ELAIS-N1 master catalogue

Preparation of Spitzer datafusion SWIRE data

The Spitzer catalogues were produced by the datafusion team are available in dmu0_DataFusion-Spitzer. Lucia told that the magnitudes are aperture corrected.

In the catalouge, we keep:

We keep:

  • The internal identifier (this one is only in HeDaM data);
  • The position;
  • The fluxes in aperture 2 (1.9 arcsec) for IRAC bands.
  • The Kron flux;
  • The stellarity in each band

A query of the position in the Spitzer heritage archive show that the ELAIS-N1 images were observed in 2004. Let's take this as epoch.

We do not use the MIPS fluxes as they will be extracted on MIPS maps using XID+.

In [1]:
from herschelhelp_internal import git_version
print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version()))
This notebook was run with herschelhelp_internal version: 
284b2ef (Mon Aug 14 20:02:12 2017 +0100)
In [2]:
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))

from collections import OrderedDict
import os

from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.table import Column, Table
import numpy as np

from herschelhelp_internal.flagging import  gaia_flag_column
from herschelhelp_internal.masterlist import nb_astcor_diag_plot, remove_duplicates
from herschelhelp_internal.utils import astrometric_correction, flux_to_mag
In [3]:
OUT_DIR =  os.environ.get('TMP_DIR', "./data_tmp")
try:
    os.makedirs(OUT_DIR)
except FileExistsError:
    pass

RA_COL = "swire_ra"
DEC_COL = "swire_dec"

I - Column selection

In [4]:
imported_columns = OrderedDict({
        'internal_id': "swire_intid",
        'ra_spitzer': "swire_ra",
        'dec_spitzer': "swire_dec",
        'flux_ap2_36': "f_ap_swire_irac_i1",
        'uncf_ap2_36': "ferr_ap_swire_irac_i1",
        'flux_kr_36': "f_swire_irac_i1",
        'uncf_kr_36': "ferr_swire_irac_i1",
        'stell_36': "swire_stellarity_irac_i1",
        'flux_ap2_45': "f_ap_swire_irac_i2",
        'uncf_ap2_45': "ferr_ap_swire_irac_i2",
        'flux_kr_45': "f_swire_irac_i2",
        'uncf_kr_45': "ferr_swire_irac_i2",
        'stell_45': "swire_stellarity_irac_i2",
        'flux_ap2_58': "f_ap_irac_i3",
        'uncf_ap2_58': "ferr_ap_irac_i3",
        'flux_kr_58': "f_irac_i3",
        'uncf_kr_58': "ferr_irac_i3",
        'stell_58': "swire_stellarity_irac_i3",
        'flux_ap2_80': "f_ap_irac_i4",
        'uncf_ap2_80': "ferr_ap_irac_i4",
        'flux_kr_80': "f_irac_i4",
        'uncf_kr_80': "ferr_irac_i4",
        'stell_80': "swire_stellarity_irac_i4",
    })


catalogue = Table.read("../../dmu0/dmu0_DataFusion-Spitzer/data/DF-SWIRE_ELAIS-N1.fits")[list(imported_columns)]
for column in imported_columns:
    catalogue[column].name = imported_columns[column]

epoch = 2004

# Clean table metadata
catalogue.meta = None
In [5]:
# Adding magnitude and band-flag columns
for col in catalogue.colnames:
    if col.startswith('f_'):
        errcol = "ferr{}".format(col[1:])
        
        magnitude, error = flux_to_mag(
            np.array(catalogue[col])/1.e6, np.array(catalogue[errcol])/1.e6)
        # Note that some fluxes are 0.
        
        catalogue.add_column(Column(magnitude, name="m{}".format(col[1:])))
        catalogue.add_column(Column(error, name="m{}".format(errcol[1:])))
        
        # Band-flag column
        if "ap" not in col:
            catalogue.add_column(Column(np.zeros(len(catalogue), dtype=bool), name="flag{}".format(col[1:])))
/home/yroehlly/herschelhelp_internal/herschelhelp_internal/utils.py:76: RuntimeWarning: invalid value encountered in log10
  magnitudes = 2.5 * (23 - np.log10(fluxes)) - 48.6
In [6]:
catalogue[:10].show_in_notebook()
Out[6]:
<Table masked=True length=10>
idxswire_intidswire_raswire_decf_ap_swire_irac_i1ferr_ap_swire_irac_i1f_swire_irac_i1ferr_swire_irac_i1swire_stellarity_irac_i1f_ap_swire_irac_i2ferr_ap_swire_irac_i2f_swire_irac_i2ferr_swire_irac_i2swire_stellarity_irac_i2f_ap_irac_i3ferr_ap_irac_i3f_irac_i3ferr_irac_i3swire_stellarity_irac_i3f_ap_irac_i4ferr_ap_irac_i4f_irac_i4ferr_irac_i4swire_stellarity_irac_i4m_ap_swire_irac_i1merr_ap_swire_irac_i1m_swire_irac_i1merr_swire_irac_i1flag_swire_irac_i1m_ap_swire_irac_i2merr_ap_swire_irac_i2m_swire_irac_i2merr_swire_irac_i2flag_swire_irac_i2m_ap_irac_i3merr_ap_irac_i3m_irac_i3merr_irac_i3flag_irac_i3m_ap_irac_i4merr_ap_irac_i4m_irac_i4merr_irac_i4flag_irac_i4
degdeguJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJy
0584549246.5527354.99058415.811.3417.251.630.46nannannannannannannannannannannannannannannan20.90267032520.0920231824420.80802725150.102594203696FalsenannannannanFalsenannannannanFalsenannannannanFalse
1584511246.55254.98946414.171.3218.14.470.09nannannannannannannannannannannannannannannan21.02157537440.10114126960320.75580356280.268134852777FalsenannannannanFalsenannannannanFalsenannannannanFalse
2584278246.5406354.98733473.121.4953.621.051.0nannannannannannannannannannannannannannannan19.23990954320.022124547936119.57668297590.0212611528347FalsenannannannanFalsenannannannanFalsenannannannanFalse
3584143246.5407554.98238419.244.0221.87.480.11nannannannannannannannannannannannannannannan20.68948733070.22685340660720.5538587660.372537009706FalsenannannannanFalsenannannannanFalsenannannannanFalse
4583979246.5359354.98009467.472.0549.991.620.99nannannannannannannannannannannannannannannan19.32722322460.032988872384119.65279215810.0351848900122FalsenannannannanFalsenannannannanFalsenannannannanFalse
5583513246.5208354.97209425.51.526.511.620.62nannannannannannannannannannannannannannannan20.38364954890.06386683557420.34147568070.0663482705284FalsenannannannanFalsenannannannanFalsenannannannanFalse
6583700246.525154.97678455.041.5355.971.750.77nannannannannannannannannannannannannannannan19.54830393690.030181257145319.53011173270.0339474425286FalsenannannannanFalsenannannannanFalsenannannannanFalse
7583609246.5205754.9760047.10.816.590.820.49nannannannannannannannannannannannannannannan21.77185412820.12386567969821.85278646350.135099193915FalsenannannannanFalsenannannannanFalsenannannannanFalse
8583539246.5150354.97692423.251.0318.980.980.81nannannannannannannannannannannannannannannan20.48394260690.048099281329120.70425947980.0560601412362FalsenannannannanFalsenannannannanFalsenannannannanFalse
9585467246.5845555.00737488.63619.0593.11610.690.98nannannannannannannannannannannannannannannan19.03104812677.5834931462918.97750918347.12112815899FalsenannannannanFalsenannannannanFalsenannannannanFalse

II - Removal of duplicated sources

We remove duplicated objects from the input catalogues.

In [7]:
SORT_COLS = ['ferr_ap_swire_irac_i1', 'ferr_ap_swire_irac_i2', 'ferr_ap_irac_i3', 'ferr_ap_irac_i4']
FLAG_NAME = "swire_flag_cleaned"

nb_orig_sources = len(catalogue)

catalogue = remove_duplicates(catalogue, RA_COL, DEC_COL, sort_col=SORT_COLS,flag_name=FLAG_NAME)

nb_sources = len(catalogue)

print("The initial catalogue had {} sources.".format(nb_orig_sources))
print("The cleaned catalogue has {} sources ({} removed).".format(nb_sources, nb_orig_sources - nb_sources))
print("The cleaned catalogue has {} sources flagged as having been cleaned".format(np.sum(catalogue[FLAG_NAME])))
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/astropy/table/column.py:1096: MaskedArrayFutureWarning: setting an item on a masked array which has a shared mask will not copy the mask and also change the original mask array in the future.
Check the NumPy 1.11 release notes for more information.
  ma.MaskedArray.__setitem__(self, index, value)
The initial catalogue had 573843 sources.
The cleaned catalogue has 573794 sources (49 removed).
The cleaned catalogue has 49 sources flagged as having been cleaned

III - Astrometry correction

We match the astrometry to the Gaia one. We limit the Gaia catalogue to sources with a g band flux between the 30th and the 70th percentile. Some quick tests show that this give the lower dispersion in the results.

In [8]:
gaia = Table.read("../../dmu0/dmu0_GAIA/data/GAIA_ELAIS-N1.fits")
gaia_coords = SkyCoord(gaia['ra'], gaia['dec'])
In [9]:
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], 
                    gaia_coords.ra, gaia_coords.dec)
In [10]:
delta_ra, delta_dec =  astrometric_correction(
    SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]),
    gaia_coords
)

print("RA correction: {}".format(delta_ra))
print("Dec correction: {}".format(delta_dec))
RA correction: -0.11121544077354883 arcsec
Dec correction: -0.04267586375164001 arcsec
In [11]:
catalogue[RA_COL] +=  delta_ra.to(u.deg)
catalogue[DEC_COL] += delta_dec.to(u.deg)
In [12]:
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], 
                    gaia_coords.ra, gaia_coords.dec)

IV - Flagging Gaia objects

In [13]:
catalogue.add_column(
    gaia_flag_column(SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), epoch, gaia)
)
In [14]:
GAIA_FLAG_NAME = "swire_flag_gaia"

catalogue['flag_gaia'].name = GAIA_FLAG_NAME
print("{} sources flagged.".format(np.sum(catalogue[GAIA_FLAG_NAME] > 0)))
37537 sources flagged.

V - Saving to disk

In [15]:
catalogue.write("{}/SWIRE.fits".format(OUT_DIR), overwrite=True)