCkAMAXMOWopf01QYZc3+RpK82iOkahyvCPCEh4fgHH3zQp7i4uEtSUtKxxt+bPXv2sUmTJp1KTk72i4+PNy9dujTfYrGcF+bLli3re/ToUZ99+/Zl+/r6qv379x9eVVXV7NLyPffcU/bee+/5//zzz13uueeeo1rH39oIcgCAds5pded0uukax3lfa3DXXXcdu++++0KOHz/us2XLFtvp06cV5/eysrK6hoeHn4mIiPjZbrf77t27t3tMTEzlqVOnzgV1eXm5t7+/f7Wvr6+6adMmfWFhYddLnO/E888/37+mpkZJSkpq9qY6d0GQAwC0K/hBd15oW+IdkviOXQp+0GkN8tGjR58+deqUl9FoPDto0KBqm812LohXrlzZd926df18fHxUg8FQ/eKLLxYajcba6OjoiqFDh0ZMnTq1fP78+cXx8fFDhg0bFh4REVE5ePDg0xc7X7du3dTx48ef7N27d62Pj/vHJDe7AQCa1FlLU2prayUiIsK6bt26vKbW3NsDpSkAAFyGXbt2dRs0aNDwSZMmnXSXEL8U958zAADAxYqLi72nTJliufDxtLQ0W0FBwb72GFNLEeQAgE4nICCgNicnJ6u9x+EKTK0DAODBCHIAADwYQQ4AgAcjyAEA8GAEOQDAo7R2H/nIkSPDWvqz7YEgBwBotnj3YmPa4bTz+sjTDqfpF+9e7HF95Hv27Mlp6c+2B4IcAKBZpCGy8ulvnjY5wzztcJr+6W+eNkUaIj2qj1xERKfTjdQy5rbGFq0AgCZd6RatzvBOCE0o3ZS3yfD8xOftUwZM8ag+cpH6IK+srNyjZdyuRh85AKDVTRkwxZEQmlC6KntV4IzwGUVaQ1yk7fvIPRFT6wAAl0g7nKbflLfJMCN8RtGmvE2GC9fMW8rZR75q1aq+TfWRb9y48cfu3bvXxcfHmz/++ONfnLNxH3lOTk5Wv379qi/WR+5puCIHAGjmnFZ3TqePDRzraPy1lmO3dR+5p+kw/yIBALSfjNIMXePQnjJgiuP5ic/bM0ozdFqPfWEfeePvrVy5sq/ZbI4ICwuzHjhwoNusWbOOBgQEnOsjnzVrVvDvf//7Y+np6T2GDRsW/sEHH/S9VB+5oigX+7bb4WY3AECTOmMfeXFxsfeoUaOshYWFbtWARh85AACXkJ+f32Xs2LHhDz74YEl7j+VKsEYOAOh0musj37FjR3ZAQEBte4yppQhyAECnQx85AABwCwQ5AAAejCAHAMCDEeQAAHgwghwA4FFas4/cZrN1dTareQqCHACg2c+vv250bN583j7njs2b9T+//rrH9ZF7GoIcAKBZ96ioysInnzI5w9yxebO+8MmnTN2jojyuj7y2tlZuv/32QUOGDImYMGHC0IqKCrfes5UgBwBopo+NdQQteMle+ORTpuIXXggqfPIpU9CCl+z62FhNhSl33nnnsfXr1/d1fr1x48Y+Y8eOPeX8+s033zQ88MADJTk5OVkZGRnZgwcPPrto0aKCAQMGnMnJyclatmxZgU6nq/vXv/71Y1ZWVvaWLVty582bF1xXV9fsOQ8dOtTtkUce+fnHH3/M9PPzq33//ff7aHkNrY0NYQAALqGPjXX43XRj6fH3Vwb2ufuuIq0hLtI+feT9+/c/M378+CoRkZEjR1bm5+f7an0drYkrcgCASzg2b9aXb9ho6HP3XUXlGzYaLlwzb6m27iPv2rXruTYxb29vtaamxq2n1rkiBwBo5lwTd06n9xg3zuGq6XX6yC+OK3IAgGZV6em6xqHtXDOvSk/3uD5yT0MfOQCgSZ2xj9xd0UcOAEAHxRo5AKDTaa6PPC0tzUYfOQAAbo4+cgAA4BYIcgAAPBhBDgCAByPIAQDwYAQ5AECzHRvzjAczys7bHvVgRpl+x8Y8l9eY0kd+PoIcAKCZcbBfZeqKLJMzzA9mlOlTV2SZjIP9NNWYNoU+8vMR5AAAzQZH+jviZlrtqSuyTNvW5galrsgyxc202gdH+mvaZ709+sidGvZxt27ZskXX1Hm0vC5XIsgBAC4xONLfYRkbUJrxdUGgZWxAqdYQF2mfPnIRkfT0dN+kpKQhf/vb3w5ec801lU2dR+trcxU2hAEAuMTBjDK9bUexIXJqcJFtR7EhOKyvQ2uYt0cf+bFjx3xuuummIevWrcsbPXr06cs9T3vhihwAoJlzTTxuptU+6VZzoXOa/cIb4FqirfvI9Xp9bWBg4Nm0tLSeV3Ke9sIVOQBAs5KD5brGa+LONfOSg+U6rVflbd1H3qVLF/Wzzz7Li42NHdqzZ8+62bNnH2vqPDfccIPmpQNXIMgBAJqNvTG05MLHBkf6a55aF/llH7nNZjsXxCtXruy7bt26fj4+PqrBYKh+8cUXC41G47k+8qlTp5bPnz+/OD4+fsiwYcPCIyIiKi+nj7xXr151n3/++Y9Tpkwx9+zZsy4zM7PbhefR+rpchT5yAECT6CN3H/SRAwDQQTG1DgDodOgjBwDAg9FHDgAA3AJBDgCAByPIAQDwYAQ5AAAejCAHAGj2zYfvG/N2fXfetqV5u77Tf/Ph+x7VR+6JCHIAgGaBQ8MqU5YsMjnDPG/Xd/qUJYtMgUPD6CNvZQQ5AECz0OgYR/yDc+0pSxaZNq94NyhlySJT/INz7aHRMR7VR/7yyy8bwsLCrGFhYdb+/fsPHzNmjFnL+NsCQQ4AcInQ6BhHxOS40t0pHwdGTI4r1RriIm3fR/7HP/6xNCcnJys9PT07ICDg7KOPPvqLPeTdDRvCAABcIm/Xd/rMramGUfE3FGVuTTUMHD7CoTXM26OPXETk3nvvHTB58mTHb3/723It428LXJEDADRzronHPzjXHjvzvwud0+wX3gDXEm3dR7548eJ+BQUFXRcuXOg2DWcXwxU5AECzogM5usZr4s4186IDOTqtV+Vt2Ue+bds23Ztvvhnw7bff5nh7e2sZdpshyAEAmk28/e5frCWHRsdonloXads+8jfeeOOq8vJy70mTJllERKKiok6tWbPmJ62voTXRRw4AaBJ95O6DPnIAADooptYBAJ0OfeQAAHgw+sgBAJ1BXV1dnXLpp6E1Nfx/0PQONkKQAwCat7+0tNSPMG8/dXV1SmlpqZ+I7G/uOUytAwCaVFNT8/vi4uL3iouLhwkXfu2lTkT219TU/L65J/DxMwAAPBj/wgIAwIMR5AAAeDCCHAAAD0aQAwDgwQhyAAA82P8DCUiSCrlT7akAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for dat in data:\n",
" wav_deets = FWHM(np.array(dat[1]['Wavelength']), np.array(dat[1]['Transmission']))\n",
" depth = average_depths['5s'][average_depths['band'] == dat[0]]\n",
" #print(depth)\n",
" coverage = np.sum(~np.isnan(depths['ferr_{}_mean'.format(dat[0])]))/len(depths)\n",
" plt.plot(coverage, depth, 'x', label=dat[0])\n",
" \n",
"plt.xlabel('Coverage')\n",
"plt.ylabel('Depth')\n",
"#plt.xscale('log')\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
"plt.title('Depths (5 $\\sigma$) vs coverage on {}'.format(FIELD))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (herschelhelp_internal)",
"language": "python",
"name": "helpint"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}