ELAIS-N1 master catalogue

Preparation of Spitzer datafusion SERVS data

The Spitzer catalogues were produced by the datafusion team are available in dmu0_DataFusion-Spitzer. Lucia told that the magnitudes are aperture corrected.

In the catalouge, we keep:

  • The internal identifier (this one is only in HeDaM data);
  • The position;
  • The fluxes in aperture 2 (1.9 arcsec);
  • The “auto” flux (which seems to be the Kron flux);
  • The stellarity in each band

A query of the position in the Spitzer heritage archive show that the SERVS-ELAIS-N1 images were observed in 2009. Let's take this as epoch.

In [1]:
from herschelhelp_internal import git_version
print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version()))
This notebook was run with herschelhelp_internal version: 
284b2ef (Mon Aug 14 20:02:12 2017 +0100)
In [2]:
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))

from collections import OrderedDict
import os

from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.table import Column, Table
import numpy as np

from herschelhelp_internal.flagging import  gaia_flag_column
from herschelhelp_internal.masterlist import nb_astcor_diag_plot, remove_duplicates
from herschelhelp_internal.utils import astrometric_correction, flux_to_mag
In [3]:
OUT_DIR =  os.environ.get('TMP_DIR', "./data_tmp")
try:
    os.makedirs(OUT_DIR)
except FileExistsError:
    pass

RA_COL = "servs_ra"
DEC_COL = "servs_dec"

I - Column selection

In [4]:
imported_columns = OrderedDict({
        'internal_id': "servs_intid",
        'ra_12': "servs_ra",
        'dec_12': "servs_dec",
        'flux_aper_2_1': "f_ap_servs_irac_i1",
        'fluxerr_aper_2_1': "ferr_ap_servs_irac_i1",
        'flux_auto_1': "f_servs_irac_i1",
        'fluxerr_auto_1': "ferr_servs_irac_i1",
        'class_star_1': "servs_stellarity_irac_i1",
        'flux_aper_2_2': "f_ap_servs_irac_i2",
        'fluxerr_aper_2_2': "ferr_ap_servs_irac_i2",
        'flux_auto_2': "f_servs_irac_i2",
        'fluxerr_auto_2': "ferr_servs_irac_i2",
        'class_star_2': "servs_stellarity_irac_i2",
    })


catalogue = Table.read("../../dmu0/dmu0_DataFusion-Spitzer/data/DF-SERVS_ELAIS-N1.fits")[list(imported_columns)]
for column in imported_columns:
    catalogue[column].name = imported_columns[column]

epoch = 2009

# Clean table metadata
catalogue.meta = None
In [5]:
# Adding magnitude and band-flag columns
for col in catalogue.colnames:
    if col.startswith('f_'):
        errcol = "ferr{}".format(col[1:])
        
        magnitude, error = flux_to_mag(
            np.array(catalogue[col])/1.e6, np.array(catalogue[errcol])/1.e6)
        # Note that some fluxes are 0.
        
        catalogue.add_column(Column(magnitude, name="m{}".format(col[1:])))
        catalogue.add_column(Column(error, name="m{}".format(errcol[1:])))
        
        # Band-flag column
        if "ap" not in col:
            catalogue.add_column(Column(np.zeros(len(catalogue), dtype=bool), name="flag{}".format(col[1:])))
/home/yroehlly/herschelhelp_internal/herschelhelp_internal/utils.py:76: RuntimeWarning: invalid value encountered in log10
  magnitudes = 2.5 * (23 - np.log10(fluxes)) - 48.6
In [6]:
catalogue[:10].show_in_notebook()
Out[6]:
<Table masked=True length=10>
idxservs_intidservs_raservs_decf_ap_servs_irac_i1ferr_ap_servs_irac_i1f_servs_irac_i1ferr_servs_irac_i1servs_stellarity_irac_i1f_ap_servs_irac_i2ferr_ap_servs_irac_i2f_servs_irac_i2ferr_servs_irac_i2servs_stellarity_irac_i2m_ap_servs_irac_i1merr_ap_servs_irac_i1m_servs_irac_i1merr_servs_irac_i1flag_servs_irac_i1m_ap_servs_irac_i2merr_ap_servs_irac_i2m_servs_irac_i2merr_servs_irac_i2flag_servs_irac_i2
degdeguJyuJyuJyuJyuJyuJyuJyuJy
01214684244.356830154.2574598nannannannannan38.99577580982.42791861385106.9124397714.530196203980.96nannannannanFalse19.92245608770.067599094684718.82742939910.0460058534243False
11214933244.356869854.2538341nannannannannan25.16602757312.08235665528122.24739784254.54162726610.63nannannannanFalse20.39796332970.089838970623818.68190094120.48440965153False
21214271244.351474354.2607439nannannannannan7.287343241641.828875102415.887338418830.9341124926370.95nannannannanFalse21.74357693570.27248283041221.97520249790.17226795547False
31214094244.345285754.2641577nannannannannan34.5121438211.3808570927330.58587988231.588051290130.97nannannannanFalse20.05507015610.043441130372820.18619755340.0563725741206False
41213761244.343144654.2662732nannannannannan2.438767586851.087568236621.485067294510.6885666053710.59nannannannanFalse22.93207396430.48418398539323.47063466560.50341267066False
51215041244.325521454.2452704nannannannannan38.18156199111.1153973322537.31365751211.716772135490.11nannannannanFalse19.9453657720.031717593601819.97033044750.0499538717751False
61214581244.351418354.2559085nannannannannan2.291125509731.044694407632.263644446591.081706006490.69nannannannanFalse22.99987779790.49506783301923.01297946820.518830320688False
71214777244.348315454.252339nannannannannan0.2992629826951.077962848110.7625808999550.4555003667470.5nannannannanFalse25.20986749963.9108856064924.19428519130.648525604939False
81214571244.346670754.2549296nannannannannan2.275002416740.8075187648981.472080568651.327847654160.33nannannannanFalse23.00754534410.38538524294323.48017104980.979356906975False
91214592244.346911454.2568799nannannannannan9.472433620871.19953600928.161914217861.371444549910.2nannannannanFalse21.45884607350.13749155984921.6205199350.182436002255False

II - Removal of duplicated sources

We remove duplicated objects from the input catalogues.

In [7]:
SORT_COLS = ['ferr_ap_servs_irac_i1', 'ferr_ap_servs_irac_i2']
FLAG_NAME = "servs_flag_cleaned"

nb_orig_sources = len(catalogue)

catalogue = remove_duplicates(catalogue, RA_COL, DEC_COL, sort_col=SORT_COLS,flag_name=FLAG_NAME)

nb_sources = len(catalogue)

print("The initial catalogue had {} sources.".format(nb_orig_sources))
print("The cleaned catalogue has {} sources ({} removed).".format(nb_sources, nb_orig_sources - nb_sources))
print("The cleaned catalogue has {} sources flagged as having been cleaned".format(np.sum(catalogue[FLAG_NAME])))
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/astropy/table/column.py:1096: MaskedArrayFutureWarning: setting an item on a masked array which has a shared mask will not copy the mask and also change the original mask array in the future.
Check the NumPy 1.11 release notes for more information.
  ma.MaskedArray.__setitem__(self, index, value)
The initial catalogue had 395243 sources.
The cleaned catalogue has 395243 sources (0 removed).
The cleaned catalogue has 0 sources flagged as having been cleaned

III - Astrometry correction

We match the astrometry to the Gaia one. We limit the Gaia catalogue to sources with a g band flux between the 30th and the 70th percentile. Some quick tests show that this give the lower dispersion in the results.

In [8]:
gaia = Table.read("../../dmu0/dmu0_GAIA/data/GAIA_ELAIS-N1.fits")
gaia_coords = SkyCoord(gaia['ra'], gaia['dec'])
In [9]:
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], 
                    gaia_coords.ra, gaia_coords.dec)
In [10]:
delta_ra, delta_dec =  astrometric_correction(
    SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]),
    gaia_coords
)

print("RA correction: {}".format(delta_ra))
print("Dec correction: {}".format(delta_dec))
RA correction: -0.025643899829219663 arcsec
Dec correction: -0.004405288319730971 arcsec
In [11]:
catalogue[RA_COL] +=  delta_ra.to(u.deg)
catalogue[DEC_COL] += delta_dec.to(u.deg)
In [12]:
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], 
                    gaia_coords.ra, gaia_coords.dec)

IV - Flagging Gaia objects

In [13]:
catalogue.add_column(
    gaia_flag_column(SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), epoch, gaia)
)
In [14]:
GAIA_FLAG_NAME = "servs_flag_gaia"

catalogue['flag_gaia'].name = GAIA_FLAG_NAME
print("{} sources flagged.".format(np.sum(catalogue[GAIA_FLAG_NAME] > 0)))
10149 sources flagged.

V - Saving to disk

In [15]:
catalogue.write("{}/SERVS.fits".format(OUT_DIR), overwrite=True)