{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# ELAIS-N1 master catalogue\n", "\n", "This notebook presents the merge of the various pristine catalogues to produce HELP mater catalogue on ELAIS-N1." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "0246c5d (Thu Jan 25 17:01:47 2018 +0000) [with local modifications]\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "import os\n", "import time\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table\n", "import numpy as np\n", "from pymoc import MOC\n", "\n", "from herschelhelp_internal.masterlist import merge_catalogues, nb_merge_dist_plot, specz_merge\n", "from herschelhelp_internal.utils import coords_to_hpidx, ebv, gen_help_id, inMoc" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "SUFFIX = os.environ.get('SUFFIX', time.strftime(\"_%Y%m%d\"))\n", "\n", "try:\n", " os.makedirs(OUT_DIR)\n", "except FileExistsError:\n", " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## I - Reading the prepared pristine catalogues" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "wfc = Table.read(\"{}/INT-WFC.fits\".format(TMP_DIR))\n", "dxs = Table.read(\"{}/UKIDSS-DXS.fits\".format(TMP_DIR))\n", "sparcs = Table.read(\"{}/SpARCS.fits\".format(TMP_DIR))\n", "hsc = Table.read(\"{}/HSC-SSP.fits\".format(TMP_DIR))\n", "ps1 = Table.read(\"{}/PS1.fits\".format(TMP_DIR))\n", "servs = Table.read(\"{}/SERVS.fits\".format(TMP_DIR))\n", "swire= Table.read(\"{}/SWIRE.fits\".format(TMP_DIR))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## II - Merging tables\n", "\n", "We first merge the optical catalogues and then add the infrared ones: WFC, DXS, SpARCS, HSC, PS1, SERVS, SWIRE.\n", "\n", "At every step, we look at the distribution of the distances separating the sources from one catalogue to the other (within a maximum radius) to determine the best cross-matching radius." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### WFC" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue = wfc\n", "master_catalogue['wfc_ra'].name = 'ra'\n", "master_catalogue['wfc_dec'].name = 'dec'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add SpARCS" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYpGV97//Pt9au6n2ZfWcY1oEBGXaiuEVAIxpNFFwS\noyJGo/GYc9Qr58Rfjr8k5mf0MkaFHxKiRhE9wiVEUTRxQdlk2BkGcBigp6e7Z3qtXqu6lvv8UVVN\n0cxMd08/VU9V9ft1XXV1LU/V86UY6M/c9/18b3POCQAAAEsX8LsAAACAekGwAgAA8AjBCgAAwCME\nKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwSMivE3d1dbnNmzf7dXoA\nAIAFe+CBBwadcyvmO863YLV582bt2rXLr9MDAAAsmJk9v5DjmAoEAADwCMEKAADAIwQrAAAAjxCs\nAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrAC\nAADwSMjvApajG+/rnveYK8/dWIFKAACAlxixAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAI\nwQoAAMAjBCsAAACPEKwAAAA8QrACAADwyLzBysxuMLNDZvb4UY652MweNrPdZvYrb0sEAACoDQsZ\nsfq6pEuO9KKZtUn6qqQ3OudOlfRH3pQGAABQW+YNVs65OyUNH+WQKyXd4pzrLhx/yKPaAAAAaooX\na6xOkNRuZr80swfM7N0efCYAAEDNCXn0GWdJerWkmKR7zOxe59zTcw80s6skXSVJGzdu9ODUAAAA\n1cOLEaseSXc45yadc4OS7pS043AHOueuc87tdM7tXLFihQenBgAAqB5eBKtbJV1kZiEzi0s6V9Ie\nDz4XAACgpsw7FWhm35F0saQuM+uR9GlJYUlyzl3rnNtjZj+R9KiknKTrnXNHbM0AAABQr+YNVs65\nKxZwzOckfc6TigAAAGoUndcBAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAA\nwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAA\njxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8\nQrACAADwCMEKAADAIwQrAAAAj8wbrMzsBjM7ZGaPz3Pc2WaWMbO3elceAABA7VjIiNXXJV1ytAPM\nLCjpHyX91IOaAAAAatK8wco5d6ek4XkO+wtJN0s65EVRAAAAtWjJa6zMbJ2kN0u6ZunlAAAA1C4v\nFq9/UdInnHO5+Q40s6vMbJeZ7RoYGPDg1AAAANUj5MFn7JR0k5lJUpeky8ws45z7wdwDnXPXSbpO\nknbu3Ok8ODcAAEDVWHKwcs5tKd43s69L+uHhQhUAAEC9mzdYmdl3JF0sqcvMeiR9WlJYkpxz15a1\nOgAAgBoyb7Byzl2x0A9zzv3pkqoBAACoYXReBwAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAI\nwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCME\nKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCs\nAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADwyb7AysxvM7JCZPX6E199hZo+a2WNmdreZ7fC+\nTAAAgOq3kBGrr0u65CivPyvpFc650yR9RtJ1HtQFAABQc0LzHeCcu9PMNh/l9btLHt4raf3Sy6pd\nN97X7XcJAADAJ16vsXqvpB97/Jl1K5XO6vsP7Nfo1IzfpQAAAA94FqzM7JXKB6tPHOWYq8xsl5nt\nGhgY8OrUNet3hyb0YPeo7vzdoN+lAAAAD3gSrMzsdEnXS7rcOTd0pOOcc9c553Y653auWLHCi1PX\ntP3DU5KkB7tHlExnfa4GAAAs1ZKDlZltlHSLpHc5555eeknLR/fwlBqjIc1kcnpo/6jf5QAAgCWa\nd/G6mX1H0sWSusysR9KnJYUlyTl3raS/kdQp6atmJkkZ59zOchVcLzK5nA6MTuvcLR16fnhK9z4z\npPO2dKjwHQIAgBq0kKsCr5jn9fdJep9nFS0T/YmkMjmnjZ2NWtsW0/95oEfPDEzq+JVNfpcGAACO\nEZ3XfdJdWF+1sSOu7eta1RgJ6p59R1yeBgAAagDByifdw1NqjYXVGgsrHAzo7M0derJvTCOTtF4A\nAKBWEax8sn94ShvaY7OPz9nSITPpvmcZtQIAoFYRrHwwnkxrZCqtjR3x2efa4hGdvKZF9z83onQ2\n52N1AADgWBGsfFC6vqrU+cd1ajqd1aM9tF4AAKAWEax8sH94SsGAaW1b7EXPb+lq1MrmqO55ZkjO\nOZ+qAwAAx4pg5YPu4SmtbW1QKPjir9/MdP7WTvUmknqwe8Sn6gAAwLEiWFVYNud0YHT6JdOARWes\nb5Mk3bWXRewAANQaglWF9SWmlc46bThCsIqGg2ppCOn5oakKVwYAAJaKYFVh+4+wcL1UR2NUzw9N\nVqokAADgEYJVhXUPT6mlIaTWWPiIx3Q2RfT8MCNWAADUGoJVhXUPT2lDR/yomy13NkY0MJ7SZCpT\nwcoAAMBSEawq6HCNQQ+nozEi6YV+VwAAoDYQrCpo//C0pKOvr5KkzsaoJLHOCgCAGkOwqqDu4SkF\n7aWNQecqjlhxZSAAALWFYFVB3cNTWtPWoHDw6F97LBJUR2NEzxGsAACoKQSrCsk3Bp2adxqwaGNH\nXN3DTAUCAFBLCFYV0j+WPGpj0Lk2d8b13CAjVgAA1BKCVYUcGktKkta0Nizo+I2djepLTCuVyZaz\nLAAA4CGCVYWMJ/M9qVobjtwYtNTmzrhyTuoZmS5nWQAAwEMEqwoZT6YVCQUUDQcXdPymzvyUIS0X\nAACoHQSrChlLZtQcDS34+E2djZJouQAAQC0hWFXIeDKt5gVOA0r5bW0aI0GCFQAANYRgVSHjyYxa\nYgsfsTIzbepsZCoQAIAaQrCqAOecxpLpRU0FSvl1VoxYAQBQOwhWFZDK5JTOOrXEFj4VKOXXWe0f\nmVI258pUGQAA8BLBqgKKrRaaGxY3YrW5M6501ql3lJYLAADUAoJVBYwl05K0qMXrkrSx0HKhe5jp\nQAAAasG8wcrMbjCzQ2b2+BFeNzP7kpntNbNHzexl3pdZ2459xCrfcuE5FrADAFATFjJi9XVJlxzl\n9UslbSvcrpJ0zdLLqi/jhRGrlkWOWK1uaVAkFFA3C9gBAKgJ8wYr59ydkoaPcsjlkr7p8u6V1GZm\na7wqsB6MJzMKB03R0OJmXgMB08aOOCNWAADUCC/WWK2TtL/kcU/hORSMFZqDmtmi37upg5YLAADU\nioouXjezq8xsl5ntGhgYqOSpfTWezCx6fVVRvknolJyj5QIAANXOi2B1QNKGksfrC8+9hHPuOufc\nTufczhUrVnhw6townkwven1V0abOuKbTWQ2MpzyuCgAAeM2LYHWbpHcXrg48T1LCOdfnwefWjaWN\nWOVbLjxPywUAAKrevL/tzew7ki6W1GVmPZI+LSksSc65ayXdLukySXslTUl6T7mKrUWpTFapTG7R\nPayKNhVbLgxO6uzNHV6WBgAAPDZvsHLOXTHP607ShzyrqM4Ue1i1HOOI1bq2mIIBo0koAAA1gM7r\nZfZCc9BjG7GKhAJa1xbTc1wZCABA1SNYldkL29kc24iVlF9n1U0vKwAAqh7BqsxemAo8thErKR+s\nGLECAKD6EazKbHw6rVDA1BA+9q96U0ejEtNpjU7NeFgZAADwGsGqzMZT+VYLx9J1vWi25QKjVgAA\nVDWCVZkVt7NZimLLBXpZAQBQ3QhWZTY+fezNQYs2dhRGrAZZwA4AQDUjWJXZeOrYt7MpikWCWtEc\nVc/ItEdVAQCAciBYldFMJqdkOrfkEStJWtvaoN4EwQoAgGpGsCqj8dkeVksbsZKktW0x9Y4SrAAA\nqGYEqzJa6nY2pda0xtSXSCq/gxAAAKhGS/+NjyMaTx37djY33tf9osf9Y0lNzWT1r795VvFI/l/b\nleduXHqRAADAM4xYldHYdH4q0IsRq9ZYPpwlCp8JAACqD8GqjMaTGQUDplgkuOTPaisEq9EpghUA\nANWKYFVG48m0mqNL67pe1BpnxAoAgGpHsCqj8eTSm4MWNUVDCpoxYgUAQBUjWJWRF9vZFAXM1BIL\nKTHNRswAAFQrglUZeTliJUmtsQhTgQAAVDGCVZmkszlNp7NqiXkzYiVJbfGwRglWAABULYJVmUwU\nmoM2R70csQprbDqtHE1CAQCoSgSrMhnzcDuborZ4WDn3Qkd3AABQXQhWZTK7nU3M2xEriZYLAABU\nK4JVmXi5AXNR62yTUK4MBACgGhGsymQsmVHApLgHXdeL2mIRSYxYAQBQrQhWZZJvtRBWwIOu60UN\n4YAioQDBCgCAKkWwKpPxZNrTHlaSZGZqi4Xpvg4AQJUiWJVJccTKa62xMCNWAABUKYJVmYyVYcRK\nokkoAADVbEHByswuMbOnzGyvmX3yMK+3mtl/mNkjZrbbzN7jfam1I5PLaWomW5Zg1RoLazKVUSab\n8/yzAQDA0swbrMwsKOkrki6VdIqkK8zslDmHfUjSE865HZIulvR5M4t4XGvNKHZdbynDVCBXBgIA\nUL0WMmJ1jqS9zrl9zrkZSTdJunzOMU5Ss5mZpCZJw5KWbXvwYnPQsoxYxQu9rAhWAABUnYUEq3WS\n9pc87ik8V+rLkk6W1CvpMUkfdc4t27mq4nY25Rixovs6AADVy6vF66+T9LCktZLOkPRlM2uZe5CZ\nXWVmu8xs18DAgEenrj5lHbGa7b5OsAIAoNosJFgdkLSh5PH6wnOl3iPpFpe3V9Kzkk6a+0HOueuc\nczudcztXrFhxrDVXvYlURiapMep9sAoHA2qMBBmxAgCgCi0kWN0vaZuZbSksSH+7pNvmHNMt6dWS\nZGarJJ0oaZ+XhdaSiVRG8UjQ067rpdriESWm2S8QAIBqM++QinMuY2YflnSHpKCkG5xzu83s6sLr\n10r6jKSvm9ljkkzSJ5xzg2Wsu6pNpjJlGa0qao2FNTiRKtvnAwCAY7Og3/7Oudsl3T7nuWtL7vdK\n+n1vS6tdE8mMmsoZrOJhPTMwUbbPBwAAx4bO62UwkcqoqQwL14vaYmGlMrnZqw8BAEB1IFiVweRM\n+acCJalvNFm2cwAAgMUjWHksk80pmc6VdSqwrRCsekeny3YOAACweAQrj02k8j2smiLlXGOV39am\nN0GwAgCgmhCsPDaZykoqTw+rouaGkALGiBUAANWGYOWx2RGrMi5eD5ippSHMGisAAKoMwcpjk8Vg\nVcYRKynfcoGpQAAAqgvBymPFEavGaLCs52mNhdXLiBUAAFWFYOWxiVRG4aApEizvV9sWC6s/kVQu\n58p6HgAAsHAEK49NpvJd161M+wQWtcYjmsnmNDjJ1jYAAFQLgpXHJsq8T2BRG01CAQCoOgQrjxVH\nrMqtlSahAABUHYKVxyo9YtWbYMQKAIBqQbDykHMuvwFzBYJVLBJULBxUHyNWAABUDYKVh8amM8q5\n8vewkiQz05q2Bh0gWAEAUDUIVh4qXqFXialASVrfHlfPCMEKAIBqQbDy0NDEjKTKjFhJ0ob2mPaP\nTFXkXAAAYH4EKw8NThRHrMrbdb1oY0dco1NpjSXTFTkfAAA4OoKVh4YKwapiI1YdcUnS/mFGrQAA\nqAYEKw8NTszIJMUjlZoKLAYr1lkBAFANCFYeGppMKRYJKhgo73Y2RRs6YpKkHtZZAQBQFQhWHhoc\nn6nYNKCU777eHA0xFQgAQJUgWHloaDJVsVYLUr6X1YaOuPbTcgEAgKpAsPLQ0ERlR6yk/HRgNyNW\nAABUBYKVhwYnUpUPVu1x9YxMyTlX0fMCAICXIlh5ZCaT01iyMhswl9rQEVcyndNAodUDAADwD8HK\nI0OTle1hVVS8MpCWCwAA+I9g5ZFKb2dTVOxlRcsFAAD8t6BgZWaXmNlTZrbXzD55hGMuNrOHzWy3\nmf3K2zKr3+Bs1/XKbGdTtL4QrLqHCFYAAPht3uEVMwtK+oqk10rqkXS/md3mnHui5Jg2SV+VdIlz\nrtvMVpar4GpVHLGq9BqrWCSoFc1RNmMGAKAKLGTE6hxJe51z+5xzM5JuknT5nGOulHSLc65bkpxz\nh7wts/oNVnifwFIb2mOssQIAoAosJFitk7S/5HFP4blSJ0hqN7NfmtkDZvZurwqsFUOTM4qGAoqE\nKr9sLd8klBErAAD85lUKCEk6S9LrJb1O0v8ysxPmHmRmV5nZLjPbNTAw4NGpq8PgREpdTVGZVWaf\nwFIb2uPqSySVzuYqfm4AAPCChQSrA5I2lDxeX3iuVI+kO5xzk865QUl3Stox94Occ9c553Y653au\nWLHiWGuuSkMTM+pqivhy7o0dcWVzTn2jSV/ODwAA8hYSrO6XtM3MtphZRNLbJd0255hbJV1kZiEz\ni0s6V9Ieb0utbkOTKXU2RX059/piLyumAwEA8NW8K62dcxkz+7CkOyQFJd3gnNttZlcXXr/WObfH\nzH4i6VFJOUnXO+ceL2fh1WZwfEYnr27x5dzFXlb72TMQAABfLegSNufc7ZJun/PctXMef07S57wr\nrXY45zQ0mVJXsz8jVmtaGxQMGCNWAAD4jM7rHhhLZpTOOnU2+rPGKhQMaG1bAy0XAADwGcHKA0OF\nHlZdPq2xkvLTgd1MBQIA4CuClQcGC13XO326KlDKXxnIfoEAAPiLYOWB4ohVZ6OPI1YdcQ1OzGhq\nJuNbDQAALHcEKw8MTuZHrLqa/RuxWt+eb7nQM8I6KwAA/EKw8kBxxKoj7l+w2tBBywUAAPxGsPLA\n0MSM2uNhhYL+fZ3FXlYsYAcAwD8EKw8MTvjXdb2oqymiWDhIywUAAHxEsPKAn/sEFpmZNnTEaBIK\nAICPCFYeGPRxn8BSG9rjrLECAMBHBCsPDE3MqMunruulNnTE1TMyLeec36UAALAsEayWaCaTU2I6\nXRUjVuvbY5pIZTQylfa7FAAAliWC1RINT/rfdb2IlgsAAPiLYLVEg1WwT2DRxmKwYgE7AAC+IFgt\n0VCx63pVjVjRcgEAAD8QrJaoGvYJLGqKhtQeDzNiBQCATwhWS1ScCqyGNVZSftSKNVYAAPiDYLVE\nQxMzioQCaoqG/C5FkrS5s1H7Bib9LgMAgGWJYLVE/WNJrWqJysz8LkWSdOLqZh0YndZ4kpYLAABU\nGsFqifoSSa1pifldxqwTVjVLkp4+OOFzJQAALD8EqyXqTyS1pq3B7zJmnbQ6H6ye6h/3uRIAAJYf\ngtUS5HJO/YmkVrdWT7Ba1xZTYySopw8SrAAAqDSC1RIMT81oJpvTmpbqCVaBgGnbqmY92T/mdykA\nACw7BKsl6E8kJUlr2qpnjZWUnw58qn+czZgBAKgwgtUS9I7mO5yvqaKpQCm/gH1kKq2BQo8tAABQ\nGQSrJegfK4xYtVbfiJUkPd3PlYEAAFQSwWoJ+hJJhYOmzsbq6LpedEIhWLHOCgCAyiJYLUHf6LRW\ntTQoEKiO5qBFXU1RdTVFuDIQAIAKI1gtQV8iqbVVNg1YdMKqZnpZAQBQYQva4M7MLpH0z5KCkq53\nzn32CMedLekeSW93zn3fsyqrVP9YUjvWt/l2/hvv6z7q60/0jSmXc1U3ogYAQL2ad8TKzIKSviLp\nUkmnSLrCzE45wnH/KOmnXhdZjZxz+e1squyKwKJVLQ1KZ532j0z5XQoAAMvGQqYCz5G01zm3zzk3\nI+kmSZcf5ri/kHSzpEMe1le1hidnNJPJVW2wWl1oWvok04EAAFTMQoLVOkn7Sx73FJ6bZWbrJL1Z\n0jXelVbd+grNQVdX6Rqrlc1RSdLTBCsAACrGq8XrX5T0Cedc7mgHmdlVZrbLzHYNDAx4dGp/FINV\ntY5YRcNBtcfDepIrAwEAqJiFLF4/IGlDyeP1hedK7ZR0k5lJUpeky8ws45z7QelBzrnrJF0nSTt3\n7qzp/Vb6E4Wu623VGayk/DorRqwAAKichYxY3S9pm5ltMbOIpLdLuq30AOfcFufcZufcZknfl/Tn\nc0NVvelNJBUKmLoao36XckSrWxq0b3BSqUzW71IAAFgW5g1WzrmMpA9LukPSHknfc87tNrOrzezq\nchdYrfoTyapsDlpqVWuDsjmnfQOTfpcCAMCysKA+Vs652yXdPue5a49w7J8uvazq15eY1toqngaU\n8lOBkvRU/7hOXtPiczUAANQ/Oq8fo75EsmqvCCzqaoooHDQ9xQJ2AAAqgmB1DKq9OWhRKBDQcV1N\nbG0DAECFEKyOwchUuqqbg5Y6cTV7BgIAUCkEq2PQO1potVAjwerA6LTGk2m/SwEAoO4RrI5B/2xz\n0OpeYyVJJ65qliQ9fXDC50oAAKh/BKtj0DdW3V3XS524Oh+smA4EAKD8CFbHoG90WqGAqbOpepuD\nFq1ri6kxEtTTXBkIAEDZEayOQbE5aLCKm4MWBQKmbaua9WT/mN+lAABQ9whWx6A3MV0T04BFJ69p\n1p6+ceVyNb09IwAAVY9gdQz6E0mtrqFgtXNThxLTaT3JOisAAMqKYLVIxeaga9uq/4rAoguO75Qk\n3f3MoM+VAABQ3whWizQylVYqk9PqltoZsVrTGtNxXY26+5khv0sBAKCuEawWqS9RO81BS52/tVP3\n7RtSOpvzuxQAAOoWwWqRZpuD1tBUoCRdsLVLkzNZPdqT8LsUAADqFsFqkXoTtdMctNT5W/PrrO5h\nnRUAAGVDsFqk/kS+OWhXDTQHLdXRGNHJa1pYZwUAQBkRrBapr4aag8514dZO7Xp+RMl01u9SAACo\nSwSrReobra0eVqUuOL5TM5mcHnx+xO9SAACoSwSrReofq91gdfbmDgUDxnQgAABlQrBahHxz0Gmt\nrdFg1dwQ1o71rbqLBewAAJQFwWoRRqfSSqZzWt1aW60WSl2wtUuP9iQ0nkz7XQoAAHWHYLUIfYVW\nC7U6YiVJF2ztVDbndP9zw36XAgBA3SFYLUKx63qtrrGSpJdtalckFNBde1lnBQCA1whWi9A32xy0\ndqcCG8JB7dzUzgJ2AADKgGC1CP2JpIIB04rm2moOOteFx3dpT9+Yhidn/C4FAIC6QrBahN7EtFY1\nR2uyOWipF7a3YdQKAAAvEawW4dnBSa3viPtdxpKdvq5VTdGQ7qbtAgAAngr5XUCtyOac9vSN6cpz\nNvldypKFggGdu6WDESsAwKwb7+v25HOuPHejJ59TqxYUrMzsEkn/LCko6Xrn3GfnvP4OSZ+QZJLG\nJX3QOfeIx7X6at/AhJLpnE5d2+J3KZ64aFuX/uvJQ3qqf1wnrm72uxwAwDFKprM6NJbSofGkBidS\nGpiY0dBESkMTMxqazP/sGZnWTCanmWxOM5mcMrmcYuGgmhvCam4IqSkaUkssrBNWNWtDe0xmtb3k\nxU/zBiszC0r6iqTXSuqRdL+Z3eace6LksGclvcI5N2Jml0q6TtK55SjYL7t7xyRJ29e1+lyJNy4/\nY53+4cdP6tv3Pa//ffl2v8sBAJRwzmksmdHAeLIQmvLB6UX3x1MaGE9pPJk57GfEwkE1RUNqjOZ/\nhhsDigQDioRMoUBAUzNZTaTSSkyn1TMyrclURj9/8pDWtcV0/nGdOm19q8JBVgwt1kJGrM6RtNc5\nt0+SzOwmSZdLmg1Wzrm7S46/V9J6L4usBo8fSCgaCmjrika/S/FER2NEbzhtjW558IA+cclJaowy\nKwwA5ZbNOQ1NpGZD0cCckFQaoFKZ3EveHw5afpQpGlJzQ0jb17aquSFUuIXVFA2pqSGkxkho0Rda\npdJZPbR/VPfsG9L3H+zR7Y/36ezNHbpga6eaG8JefQV1byG/TddJ2l/yuEdHH416r6QfL6WoarS7\nd0wnrWlRqI7S+zvO26RbHjqgHzx8QO84t/bXjgGAH3I5p9HptIYmUhqYSGlwYkYD46n8tNyLAlRK\nw5Mp5dxLP6MhHJgNTB3xiDZ1NM6GpWJwamkIKxoKlG2aLhoO6rzjOnXulg7tG5zUPc8M6c6nB/Ro\nz6jee9Fx6miMlOW89cbTYQoze6XyweqiI7x+laSrJGnjxtpZ3Oac0+7ehN6wY63fpSza0RYjOue0\nprVB37q3W1ees5E5dQAoSGWy+TVKEzManMiHpKHJ/NqlwcJzxdeGJ2eUOUxaCpheGEWKhrS5M67T\n1r0wwtQUfSE4VdOUm5lp64ombV3RpJ6RKf3bXc/pujuf0Z9duEUrW2p355FKWUiwOiBpQ8nj9YXn\nXsTMTpd0vaRLnXOHvdzMOXed8uuvtHPnzsNk9urUMzKtsWSmbhauF5mZzt3SqR88fEAPdo/qrE3t\nfpcEAGXjnFNiOq1D4ykdHMtPtx0sTLsVR5f2DUxqPJVWMv3SaTgpPxWXX7eUD0YbOuI6eU3L7BRc\nMUQ1R0NqiAQVqPG/sK5vj+v9Lz9O//abZ3Xdr/fpzy7corVttbv7SCUsJFjdL2mbmW1RPlC9XdKV\npQeY2UZJt0h6l3Puac+r9NnjBxKSpO1r62PheqkdG1r1n3sO6tv3Pk+wAlCzZjI5HRpPqj+RVP9Y\n4Wfh/sGxpA6OpdQ7On3YkaVoKDA7grSqtUFbo02z4aixJDA1RoKKlHEqrlqtbmnQ+19+nG74zbO6\n/jf79Cfnb9amzvpYb1wO8wYr51zGzD4s6Q7l2y3c4JzbbWZXF16/VtLfSOqU9NXCH7iMc25n+cqu\nrN29YwoGrC7bEkRDQf3hy9bppt/u1/98wynMoQOoOhOpjPoT+YBUGpz6Ekn1j02rP5EfcZorHDS1\nNITVEgurLR7Wpo64mmNhtRTWLhV/RkLVMw1Xrbqaorrq5cfpX3/zrP7truf0rvM3aeuKJr/LqkoL\nWmPlnLsYpz4BAAAVy0lEQVRd0u1znru25P77JL3P29Kqx+7ehLatbFJDOOh3KWXxzvM26Zv3PK//\ns2u/PvCKrX6XA2CZSGWyL7QPKI4sjad0MJHUwfH8KFN/IqmJ1EvbCcTCQbXGwmqJ5dcu7VjfWnic\nv7U2hNUQXn6jS+XUFo/Mhqvv/LZbf/maE9TEFeUvwTeyAI/3jun3tnX5XUbZnLCqWeds6dCNv+3W\n+3/vOAVqfC9EAP5KZ3MaKKxjOlhoXPnC/RdC1MhU+iXvDZrlr4CL5Rd1n7audTZAFUefWhhl8k1z\nQ1hXnLNRX/7FXt368AEufDoMgtU8Do0lNTCeqsv1VaXeed4mfeQ7D+nXewf1ihNW+F0OgCqUyzkN\nTc7M9l06mMiHpYPjydlRpv5ESkOTKbk5S5mKV8g1N+TXLp2wqvlF03HFMBWvgwXf9W5VS4Nec/Iq\n3bG7X48dSOj09W1+l1RVCFbzKHZcr7crAue65NTV6mqK6N/veZ5gBSwjxQ7fgxMpDY6/0EqgtA9T\nsWnl4MSMsodZ/N0YCc6OMG3ujOv09a2F0aUX1jI1RkMEpjpy0fFd2t2b0G2P9GpLVyMNREsQrOax\nuzd/ReApdR6sIqGA3nb2Bl3zy2e099CEjl/JokSgVjnnNDmT1aGx5Is6fJcGptJeTDPZl7YWMOlF\nLQTWtcV18uqW2aaVLQ0hNRfCVCjAtNxyEwyY3vqy9YUpwV6941ymBIsIVvN4/MCYNnfGl0Ua/5ML\nNuvb93Xrv3//EX3/6gsWvR0CgPKbnsnOXhVXunZpbl+m6XT2Je8NBUzxSHA2LK1pjWnbyubC46Ca\noi9sicKUHOazsjAl+JPd/XqkJ6EzNjAlKBGs5rW7L6HT1y2PPywrmxv0t288VR+96WF97df7dDVX\nCAIVNZZMv9BGIDGtvkRSfaNJ9Y0l9WTfmMaSh29cWdpWoDUW1vq2WMlWKC+sa6qHhpWoLhdty08J\n/scjvTpuRaNalsEgxHwIVkeRmEpr//C0rjindrbfWao37lirnzzery/89Gm96qSVOmFV/fXuAvww\nmcqoLzGt3tGk+kpCU29iWk/1jysxnX7JprvF6biWWFidTdHZX1zFK+NaCgu+y7l/HHA0ATO99awN\n+pef/063Ptyrd53HvrMEq6PY3ZdfX3VqnV8RWMrM9Jk3bdd9z96pj3/vEd3y5xdU1R5WQDUaLxlp\nKoam4uM9RxhpKoam1nhYK5qj2rqySW2FHkzFn6xfQi1Y0RzVqwtXCT59cNzvcnxHsDqK3QeWxxWB\nc3U1RfV3b9quD377QV3zy2f0kVdv87skwDdzR5p6RwuhaSypvtFp9SeSGj9MA8uupqjWtjWoqymq\nrSua1FqYpisGp+YYoQn148Ktndr13LB+9Gif/vr1Jy/rv5ATrI5id29Cq1vy/2Ncbi49bY3euGOt\nvvRfv9OrT165rEbtsHwUO3/3juZHmXoT0/n7o0k90Tem0an0SxaBl440tTSEtX196+wIU2tDPjwR\nmrDchIIBXXbaGv37vc/rm/c8r/detMXvknxDsDqK3b1j2r5ueY1WlfrbN56qe/YN6ePfe0S3fvhC\nRUP1uaUP6k8u5zQyNTPb9ftQ4aq5YgPL/P5y+b5Mc7XFw1rTGlNrLKyNHXG1xcJqjYfVGovMdgAn\nNAEvddLqZm1b2aQv/ufTetMZa9W5DAclJILVEU3PZPXMwIQuPW2N36X4pr0xon9482l63zd36X3f\n2KVr3nkW+0LBV5lsTgMTqXxgKvRoyvdpyoengYmUnhuc1EQqo8P0sXzR/nJbuhq1Y0Pb7ChTazys\ntliErVKAY2Rmev1pa/TlX+zVP/30af3DH57md0m+4LfkEezpH1POLY/1VTfe133U19/ysnX6wcO9\nevt19+iGPz1bK5sbKlQZlpNszunQeFK9o9PqGcmvZeodnVZ/YV+5vkRSg+Mpzc1LJqkxGiq0FgjN\n9mUqbWTZ0hBWU0NoWa/7ACphZUuD3n3+Zv3b3c/qHedu1PZ1y28ZCcHqCHYfyF8RuBz/UMx11qYO\nvWHHWv35tx7UW665W994zzk6bgWd2bE4zjkNTsxo/8iU9g8Xb9P5xyNTOjAy/ZJRpoZwID/C1JCf\nltu+tnV2M95icGqKhmhmC1SRj75mm259+ID+9388oe9+4Lxl1wqEYHUEu3vH1BYPa20rozOS9MoT\nV+qmq87Tn339fr312nv0r3+yU2dubPe7LFSZ6Zmsekam1D2cv+0fnlb38JQeOzCq4ckZpbMvTk5N\n0ZDa42G1N0Z0XFeT2grTcfmfYUXDrOsDak1rLKy/et2J+tQtj+mHj/bpD3as9bukiiJYHYZzTvc/\nN6zta1uXXdI+mh0b2nTzBy/Qu2/4ra782n361GUn6YpzNjK9soxkc04Hx5KzwamnGKBG8gFqYDz1\nouPjkaA2tMfVEY/o+BVNam+MqCMeUXtjRO1x1jMB9eqPd27Qt+59Xn9/+x5dfOKKZbEtXBHB6jDu\n2jukZwYm9YGXs6XLXJu7GnXzBy/QR77zkP7m1t264TfP6r+/7iRddtpqQmgdcM4pMZ2enaLrLkzZ\ndQ9PqWdkWj0jUy8adQqY1BILqz0e0cb2uM7Y0Kb2eEQdjflbYyTInwtgGQoGTP/vm7brLdfcrb/7\n0R599i2n+11SxRCsDuNrv96nrqaoLj9zeQ1fLtSK5qhufP+5+sVTh/TZHz+pD934oHasb9UnLz1Z\n52/t9Ls8zGMylZkNSfsLo03Fnz0jUxpPvrjZZSwcVEdjfpTp/OO61N4YVkchPLXGw7QeAHBYZ25s\n11Uv36prf/WMLtm+WhefuNLvkiqCYDXHU/3j+tXTA/r4a0+gb1OJI105+O7zN+uh7hH9555DuuJr\n92rH+la94fS1uuz0NVrXFqtwlZCkxHRaB0amdWB0WgdG8iNNBwpX2vWMTGlkKv2i48NBU3s8PzV3\n6tqWF03VdTRG1MA6JwDH6GOv3aafP3lQn7z5Md3xsZerNVb/U4IEqzmu//U+NYQDeicbSS5IwExn\nberQ6evblMk5/eChA/q72/fo727fo5dtbNPrT1+rV564Qlu6GpkS8kAqk9XBREq9iXyDy2Kn8AMl\n7Qnmbq8SCpja4hF1NIa1bVVzIUSF1Vb42RQN8e8GQFlEQ0F9/o/O0Ju+epf+9j926wt/fIbfJZUd\nwarEobGkbn24V287e4PaGyN+l1NTwsGA/uSCjXrvRVv03OCkfvRYn370aJ8+88Mn9Jkf5rtZn7Gh\nTWdsaNOZG9t16toWdTZG+IVekMnmNDw5U2h2WegSPpbSwfGkDiaKHcMP3yk8Fg6qPR5Wazyi7eta\n81fUlYQn1jkB8NNp61v1oYu36ks/36tLt6/Ra09Z5XdJZUWwKvGNe55TOpdb1nscLUXpdGF7PKJ3\nnrdJgxMpPTs4qf3DU9rTN6ZfPT0gV1j73BwNaXNXozZ1xrWlq1EbOuJa1dKglc1RrWppUHs8XLOB\nIJ3NaXQqrdGpGQ1PzmhkKq2Rwv3BiZSGJ2c0NJG/PziR0tDkzOz3UqoxElRLLN+zqdgpfHZfusKN\nKWsA1e7Dr9qmn+05pE/d8ph2bmqv68ELglXB1ExG37q3W79/yipt7mr0u5y60dUUVVdTVGdv7pAk\nJdNZHRjNT2MNTc5oaCKlu58Z0o8e7XtJR+1w0NTVFFVbPKK2WLgwEpMPFU2RkBqjITVF8z8bo0E1\nhPO3aCigaCighnBQoYApGDCFAgEFg6ZgIag5OeVc/io4JymbdUpnc5rJ5pQu3E+ms5qeyWqq8HN6\nJqupmYzGUxlNJDOaTOXvjyczSkynNVa4JabTmpzJ6kiiocALtUeC2tLVpNPXFzqFF55vLoQpFoYD\nqAeRUECf/6Mduvwrv9H/uvVx/csVZ9bsX5znQ7Aq+P4DPUpMp/X+3zvO71LqWkM4qK0rmrR1Tuf2\nTC6nsemMxpNpjSXzP8eT+dAyPZNRb2JazwxMzAad7OE2gquggOXXDjSEA4qGgopF8qFudWtMW7oa\n1RAJKh7JB6d4JKR4JKh4JKjGKNuqAFieTlnboo++epv+6adPa3VLg/769SfXZbgiWCnf9PD6Xz+r\nMze26axNdBP3QygQmO19tBCZXE4z6ZxSmeItq0zOKVMYccrk8j9zzimXy49O5Zyb3TLFJBX/ezZJ\ngdmRLVMwEJi9HwkFFAkGFA4GFA7mHxdHwurxfwgAUE5/fvHxGpyY0fW/eVbT6aw+c/l2BepsSyqC\nlaSfPdGv7uEpffLSk/hlWSNCgYBC0YDiUb8rAQAsVCBg+vQfnKJYJKhrfvmMpmey+v/eerpCdTSS\nv+yDVWIqrX/5+V5t6Ijpdaeu9rscAADqmpnpE5ecpMZIUP/006eVzGT1xbedWTdbXC3rYHXfviF9\n7LsP69B4Sl98+xkK1tlwJAAA1erDr9qmWCSkz/zwCU3P7NJn33K6VrU0+F3Wki0oHprZJWb2lJnt\nNbNPHuZ1M7MvFV5/1Mxe5n2p3klnc/r8T5/SFV+7V5FQQDd/8AK94XS2rwEAoJLee9EW/f2bT9Od\nvxvU7/3jL/SJ7z+qvYcm/C5rSeYdsTKzoKSvSHqtpB5J95vZbc65J0oOu1TStsLtXEnXFH5Wne6h\nKX3kpof08P5R/dFZ6/X/vPFUNUaX9cAdAAC+ufLcjbrw+E5d/+tn9b1d+/XdXfv12lNW6QMvP04v\n29hec4vbF5IozpG01zm3T5LM7CZJl0sqDVaXS/qmc85JutfM2sxsjXOuz/OKFyibc+oentJT/WN6\nqn9CTx0c05P943pucFKN0ZC+fOWZjFIBAFAFNnU26jNv2q6/fM02fePu5/SNe57Xz544qFg4qONX\nNmnbqiadsKpZJ6xqUmdjNN/CptALMBYJKhIMVM3FZwsJVusk7S953KOXjkYd7ph1knwLVo/0jOoP\nv3q3pPxl9Zs64jpxdbP+4PS1+uOzN7BBMAAAVaazKar/9vsn6gOv2KrbH+vTnr5x/e7QuO7aO6hb\nHjxwxPddee5G/f2bT6tgpUdW0TkwM7tK0lWFhxNm9lSlzv2cpF8V7v+38p6qS9JgeU8B8T1XCt9z\nZfA9VwbfcwW8w4dz/kPhVmabFnLQQoLVAUkbSh6vLzy32GPknLtO0nULKaxWmdku59xOv+uod3zP\nlcH3XBl8z5XB94xKWMhVgfdL2mZmW8wsIuntkm6bc8xtkt5duDrwPEkJP9dXAQAA+GHeESvnXMbM\nPizpDklBSTc453ab2dWF16+VdLukyyTtlTQl6T3lKxkAAKA6LWiNlXPuduXDU+lz15bcd5I+5G1p\nNauupzqrCN9zZfA9Vwbfc2XwPaPsLJ+JAAAAsFT1sTEPAABAFSBYeWS+bX/gDTO7wcwOmdnjftdS\nz8xsg5n9wsyeMLPdZvZRv2uqR2bWYGa/NbNHCt/z3/pdUz0zs6CZPWRmP/S7FtQvgpUHSrb9uVTS\nKZKuMLNT/K2qbn1d0iV+F7EMZCR93Dl3iqTzJH2IP9NlkZL0KufcDklnSLqkcGU1yuOjkvb4XQTq\nG8HKG7Pb/jjnZiQVt/2Bx5xzd0oa9ruOeuec63POPVi4P678L6N1/lZVf1xeccfZcOHGwtcyMLP1\nkl4v6Xq/a0F9I1h540hb+gA1z8w2SzpT0n3+VlKfCtNTD0s6JOlnzjm+5/L4oqT/ISnndyGobwQr\nAEdkZk2Sbpb0l865Mb/rqUfOuaxz7gzld6w4x8y2+11TvTGzN0g65Jx7wO9aUP8IVt5Y0JY+QC0x\ns7Dyoerbzrlb/K6n3jnnRiX9QqwhLIcLJb3RzJ5TfqnGq8zsW/6WhHpFsPLGQrb9AWqGmZmkf5W0\nxzn3Bb/rqVdmtsLM2gr3Y5JeK+lJf6uqP865Tznn1jvnNiv//+efO+fe6XNZqFMEKw845zKSitv+\n7JH0Pefcbn+rqk9m9h1J90g60cx6zOy9ftdUpy6U9C7l/2b/cOF2md9F1aE1kn5hZo8q/xe0nznn\naAUA1DA6rwMAAHiEESsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAjAvM8sW\nelntNrNHzOzjZhYovLbTzL50lPduNrMrK1ftS849XdiLryqY2dvMbK+Z0a8KqEMEKwALMe2cO8M5\nd6ry3cEvlfRpSXLO7XLOfeQo790syZdgVfBMYS++BTOzYLmKcc59V9L7yvX5APxFsAKwKM65Q5Ku\nkvRhy7u4OPpiZq8o6dT+kJk1S/qspN8rPPexwijSr83swcLtgsJ7LzazX5rZ983sSTP7dmFrHZnZ\n2WZ2d2G07Ldm1mxmQTP7nJndb2aPmtkHFlK/mf3AzB4ojL5dVfL8hJl93swekXT+Ec55auH+w4Vz\nbiu8950lz///xWBmZpcU/hkfMbP/8vBfA4AqFfK7AAC1xzm3rxAeVs556a8kfcg5d5eZNUlKSvqk\npL9yzr1BkswsLum1zrlkIZh8R9LOwvvPlHSqpF5Jd0m60Mx+K+m7kt7mnLvfzFokTUt6r6SEc+5s\nM4tKusvMfuqce3ae8v/MOTdc2JvvfjO72Tk3JKlR0n3OuY8X9vx88jDnvFrSPzvnvl04JmhmJ0t6\nm6QLnXNpM/uqpHeY2Y8lfU3Sy51zz5pZx6K/aAA1h2AFwEt3SfqCmX1b0i3OuZ7CoFOpsKQvm9kZ\nkrKSTih57bfOuR5JKqyL2iwpIanPOXe/JDnnxgqv/76k083srYX3tkraJmm+YPURM3tz4f6GwnuG\nCrXcXHj+xCOc8x5Jf21m6wv/fL8zs1dLOkv5kCZJMUmHJJ0n6c5i0HPODc9TF4A6QLACsGhmdpzy\nQeSQpJOLzzvnPmtmP5J0mfIjSK87zNs/JumgpB3KL0dIlryWKrmf1dH/H2WS/sI5d8ci6r5Y0msk\nne+cmzKzX0pqKLycdM5lj/Z+59yNZnafpNdLur0w/WiSvuGc+9Scc/3BQusCUD9YYwVgUcxshaRr\nJX3ZzdnF3cy2Oucec879o6T7JZ0kaVxSc8lhrcqPBuUkvUvSfAvFn5K0xszOLpyj2cxCku6Q9EEz\nCxeeP8HMGuf5rFZJI4VQdZLyo0oLPmchUO5zzn1J0q2STpf0X5LeamYrC8d2mNkmSfdKermZbSk+\nP09tAOoAI1YAFiJWmJoLS8pI+ndJXzjMcX9pZq+UlJO0W9KPC/ezhUXhX5f0VUk3m9m7Jf1E0uTR\nTuycmzGzt0n6l8K6qGnlR52uV36q8MHCIvcBSW+a55/jJ5KuNrM9yoenexd5zj+W9C4zS0vql/T3\nhfVa/1PSTy3fgiKt/DqzewuL428pPH9I+SsqAdQxm/MXTgCoG2a2WdIPnXPbfS7lRQpTkrML+gHU\nD6YCAdSzrKRWq7IGocqP2o34XQsA7zFiBQAA4BFGrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwA\nAAA88n8BnZbO/LRGQasAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(sparcs['sparcs_ra'], sparcs['sparcs_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, sparcs, \"sparcs_ra\", \"sparcs_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add HSC-PSS" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl02/d57/nPA4AEwAXcd5FabEneV3lL4thxksZ2bq/b\nadosTXpvbnvcZJLbtLedNvdMZ+69Z+bMpM2k7c1kcX3TNG2zT5O2aevYieN4iWN5kW3ZWilZMiWS\nEneC4AYQwHf+AEDRshYuPxAL369zdEwCPxKPYFv68Pl+f8/XnHMCAADA2vkKXQAAAEC5IFgBAAB4\nhGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHgkUKgXbm5u\ndlu2bCnUywMAACzbnj17Rp1zLRe7rmDBasuWLXrhhRcK9fIAAADLZmZ9y7mOpUAAAACPEKwAAAA8\nQrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAI\nwQoAAMAjBCsAAACPBApdQLn75rMnLnrNh27pWYdKAABAvtGxAgAA8AjBCgAAwCMEKwAAAI8QrAAA\nADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAj1w0WJnZV81s2Mz2\nned5M7PPm9lRM3vFzG7wvkwAAIDit5yO1dck3X2B5++RtD37635JX157WQAAAKXnosHKOfekpPEL\nXHKfpL91Gbsl1ZtZh1cFAgAAlAov9lh1STq55PP+7GMAAAAbyrpuXjez+83sBTN7YWRkZD1fGgAA\nIO+8CFYDkrqXfL4p+9ibOOcedM7tcs7tamlp8eClAQAAiocXweoHkn4je3fgrZKizrlTHnxfAACA\nkhK42AVm9i1Jd0pqNrN+Sf9FUoUkOecekPSQpHslHZU0K+mj+SoWAACgmF00WDnnPniR552kT3hW\nEQAAQIli8joAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGC\nFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhW\nAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgB\nAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUA\nAOARghUAAIBHCFYAAAAeIVitk7lESo8dGlIq7QpdCgAAyBOC1Tp56eSEHj04rNfHZgpdCgAAyBOC\n1To5MT4rSRqami9wJQAAIF8IVuukb4xgBQBAuSNYrYPJ2YSicwuSpKGpeIGrAQAA+UKwWge5ZcDu\nhrCGpublHBvYAQAoRwSrddA3NqsKv+m67nrFk2lNZrtXAACgvBCs1kHf+Iy6G6rUWR+WxD4rAADK\nFcEqz+LJlE5H57W5qUqttSFJ0lCUYAUAQDkiWOVZ/8Sc0k7qaaxWuNKvunCFhmJsYAcAoBwFCl1A\nKfvmsycuek3f2IxMUk9jlSSpLRLUaTpWAACUJTpWeXZifFatkaDClX5JUlskpJHpOEfbAABQhpYV\nrMzsbjM7bGZHzezT53i+zsz+2cz2mtl+M/uo96WWnrRzOjE+q57G6sXH2iMhpdJOY9MsBwIAUG4u\nGqzMzC/pi5LukXSFpA+a2RVnXfYJSQecc9dKulPS58ys0uNaS87wVFzzC2ltbqpafKwtktnAfpo7\nAwEAKDvL6VjdLOmoc+6Ycy4h6duS7jvrGiep1sxMUo2kcUlJTystQX3jmQOXNzeeCVYttUGZmMAO\nAEA5Wk6w6pJ0csnn/dnHlvqCpMslDUp6VdKnnHNpTyosYSfGZlUTDKix+kzzrsLvU1NNkFlWAACU\nIa82r79H0suSOiVdJ+kLZhY5+yIzu9/MXjCzF0ZGRjx66eLVNz6rnsYqZRp5Z7RFCFYAAJSj5QSr\nAUndSz7flH1sqY9K+r7LOCrpuKTLzv5GzrkHnXO7nHO7WlpaVltzSYjNL2h8JvGG/VU57ZGQxmcS\nSiQ3fFMPAICyspxg9byk7Wa2Nbsh/QOSfnDWNSckvVOSzKxN0k5Jx7wstNT0jWUOXt7cVP2m59oi\nITlJwzG6VgAAlJOLBivnXFLSJyU9IumgpO865/ab2cfM7GPZy/4PSW8xs1cl/UTSHznnRvNVdCk4\nMT6rgM/UWRd603Pt2TsD2cAOAEB5WdbkdefcQ5IeOuuxB5Z8PCjpF7wtrbT1jc2oqyGsgP/N2bWx\nplIBn7HPCgCAMsPk9TxYSKU1ODmvzY1vXgaUJJ+ZWmvZwA4AQLkhWOXBwMScUs6dc+N6TlskRLAC\nAKDMEKzyYGByTpK0qSF83mvaIiFNzSc1m9jwc1QBACgbBKs8mI4n5TOpJnj+LWztdWxgBwCg3BCs\n8mA2kVK4MvCmwaBLtS3eGchyIAAA5YJglQeziaSqKv0XvCYSCihU4eMwZgAAygjBKg9mE6mLBisz\nYwM7AABlhmCVB5mO1cVHhOWClXNuHaoCAAD5RrDKg9lEStUX6VhJmQns8wtplgMBACgTBCuPOeeW\ntRQoSa2RoCSpd2g632UBAIB1QLDyWCKVVirtlrUU2BCulCQNRelYAQBQDghWHptNpCRpWR2rmlAm\nfI1MM8sKAIByQLDy2EqCVYXfp2DAp5EYwQoAgHJAsPJY7oia8DKWAqXMdPZROlYAAJQFgpXHVtKx\nkqTaUICOFQAAZYJg5bGVBis6VgAAlA+ClcdyS4HLuStQkmpCFXSsAAAoEwQrj83GUwoGfPL7zn8A\n81I1wYCm5pOKJ1N5rgwAAOQbwcpjs4mkqoPL61ZJmT1WkjQ6nchXSQAAYJ0QrDy23KnrOTXZEDbK\nciAAACWPYOWxlQarXMeKfVYAAJQ+gpXHZhPJZW9cl5Z0rLgzEACAkkew8thsIqXwKpYC6VgBAFD6\nCFYeSqWd4sn0ipYCA36fIqEA5wUCAFAGCFYeWukMq5yW2iBLgQAAlAGClYdWOnU9p7kmyFIgAABl\ngGDlodUGq0zHijlWAACUOoKVh+ZWuRRIxwoAgPJAsPLQWjpW0/Gk5hIcawMAQCkjWHloJhuMqlex\neV1ilhUAAKWOYOWh2URSAZ+pwr+8A5hzWmoywYqRCwAAlDaClYdyx9mYrTBYZTtW7LMCAKC0Eaw8\nlAlWK1sGlDKb1yWWAgEAKHUEKw/NJpIrOs4mp6mmUhIdKwAASh3BykO5pcCVqvD71FBVQccKAIAS\nR7Dy0GqXAqXMPis6VgAAlDaClUecc5pLJFfVsZIy+6yYvg4AQGkjWHkknkwr7VY+HDSHjhUAAKWP\nYOWRM1PXV7cUmOlYEawAAChlBCuPzC6eE7j6jtVsIqWZeNLLsgAAwDoiWHlkJp47zmb1e6wkZlkB\nAFDKCFYeOdOxWv1dgRKzrAAAKGUEK4+c2WO12o5VZkgoHSsAAEoXwcojs4mUTFJoDXusJDpWAACU\nMoKVR2YTSYUq/PKt8ADmnMaqSplJI8yyAgCgZBGsPLLa42xyAn6fmqor6VgBAFDCCFYemVtjsJKY\nZQUAQKkjWHlkNpFc9R2BOUxfBwCgtBGsPLLWpUCJjhUAAKWOYOURL4JVrmPlnPOoKgAAsJ6WFazM\n7G4zO2xmR83s0+e55k4ze9nM9pvZE96WWdwWUmklUmlVBde2FNhcU6l4Mq1pjrUBAKAkXTQJmJlf\n0hclvVtSv6TnzewHzrkDS66pl/QlSXc7506YWWu+Ci5Gax0OmrN0llVtqGLNdQEAgPW1nI7VzZKO\nOueOOecSkr4t6b6zrvmQpO87505IknNu2Nsyi9taj7PJOXNeILOsAAAoRcsJVl2STi75vD/72FI7\nJDWY2eNmtsfMfsOrAktBPjpWAACg9KytxfLG73OjpHdKCkt6xsx2O+d6l15kZvdLul+Senp6PHrp\nwvMqWJ3pWBGsAAAoRcvpWA1I6l7y+absY0v1S3rEOTfjnBuV9KSka8/+Rs65B51zu5xzu1paWlZb\nc9HxaimwoapSfp/RsQIAoEQtJ1g9L2m7mW01s0pJH5D0g7Ou+SdJbzOzgJlVSbpF0kFvSy1ecx51\nrPw+U1N1JR0rAABK1EVbLM65pJl9UtIjkvySvuqc229mH8s+/4Bz7qCZPSzpFUlpSV9xzu3LZ+HF\nZDaRUoXfVOFf+1iw5hqmrwMAUKqWtXblnHtI0kNnPfbAWZ9/VtJnvSutdHhxnE1OSy3T1wEAKFVM\nXveAF1PXc+hYAQBQughWHvAyWGU6VgmOtQEAoAQRrDzg5VJgc02lEqm0puY41gYAgFJDsPLATNzb\njpUkjbDPCgCAkkOwWqO0c5pfSHm3eb2G6esAAJQqgtUazSdSclr7DKucXMeKOwMBACg9BKs18uo4\nm5zcsTbDdKwAACg5BKs18uo4m5z6qgpV+I2OFQAAJYhgtUZed6zMTC3MsgIAoCQRrNbI62AlZfZZ\nEawAACg9BKs18nopUCJYAQBQqghWazSbSMlnUqjCu7eypTbI5nUAAEoQwWqNZhMphSv8MjPPvmdL\nTVDjM3Gl0hxrAwBAKSFYrdHcQkphD/dXSZmOVdpJYzN0rQAAKCUEqzWaW8h0rLy0eKwNy4EAAJQU\ngtUazSXy0bEKSSJYAQBQaghWazS3kFLI445VKx0rAABKEsFqjeYS3i8FcqwNAACliWC1BmnnNJ+H\nzevhSr9qgwE6VgAAlBiC1Rokkmk5yfOOlZQdEsp5gQAAlBSC1RrMZY+zyUewamb6OgAAJYdgtQZz\nC9lg5fFSoJTZwD5KsAIAoKQQrNZgMVjlaymQYAUAQEkhWK3B4lJgHjpWLbVBxeLJxdcAAADFj2C1\nBnntWNUwywoAgFJDsFqDfG5eXzzWZnre8+8NAADyI1DoAkrZ3EJKPpMqA2vLp9989sSbHhucnJMk\nfW/PgA6fntaHbulZ02sAAID8o2O1BrnjbMzM8+9dG8pk3ul40vPvDQAA8oNgtQb5OM4mpzoYkEmK\nzROsAAAoFQSrNcjHcTY5PjPVBAOKzS/k5fsDAADvEazWYG4hfx0rSaoJBVgKBACghBCs1mAukb+O\nlZTZZ8VSIAAApYNgtQZ571gFK+hYAQBQQghWq+Scy+yxymOwqg0FND2fVNq5vL0GAADwDsFqlabj\nSaVdfo6zyakJBpRyTvMcawMAQEkgWK1SdC5zt16+O1aSFGM5EACAkkCwWqVcsArlNVhVSGKWFQAA\npYJgtUqLHat83hUYzHasmGUFAEBJIFit0tQ6LAXWcKwNAAAlhWC1SuvRsQoGfKrwG0uBAACUCILV\nKq3H5nXLHmtDxwoAgNJAsFql6NyCfJbpKuVTbaiCPVYAAJQIgtUqRecWFKrwy8zy+jocawMAQOkg\nWK1SdC6Z12XAnJogwQoAgFJBsFql6NxCXjeu59SGAppbSCmeZPo6AADFjmC1StG5hXXpWNUGM0NC\nx6YTeX8tAACwNgSrVZrK7rHKt9wsq5FYPO+vBQAA1oZgtUrruRQoEawAACgFBKtVcM6t31Jg9rzA\nYYIVAABFj2C1CjOJlFJpty7BqjqYeQ06VgAAFL9lBSszu9vMDpvZUTP79AWuu8nMkmb2Pu9KLD7r\ncZxNTsDnU1WlXyPT83l/LQAAsDYXDVZm5pf0RUn3SLpC0gfN7IrzXPcnkn7kdZHFJjqb/+NslqoJ\nBuhYAQBQApbTsbpZ0lHn3DHnXELStyXdd47r/qOk70ka9rC+orSeHSsps4GdYAUAQPFbTrDqknRy\nyef92ccWmVmXpF+W9GXvSite63EA81K1oQqNTBOsAAAodl5tXv8LSX/knEtf6CIzu9/MXjCzF0ZG\nRjx66fU3tc7BqiYY0PBUXM65dXk9AACwOoFlXDMgqXvJ55uyjy21S9K3swcSN0u618ySzrl/XHqR\nc+5BSQ9K0q5du0o2JRRiKTCeTCsWTyqSHb8AAACKz3KC1fOStpvZVmUC1QckfWjpBc65rbmPzexr\nkv7l7FBVTqJzC/KZVBlYn2kVS4eEEqwAACheF00GzrmkpE9KekTSQUnfdc7tN7OPmdnH8l1gMYrO\nLSgSrpAv06HLu5rseYFsYAcAoLgtp2Ml59xDkh4667EHznPtv197WcUtOreguvD6dY441gYAgNLA\n5PVVWPdgFSRYAQBQCghWq7DewSpc6VeF3zgvEACAIkewWoWp7B6r9WJm6qgLa3Bybt1eEwAArBzB\nahXWu2MlSZsawjo5MbuurwkAAFaGYLVCzrmCBKvuhiqdHKdjBQBAMSNYrdBsIqVk2hWkYzU6Hdf8\nQmpdXxcAACwfwWqFclPX171j1VglSepnORAAgKJFsFqhwgWrsCTp5ATLgQAAFCuC1QoVKlhtash2\nrMbpWAEAUKwIVitUqGDVUhNUZcBHxwoAgCJGsFqhQgUrn8+0qT7MHisAAIoYwWqFprLBaj0HhOZs\namTkAgAAxYxgtULRuQWZnTm/bz1taqBjBQBAMSNYrVB0bkGRUIV8Plv31+5uqNLE7IKm48l1f20A\nAHBxBKsVKsTU9ZzcyAW6VgAAFCeC1QoVMljlRi6wzwoAgOJEsFqhgnasGrJDQpllBQBAUSJYrVAh\ng1VjdaXCFX71M8sKAICiRLBaoam5hYKMWpAkM1N3Y1gn2WMFAEBRIlitgHOuoB0rKXNnIB0rAACK\nE8FqBeYWUlpIuYIGq00NYfWPz8o5V7AaAADAuRGsVqBQx9ks1d1YpVg8qak5ZlkBAFBsCFYrUAzB\nalPuzkD2WQEAUHQIVisQnS2GYJWbZUWwAgCg2BCsVqAYOlbd2WDFBnYAAIrP+p8kXMKKIVjVVVWo\nNhRgKRAAUBS++eyJZV33oVt68lxJcaBjtQLFEKwkRi4AAFCs6FitwNTcgsyk2lBh37ZNDWEdH50p\naA0AgPLhnNPIdFyx+aTiC2nFkynFk2k9su+0OurDqgkSF5aLd2oFonMLqg0G5PNZQevobqzSU0dG\n5ZyTWWFrAQCUDuecBibn1DsU03ef79dwLK6R2LyGY3HFk+lzfk2F33Tbtibdvr1F1QSsi+IdWoHo\n3ILqqgq7DChlOlZzCymNzSTUXBMsdDkAgCLjnNPodEJHhmI6PBRT71BMh07HdGRoWtPxM3MQa4MB\ntUSCur6nXi01QVVVBhTwmwI+U8Cf2S20p29CTx0Z1e5j47rtkibdfmmzqghY58U7swITswuqD1cW\nuozFOwNPjs8SrABgg5uaX9Dh05ngdPj0lHqHpnVkKKaJ7IggSWqoqtDO9lr9yg1d2tke0c72Gr18\nIqpwpf+i3/+SlhrduaNFjx0e1pO9I9p9bEzvvbpDu7Y05vO3VbIIViswHIursy5U6DLU3Xhm5ML1\nPQ0FrgYAsB6cc/rS469pcHIu+2teQ1Pzmpw7E6CCAZ/aIiFd2lqj1tqQ2iIhtUWCqgkG3rB15PDp\n6WWFqpzWSEgfuKlHd+6c1z+9PKB/fmVQ29tqC34zVzEiWK3ASGxe13XXFboMpq8DQJlzzun01Lz2\nnoxqb/+k9g1EtW8gutiFMkkttUH1NFXp5khI7XUhtUdCqgtX5HXvbXskpF+9sVt//mivHj0wpF+5\ncVPeXqtUEayWaSGV1thMQq21he9YVQcDaqyuZOQCAJSJ6OyCXhmY1N6Tk3r5ZFSv9E9qOBaXJAV8\npp3ttXrPle2aTaTUVR9WWySkykBhJiY1Vlfqtm1NevroqN5yaZM66sIFqaNYEayWaXQ6Luek1khx\n7Gna1BDmWBsAKEFziZQOnJrSq/2T2tsf1d6Tkzq2ZIROc02luhuqdPPWRnU3VKm9LqQKf3GNnXzH\nzlbt6ZvQw/tO66Nv3VrocooKwWqZhqcyPzkUQ8dKymxgP3hqqtBlAAAuYDaR1MFTMR0YjOrVgahe\n6Y/qyPC0UmknKbOcd113vX7lxk0am06oqz68or1PhRKu9Osdl7XqoVdPqXcoph1ttYUuqWgQrJYp\n15JtrS2SjlVjWD8+MKR02hV8rhYAbHTOOQ1NxXXw9JQOnYpp/2BUB05N6fjojFwmQ6mq0q9NDWG9\nfXuzuuqr1NUQViR0ZlN5Q1Xh7zpfiVu3NuqZ10b18L7TurS1Rj7mKkoiWC3bcGxektQWKY6O1aaG\nKiVSaQ3H4movgjsVAWCjmIkndXgopsOnM7+e6B3R6ei85hZSi9fUV1Wosy6su3a2qrM+rI66/G8s\nX28Bv0/vubJd337+pF46MaEbNzN+QSJYLdvQVFxmmbXvYtCdvTOwf2KWYAUAeZBMpXV8dCY7Hyo7\nJ2poSifHz9w4VFXpV1N1pa7qqlu8M689EiqJ5TwvXN1Vp6ePjurHB4Z0dVd9wTbUFxOC1TKNxObV\nVF25OIm20DblhoROzDKkDQDWaCQW16HsMl5uOe/oyLQS2WNefCY11QTVHglp5+WRTICqC6m+qmJD\nL4GZme65qkMPPnVMPzs6qrsuay10SQVHsFqm4al40Wxcl87MsuofZ+QCACxXPJnS0eFpHTwV06FT\nU4shamwmsXhNWySone0R3b69WeMzCbVFQmqtDRbND9bFZktztS5rr9Uzx8Z0586WDR00JYLVsg3F\n5otm1IIkhSr8aqkNMiQUAM5jfCahA4NTOnhqSgdOTenA4JSOjpy5Iy/gM7VFQtrSVK1btzUtLuUt\nPWh4c1N1ocovKVd31enQ6ZhOTc6rq2Fjz7UiWC3T8FRcV3RECl3GG2xrrlbv0HShywCAgnLOaTA6\nr/0DUe0bnNKP9p/W4OScpubPHDYcCQXUURfW2y5tVkddZhmvqTooP3dVe+LS1hpJUu9wjGBV6AJK\nQSrtNDpdXEuBUuYnhL/b3adkKk2LGsCGkE479Y3Pat9AVPsHp7R/8I1HvfhMaq4JaltLjTrqQuqo\ny9yRt7QLBe/VhirUWR9S71BM79i5sfdZ8V/aMozNxJV2mXX3YnJVV53iybSOjkzrsvbi6qYBwFrN\nL6R0ZGhaB05FdWAws5z3Sn9U8eyGcr+Z2uqCuqSlRp31YXXWh9VewKNeNrodrbV68siI5hKpDXNX\n5LkQrJYhN3W9pcg6Vld1ZQ6EfrU/SrACULLSaaeTE7OLYw0yow2m9PrY7OJ+qOpKvy7viOj6nnp1\n1mVCVGskqICPEFUstrfV6vHeEb02Mr3499NGRLBahtxw0GLavC5l9lhVV/q1byCqX93VXehyAOCC\n0mmngck5HRmOqXdoWr1DMR0ZmtbR4ek3DNdsqKpQeySk27c3q6MurM66kBqqKzf83WbFrqexSqEK\nn3qHYgQrXFiuY1UsU9dzfD7TlZ11enUgWuhSAOANRqfjOnhqarED1Ts8rSNDMc0mzgSotkhQO9pq\n9YGbu7WjrVZ9Y7Nqqw0qWLFxl5FKmd9nuqSlRkeGp+WcK6sp8ytBsFqGodxSYE1xdawk6cquiL71\n3Aml0o67WwCsu1Ta6djI9OI4gwOnpnTwVEyj0/HFa5prgoqEA7p2U73aIiG1RYJqrX3jdHLnMh0P\nlLYdbbXaPzil4Vi86JoR64VgtQzDsXk1VFUU5YbIq7vq9NcLab02Ms3p4gDyaiae1KHTscW5UPsH\np3RgMKqFVGYflN9naqsNqqexSrdsbVR7XUhtkZBquCNvw9ieG7swFCNYXYiZ3S3pv0vyS/qKc+4z\nZz3/65L+SJJJikn6uHNur8e1FsxwrPhGLeRcvWQDO8EKgBdyc6EOncoM1zx4KqYDp6b0+tiMXCZD\nKRIK6MrOOt28pTFzyHB9WC01zIXa6OqrKtVaG9SRoWndvr2l0OUUxEWDlZn5JX1R0rsl9Ut63sx+\n4Jw7sOSy45LucM5NmNk9kh6UdEs+Ci6E4Vi86Dau52xrqVG4wq99g1H9yo2bCl0OgBIzl0jp8FCm\nC3UoG6IOnp5SbMlwzcbqSrVHQrrrslZ11oUzZ+SFKzbsHhpc2I62zPE2iWS6KFd68m05HaubJR11\nzh2TJDP7tqT7JC0GK+fcz5dcv1tSWf0NPzw1r0tbmgtdxjn5faYrOiPaxwZ2ABfgnNNILK792b1Q\nD+87rVPReY1Nx5VtQqky4FN7JKTLOzKHDHdkl/JCbCbHCuxoq9XPjo7q2OjGnLG4nGDVJenkks/7\ndeFu1G9K+uFaiiom6XTmD6NCd6y++eyJ8z5X6fdpT9+Evr67Tx++dfM6VgWgGKXSTq+PzWT3QOXO\nyYtqdPrMQcMNVRXqqAvrmk11mSNeIow0gDc2N1Wpwm/qHYoRrNbKzN6hTLB623mev1/S/ZLU09Pj\n5UvnzcRsQsm0U1ttcS4FSlJXfVjPHBvTaCx+8YsBlJXZxJIN5dkDh18dWLKh3EytkaA2N2YOGu6o\ny0wn38iTsZFfFX6ftjXXbNizbJcTrAYkLZ0+uSn72BuY2TWSviLpHufc2Lm+kXPuQWX2X2nXrl3u\nXNcUm9yohdYivruhsz5z4OVgdK7AlQDIF+ecTk/NLwlQmTB1fMmG8tpQQJd3RHTTlkZ11oXVUR9S\nSy3TybH+drTV6PBQTGPTcTUV4aiifFpOsHpe0nYz26pMoPqApA8tvcDMeiR9X9JHnHO9nldZQItT\n14u4Y9VSG1SF3zQwQbACykEyldbx0ZnFQ4b3Z5fzJrMHDUtv3FDeEcmEKDaUo1hk7lI/pd6hmG4j\nWL2Rcy5pZp+U9Igy4xa+6pzbb2Yfyz7/gKT/XVKTpC9l/6dOOud25a/s9TOcXV4r1nELUmYDe3sk\npIHJ+UKXAmCFFlJp9Q7F9FdPHdfA5JwGJ+d0emp+cSkv4DO114W0vbVG7dnjXdhQjmLXVBNUY3Wl\neoemddslxXnzV74sa4+Vc+4hSQ+d9dgDSz7+LUm/5W1pxWEkF6yKdNxCTldDWC+dmFQ67eRjjgxQ\nlHIh6tX+qF4diGrfQFQHT8WUSKUlScGAT531YWZDoSxsb63RiycmNtzJIIzDvYihqXlFQoGi/+mw\nsy6s3ckgkpuDAAAZ1ElEQVRxvT42o20tNYUuB9jwEslMiNo3ENX3XxrIdKKi80qmM52oUIVPnXVh\n3bItE6K66sNq5K48lJGtzdV69vi4TkXntKlh4xxXRLC6iOGpeFFvXM/pashsYH91IEqwAtbZXCKl\nQ6entC97xMu+gczhw7lOVC5E3batSV0NmRDFaAOUu81N1ZKkE+OzBCucMRybV1uRLwNKmT1gAZ9p\n30BU913XVehygLI1PpPIzoaK6sDglH7+2phGYmeGbIYr/OqoD+mWbY3qqidEYeOqC1eoLlyhvrFZ\nveWSQlezfghWFzEci+umLY2FLuOi/NkNrvsGpgpdClAWnHPqn5hbPGg4d2feqeiZm0Q66kJqrK7U\nlZ116qoPqaM+zJ15wBI9jVU6MT5b6DLWFcHqApxzmaXAIh61sFRnfVj7BqNyzvEHO7AC6bRT3/is\nXh2Iav9AZmP5/sEpRecy4w1MmbEmnfVhXdddr466sDrqQqoO8kcocCGbm6r06kBUk7OJi19cJvhT\n4QKicwtKpNJqKZFg1VUf1nPHx9U3NqstzdWFLgcoSslUWsdGZ7RvILMXav9gZkkvFs8cOlzp9+my\njlrde3WHZhNJddaF1RYJbcjDZIG12tx4Zp/VRkGwuoDcDKu2Eti8LmWClZTZwE6wAs4c93LmvLwp\nHTo9pfmFzKbyCn9mBtwVnRF11YfVWZ8JURvp1nAgn9rrQqrwm/oIVpAyoxak4p66vlRrJKhKv0/7\nBqP6xWs7C10OsK4mZhLaPzilfdn9UPsHom847iUSCuiKzog+dPNmxeYX1FkfVjMzooC88vtMmxqq\ndGKMYAVlRi1IxX1O4FIBn08722v1yslooUsB8mpqfkH7+qPa2x/VK/2TeqU/qoHJM0c61Ycr1FEf\n1l07WzP7oTjuBSiYzY1VevLIiGYTSVVVln/sKP/f4RqcOc6mNDpWknTbJU3666ePKzq3oLpwRaHL\nAdYskUzr0Okp7T05qe+/OKD+iTmNTMcXn2+srlRXfVhXd9Wpsz5z5EsVm8qBotHTVKV0r7T3ZFS3\nXdJU6HLyjj99LmA4Nq+aYKCk7vy556p2PfjkMT16YEi/cuOmQpcDrIhzTn1js9rbP6mXT05q78lJ\n7RucUiKZ2RNVHQyouyGsa7vrtKmhSpvqw4QooMj1NGaGg754YoJgtdGV0qiFnOu669VVH9ZDr54i\nWKHoDcfm9crJqPb2T+rhfafVPzGnuYWUpMzG8s66zLl5mxrC6m6sYjkPKEFVlQG11Aa1p2+i0KWs\nC4LVBQzH5ktm1EKOmemeq9r1t8/0aWp+QZEQy4EoDrOJpF7tj+qlbCdq78lJDWaHbfp9ptbaoK7q\nimQ6UQ1htdZydx5QLjY3VunFExNKp518Zf7/NcHqAoZjcV27qb7QZazYPVd36Cs/O65HDwzpf7qB\nrhXWn3NOJ8Zn9cLrE3rxxIR+emhYp6fmlT1/WI3VldrUENZ1PQ3qbgiroy7MnCigjPU0VumFvgkd\nG53Wpa21hS4nrwhW5+Gc09DUfMktBUrS9d316qgL6aFXTxOssC4SybT2D0b1wusTeqFvXHv6JjWa\n3WBeEwyoPRLSHTta1N1YpU0NVaphXxSwoeQOZN7TN0Gw2qhi8aTmF9JqLYEDmM/m85nuuapDX3+2\nT7H5BdWyHAiPTceTerFvQn/99Ot6fWxG/ROzWkhl2lGN1ZXa3Filt17apM2N1WqNBDmAGNjgmmsq\nVV9VoT19E3r/TT2FLievCFbnkZthVSpT18/23mva9dWnj+snB4f1S9d3FboclLjByTm90DehPa+P\n6/nXJ3To9JTSLnOGXmd9WDdtadTmpmptbqpiXx+ANzEz3djTsCE2sBOszmM4ltlUW2qb13Ou725Q\neySkf331FMEKK5JMpXXodEx7+ib0Qt+EXuybWBy+WVXp1/U99frkXdt105YGHR2aVrDCX+CKAZSC\nGzY36CeHhjUxk1BDdWWhy8kbgtV5LE5dry3NjpXPZ7r7qnZ987kTmo4n2dOC85qOJ/XyiUk9//q4\nXugb10snJjWbyIw8iIQC6mmq1vU99drcWK32ujN36p0cnyNUAVi2XZsbJGXmWb3z8rYCV5M//G17\nHrmOVSnuscp57zUd+trPX9dPDg7pvuvoWiFjbDquz/2oV6+PzahvbFanonOLy3rtdSFds6lemxur\ntLmpSnXMjQLgkWs21SvgM+3pI1htSMNTcYUr/Kot4U7PjT0NaosE9dCrpwhWG9hILK5nj49p97Ex\nPXtsXEeGpyVlBnBuaqjSHTtatKWpWt2NVQrRgQKQJ+FKv67sjJT9PqvSTQ15NhSLqzUSLOmf1nN3\nB37ruROaiSdL6mgerN7YdFy7j43rmWOj2n1sXEezQaq60q8btzTql67v0tTcgroawgr4mB0FYP3c\nsLlB33ruhBZSaVX4y/PPH/6mPY/hEp1hdbZ7r84sBz52aFi/eG1noctBHkRnF7T7+JieeS3z6/BQ\nTJJUGfBpS1OV7r6yXVubq9VZH17cH9VQVb4bRwEUr1u2Nuqvn35dL52Y1M1bGwtdTl4QrM7BOafj\nozN626XNhS5lzW7c3KCW2sxyIMGqPMwlUnr+9XE9fXRUP39tTPsGo3JOClX4smMPqrStpUZdS4IU\nABSDt1zarIDP9PjhYYLVRtI/MafhWFzXZ+9gKGV+n+m9V3fom8+eUN/YzOL0W5SOVNpp30BUX/zp\nUR0dnlbf+KxSaSe/mbobw7prZ6u2tdSouyGsQJm21gGUh0ioQjdsbtATvSP6w7svK3Q5eUGwOocX\nT2Q21t3QU3rnBJ7Lx++8RN95/qQ+88ND+vKHbyx0OViGwck5PXVkRE8eGdXTR0c1ObsgSeqoC+m2\nbU26tLVGW5qqOV8PQMm5Y0eLPvvIYQ3H5kt2pNGFEKzOYU/fhKor/drZVh7nGbVFQvqf77xEn/tx\nr3YfG9Ot25oKXRLOMr+Q0u5jY3qyd1RPHhlZ3HDeFgnqXZe36fbtzRqaijOPDEDJu3NnJlg92Tuq\n991YfufZ8qf0Oezpm9B1PfUluazyzWdPnPPxSLhCdeEK/afvvKyn/ugu9t4UmHNOr41M6/HDI3qi\nd0TPvDamZNop4DNtba7WvVe169K2WrXVZu5MnYmnCFUAysIVHRG11Ab1+OFhgtVGMBNP6uCpKX3y\nHZcWuhRPVfh9uvuqdn3n+ZP63p5+/dpN3YUuacOZTST186Njerx3WI8fHlH/ROaYmEtba3TL1kZt\nb6vV1ubqsr0FGQCkzLmBd+xo0Y8PDGX2i5bZD/oEq7PsPTmptMvM2ig313TV6ZnXxvSnjxzWvdd0\n0AFZByfHZ/WnDx/SodMxHRudUSrtVOn36ZKWat13Xad2tNUy+gDAhnPHjhb9/Z5+vXxyUjeW2d+3\n/M16ltxE2Ot7yutftJT5KeG9V3foy0+8pi8/flT/y3vK846MQkqlnV4+OaFHDw7rJweH1DuU2SvV\nXFOpW7c2amd7RFuaqkpymRkAvHL79mb5THqid4RgVe72nJjQjrYa1YUrCl1KXnQ3VumXr+/S/3jq\nuD5wU4+6G6sKXVLJm00k9dSRUT16YEiPHRrW2ExCAZ/ppi2N+uP3dms2nlJzGQybBQCv1FdV6rru\nej1xeFj/6d07Cl2OpwhWS6TTTi/2Tei913QUupS8+sO7d+qH+07pMz88pC/++g2FLqcknYrO6dGD\nw/r6M316bWRaybRTqMKnHW21etcVbdrRWqtwZebcvapK/jcDgLPdubNVf/5or8am42qqKZ8fPvkT\nf4nXRqY1NZ/UDWW4DLhUR11YH7/jUv35o7264qdH9Yky26ifD+m00ysDUT12cEiPHhzWgVNTkqTG\n6krdvLVRl3dEtKWpuuw2YQJAvtyxo0V/9uNePXVkVL90fVehy/EMwWqJ3P6qclvvPZdP3nWpjo1O\n67OPHFbAZ/rtOy4pdElFZ2p+QU/1juqxQ8N6ondYo9MJ+Szz38en77lM77q8Vc8eGy/pg7oBoFCu\n7qpTY3WlnugdIViVqz19E2qoqtDW5vI/9sXvM33uV69VKu30f//wkPw+02/dvq3QZRWUc05Hh6f1\n08PDeuzQsJ47Pq60k8IVfm1vq9Fdl7Vqe2utqrN3Uz53fIJQBQCr5POZ3r69WU/2jiiddvKVScef\nYLXEnhMTunFzw4b5yzLg9+kv3n+dUmmn//NfDyrgM/37t24tdFnran4hpWdeG1sMU7nZUpe11+r2\n7S3a2Var7sYqlvgAIA/u2Nmif3x5UPsGo7pmU3kcI0ewyhqfSejYyExZToG9kIDfp89/8Hp94hsv\n6r/+8wH5faaP3Lal0GXl1Zd+elSHTsd0+HRMx0antZByqvCbLmmp0X3XdWpnW63qmS0FAHn39u0t\nMpMePzxCsCo3L2UPXr6xzDeuS+c+9uZt25t1YnxW/9s/7df/t6dfD3z4RnXWhwtQnfcSybReeH1c\nT/SO6PHDIzo8FJOU2Xi+a3OjdrYz8RwACqGpJqiru+r0RO+Ifued2wtdjicIVll7+iYU8FnZJOaV\nCvh8+tDNPXq8d0RP9o7onZ97Qp94xyX6rdu3KVThL3R5K+Kc0+tjs3r66Kie6B3Rz4+OaiaRUoU/\nM1vqnpZ27WyvVUtNcMMs+wJAsbpzR4u+8NOjmpxNlMVqAcEqa0/fhK7sjCzOHtqIAn6f3nV5m27s\nadC+waj+nx/16rsv9OuP33u53n1FW1GHkFPROT3z2pi+vrtPr43MKDq3IEmqr6rQlV112tlWq20t\n1QoGNu6/XwAoRu+5ql2ff+yo/ubnffrUu0q/a0WwkrSQSmtv/6Q+eHNPoUspCg3Vlfryh2/Uz46M\n6r/9837d/3d71FUf1j1Xteveazp0fXd9QUNWPJnSgcEpvXhiUi+dmNBLJyY1MJnZdF5V6de25mrd\nubNFlzTXqKmmsqgDIQBsdFd21umeq9r14JOv6ddv7VFziQ8LJVhJOnhqSvML6Q0xv2ol3ra9WQ99\n6nb9yyuD+pe9p/Q3z7yur/zsuDrrQrrn6g7dtKVBO9sj6snTXXPJVFqDk/PqHYrp8FBMR4ZiOjw0\nrdeGp5VIpSVJnXUhXb+5QR996xbddkmTXjoxKR9BCgBKyh+8Z6d+dGBIX3jsqP7rv72y0OWsCcFK\nG2sw6HKdvcH9nZe36S2XNOvg6SntG4jqaz9/XX/1s+OSMnOedrTVaGd7rTrrw2qsrlR9VaUaqypV\nX1VxzuXV+EJaU/MLis4taGpuQVPzSY1NxzU4OafByXkNTM7p9NS8Umm3+DX14Qq1RoK6ZVujuhuq\n1N1Y9YYzHfeejBKqAKAEXdJSo/ff1K1vPNunj751izY3le48SYKVMsGqsy6kjrryuAsuX8KVft3Q\n06AbehqUSKZ1w+Z6HToV06HTMR06PaXHDmWmk6+Wz6S6cIXqwpVqrQ1qe1uNGqoq1VYbVGskVHKb\n6AEAy/e779yuf3hxQJ/7Ua8+/8HrC13Oqm34YDUTT2r3sXHduq2x0KWUlMqAT/sGMuflXdpao0tb\nayRJqbTT3EJKM/GkZhMpzSaSSqbcm77e7zOFK/0KV/gVqsj8M1jho+MEABtUaySk33zbVn3hp0d1\n/9u36aquukKXtCobOlg55/SHf/+Kxmfi+vCtmwtdTlnw+0w1wYBqghv6Py0AwCrcf8c2fePZPv3J\nw4f0d795S6HLWZUNPRHxK08d17++ekp/ePdlunVbU6HLAQBgQ4uEKvTJu7brqSOjeurISKHLWZUN\nG6yeeW1Mn3n4kO65ql2//faNffgwAADF4sO39qirPqw/efiQ0uk3byUpdhsyWJ2KzumT33xRW5qq\n9NlfvZY5RwAAFIlgwK8/eM8O7RuY0u9992WNz6z+pqhCWFawMrO7zeywmR01s0+f43kzs89nn3/F\nzG7wvlRvxJMpffzrL2p+IaW//MiN7AUCAKDI3Hdtlz71zu166NVTeufnHtc/vNQv50qje3XRYGVm\nfklflHSPpCskfdDMrjjrsnskbc/+ul/Slz2u0xODk3P643/Yp5dPTuqzv3qtLm2tLXRJAADgLD6f\n6ffevUP/+ju3a0tztX7vO3v17/76eZ0cny10aRe1nHbNzZKOOueOSZKZfVvSfZIOLLnmPkl/6zJx\ncreZ1ZtZh3PulOcVL5NzTifGZ/Xs8XE9e2xczx4fU/9E5tiTj995ie69uqNQpQEAgGXY0Varv//Y\nW/T13X3604cP6Rf+/Enduq1RW5qrtbW5WluaMv/srA/n5QSQ1VhOsOqSdHLJ5/2Szr4H8lzXdEkq\nWLDa0zeh9z3wjCSpsbpSN29p1H9461bduq1Jl3fQqQIAoBT4faZ/95YtevcVbfrzH/dq3+CUdh8b\n19xCavGaX9u1SX/6vmsLWOUZ67rByMzuV2apUJKmzezwerxun6SXJP2l99+6WdKo998W58H7vb54\nv9cX7/f64v1eZ7+ex+/92eyvPFvWwMvlBKsBSd1LPt+UfWyl18g596CkB5dTWCkwsxecc7sKXcdG\nwfu9vni/1xfv9/ri/Ua+LOeuwOclbTezrWZWKekDkn5w1jU/kPQb2bsDb5UULeT+KgAAgEK4aMfK\nOZc0s09KekSSX9JXnXP7zexj2ecfkPSQpHslHZU0K+mj+SsZAACgOC1rj5Vz7iFlwtPSxx5Y8rGT\n9AlvSysJZbOsWSJ4v9cX7/f64v1eX7zfyAsrlYFbAAAAxW5DHmkDAACQDwSrVbjYET/wlpl91cyG\nzWxfoWvZCMys28x+amYHzGy/mX2q0DWVMzMLmdlzZrY3+37/t0LXtBGYmd/MXjKzfyl0LSgvBKsV\nWuYRP/DW1yTdXegiNpCkpN93zl0h6VZJn+C/8byKS7rLOXetpOsk3Z29uxr59SlJBwtdBMoPwWrl\nFo/4cc4lJOWO+EGeOOeelDRe6Do2CufcKefci9mPY8r85dNV2KrKl8uYzn5akf3F5tc8MrNNkt4r\n6SuFrgXlh2C1cuc7vgcoO2a2RdL1kp4tbCXlLbss9bKkYUk/ds7xfufXX0j6Q0npQheC8kOwAnBO\nZlYj6XuSftc5N1XoesqZcy7lnLtOmVMrbjazqwpdU7kys38jadg5t6fQtaA8EaxWblnH9wClzMwq\nlAlV33DOfb/Q9WwUzrlJST8Vewrz6a2S/q2Zva7MVo67zOzrhS0J5YRgtXLLOeIHKFlmZpL+StJB\n59yfFbqecmdmLWZWn/04LOndkg4Vtqry5Zz7z865Tc65Lcr8+f2Yc+7DBS4LZYRgtULOuaSk3BE/\nByV91zm3v7BVlTcz+5akZyTtNLN+M/vNQtdU5t4q6SPK/CT/cvbXvYUuqox1SPqpmb2izA9uP3bO\nMQIAKFFMXgcAAPAIHSsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAnBRZpbK\nzrPab2Z7zez3zcyXfW6XmX3+Al+7xcw+tH7Vvum157Ln8BUFM3u/mR01M2ZVAWWIYAVgOeacc9c5\n565UZjL4PZL+iyQ5515wzv3OBb52i6SCBKus17Ln8C2bmfnzVYxz7juSfitf3x9AYRGsAKyIc25Y\n0v2SPmkZd+a6L2Z2x5Jp7S+ZWa2kz0i6PfvY72W7SE+Z2YvZX2/Jfu2dZva4mf29mR0ys29kj9eR\nmd1kZj/PdsueM7NaM/Ob2WfN7Hkze8XMfns59ZvZP5rZnmz37f4lj0+b2efMbK+k287zmldmP345\n+5rbs1/74SWP/2UumJnZ3dnf414z+4mH/xoAFKlAoQsAUHqcc8ey4aH1rKf+QNInnHNPm1mNpHlJ\nn5b0B865fyNJZlYl6d3OuflsMPmWpF3Zr79e0pWSBiU9LemtZvacpO9Ier9z7nkzi0iak/SbkqLO\nuZvMLCjpaTP7kXPu+EXK/w/OufHsuXzPm9n3nHNjkqolPeuc+/3sOaCHzvGaH5P0351z38he4zez\nyyW9X9JbnXMLZvYlSb9uZj+U9D8kvd05d9zMGlf8RgMoOQQrAF56WtKfmdk3JH3fOdefbTotVSHp\nC2Z2naSUpB1LnnvOOdcvSdl9UVskRSWdcs49L0nOuans878g6Roze1/2a+skbZd0sWD1O2b2y9mP\nu7NfM5at5XvZx3ee5zWfkfS/mtmm7O/viJm9U9KNyoQ0SQpLGpZ0q6Qnc0HPOTd+kboAlAGCFYAV\nM7NtygSRYUmX5x53zn3GzP5V0r3KdJDec44v/z1JQ5KuVWY7wvyS5+JLPk7pwn9GmaT/6Jx7ZAV1\n3ynpXZJuc87NmtnjkkLZp+edc6kLfb1z7ptm9qyk90p6KLv8aJL+xjn3n896rV9cbl0Aygd7rACs\niJm1SHpA0hfcWae4m9klzrlXnXN/Iul5SZdJikmqXXJZnTLdoLSkj0i62Ebxw5I6zOym7GvUmllA\n0iOSPm5mFdnHd5hZ9UW+V52kiWyoukyZrtKyXzMbKI855z4v6Z8kXSPpJ5LeZ2at2WsbzWyzpN2S\n3m5mW3OPX6Q2AGWAjhWA5Qhnl+YqJCUl/Z2kPzvHdb9rZu+QlJa0X9IPsx+nspvCvybpS5K+Z2a/\nIelhSTMXemHnXMLM3i/p/83ui5pTpuv0FWWWCl/MbnIfkfRLF/l9PCzpY2Z2UJnwtHuFr/lrkj5i\nZguSTkv6v7L7tf5Y0o8sM4JiQZl9Zruzm+O/n318WJk7KgGUMTvrB04AKBtmtkXSvzjnripwKW+Q\nXZJc3NAPoHywFAignKUk1VmRDQhVpms3UehaAHiPjhUAAIBH6FgBAAB4hGAFAADgEYIVAACARwhW\nAAAAHiFYAQAAeOT/B47BYQAHMLYnAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(hsc['hsc_ra'], hsc['hsc_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, hsc, \"hsc_ra\", \"hsc_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add PanSTARRS" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8nGd99/vvTxrNqtEuWV4k74njbA5xFhISklCyERra\nh5Yt0EOBPBTozulyuh2enp7Spy2vpxRomhIObU8CbYFSloSUJoSQxU7sJE68JrJkLba1yxrty8z1\n/DEjRzG2JVv3zD0z+rxfr3lZM3Nr7p/HsvTVdV337zLnnAAAALB0JX4XAAAAUCwIVgAAAB4hWAEA\nAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHgn4deK6ujq3bt06\nv04PAACwaLt37+53ztUvdJxvwWrdunXatWuXX6cHAABYNDNrX8xxTAUCAAB4hGAFAADgEYIVAACA\nRwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAe\nIVgBAAB4JOB3AZAe2tlx1ufff01zjioBAABLwYgVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAA\ngEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAA\nHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4\nhGAFAADgEYIVAACARxYMVmb2FTPrNbO9Z3j+A2b2spm9YmbPmNnl3pcJAACQ/xYzYvVVSbef5fk2\nSW91zl0q6U8l3e9BXQAAAAUnsNABzrknzWzdWZ5/Zt7dHZLWLL0sAACAwuP1GquPSHrE49cEAAAo\nCAuOWC2Wmd2sdLB6y1mOuVfSvZLU3Nzs1akBAADygicjVmZ2maQvS7rbOTdwpuOcc/c757Y757bX\n19d7cWoAAIC8seRgZWbNkr4l6YPOuVeXXhIAAEBhWnAq0My+JukmSXVm1iXpTySVSZJz7j5Jfyyp\nVtKXzEySZp1z27NVMAAAQL5azFWB71vg+Y9K+qhnFQEAABQoOq8DAAB4hGAFAADgEYIVAACARwhW\nAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEc82ysQp/fQzg6/SwAAADnCiBUAAIBHCFYAAAAeIVgBAAB4\nhGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOAR\nghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcI\nVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHlkw\nWJnZV8ys18z2nuF5M7PPm1mLmb1sZm/yvkwAAID8t5gRq69Kuv0sz98haXPmdq+kv1t6WQAAAIVn\nwWDlnHtS0uBZDrlb0j+5tB2SqsxspVcFAgAAFAov1litltQ5735X5jEAAIBlJaeL183sXjPbZWa7\n+vr6cnlqAACArPMiWB2V1DTv/prMYz/FOXe/c267c257fX29B6cGAADIH14Eq+9I+lDm6sBrJQ07\n54578LoAAAAFJbDQAWb2NUk3Saozsy5JfyKpTJKcc/dJeljSnZJaJI1L+nC2igUAAMhnCwYr59z7\nFnjeSfqkZxUBAAAUKDqvAwAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBH\nCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4h\nWAEAAHiEYAUAAOARghUAAIBHCFZ5pm9kSg881aqOwXG/SwEAAOco4HcBeF3n4Lj+8dkjGp9Oqq5j\nSM01Ub9LAgAA54BglScOdSf00HMdiofLVBkpY8QKAIACxFRgHtjdPqR/3tGu+nhI//3GDdrSWKHu\n4UlNzSb9Lg0AAJwDgpXPfvxqn775Qpc21JXrY2/ZoHi4TM01UTlJXUMTfpcHAADOAcHKR8eHJ/To\nvm5durpSH7purUJlpZJ0cm1VJ9OBAAAUFIKVj7qHJyVJt2xpUKDk9X+KSLBU9eUh1lkBAFBgCFY+\n6hudUolJtbHgTz3XXBNVx+C4nHM+VAYAAM4HwcpH/SNTqo4GFSj96X+G5pqoxqeTGhid9qEyAABw\nPghWPuofnVZdeei0zzXVptdZMR0IAEDhIFj5JOWc+kenVB8/fbBqiIcUCpQQrAAAKCAEK58Mj89o\nNuXOOGJVYqamzDorAABQGAhWPukbnZIk1cV/euH6nOaaqHoSkxqdms1VWQAAYAkIVj7pzwSr+jOM\nWEk62Sh0T+eJHFUFAACWgmDlk76RKYUCJSoPnXm7xqbq9AL2F9qHclUWAABYAoKVT+YWrpvZGY+J\nBEvVEA/phQ6CFQAAhYBg5ZOztVqYr7kmqhc7TyiVolEoAAD5jmDlg+nZlIYnZhYdrE6Mz6i1fywH\nlQEAgKUgWPng5ML1M/Swmq8psyEz04EAAOS/RQUrM7vdzA6ZWYuZ/d5pnq80s++a2R4z22dmH/a+\n1OJxstVC+ZlbLcypj4dUEQ7oRYIVAAB5b8FgZWalkr4o6Q5JWyW9z8y2nnLYJyXtd85dLukmSX9t\nZgunhmWqf2RKJi1qKrDETNuaq/VCOy0XAADId4sZsbpaUotzrtU5Ny3p65LuPuUYJylu6UvcyiUN\nSqKr5Rn0jU6pKlqmstNsvnw6b2qu0qu9I0pMzmS5MgAAsBSL+cm+WlLnvPtdmcfm+4KkiyQdk/SK\npF93zqU8qbAI9Y9OLWq0as6bmqvlHI1CAQDId14tXr9N0kuSVknaJukLZlZx6kFmdq+Z7TKzXX19\nfR6durA459Q/Mq26RSxcn7OtuUpmYjoQAIA8t5hgdVRS07z7azKPzfdhSd9yaS2S2iRtOfWFnHP3\nO+e2O+e219fXn2/NBS0xOavpZOqsW9mcqiJcptVVEbX2j2axMgAAsFSLCVbPS9psZuszC9LfK+k7\npxzTIeltkmRmKyRdKKnVy0KLRd/I3BWBiw9WUrqfVcfgeDZKAgAAHlkwWDnnZiV9StKjkg5I+lfn\n3D4z+7iZfTxz2J9Kus7MXpH0mKTfdc71Z6voQnYuPazma66JqpNgBQBAXjvzDsDzOOcelvTwKY/d\nN+/jY5Ju9ba04tQ3OqVgaYkqwot6609qqomqf3RaY1Ozip1l42YAAOAfOq/nWP/IlOrKg2fdfPl0\n1tamO7AzHQgAQP4iWOVY/+jUOV0ROKe5hmAFAEC+I1jl0EwypRPji9t8+VRzwYp1VgAA5C+CVQ4N\njE7LSefUamFOZaRM8XCAESsAAPIYwSqHTm6+fB5TgWZGywUAAPIcwSqH5lot1JWf3/7UBCsAAPIb\nwSqH+kemVBkpUyhQel6f31wTVdfghFIp53FlAADACwSrHOobnTrv0SpJaq6NajqZUndi0sOqAACA\nVwhWOeKcS7daOI+F63NouQAAQH4jWOXI6NSsJmdS57yVzXwEKwAA8hvBKkf6R6clnfvmy/Otqoqo\nxOhlBQBAviJY5cjQeDpY1cTOf41VWWmJVlVFGLECACBPEaxyZGRiRpJUES5b0uvQcgEAgPxFsMqR\nxOSswmUlCgaW9pY310SZCgQAIE8RrHIkMTmj+BJHq6R0y4X+0WmNTc16UBUAAPASwSpHRiZnVREO\nLPl1uDIQAID8RbDKkcTkzJLXV0kEKwAA8hnBKgeccxqZmPVmKjATrFhnBQBA/iFY5cD4dFJJ51QR\nWfpUYGWkTPFwgBErAADyEMEqBxKT6VYLXoxYmRktFwAAyFMEqxwYmUxfwefF4nWJXlYAAOQrglUO\nJDxqDjqnuSaqrsEJpVLOk9cDAADeIFjlQCIzYhX3asSqNqrpZErdiUlPXg8AAHiDYJUDI5MzigZL\nFSj15u2m5QIAAPmJYJUDiclZz6YBJYIVAAD5imCVAyOTM55NA0rSqqqISoxeVgAA5BuCVQ6MeDxi\nVVZaolVVEUasAADIMwSrLEs55/mIlUTLBQAA8hHBKsvGpmaVclI84t2IlZQOVkwFAgCQXwhWWeZ1\nc9A5zbVR9Y9Oa2xq1tPXBQAA549glWVz29l4ucZK4spAAADyEcEqy0YmvG0OOodgBQBA/iFYZZmX\nGzDPNxesWGcFAED+IFhlWWJyVrFQQKUl5unrVkbKFA8HGLECACCPEKyybGRyxvOF65JkZrRcAAAg\nz3j/Ex9vkJicWfLC9Yd2dpzxuX1HE3poZ4fef03zks4BAACWjhGrLBuZmPV84fqc6mhQQ+PTcs5l\n5fUBAMC5WVSwMrPbzeyQmbWY2e+d4ZibzOwlM9tnZj/2tszCNJtMaXRqVhUeNwedUx0t02zKaZRe\nVgAA5IUFh1LMrFTSFyW9XVKXpOfN7DvOuf3zjqmS9CVJtzvnOsysIVsFF5L+0Wk5ed9qYU51LChJ\nGhqbzsrrAwCAc7OYEaurJbU451qdc9OSvi7p7lOOeb+kbznnOiTJOdfrbZmFqScxKcn75qBzqqPp\nYDU4PpOV1wcAAOdmMcFqtaTOefe7Mo/Nd4GkajN7wsx2m9mHvCqwkOUqWJ0YZ8QKAIB84NUcVUDS\nlZLeJiki6Vkz2+Gce3X+QWZ2r6R7Jam5ufivYusZmZIkxSPZmQoMBkoUCwU0yFQgAAB5YTEjVkcl\nNc27vybz2Hxdkh51zo055/olPSnp8lNfyDl3v3Nuu3Nue319/fnWXDB6E5MySeWh7HW1qImWaYgR\nKwAA8sJigtXzkjab2XozC0p6r6TvnHLMf0h6i5kFzCwq6RpJB7wttfD0JCYVDwdUYt52XZ+vKhrU\nEGusAADICwsOpTjnZs3sU5IelVQq6SvOuX1m9vHM8/c55w6Y2Q8kvSwpJenLzrm92Sy8EPQkpjzf\nI/BUNbGg9h0bVjLlPN82BwAAnJtFzVE55x6W9PApj913yv2/lPSX3pVW+HoSk1nZzma+6mhQKSd1\nJya1uiqS1XMBAICzo/N6FvWOTCmepeagc6pj6dfvZM9AAAB8R7DKkqnZpAbHpnMyYiVJXUMTWT0P\nAABYGMEqS/oyrRay1cNqTlWkTCZGrAAAyAcEqyzpSWR6WGU5WAVKS1QRKVPnEMEKAAC/EayypHeu\n63qWmoPOVx0tU9cgU4EAAPiNYJUlc9vZZHvESkqvs+pixAoAAN8RrLKkZ2RKZaWmaLA06+eqjgV1\nPDGp6dlU1s8FAADOjGCVJT2JSTXEw1ntuj6nOhqUc9KxE0wHAgDgJ4JVlvSNTKk+HsrJuU72smI6\nEAAAXxGssqQnMakVFTkKVvSyAgAgLxCssqQnMaUVFeGcnKsyUqZAidHLCgAAnxGssmByJqnhiZmc\nBasSM62qiqiTESsAAHxFsMqC3kxz0IYcrbGSpKaaCC0XAADwGcEqC3pG0j2scjViJUlrqqLqpEko\nAAC+IlhlwVxz0FwGq6aaiPpHpzQxnczZOQEAwBsRrLKgx5epwKgkMR0IAICPCFZZ0JOYVDBQoqpo\n9rezmbOmei5YMR0IAIBfCFZZ0JOYVGNFWJaDrutzmqojkmgSCgCAnwhWWdA9nLvmoHPq4yGFAiX0\nsgIAwEcEqyzoHcldc9A5ZqY11RGuDAQAwEcEK4855zIjVrkNVlJ6nVXXCUasAADwC8HKYyNTs5qY\nSeZ8KlBKt1xgxAoAAP8QrDzW60MPqzlN1VENT8woMTmT83MDAACClee6h9M9rHwJVnO9rBi1AgDA\nFwQrj811XW/0ZY0VLRcAAPATwcpj3T5PBUqi5QIAAD4hWHmsNzGpinBAkWBpzs9dFS1TeShA93UA\nAHxCsPJYd8KfVgvS672s2C8QAAB/EKw81pPIfXPQ+ZpqomofIFgBAOAHgpXHen0csZKkjfXlah8Y\n12wy5VsNAAAsVwQrD6VSLrOdTe6bg87ZUB/TdDLFOisAAHxAsPLQwNi0ZlNOjZX+jlhJ0uG+Ud9q\nAABguSJYeWiuh1VD3M9gFZMktfaN+VYDAADLFcHKQz0ne1j5NxVYFQ2qNhZkxAoAAB8QrDw01xzU\nz6lAKT0dSLACACD3CFYe6klMyUyqK/dvxEqSNjbEdJipQAAAco5g5aGe4UnVlYdUVurv27qhrlyD\nY9MaGpv2tQ4AAJYbgpWHekYmfV1fNWdjQ2YBez/TgQAA5NKigpWZ3W5mh8ysxcx+7yzHXWVms2b2\nbu9KLBw9iSk1+tgcdM7Jlgu9TAcCAJBLCwYrMyuV9EVJd0jaKul9Zrb1DMf9haT/9LrIQtGTmFRD\nHgSrNdVRBUtLdJgRKwAAcmoxI1ZXS2pxzrU656YlfV3S3ac57lclfVNSr4f1FYyp2aQGx6a1wsce\nVnNKS0zr6qKMWAEAkGOLCVarJXXOu9+VeewkM1st6eck/Z13pRWW3sSUJKmx0v81VlJ6OrCVlgsA\nAOSUV4vX/5ek33XOnXXnXzO718x2mdmuvr4+j06dH3pHMl3X82AqUEoHq47Bcc2wGTMAADmzmGB1\nVFLTvPtrMo/Nt13S183siKR3S/qSmb3r1Bdyzt3vnNvunNteX19/niXnp+7hzIhVngSrDfUxzaac\n2gfG/S4FAIBlYzHB6nlJm81svZkFJb1X0nfmH+CcW++cW+ecWyfpG5I+4Zz7tufV5rHXt7PJj2DF\nZswAAOReYKEDnHOzZvYpSY9KKpX0FefcPjP7eOb5+7JcY0HoGZlUsLRE1dEyv0uRlB6xkghWAADk\n0oLBSpKccw9LeviUx04bqJxz/8fSyyo8PcOTaqgIycz8LkWSFA+XqSEeUitb2wAAkDN0XvdIT2Iq\nb6YB57AZMwAAuUWw8khPYjJvFq7P2dgQ0+HeUTnn/C4FAIBlgWDlkXTX9fzoYTVnQ125EpOzGmAz\nZgAAcoJg5YGRyRmNTSfzcMRqbs9ApgMBAMgFgpUHejJd1/NvjdXclYEsYAcAIBcIVh7oTcx1Xc+v\nqcBVlRGFy0pYwA4AQI4QrDzQnQlW+TYVWFJiWl/HnoEAAOQKwcoD+ToVKKWnA5kKBAAgNwhWHuhJ\nTCoeCigWWlS/1ZzaWF+uzqFxTc4k/S4FAICiR7DyQD62WpizoT4m58RmzAAA5ADBygPdicm8nAaU\n2IwZAIBcIlh5oDcxlXcL1+ec3IyZXlYAAGQdwWqJUimXmQrMz2AVDQa0qjLMiBUAADlAsFqiwfFp\nzaacGvN0jZWU7sDe2s+VgQAAZBvBaol6Mj2s8nWNlZReZ/Vaz6iSKTZjBgAgmwhWS3QyWFXmb7Da\n1lSliZmkXu0Z8bsUAACKGsFqifK5OeicbU1VkqQXO074XAkAAMWNYLVE3cPpEav68vxdY7W2Nqrq\naJle6hzyuxQAAIoawWqJjp2YUH08pGAgf99KM9MVzdWMWAEAkGX5mwYKRPvguNbVRv0uY0HbmqrU\n0jeqxOSM36UAAFC0CFZLdKR/TGtrY36XsaArmqvknPRy57DfpQAAULTyb9fgAjI+Pavekam8GLF6\naGfHWZ+fmE5vwvxix5DesrkuFyUBALDsMGK1BHMbGxfCiFUkWKpNDeV6qZN1VgAAZAsjVkvQPpDu\nZr6uAIKVJF3RVKXHDvbKOScz87scAEABWGhGRJLef01zDiopDASrJTgyN2JV5/9U4GJsa67Sv+3u\nUsfgeEGMsgEAsmsxoQnnhqnAJWgfGFNtLKiKcJnfpSzKFU3VksR0IAAAWUKwWoIj/eNamwcL1xfr\nghXlipSV0s8KAJaBmWRK/aNT6hwc1/Rsyu9ylg2mApegfWBM126o9buMRQuUluiyNZV6kRErACh4\nQ2PTau0fVWvfmFr7x9TWN6bOoXGdGJ/R8MSMRqdmTx5rkqpjQdWVB1VXHlJ9PKTLVlcpEiz17y9Q\npAhW52lyJqljw5MFt1bpiuZqPfBUqyZnkgqX8R8KAPKZc06DY9N6rXdUr/WM6NWeUb3WO6JXuoY1\nlmmjI0klJtXEQqqNBdUQD2ldbVSRYKkiwYDKSkxD4zPqH53SwOiUjvSPazqZ0g/39+jWrY3avq5a\nJVzQ5BmC1XnqHEwvXF9XIAvX52xrqtJM0mnfsYSuXFvtdzkAAKV/We8aGteR/nG19o/qcO+YWvpG\ndbhvVCfGX98xIx4KaNOKcl20skIN8ZDq4iHVlYdUHQ2qtGRx4cg5p2PDk/r+y8f17ZeO6rm2Ab3z\n8lUFN1CQrwhW56mtP91qodC+EK9orpKUXsBOsAKA3HDOaWh8Rp2D4+ocGlfn4IQ6h8bVPjCmI/3j\nOjY8IedePz4WCqghHtIFDXHVx9NTdysqwqoIB5bcLsfMtLoqoo/dsF4vHx3WI68c198/2aptTVV6\nx6UrFQsRDZaCd+88zTUHzYeu6+diRUVYqyrDerFjSNJ6v8sBgKLgnNPwxIy6hibUNTSe+fONH89f\n8yRJ0WCpamJB1cdDurAxrtpYev1TbXlQ0WD2fzybmS5fU6WLGiv0xKu9+slr/Rocm9ZHb1ivQAnX\ntp0vgtV5OjIwpqpomaqiQb9LOWdXNFfTcgEAztHUbFJdQxPqGBhXx+Drt87BcR0dmtDIKcEpFChR\ndTSo6miZLl1dqepYUDXRoKpjZaqJBhXKk3WuwUCJbt3aqMaKsL7+fKe+t+e43nXFar/LKlgEq/PU\nPlC4TTavaK7S9185rr6RKdXHQ36XAwB5YyaZUvvAuNr6x3Skf0xHBjK3/nEdOzGhebN1Kis1VUeD\nqokFdcnqSlVnftmeC1DhspKC2uXisjVVOnZiUk++1qdVVRFdvb7G75IKEsHqPB0ZGCvYNUrbml5f\nZ/X2rSt8rgYAcu/E+LRaekfV0pteIP6T1/rVNzKlofFppealp0hZqerK09N1WxrjqokFT97KQ0tf\n75Rvbr14hY4PT+i7e45pRUWoYAcQ/ESwOg9Ts0kdOzGhn3/TGr9LOS+XrK5UoMT0YscQwQpA0Uql\nnI4NT+jLP2lT38iU+kam1Dsypb6RyTe0KgiUmGrLg1pZGdalaypVXx7K6VqnfFJipvde1awvPtGi\nh3Z26JM3b1JFpDB2F8kXy+srxiNdQxNKucJbuD4nXFaqi1ZW0IEdQFEYnZpVW99Yuk1B35ja+sfU\n2pdunDkx83qAipSVqj4e0kUrK05eadcQD6sqWkYfp3kiwVLdc+1a3ffEYT24s10fu2GDAqUsZl8s\ngtV5aB8ozFYL813RXKVv7u7SbDLFfxgAec05p4GxaXVmFou3D4zryMCY2gfGdah75Kc6jFdFy1RX\nHtIVzVUnw1N9PKRYsLTopu6ypbEirHdfuUYPPdehH+7v0R2XrvS7pIKxqGBlZrdL+htJpZK+7Jz7\n7CnPf0DS7yr9NT0i6Vecc3s8rjVvHOkvzFYL8715Q63+6dl2Pdc2qOs21fldDoBlbq5BZufgxE9d\ncdcxOK7xeVN3krSyMqzmmujJdU915elmmbWxoMr4ZdETl6yu1Juaq/Vs64Cu21SnSqYEF2XBYGVm\npZK+KOntkrokPW9m33HO7Z93WJuktzrnhszsDkn3S7omGwXng/aBMcXDAdXECq/VwpybLmxQpKxU\n33/lOMEKQE5Mz6bUPjCmw31jmRGn9LRd+8C4jg9PvuHYSFnpye+z25qqVBMLplsXxIKEpxx625YG\n7ek8oR8d6tW7ttGCYTEWM2J1taQW51yrJJnZ1yXdLelksHLOPTPv+B2SCnNV9yIdGRjXutpYQQ8p\nR4KlumVLgx7d163/cfcli94KAQAWMjmTVEvvqA51j+i1zJV3rX2jah8cV3LeJXexYKlqy0NqrAhr\n66oK1Z7s81ScV9wVoupYUNvXVev5I4O6cXN9QQ8o5MpigtVqSZ3z7nfp7KNRH5H0yFKKyndHBsZ0\n6epKv8tYsjsvXanvv3JcO9sGdN1GRq0AnJvp2ZTa+sd0qGdEr3aP6NWe9K19cPzk9iyllr7irj4e\n0g2b69L725WHVBsLKRLMjwaZOLubL2zQ7vYhPX6wV+++sqjHTTzh6eJ1M7tZ6WD1ljM8f6+keyWp\nubnZy1PnzEwypa6hCb3zslV+l7JkN2+pV7isRA+/cpxgBeCMpmaTOtI/rtd6R9TSO6rHDvSqJzGp\n/tGpkz2fSkyqjYW0oiKkWy5s0IqKsBoq0gGKEfHCVhEp07UbavV0S7/eekE9jaUXsJhgdVRS07z7\nazKPvYGZXSbpy5LucM4NnO6FnHP3K73+Stu3b3enOybfHR2aUDLltLaAF67PiQYDumVLg36wt0ef\n+VmmA4HlbO7Ku9a+TKuCeS0L5k/hmUnV0aBWxEPaurJCDRVhragIqb48xBXGRezGC+r1XNugHjvY\no/deVZgDI7mymGD1vKTNZrZe6UD1Xknvn3+AmTVL+pakDzrnXvW8yjxyJNNqYV1d4bZamO/OS1fq\n4Ve69VzboN68sdbvcgBk2ejUrI70j6m1f0xtfWNq6x9VW396EXli8vW2BXNNM+vKQ7pxc93JlgX1\n8RALx5eh8lBA122s1ROv9umtF0xoZWXE75Ly1oLByjk3a2afkvSo0u0WvuKc22dmH888f5+kP5ZU\nK+lLmcWGs8657dkr2z/tA+lWC8UwYiVJt2xpULisRI/sPU6wAorETDKlzsHx9OhTf3rUqa1/TPuP\nJzQy+caNgqsi6Z5PF62sSLcsKE+HJ5pm4lQ3bK7XjrYBPXagV/dcu9bvcvLWotZYOecelvTwKY/d\nN+/jj0r6qLel5acjA2OKBUtVX14cc8zRYEA3X9igR/Z260/eeTHTgUABGR6fUUtfeq+77+05pr7R\nafWNTGlwbOoN+91FM9+zLmiIq648qNp5W7Yw+oTFigRL9ZZNdfqvA73qGhrXmuriGGDwGp3Xz1H7\nwLjWFnirhVPdeelKPbK3W7uODOqaDYxaAflkbr+79GbBYzrc93r7gv7R6ZPHlZaYamNBragI6eJV\nFen97uJYYkCnAAAYWklEQVTptU9cfQevXLexTs8cHtDjB3v1oTev87ucvESwOkdHBsa0pTHudxme\numVLg0KB9NWBBCvAH6mUU9fQRLplQe+IWnpG1ZIJUfO7jkfKStUQD2ldbUxXratJr3sqD6kqGmTE\nGVkXLivVtRtq9aODvRoYnVJtkczeeIlgdQ6SKafOwXHddnGj36V4KhZ643RgCd+cgawaGJ3SgeMj\nOtid0KHuET3bOqCexKRmkq/P31WEA2qoCGtb0xv3uysP8W0b/rp6fY2eONSrHa0DekcRtB7yGv9D\nz8GxExOaSbqC3iPwTO68bKV+sK9bu9qHdPX6Gr/LAYrCbDJ1ctH4/mMJHege0YHjCfWNTJ08pq48\npMpIQFetq9GKirBWxENqqAgrXMb0HfJTRbhMl6yu1K72If3M1hUKBfhanY9gdQ7mWi2srS2OVgvz\nvW3edCDBCjh3Y1OzOtidDlBzQepg94imZlOS0mugGuIhNVVHdNXaajVWRtRYGWYECgXpuo11erlr\nWC92nNC1LCF5A/5Hn4MjmVYL64owWMVCAd10Yb0e2Xtcf3zXVqYDgTNwzql3ZOoNAWr/8YSODIyd\n3MalMlKmi1dV6IPXrtXwxIxWVkZUH6cDOYpHU3VEq6sievbwgK7hl/E3IFidg/b+MYXLSrSiojgX\n673z8lV6dF+P/utAj24tsnVkwPlIpZyODIxp77GE9h0bToeoYwkNjL1+NV5NLKiVlWG9bUuDVlZG\ntLIyrMpIWVFdOQycysz05o21+sbuLrX0jfpdTl4hWJ2Dlr5RrSuyVgvz3X5xozbUx/RX/3lIb7to\nBb9dY1lJpZzaBsb0ctcJvdw1rMcP9ur48KSm503lrYiHtK4upjdvrD0ZolgLheXqstWVemRvt549\nfNpd7JYtgtUiJVNOu48M6a7LC/cKiId2dix4zKdvvVCfePAFffvFo/pv7GKOInZ8eEIvdZzQS10n\ntKfzhPYeTWh0Kt2VPFJWqvp4SFc2V2tVVVgrKyNqqAgpUEIzTWBOoLREV6+r1hOH+tQxMK7mIryw\n63wQrBZp/7GERqZmde2G4p5LvuOSRl26ulKf++GruuvylVztgaIwMZ3Uy10n9ELHCb3UOaRnDw+c\n3BevtMS0sjKsi1dVaE11VKurI6ovZz0UsBhXr6/Vj1/t0z89e0R/eNdWv8vJCwSrRdrRmh7qLPar\nH8xMv3v7Ft3zwE49tLNDH75+vd8lAefEuXSjzd3tQ3qhI307cHxEycweL2tro1pfF1NTTVRN1VGt\nrAwrwLYuwHlJX6hRqX/Z1anffPsFinGVK8FqsXa2DWh9XUwrKsJ+l5J1b9lcp+s31eoLj7foF7Y3\ncTk48tpMMqX9xxLa1T6k3e2D+slr/Sc3Gg4GSrSmOqIbNtWpuSaqNTVRvp4Bj123sVavHB3Wv794\nlM2ZRbBalGTKaWfboO66bKXfpeTM/3nbFr3ri0/rgZ+06dd/ZrPf5QCS0usEZ5IpdQ6Oq21gTO39\n4+oYHNd0Mr3AvCpapg11Ma2tjam5JqrGyrBKivRiEyBfNNdEdcnqCn31mSP6wDXNRXuB12IRrBbh\nwPGERiZni34acL5tTVW6/eJG/cNPWnXPtc3sBwXfTM4k9UL7kHa0Dug/9hxT1+CEks7JJDVWhvWm\ntdVaVxvV2tqYKiNlfpcLLDtmpl++fr1+61/36IlX+3TzhQ1+l+QrgtUizK2vumb98glWkvTp2y7Q\nf+7v1peeOKw/YlEicmQmmdJLnSf0dEu/njk8oJc6Tmg6mVKJSauqIrpuU63W18W0tiamSJCLK4B8\ncNdlq/QXPzioB37SRrDyu4BCsKN1UOtq09MKy8mmhrjefeUa/fOz7frgtWu1rq74Os7Df6mU06Ge\nEf3tY6+ppW9UR/rTU3smaWVVWNesr9H6+pjW1cboGQXkqWCgRL903Tr9zx8c0v5jCW1dVeF3Sb4h\nWC0gmXJ6rm1Ad166fNZXzfcbP3OBfrC3Wx/9p1365q9cx1QLPHH0xISefq1fT7X065nD/eofTXcy\nrysP6YrmKm2sL9eG+piiQb5FAYXiA1ev1Rceb9GXn2rV535xm9/l+IbvWgs4cDyhxDJbXzXfqqqI\n/v6D2/Whr+zUJx7cra9++GqVcWk6zlFickbPHh7Q0y39euq1frX2pzc0r4+HdMPmel2/qU59I1ME\nd6CAVUbL9Ivbm/Tgznb97u1blsVV9KdDsFrAzrZBSdI1Rd4Y9GzevLFWf/7zl+nT/7ZHf/jve/XZ\n/3bpsr/qA2c3PZteJ/XUa316qqVfe7qGlUw5BUtLtL4upjsvXalNDeVaEQ/JzDQ9myJUAUXgl69f\nr3989oj+8Zkj+p3bt/hdji8IVgvY0TqgtbVRrayM+F2Kr9595Rq1D4zpbx9v0dq6qD5x0ya/S0Ie\ncc7ptd5R/eS1fj3d0q8drQMan06qxKTL1lTpEzdt1MRMUs01UbaFAYpYc21Ut21t1IM7O/SpWzYt\ny+n85fc3PgeplNNzbYO6/eJGv0vJC7/19gvUPjCu//mDQ2quiequywp330QsXffwpJ5qSQep/9rf\no5HMPnu1saAuXV2pTQ3l2lBXzpV7wDLzsRvX6wf7uvVvu7r0S9et87ucnCNYncWB7oSGJ2aW1TTg\nQhs1X7m2WsdOTOi3/nWPYsGAbt6yvC+rXU4SkzPakVkn9fThAbX0jkpKB6n19TFtqi/XxoZyVUeD\nPlcKwE9Xrq3RFc1VeuCpNt1z7dplt+8mweosdrbOra9angvXT6estET3f2i73v8PO/Thrz6ve2/c\noE/feqGCAaZ3is1cY877n2zV4b5RdQ1NyEkqKzWtr4vpjksa0+ukKuhuDuCNPnbDBn3iwRf0w/3d\nuv2S5XVVPcHqLHa0Dqi5JqrVVct7fdWpamJBffuT1+vPvn9A9z/Zqh2tA/r8e6+gz1WBm02m9MrR\nYT2TGZXa1T6k6dl0Y8411VHddGGDNjWUq6kmwjopAGd128WNaqqJ6P4nW3XbxY3L6oIngtUZpDL7\nA966dYXfpeSlcFmp/vRdl+j6TXX6nW/s0Ts+/xP92c9dqnddsdrv0rBIyZTTvmPDevbwgHa0Duj5\nI0MazayT2tIY1z3XrNX1m2rVPjBOY04A56S0xHTvjRv1R9/eq0f3La9RK4LVGRzsHtHwxMyy7V+1\nWLdf0qhL11TqN77+on7jX17Sv794VJ+4aaOuXl+zrH5DKQQzmRGp59oG9VzboJ4/MqiRyXSQqisP\naeuqCm2oi2lDfbnKQ+lvDT2JKUIVgPPyvqua9OCOdv3p9w7orRc0LJsLWQhWZ7CzLbM/4DJauH6+\nVldF9LWPXasvP9Wmf3iyVe+5f4euXFutT9y0UTdf2KCSZbZwMV8kJmf0UscJ7Wof0u72Qb3QfkIT\nM0lJ0sb6mO66bKVSKWl9fUwVYXpIAfBWoLREn/nZi/We+3fo755o0W/deqHfJeUEweoMnj08oKaa\niNZUR/0uJe+c6crBinCZfvWWzdrdMaQX2of0kX/cpQtXxHXPm9fqtq0r1LBMu/DmQirl1No/qpc6\nh/Vix5B2tw/pUPeInCST1FgZ1rbmKq2vjWltbVRxghSAHLhmQ63u3rZK9z3Zqndf2aTm2uL/mUqw\nOo22/jE9frBX91y71u9SCk4wUKI3b6jV537xcn3/5eO678eH9Uff3qs//o+9uqKpSrdd3KjbLm5k\nofsSOOd0fHhSrxwd1stdJ7Snc1h7uk6cnNaLhwK6Ym21VldHtLYmpjXVEabzAPjm/7rzIv3X/h79\nj+/t15d/abvf5WQdweo0PvvIAYUCJfrkzXQXP19lpSV61xWrdfe2VXq1Z1SP7uvWo/u69eePHNSf\nP3JQ6+tiunJt9cnbpvpypgxPI5lyOjIwpoPHR7Tv2LD2Hkto79FhDY6lNy0usfRo1EUrK9RUHdWa\n6ojq4yHaHwDIGysqwvq1t23Wnz9yUD862Fv0/Q8JVqd4rm1Qj+7r0advvUD18ZDf5RSsU6cL68pD\n+sA1azU0Nq39xxNq7RvV4wd79Y3dXZKkeDigy9dU6YIVcV3YWK7NK+K6YEX85CLqYpdMOR0dmtDh\nvlEd7hvVoe4RHewe0as9I5qaTUmSAiWmC1bE9TMXNWhyJqVVVRGtrAyzKTaAvPfh69frX3Z16jPf\n3afrNtUqFCjeUfTl8VNrkVIppz/7/n41VoT1kbds8LucolQdC+r6TXW6flOdnHMaGJtWx8C42gfH\n1dY/pp1tA5pJupPHr6oMq7k2quaaqNbWxtRUE1VTdUQrK9MjM4XU0Xd6NqWjJybUMTiuzsytY3Bc\nrX1jahsY03QmQElSeSigxsqwrlpXo8aKsBorw6qPhwhRAApSMFCi//udF+tDX3lODzzVVtT7zRKs\n5vnuy8e0p2tYf/ULly+by0L9ZGaqKw+prjykN62tliSlnNPQ2LR6ElNaWRVWS++oOgbH9aNDfeob\n6XrD55eY1BAPa0VlWI0VIdWWh1QbC6omc6uNhVQRCSgeLlM8HFA8HPD0t6TZZEpj00mNTs1qaGxa\nQ+PTGhqf0dDYtAbHptU7MqmexJS6hyfVOzKpgbFpudczo0pLTFWRMtXHQ7pmXY3q4yHVx9PvR2yZ\njNQBWD5uvKBet1/cqL99rEXXbazTtqYqv0vKCnPzv9Pn0Pbt292uXbt8OffpTM4k9ba//rEqI2X6\n3q++xbP1PgvtvYfFm55NaWg8HVoSkzNKTMwoMTGr4czHY1OzGp9O6mxf0cFAiaLBUoUDpQqVlSgc\nKFW4rESlJaYSS9/MJDPJuXTvp9mU0/Rs+s+p2aTGppIam5o9OUV3OiYpFgqoIpwOdhWRMlWEA6qO\nBlWdCX7xcIC1UACKwvuvaV7UcT2JSf3Cfc9qaHxaD330Wl26pjLLlXnHzHY75xZcfc+vxRlffeaI\njp6Y0F+++zIWUeepYKBEKyrCWnGWtg0p5zQxnQ4+Y9NJTc7Mu82mNDmT1EwypZmk02zmz4mZpFIp\nycnJOckpfeWdZAqUWDp0lZjCZSUqDwW0qrJEwUCJQoESBQOlCgVKFAuWKhIMKBoszdwCBTVNCQC5\nsKIirK/de63e8/fP6p4HdurBj16jS1YXTrhaDIKVpIHRKX3x8Ra9bUuDrttU53c5WIISM8VCAabS\nACBPzTWVfu/9O3TPAzv10Eev1dZVFX6X5ZllvxLWOafP/fBVjc8k9ft3bvG7HAAAil5TTVQPfewa\nRcpKdc8DO3Woe8TvkjyzrIPV0RMT+uWvPq8Hd3bonmuatakh7ndJAAAsC2trY3roY9eqrNT0/n/Y\noX/d1amZ5JnXrhaKRQUrM7vdzA6ZWYuZ/d5pnjcz+3zm+ZfN7E3el+qdZMrp/3u6TW//3I+1o3VQ\nf3TXVv3xOy/2uywAAJaV9XXpcNVYGdbvfONl3fxXT+jBne2amk36Xdp5W3AhipmVSvqipLdL6pL0\nvJl9xzm3f95hd0janLldI+nvMn/mFeec9h9P6A/+fa9e6jyht15Qr//nXZeoqab49y4CACAfbawv\n1/d+9S360aFeff6xFv3Bv+/VFx5v0b03btAtWxrUVB0tqIvKFrPC92pJLc65Vkkys69LulvS/GB1\nt6R/culLqXaYWZWZrXTOHfe84kWamk3q4PERHexO6EDmz4PdIzoxPqOaWFB/895t+tnLV8m43B0A\nAF+ZmW7ZskI3X9igp1r69bePtegz392vz3x3v8pDAV20Mq6tKyt00coKNVSETvYnLA+lW9qUh/Ln\nSuzFBKvVkjrn3e/ST49Gne6Y1ZJ8C1YHjo/oXV98WpIUDZbqwsa47rhkpbaujOsdl61STSzoV2kA\nAOA0zEw3bK7XDZvrtf9YQi93ndD+4wntP5bQN3Z3aWz69FOE77u6SX/+85fluNrTy+k16WZ2r6R7\nM3dHzexQrs59IFcn+ml1kvr9O33R4/3NPt7j7OL9zT7e4yz7gM/n/2zmlmVrF3PQYoLVUUlN8+6v\nyTx2rsfIOXe/pPsXU1ixMLNdi+nUivPD+5t9vMfZxfubfbzHyKXFXBX4vKTNZrbezIKS3ivpO6cc\n8x1JH8pcHXitpGE/11cBAAD4YcERK+fcrJl9StKjkkolfcU5t8/MPp55/j5JD0u6U1KLpHFJH85e\nyQAAAPlpUWusnHMPKx2e5j9237yPnaRPelta0VhWU58+4P3NPt7j7OL9zT7eY+SMpTMRAAAAlmpZ\nb2kDAADgJYJVliy0DRCWxsy+Yma9ZrbX71qKkZk1mdmPzGy/me0zs1/3u6ZiY2ZhM3vOzPZk3uPP\n+F1TMTKzUjN70cy+53ctWB4IVlkwbxugOyRtlfQ+M9vqb1VF56uSbve7iCI2K+m3nXNbJV0r6ZN8\nDXtuStItzrnLJW2TdHvmqmp469flaytDLDcEq+w4uQ2Qc25a0tw2QPCIc+5JSYN+11GsnHPHnXMv\nZD4eUfoH02p/qyouLm00c7csc2PRq4fMbI2kd0j6st+1YPkgWGXHmbb4AQqOma2TdIWknf5WUnwy\n01QvSeqV9EPnHO+xt/6XpN+RlPK7ECwfBCsAZ2Rm5ZK+Kek3nHMJv+spNs65pHNum9K7VVxtZpf4\nXVOxMLO7JPU653b7XQuWF4JVdixqix8gn5lZmdKh6kHn3Lf8rqeYOedOSPqRWDfopesl/ayZHVF6\nOcYtZvb/+1sSlgOCVXYsZhsgIG+ZmUl6QNIB59zn/K6nGJlZvZlVZT6OSHq7pIP+VlU8nHO/75xb\n45xbp/T34Medc/f4XBaWAYJVFjjnZiXNbQN0QNK/Ouf2+VtVcTGzr0l6VtKFZtZlZh/xu6Yic72k\nDyr9W/5LmdudfhdVZFZK+pGZvaz0L2M/dM7REgAocHReBwAA8AgjVgAAAB4hWAEAAHiEYAUAAOAR\nghUAAIBHCFYAAAAeIVgBAAB4hGAFYEFmlsz0stpnZnvM7LfNrCTz3HYz+/xZPnedmb0/d9X+1Lkn\nMvvx5QUze4+ZtZgZPauAIkSwArAYE865bc65i5XuEH6HpD+RJOfcLufcr53lc9dJ8iVYZRzO7Me3\naGZWmq1inHP/Iumj2Xp9AP4iWAE4J865Xkn3SvqUpd00N/piZm+d16n9RTOLS/qspBsyj/1mZhTp\nJ2b2QuZ2XeZzbzKzJ8zsG2Z20MwezGytIzO7ysyeyYyWPWdmcTMrNbO/NLPnzexlM/vvi6nfzL5t\nZrszo2/3znt81Mz+2sz2SHrzGc55cebjlzLn3Jz53HvmPf73c8HMzG7P/B33mNljHv4zAMhTAb8L\nAFB4nHOtmfDQcMpTn5b0Sefc02ZWLmlS0u9J+rRz7i5JMrOopLc75yYzweRrkrZnPv8KSRdLOibp\naUnXm9lzkv5F0nucc8+bWYWkCUkfkTTsnLvKzEKSnjaz/3TOtS1Q/i875wYz+/M9b2bfdM4NSIpJ\n2umc++3MHp8HT3POj0v6G+fcg5ljSs3sIknvkXS9c27GzL4k6QNm9oikf5B0o3OuzcxqzvmNBlBw\nCFYAvPS0pM+Z2YOSvuWc68oMOs1XJukLZrZNUlLSBfOee8451yVJmXVR6yQNSzrunHtekpxziczz\nt0q6zMzenfncSkmbJS0UrH7NzH4u83FT5nMGMrV8M/P4hWc457OS/sDM1mT+fq+Z2dskXal0SJOk\niKReSddKenIu6DnnBheoC0ARIFgBOGdmtkHpINIr6aK5x51znzWz70u6U+kRpNtO8+m/KalH0uVK\nL0eYnPfc1LyPkzr79yiT9KvOuUfPoe6bJP2MpDc758bN7AlJ4czTk8655Nk+3zn3kJntlPQOSQ9n\nph9N0j86537/lHO9c7F1ASgerLECcE7MrF7SfZK+4E7Zxd3MNjrnXnHO/YWk5yVtkTQiKT7vsEql\nR4NSkj4oaaGF4ockrTSzqzLniJtZQNKjkn7FzMoyj19gZrEFXqtS0lAmVG1RelRp0efMBMpW59zn\nJf2HpMskPSbp3WbWkDm2xszWStoh6UYzWz/3+AK1ASgCjFgBWIxIZmquTNKspH+W9LnTHPcbZnaz\npJSkfZIeyXyczCwK/6qkL0n6ppl9SNIPJI2d7cTOuWkze4+kv82si5pQetTpy0pPFb6QWeTeJ+ld\nC/w9fiDp42Z2QOnwtOMcz/mLkj5oZjOSuiX9v5n1Wn8o6T8t3YJiRul1Zjsyi+O/lXm8V+krKgEU\nMTvlF04AKBpmtk7S95xzl/hcyhtkpiRPLugHUDyYCgRQzJKSKi3PGoQqPWo35HctALzHiBUAAIBH\nGLECAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8Mj/Bkhk+2L7sQ3mAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(ps1['ps1_ra'], ps1['ps1_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, ps1, \"ps1_ra\", \"ps1_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add DXS" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4pGd55/vfXVJJVSWVttbWLbV6ce822G43tsGY2AYn\nNpCYMFwhkJAJIfF4xiQkJzmHzAkzkzk5Z4YcJjmTBIhDCANZzHIODDjEYIzB2Hhp9+Je3Psqqbu1\nS1WSukpSqeo5f1SVLJru1vaWatH3c119IVW9Ut1dtFu/fp77vR9zzgkAAABL58t3AQAAAKWCYAUA\nAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHpkzWJnZF8ys38xeu8bzZmZ/\naWanzeyQme30vkwAAIDCN58Vqy9KeuA6zz8oaXPm18OS/nrpZQEAABSf8rkucM49Z2brr3PJQ5L+\n3qXPxnnZzOrMbLVzrud637exsdGtX3+9bwsAAFAY9u3bN+ica5rrujmD1Ty0Seqe9fmFzGPXDVbr\n16/X3r17PXh5AACA3DKzzvlct6zN62b2sJntNbO9AwMDy/nSAAAAOedFsLooae2sz9szj/0U59zn\nnHO7nHO7mprmXE0DAAAoKl4Eqyck/Vrm7sA7JUXn6q8CAAAoRXP2WJnZlyXdI6nRzC5I+k+S/JLk\nnHtM0pOS3inptKSYpA/nqlgAAIBCNp+7Aj8wx/NO0qOeVQQAAFCkmLwOAADgEYIVAACARwhWAAAA\nHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHhkzgGh8Mbju7vmvOaDd3QsQyUAACBXWLEC\nAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoA\nAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAA\nAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwSHm+CygFj+/uyncJAACgALBi\nBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIV\nAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYA\nAAAeIVgBAAB4hGAFAADgkXkFKzN7wMxOmNlpM/vDqzxfa2b/bGYHzeyImX3Y+1IBAAAK25zByszK\nJH1G0oOSdkj6gJntuOKyRyUddc7dLOkeSX9mZhUe1woAAFDQ5rNidbuk0865s865KUlfkfTQFdc4\nSWEzM0nVkoYlTXtaKQAAQIGbT7Bqk9Q96/MLmcdm+7Sk7ZIuSTos6WPOuZQnFQIAABQJr5rXf07S\nAUlrJN0i6dNmVnPlRWb2sJntNbO9AwMDHr00AABAYZhPsLooae2sz9szj832YUnfcGmnJZ2TtO3K\nb+Sc+5xzbpdzbldTU9NiawYAAChI8wlWeyRtNrMNmYb0X5b0xBXXdEl6uySZWYukrZLOelkoAABA\noSuf6wLn3LSZfVTSU5LKJH3BOXfEzB7JPP+YpD+R9EUzOyzJJH3cOTeYw7oBAAAKzpzBSpKcc09K\nevKKxx6b9fElST/rbWmlJTY5redPD+q+bc3ylzGXFQCAUsRP+GVypGdUPzo5oOO9Y/kuBQAA5AjB\napkMjk1Kko71jOa5EgAAkCsEq2UyMJ4OVid6x5RMuTxXAwAAcoFgtUwGxiYV8PsUTyTVOXw53+UA\nAIAcIFgtg+lUSiOxKd3WUa8yn+l4D31WAACUIoLVMhgen1LKSWvqgrqhqUpHe0blHNuBAACUGoLV\nMhjM9Fc1hSu1fXWNhi9PaSDTzA4AAEoHwWoZZENUY3WltrWmj1A8xtgFAABKDsFqGQyMTykcKFfA\nX6baoF9tdUHGLgAAUIIIVstgcHxSjdWVM59vWx1W93BMYxOJPFYFAAC8RrDKMeecBsYm1RR+PVht\nb62RU3qmFQAAKB0Eqxy7PJVUPJFU06wVq9W1AdUG/fRZAQBQYghWOZY9ymb2ipWZafvqsE73jymR\nTOWrNAAA4DGCVY5lj7KZ3WMlpbcDE0mnM/3j+SgLAADkAMEqxwbHJlXuM9WF/D/x+IbGKlWW+3Ss\nl7sDAQAoFQSrHBvI3BHoM/uJx8vLfNrcEtbxnjGlmMIOAEBJIFjl2MDYpBqrK6763PbWsMYmp3Up\nEl/mqgAAQC4QrHIoe/hyY7jyqs93NIQkSf2jHG8DAEApIFjlUPbw5abqqwercCDddzXKoFAAAEoC\nwSqHZh++fDUV5T4F/D5F4wQrAABKAcEqhwbGpyT99KiF2WoCfo1OTC9XSQAAIIcIVjk0MDY5c/jy\ntdQG/ZwZCABAiSBY5dCVhy9fTU3Ar1G2AgEAKAkEqxyZOXx5rmAVLNfYxLSSKWZZAQBQ7AhWOTJz\n+PI1GtezaoJ+OUnjk/RZAQBQ7AhWOZI9fHk+W4GS2A4EAKAEEKxyZGCOUQtZNUFmWQEAUCoIVjly\nrcOXr1QTKJfEihUAAKWAYJUjA+OTWlVd8VOHL1+pqrJcZWbMsgIAoAQQrHIkffjy9bcBJclnpnCg\nnBUrAABKAMEqB7KHL8/VX5VVE/QrSo8VAABFj2CVA8OXr3/48pVqAuUajbMVCABAsSNY5UB21MJC\nVqy4KxAAgOJHsMqBocvpw5dXVc13xcqvqekUZwYCAFDkCFY5EJtKymdSwD+/t7cmmB650Dc6kcuy\nAABAjhGsciA2lVSwolw2x6iFrOz09b7RyVyWBQAAcoxglQPxqWmFKsrmfX12+npvlBUrAACKGcEq\nB2JTSYX8CwhWmRWrXrYCAQAoagSrHIgnkgtasaoo9yng99FjBQBAkSNY5UC2x2ohagJ+tgIBAChy\nBKsciC2wx0qSaoN+VqwAAChyBCuPJZIpJZJuwcGqJuCnxwoAgCJHsPJYfCopSQouNFgFyzUwNqnp\nZCoXZQEAgGVAsPJYLBOsQgvtsQr6lXLS4PhULsoCAADLgGDlsVgifZhycAHjFiRGLgAAUAoIVh6L\nz6xYLXQrkCGhAAAUO4KVx2KLDVYBzgsEAKDYEaw8Fl9kj1VVZbn8ZcZWIAAARYxg5bHY1LTKfCZ/\n2fwOYM7ymak5HFAfW4EAABQtgpXHYlPp42zMFhasJKm5ppIVKwAAihjBymOxqeSC7wjMaq0J0GMF\nAEARI1h5LH0A88L6q7JaagLqG530uCIAALBcCFYeW8w5gVmttQGNT05rfHLa46oAAMByIFh5LJ7p\nsVqM1pqAJGZZAQBQrAhWHnLOpXusFhmsWjLBij4rAACKE8HKQ4mk03TKLbrHqrWWFSsAAIrZvIKV\nmT1gZifM7LSZ/eE1rrnHzA6Y2REz+5G3ZRaH2FS6Nyq0hLsCJc4LBACgWM25tGJmZZI+I+l+SRck\n7TGzJ5xzR2ddUyfps5IecM51mVlzrgouZPFEeur6YrcCgxVlqgmUsxUIAECRms+K1e2STjvnzjrn\npiR9RdJDV1zzQUnfcM51SZJzrt/bMovDYs8JnK21NsBWIAAARWo+wapNUveszy9kHptti6R6M3vW\nzPaZ2a95VWAxiS3ynMDZWhgSCgBA0Vp8Avjp73ObpLdLCkp6ycxeds6dnH2RmT0s6WFJ6ujo8Oil\nC0e2x2qxW4FSus/qZN+YVyUBAIBlNJ8Vq4uS1s76vD3z2GwXJD3lnLvsnBuU9Jykm6/8Rs65zznn\ndjnndjU1NS225oIV92grcGBsUtPJlFdlAQCAZTKfYLVH0mYz22BmFZJ+WdITV1zzLUlvNbNyMwtJ\nukPSMW9LLXyxqaT8ZSZ/2eKnWLTUBJRy0uD4lIeVAQCA5TDnVqBzbtrMPirpKUllkr7gnDtiZo9k\nnn/MOXfMzL4r6ZCklKTPO+dey2XhhSg9dX1pu6sts0YuZOdaAQCA4jCvFOCce1LSk1c89tgVn39K\n0qe8K634xKamFVzkDKusVqavAwBQtJi87qFYYvHnBGa11FZKIlgBAFCMCFYeWso5gVmrqipV5jP1\nj056VBUAAFguBCsPedFjVeYzraqq0MAYwQoAgGJDsPKIc06xqeklbwVKUlO4UgPjBCsAAIoNwcoj\nU9MppdzSZlhlNYUrWbECAKAIEaw8kj3OZql3BUpSc7hS/WM0rwMAUGwIVh6JJZZ+TmBWU7hSg+NT\nSqXckr8XAABYPgQrj2SPs1nqXYGS1FRdqWTKaSTG9HUAAIoJwcoj2QOYveixas4MCe2nzwoAgKJC\nsPJIzIMDmLOawukhoTSwAwBQXAhWHol5vBUoEawAACg2BCuPxKemVVHuU7lv6W/pzIoVs6wAACgq\nBCuPxKaSCnkwakGSqirLVVVRxrE2AAAUGYKVR+IeHMA8G9PXAQAoPgQrj3hxAPNs6enrDAkFAKCY\nEKw8EvPgAObZmsMBxi0AAFBkCFYeiU1N52DFimAFAEAxIVh5IOWc4lPe91iNTUxrInNUDgAAKHwE\nKw9MJlJykmd3BUrMsgIAoBgRrDwQ9/AA5qymmnSwos8KAIDiQbDyQPacQE97rFixAgCg6BCsPODl\nOYFZzUxfBwCg6BCsPODlOYFZq6or5TNpYJRZVgAAFAuClQfima1AL3usynymhiqmrwMAUEwIVh6Y\nWbHy8K5AiVlWAAAUG4KVB2KJpAJ+n8p85un3JVgBAFBcCFYeiE8lPV+tktIN7IxbAACgeBCsPBCb\nmva0vyqrKVypwfFJpVLO8+8NAAC8R7DyQMzj42yymqorlUg6ReMJz783AADwHsHKA/GppKejFrKa\nmb4OAEBRIVh5IJcrVhLT1wEAKBYEqyVKppwmEsmc9VhJ0sA4Q0IBACgGBKslGo0n5OT9DCvp9WDV\nP8qKFQAAxYBgtUSRTGN5LrYCqyvLFfSXsRUIAECRIFgtUSQ2JSk3wcrM0kNCOdYGAICiQLBaokgs\nu2LlfY+VxPR1AACKCcFqiSLx9IpVLsYtSExfBwCgmBCslmjkcu56rCRWrAAAKCYEqyWKxBMySYEc\n3BUopWdZReMJTU4nc/L9AQCAd3LTGLSCRGJTCvjL5DNb8vd6fHfXTz12bvCyJOnzz59TfahCH7yj\nY8mvAwAAcoMVqyWKxBI52waUpOpAOvuOT0zn7DUAAIA3CFZLFIkncta4LknhSr8kaYxgBQBAwSNY\nLVE0NrUsK1Zjk4mcvQYAAPAGwWqJIvFETo6zyaquLJeJFSsAAIoBwWqJIrGEgjkaDipJZT5TqKKM\nHisAAIoAwWoJkimn0YncNq9LUjjg19gkwQoAgEJHsFqCsYmEnFNOtwIlKRwo19gEPVYAABQ6gtUS\nvH5OYG6DVXVlOVuBAAAUAYLVEkTi6WCVy3ELUmbFanJazrmcvg4AAFgagtUSRGLpA5hDOd4KrA74\nlUw5TSRSOX0dAACwNASrJYjOrFjl9mSgcGaW1Sh9VgAAFDSC1RJke6xyvhVYmTnWhjsDAQAoaASr\nJZgJVjnfCsxMX6eBHQCAgkawWoJIfErhynKV+Synr1MTyJ4XyFYgAACFjGC1BNFYQrUhf85fp7Lc\np3KfsWIFAECBm1ewMrMHzOyEmZ02sz+8znVvMrNpM3ufdyUWrkg8obplCFZmptqgf6ZZHgAAFKY5\ng5WZlUn6jKQHJe2Q9AEz23GN6/5U0ve8LrJQRWJTqgtWLMtr1YUIVgAAFLr5rFjdLum0c+6sc25K\n0lckPXSV635b0tcl9XtYX0GLxJdnK1CS6oIVM3OzAABAYZpPsGqT1D3r8wuZx2aYWZukX5T0196V\nVviisYTqgssTrGpDfo1NTGtqmiGhAAAUKq+a1/+7pI875677U9/MHjazvWa2d2BgwKOXzg/n3LL1\nWElSXdAvJ6lvdGJZXg8AACzcfILVRUlrZ33ennlstl2SvmJm5yW9T9Jnzew9V34j59znnHO7nHO7\nmpqaFllyYRifnFYy5Zaxxyr9Ohcj8WV5PQAAsHDzOYtlj6TNZrZB6UD1y5I+OPsC59yG7Mdm9kVJ\n33bOfdPDOgtOdjhobciv6WTuD0fObjleIlgBAFCw5lyxcs5NS/qopKckHZP0NefcETN7xMweyXWB\nhSobrJazx0oiWAEAUMjmdXqwc+5JSU9e8dhj17j215deVuGLxNN36NWFKjQ4nvu79fxlPlVVlOli\nhB4rAAAKFZPXFym7YlW/TM3rUjrEsWIFAEDhIlgtUiT+eo/VcqkN+glWAAAUMILVIkUzwzprl6nH\nSkpPX78Uicu53DfLAwCAhSNYLVIkllCookyV5WXL9pp1Qb8uTyU1GucwZgAAChHBapEi8eWbup5V\nyywrAAAKGsFqkSKxxEzQWS7MsgIAoLARrBYpGp9a9hWr7PE5l6IEKwAAChHBapEiseU7JzCrqrJc\nFWU+tgIBAChQBKtFWs4DmLN8ZlpdF9AlhoQCAFCQCFaL4JxTNJZQ7TIdwDzbmtogPVYAABQogtUi\nxBNJTSVTy75iJUlr6ghWAAAUKoLVIiz3AcyztdUF1Dc6oUQyteyvDQAAro9gtQgzwSpPK1YpJ/WN\n0mcFAEChIVgtQiSePc4mDz1WdUFJooEdAIACRLBahGieV6wkhoQCAFCICFaLEInnL1i1ZYIVs6wA\nACg8BKtFeL15ffm3AoMVZWqoqmDFCgCAAkSwWoRIfEoV5T4F/Pl5+9bUBQhWAAAUIILVIkRjCdUF\n/TKzvLx+ekgozesAABQagtUi5OOcwNkYEgoAQGEiWC1CJD6Vl/6qrLa6oMYmpzU6kchbDQAA4KcR\nrBYhEkuoNs8rVhIjFwAAKDQEq0WIZHqs8mVNXUASwQoAgEJDsFqESHwqrz1Wr8+yooEdAIBCQrBa\noIlEUhOJlOpC+euxaqyulL/MWLECAKDAEKwWKJqZul6bx61An8+0upY7AwEAKDQEqwWK5PGcwNkY\nEgoAQOEpz3cBxSYSm5KUn+NsZltTF9Tus8N5rQEAsLI9vrtrzms+eEfHMlRSOFixWqB8HsA8W1td\nUL2jE5pOpvJaBwAAeB0rVgsUjeW/x0pKr1glU059Y5MzdwkCAOCV+axG4acRrBYoEk9vBdZX5X8r\nUErPsiJYAQAWa3Qioa6hmC5G4mqpCWhba1gBf1m+yypaBKsFisQSKveZqiry+4eujSGhAIAFGJ1I\n6LWLUf39i526FI1raHxKw5enFE8kf+I6n0ktNQGtqQtqTV1Qb2irVXUlcWG+eKcWKBJPH8BsZnmt\nY3VtdkgowQoA8JPiU0kduRTVwQtRHboQ0eELUZ0dvDzzfF3Ir6bqSrXV16ohVKGGqgrVhfyKxBK6\nFInrYiSuYz2j2tc5opfODOmRt21UiHA1L7xLCxSNJfLeXyVJVZXlqgv5WbECgBVuOpnSyb5xHboQ\n0df3X9CFkbj6RieUcunnawLlaqsP6R3bW9ReH1RbXVBV1whJ7fXSTW21kiTnnM4OXtaXXjyvL710\nXh9560ZVlHPP21wIVguUPs4mv/1VWe31QXUOxfJdBgBgmTjndGEkrle7IzrYHUmvRl2MaiKRvkM8\n4PepvT6kt21pUntdSO31QdUscjHAzHRDU7Xe/6a1enx3l766p0sfvGOdynz53bEpdASrBYrEEmqt\nCeS7DEnSluawXjwzlO8yAAA5Eo0ndOhCRAe6IvqXwz3qHo7p8lS6J6rcZ1pTF9TOjnq114e0tj6o\nhqoKz1tVblxTq5+/eY2eOHhJTxy8pPfcsibv7TCFjGC1QJFYQltbw/kuQ5K0pTWsb7x6UdF4YWxP\nAgAWb2o6pRO9YzrQPaJXuyM60B3R2YHX+6Kaqiu1tTWcDlENIbXWBJZt9ejOjas0Gk/o2ZMDqgmW\n6+3bWpbldYsRwWqBovFE3qeuZ21pqZYkneob0671DXmuBgAwX845nR+K6WAmQD1zrE890QlNZxqj\nqivLtbY+qPt3tGhtfUhtdUEF83w3+v07WjQ6kdAzx/pVH6zQznX1ea2nUBGsFiCRTGl8cjrvU9ez\ntrSkV85OEKwAoKCNXJ7SgcyW3oHuiA5eiMycPRv0l6mlJqA3b1yl9oZ0X1RdMP93n1/JzPSLt7Zr\ncHxKTx/r0y0ddfIVWI2FgGC1ANECOc4mq60uqKqKMp3qG893KQCAjGTK6WTfmPZ3jWh/Z0Q/Otmv\nwfH0cGlTekbUpqZqrc2EqObw8m3pLVWZz/SWG1bpK3u6dXbgsjY1V+e7pIJDsFqASIEcZ5NlZtrc\nEtaJ3rF8lwIAK1Y0ntCrXSPa3xXR/s4RHeiOaHxyWpK0qqpCzeFK3dZRr7UN6S29yiKfar59dY0C\nfp9e7RohWF0FwWoBopnjbApl3IIkbW0J6/vH+vJdBgCsCNnVqFe7IjrQPaJnTwyof2xSUno1qrU2\noBvX1KijIaSOhlBO7tLLN3+ZT29oq9WB7oh+IbGm6IOi1whWC5BdsaorkBUrKX1n4Ff3dmtwfFKN\n1ZX5LgcASkZ2ZtTBzOTygxciOnQhqlhm3EF9yK/mcEA3r61TR2Zbr7J8ZYSMnR312nN+REcujdLE\nfgWC1QLMBKsC6bGSXr8z8GTfGMEKABYplXLqHI7p6KVRHbkU1WuXRrX3/PBMiCrzmVbXBnRze53W\nNgS1tr40V6PmK7sat79rhGB1BYLVAkSyzesFMm5BSm8FStLJ3jG95YbGPFcDAIXv8uS0TvaN6Xjv\nmI73jOpoz6iO9YzN9EWV+9L9qztW16itPqj2+pBaaipV7uM4lywz060ddXrmWL9GYlOqL6AWmXwj\nWC1ANDYlMykcKJy3rSlcqbqQXyf7uTMQAGbLbuWlg9OojveM6XjvqDqHYsoco6eKcp9aawK6qa1G\na2qDWl0XVEu4UuVlhKi57Fxbr2eO9etAd0T3bm3OdzkFo3ASQhGIZCac+wrotlgz05bmsE5yZyCA\nFSw7cPNQpg/q8IWojvaMzqxCmUnrV1Vp++oabWquVmtNUK21AdWF/MxiWqT6qgptaKzS/s4R3bOl\nacVui16JYLUAI7FEQTWuZ21prda3DlySc44/2ABWhLGJhF7timhv54j2d47o0IWIRide38pbUxfU\njWtqtLo2qNW1AbXUBFRRziqU13Z21Onr+y+qeySujoZQvsspCASrBRgan1RDVeHtI29tCWtsYlp9\no5NqrS2MA6IBwCvOOXUPx/VXPzilruGYOodi6hudkNPrIw62tWb7oYpr4Gaxu3FNrZ44eEn7u0YI\nVhkEqwXojU5o++qafJfxUzbPOtqGYAWg2I1OJHTk4qgOXYhof9eI9nVGNDienhVVUe5TR31IO7Y1\na92qkNbWhxRgjlLeBPxlunFNrQ5diOhdb1gtP71pBKv5cs6pd3RC9xRgg96WWXcG/syWpjxXAwDz\nN3x5Ssd6RnX00qgOX4zq8MWozg1ennl+3aqQ3ra5UTvX1atvdEItNQF6ogrMrR11OtAd0fHeMb2h\nrTbf5eQdwWqeRiemFZtKanUBrgg1VFWoKVypk300sAMoTNk5UUcuRXXkUvouvWM9o+obnZy5pjbo\nV1tdUO/Y3qK2uqDa6oOqrnz9x9Tq2mA+SsccbmiqVk2gXK92jRCsRLCat77RCUlSSwEGKyk9KJRg\nBaAQJFNOZwfGdfBCVK9djOqHJ/rVG53Q5HRKkuQzqTkc0JraoHZ21Gt1bfoOvdkhCsXDZ6Yb19Rq\nb+ewkim34vvb+FM8Tz3RdLAqxBUrKb0d+JVXupVKuYIaBwGgtDnndDES18Hu9JEvB7sjeu1iVJcz\nE8tDFWVqrK7UrR11WlMb1Jq6oJqZE1Vy1jdW6aWzQ7oUiWvtCm9iJ1jNU280LklqrSnMYLW1Jax4\nIqmL/KEGkEPRWGImQB3ojujlc8O6nJkVlT325Q3ttWqvC6mtPqimcCU9USvA+lXpnzvnhy6v+J9B\nBKt56o2m+wBaCjRYzdwZ2Du24v9QA/DG5HRSRy+N6mB3RAcvRHWgOzLTWG6W7q3Z2lKt9vr0AcSt\ntQGOfVmhwgG/VlVV6PzgZd29eWXfRDWvYGVmD0j6C0llkj7vnPvkFc//iqSPKz1SZEzSv3XOHfS4\n1rzqHY2rsbqiYAfMZQ9jPtE3pnfsaMlzNQCKTXZy+YHuER3oiuiZ4/3qiU4omUof/hIOlGttfUg/\nu6NFaxtCaqsLMuYAP2F9Y5WOXhpVyrkVvUo5Z7AyszJJn5F0v6QLkvaY2RPOuaOzLjsn6WeccyNm\n9qCkz0m6IxcF50tvdKIgZkQ9vrvrms/VBf16+mifHr130zJWBKAYjU4kdLA7ole7Inq1a0QHuiMa\niaUPmg/6y9RSE9BbbliltfUhrW0IqSZQzskOuK71q6q0r3NEA2OTBbu7sxzms2J1u6TTzrmzkmRm\nX5H0kKSZYOWce3HW9S9LaveyyELQE51Qe31h3+rbXFM5c/ciAGSlUk5nB8e1vzM9cPMHx/s1MDY5\ncxBxc7hSG5uqMyGKyeVYnNl9VgSr62uT1D3r8wu6/mrURyR9ZylFFaLe0QntWl+f7zKuq6UmoDMD\nQ5pOprjjBljBhi9PpVejutOrUQe7Xz9HrzboV0tNpd7YXqu1DSG114UUrGBLD0vXUFWhcKBc5wcv\n644Nq/JdTt542rxuZvcqHazeeo3nH5b0sCR1dHR4+dI5NZFIKhJLFOwdgVktNQElM0P4bmiqznc5\nAJbB2ERCr10c1WsXozp0MaoXTg9q+PKUpHTTa0tNQFtbw+poSG/pNVZzlx5yw8y0blWVzg/F8l1K\nXs0nWF2UtHbW5+2Zx36Cmb1R0uclPeicG7raN3LOfU7p/ivt2rXLXe2aQtSbmWHVWuBTf1vC6eB3\nsneMYAWUoNGJhF67GNWRi6N67VJUhy9EdXbW8S9tdUG11gR0+/oGtTcE1VYXVGU5q1FYPutXhfTa\nxahGYlOqD1Xku5y8mE+w2iNps5ltUDpQ/bKkD86+wMw6JH1D0oeccyc9rzLPekcLezhoVlO4Uqb0\nnYEPvmFkWHozAAAb9klEQVR1vssBsASxqWm9ljmI+EB3RIcvRtU5ayWgNujXmusc/wLkw/pVVZKk\n84OXVd9BsLoq59y0mX1U0lNKj1v4gnPuiJk9knn+MUn/UdIqSZ/N3DUy7Zzblbuyl1d2xarQm/Eq\nyn1qqKrQqb7xfJcCYAGcczo7eFn7Oke0vzN9h97JvjFlJh2orS6oN7TVamtLWGvq0tPLCVEoRK21\nAVWW+3R+KKZbOwq7LzlX5vVfpnPuSUlPXvHYY7M+/k1Jv+ltaYWjZ2YrsLCDlZSu8eCFSL7LAHAd\nE4mkDl2Ias/5Ye3vHNH+rpGfGHXQXh/UPVub1Z5ZiQoH/HmuGJgfn5nWrQrp/NDluS8uUfyTZx76\nRicUDpQXxb8QNzZW6Z8P9ahz6LLWZZZkAeTX0Pik9ndFtPf8sPZ2jujwhaimkukDiTc2Vekd21uU\nTDl1NITUyBEwKHLrV1XpZF+fLk9Oq6oIfm56beX9jhehJxov+DsCszY1hyX16MenBwlWQB6kUk5n\nBsa1r3NEezNbe9kG8zIztdUHdcfGBq1fVaWOhtCK/MGD0pbts+ocimnHmpo8V7P8+C96HnpHJ4ti\nG1CSGqsrtKY2oB+fGtSv3LEu3+UAJS8Sm9KB7oj2z5pgPpaZGVUf8uu2dfXa3JIed9BeH5SfGXMo\nce31QZX7TOeHLhOscHW90bi2NBfHoZJmprdubtRTR/qUTDmmJwMeSiRTOtE7ple7RvRqd0QHuiIz\nq1GmdI/j9tYarW0Ial1DlVZVV3AMDFac8jKf2uuDK7bPimA1h+lkSgNjkwU/amG2uzY16mt7L+jw\nxahuWVuX73KAouSc04WRuA5eSAeoA90RvXYpqolEujeqsbpSt6yt06bm6swE86AqOZQYkJTeDnzu\n1ICmplP5LmXZEazmMDA+qZQr/OGgs921qVGS9MLpQYIVME+jEwkd6o7qQHd6O+/ls8Man0xv6ZX7\nTGvqgrqto15rMxPM64J+VqOAa1jfWKVnTw6oa3jlTWEnWM3h9VELlXmuZP4aqyu1Y3WNnj81oEfv\n3ZTvcoCCk0o5neof1/6udHP5q90RnRkYl8vMjdrYVKXNmZWotfUhtdZyKDGwEB0NIZm0IrcDCVZz\n6MsGq5riWbGSpLs3N+oLL5xTbGpaoQr+b8bKdnlyWq92RdJzo7pG9Mq5YU1mtihCFWVaWx/Sfdua\ntbY+HaQ4lBhYmoC/TKtrAwQr/LRiGg46212bGvU3z53V7nPDundrc77LAZZVJDal3eeG9cq5Ye05\nP6wjl0aVTDn5TNraWqOb19apoyGkjoaQVlXRYA7kwrrGKu09P6xEMrWi7oYlWM2hd3RCFeU+1YeK\na/Lx7RsaVFHu049PDRKsUPLGJhLac35YL54e0pOHe9QTnZBTujeqvT6kuzc3zsyNCtBgDiyLdQ0h\nvXRmSMd7xvSG9tp8l7NsCFZz6I1OaHVtoOj+RRvwl+lN6+v1wunBfJcCeG4ikdT+zhG9cGZQL54Z\n0qELUSVTThXlPrXVBXXf9mZtbKzW2vqgylfQv5SBQtLREJIk7escJljhdb3RiYI/fPla3rqpSX/6\n3ePqH5tQc7g4fw+AlB57cuhiVI89e0ZnBsbVORTTdGZrL7sidUNTtToaQitqywEoZHWhCtUG/drX\nFdGv35XvapYPwWoOPaNx7SzSE7rv3tyoP/1ueuzCL97anu9ygHlLppyO9YzqpTNDevHMoPacH5kZ\nfdBSU6nbNzRoU1O11jdWsbUHFLCOhpD2d47ku4xlRbC6Duec+qLFc5zNlXasrlF9yK/nTxGsUNiy\nQerls0N6+eyQdp8bnjkWZmNjlR66ZY3eckOjLkbiRXEYOoC0joaQDl+Mqjc6UbQ/SxeKv6GuY/jy\nlKaSqaI5gPlKPp/pLZsa9cLpQTnniq5PDKXLOaeTfeN6KdMj9fLZIY1mgtSqqgptaw1rQ2O1NjRW\nqTaYvnEkGk8QqoAis25Vus9qf9eI3vmG1XmuZnnwt9R19I6mRy0U03E2V7p7U6P+5VCPTvePa3NL\nON/lYAXrjU7o+VMDev7UoF48M6jB8SlJ0tqGoB68abWcnDY0Vs8EKQDFr7U2oMpyn/Z1Eqyg9A8C\nSUXbvC5Jb92cPt7m+VODBCssq4lEUq+cG9aPTg7onw9eUv/YpCSpqrJcm5qq9LbNTdrYVK2Gqoo8\nVwogV8p9Pt3cXqd9K6jPimB1HdnhoKuL6JzAK7XXh7R+VUg/Pj2o33jrhnyXgxJ3KRLXD0/064fH\n+/XC6SHFE0lVlPvUUR/Szo56bW6pVktNQD62pYEVY+e6ev3dj89qIpFcETebEKyuo290QmU+U1O4\neM4JvJqf2dKkr+7tViQ2pboQqwPwTjLl9KnvHtfx3jEd7x2b2T6vC/n1xvbamV6pinJGIAAr1W3r\n6vXYj5wOX4zqTesb8l1OzhGsrqMnOqGm6sqiP3z1A3d06EsvderxV7r07+7hUGYszdhEQs+fGtT3\nj/Xp2RMDGr48JZ9J61ZV6YEbW7W1NazmcCU3SwCQJO3sqJMk7e8cIVitdH2jpXF76LbWGt21aZX+\n/sVO/dbdGxmgiAXrHLqs7x/r1w+O92n32WFNp5xqg37du7VJlf4ybWkOc3AxgKtaVV2pDY1VK6bP\nimB1HT3RCW1urs53GZ74yFs36De+uFdPHu7RQ7e05bscFLjpZEp/+t0TOt47quM9YxoYTzeeN4cr\n9ZYbVmlra406GkJFv5oLYHnc2lGn504OrIjRPwSr6+iNTuitmxrzXYYn7tnSrI2NVfrCj8/pF25e\nU/J/sLFw0XhCz57o1w+O9+vZEwOKxhMqM9OGxirdsbFB21pruIMPwKLctq5e39h/UV3DMa1bVZXv\ncnKKYHUNYxMJjU9OF/UMq9l8PtOH71qv//CtI9rfNaLb1pX+Pjfm1j0c09NH+/T9Y3165Vx6i6+h\nqkLv2N6iynKfNjVXr4i7eADk1m3r0kfD7escIVitVH2Zu5tKoccq61/d1q7/9r2T+rsfnyNYrVDO\nOR25NKo/+95JHesZnbmLrzlcqbs2NWpba1hrG0KMQwDgqc3NYYUry7Wvc0Tv3VnaR6wRrK6hN5ru\nKSnG42we3911zedubq/Tdw73qns4prUNoWWsCvmSSKa059ywvne0T9870qtL0QmZ0nfxvfOmVm1b\nXaPG6uIeKQKgsJX5TLd01Gl/VyTfpeQcweoaeqJxScU9HPRq7tzYoB+fHtCXXjyvT7x7R77LQY7E\np5J67tSAnjrSq2eO9SsaTyjg9+nuzU36vfu3KBJLqIpz9wAso9vW1esvnzmlsYmEwoHSPbqKv1mv\nIXucTXNNaf1Lvi5UoZvaavXVPd363fu3cKhtCYnGE/rh8X797fNndbJvTImkU9Bfpm2tYd24pkab\nmsOqKPcpkXSEKgDLbmdHvVJOOtgdnTlurRTxt+s19I5OqKGqoiQbd++6oVGHLkT1/+7t1ofv4pib\nYtY/NqGnj/bpqSN9evH0oKZTTjWBcu3sqNeNa2q1obGKkQgACsItHXUySzewE6xWoN7oRFH2V83H\n2oaQdnbU6X+8cF6/csc6jhspMt3DMT11pFdPHenV3s4ROSetXxXSR+7eoAdubNWRS6M0nwMoODUB\nv7a2hLWvq7QHhRKsruFiJK62utLqr5rtt9++WR/+H3v0qaeO64/eRa9VoTvdP67vvtajx1/p0qVI\n9nDwgO7b2qwb19SqpSZ9hMyxnjFCFYCCtXNdvf754CWlUk6+El1NJ1hdxehEQif6xvTATa35LiVn\n7t3arA/duU5/+/w5vWVTo+7d2pzvkjBLdizCd17r0Xdf69WZgcuSpI6GkB68qVU7VtdoFXfyASgy\nt69v0OO7u3ToYlS3rK3Ldzk5QbC6in3n09srt28o7VlPf/Su7dpzflh/8LWD+s7H7lZziW59Fotk\nymlf54i++1p6m+9iJK4yn+mODQ369bes1/07WvWD4/35LhMAFu2erU0q85mePtpLsFpJXj43JH+Z\n6da19fkuJacC/jJ9+oO36uf/6gX97lcP6B8+cgeNzstsajqlF88M6qkjvXriYI8uT06rzGfa1FSt\nf7WzTdtaa2bu4CNUASh2daEK3b6+QU8f7dP/+nPb8l1OThCsruKVc8O6ub1OwYrSuyPwSpuaw/rj\nX9ihj3/9sB770Rk9eu+mfJdU8sYnp/WjE+kZUz883q+xyWlVVZRpY1O1blxToy0t4ZK8GxUAJOn+\nHS36P759VOcHL2t9Y+kdb0OwukJsalqHL0T18Ns25ruUZfNLu9bq+VOD+vOnT+rOjQ0cd5MDf/Oj\nMzrRO6Yjl0Z1ZmBc0ymnqooybVtdoxvX1OiGpmr5y7g7E0Dpywarp4/26bdK8GctweoKr3ZFNJ1y\nJd9fNZuZ6b+89w06eCGi3/nyAX3tkTeX9B2Ry+V0/7iePtqnp4/26tWuiJyk+pBfd2xo0I41tVq3\nijP5AKw8axtC2r66hmC1Uuw+OySfvX4S90pRE/Dr0x/YqV/9/G499Okf669/9Ta9af3KCZdeSCRT\n2nt+RD843qdnjvXr7GD6Tr6b2mp03/Zm7Vhdo9aagIwwBWCF+9kdLfqrH5zS0Phkyd3hTLC6wu5z\nw7qprbakzzG6lpvX1ul/PvoW/eaX9uqDf/uy/s/33KT3v6kj32UVtJHLU/qv3zmu472jOtk3polE\nSmU+04bGKv38zWu0vTWsulBFvssEgIJy/44W/cUzp/TM8X790q61+S7HUwSrWSank3q1O6Jfu3Nd\nvkvJucd3d13zuQ/duV5f3tOlj3/9sI71jOkT79qucvp/JKVHIhy8ENGPTgzoRycHdPBCRM5JVZXl\nunF1rba2hrW5uVqVNJ8DwDXduKZGbXVBfe9IH8GqlB26ENXUdGpF9VddTbCiTP/6zet1fuiy/u7H\n53Sqf0yffO8btbYhlO/Slp1zTmcGLuulM4N66eyQXjg9pGg8IZ+lV/g+9vbNmkyk1FYfpF8KAObJ\nzHT/jhZ9ZU+X4lPJkroLn2A1y+6zQ5JEb5GkMp/pP7x7h7a2hvWJb76me//bs3rvzjY9eu8mrVtV\nerfHZqVSTqf6x7Wvc0Rf3dOls4OXNTYxLUmqDfp1Q1O1trRUa1NTtUKV/OcDAIt1/44WffHF83ru\n1IB+7sbSOemEnwyz7D43rK0tYdVX0ROT9Uu71uptm5v02I/O6MuvdOnr+y/qoVvW6NF7N+mGpup8\nl7dkA2OTOnIpqgPdEe3rHNGBrojGJtNBqrqyXBubqnRDY7U2NlWpoaqCxnMA8MjtGxpUEyjX00f7\nCFalaDqZ0r7OEb3vtvZ8l1JwWmsD+uNfuFH/7p4b9Lnnzuofd3fqm69e1K51Dbpve7Pu29aszc3V\nBR06pqZT6hy6rFP94zrWM6rvHenTpWh8ZjXKJLXUBLR9TY3WNYTU0RAiSAFADvnLfLpvW7OeOdan\n6WSqZHp5CVYZRy6NKjaVXPH9VbNdrcF9Y1O1/pf7t+rls0M61jOqT37nuD75neNqrw/qvm3Num1d\nvba2hrWhsUqV5cu7Z55MOfVE4+oajql7OKbOoZjODIzrdP+4Oodimk45SeltzsbqCm1qqtbquqDW\n1Aa0pi7ItHMAWGY/e2OrvnngkvZ1juiOjavyXY4nCFYZr5wblpQ+eRvXV11Zrndsb9E7trcoGk+o\nNujXD4736Wt7u/X3L3VK0szIga0tYbU3BNVUXanG7K9wheqCFaos96nS71NledlPnVGYSjlNp5ym\nkimNTSQ0NjGtsYmERuPTisYT6h+bUN/opPrHJtU3OqG+0QldisSVSLqZ7+EzqaGqUs3hSr11U6Oa\nwpVqDgfUXFPJlHMAKABv29KkijKfnj7aR7AqNbvPDWlDY5WaawL5LqWo1AbT877u29ait21p0uDY\nVDroZILPS2eHFH0toaRz1/0+/jJTmc+UzASqOS6f+ZqagF/hgF81Ab/W31ClhlCF6qsq1FBVodqg\nn0OlAaCAVVeW665Nq/S9o336o3dtL4n2C4KV0qsjr5wb1jvfsDrfpRS1cp9PrbUBtdb+ZDh1zmki\nkdLYZELjk9Man5jWRCKl6VRK00mnROZ/Uyknn8/kM5PPJ5VZOmwFyssUqChToNyngL9MAX+ZwoFy\nVZb7SuI/QgBYye7f0aof/s/D2t8VKYlTTwhWkk70jWl0Ypr+qhwxMwUryhSsKFNzON/VAAAKyc/f\nvFr/z/dP6o+fOKJvPnpX0e800GiiWf1VBCsAAJZVOODXf3z3Dh2+GNU/vtyZ73KWjGCldH9VW11Q\n7fUrb7I4AAD59u43rtbdmxv1qadOqG90It/lLMmKD1YDY5N64fQQq1UAAOSJmelPHrpJU8mU/uTb\nR/NdzpKs6GCVSKb00cf3a3I6qd+6e2O+ywEAYMVa31ilR+/ZpG8f6tFzJwfyXc6irehg9V+fPK7d\n54b1yfe+UTvW1OS7HAAAVrRH7tmojY1V+g/fek0TiWS+y1mUFRusvnXgor7wwjl9+K71es+tbfku\nBwCAFa+yvEx/8p6b1DkU02efPZPvchZlRQarI5ei+vjXD+n2DQ3639+5Pd/lAACAjLs2NeqhW9bo\nsWfP6IfH+/NdzoLNK1iZ2QNmdsLMTpvZH17leTOzv8w8f8jMdnpfqjcisSk98o/7VBes0Gc+uJOj\nTQAAKDCfeNcOtTcE9eEv7tG//sIrOtk3lu+S5m3OVGFmZZI+I+lBSTskfcDMdlxx2YOSNmd+PSzp\nrz2uc8kmEkk9d3JA/+Yf9qkvOqm//tWdagpX5rssAABwhaZwpb77sbfpE+/arle7RvTgXzyvT3zz\nsIbGJ/Nd2pzmM3n9dkmnnXNnJcnMviLpIUmz74d8SNLfO+ecpJfNrM7MVjvnejyveJ5SKaejPaP6\n8elBPX9qQHvOj2hqOqWKMp/+r1+8Sbd2FP/YfAAASlVFuU+/efdGvXdnu/7i+yf1j7u79K0Dl3Tn\nxlVa1xDSulUhrVtVpXWrQlpTFyyYHaj5BKs2Sd2zPr8g6Y55XNMmKW/Ban/XiN732EuSpK0tYX3o\nznV66+ZG3bGhQaEKTvIBAKAYNFRV6D8/dJM+9OZ1+qsfnNbRS6N67uSAJqdTM9f80q52/d/vuzmP\nVb5uWROGmT2s9FahJI2b2YnleN1OSd/L7Us0ShrM7Usgg/d6+fBeLy/e7+XDe72MfmUZXuNTmV85\ntm4+F80nWF2UtHbW5+2ZxxZ6jZxzn5P0ufkUVkzMbK9zble+61gJeK+XD+/18uL9Xj6818il+WxI\n7pG02cw2mFmFpF+W9MQV1zwh6dcydwfeKSmaz/4qAACAfJhzxco5N21mH5X0lKQySV9wzh0xs0cy\nzz8m6UlJ75R0WlJM0odzVzIAAEBhmlePlXPuSaXD0+zHHpv1sZP0qLelFZWS294sYLzXy4f3ennx\nfi8f3mvkjKUzEQAAAJaqMIY+AAAAlACC1RLMddQPvGNmXzCzfjN7Ld+1lDozW2tmPzSzo2Z2xMw+\nlu+aSpWZBczsFTM7mHmv/3O+a1oJzKzMzF41s2/nuxaUHoLVIs3zqB9454uSHsh3ESvEtKTfd87t\nkHSnpEf5s50zk5Luc87dLOkWSQ9k7qxGbn1M0rF8F4HSRLBavJmjfpxzU5KyR/0gB5xzz0kazncd\nK4Fzrsc5tz/z8ZjSP4Da8ltVaXJp45lP/ZlfNL7mkJm1S3qXpM/nuxaUJoLV4l3rGB+gZJjZekm3\nStqd30pKV2Zb6oCkfklPO+d4r3Prv0v63ySl5roQWAyCFYCrMrNqSV+X9LvOudF811OqnHNJ59wt\nSp9YcbuZ3ZTvmkqVmb1bUr9zbl++a0HpIlgt3ryO8QGKkZn5lQ5V/+Sc+0a+61kJnHMRST8UvYS5\ndJekXzCz80q3b9xnZv+Y35JQaghWizefo36AomNmJunvJB1zzv15vuspZWbWZGZ1mY+Dku6XdDy/\nVZUu59y/d861O+fWK/139g+cc7+a57JQYghWi+Scm5aUPernmKSvOeeO5Leq0mVmX5b0kqStZnbB\nzD6S75pK2F2SPqT0v+YPZH69M99FlajVkn5oZoeU/sfa0845RgAARYzJ6wAAAB5hxQoAAMAjBCsA\nAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAMzJzJKZeVZHzOygmf2+mfkyz+0ys7+8zteu\nN7MPLl+1P/Xa8cxZfAXBzN5vZqfNjHlVQAkiWAGYj7hz7hbn3I1KTwd/UNJ/kiTn3F7n3O9c52vX\nS8pLsMo4kzmLb97MrCxXxTjnvirpN3P1/QHkF8EKwII45/olPSzpo5Z2T3b1xcx+Zta09lfNLCzp\nk5Luzjz2e5lVpOfNbH/m11syX3uPmT1rZv+fmR03s3/KHK8jM3uTmb2YWS17xczCZlZmZp8ysz1m\ndsjM/s186jezb5rZvszq28OzHh83sz8zs4OS3nyN17wx8/GBzGtuznztr856/G+ywczMHsj8Hg+a\n2TMe/t8AoECV57sAAMXHOXc2Ex6ar3jqDyQ96px7wcyqJU1I+kNJf+Cce7ckmVlI0v3OuYlMMPmy\npF2Zr79V0o2SLkl6QdJdZvaKpK9Ker9zbo+Z1UiKS/qIpKhz7k1mVinpBTP7nnPu3Bzl/4Zzbjhz\nNt8eM/u6c25IUpWk3c6538+c/3n8Kq/5iKS/cM79U+aaMjPbLun9ku5yziXM7LOSfsXMviPpbyW9\nzTl3zswaFvxGAyg6BCsAXnpB0p+b2T9J+oZz7kJm0Wk2v6RPm9ktkpKStsx67hXn3AVJyvRFrZcU\nldTjnNsjSc650czzPyvpjWb2vszX1kraLGmuYPU7ZvaLmY/XZr5mKFPL1zOPb73Ga74k6Y/MrD3z\n+ztlZm+XdJvSIU2SgpL6Jd0p6bls0HPODc9RF4ASQLACsGBmtlHpINIvaXv2cefcJ83sXyS9U+kV\npJ+7ypf/nqQ+STcr3Y4wMeu5yVkfJ3X9v6NM0m87555aQN33SHqHpDc752Jm9qykQObpCedc8npf\n75x73Mx2S3qXpCcz248m6UvOuX9/xWv9/HzrAlA66LECsCBm1iTpMUmfdlec4m5mNzjnDjvn/lTS\nHknbJI1JCs+6rFbp1aCUpA9JmqtR/ISk1Wb2psxrhM2sXNJTkv6tmfkzj28xs6o5vletpJFMqNqm\n9KrSvF8zEyjPOuf+UtK3JL1R0jOS3mdmzZlrG8xsnaSXJb3NzDZkH5+jNgAlgBUrAPMRzGzN+SVN\nS/oHSX9+let+18zulZSSdETSdzIfJzNN4V+U9FlJXzezX5P0XUmXr/fCzrkpM3u/pL/K9EXFlV51\n+rzSW4X7M03uA5LeM8fv47uSHjGzY0qHp5cX+Jq/JOlDZpaQ1Cvpv2T6tT4h6XuWHkGRULrP7OVM\nc/w3Mo/3K31HJYASZlf8gxMASoaZrZf0befcTXku5SdktiRnGvoBlA62AgGUsqSkWiuwAaFKr9qN\n5LsWAN5jxQoAAMAjrFgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeOT/BybBl+o15YVVAAAA\nAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(dxs['dxs_ra'], dxs['dxs_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, dxs, \"dxs_ra\", \"dxs_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add SERVS" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd82/d97/vXF4skwAlukeLQlmzJS5ZsR4ntNGlsx4mT\nJs1w2qRtUsdt0jbntLfNvU17ek9Oz01vutIs19lLsZ1ZJ3aGHe+haWtYe3JTpEiCEyQI4Hv+AKnQ\njGxRIoAfxvv5ePBhAvgJ+AjmQ3jzOz5fY61FRERERBbP5XQBIiIiIrlCwUpEREQkSRSsRERERJJE\nwUpEREQkSRSsRERERJJEwUpEREQkSRSsRERERJJEwUpEREQkSRSsRERERJJEwUpEREQkSTxOvXBV\nVZVtaWlx6uVFREREFmz37t1nrbXVF7rOsWDV0tLCrl27nHp5ERERkQUzxrQt5DpNBYqIiIgkiYKV\niIiISJIoWImIiIgkiYKViIiISJIoWImIiIgkiYKViIiISJIoWImIiIgkiYKViIiISJIoWImIiIgk\niYKViIiISJIoWImIiIgkiYKViIiISJIoWImIiIgkicfpAvLN1u3tF7zmzs1NaahEREREkk0jViIi\nIiJJomAlIiIikiQKViIiIiJJomAlIiIikiQKViIiIiJJomAlIiIikiQKViIiIiJJomAlIiIikiQK\nViIiIiJJomAlIiIikiQKViIiIiJJomAlIiIikiQKViIiIiJJomAlIiIikiQKViIiIiJJomAlIiIi\nkiQKViIiIiJJsqBgZYy5xRhzxBhz3Bjz8fM8fpMxZtgYs2fm6++TX6qIiIhIZvNc6AJjjBv4PPBG\noBPYaYx50Fp7cN6lT1trb09BjSIiIiJZYSEjVpuA49bak9baCHAfcEdqyxIRERHJPgsJVg1Ax5zb\nnTP3zXeDMWafMeZnxpjLklKdiIiISBa54FTgAr0ANFlrx4wxtwE/BlbOv8gYcxdwF0BTU1OSXlpE\nREQkMyxkxKoLWDrnduPMfedYa0estWMz3z8MeI0xVfOfyFp7r7V2o7V2Y3V19SLKFhEREck8CwlW\nO4GVxphWY4wPeA/w4NwLjDF1xhgz8/2mmecdSHaxIiIiIpnsglOB1tqoMeajwC8AN/BVa+0BY8zd\nM4/fA7wT+BNjTBQIA++x1toU1i0iIiKScRa0xmpmeu/heffdM+f7zwGfS25pIiIiItlFnddFRERE\nkkTBSkRERCRJFKxEREREkkTBSkRERCRJktUgVJJo6/b2C15z52Y1WBUREck0GrESERERSRIFKxER\nEZEkUbASERERSRIFKxEREZEkUbASERERSRIFKxEREZEkUbASERERSRIFKxEREZEkUbASERERSRIF\nKxEREZEkUbASERERSRIFKxEREZEkUbASERERSRIFKxEREZEkUbDKMHFreezwGQbGppwuRURERC6S\nglWGOX12nEcP9fHQ/h6nSxEREZGLpGCVYfZ2hgA43DtKdyjscDUiIiJyMRSsMkg0FuelrhHW1JVQ\n4HHxxNF+p0sSERGRi6BglUGO9Y0Rno6xubWS65dVcqBrmL6RSafLEhERkQVSsMogezpC+H1uVtQU\nc8OKKjxuo1ErERGRLKJglSGmpmMc7h1hfUMZbpehuMDD5tZK9naEtENQREQkSyhYZYiDPSNMxyxX\nLi0/d9+WlVW4XYYnNWolIiKSFRSsMsTezhDlfi9Lg/5z95UWetnYUsEL7UOEJiIOViciIiILoWCV\nAcamohzvG+OKxnJcxrzssdetrMZgeOqYRq1EREQynYJVBnipa5i4hSsay3/jsXK/j6uaytl1eoiR\nyWkHqhMREZGFUrDKAHs7QtSWFlBXVnjex29aXUPcWrafHExzZSIiInIxFKwcNjQeoW1wgivPM1o1\nKxjwUV9WRPvgeBorExERkYulYOWw2SNsNrxKsAJoKC+iKxTGWpuOskREROQSKFg5bG9niOagn4qA\n71WvaygvYnI6zuC4dgeKiIhkKgUrB50dneLMyBQblr76aBVAQ0URAJ06mFlERCRjKVg56OxMR/XG\n8qILXltTWoDHZegaUrASERHJVApWDhoKJ9onlPu9F7zW43JRV1ZIl0asREREMpaClYOGJyK4XYZA\ngWdB1zeUF9EdChPXAnYREZGMpGDloFB4mvIi7290W38ljRVFTEXjDIxpAbuIiEgmUrByUGhimrIF\nTAPOWjKzFqsrNJGqkkRERGQRFKwcFJqIUFH06m0W5qopKdQCdhERkQymYOWQaDzO6GT0okas3C7D\nkplGoSIiIpJ5FKwcMhKOYoHyooUHK5hdwD5JLK4F7CIiIplGwcohoYnEAvRy/8KnAiHRKDQSi3Oy\nfywVZYmIiMgiKFg5JHQRPazmaphZwL6vczjpNYmIiMjiKFg5JDSRCFZlFzkVWF1SgM/tYn+XgpWI\niEimUbBySGgiQnGBB6/74v4XuIyhvrxQwUpERCQDKVg5ZDg8fdHTgLMay4s40D1MNBZPclUiIiKy\nGApWDhmamL7oHYGzGiqKmJyOc1wL2EVERDLKgoKVMeYWY8wRY8xxY8zHX+W6a40xUWPMO5NXYu6x\n1jIcjlz0jsBZDeV+APZrAbuIiEhGuWCwMsa4gc8DtwLrgPcaY9a9wnX/BPwy2UXmmvFIjOmYveSp\nwMpiH8UFHq2zEhERyTALGbHaBBy31p601kaA+4A7znPdnwE/APqSWF9OGp7ZEXipU4EuY7hsSala\nLoiIiGSYhQSrBqBjzu3OmfvOMcY0AG8Hvpi80nLX0Exz0LJLnAoE2NBYxsGeEaa1gF1ERCRjJGvx\n+r8Df2OtfdVPeWPMXcaYXcaYXf39/Ul66ewzPNMctOISR6wA1jeWE4nGOXpmNFlliYiIyCItJFh1\nAUvn3G6cuW+ujcB9xpjTwDuBLxhj3jb/iay191prN1prN1ZXV19iydkvNBHB6zYU+dyX/BwbGsoA\neEnrrERERDLGQoLVTmClMabVGOMD3gM8OPcCa22rtbbFWtsCfB/4U2vtj5NebY4Ihacp9/swxlzy\nczRX+ikp9LBX66xEREQyhudCF1hro8aYjwK/ANzAV621B4wxd888fk+Ka8w5oUX0sJpljGFdfSmH\ne0aSVJWIiIgs1gWDFYC19mHg4Xn3nTdQWWv/YPFl5bbQRIQl5WWLfp7VdSX86IUurLWLGv0SERGR\n5FDn9TSbjsUZj8QuuYfVXCtrSxiditI7MpmEykRERGSxFKzSLLTIHlZzraopBuBIr3YGioiIZAIF\nqzQLhRM9rC71OJu5VtWWAHDsjM4MFBERyQQKVmmWzBGrioCP6pIC9bISERHJEApWaRaamMYApUkI\nVgCraosVrERERDKEglWaDYcjlBZ5cbuSs4tvZU0Jx/rGiMdtUp5PRERELp2CVZoNTUxTlqTRKki0\nXJiIxOgKhZP2nCIiInJpFKzSbDg8nZRWC7NW1SZ2Bmo6UERExHkKVmkUj1uGJ6YpL1r8jsBZK2oS\nOwOPamegiIiI4xSs0qh/bIqYtUkdsSor8lJfVsgxjViJiIg4TsEqjTqHEuugkhmsINGB/WifgpWI\niIjTFKzSqHtmgXkypwIh0YH92JkxYtoZKCIi4igFqzQ6F6ySPGK1qraEqWicjsGJpD6viIiIXBwF\nqzTqCoUp9Loo9LqT+ryr6mYXsGs6UERExEkepwvIJ92hcNKmAbdubz/3/VQ0BsD3dndydixy7v47\nNzcl5bVERERkYTRilUadQ+GkTwMCFHjclPu9nBmZTPpzi4iIyMIpWKVRdyic1K7rc9WWFNI3MpWS\n5xYREZGFUbBKk9HJaUYmo1T4k7sjcFZtaUGiT5Z2BoqIiDhGwSpNukOJabqyFEwFAtSUFhKLWwbG\nNWolIiLiFAWrNPl1D6sUTQWWFgJoOlBERMRBClZp0j+aCDwlhakJVtXFBRjQAnYREREHKVilycB4\nog1CoCC5Paxm+TwuKgI+zoxqxEpERMQpClZpMjg+RYHHhc+dure8trSQPo1YiYiIOEbBKk0GxiJU\nFRdgjEnZa9SWFHB2bIpoPJ6y1xAREZFXpmCVJgPjEYKB1LRamFVTWkjc8rLu6yIiIpI+ClZpMpiG\nYFVbWgCg6UARERGHKFilyeB4hMoUB6uq4gJcBs6o5YKIiIgjFKzSZGB8KuUjVl63i2CgQC0XRERE\nHKJglQYTkSiT03GCxakNVpCYDlSwEhERcYaCVRoMzCwmrwoUpPy1aksLGRyPEIlqZ6CIiEi6KVil\nwWxz0FRPBQLUlRZigb5RjVqJiIikm4JVGgzOHIycjqnAurLEmYGaDhQREUk/Bas0mJ0KTPWuQEiM\ninndht5hBSsREZF0U7BKg8E0TgW6jKGmpFAtF0RERBygYJUGg+MRfG4XxQWetLxeXWkhvZoKFBER\nSTsFqzQ4OxahstiX0nMC56otK2RsKsrAmEatRERE0knBKg0G09AcdK660sQC9iO9o2l7TREREVGw\nSot0nBM41+yZgYcVrERERNJKwSoNBtJwTuBcJYVeAj43h3tH0vaaIiIiomCVFokRq9R3XZ+rtqxQ\nU4EiIiJppmCVYuFIjIlIjMo0NAedq660kKNnxojHbVpfV0REJJ+lZ/9/HhuY6bqezqlASASr8HSM\n9sEJWqoCaX1tERHJbVu3t1/wmjs3N6WhksyjEasUS2dz0LlqZ3YGagG7iIhI+ihYpdjsAczpngqs\nLS3EGLVcEBERSScFqxQbHJsdsUrv4nWfx0VT0M+RM9oZKCIiki4KVinm1FQgwOraEk0FioiIpJGC\nVYoNjEfwug2lhenfJ7CmroTTZ8eZnI6l/bVFRETykYJVig2MJY6zSdc5gXOtrislbuF431jaX1tE\nRCQfLWgYxRhzC/AZwA182Vr7qXmP3wF8EogDUeBj1tpnklxrVnKiOeis1XUlQGJn4OUNZY7UICIi\n2WUhrRTklV0wWBlj3MDngTcCncBOY8yD1tqDcy77FfCgtdYaYzYADwBrUlFwtkn3cTZztVT68Xlc\nHNHRNiIiImmxkKnATcBxa+1Ja20EuA+4Y+4F1toxa+1si+8AoHbfM9J9APNcHreLlTXFWsAuIiKS\nJguZCmwAOubc7gQ2z7/IGPN24P8DaoA3J6W6HOBksILEdOAzx8469voiIpI5Zqf5RianicYSYyDG\ngAHcLkNJodfB6nJD0raqWWt/BPzIGPM6Euut3jD/GmPMXcBdAE1Nud/qfnI6xthUlKo0Nweda01d\nCT98ocvxgCciIs7qGQ7z9LF+9naG6A5Nnveaa1squOPKBlwObLjKFQsJVl3A0jm3G2fuOy9r7VPG\nmGXGmCpr7dl5j90L3AuwcePGnJ8u/HUPK2cWr0NiZyDA4d4Rblhe5VgdIiKSfmNTUR7c081/7eli\nx+lBrIXGiiJuuayO4kIPWLBYrIWuUJjtpwbxuV3ctr7ekd3suWAhwWonsNIY00oiUL0HuHPuBcaY\nFcCJmcXrVwMFwECyi802TjYHnbVmZmfgkd5RBSsRkTzRNjDO1587zfd2dTI2FWVZdYD/9oZVAFQV\nn/+X/WusxeUyPHtigAKvmzesrU1nyTnjgsHKWhs1xnwU+AWJdgtftdYeMMbcPfP4PcA7gPcbY6aB\nMPDuOYvZ85ZT5wTOVVNSQLnfqzMDRURynLWW504M8LVnT/Grw324jeHNG+r5gxtauHJpOcaYV22l\nYIzhzevrmZqO89jhPgq9bras0C/kF2tBa6ystQ8DD8+775453/8T8E/JLS37DY5PAc6OWBljdLSN\niEgOi0Tj/GRvN5/+xRF6RyYJ+NzctKqGza1BSou8HOoZ5VDPwj4DXMbw9qsaiERjPLy/h0KPi40t\nwRT/DXJL+s9ZySMDMwcwO9XHatba+lLu39lBLG5xuzRnLiKSC4bD02zd3s7XnzvFmZEpakoKeMfV\nDWxoLMfrvvSDVdwuw7uuXUpkWxs/erGLQIGHtfWlSaw8tylYpdDgeASPy1Dq8PbV9Q1lfP2505zs\nH2NlbYmjtYiIyOL0DIf58tOnuG9HO+ORGFtWVPFP79hA11A4aQvOPS4Xd25q5nOPH+PpY/0KVhdB\nwSqFBsYiVAR8uBweJVrfmDjOZl/nsIKViEgW2rq9nb6RSZ4+dpY9HSEslg2N5WxZUcWS8iK6Q5NJ\n38Xn87jY0FjO44f7GJuKUlygyLAQepdSyMnjbOZaXl1MkdfN/q5h3nFNo9PliIjIRdjTEeLb29o4\n2DOC123Y1Bpky4oqKtLw+bKuvpTHDvdxuGdEa60WSMEqhQbHpzKiKafbZbi8oZR9nSGnSxERkQWw\n1vL8iQE+/8Rxnj0+QJHXzc2ra7h+eWVaR47qywop93s5qGC1YApWKTQ4HuHyhjKnywBgfUM539ne\nRjQWx7OIRY0iIpI68bjlV4f7+Pzjx9nTEaK6pIC/vW0tHpehwOtOez3GGNbVl7Lj1CBT0RgFnvTX\nkG30CZtCA+ORV2zElm4bGsuYisY51jfmdCkiIjJPNBbnv/Z0cetnnuaPv7mLs2NT/K+3Xc7Tf30z\nf/y6ZY6Eqlnr6kuJxi3HzujzYyE0YpUikWic0cloRkwFwq8XsO/vGtbuDhGRDPHN507zYnuIJ4/1\nMzgeoaakgN+9ppENjeW4jOGHL7ziCXJp01wZoMjr5lDPSMbMwmQyBasUGZpw/jibuVorAxQXeNjf\nOcy7Ni698B8QEZGUmYhE+e6ODj7z6FFGJqM0lBfxe5ubWFNfmnEHILtdhrX1JRzqGVU/xAVQsEqR\ns2OJruuZsCsQwDW7gL1r2OlSRETy1sjkNN96vo2vPHOKwfEIrVUB3nFNIyuqizP60ON19aW80B7i\n9MA4y6uLnS4noylYpUgmHMA834bGcr7+3Gki0Tg+j5bXiYiky+B4hK89e4qvP3ea0ckoN6+u5qOv\nX8GR3uxYt7SipgSv23Cwe0TB6gIUrFJkMAMOYJ5vfUMZkWico2dGNU8uIpJiW7e3Mzo5zTPHzrL9\n1CDTsTjrlpRy0+oaGsqLsiZUQaJZ6IqaEg72jHD7hvqMHl1zmoJVivz6nMDM2BUIiZ2BkFjArmAl\nIpI6vcOT/GRfNztPDRKLW65YWs6Nq6qpLS10urRLtq6+lEM9I3QPT9JQXuR0ORlLwSqJtm5vP/f9\nU8f6cRl4aH9PxixEbAr6KS30sK9zmPducroaEZHc0zk0wT1PnuCBnZ1E43GuWlrBjaurM6b1zmKs\nqSvBAAe7RxSsXoWCVYqMT8Uo8nkcDVVzg96smpJCnjzad+6xOzc3pbssEZGc0z4wwReeOM73d3di\nDLzzmqU0lBdl1DrbxQoUeGipCnCoZ4Q3rqt1upyMpWCVIuNTUQK+zOtQu6S8iGePn2U6FserDuwi\nIoty6uw4n3/8OD96sQu3y3Dn5ibuvnE5S8qLzvvLbbZbV1/KQ/t7GBibojIHRuFSQcEqRcanogQy\n8CTwhooiYtZyZmSSxgq/0+WIiGSlf3vkKE8e7WdvRwi3y3Bda5DXrqymtMjLE0f6nS4vZWaD1aGe\nEbasrHa6nIyUeZ/8OWI8EqWuLPPmoBtn5sU7h8IKViIiF+lQzwife+w4D+/vwet2sWVFFVtWVlFS\n6HW6tLSoCPioKy3kaN+YgtUrULBKkfGpGMUFmTcVWO734ve56Q6FnS5FRCRr7O8c5j8eO8YjB89Q\nXODhxlXVvGZFVUbOTKTakvIijvWNOl1Gxsq/n4g0iMUt4ekYAV/mvb3GGBrKi+hSsBIRuaDdbUN8\n9rFjPHGkn9JCDx97w0r+8IZWHtrf43RpjqkpKeCF9iHCkRhFGbiW2GmZ98mfAyYiUYCM/U2moaKI\np472Mx2LO12KiEjG2bq9nVNnx3n8cB/H+8fw+9z89rparltWSaHXndehCqC2NLFo/czIJC1VAYer\nyTyZ+cmf5camMjtYNZYXEbfQMzzpdCkiIhnDWsvzJwf40tMnOXV2nECBh1svr2NTa5ACj0ZmZtXM\nNDk9M6pgdT6Z+cmf5canYgAZ2W4BoGFm0XrX0ITDlYiIOM9ay3MnBvjMo8fYcXqQkkIPb15fz7Ut\nQZ2reh7lRV58Hhd9I1NOl5KRFKxSYDzDpwJLCz0UF3i0zkpE8pq1lmeOn+Uzjx5jV9sQtaUF/MNb\n1mGMUZ+/V2GMoaakgDOjmvU4n8z85M9y4xk+FTi7gL1zSMFKRPLL1u3tWGs53jfGrw730T44QVmR\nl7dcsYSNzRUKVAtUW1LIkTPaGXg+mfnJn+XGp2IYwJ+hU4GQWMB+9MwoY1NRijM0AIqIJJO1lmNn\nRl8WqO64cgnXNFXgUaC6KDWlBexuH2JiKopfnyEvo3cjBcanohT53Blz+PL5NFf6sSS2Et+4Sk3e\nRCR3WWt5/Egfn33sOC+2hxSokqD23AL2KVoVrF5G70YKjEcyfxSoORjAZWD7yQEFKxHJSfG45RcH\nevnsY8c52DNCQ3mRAlWS1JT8uuVCq3YGvkxmf/pnqUw9J3Aun8dFQ3kR208NOl2KiEhSTcfi/HRf\nN194/ATH+sZorQrw6Xdu4G1XNfC9XZ1Ol5cTyoq8FHhc9GkB+2/I7E//LDU2FaOuNPNP/W6tKub5\nk2fVPVdEcsLXnz3NrrZBnjl+ltDENDUlBbz72qWsbyhjOmYVqpJodmegWi78JgWrFEiMWGX+0Ghr\nVYCnjvXzQvsQr1lR5XQ5IiKXZHA8wjeeO82Xnj7JRCRGc9DPWzYsYXVdSUavdc12NaWFHO7VzsD5\nFKyS7Nw5gRk+FQiJBeyz66wUrEQk25w6O85XnjnJ93d3MjkdZ21dCa9bVU1zZeb/YpsLaksK2N02\nlBXLX9JJ70SSZfo5gXMVet1c3lDGNq2zEpEsYa1ld9sQ9z51kkcOncHrcvH2qxr40Gtb2Xl6yOny\n8srco22WFRQ7XE3myPxP/ywze5xNpu8KnLW5Ncg3nm9jcjpGoVfrrEQkM317WxsHu0d4+lg/HUNh\nirxublpVzXXLKikp9CpUOWC25ULfyBTLqhSsZmXHp38WOXecTZYsBt/cWsmXnj7Fno4Q1y2rdLoc\nEZGXCUdifH93B//26DEGxyMEAz7eesUSrm6q0Dl+Dist9FDgcXFmRDsD51KwSrKxDD/OZr5rW4MY\nA9tPDipYiUjGODs2xTefb+Nbz59maGKapRVF3HJZE+uWlGpBeoYwxlBbWkjfqHYGzpUdn/5ZJNPP\nCZyvrMjL2rpStp8aAFY6XY6I5LlTZ8f50tMn+cHuTiKxOG9YW8uHX7eMI72jGAWqjFNTUsDBnhGn\ny8go2fHpn0Wy4ZzA+TYvC/LdHe1EonENrYtI2m3d3k77wDhPHTvLoZ4R3C7DVU3lbFlRTXVJAUfP\njClUZaja0kJ2tQ3p3Nk59C4kWTacEzjf5tZKvvbsafZ1htjYEnS6HBHJE9FYnJ8f6OWLTxw/tyD9\nxtXVXD+zIF0yX03pr4+2Ka7WAnZQsEq6bDgncL5NrYkwtf3UoIKViKTccHia+3e2843n2ugKhQkG\nfNy+oZ5rmiso8GTPaL9AbcnszsBJlitYAQpWSZeNjdKCAR+ra0vYdnKAj9y8wulyRCRHHTszyre2\ntfGD3Z2MR2Jsbg3yP96yjr7Rqawa5ZdfKyn0UOh1cUYL2M/JrgSQBbLlnMD5Ni8L8v3dnUzH4nh1\n6ruIJMl0LM4jB8/wzedPs+3kID63i9s31PNHW1q5vKEMSKyxkuyUODOwkD61XDhHwSrJsuWcwPk2\nt1byzefbeKlrmKuaKpwuR0SyXM9wmPt2dPC1Z08xMhml3O/lTetquaYlSHGBh32dw+zrHHa6TEmC\n2tICXuoawVqrTQYoWCVVNp0TON/cdVYKViJyKWJxy5NH+9i6vZ3HDvcRt7Cyppg7rqzUgcg5rKak\nkPB0YmegNh0oWCVVNp0TOF91SQHLqwNsPznA3Tcud7ocEckiPcNhHtjZyf072+kenqSquIC7b1zO\nezc18fSxs06XJyl27mib0SkFKxSskirbzgmcb/OySh7c0000FsejdVYi8iqisTj/8ycH2XF6kCO9\no1hgRU0xd25qYm19KW6XUajKE3NbLmhnoIJVUmXbOYHzXbeskq3b29nXNczVmg4UkfPoDoW5f2cH\nD+zqoGd4kpICDzeuqmZjS5BgwOd0eeKAkgIPRV43fSPaGQgKVkmVbecEzve6lVW4XYZfHTqjYCUi\n58xfO2WB166s5vVralhTlxidkvxljKGmtIAzo9oZCApWSZVt5wTOV+73saklyCMHz/B/vWmN0+WI\niMP6R6e4f2c7393RQVcoTFVxAX9y03Lec20TS4N+tUmQc6qLCzjcO+p0GRlhQQnAGHML8BnADXzZ\nWvupeY+/D/gbwACjwJ9Ya/cmudaMl43nBM73hnW1fPKnB2kbGKe5MvvaRojI4lhr2dU2xCd/epAD\nXSPErGV5dYD3bmpindZOySuoCPgYm4rqzFkWEKyMMW7g88AbgU5gpzHmQWvtwTmXnQJutNYOGWNu\nBe4FNqei4EyWjecEzvfGtYlg9cjBM3zotcucLkdE0iQcifGjF7v45vOnOdw7SqHXxXXLgmxuraSq\nJPuaHkt6VfgT6+uGJiLndgnmq4WMWG0CjltrTwIYY+4D7gDOBStr7XNzrt8GNCazyGyRjecEztdU\n6Wd1bQmPHlKwEskH3aEw33y+je/uaGc4PM26+lI+9TvrmZzWyIMsXNCfaLOgYLWwYNUAdMy53cmr\nj0Z9EPjZYorKVtl4TuD51kjUlxfy1NF+vvz0Sfw+D3dubnKgMhFJla3b22kfGOfZEwMc6B7GWli3\npJR3bVxKS6WfuEWhSi5KxcyO0KHxiMOVOC+pKcAYczOJYLXlFR6/C7gLoKkp9z6ss/WcwPnW1pXy\nxJF+jvSOqgu7SA6JxS2/ONDLF584TsdQmEKvi9csr+K65ZXnpnJELkVxgQev2zA0Me10KY5bSLDq\nApbOud04c9/LGGM2AF8GbrXWDpzviay195JYf8XGjRvtRVeb4bL1nMD5GiqKKCn0cKhnRMFKJAeM\nT0X53q7VPvWBAAAgAElEQVQOvvLsKToGwwQDPt6yoZ6rmyso8GTvZhvJHMYYyv0+BjVitaBgtRNY\naYxpJRGo3gPcOfcCY0wT8EPg9621R5NeZRaIxuJZe07gfC5jWFNXyt7OENFY3OlyROQS9Q5P8o3n\nT7N1e2L91DXNFfztbWs5OxbJ6k02kpmCfh9DEwpWF0wB1tqoMeajwC9ItFv4qrX2gDHm7pnH7wH+\nHqgEvjBzsnXUWrsxdWVnntnhz1wIVgBr60vYeXqQk2fHnS5FRC7SS13DfPnpk/x0Xw9xa3nTZXV8\n6LXLuKY5MQKt/lOSChUBL22D+sxYUAqw1j4MPDzvvnvmfP8h4EPJLS27DIwnWvln+67AWcuri/G6\nDQd7RpwuRUQWIBqL8+ihPv7p54c5dXacAo+Lza1Brl9eRTDg40jvKEfUwFFSqMLvY3I6TjgSoyiL\n+zkuVm6kgAwwOJYY/szWcwLn87pdrKwp4XDPCNZajKYNRDLS2bEp7t/ZwXe2tdE9PEl5kZfbLq9j\nY0uQQm9u/Hsk2WFuL6siX5HD1ThHwSpJBmYW7OXKVCDAuvpSDvaMsL9rmA2N5U6XIyIzrLW80D7E\nt7e189C+HiKxOFtWVPEPb72MvtEprZ8SR8y2XBgcj7CkXMFKFmlgLDEVmEvBanVdCQZ49OAZBSuR\nDPClp07yYvsQO9uG6B+dosDj4prmCjYvC1JTUqhF6eKo4JwRq3yWOynAYYPjkaw/J3C+QIGH5ko/\nvzx4hv/+26udLkckL8XiludOnOW+nR38fH8vMWtZWlHE71zVwPrGMrVLkIxR5HNT6HUpWDldQK4Y\nGI9k/TmB57O2vpSfvdRLx+AES4N+p8sRyRsn+sf4we5OfvhCF70jk5T7vWxeFmRjS5C6PD8yRDJX\nhd/H0Hh+NwlVsEqSgbFIzuwInGvdTLB6cG83H7l5hdPliOS04YlpfrKvmx+80MmL7SFcBm5cVc3f\n3b6O31pbww9f+I3ezCIZpcLvo39maUy+yr0k4JDB8UhOra+aVVlcwKbWIN/b1cGf3rRcuwNFkiwa\ni/P08bP86y+PcqhnhGjcUlNSwK2X13HF0nJKC70Mh6cVqiQrBAM+jvWNYm3OHa6yYLmXBBwyMD6V\nM60W5nvXxqX81ff2sv3UINctq3S6HJGccLJ/jPt3dvDDF7voH53C73NzbUuQq5sqWFJeqF9iJCtV\n+L1MxyxjU1GnS3GMglWSDIxHWF1b4nQZKXHb+jr+4cEDPLCrQ8FKZBEmp2P8/KVetu5oZ8epQTwu\nw02ra3jnNY30jU7icbmcLlFkUc71ssrjMwMVrJIgGosTmpjOyalAAL/Pw1uuWMKPXuzkH956GaWF\nXqdLEskaW7e3c3Z0im2nBnixPUR4OkYw4ONN62q5urmCkkIvg+MRhSrJCed6WU3k7wL23EwCaZZr\n5wSez7uvXcp3d7Tzk73dvG9zs9PliGS8eNzy1LF+vv7cKY6eGcNtDOuWlLKpNUhrVSDndhCLwK9H\nrEJ53HIhd5NAGuXaOYHnc0VjGatrS3hgZ4eClcirmIhE+f7uTr7+3GlO9o9TUuDht9bWsKklSIlG\neyXH+TwuAgUeBjUVKIuRa+cEno8xhnddu5RP/vQgh3tHWFNX6nRJIhmlf3SKbzx3mm9ta2M4PM2V\nS8v5zHuuZDg8rWk+yStBvzevm4QqWCVBLp4TeD5vv6qBT/3sEA/s7OTv37LO6XJEHLd1ezv9o1M8\nc7yfF9tDxOKWtfWlvPfapTRVBhifiilUSd6pCPjoHAo7XYZjcjsJpEkunhN4PsGAj99eV8ePXuzk\nb25draM0JK8lDkFu41DPCG6X4eqmCrasqKKqpMDp0kQcVeH38VLXMLG4xe3Kv7WEuZ0E0mRwPIIx\nuXVO4Ct517VLeWh/D48e7OPNG+qdLkckreJxyxNH+7jniZPsOD1IkdfNjauruX5ZpdZPicwI+n3E\nLfQMh2msyL+j0BSskmBgPEKF35cXu3y2rKhiSVkh9+/qULCSvDEVjfHgnm6+9PRJjp4ZY0lZIX93\n+zpcBo3ciswz23KhY1DBSi7RwFiEypkfpFzndhneeU0jn338OF2hMA3lRU6XJJISW7e3MzEVZfvp\nQbadGGB0KkptaQHvvKaRKxrL83KKQ2QhKvyJ0duOoQmuJ/+aSitYJcHgeIRgngQrgN/duJTPPn6c\nb29r429uWeN0OSJJd7J/jP/a08UL7UNMxywra4p554oqVtQU66gZkQso83sxQOfghNOlOELBKgkG\nxqdYXZebx9mcz9Kgn9vW1/PN507z4dcto9yfP6FSclcsbnnscB/ffP40Tx87i9tluHJpOa9ZUUVd\naaHT5YlkDY/LRWmRl4483RmoYJUEA+MRKgO5uxNo6/b237hveVUxD0V6+O8P7OUNa2u5c3OTA5WJ\nLN7geIT7d3bw7W1tdIXC1JUW8pdvXIXP49KCdJFLVOH30TmkESu5BLPnBObTVCBAXVkh6+pLee7E\nWbasqHK6HJGLYq1l28lBvrujnZ+/1EskFuf6ZZX83e1recPaWjxu13l/oRCRhQkGvHQMasRKLsHs\nOYGVxfkVrABuXl3DwZ4Rnj85wB9taXW6HJELGhyP8IPdnfznUyc4Oxah0OvimpYKNrUEqS0tZHB8\nmgd2dTpdpkjWq/D7eLEjxFQ0lnc7ZxWsFmn2nMDKQAHD4fw6zbuhoojVtSU8e/ws41PRnG+QKtnJ\nWsvO00N8Z3sbP9ufGJ1qDvq56Zoa1jeU4XWrM7pIslUEfFgLXUNhllUXO11OWumTcJFmzwkMBnx5\nF6wAbl5Twz1PnuDb29r48I3LnS5H5NwUXjgS44X2IXacHqR/dCoxOtVcwbWtQS1GF0mxiplNTR0K\nVnKxZs8JrCz2cersuMPVpF9T0M+K6mK+9PRJ3n99C0V50H1eMlvXUJhtpwbY1xliOmZZWlHEO65u\nYH1DOT6PRqdE0iF4rklo/i1gV7BapNlzAvOlQej53Lymhi89fZLv7mjXWitxxOR0jIf29fCtbW3s\n6QjhdRuuXFrB5tYgS9TEViTtSgo9eN2GjjzcGahgtUiz5wTmcy+n1qoAm1qD/OdTJ7hzcxOFXo1a\nSXq0D0zwnR1tPLCzg6GJaZZXB7h9Qz1XN1Xo51DEQS5jaCgvojMPdwYqWC1S/9gUlQFf3h9v8eev\nX8nvfWU79+/s4AM3tDhdjuSwWNzy5NE+vvV8G08c7cdlDG9cW8v7r2/m+uWVfHdHh9MligiJZtIa\nsZKL1h2apL5MUw2vWVHJdcuC/Msvj/DmDfVUFeduw1RxRt/oJJ/40UvsPD3I0MQ0JQUebl5dw7Ut\nQcqKvJwemOD0QP79Iy6SqRor/LzU1eN0GWmnYLVIPcNhWioDTpfhOGMM/+tt67n1M0/xjw8d4t/e\nfaXTJUkOiMctzxw/y9bt7Tx66AzRuKW1KsCbLqvjsiVleT9SLJLJmoJ+hiamGZ2czqtTDBSsFqk7\nNMkNy9V5HGBFTTF337iczz52nN+9ppEb1JFdLlFXKMwPdnfyvd0ddAyGCQZ8/NGWVgI+D9UlGg0V\nyQbNlX4A2gYmuLyhzOFq0kfBahFGJqcZm4qypFw9cWZ95OYVPLi3m0/8+CV+9rHX5l3HXbl033ju\nNAe7R9jdPsSJvjEssKwqwLuvXcpl9aV41MhTJKvMBqv2QQUrWaCe0CSA1ljNUeh18z/vuJwPfHUH\nX3ziBB97wyqnS5IMZq3lxY4QP9jdyQ9e6GRyOk6538vNa2q4uqki787gFMklzTPLZNrybO2jgtUi\ndIcS20jVJ+flblxVze0b6vnC4ye448oGWqu0Bk1ernd4kh++2Mn3d3dysn+cQq+LNXWlXNNcQWtV\nAJfR2imRbFdc4KEy4KNtIL+aZytYLUL38Gyw0lTgfH9/+zqePNLPJ368n29/cDNGH5R5bev2dqKx\nOId6R9l1epDjM1N9LZV+fueqBi5vKFPfKZEc1FTp14iVLFxPaBK3y1BTomA1ez7bXDetqeEne7v5\n6+/v46qmCu7c3ORAZeK0I72jPLSvmxc7QkxEYpQVeblpdTVXN1VQqbYcIjmtOehn5+khp8tIKwWr\nRegeDlNXWqgt369gc2uQPe1DPLi3m4YKTZfmk3Akxk/2dbN1ezt7OkK4jWFtfQkbW4KsqCnWVJ9I\nnmiqDPBfe7uZisbyZjOTgtUidIfC1JdptOqVuIzhvZua+Nzjx/nOtnY+uKU1r3qZ5KMjvaNs3d7G\nD1/sYnQyyvLqAJ9481riNrHeQkTyS3PQj7XQORRmeXWx0+Wkhf6lW4Se4Uk2NJY7XUZGK/f7eO+m\nJr727Cn+6nt7+eL7rsGlEb6c8o3nTrO/a5idpwZpG5zA7TJcvqSUTa2VtFT6tb5OJI+1VM20XBiY\nULCSVxePW3qGJ7nlMo1YXcjy6mJuubyeh/f38MUnT/CRm1c4XZIkwbEzo2zd0c59OzoIT8eoDPi4\n9fI6rm6qIKDRKREBmoKJXeGn82hnoP71u0QD4xEi0bhaLSzQa5ZX4nUb/vmXR7hsSSk3ra5xuiS5\nBONTUR7e38MDuzrYeXoIr9uwpq6UTa1BllUFNDolIi9TVezD73Pn1c5ABatL1DPTakFrrBbGGMOn\nfmcDR3pH+Yv79vCTj26haaYrr2Q2ay2724Z4YFcHP93Xw0QkRmtVgI/fuoZ3XtPILw+ccbpEEclQ\nxhiagn7aBxWs5AK6Z7qua8Rq4Yp8bu79/Y285XPP8Idf38HWP76O2lIF00x1+uw4n3zoIHvaQwyM\nR/B5XKxvKGNjcwVNwcTaKYUqEbmQ5ko/x/vGnC4jbRSsLpG6rl+apko/X3r/Rv7wazt4138+z3c+\ntJnGCo1cZYqzY1P8dG83P97TzZ6OEAZoqQpw0+oaLm8ozZvt0iKSPM2VAR4/0k88bvNi85KC1SXq\nGQ5T4HFR4Vf7gIu1qTXItz+0mQ98dQfv/s9tfOdDm2nRsTeOGRyP8IsDvTy0r4fnTw4Qi1vW1Zfy\n/9y2hlgcyor0My4il6650k8kGqd3ZDIvBiMUrC5R93DiB0SLdS/NVU0VbP3j63j/V389crWytsTp\nsvLG0HiET/70IPu7hjnRP0bcQmXAx2tXVnFFY7mmaEUkaZqDvz6MWcFKXlF3KKwzAhfp8oYy7rvr\nOt735e28+95tfOuDm7hsSZnTZeWsMyOT/PJALz97qZftpwaJxS3BgI/XrqxmfUMZ9WWF+kVBRJKu\neWajUtvAONcvr3S4mtRTsLpEPaFJtqyscrqMrHK+8wQBfv+6Zr7yzCne/oXn+N9vX887rm7QB3yS\nnOgf49GDZ/jlwTO80D6EtbCsOsDdNy4Da1hSrjAlIqlVX1aIx2Voy5OdgQsKVsaYW4DPAG7gy9ba\nT817fA3wNeBq4G+ttf+c7EIzSTQWp290kiVqtZAUVcUF3H3jch7Y1cFffW8vjx/u4x/ffjnlfp/T\npWWdaCzOC+0hPvurYxzqHeHsWASAJWWF/NaaWi5bUqppPhFJK4/bRWNFEe150svqgsHKGOMGPg+8\nEegEdhpjHrTWHpxz2SDw58DbUlJlhjkzOkXcakdgMpUVefngllZGJqf5118eZXfbEP/67iu4YblG\nBS+kb2SSJ4728+TRfp4+2s/IZBS3MSyrDnDD8irW1JUopIqIo5oqA7QN5kf39YWMWG0CjltrTwIY\nY+4D7gDOBStrbR/QZ4x5c0qqzDCzrRbqFaySymUMf3rTCl67opq/uP9F3vfl7XzwNa382W+t1M60\nOSanY+w6PcQzx8/y5NF+DvWMAFBTUsCbLqvj5jU19A5PUuhVawQRyQwtlX5ebB/CWpvzyw8WEqwa\ngI45tzuBzakpJzuc62GlqcCUWN9Yxk//bAv/+NAhvvzMKR7Y1cEfv3YZf/CaFkoK8y9gxeKWA93D\nPHt8gGeO97P95CDRuMVlEudwvWldLavqSqgrTayXCk1MK1SJSEZpCvoZnYwSmpimIpDbI+hpXbxu\njLkLuAugqakpnS+dVD3Dia7rGrFKHb/Pwz++fT13bm7i3x45xr88cpSvPHuKu163jA9c35LTh/zG\n4pZDPSNsOznA8ycG2HFqkNGpKABr6krY3BpkRU0xLVUBNewUkazQXPnrw5gVrKALWDrnduPMfRfN\nWnsvcC/Axo0b7aU8RyboDoUpLfRQnMMf7k45387B16+pYVVtMb861Mf///MjfOmpk7z1iiW87aoG\nrlxanvXDyhORKHs6Quw+PcRP9nXTPjjB5HQcSPSWWlNfwrKqYpZVB/JyxE5Est9sy4X2wQmuaqpw\nuJrUWkgy2AmsNMa0kghU7wHuTGlVGa47lB/dYzNJY4WfD9zQQvvgBO2D43x3ZwffeL6N5ko/d1zZ\nwB1XLmF5dbHTZV7Q6OQ0h3tHOdg9wqGeEQ50j3CwZ4RYPPF7Rk1JAesbymitCtBaVay1ZSKSE5qC\ns72scn9n4AWDlbU2aoz5KPALEu0WvmqtPWCMuXvm8XuMMXXALqAUiBtjPgass9aOpLB2x/QMh6nX\n+ipHNAX9fPzWNYxMTvPzl3r5rz1dfPaxY/zHr46xpKyQjS1BNrZUsLE5yOq6EtxpPpdqOhZnYCxC\n3+gkHYNh2gcn6BiaoGNwgtMD43QMhs9dW+H3sra+lLtvXMbG5iBXN1Xw0P6etNYrIpIOhV43taUF\nClazrLUPAw/Pu++eOd/3kpgizAvdoTBXLi13uoy8NXe68M3rl/DaFdUc6Bnh9NlxnjjSx4N7uwEo\nKfDQWh1gadDP0go/S4NFLK3wU+H34S9w4/e58Xs9FPncuF2GaDxOLG6Jxi2xmGUyGmNsMsrYVOJr\nfCrKSDhKKBwhNDFNKDzN8MQ0h3pGGJ2KMjYZJTwd+416/T43wYCPYMDH2rpS6soKqS8rorTQc24a\ns2d4UqFKRHJaczBAex60XNAioYsUjsQYmpjWVGAGKS3ycv2ySq5fVom1ltDENEsqCtndNkTbwAQH\nuob55YFepmPJW9bnMlDk8+D3JgJaTUkBy6oCFM+svSsp8FIR8BL0+yjQDj0REZor/Tx5tN/pMlJO\nweoi9QzP9LDSVGBGMsZQEfARjsRZV1/GuvrE2YNxaxkJTzM0Mc3kdIxINE4kFicSjTMVjQMWlzGJ\nL5fBZcDrclHgdVHgceHzuCn0uijwJIJUgceV9YvmRUTSqbnST9/oFBORKH5f7saP3P2bpchsqwWN\nWGUXlzGU+33qQC4i4pCmmZYL7YMTrKkrdbia1HE5XUC26TrXHFTBSkREZKGa82RnoILVReoJJUas\nassKHK5EREQke5zrZaVgJXP1DIepLilQx2sREZGLUO73UVroyfnDmBWsLlJXKKwzAkVERC5BS1VA\nU4Hycj3Dk9RrfZWIiMhFawr6aR9UsJIZ1lp6QmHqyzViJSIicrGaK/10DoWZjsWdLiVlFKwuwkg4\nyngkRoNaLYiIiFy0ZVXFxOKW02dzd52VgtVF6D7XHFTBSkRE5GKtb0w0bd7fNexwJamjYHURznVd\n11SgiIjIRVteXUyR182+TgUrAbpnelhpKlBEROTiuV2Gy5aUasRKErpDYTwuQ1WxmoOKiIhcivWN\nZRzsHiGaowvYFawuQs/wJLWlhbhdOnxXRETkUmxoLCM8HeNEf24uYFewughHekdZVh1wugwREZGs\ntb6hHIB9nSGHK0kNBasFCkdiHDkzypVLy50uRUREJGstqwoQ8Llzdp2VgtUCHegeJha3XNGoYCUi\nInKpXC7D5Q1lObszUMFqgfZ0JIYsNywtc7gSERGR7LahsYyDPSM52YFdwWqB9nYO01BeRE2JeliJ\niIgsxvrGciLROEfPjDpdStIpWC3Qno4hrtBolYiIyKJtaEh8nr6Ug+usFKwWYGBsio7BsBaui4iI\nJEFzpZ+SQk9OrrNSsFqA2f/xWrguIiKyeMYY1jeU5eTOQAWrBdjTEcJl4PIGTQWKiIgkw/rGMg71\njDAVjTldSlIpWC3A3s4Qq2pLCBR4nC5FREQkJ2xoKGc6ZjnaO+Z0KUmlYHUB1lr2doQ0DSgiIpJE\nGxoTs0D7unKrA7uC1QV0DIYZmpjmCi1cFxERSZrGiiLK/V7259gCdgWrC9gzc5aRWi2IiIgkT64u\nYFewuoC9HSEKvS5W1ZY4XYqIiEhO2dBYxpHeUSanc2cBu4LVBezpCHH5kjK8br1VIiIiybS+oZxo\n3HK4N3c6sCstvIrpWJyXuoa1vkpERCQFZhew7+/MnQXsClav4kjvKFPRuDqui4iIpEB9WSGVAV9O\ndWBXsHoVe2cStIKViIhI8hljWN+YWwvYFaxexd6OEMGAj8aKIqdLERERyUkbGso41jdGOJIbC9gV\nrF7F3o5hrmgswxjjdCkiIiI56Yql5cTilh2nB50uJSkUrF7B2FSUo32jWrguIiKSQltWVhEM+Ni6\nvc3pUpJCweoVvNQ1jLUoWImIiKRQgcfNuzYu5ZGDZ+gZDjtdzqIpWL2CPR0zHdd1RqCIiEhKvW9z\nExb47o4Op0tZNAWrV7C3I0RT0E8w4HO6FBERkZy2NOjnplXV3LejnelY3OlyFkXB6jzOjk3x5NF+\nNrUGnS5FREQkL/z+9c30jU7xyMEzTpeyKApW5/HFJ04wOR3j7huXO12KiIhIXrhxVQ0N5UV86/ns\nXsSuYDVPdyjMt7a18Y6rG1lRU+x0OSIiInnB7TK877omnj85wPG+7D07UMFqns8+dgxrLX/xhpVO\nlyIiIpJX3rVxKV634dvb2p0u5ZIpWM1x6uw4D+zq5H2bm2ms8DtdjoiISF6pKi7gtvX1/OCFTiYi\nUafLuSQKVnP8+6NH8bld/OnNWlslIiLihN+7rpnRySgP7ul2upRLomA141DPCA/u7eYPXtNCTUmh\n0+WIiIjkpY3NFaypK+Fb29qw1jpdzkVTsJrxL788SnGBhw+/bpnTpYiIiOQtYwzvu66ZA90j/DIL\nWy8oWAEvtA/x6KEzfPh1yyj3qyGoiIiIk37nqgbW1Zfyp995gft2ZNdC9rwPVn2jk3zypwepDPj4\nw9e0Ol2OiIhI3gsUeHjg7uvZsqKKj/9wP5/+xWHi8eyYFlxQsDLG3GKMOWKMOW6M+fh5HjfGmP+Y\neXyfMebq5JeaXJPTMb7wxHFu/vQTvNQ1zCduX0ugwON0WSIiIgIUF3j4ygc28t5NTXz+8RN87P49\nTEVjTpd1QRdMEsYYN/B54I1AJ7DTGPOgtfbgnMtuBVbOfG0Gvjjz34xjreUXB87wjw8fpGMwzBvX\n1fK3t62lpSrgdGkiIiIyh8ft4n+//XKaK/186meH6R2e5BO3r2VtfSled2ZOui1kiGYTcNxaexLA\nGHMfcAcwN1jdAXzTJpbvbzPGlBtj6q21PUmveIGstQxNTNM5NEHHYJiOoQk6Bid4qXuEvR0hVtUW\n8+0PbmbLyiqnShQREZELMMZw943LaSgv4i+/t5e3fu5ZCr0urmgs55rmCq5uquDq5gqCgcxYI72Q\nYNUAdMy53clvjkad75oGwLFgtacjxNu/8NzL7iv3e2kK+vnkHZfx3k1NeDI07YqIiMjLveWKJWxu\nDbL91CAvtA/xQtsQ9z51kmjc8rvXNPLp373C6RKBhQWrpDHG3AXcNXNzzBhzJJ2v3wbsBX4CvD/5\nT18FnE3+08p56L1OH73X6aP3Oj30PqfJ+9L4Wv8885VizQu5aCHBqgtYOud248x9F3sN1tp7gXsX\nUli2McbsstZudLqOfKD3On30XqeP3uv00PssqbaQubCdwEpjTKsxxge8B3hw3jUPAu+f2R14HTDs\n5PoqERERESdccMTKWhs1xnwU+AXgBr5qrT1gjLl75vF7gIeB24DjwATwh6krWURERCQzLWiNlbX2\nYRLhae5998z53gIfSW5pWScnpzgzlN7r9NF7nT56r9ND77OklMnGAw5FREREMpH6DYiIiIgkiYJV\nElzoyB9JDmPMV40xfcaYl5yuJZcZY5YaYx43xhw0xhwwxvyF0zXlKmNMoTFmhzFm78x7/f86XVMu\nM8a4jTEvGmN+6nQtkrsUrBZpzpE/twLrgPcaY9Y5W1XO+jpwi9NF5IEo8JfW2nXAdcBH9DOdMlPA\n6621VwBXArfM7KyW1PgL4JDTRUhuU7BavHNH/lhrI8DskT+SZNbap4BBp+vIddbaHmvtCzPfj5L4\nIGpwtqrcZBPGZm56Z7608DUFjDGNwJuBLztdi+Q2BavFe6XjfESynjGmBbgK2O5sJblrZnpqD9AH\nPGKt1XudGv8O/DUQd7oQyW0KViJyXsaYYuAHwMestSNO15OrrLUxa+2VJE6s2GSMudzpmnKNMeZ2\noM9au9vpWiT3KVgt3oKO8xHJJsYYL4lQ9R1r7Q+dricfWGtDwONoHWEqvAZ4qzHmNInlGq83xnzb\n2ZIkVylYLd5CjvwRyRrGGAN8BThkrf1Xp+vJZcaYamNM+cz3RcAbgcPOVpV7rLX/t7W20VrbQuLf\n6Mestb/ncFmSoxSsFslaGwVmj/w5BDxgrT3gbFW5yRjzXeB5YLUxptMY80Gna8pRrwF+n8Rv9Xtm\nvm5zuqgcVQ88bozZR+KXtEestWoFIJLF1HldREREJEk0YiUiIiKSJApWIiIiIkmiYCUiIiKSJApW\nIiIiIkmiYCUiIiKSJApWIiIiIkmiYCUiF2SMic30szpgjNlrjPlLY4xr5rGNxpj/eJU/22KMuTN9\n1f7Ga4dnzuLLCMaYdxtjjhtj1K9KJAcpWInIQoSttVdaay8j0R38VuB/AFhrd1lr//xV/mwL4Eiw\nmnFi5iy+BTPGuFNVjLX2fuBDqXp+EXGWgpWIXBRrbR9wF/BRk3DT7OiLMebGOd3aXzTGlACfAl47\nc99/mxlFetoY88LM1w0zf/YmY8wTxpjvG2MOG2O+M3O8DsaYa40xz82Mlu0wxpQYY9zGmE8bY3Ya\nY5pIHv4AAANiSURBVPYZYz68kPqNMT82xuyeGX27a879Y8aYfzHG7AWuf4XXvGzm+z0zr7ly5s/+\n3pz7/3M2mBljbpn5O+41xvwqif8bRCRDeZwuQESyj7X25Ex4qJn30F8BH7HWPvt/2rufEKnLOI7j\n7w+2pKktCAlBkSaakphRQiGIYiZYQYG4B9FDXvRQFHYo6hx1EVKRoA6KqHRYQfA/BBEsrS54CVER\n9CJmKyoq6uo6fjz8npVpWXd2YMAcPq/Tj+fPPM/MYfjO9/nO7ydpEjAAfA18ZftDAEnPActsD5TA\nZA/wdpn/JvA6cBHoARZKOg78BnTZ7pP0PHAHWAdct71A0rNAj6Sjts832P6ntq+WZ/P1Seq2fQWY\nCByzvbE89/P0CGuuB36yvauMGSdpDtAFLLQ9KGkbsFrSIeAXYJHt85KmNP1BR8RTJ4FVRLRSD7BJ\n0i5gr+0LJelUrwPYKmk+UANm1fUdt30BoNRFTQOuA//Y7gOwfaP0vw/Mk7SyzO0EZgKNAqvPJX1S\nrl8uc66UvXSX9tces+ZfwLeSXirv76ykpcBbVEEawASgH3gH+HMo0LN9tcG+IqINJLCKiKZJepUq\nEOkH5gy12/5B0gFgBVUGafkI078E/gXeoCpHGKjru1t3XWP07ygBn9k+0sS+FwPvAe/avi3pD2B8\n6R6wXRttvu3dko4BHwAHy/GjgB22vxm21kdj3VdEtI/UWEVEUyS9APwMbPWwp7hLmmH7b9s/An3A\nbOAmMLluWCdVNugBsAZoVCh+BnhR0oKyxmRJzwBHgA2SOkr7LEkTG7xWJ3CtBFWzqbJKY16zBJTn\nbG8G9gHzgN+BlZKmlrFTJL0C9AKLJE0fam+wt4hoA8lYRcRYTChHcx3AfWAnsGmEcV9IWgI8AE4C\nh8p1rRSFbwe2Ad2S1gKHgVujLWz7nqQuYEupi7pDlXX6leqo8EQpcr8MfNzgfRwG1ks6RRU89Ta5\n5ipgjaRB4BLwfanX+g44quoWFINUdWa9pTh+b2nvp/pHZUS0MQ37wRkR0TYkTQP22577hLfyH+VI\n8lFBf0S0jxwFRkQ7qwGd+p/dIJQqa3ftSe8lIlovGauIiIiIFknGKiIiIqJFElhFREREtEgCq4iI\niIgWSWAVERER0SIJrCIiIiJa5CE9yPVnRyezugAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(servs['servs_ra'], servs['servs_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, servs, \"servs_ra\", \"servs_dec\", radius=1.*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add SWIRE" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl0m+d55/3vDYAgCYAbCFAiRVKkKNmyLVleJDnesqex\nkzhJp2mTOE3ebieTTtOmfdszSfvOmTk57Zlpm+mWOm3iuknbadyk07jNZsdJHMexZVmL5UWWtXET\ntXEDSREESYAA7vcPgAwta6HEB3gA8vc50REJPiQuIZL5431fz3Ubay0iIiIisnwetwsQERERWSkU\nrEREREQcomAlIiIi4hAFKxERERGHKFiJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiI\nQxSsRERERBzic+uJI5GI7ejocOvpRURERJbs+eefH7XWRi93nWvBqqOjg/3797v19CIiIiJLZow5\nsZTrtBUoIiIi4hAFKxERERGHKFiJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSs\nRERERByiYCUiIiLiEAUrEREREYcoWImIiIg4RMFKRERExCEKViIiIiIO8bldwGry8J6By15z/23t\nRahERERECkErViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhYiYiI\niDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxERERGHKFiJ\niIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUrEREREYco\nWImIiIg4ZEnByhhzjzHmqDGm2xjzmQt8vM4Y821jzEvGmEPGmF92vlQRERGR0nbZYGWM8QJfAO4F\nrgc+bIy5/rzLfgN41Vq7DXgz8GfGGL/DtYqIiIiUtKWsWO0Euq21vdbaFPA14H3nXWOBGmOMAULA\nGJB2tFIRERGREreUYLUOOLno/VP5xxZ7ALgOOAMcBD5lrc06UqGIiIhImXCqef2dwItAC3AT8IAx\npvb8i4wxHzfG7DfG7B8ZGXHoqUVERERKw1KC1WmgbdH7rfnHFvtl4BGb0w30AZvP/0LW2gettdut\ntduj0ejV1iwiIiJSkpYSrPYBm4wxnfmG9A8B3zrvmgHgbQDGmDXAtUCvk4WKiIiIlDrf5S6w1qaN\nMZ8EHge8wJettYeMMZ/If/yLwB8C/2CMOQgY4NPW2tEC1i0iIiJSci4brACstY8Cj5732BcXvX0G\n+BlnSxMREREpL5q8LiIiIuIQBSsRERERhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKV\niIiIiEMUrEREREQcomAlIiIi4hAFKxERERGHKFiJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGI\ngpWIiIiIQxSsRERERByiYCUiIiLiEAUrEREREYcoWImIiIg4RMFKRERExCEKViIiIiIOUbASERER\ncYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIR\nERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxERERGHKFiJiIiIOETBykWZrGV3zyjJuYzbpYiI\niIgDFKxc1DMyxbdfPsuPj424XYqIiIg4QMHKRQNj0wDs7o0xnUq7XI2IiIgsl4KVi06OTROs9JFK\nZ3m2J+Z2OSIiIrJMClYuyVrLyfFprm+u5frmWp7tGWVWvVYiIiJlTcHKJSPxJLNzWdrDAd6yuYnZ\nOa1aiYiIlDsFK5eczPdXtYcDrKuv5to1NezqHmUqqV4rERGRcqVg5ZKBsWmqK7w0hvwAvHVzEzNz\nGf75uRMuVyYiIiJXS8HKJQNj07SFq/EYA0BbOMCmphAPPd3LTEq9ViIiIuVIwcoFs3MZRuJJ2sOB\n1zz+lmubGJ1K8fDeAZcqExERkeVQsHLBybFpLNAeDr7m8Y5IkDdsCPOlp3p0h6CIiEgZUrBywcD4\nNAZobah+3cd+662bGI4n+e7LZ4tfmIiIiCyLgpULTo5N01RbSVWF93Ufu72rkaDfy8HT51yoTERE\nRJZDwarIstYyMDb9uv6qecYYuppC9IxMFbkyERERWS4FqyIbnfrpYNCL2RgN0T2sYCUiIlJuFKyK\nbH4waNslglVXU4iz52Y1LFRERKTMKFgV2cDYNFUVHiKhyotes7EpBECPVq1ERETKioJVkc33V80P\nBr2Q+WCl7UAREZHyomBVRLNzGYYnk5fcBgRYHw5Q4TUcV7ASEREpKwpWRXRqfCY/GPTSwcrn9dDR\nGNSKlYiISJlRsCqigbEEBmhruHSwgtx2oEYuiIiIlBcFqyIaGJsmWnPhwaDn29QU4kQsQTKto21E\nRETKhYJVkVhrOTk2c9ltwHldTSGyFvpHpwtcmYiIiDhFwapIekcTzMxllhysdGegiIhI+VGwKpLD\nZycBWHeBg5cvpCsawhgFKxERkXLic7uA1WJoMglAXXXFJa97eM/Awtv11RU8cWSIaM1rh4nef1u7\n8wWKiIjIsmnFqkhG4km8xlC9hMb1eU01VQznA5mIiIiUviUFK2PMPcaYo8aYbmPMZy5yzZuNMS8a\nYw4ZY55ytszyNxJPEqryYS4xcf180ZpKRqeSZK0tYGUiIiLilMtuBRpjvMAXgHcAp4B9xphvWWtf\nXXRNPfA3wD3W2gFjTFOhCi5Xw/FZaqqubOe1qaaSdNYynkjReImzBUVERKQ0LGXFaifQba3ttdam\ngK8B7zvvmvuBR6y1AwDW2mFnyyx/I/EkNZVXFqzme6tG4toOFBERKQdLCVbrgJOL3j+Vf2yxa4AG\nY8yPjTHPG2M+5lSBK8XoVJJQ1aUb18/XVFMFwLCClYiISFlw6q5AH3Ar8DagGthtjHnOWnts8UXG\nmI8DHwdob189d7alM1liiRQ3tl7Zy13t91JT6dOKlYiISJlYyorVaaBt0fut+ccWOwU8bq1NWGtH\ngZ8A287/QtbaB621262126PR6NXWXHZiiRTWcsU9VpDbDhyOzxagKhEREXHaUoLVPmCTMabTGOMH\nPgR867xrvgncZYzxGWMCwG3AYWdLLV/zK05X2mMF88EqidWdgSIiIiXvst/prbVpY8wngccBL/Bl\na+0hY8wn8h//orX2sDHme8DLQBZ4yFr7SiELLyfzK041V9hjBbk7A5PpLPHZNLWXGS4qIiIi7lrS\nEoq19lHg0fMe++J5738O+Jxzpa0c8ytWoavaCvxpA7uClYiISGnT5PUiWAhWV7EV2LQwckF9ViIi\nIqVOwaoIhuNJ6qorqPBe+ctdU+Wj0ufRyAUREZEyoGBVBCPx5OsOUl4qYwxNNZUauSAiIlIGFKyK\nYCSeJLqMI2maaqoUrERERMqAglURDMeTNNVefbCK1lQST6aZSWUcrEpEREScpmBVYNZaB1ascp+r\nQaEiIiKlzakjbVa9h/cMXPDx5FyGmbkMp8Zn2BANXdXXXnwY8/rG4FXXKCIiIoWlFasCi8+mgas7\nzmZeQ9CPz2PUZyUiIlLiFKwKLJ6cD1ZXP9zTYwwNQT+xRMqpskRERKQAFKwKLD47B1zd1PXFwgE/\n49MKViIiIqVMwarA5rcCa69i6vpi4ZCfsURKhzGLiIiUMAWrAptKpvEaQ5Xfu6yvEw74SaazJDRy\nQUREpGQpWBVYfDZNqMqHx5hlfZ1w0A/AuPqsRERESpaCVYHFZ+eWdUfgvPlgNaZgJSIiUrIUrAps\nKpkmtMz+KoCGQD5YqYFdRESkZClYFVh8Nu3IipXf56GmyqcVKxERkRKmYFVAmawlkUwva4bVYuGA\nX8FKRESkhClYFVAilcaCI1uBkOuzUrASEREpXQpWBeTEcTaLNQT9TM7MkUxr5IKIiEgpUrAqoKn8\n1HWntgIbg34scHp8xpGvJyIiIs5SsCqghRUrB7cCAU6MTTvy9URERMRZClYFNH8A83LPCZzXkA9W\nJxWsRERESpKCVQHFZ9NUVXio8DrzMtdU+vB5DAMxBSsREZFSpGBVQFOzc9RUOtNfBWCMIRz0M6AV\nKxERkZKkYFVA8+cEOknBSkREpHQpWBVQPOnM1PXF5oOVtdbRrysiIiLLp2BVQFOzacfuCJwXDvqZ\nTmWIaVCoiIhIyVGwKpDkXIZUJuvYDKt54fxhzNoOFBERKT0KVgUyP2rB6a3A+ZELujNQRESk9ChY\nFcj8cNBCNK+DVqxERERKkYJVgcTnj7NxcNwCQIXXw5raSgUrERGREqRgVSBTBdoKBGgPBxSsRERE\nSpCCVYHEZ9N4DFT7vY5/7bZwQMfaiIiIlCAFqwKJz6YJVfrwGOP4114fDjI4OcvsXMbxry0iIiJX\nT8GqQKaSc46PWpjX3liNtXBqfKYgX19ERESujoJVgcRnnZ+6Pq89HADQdqCIiEiJUbAqkPmtwEJo\nywcrNbCLiIiUFgWrAshaSyKZLthWYDRUSXWFlxMaEioiIlJSFKwKIJFMYynMqAUAY4xGLoiIiJQg\nBasCWJi6XqCtQNDIBRERkVKkYFUA88GqtkArVvDTIaHW2oI9h4iIiFwZBasCmErmjrMJFajHCqA9\nXM3MXIaRqWTBnkNERESujIJVAUwVYStwfWMQ0MgFERGRUqJgVQCJVIYKr8HvK9zLq5ELIiIipUfB\nqgASyTRBf+FWqwBaG6oBGIhp+rqIiEipULAqgOlUhkCl84cvL1ZV4WVtbRUnxhIFfR4RERFZOgWr\nAkikCr9iBbC+MaAhoSIiIiVEwaoAEsk0wQI2rs/rjATpH9WKlYiISKlQsCqA6VSGgL+wW4GQC1ax\nRIpzM3MFfy4RERG5PAUrh6UzWZLpbFFWrDoiuZELWrUSEREpDQpWDkukMgBFW7EC6FOwEhERKQkK\nVg6bTuWGgxajeb09HMAYBSsREZFSoWDlsEQyt2JVjK3AqgovLXXV9McUrEREREqBgpXDEvkVq2Js\nBQJsiAa1YiUiIlIiFKwcNp3MbwUWYcUKoKMxF6ystUV5PhEREbk4BSuHJVIZDFBdUZwVq85IkPhs\nmlgiVZTnExERkYtTsHJYIpmmqsKL12OK8nydGrkgIiJSMhSsHDadyhAs8DmBi3Vo5IKIiEjJULBy\nWLHOCZzX2lCNz2MUrEREREqAgpXDppMZAkVqXAeo8HpoCwc0ckFERKQEKFg5LLdiVbytQMj1WfWO\nKFiJiIi4TcHKQdZappOZoo1amNfRGOREbFojF0RERFy2pGBljLnHGHPUGNNtjPnMJa7bYYxJG2M+\n4FyJ5SOZzpKxtmjDQed1RgLMzGUYmkwW9XlFRETktS4brIwxXuALwL3A9cCHjTHXX+S6PwG+73SR\n5SKRLN45gYt1RkIA9I5OFfV5RURE5LWWsmK1E+i21vZaa1PA14D3XeC63wS+AQw7WF9ZmU7NnxNY\n3BWrjkgAgP7R6aI+r4iIiLzWUoLVOuDkovdP5R9bYIxZB/ws8LfOlVZ+5lesAkVesWqpq8bv89Cn\nFSsRERFXOdW8/pfAp6212UtdZIz5uDFmvzFm/8jIiENPXToSCytWxQ1WHo+hozFAn1asREREXLWU\nBHAaaFv0fmv+scW2A18zxgBEgHcZY9LW2v9YfJG19kHgQYDt27evuFvYplPzPVbF3QqE3MiFHo1c\nEBERcdVSVqz2AZuMMZ3GGD/wIeBbiy+w1nZaazustR3AvwH/5fxQtRokkhm8HoPfV/wpFh2RIAOx\naTLZFZdXRUREysZlE4C1Ng18EngcOAz8q7X2kDHmE8aYTxS6wHIyPxw0v3JXVJ2NQVKZLGcmZor+\n3CIiIpKzpGYga+2jwKPnPfbFi1z7S8svqzxNJ9NF76+a15k/jLl3NEFbOOBKDSIiIqudJq87KJHK\nFH046Lz5YNWvw5hFRERco2DloEQyXfRRC/OiNZUE/V76FKxERERc404KWKGmU8U5J/DhPQMXfLyu\nuoJne0Z5eM8A99/WXvA6RERE5LW0YuWQTNYyM5dxZdTCvMZQJaNTKdeeX0REZLVTsHLI/AyrgEvN\n6wCRkJ/xRIp09pJzWkVERKRAFKwcsnBOoMsrVhYYT8y5VoOIiMhqpmDlkMT81HVXV6wqAYhNJV2r\nQUREZDVTsHJIIplbsXJr3AJAJOgHYFTBSkRExBUKVg756TmB7q1YBSp9VFd4GU2ogV1ERMQNClYO\nWVixqnRvxQpyDexasRIREXGHgpVDEqk0lT4PPo+7L2m0porhSQUrERERNyhYOcTNcwIXW1tXxVQy\nzUhc4UpERKTYFKwcMp1ydzjovOa6KgCODsZdrkRERGT1UbBySCLl3jmBi62pzQWrw2cnXa5ERERk\n9VGwckgimSHocuM6QKjSR02Vj8ODClYiIiLFpmDlkOlU2tVRC4s111Vx+Ky2AkVERIpNwcoBM6kM\ncxnr6jmBi62traJ7OM5cRmcGioiIFJOClQNiidwdeKXQvA6wtq6auYyldyThdikiIiKrioKVA+YP\nPS6FcQuQG7kAamAXEREpNgUrB4xN546QcfOcwMWioUr8Xo8a2EVERIpMwcoBYwtbgaWxYuX1GDY2\nhTiiBnYREZGiUrBywFiJbQUCbG6u0VagiIhIkSlYOWA8kcJjoLKidF7O65trGY4nielAZhERkaIp\nnSRQxmKJFNV+Hx5j3C5lwea1tQAc0dE2IiIiRaNg5YDxRKpkRi3M29xcA+jOQBERkWJSsHLA2HSq\npPqrACKhSqI1lVqxEhERKSIFKweMJ1IlM2phsc1r1cAuIiJSTApWDhhLlN6KFeQa2I8PTZHW0TYi\nIiJFoWC1TNmsZXy69HqsINdnlcpk6R3V0TYiIiLFoGC1TJOzc2QtBEpkOOhi83cGajtQRESkOBSs\nlimWyB1nU4pbgV3REBVeowZ2ERGRIim9NFBmxueDVQluBfp9HrqiIa1YiYiIox7eM3DZa+6/rb0I\nlZQerVgt01g+WAVKcMUKcg3sOjNQRESkOBSslmmshFesINfAPjg5u7CyJiIiIoVTmsssZWRsOr9i\nVYLN67CogX1wkju6Ii5XIyIipW4p23xycVqxWqaxqRTVFV78vtJ8Ka9rzp8ZqO1AERGRgivNZZYy\nMjKVJFLjd7uMi4rWVBIJ+dXALiKyyllreeBH3ZyamGHw3CzJdJZs1pKxlmzWYsn9ML6lpRZjjNvl\nli0Fq2UankyypqbK7TIu6brmWo1cEBFZZWZSGfafGGNP7xgvnZrg5VPnODczB4DXGPw+Dx6PwWvA\n6zGkM5YXT07Q2lDNPTesZUM05PKfoDwpWC3TcHyWa9fWuF3GJV3fXMtXdvUzO5ehqqI0m+xFRGR5\n/ml3PyfHZugdmaJnJMHJsWky1uIxsKa2imvWhGitD7CuoZo1tVV4Pa9dlcpay4sDE/zg8BAPPdPH\nNWtCvPOGtTTXVbvzBypTClbLNBxPcvemqNtlXNL2jjBf+kkvL52c4LYNjW6XIyIiDrDWcnQozjPH\nR9nVPcqu7hipTBYDtNRXc+fGRjZEQ6xvDFDpu/wP1R5juGV9A1tb63iuN8aPj47wwI+6edfWZu7c\nqJuflkrBahlm5zLEZ9NEayrdLuWSdnQ0ALCvf0zBSkSkjJ0cm+bZnlGe7YmxqzvG6FQSgA3RILes\nr2djNERnJET1MkYAVXg93L0pyvb1Yb6+f4DvvzrIDS211AdKt5+4lChYLcPwZO4vdFNNJXMZ63I1\nF1cf8HPtmhr29o+7XYqIiFyBoclZdvfE2N0TY1fPKKfGZ4DcjUl3bmzkro0R7twYoaW+2vExCdV+\nL++/aR1/8cNjPPbKIB/euTonqV8pBatlGI7PAtBUW8Xp/F/2UrWjs4F/P3CadCaLz1uaoyFERFa7\nkXiS3b25IPVcb4y+0QQAVRUeNkRC3HdjPV3RENGaSowxzGUsPz46UrB66gN+3rgpyhNHhrltdIoN\nETW0X46C1TIMLVqxKvlg1RHmn58b4PDZOFtb69wuR0REgHPTc3zu8SP0jCToGZliOJ77vlLp89AZ\nCXLvltzdec11VXhcGoFw96Yoz58Y57svn+U33rLRtTrKhYLVMiysWJV4jxXAzs4wAHv7xxSsRERc\nMjuXYX//OM90j/JszygHT5/DWqjwGjoag9zS3sCGaJDmuurX3bXnFr/Pw71bm/mXvQO5Xt1O9epe\nioLVMgzHk/g8hoYyaOhrrqumLVzN3r4Yv3pXp9vliIisCpms5ZXT59jVk7tzb1//OKl0lgqv4eb2\nBj71tk1MJzO0hqvxeUq3TWNLSy2dkSA/eHWIG9fVL6s5fqVTsFqG4ckkTTWVeErkp4rL2dER5qmj\nI1hrNVVXRKQArLV0D0/lxh/0xHj6+Aizc1kA1tZWsbMjTFc0REdk0QiE0h6FCIAxhvfc2MwDP+rm\nh0eGuO/GFrdLKlkKVsswHJ8lWlvaU9cXu60zzCMHTtMzkmBjkxoQRUSWy1rL8eEp9vTGeK53jD19\nMUanUgC0havZ0lJHV1OIDZEgNVUVLle7PM111ezoDLOnN8bOjjBryuj7XzEpWC3DSDxJWzjgdhlL\ntqMj32fVN6ZgJSJyFdKZLK+enWRv3xiPHDjNiViCRCoDQF11BZ2RIHdvitIVDREOln6byJV6x3Vr\nOHjqHD88PMRHblvvdjklScFqGYbjSW5d3+B2GUvWGQkSCfnZ1z/G/bdpHomIyOXMpDK8cHKc/f3j\n7Osf48CJ8YUg1RCo4Jo1NWyIBumMhGgIVKz4NotgpY+b2urZf2KMVDqL31e6fWFuUbC6Sql0lrFE\niqYSP4B5MWMMOzrC7O0bc7sUEZGSNDGdYl//OP/0bD/9sQRnJmbJWIshd97elnV1dESCdDQGqasu\n7629q7W5uYbdvTF6Rqa4rrnW7XJKjoLVVZo/RqCptvRHLSy2szPMY68McnpihnX1OlhTRFa3wXOz\n7OmLsa9/jH194xwdigPg9RhaG6q5a1OEjsYA7eGg7oTL64wEqfR5ODI4qWB1AQpWV2losrRnWF3s\naINYvqnyr354jJvaGrQlKCKrhrWW3tEE+/rG2Ns/xr7+MU6O5YY7B/1ebu0Ic9+2ZnZ2NnL47CQV\nOqXignweD5uaQhwZjJO1VgNDz6NgdZXmp+OW01YgwNq6Kip9HvpHp7mprXz6w0RErlQqneXQmXML\n/VHPnxgnlsj9cBn0e1nfGORdW+vpaAy8ZiBn9/CUQtVlbG6u5ZUzk5yZmKG1oXxu4ioGBaurtBCs\nymwr0GMM6xsD9McSbpciIuKokXiSFwbGOTAwwYGBcV46OUEynZshtb4xwJuujWKzsD4SIBqqXPGN\n5oV07ZoaDHBkMK5gdR4Fq6s0MjmLMdBYhrfTdjQG+f7QEIlk2u1SRESuyuxchkNnJnnp5AQvnpzg\nhZPjC9t6XmNorq9i+/oG1jcGWd8YKPsZUqUmWOmjPRzgyNlJ3n7dGrfLKSkKVldpOJ4kEqrEV4bL\nxR2NQQBOaNVKRMqAtZb+2DQvDIzzwkAuSB0+O0k6a4HcRPOb2+vZ0lJHezhAS321tvKKYHNzLY8f\nGuTczNyqvUPyQhSsrtJwPFmyjeuX09pQjc9j6I9Nu12KiMjrLJ4d9cLAOC+cnGBieg6ASp+HdQ3V\n3LkxQltDNa0NAWr1Td0Vm9fW8PihQY4MTupg5kUUrK7ScHy2bIOVz+uhtSFA36hWrETEfV95po/+\nWIK+0Wn6YwlOj88szI6K1lSyMRqiLRygLRzInc+q3qiS0FRTSTjo5/BZBavFFKyu0vBkkhua69wu\n46p1RgI8dWxES7giUnSpdJYXT07wTPcou7pHeWFgnKwFj4HWhgB3bmykIxJkvWZHlTRjDJvX1rC3\nT1PYF1OwugqZrGV0Kll2dwQudu3aWp48OsKPjgzxsze3ul2OiKxg8/OjfnJshKePj/Jcb4zpVAaP\nga2t9Qtn67WHA/rmXGaua67l2Z4Y3cNxrm8p38UGJy0pWBlj7gH+CvACD1lr//i8j38E+DRggDjw\n69balxyutWTEppJkbekOB12K1oZqaqt8PHpwUMFKRBw3MZ3i2Z4YX9nVx/HhqYUeqcagn63r6tjY\nFGJDJKQVqTLX0RikqsLD4UEFq3mXDVbGGC/wBeAdwClgnzHmW9baVxdd1ge8yVo7boy5F3gQuK0Q\nBZeC+RlW0TIbDrqYxxhuWFfHU8dGmEqmCVVq8VJErt5cJssLAxM8fXyEnxwf5eCpCbI212zeFQ3x\npmuibGqqIVyGI2rk4rwew6amGo5qCvuCpXw33Ql0W2t7AYwxXwPeBywEK2vts4uufw5Y0Usgw/H8\ncTZlvBUIsKWljt09MZ48Msx921rcLkdEykg6k+XQmUl298Z4tifG/v4xplMZvB7DttY6fvOtm7h7\nU4TDZ+MLE81lZbquuYaDp89xenyGtrCGhS4lWK0DTi56/xSXXo36VeCx5RRV6oYn54+zKe9gtb4x\nQCRUyfdeGVSwEpFLSqYzHDx1jn3542H29Y0Rzw8Zbqqp5MbWOrqir93eOzY0pVC1ClyzpgaPgcOD\nkwpWONy8box5C7lgdddFPv5x4OMA7e3le/jvT7cCyztYeYzhnTes4ZEDp5lJZdTrICILxhIpDpwY\n5/mBcfb3j/HSqXOk8sfDdEWDvGdbM1kLGyJBTTVf5QJ+H+3hIEcH4/zM9WvdLsd1SwlWp4G2Re+3\n5h97DWPMjcBDwL3W2tiFvpC19kFy/Vds377dXnG1JWI4PktDoIJKX/kHkXdtbearewZ46tgw92xp\ndrscEXFBNmvpGZli/4lxnj8xzoET4/Tm59x5DKyrr2ZnR5iOxgDtjUH1ZMrrbIgGefLIMLNzGaoq\nyv9743Is5V/HPmCTMaaTXKD6EHD/4guMMe3AI8BHrbXHHK+yxAxPJmkq48b1xW7rDNMQqOCxVwYV\nrERWiX/a3c/p8RlOxHIDOU/EppmZywAQ9HtpDwd45w1raQ8HWFdfrREIclnrwwEscGp8ho1NIbfL\ncdVlg5VltxYNAAAb20lEQVS1Nm2M+STwOLlxC1+21h4yxnwi//EvAv8daAT+Jn9aeNpau71wZbtr\nKF7eM6wW83k9/Mz1a/nuwbMk05kVsQonIq+VTGd4+dQ5nuuJ8VxfjL19Y8xlcpsGkZCf61tq6WgM\nsD4cpDHkx+jOLrlCbeEABjgxllCwWspF1tpHgUfPe+yLi97+NeDXnC2tdI1MztIVXTnj++/dupav\n7z/JM8dHeZtOKRcpe+lMlpdPn2N3T4zdPTH2nxhjdi7XH7V5bQ3bO8J0NgbpiGhbT5xRVeGlqbaS\nAZ1Bq8nrV8pay8jUytkKBLijK0JNfliogpVI+clkLYfPTrK7J8a/PX+K/liCZL7RfG1tFTe3N7Ah\nEqSzMUhAQUoKpD0c5ODpiVU/z0r/wq7Q+PQccxlb9qMWFvP7PLzj+jX84NVBUumt6qcQKXHZrOXo\nUDy3ItUbY09vjMnZ3OiDSMjPtrZ6uqIhOrUiJUXUHg6wr3+MkXiSNbUrZ/HhSulf3BVaKcNBz3fv\nlmYeOXCa3b0x3nRN1O1yRGSRbNZyZDDOc70xnuuNsbd/bOGImPZwgHu3NHN7VyO3dzXyxOFhl6uV\n1Wp9fobVQGxawUqW7qfDQVfWX5q7N0UI+r08dvCsgpWIy+a39vb0jeWCVN8Y52ZyQSoc9NMVCdEZ\nDdIZCdIQyB0RM53KKFSJqxpDfgJ+LwNj0+zoDLtdjmsUrK7Q/HDQNStsxaqqwsvbrlvD918d4o/e\nn8Xn1XagSLFks5Y//8ExekcT9I1M0RdLLDSbh4N+NjXltvU6I0HqAzprT0qTMYb2cIATY6u7gV3B\n6gotbAWusBUryA0L/dZLZ3jiyDDvvEHTc0UKJZu1HBuOL9y1t2fRilRj0M+Wljo2RIN0RkLUVWuq\nuZSP9nCAI4NxpvPHHa1GClZXaHgySU2lb0Ue//L265pYV1/NQ0/3KliJOMhaS89Igt29MZ7LN5yP\nJVIA+WGca7AWNkQVpKS8tTfm+6zGV++qlYLVFRqOzxJdYduA83xeD79yVyd/+J1XOTAwzi3tDW6X\nJFKWrLX0x6bZ3ZNrNn/y6DDx/F17ddUVbIgEecu1TWyI/rRHSmQlaK0P4DGs6nlWClZXKHeczcoM\nVgAf3NHGX/7wGA893cvffORWt8sRKQvWWvpGEwvN5nt6xxicnG8bqKQzEqQrEmJDNEg4qMnmsnL5\nfR6a66oZWMV9VgpWV2g4nuSmtnq3yyiYUKWPX3zDer70VA8nYgnWNwbdLkmk5Fhr6R1N8PknjtM3\nmqBvNLGwIlVT6aMjEuS2DWE2REJEdESMrDJt4QDPnxgjnVmdN0IpWF0Bay3D8dkVtWL18J6B1z1W\nV1WBwfDpbxzkvdtauP+2dhcqEykd8z1S83Ok9vTlhiAC1FT56IwE2RDJ3bmnICWr3fpwgOd6YxwZ\njLNlXZ3b5RSdgtUViCfTzM5lV9xw0PPVVlewra2e50+M8fbNTW6XI1J01lo+/0Q3vaNTuRWpkQTx\n/F1OtVU+NkRD3NUVoTMapFFbeyKvMd/AfmBgXMFKLm2lDge9kLs2RTgwMM6e/jF+7Y0b3C5HpKAW\nr0jN90nNr0jVVvnoWjRHSkFK5NLqqyuoqfLx/IlxPnZ7h9vlFJ2C1RVYqcfZXMja2iquWRNid0+M\n2bkMVRUrb7yErF7ZrOX48BR7+nJBak/vGKNTPx3+e0dXIwbDBq1IiVyx+UGhBwbG3S7FFQpWV2D+\nJ9jVsGIFcNfGKF/e1cc3XzzNB3eoz0rK1/wRMfPHwzzTPcp0KgPkxh90RoLcvSnChoju2hNxQns4\nwGOvDDI8OUvTKjs3UMHqCgxNrp4VK4CuaJDmuir+7uk+fv7WNjwefbOR8pDOZHnlzGR+9EGM/f3j\nCz1S7eEA162tpTMSpCMSpCFQoSAl4rD5A5kPDIxzz5Zml6spLgWrKzA8maSqwkNN5ep42Ywx3L0p\nyr/uP8l3D57lvm0tbpckckHzK1K7e2L82/On6I8lSKZzZ+1FQpVsbq5d6JHSZHORwmupr8bv9XBg\nYELBSi5uOJ6kqaZqVf10u3VdHYfPTvLZb7/KGzdFqQvom5KUhhOxBM90j/LM8VGe7YktnLUXCfnZ\n1lqfP2svSE2V/s6KFJvP62HLulqeP7H6+qwUrK7AiViC1oZqt8soKq/H8L/+01be94Vd/K/HDvPH\nP3ej2yXJKjUxneJPvneU7uE43cNTjE/nglRddQVd0RBd0aDO2hMpIbeub+Afnz2x6m6AUrBaovm7\niH5he5vbpRTdlnV1/NpdnXzpJ728/+Z1vGFDo9slySowl8nywsAETx8f4SfHR3n51ATWQqXPQ1c0\nxF2bomyKhmjUQE6RkrS9I8zfPd3HwdPn2NERdrucolGwWqLTEzNMpzJcs6bG7VJc8dtvv4bHXhnk\nDx45yKOfuntV/fQhxTF/TMzTx0Z4pnuU3T0xEqkMXo/hprZ6PvW2TcymMqxrCODVjRQiJW/7+gYA\n9vWPKVjJ6x0bigNw7dqQy5W4o9rv5X/+7FZ+8e/38MCPuvm9d17rdkmyAozEkzzbM8qu7lG+f2iI\niXyfVDjoZ8u6OjY2heiKhhTkRcpQY6iSrmiQ/f2rq89KwWqJjuaD1cam1bliBblp7D93SytffKqH\n92xrZvPaWrdLkjITn51jX/8Yu7pj7Ooe5chg7t9VbZWPtnCAN10bZVNTDeGg3+VKRcQJOzrCPHrw\nLNmsXTUjexSsluj40BTNdVWrvjH2v737On58dJhPf+Mgj/z6HdqSkUuanctw4MQ4z/bEeLZnlJdO\nnSOTtfh9HnZ0NPBf77mWuzZGuKGljq/vO+l2uSLisB0dYb627yTHhuOr5odxBaslOjYUZ9Mq7a9a\nrCHo57/fdz2f+tqL/NUTx/l/33GN2yVJCZnLZHn51Dl294yyqzvG8wPjpNJZPAZaGwLcvSlCVzRE\nezhAhdcDwCunJ3nl9KTLlYtIIcz3Vu3rG1Owkp/KZC3dw1Pc0aW74QDeu62FZ46P8vknjtNcV8WH\nd+q4m9XKWstf/OA4PSNTdA9PvWYwZ3NdFTs7wmzITzhXn5TI6tMWrmZNbSX7+sf56Co5kFnBagkG\nxqZJprOrdsXq4T0Dr3vsxtZ6Xjo1wR88cpBXz0zyh+/f4kJl4oYzEzM8051rON/VHVs4vLgxmBvM\n2dUUYkMkSHCVnFAgIhdnjGF7R5h9/WNYa1fFaBT9l28JjuYbbK9dpcHqQrwew/071/PQM738y94B\n3n9zC7euXz23064mk7NzPNcTy0057x6ldyQB5I6KuXNjIz6PoSsaoj6ghnMReb0d6xv47stnOT0x\nQ2tDwO1yCk7BagmOL9wRuDpHLVyM3+fhY7d38KWneviVf9jPN3799lV91+RKkc5kefn0OZ4+Nsoj\nB05xcnyarIUKr6EzEuRdW5vZGA2xprZyVfz0KSLLs6Mz90P3/v5xBSvJOToUp7WhWlsbFxCq9PHL\nd3byj7v7+djf7+Ub/+UOmutW17E/K8Gp8Wl+cmyUp4+PsKt7lMnZNMZAS101d2+Ksqkp13Duyzec\ni4gs1ea1tdRU+tjbP8b7b17ndjkFp6SwBMeHprQNeAnhoJ+v/NIOPvTgc7zvgV387S/eyq35ibtS\nmqZTaf7ksaMcH45zbGhqoU+qtsrHpjU1bMoP5tQPEyKyXF6P4Zb1DezvH3O7lKLQfzUvYy6TpXd0\nirdsbnK7lJK2ZV0d//cTt/Of/8/zfOjB3Xz2vVu4/zbdLVgqslnL4cFJnj6eW5Xa1zdOKpPF58lt\n7+3sDLOpKURTjbb3RMR5Ozoa+N/fH2E8kaJhhQ8AVrC6jP7RBHMZu2qPsrkS1zXX8q1P3slvfe1F\n/uDfD/LyqQk++74bqPTpNns3nJ6Yyd+599q79zavreH/uWM96YylIxJcmCclIlIo8/Osnj8xztuv\nX+NyNYWlYHUZx4amANikpuwlqQ/ktgX//AdH+cKTPRwejPO3H7mFlnr1XRXacHyWvX1j7O6J8b1X\nBoklUgAEK310RYO8+ZooG5tC1K7y0wNEpPi2tdVT4TXs6x9TsFrtjg7F8RjdEXg558+6Wlcf4P6d\n7fzbgVO8+XM/5o3XRPjrD99CtV+rV06w1nJqfIZ9/WPs7cv96h3NjUEI+r20NgR4w4ZGunT3noiU\ngKoKL1vX1bFvFfRZKVhdxvGhOOsbNTX6amxZV0dLfTWPvXKWHx4e5q1/9mM+fc9m3rutZdUcxumU\nRDLNy6fO8cLJcV4YmOCFgYnXNJzv7AzzoZ1t7Oxs5IaWWv7v/lMuVywi8lo7OsN8+Zk+ZucyK/p7\nqoLVZRwdinPNGq1WXa1w0M9HbltP32iC3b2j/PbXX+Qrz/bz6Xdey+1djVpJuYBEMs2hM5McPH2O\ng6cmOHj6HL2jCazNfTwSqqQ9XM2dGxtpDwdYU1uFJ/86vnpmklfP6Nw9ESk9O9aH+dJTvbx4coI3\nbFi5R8QpWF3C7FyGE7Fp3r212e1Syl5nJMjv37uZR144zeceP8L9D+1hQzTI/Tvb+blbWlf8XSIX\nYq1lJJ7k0NlcGHrslUHOTswwlkiRz1DUVvloqa/mrZubaK0P0BauJuDXP1sRKT/bO3JjePb3jylY\nrVa9IwkyWcs1mmHlCI/H8IFbW3n31ma+e/AsD+85wR999zB/+r2j3Lt1LT9/axs7O8P4fSvvLrXp\nVJru4SmODMY5cjbOkcFJjgzGGcs3mAM0BCpoqa/mpvZ61tVXs66+mpoqNZqLyMpQH/BzzZoQe/vH\n3S6loBSsLuH4cO4oGwUrZ5zf4P6BW9u4a2OUvf25u9i++eIZAn4vd3RFeNM1Ed50TRPtjeVz/IG1\nlpGpJP2j0/SNTtE9PMXx4dzvp8ZnFq6r8BrW1FaxIRLk9g2NtNRXs7a2So39IrLi7egI880Xz5DJ\nWrwrtNdWweoSjg3FFwYoSmGsravivdvWcc8NzfSMTGGxPHVshB8eHgIO0R4OsHVdHde31HJDSy03\ntNQRral0pVZrLZOzaU6Pz3BmYobT+V+nxqfpG53mRCzBdCqzcL3f56ErGuKW9gY2r62lqaaStXVV\nhIP+hZ4oEZHV5I6uCF/dM8DevjFu71qZ24EKVpdwdHCKzkhwRW5NlRq/z8N1zbUAXLe2llgixbGh\nOH2jCZ7tGeW7B88uXBsJVdIWrl7YLlvXUE1LXTV1gQpqqnzUVOV+D/l9F7z70FrLXMYym84wm8ow\nO5dlcnaOczNzTEzPMTGTYmJ6jthUiuH4LMOTydzv8eRrgtN83bVVPhqDlWxrqycS9NMYqqQx6KdB\nAUpE5DXesjlKwO/l2y+fUbBajY4Px9nSUud2GauOMYZIqJJIqJI7uiIAzKQynD03w5lzswT9Xk5P\nzPDK6XN8/9AQqUz2ol/L6zF4DBgM+f8xl8mStRf9lAVBv5eqCm8+qFWwrr6a2uoK6gN+6qsrqA9U\nEKz0KTyJiCxRwO/j7det4bGDZ/nse29YkSc/KFhdxEwqw8DYNP/p5la3SxGg2u9lQzTEhmhu9MXN\n7bm7S7LWMpVMc256jtm5DLPpbO73uQzJdJZs1mIhP6og97bXY6jweqjwGCp8Hio8HiorPAT8Pqr9\nXgIVXqr93hX5D15ExG33bWvhWy+dYVf3KG++duWdw6tgdRHdw1NYi2ZYlTiPMdRWVVCru+dERMrC\nG6+JUFPl49svnV2RwUo/kl/E0aH8HYFrdUegiIiIUyp9Xu65YS3fPzTI7Fzm8p9QZhSsLuL4UBy/\n18P6cPnc7i8iIlIO7tvWQjyZ5sdHR9wuxXEKVhdxdChOV1MIn/psREREHHVHVyONQT/ffvmM26U4\nTqnhAqaSafb1jbGtVXcEioiIOM3n9fCurc08cXiIRDLtdjmOUrC6gG++eJpEKsMv7GhzuxQREZEV\n6b5tLczOZfMDoVcOBavzWGv56nMDXNdcy81t9W6XIyIisiJtX9/A2toqvv3SytoOVLA6z0unzvHq\n2Unuv60do8GPIiIiBeHxGN5zYzNPHRvh3PSc2+U4RsHqPA/vOUHA7+X9N7W4XYqIiMiK9t6bWpjL\nWB4/NOh2KY5RsFrk3Mwc33rpDO+7qYUaDZwUEREpqK3r6ljfGFhRdwcqWC3yHy+cZnYuy/0717td\nioiIyIpnjOG+G1vY1T3K4LlZt8txhIJVnrWWr+45wY2tdWzVmAUREZGi+Pntrfi8Hv7g3w9icwe7\nljUFq7znT4xzbGiK+3e2u12KiIjIqrG+Mchn7tnMj44M8/DeAbfLWTYFq7yH9wxQU+njvm1qWhcR\nESmmX7qjg7s2Rvij7xymd2TK7XKWRcEKGE+k+M7Bs7z/5nUEK31ulyMiIrKqeDyG//3z2/D7PPzO\nv77EXCbrdklXTcEK+MaBU6TSWe6/TduAIiIiblhbV8UfvX8LL52c4IEfdbtdzlVb9cFqIDbNV3b1\nc0t7Pdc117pdjoiIyKp137YW3n9TCw882c0LA+Nul3NVVnWw+t4rg7z7r58mPjvHZ+69zu1yRERE\nVr3Pvm8La2oq+Z2vv8h4IuV2OVdsScHKGHOPMeaoMabbGPOZC3zcGGM+n//4y8aYW5wv1TmpdJY/\n/M6rfOKfn2dDJMh3f+tudnaG3S5LRERk1aurruDPfuEmTo7P8MY/fZK//OExJmfL58ibywYrY4wX\n+AJwL3A98GFjzPXnXXYvsCn/6+PA3zpcp2NOT8zwwQd38/fP9PFLd3Twr5+4nbZwwO2yREREJO/2\nrka+85t3cXtXI3/5w+Pc/SdP8oUnu5lKpt0u7bKWcgvcTqDbWtsLYIz5GvA+4NVF17wP+Cebm+z1\nnDGm3hjTbK0963jFS2St5cy5WY4NxTk2GOfY0FTu7aE4FV4PX7j/Ft59Y7Nb5YmIiMglXNdcy4Mf\n287BU+f4ix8e43OPH+Whp3t5w4ZG2sMB2vK/2sMB1tVX4/eVRnfTUoLVOuDkovdPAbct4Zp1gGvB\n6sDABD/3t88uvN9UU8k1a2r4yG3r+ejt6+mMBN0qTURERJZoa2sdX/6lHbwwMM7fPd3LkcE4Txwe\nJrVoJMMvbG/lTz+wzcUqf6qoQ5uMMR8nt1UIMGWMOVqs5z4B7Mu//T8K8xQRYLQwX1rOo9e6ePRa\nF49e6+LQ61wkHynic30u/6vAlnSQ8FKC1WmgbdH7rfnHrvQarLUPAg8upbByY4zZb63d7nYdq4Fe\n6+LRa108eq2LQ6+zFNpSNiT3AZuMMZ3GGD/wIeBb513zLeBj+bsD3wCcc7O/SkRERMQNl12xstam\njTGfBB4HvMCXrbWHjDGfyH/8i8CjwLuAbmAa+OXClSwiIiJSmpbUY2WtfZRceFr82BcXvW2B33C2\ntLKzIrc4S5Re6+LRa108eq2LQ6+zFJTJZSIRERERWa7SGPogIiIisgIoWDngckf+iDOMMV82xgwb\nY15xu5aVzBjTZox50hjzqjHmkDHmU27XtFIZY6qMMXuNMS/lX+vPul3TSmeM8RpjXjDGfMftWmRl\nUrBapiUe+SPO+AfgHreLWAXSwO9aa68H3gD8hv5OF0wSeKu1dhtwE3BP/s5qKZxPAYfdLkJWLgWr\n5Vs48sdamwLmj/wRh1lrfwKMuV3HSmetPWutPZB/O07um9A6d6tamWzOVP7divwvNb4WiDGmFXg3\n8JDbtcjKpWC1fBc7zkek7BljOoCbgT3uVrJy5bemXgSGgR9Ya/VaF85fAv8VyF7uQpGrpWAlIhdk\njAkB3wB+21o76XY9K5W1NmOtvYnciRU7jTFb3K5pJTLGvAcYttY+73YtsrIpWC3fko7zESknxpgK\ncqHqq9baR9yuZzWw1k4AT6I+wkK5E3ivMaafXMvGW40x/+xuSbISKVgt31KO/BEpG8YYA/w9cNha\n++du17OSGWOixpj6/NvVwDuAI+5WtTJZa3/fWttqre0g99/pH1lrf9HlsmQFUrBaJmttGpg/8ucw\n8K/W2kPuVrUyGWP+BdgNXGuMOWWM+VW3a1qh7gQ+Su4n+hfzv97ldlErVDPwpDHmZXI/pP3AWqsx\nACJlTJPXRURERByiFSsRERERhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMU\nrETksowxmfw8q0PGmJeMMb9rjPHkP7bdGPP5S3xuhzHm/uJV+7rnnsmfxVcSjDEfNMZ0G2M0r0pk\nBVKwEpGlmLHW3mStvYHcdPB7gf8BYK3db639rUt8bgfgSrDK68mfxbdkxhhvoYqx1n4d+LVCfX0R\ncZeClYhcEWvtMPBx4JMm583zqy/GmDctmtb+gjGmBvhj4O78Y7+TX0V62hhzIP/rjvznvtkY82Nj\nzL8ZY44YY76aP14HY8wOY8yz+dWyvcaYGmOM1xjzOWPMPmPMy8aY/7yU+o0x/2GMeT6/+vbxRY9P\nGWP+zBjzEnD7RZ7zhvzbL+afc1P+c39x0eNfmg9mxph78n/Gl4wxTzj4f4OIlCif2wWISPmx1vbm\nw0PTeR/6PeA3rLW7jDEhYBb4DPB71tr3ABhjAsA7rLWz+WDyL8D2/OffDNwAnAF2AXcaY/YCXwc+\naK3dZ4ypBWaAXwXOWWt3GGMqgV3GmO9ba/suU/6vWGvH8mfz7TPGfMNaGwOCwB5r7e/mz/08coHn\n/ATwV9bar+av8RpjrgM+CNxprZ0zxvwN8BFjzGPA3wFvtNb2GWPCV/xCi0jZUbASESftAv7cGPNV\n4BFr7an8otNiFcADxpibgAxwzaKP7bXWngLI90V1AOeAs9bafQDW2sn8x38GuNEY84H859YBm4DL\nBavfMsb8bP7ttvznxPK1fCP/+LUXec7dwP9njGnN//mOG2PeBtxKLqQBVAPDwBuAn8wHPWvt2GXq\nEpEVQMFKRK6YMWYDuSAyDFw3/7i19o+NMd8F3kVuBemdF/j03wGGgG3k2hFmF30suejtDJf+b5QB\nftNa+/gV1P1m4O3A7dbaaWPMj4Gq/IdnrbWZS32+tfZhY8we4N3Ao/ntRwP8o7X29897rvuWWpeI\nrBzqsRKRK2KMiQJfBB6w553ibozpstYetNb+CbAP2AzEgZpFl9WRWw3KAh8FLtcofhRoNsbsyD9H\njTHGBzwO/LoxpiL/+DXGmOBlvlYdMJ4PVZvJrSot+TnzgbLXWvt54JvAjcATwAeMMU35a8PGmPXA\nc8AbjTGd849fpjYRWQG0YiUiS1Gd35qrANLA/wH+/ALX/bYx5i1AFjgEPJZ/O5NvCv8H4G+Abxhj\nPgZ8D0hc6omttSljzAeBv873Rc2QW3V6iNxW4YF8k/sI8P7L/Dm+B3zCGHOYXHh67gqf8xeAjxpj\n5oBB4H/m+7X+G/B9kxtBMUeuz+y5fHP8I/nHh8ndUSkiK5g57wdOEZEVwxjTAXzHWrvF5VJeI78l\nudDQLyIrh7YCRWQlywB1psQGhJJbtRt3uxYRcZ5WrEREREQcohUrEREREYcoWImIiIg4RMFKRERE\nxCEKViIiIiIOUbASERERccj/D8uiTuUYRJbhAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(swire['swire_ra'], swire['swire_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, swire, \"swire_ra\", \"swire_dec\", radius=1.*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cleaning\n", "\n", "When we merge the catalogues, astropy masks the non-existent values (e.g. when a row comes only from a catalogue and has no counterparts in the other, the columns from the latest are masked for that row). We indicate to use NaN for masked values for floats columns, False for flag columns and -1 for ID columns." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for col in master_catalogue.colnames:\n", " if \"m_\" in col or \"merr_\" in col or \"f_\" in col or \"ferr_\" in col or \"stellarity\" in col:\n", " master_catalogue[col].fill_value = np.nan\n", " elif \"flag\" in col:\n", " master_catalogue[col].fill_value = 0\n", " elif \"id\" in col:\n", " master_catalogue[col].fill_value = -1\n", " \n", "master_catalogue = master_catalogue.filled()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<Table length=10>\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxwfc_idradecwfc_stellaritym_ap_wfc_umerr_ap_wfc_um_wfc_umerr_wfc_um_ap_wfc_gmerr_ap_wfc_gm_wfc_gmerr_wfc_gm_ap_wfc_rmerr_ap_wfc_rm_wfc_rmerr_wfc_rm_ap_wfc_imerr_ap_wfc_im_wfc_imerr_wfc_im_ap_wfc_zmerr_ap_wfc_zm_wfc_zmerr_wfc_zf_ap_wfc_uferr_ap_wfc_uf_wfc_uferr_wfc_uflag_wfc_uf_ap_wfc_gferr_ap_wfc_gf_wfc_gferr_wfc_gflag_wfc_gf_ap_wfc_rferr_ap_wfc_rf_wfc_rferr_wfc_rflag_wfc_rf_ap_wfc_iferr_ap_wfc_if_wfc_iferr_wfc_iflag_wfc_if_ap_wfc_zferr_ap_wfc_zf_wfc_zferr_wfc_zflag_wfc_zwfc_flag_cleanedwfc_flag_gaiaflag_mergedsparcs_intidsparcs_stellaritym_ap_megacam_umerr_ap_megacam_uf_ap_megacam_uferr_ap_megacam_um_megacam_umerr_megacam_uf_megacam_uferr_megacam_uflag_megacam_um_ap_megacam_gmerr_ap_megacam_gf_ap_megacam_gferr_ap_megacam_gm_megacam_gmerr_megacam_gf_megacam_gferr_megacam_gflag_megacam_gm_ap_megacam_rmerr_ap_megacam_rf_ap_megacam_rferr_ap_megacam_rm_megacam_rmerr_megacam_rf_megacam_rferr_megacam_rflag_megacam_rm_ap_megacam_zmerr_ap_megacam_zf_ap_megacam_zferr_ap_megacam_zm_megacam_zmerr_megacam_zf_megacam_zferr_megacam_zflag_megacam_zsparcs_flag_cleanedsparcs_flag_gaiahsc_idm_ap_suprime_gmerr_ap_suprime_gm_suprime_gmerr_suprime_gm_ap_suprime_rmerr_ap_suprime_rm_suprime_rmerr_suprime_rm_ap_suprime_imerr_ap_suprime_im_suprime_imerr_suprime_im_ap_suprime_zmerr_ap_suprime_zm_suprime_zmerr_suprime_zm_ap_suprime_ymerr_ap_suprime_ym_suprime_ymerr_suprime_ym_ap_suprime_n921merr_ap_suprime_n921m_suprime_n921merr_suprime_n921hsc_stellarityf_ap_suprime_gferr_ap_suprime_gf_suprime_gferr_suprime_gflag_suprime_gf_ap_suprime_rferr_ap_suprime_rf_suprime_rferr_suprime_rflag_suprime_rf_ap_suprime_iferr_ap_suprime_if_suprime_iferr_suprime_iflag_suprime_if_ap_suprime_zferr_ap_suprime_zf_suprime_zferr_suprime_zflag_suprime_zf_ap_suprime_yferr_ap_suprime_yf_suprime_yferr_suprime_yflag_suprime_yf_ap_suprime_n921ferr_ap_suprime_n921f_suprime_n921ferr_suprime_n921flag_suprime_n921hsc_flag_cleanedhsc_flag_gaiaps1_idm_ap_gpc1_gmerr_ap_gpc1_gm_gpc1_gmerr_gpc1_gm_ap_gpc1_rmerr_ap_gpc1_rm_gpc1_rmerr_gpc1_rm_ap_gpc1_imerr_ap_gpc1_im_gpc1_imerr_gpc1_im_ap_gpc1_zmerr_ap_gpc1_zm_gpc1_zmerr_gpc1_zm_ap_gpc1_ymerr_ap_gpc1_ym_gpc1_ymerr_gpc1_yf_ap_gpc1_gferr_ap_gpc1_gf_gpc1_gferr_gpc1_gflag_gpc1_gf_ap_gpc1_rferr_ap_gpc1_rf_gpc1_rferr_gpc1_rflag_gpc1_rf_ap_gpc1_iferr_ap_gpc1_if_gpc1_iferr_gpc1_iflag_gpc1_if_ap_gpc1_zferr_ap_gpc1_zf_gpc1_zferr_gpc1_zflag_gpc1_zf_ap_gpc1_yferr_ap_gpc1_yf_gpc1_yferr_gpc1_yflag_gpc1_yps1_flag_cleanedps1_flag_gaiadxs_idm_ap_ukidss_jmerr_ap_ukidss_jm_ukidss_jmerr_ukidss_jm_ap_ukidss_kmerr_ap_ukidss_km_ukidss_kmerr_ukidss_kdxs_stellarityf_ap_ukidss_jferr_ap_ukidss_jf_ukidss_jferr_ukidss_jflag_ukidss_jf_ap_ukidss_kferr_ap_ukidss_kf_ukidss_kferr_ukidss_kflag_ukidss_kdxs_flag_cleaneddxs_flag_gaiaservs_intidf_ap_servs_irac_i1ferr_ap_servs_irac_i1f_servs_irac_i1ferr_servs_irac_i1servs_stellarity_irac_i1f_ap_servs_irac_i2ferr_ap_servs_irac_i2f_servs_irac_i2ferr_servs_irac_i2servs_stellarity_irac_i2m_ap_servs_irac_i1merr_ap_servs_irac_i1m_servs_irac_i1merr_servs_irac_i1flag_servs_irac_i1m_ap_servs_irac_i2merr_ap_servs_irac_i2m_servs_irac_i2merr_servs_irac_i2flag_servs_irac_i2servs_flag_cleanedservs_flag_gaiaswire_intidf_ap_swire_irac_i1ferr_ap_swire_irac_i1f_swire_irac_i1ferr_swire_irac_i1swire_stellarity_irac_i1f_ap_swire_irac_i2ferr_ap_swire_irac_i2f_swire_irac_i2ferr_swire_irac_i2swire_stellarity_irac_i2f_ap_irac_i3ferr_ap_irac_i3f_irac_i3ferr_irac_i3swire_stellarity_irac_i3f_ap_irac_i4ferr_ap_irac_i4f_irac_i4ferr_irac_i4swire_stellarity_irac_i4m_ap_swire_irac_i1merr_ap_swire_irac_i1m_swire_irac_i1merr_swire_irac_i1flag_swire_irac_i1m_ap_swire_irac_i2merr_ap_swire_irac_i2m_swire_irac_i2merr_swire_irac_i2flag_swire_irac_i2m_ap_irac_i3merr_ap_irac_i3m_irac_i3merr_irac_i3flag_irac_i3m_ap_irac_i4merr_ap_irac_i4m_irac_i4merr_irac_i4flag_irac_i4swire_flag_cleanedswire_flag_gaia
degdegmagmagmagmagmagmagmagmaguJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJy
0189636202384240.66490266455.64052699850.014.5170.03414.4850.03414.6680.02912.4380.02914.5590.01712.1970.01714.3190.02812.7130.02813.0870.04711.3990.0475665.0177.45834.45182.707False4929.47131.66638441.51026.77False5450.0485.334547995.4751.492False6798.29175.32129840.1769.544False21144.6915.321100092.04332.84653723FalseFalse2True-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
1189636301738241.08309797356.04897847450.0nannannannan14.5820.02910.9880.02914.4890.01710.0470.01714.1140.0289.9870.02812.9660.0479.6020.047nannannannanFalse5335.81142.519146150.03903.67False5812.9991.0174347696.05444.08False8211.07211.755367451.09476.18False23637.41023.23523841.022676.3578057FalseFalse2False-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
2189636400422241.33882955155.87407659650.0nannannannan15.0010.02912.8370.02914.9470.01712.7040.01714.5410.02812.6410.02813.5650.04712.3640.047nannannannanFalse3627.4496.888726619.5711.006False3812.4159.693230088.4471.112False5541.15142.931886.0822.306False13614.4589.3541152.81781.44833818FalseFalse2False-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
3189636202731240.44799464455.60849390050.0nannannannan14.6580.02912.0990.02914.6250.01712.2930.01714.3880.02812.410.028nannannannannannannannanFalse4975.08132.88452529.11403.05False5128.6180.301643933.9687.899False6379.7164.52639445.71017.26FalsenannannannanFalseFalse0False-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
4189636201865240.47856370655.70538890050.0nannannannan14.7030.02912.9380.02914.6440.01712.550.01714.4080.02812.4980.028nannannannannannannannanFalse4773.09127.48924254.9647.849False5039.6478.908634673.7542.906False6263.25161.52336374.7938.066FalsenannannannanFalseFalse0False-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
5189636401440241.10568198455.82481049550.0nannannannan21.9260.04321.8320.04917.620.01717.680.017nannannannan19.6220.05419.6250.056nannannannanFalse6.160270.2439746.717370.30316False325.0875.09008307.6094.81642FalsenannannannanFalse51.4282.5578251.28612.64523192891FalseFalse0True-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
6189636202743240.44764345855.62370906150.0030764nannannannan23.3340.08723.2010.1116.9020.01717.7780.01821.1140.04920.9860.05620.7030.11720.870.162nannannannanFalse1.684220.1349571.903710.192871False629.7969.86107281.0614.65959False13.01370.58731614.6420.755203False19.0022.0476816.29292.43102894819FalseFalse0False-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
7189636402325240.97310208455.78132133850.0nannannannannannannannan15.0150.01712.720.01714.9070.02812.6810.02814.1610.04712.2630.047nannannannanFalsenannannannanFalse3580.9656.069229648.3464.221False3955.49102.00830732.6792.563False7863.21340.38745164.81955.12069017FalseFalse0False-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
8189636302235240.94820642856.00869968950.0nannannannannannannannan14.5580.01714.1760.017nannannannannannannannannannannannanFalsenannannannanFalse5455.0785.41317755.33121.43FalsenannannannanFalsenannannannanFalseFalse0False-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
9189636202744240.44772983555.62306571150.0nannannannannannannannan16.3230.01716.4860.017nannannannannannannannannannannannanFalsenannannannanFalse1073.4916.8083923.84614.4652FalsenannannannanFalsenannannannanFalseFalse0False-1nannannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalsenannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "master_catalogue[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## III - Merging flags and stellarity\n", "\n", "Each pristine catalogue contains a flag indicating if the source was associated to a another nearby source that was removed during the cleaning process. We merge these flags in a single one." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "flag_cleaned_columns = [column for column in master_catalogue.colnames\n", " if 'flag_cleaned' in column]\n", "\n", "flag_column = np.zeros(len(master_catalogue), dtype=bool)\n", "for column in flag_cleaned_columns:\n", " flag_column |= master_catalogue[column]\n", " \n", "master_catalogue.add_column(Column(data=flag_column, name=\"flag_cleaned\"))\n", "master_catalogue.remove_columns(flag_cleaned_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each pristine catalogue contains a flag indicating the probability of a source being a Gaia object (0: not a Gaia object, 1: possibly, 2: probably, 3: definitely). We merge these flags taking the highest value." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "flag_gaia_columns = [column for column in master_catalogue.colnames\n", " if 'flag_gaia' in column]\n", "\n", "master_catalogue.add_column(Column(\n", " data=np.max([master_catalogue[column] for column in flag_gaia_columns], axis=0),\n", " name=\"flag_gaia\"\n", "))\n", "master_catalogue.remove_columns(flag_gaia_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each prisitine catalogue may contain one or several stellarity columns indicating the probability (0 to 1) of each source being a star. We merge these columns taking the highest value. We keep trace of the origin of the stellarity." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "wfc_stellarity, sparcs_stellarity, hsc_stellarity, dxs_stellarity, servs_stellarity_irac_i1, servs_stellarity_irac_i2, swire_stellarity_irac_i1, swire_stellarity_irac_i2, swire_stellarity_irac_i3, swire_stellarity_irac_i4\n" ] } ], "source": [ "stellarity_columns = [column for column in master_catalogue.colnames\n", " if 'stellarity' in column]\n", "\n", "print(\", \".join(stellarity_columns))" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# We create an masked array with all the stellarities and get the maximum value, as well as its\n", "# origin. Some sources may not have an associated stellarity.\n", "stellarity_array = np.array([master_catalogue[column] for column in stellarity_columns])\n", "stellarity_array = np.ma.masked_array(stellarity_array, np.isnan(stellarity_array))\n", "\n", "max_stellarity = np.max(stellarity_array, axis=0)\n", "max_stellarity.fill_value = np.nan\n", "\n", "no_stellarity_mask = max_stellarity.mask\n", "\n", "master_catalogue.add_column(Column(data=max_stellarity.filled(), name=\"stellarity\"))\n", "\n", "stellarity_origin = np.full(len(master_catalogue), \"NO_INFORMATION\", dtype=\"S20\")\n", "stellarity_origin[~no_stellarity_mask] = np.array(stellarity_columns)[np.argmax(stellarity_array, axis=0)[~no_stellarity_mask]]\n", "\n", "master_catalogue.add_column(Column(data=stellarity_origin, name=\"stellarity_origin\"))\n", "\n", "master_catalogue.remove_columns(stellarity_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IV - Adding E(B-V) column" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " ebv(master_catalogue['ra'], master_catalogue['dec'])\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## V - Adding HELP unique identifiers and field columns" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(gen_help_id(master_catalogue['ra'], master_catalogue['dec']),\n", " name=\"help_id\"))\n", "master_catalogue.add_column(Column(np.full(len(master_catalogue), \"ELAIS-N1\", dtype='" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(specz['ra'] * u.deg, specz['dec'] * u.deg)\n", ")" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue = specz_merge(master_catalogue, specz, radius=1. * u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VII - Choosing between multiple values for the same filter\n", "\n", "Both SERVS and SWIRE provide IRAC1 and IRAC2 fluxes. SERVS is deeper but tends to under-estimate flux of bright sources (Mattia said over 2000 µJy) as illustrated by this comparison of SWIRE, SERVS, and Spitzer-EIP fluxes." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING: UnitsWarning: 'e/count' did not parse as fits unit: At col 0, Unit 'e' not supported by the FITS standard. [astropy.units.core]\n", "WARNING: UnitsWarning: 'image' did not parse as fits unit: At col 0, Unit 'image' not supported by the FITS standard. [astropy.units.core]\n" ] } ], "source": [ "seip = Table.read(\"../../dmu0/dmu0_SEIP/data/SEIP_ELAIS-N1.fits\")\n", "seip_coords = SkyCoord(seip['ra'], seip['dec'])\n", "idx, d2d, _ = seip_coords.match_to_catalog_sky(SkyCoord(master_catalogue['ra'], master_catalogue['dec']))\n", "mask = d2d <= 2 * u.arcsec" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAGHCAYAAAD1HvUOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8lOW5//HPlT0BEoGAQlgVEFARJIBLa6mgpSrUqqeK\nFayl2h5PPdYuv0KrgvVYaK09YrWtG0VolVqXKmjxCBWxokJY6souEBIQwpKwZM/9++OZSSYhM5mQ\nTGaSfN+vFyeZZ5555pqxR77e9/1ctznnEBEREZHYEBftAkRERESkhsKZiIiISAxROBMRERGJIQpn\nIiIiIjFE4UxEREQkhiiciYiIiMQQhTMRERGRGKJwJiJtgpntMLPxvt+/ZWaVZnbUzIrM7N9mdmU9\nr+noO+cfQa55g5nl+M7ZY2b/MLMvBDn3y2b2ppkVmtmOZv1wItKuKJyJSFv1rnOuI3AK8HtgkZmd\nUueca4BS4FIzOy3wCTP7IfAQ8EvgVKAP8CgwKcj7HQPmAT9ptk8gIu2SwpmItGnOuSpgIdABGFjn\n6ZuAPwIfADf6D5pZBvAL4L+ccy86544558qdc0ucc/8vyPusds4tBLZH4nOISPuhcCYibZqZxQM3\nA+XAzoDjfYGxwF98f6YGvOwCIAV4qcUKFRHxSYh2ASIiEXK+mR3GGzGrAG50zu0LeH4K8IFz7hMz\nKwR+bWYjnHPrga5AgXOuouXLFpH2TiNnItJWveecOwXoDLwCfLHO81PxRsxwzuUBb+FNcwIcADLN\nTP8BKyItTuFMRNo059xR4D+BKWY2AsDMLsRbfzbDzPaa2V5gDHCDL5C9i3ejwFVRKltE2jGFMxFp\n85xzB4EngXt8h24C3gCGAsN9f84GUoGvOucKfec+amZXmVmamSWa2VfN7Nf1vYeZxZlZCpDoPbQU\nM0uK7CcTkbZIQ/Yi0l48BGwzs2HAN4Cpzrm9gSeY2UK84LbYOfegb0TtLrzpzyPAWuD+INe/GHgz\n4HEx3lTp2Ob8ECLS9plzLto1iIiIiIiPpjVFREREYojCmYiIiEgMUTgTERERiSEKZyIiIiIxROFM\nREREJIa06lYamZmZrl+/ftEuQ0TaqPLychITE6Ndhoi0EWvXri1wznVr6LxWHc769etHTk5OtMsQ\nkTbKzFC7IRFpLma2M5zzNK0pIiIiEkMUzkRERERiSKsMZ2Y20cweLywsjHYpIiIiIs2qVa45c84t\nBhZnZ2ffEu1aRERExLuBZvfu3ZSUlES7lKhLSUmhV69eJ31DUasMZyIiLWHmzJnRLkGk1di9ezed\nOnWiX79+mFm0y4ka5xwHDhxg9+7d9O/f/6Su0SqnNUVEWsKsWbOiXYJIq1FSUkLXrl3bdTAD7y7v\nrl27NmkEUeFMRCSI/Pz8aJcg0qq092Dm19TvQeFMRCSIrKysaJcgIo1w//33c9ZZZzFs2DCGDx/O\n+++/z9ixYznzzDMZPnw4w4cP59prrwW8kfGsrCyGDx/O0KFDefbZZwF4+umnmTx5cq3rFhQU0K1b\nN0pLS1myZAkjRozg3HPPZejQoTz22GPN/jm05kxERERavXfffZclS5awbt06kpOTKSgooKysDIC/\n/OUvZGdnn/CaO++8kx//+Mds2bKFkSNHcu211/L1r3+dH/3oRxw/fpy0tDQAnn/+eSZOnEhcXBy3\n3norq1evplevXpSWlrJjx45m/ywxM3JmZn3M7O9mNs/Mpke7HhEREWk99uzZQ2ZmJsnJyQBkZmbS\ns2fPsF47cOBA0tLSOHToEOnp6XzpS19i8eLF1c8vWrSIyZMnc+TIESoqKujatSsAycnJnHnmmc3+\nWSIaznxBa5+ZfVTn+AQz22RmWwOC2DnA8865bwMjIlmXiIiItC2XXXYZubm5DBo0iNtuu4233nqr\n+rlvfvOb1dOaP/nJT0547bp16xg4cCDdu3cHYPLkySxatAjw1p5u3ryZSy65hC5dujBp0iT69u3L\n5MmT+ctf/kJVVVWzf5ZIj5zNByYEHjCzeOBR4KvAUGCymQ0F3gOmmdk/gaURrktERESibO3OQ0x9\n6n3W7jzU5Gt17NiRtWvX8vjjj9OtWzeuu+465s+fD3jTmhs2bGDDhg088MAD1a/53//9X8466yzG\njBnDz3/+8+rjV1xxBe+88w5FRUU899xzXHPNNcTHxwPw5JNPsnz5ckaPHs1vfvMbvv3tbze59roi\nGs6ccyuBg3UOjwa2Oue2O+fKgEXA14CbgZnOuUuAKyJZl0RZ7mpYeLX3M9xzclfDE+O8P6Fe15j3\nCqeOppwfiRqkRanPmUhkzV22mZVbCpi7bHOzXC8+Pp6xY8dy77338sgjj/DCCy+EPP/OO+/k448/\n5oUXXmDatGnV7S9SU1OZMGECL730UvWUZqBzzjmHO++8kzfeeKPB9zgZ0VhzlgXkBjze7Tu2FPhv\nM/sjsCPYi83sVjPLMbOc/fv3R7RQiZAVc2Dbcu9nuOesmAN5Od6fUK9rzHuFU0dTzo9EDdKi1OdM\nJLLuGD+Iiwdmcsf4QU2+1qZNm9iyZUv14w0bNtC3b9+wXjtp0iSys7N5+umnq49NnjyZ3/72t3z+\n+edccMEFABw9epQVK1ac1Hs0Rszcremc+wi4NozzHgceB8jOznaRrksiYOz02j/DOWfsdCgpbPh1\njXmvcOpoyvmRqEFaVH5+ftgLikWk8Ub27cyCaWOa5VpHjx7l9ttv5/DhwyQkJDBgwAAef/xxrr32\nWr75zW+SmpoKeDcKLFu27ITX33PPPdxwww3ccsstxMXFcemllzJ16lSmTZtW3bfMOcevf/1rvvvd\n75KamkqHDh2qp06bkzkX2XxjZv2AJc65s32PLwBmOee+4ns8A8A5N7ux187OznY5OTnNV6yISAAz\nI9L/jhRpKz799FOGDBkS7TJiRn3fh5mtdc6d2NOjjmhMa64BBppZfzNLAq4HXmnMBcxsopk9XlhY\nGJECRURERKIl0q00ngXeBc40s91mNs05VwF8H3gd+BR4zjn3cWOu65xb7Jy7NSMjo/mLFhEREYmi\niK45c85NDnL8NeC1SL63iIiISGsUMzsEiIiIiIjCmYhIUOpzJiLR0CrDmW4IEJGWoD5nIhINrTKc\n6YYAEWkJ+fn50S5BRBrh/vvv56yzzmLYsGEMHz6ce++9l6uuuqr6+dmzZzNgwIDqx4sXL2bSpEkA\n9OvXj4KCAsDbaWD48OGcffbZTJw4kcOHDwOwY8cOUlNTq/fpHD58OAsWLGj2zxEzTWhFRGJNVlaW\n+pyJtBLvvvsuS5YsYd26dSQnJ1NQUMCxY8f4wx/+UOuc9PR09u3bR/fu3Vm1ahUXXnjhCddKTU1l\nw4YNANx00008+uij1XtvnnHGGdXPRUqrHDkTERERCbRnzx4yMzNJTk4GvJ0A+vbtS3p6Olu3bgUg\nLy+Pa665hlWrVgGwatUqLrroopDXveCCC8jLy4ts8XUonImIiEird9lll5Gbm8ugQYO47bbbeOut\ntwC46KKLWLVqFZs2bWLgwIGcf/75rFq1ioqKCv79738zatSooNesrKxk+fLl1VOfANu2bas1rfn2\n2283+2fRtKaIiIhER+5qWDHH21+49+gmXapjx46sXbuWt99+mzfffJPrrruOOXPmcOGFF7Jq1Soq\nKyu54IILGD16NL/4xS9Yv349gwcPJiUl5YRrFRcXM3z4cPLy8hgyZAiXXnpp9XOa1gxCd2uKiIi0\nASvmwLbl3s9mEB8fz9ixY7n33nt55JFHeOGFF6pHzlatWsUFF1xAp06dKCkpYcWKFfWuN4OaNWc7\nd+7EOcejjz7aLPWFq1WGM92tKSItQX3ORCJs7HQ4Y5z3s4k2bdrEli1bqh9v2LCBvn37MmTIEPLz\n8/nXv/7FiBEjABg+fDh//OMfG1xvlpaWxsMPP8yDDz5IRUVFk2sMV6sMZyIiLUF9zkQirPdomPJi\nk6c0AY4ePcpNN93E0KFDGTZsGJ988gmzZs3CzBgzZgxdu3YlMTER8Bb5b9++PejIWaARI0YwbNgw\nnn32WeDENWcPP/xwk2uvy1rzbeLZ2dkuJycn2mWISBuVn59Pz549o12GSKvw6aefMmTIkGiXETPq\n+z7MbK1zLruh12rkTEQkiKysrGiXICLtkMKZiIiISAxROBMRERGJIQpnIiIi0ixa8zr25tTU70Hh\nTERERJosJSWFAwcOtPuA5pzjwIED9Ta3DZd2CBARCUJ9zkTC16tXL3bv3s3+/fujXUrUpaSk0KtX\nr5N+vVppiIiIiLSANt1KQ9s3iUhLyM/Pj3YJItIOtcpwpu2bRKQlqM+ZiERDqwxnIiIiIm2VwpmI\niIhIDFE4ExEREYkhCmciIiIiMUThTEQkCPU5E5FoiJkmtGb2ReCbeDUNdc5dGOWSRKSdmzVrVrRL\nEJF2KKIjZ2Y2z8z2mdlHdY5PMLNNZrbVzKYDOOfeds59D1gCPB3JukREwqE+ZyISDZGe1pwPTAg8\nYGbxwKPAV4GhwGQzGxpwyg3AMxGuS0SkQepzJiLRENFw5pxbCRysc3g0sNU5t905VwYsAr4GYGZ9\ngELn3JFg1zSzW80sx8xytH+XiIiItDXRuCEgC8gNeLzbdwxgGvCnUC92zj3unMt2zmV369YtQiWK\niIiIREfM3BAA4JzTrVEiIiLSrkVj5CwP6B3wuJfvmIiIiEi7F41wtgYYaGb9zSwJuB54pTEXMLOJ\nZvZ4YWFhRAoUEQH1OROR6DDnXOQubvYsMBbIBD4HZjrnnjKzy4GHgHhgnnPu/pO5fnZ2tsvJyWmu\nckVEREQixszWOueyGzovomvOnHOTgxx/DXgtku8tItJU+fn59OzZM9pliEg7o+2bRESCUJ8zEYmG\nVhnOtOZMRERE2qpWGc6cc4udc7dmZGREuxQRERGRZtUqw5mIiIhIW6VwJiIiIhJDFM5ERIJQnzMR\niQaFMxGRIGbNmhXtEkQkTOXl5dEuodkonImIBJGfnx/tEkSkAfv37yc3N5fKyspol9JsYmrj83CZ\n2URg4oABA6Jdioi0YVlZWURyFxUROXkFBQUUFxeTmZlJt27dol1Os2qVI2dqpSEiItI+FRQUkJub\nS4cOHejduzepqanRLqnZtcqRMxEREWlfAkfKMjMzo11ORCmciYiISMzatWsXZkbXrl3bfCjzUzgT\nERGRmPPee+/hnGPQoEF07do12uW0KIUzEZEg1OdMpOW999577Nq1i/PPP58+ffpEu5yosNZ8J1J2\ndrbLycmJdhkiIiLSRO+//z47duzg/PPPp2/fvtEuJyLMbK1zLruh8zRyJiISRH5+Pj179ox2GSJt\nmj+UjRkzhjFjxkS7nJigcCYiEoT6nIlEzurVq/nss88YPXq0QlkdCmciIiLSYtasWcNnn33GqFGj\nGD16dLTLiUmtMpxphwAREZHWZc2aNWzfvp1Ro0YxatSoaJcT03RDgIhIEGamaU2RJlq7di3btm1j\n5MiRnHHGGdEuJ6p0Q4CIiIhEzbp169i6dSvnnXce3/jGN6JdTquicCYiEoT6nIk03rp169iyZYtC\nWRNoWlNERESabP369WzevJkRI0YwaNCgaJcTkzStKSLSROpzJtKwDRs2sHnzZs4991yuu+66aJfT\nJiiciYgEoT5nIsG99dZbbNmyhS9+8YuavmxmMRPOzCwOuA9IB3Kcc09HuSQRERGp4+2332b16tV8\n8Ytf5Dvf+U60y2mT4iJ5cTObZ2b7zOyjOscnmNkmM9tqZtN9h78G9ALKgd2RrEtEREQaZ+XKlTz4\n4IMkJSXxox/9SA1kIyjSI2fzgUeABf4DZhYPPApcihfC1pjZK8CZwCrn3GNm9jywPMK1iYiISAP+\n+c9/snLlSr785S/zox/9KNrltAsRDWfOuZVm1q/O4dHAVufcdgAzW4Q3apYLlPnOqYpkXSIiIhLa\nyy+/zPr16xk7diyzZs2KdjntSjTWnGXhBTG/3cAYYC7wOzP7IvBWsBeb2a3ArQB9+vSJYJki0t6p\nz5m0R3/729/4+OOPGTJkiEJZlMTMDQHOuePAtDDOexx4HLw+Z5GuS0TaL/3FJO3JCy+8wIcffsiZ\nZ56p/+1HWTTCWR7QO+BxL98xEZGYoj5n0h689NJL/Pvf/2bQoEEKZTEiGuFsDTDQzPrjhbLrgRui\nUIeISEjqcyZtmX9N2YABAxTKYkxEw5mZPQuMBTLNbDcw0zn3lJl9H3gdiAfmOec+buR1JwITBwwY\n0Nwli4iItGmvvPIK69at4/TTT1coi1HaW1NEJAgz08iZtBmLFi1i48aN9OvXj29961vRLqdd0t6a\nIiIiwl//+lc+/fRT0tPTNVLWSiiciYiItEHPP/88H330ER07dlQoa2VaZTjTmjMRaQnqcyat0ZNP\nPsnu3btJSkpSKGultOZMRESkDXjiiSfIy/M6UymUxSatORMRaSL1OZPW4Pe//z379u0DFMraCoUz\nEZEg1OdMYtljjz3Gnj17AIWytkbhTEREpBUJDGIKZW2TwpmIiEgroFDWfrTKcKa7NUVEpL1QKGt/\nWmU4c84tBhZnZ2ffEu1aREREIkGhrP1qleFMRKQlqM+ZRINCmSiciYgEob8YpSUplImfwpmISBDq\ncyYtQaFM6lI4ExEJQn3OJJIUyiSYoOHMzM4L4/XlzrkPm7EeERGRNk2hTBoSauTsLWANYCHO6Q/0\na86CRERE2iKFMglXqHC2xjl3SagXm9k/m7keERGRNkWhTBoraDhrKJiFe46IiEh7pFAmJ6vBGwLM\n7EXgKeAfzrmqyJckIhIb1OdMToZCmTSVNXQnkpmNB24Gzgf+BvzJObepBWoLVZN/+6ZbtmzZEs1S\nREREAIUyaZiZrXXOZTd4Xri3iZtZBjAZ+DmQCzwB/Nk5V96UQpsiOzvb5eTkROvtRaSNU58zCYdC\nmYQr3HAWVp8zM+sK3AhMAdYDfwG+ANwEjD35MkVEYpf6nEkoCmUSKeGsOXsJOBNYCEx0zu3xPfVX\nM9OwlYiItCsKZRJp4YycPeyce7O+J8IZmhMREWkLFMqkpYTaIeDq+n73KQW2Oec2RqowERGRWKBQ\nJi0t1MjZxAZeN8TMVjnn/ruZaxIREYk6hTKJllBNaG8O9pyZ9Qd2As22r6aZjQXuAz4GFjnnVjTX\ntUVETob6nLVPCmUSbeHcEHBPnUPxwFTnXH9fD7RQr50HXAnsc86dHXB8AjDXd60nnXNzAAccBVKA\n3Y36FCIiEaC/mNsXhTKJFeHcEHAs4PdE4GLgOYCAOzeDmQ88AizwHzCzeOBR4FK8ELbGzF4B3nbO\nvWVmpwK/Bb4Z5mcQEYkI9TlrHxTKJNY0GM6ccw8GPjazXwOrw7m4c26lmfWrc3g0sNU5t913vUXA\n15xzn/iePwQkh3N9EZFIUp+ztk2hTGJVWE1o6+gMfN6E98zC22HAbzcwxndH6FeAU/BG2+plZrcC\ntwL06dOnCWWIiEh7pFAmsS6cNWcf4q0HAzCgH3DAf9w5N6w5CnHOvQi8GMZ5jwOPg7d9U3O8t4iI\ntH0KZdJahDNydmUzv2ce0DvgcS/fMRERkWanUCatTThrznY283uuAQb62nHkAdcDNzTmAmY2EZg4\nYMCAZi5NRETaisAgNnPmTMwsesWINEKoHQLWOefOC/Xihs4xs2fxNkbPNLPdwEzn3FNm9n3gdbxW\nGvOccx83pmjn3GJgcXZ29i2NeZ2ISGOoz1nrFBjK7rnnHuLi4qJXjMhJsGB3IplZMbAl1GuBDOdc\n1FblZ2dnu5wc7b0uIiK1Q9ldd91FQsLJ3PMmEjlmtjacfclD/S93cBjvUxl+SSIirYv6nLUOgaFs\n+vTppKSkRK8YkWYQavum5l5rJiLSqqjPWWwLDGU//OEPSU9Pj14xIs2oVY756oYAEZH2KzCU3Xbb\nbXTv3r3hF+WuhhVzYOx06D26+c4Pdl7ualg6w/t9wuzw3lPEJ+ias9ZAa85EJJLMTCNnMSQwlN18\n88307ds3/BcvvBq2LYfkdMgcBCOmwKeveKEKagLW55/A8nuhY3fYvxFSu8C4mbB+IZQdhbJiOLoX\nzKDDqXB8P5QfB4uHs6+BzUuhk28qvGCj99PiIaMXJKR6j5M7eu+/fiGUHoWKYjh+EC77H8j+VpO/\nJ4ld4a45azCcmdnQgK2V/MfGOudWNK3EplM4E5FIUjiLDYGh7Nprr+Xss88O74VvzIR3H4ELvg+d\n+8NrP4KqihPPy+gLhTvhjHGQvx6KD0JiGlSWeeendvGONUZyOpQWNe75pE4w5cWaoAje6Fvp0ZpA\nV1+g1Khcq9EcNwT4PWdmC4FfAym+n9nABU0rUUREJLjAUHbZZZdx4YUX1j6h7pRi4GOAdx7yfq56\nGHqeV38wAyjK9YJZ4MhZh+7eyFfgyNm+T6H8mO9FBhl9IDG1ZuTrzK/WjJyd/59ekDrtHFj1O3CV\nXuDL6OMFrdKjAeHMAAdpXeCZ62oHwbyAAYg9G2o+Q0mh91xJIdyy/CS+XYll4YSzMcCvgFVAJ+Av\nwEWRLEok0Nqdh5i7bDN3jB/EyL6do12OtCPqcxYd999/P+Xl5QCMHj2ayy+/vPYJ/hAWGFBSMmoe\nb6sbVur2OYuD+ARvZAwgvbc3YgVeyMv+1onBz3+sMevI/FOUg684cZQr8Fr+EbGSQji80wuE/oBZ\nUugFuSP5XpjzP+d/7f5N3rXqC6caWWu1wpnWTALuBy4FOgJ3OecWtUBtDdK0Zvsw9an3WbmlgIsH\nZrJg2pholyMiEfLII49QUFAAwBlnnMGUKVO8J/yhY8gk3wjWJ946L/90Y3ySF7SCTSUmdoCpfz8x\nWDX2JoFIC1VPfaOE/lG2M8Z54dK/ru6McTVBNTkdbnwhNj6fNOuas38DLwP3AZnAH4Ey59x/NEeh\nJyPgbs1btmwJ1SdX2gKNnEm0qM9Zy1i4cCHbtm2Dwjw67HmXnzwwr3aYeGKcFzSSOkHZkfovYvHe\n1OEpfb3RJ4CULt6M4biZbXOhfahp3aUzaqZE/eFNoq45w1m2cy6nzrEpzrmFTayxyTRyJiKRpBsC\nImvJkiUE/jt8VsaL3sL8uCTocjqUF0PJIUhIg2N7a0bI6tNtMKRnaUrPT608YlJzhrN6t2dyzu06\nydqajcKZiESSwllkvPXgTby5+DlISoPkdGb991RY/UTAYvs6LA5cVeAB70d8krfwfu+H7TuISavR\nnHdrvgo4vP9vSAH6A5uAs5pUoYiItA3hrN3KmU/OvB+z5JOjeH+lwKwLK4CDNXdVBrI4iEuEylJv\nwX7Hbl6fsaSOGglqKbG2Jq8daTCcOefOCXxsZucBt0WsIhERiU3B/rJeMafmDkn/2qbc1fDy7XBg\nCxv3l7Hoo/Lq02eNDdj70r9WDPMau/Yf67WMGDcTTh2qcBBN/nVr/nYdCmstptHbNznn1pmZbpkT\nEWkrGvpLt27rCqi9wNy/zsv/842Z8M5D7CqsYt76mjViJ4SyniNqt5HIy/EC2k8/qzlPC9ljR30h\nXCKiwXBmZj8MeBgHnAfkR6wiEZEY0W76nAUb+fIHNv/zWdk1zVoD9R5d87oFX2f/h8t4dE2QUAaA\nwbeX1gTBun3FJDZMmF37n0ndnxpJi5hwRs46BfxegbcG7YXIlCMiEjsCO9S3aUMmedsWDZlUc8wf\nyPLXe1OM4HW7X7fA66LvP2fIJPjXb+HwTo6UOh58t7T6EtWhLD4Fvvor7/fl93rXq/uXeWDAk9hQ\n959J3ceRHklrx+EvnDVn97ZEISIisabd9Dn79BWvmemnr9T0Axs7vWafyU9f8f7y/VV/7/Ebd4Nz\nXs+xbcspq3T88u16Qhl4o22B2wu1xX5j7VXdkbTm1o6nUYOGMzNbjP+Wmno45yYFe05EpC3Iyspq\nH600Av+SDeyPNW5m7Y22z5vqbSTu6ztW5Ry/eCtIKMvo691hOWF2C30IaXGRHu2MdPiLYUH7nJnZ\nl0K90Dn3VkQqagT1ORORSGqXfc78WwBBzfqyFXNqbeDtnOPe+kJZx9Pgx5uiULRI69Acfc7ucc6N\nM7NfOed+2oy1NVnA9k3RLkVEpPWqb6PsIZOgMM/baDutKzz1FaCqOrDNWlFS/fLqUJbRBzIHtssR\nDmkB4aw9a2Pr00KFsx5mdiEwycwWUd2S2eOcWxfRykJwzi0GFmdnZ98SrRpERFq9wEX/XU6vaZOR\nkQUFG+HD56pPrTeUxSfBVx/QOjKJrHDWnrWx9WkhR86Au4FewIPUDmcOuCSCdYmISKQFLvrndG+d\n2PY3vc78PvWGMoDTL4GpL7VgsdJuhbP2rI2tTwsazpxzzwPPm9ndzrn7WrAmEZGY0Cb7nNWdyuxy\nOpR2h9Kj3qbjAJWl9YeyDqfB9QvbxLSRtCLh3HjQxlqxhNNKQ8FMRNqlNtnnLHD6J7Djv0/QkbJz\nvgHXPNESFTbK2p2HmLtsM3eMH8TIvp2jXY5Is2j09k0iIu1Fm+xz5h8xO+0ceOfh6sP1hjJLgJ7D\nY2qj8bphbO6yzazcUgDAgmnaWVDaBoUzEZEg2mSfs96jvTsyl9wBBBspM8ga2eKhLDB4AbVCmP+5\nPYeL2bL/GP/aWsAZmR24+QunAzDh7B5Mfep9Jpzdg+fW7AIz7r5yaPVomkbYpDUJ1YT2EufcP32/\n93fOfRbw3NXOuWaf3DWzDsBbwCzn3JLmvr6ISLsS2FB2wmzY+Cq88xAQIpRd+VBYd1+GClLPvL+L\n/1nyMWDcdeVQbhjTp/o105//N3uLSplx+ZDq4/7nvvP0Gg4dL6eopIKdB45x6Hg5q7Yd4Dtf6M9f\nc3I5dLycTsneX1tVDrbsP8YDr2/kyZtGcd+ST9iQe5j1uw5xpLQSgO88vYYnbxoVdIStMYFN4U5a\nUqiRs9/gbXIO3l6a5wU8dxfQYDgzs3nAlcA+59zZAccnAHOBeOBJ59wc31M/BZ474UIiItJ4K+bU\nrCl76lKg/lDmgN3xfdg3dWXYI03+sLPncDHbC45R6WBPYQk9MlJ4f/tBSiurAPjZSx/y3Jpd3D3x\nLOYu28y4A0FaAAAgAElEQVSW/ccAeOD1jbXC2dxlmzl0vJyEOONYSTmHjpcDUFHlePJfn1FR5eic\nlshPvjKYP73zGXmHigHHoePlzF222dtOCjgtI5UzkuLZtv9Y9XMLpo1hwtk9+DCvkAln9zjhM0D9\nU6KB34H/3KKSCtJTEoJ+Lwpx0hxChTML8nt9j4OZDzwCLKh+oVk88ChwKbAbWGNmrwBZwCdAyomX\nERGRsOWuhpdvh4Kabv1BF/qf0pf7ku5k3q7uXBwQRIqKy9mwu5AP8wqrR5/W7jzE9xbmsP9oGZ3T\nEujWMak6bAHsLSxmy76jxNX5G2LD7sLqwLJ9/1H2FJZwXXbvWufcMX4QH+YVcuh4OR1SErl4YCZD\ne6Tz15xcrsvuzSd7iqoDT+BIXEPToP7nln60h0PHy1n60Z7q1/uf8/+sKzC8+c8pKi5n5ZaCWt+L\nX63Rv+Jy0lMTNSonJyXU9k3rnHPn1f29vsch38CsH7DEP3JmZhfgTVt+xffYN+ZOR6ADMBQoBr7u\nnKsKdW1t3yQikdQqt2/KXQ1/vgZKi4AQoSypEzuyZ3BPbjYTzu7B0o/21BohijdITojjeHkVyQlG\nWYX3PQT7NtIS47nryqEs/WgPQ3uk86d3dlBWWUVmpySyMlK5e+JZjOzbmalPvc/KLQVcPDDzhNGq\nSIaUk7l2fa8JDGB1P4P/s3VOSySzYzJb9h1leK8M/v79L4S8flFJBRtyD9f7nUjb0hzbN53uG9Gy\ngN/xPe7fhNqygNyAx7uBMc657wOY2beAgmDBzMxuBW4F6NOnT32niIg0i1bV5yx3NTxzna+hbPBQ\ntuPCX3JPbjZ3jB/kW6dVQM6OQww6rRML393BO1u9kaJKB+WVjoQ4o7Si/kjWrVMSB4+W0eOUVOZe\nP6LWqNb0y4fU+5pQo1Uj+3aOWDg5mWvX95qRfTvz5E2jao3K+QV+tvuWfOIdtPonmgJD3vBeGVw8\nMDPoCJ5G1tqfiG98Xs/I2bXABOfcd3yPpxAQzhpDI2ciIsALt1RvtdRQn7LAkSv/1GUwhjdSlhhv\nVFQ6EuKNU9NTSE2Io0NKYq27IaW2hgJV4Chb3enRYOdqZK31a/LIWajwZWYXnWxhQB4QuNigl++Y\niEhMiak+Z/Vt7JwzH5b8AHDBQ9lFP4BL7wXgmfd3sX7XYU5JS6heSxWoe6ckDh4r58IzuvJhXiEd\nkxPIPVTMWT0z+Pt/NeVf++1PQyN1gaNsDQXchtbGSdsTauQsHvgG3jTkUufcR2Z2JfAzINU5NyKs\nNzhx5CwB2AyMwwtla4AbnHMfh1202URg4oABA27ZsmVLuC8TEWmUmFpztvBqr7N/YhpUlkFVBRBi\npKzjqXDdn3km/zRmv/YJp2WksrewuLrNRF3JCXE8c8v5Jyxw13SaSPMJd+QsVDibjzfCtRoYA+QD\n2cB059zfwyziWWAskAl8Dsx0zj1lZpcDD+G10pjnnLs/nOvVpWlNEYmkmApnOfOrG8dC8FC255zv\nMXXn5ewtLCYjNZHdh2vOG9i9IwVHSzknK6PWyFmvzjVrxkT8FM6bX3PcEJANDHPOVZlZCrAXOMM5\ndyDcIpxzk4Mcfw14LdzriIi0O/5pzNPOgff+CJVeyAoWykpdPJPL7mbdmkHAUYBao2RpifHMuWaY\nOuZL2LQ1VvSECmdl/jsmnXMlZra9McFMRERCqG8NWeBx/6bkvk3K64Yyh9d31QG5VZncWfF91rna\na5KS443SSke8wcLvjKkVwiJ5Z6S0DVrrFj2hwtlgM/vA97sBZ/geG+Ccc8MiXp2ISFu1Yk518GJK\nwIYrL98OBRurH9bb0d/BispzuLliBsF87+LTufSs0zQ6JidNAT56QoWz+pvUxICAGwKiXYqItGER\n7XM2dnrNz9zVsGgKHNtb/fQJI2W+pW9lLo7ry+45YZQMICHO+MXXzq61LZL+chVpfYLeENAa6IYA\nEWkT5vSHkuDNY52DdZWnc8Q68nDF1dXB7KrhPdlRcIxjZZV0SE5Q3zGRGNfkGwLM7Aj179Thn9ZM\nb0J9IiIxr0l9zoKtKfPLmQ9L7sThbYZyb5CF/s7BHyqu5NeVN1Qf092VIm1bqCa0nVqyEBGRWJOV\nlXXyrTT8a8pKCiEloyakBXTzh/pDmXNwtCqJLfTmfyqm8GHcmfzy67WnK0Wk7Qo1cvYQ8A7wjnMu\nv+VKEhFp/TYOvo2y3YWcXlpBxzxv4X/x3k2kHNuNUf+aMuegErirfBqLqsYB3tTli9eH1fNbRNqI\nUDcEbAW+Djxg3satq3x/3gH+HWxjchERgV9+0ImVhT/knrT3+TYf4LYtJ8XBvW/VP1JmBisqhzGt\nYjr3XXUOczRKJtJuhZrWfAR4BMDMegIX+v78AOgORG3Nme7WFJFY99vE39M15e9wyHscbPoSvLYY\ncWaUXfQTtk24oqVLFZEYE2rkDPOGzM7BC2UXAUPxRtQWRr604Jxzi4HF2dnZt0SzDhGRar4bAA4X\nl5Oev5KuUO/0pV+lg5+XT+MlG88zt16gxf0iUi3UmrM38EbHNgDvAb90zn3aUoWJiERbo/qcvXI7\n7N9IBqFDmXOwqyqTt86ezZzrvsGc5itXRNqIUCNn24FhwEDgAFBgZvudcwUhXiMi0mbMmjWr4ZPe\nmAnvPFT9MFRLjC0ui6qJDzN41HimNmehItKmhFpz9l0AM0sHzseb2vwvM+sGfOScu6llShQRiY4T\n+pzlroalMygp3Evl0YPEdegS8u5L8EJZMYn8LnEaP73rVy37AUSkVQq55synFDgOFPt+7wUkRbIo\nEZFYULfPWeHS+8jIy8E/HuaOHg969+WByg5sShjAsQt+zJ/zTtXm0SIStlBrzv4Xb7RsILAeeBf4\nI3CTc+5wy5QnIhIjcleTmPd+dduLYNssmcFml8XaiUurm8ZeFpWCRaS1CjVy9hnwZ2CDc66yheoR\nEYkphx+fSEb+SgDSgFkh+pTtdRmk9TqXMyfczZm91adMRE5OqHD2MnDYH8zM7MvAVcBO4BHnXFkL\n1CciEhWHH58IQEbeyqAjZeAFsxcrL6JP8nE6XXEXPUaNb/FaRaRtCRXOnsPbIaDQzIYDfwNmA+cC\nvwe+E/nyRETC1NBG44HPg/f7kEnw6SvVx46+/BPKDu6ic9VBMnxLzepbUwZQ5WBj/CCG3vwo19T3\nfiIiJylUOEsN2FPzRmCec+5BM4vD630mIhI7/BuNA0x5sfrwxjXLKFs2m9M7VdCxIOBfXduWQ/56\nKD7Ise3vkeqO0THgcrPeKuFLfeO83wNCGcBRl8yT/X7LD26+MVKfRkTasVDhzAJ+vwSYAeCcq/Lt\ntRk12r5JRE7gHxHz//SNlCXsymNw+Ua2Vg3mtMzh7N2Vxym9B9MFg+KDVDnowLHqywROX674VmBc\ngyqgJGMgHa/9PT/QaJmIREiocPammT0H7AE6A/8EMLMeQFTXm2n7JpF2zhe8dpw6jqK1L5I0fgaD\nR41nT9pAMp+aQOHpE8ncsxKKD3Ja5nA+OJJN0vgZ7P2/nzOgfCNV2zYS5/tvTP/P+taU5R+pokfH\nOCotjgSqiMvKJu2W5S39aUWknbHAHj4nPGl2PdADeM45l+c7NgLo7px7vWVKDC47O9vl5OREuwwR\naWkLr4ZtyymydNJdEZsSzqQ0vhNDS9eRQBWOgKH/niOp/PwjXGUZzpJIdKW1LhVqoX/cL4o49tuR\npF37+9Dr2UREwmBma51z2Q2dF6rP2evAUuAf/mAG4Jxb3zwlioiEEGqBv2/q8uCp49ix9kWSK4oY\nVprDnrhTOa3q81prMshfS7zvV1dVWp3aQoUyM8hL6At86AWz3qNrrWMTEYmkUNOaNwETgFlmNgh4\nHy+sLXPOHQvxOhGRJtm4Zhk9X7uZdFfkHZjyYvXWSQBMmA1TXqRf7mrY+SLHjzq2Hh9Mwqip2MeP\nUVm4C3OuesrSL1Tz2EoHxyyVlekTmdj9AL3GTod7xmikTERaXKi9NfcC84H5vjs0xwBfBf6fmRUD\n/+ec+3WLVCnSUJsEaVPKls0m3RV505aBrS/ycmp+n/IiR1/+CR0LNpAGDOhwGqz6GYA3UlYnmIUa\nKft14vfofel/sfSjPd42S307R+7DiYg0IJy9NXHOVeFt3/QucI+ZZQJfiWRhIrUEaZMgUdaY3mKN\nCNVJ42ewaekMMCN/bxGDe+Ndo6TQO2HIJHhiHEkFH9W86NjeWtcItc2S/3ln8Pmw7/Hx4asZf1qn\n6u2WRESiKS7YE2Z2i5kN9P1uZjbPzArN7AOgt3PuL81ZiJkNMbM/mtnzZvafzXltaQPGToczxtW0\nSZDY4A/NK+ac+FzuanjmuhOfz13tLejPXR30soNHjac0IZ0zKzZRtmy2d7D3aG86MyUD3vsD5OWQ\nRAUA9d3WdO9bJdXBbNbYlBOmMJekf4O4WYX89PDVrNxSwNxlm0+4xsyZM8P7HkREmlGokbM78KY1\nASbj7QxwOjACeBj4YkMXN7N5wJXAPufc2QHHJwBz8WYfnnTOzXHOfQp8zzeFugD4Q6M/jbRdWpAd\nm+r2Fgu0Yg4UH4TULrWfDzYKWqeD/+mdKthaNZik8TOqG8n2TjhI52PbOU4yaUFKCramDLyRtNK4\nFFJcCSOTvfuc7hg/qNbPWteaNSv05xcRiYBQ4azCOVfu+/1KYIFz7gCwzMweCPP684FH8MIWAGYW\nDzwKXArsBtaY2SvOuU/MbBLwn8DCxn0MEYmKUKE5MLgFTmnWE+hOuAGgpJCOBRsYkNQJTktn64Lb\nGVy+kWOlyQAkuHKvXYZvXZkROpStsnO5aNpvYMUcnjl4NqcXvMnKuP/gHmBk384smDam3o+Qn59P\nz549w/02RESaRahwVuVrOHsIGAfcH/BcSv0vqc05t9LM+tU5PBrY6pzbDmBmi4CvAZ84514BXjGz\nV4Fn6rummd0K3ArQp4/Wh4i0mHDXj9W9qxK8aUz/6+oJdP4bACqII+Hzj+HYPt8TR2DpDPrhjXKl\nUYpzkGRV1a8NtqYMYL915se9/+qNivXuDFNe5Nydh5i77Ip6R8rqysrKIlQvSBGRSAgVzu4BcvCm\nHl9xzn0MYGZfArY34T2zgNyAx7uBMWY2FrgaSAZeC/Zi59zjwOPgNaFtQh0i0hjh3pQReFfl0hne\nGjH/PpY3/PXEYJe7mtM7VXCsNI0OHIej3sL+KuIoJoX4fVtJKT9S01g2jD5l5cSTF9eT0ssfYsGo\n2qNioUbKRERiQahw9jrQF+jknDsUcDwHuK65C3HOrQBWNPd1RaKmrbX/CLW+rO55uau9US//491r\nvPVnL98OGVm1v5MVc7wNyTMHw5F8DpYnEF9ZTKkl0Z1CXNlxsJrOGKFGyqqAuO+8QVLv0fRv+icW\nEYmKUOEsD3gFeMbM3nS+sf1maECbB/QOeNzLd0ykbWnt7T/qhstwb8rwn/fy7VCwGT7/BFI6Q2kR\nHNoBBRvhwFYoyoOzrvbaY3QbDEX5UFrEKZbAhynnMqx0LVCzrqyhjv6V8cnc3/VXXFE1kJHN+T2I\niLSwUOFsCHAtcDewwMxeAJ51zr3XxPdcAww0s/54oex64IbGXMDMJgITBwwY0MRSRCIo3JGmWLV0\nBuTlcGzbu+ResZDBo8aH/9reo711Y6VF8PrPoNz333SVZV4Q27/Re/zhcwDVe2Q6IM5VMKxkbVih\nDLxgVmTpPNT1F8zb1Z2tyzZr2lJEWrWgfc6ccwecc485576Mt4h/O/C/ZrbNzO4P9rpAZvYsXuPa\nM81st5lNc85VAN/Hmzb9FG9T9Y8bU7RzbrFz7taMjIzGvEykZflHkFr5lGYHjtf0GoP6+5T5j70x\nE37VH3Lmw7iZXhsNXxcy7/9WweHc6sflxHPMJbO2vG+tzcr9zWOD9SkDsF7ZbLryBT5Izib/8j9x\nxRVXcfHAzLAW+odLfc5EJBos3DuRzKwj3oL9HwI9nHOnRrKwcGRnZ7ucnJxolyHR0tbWdEVTznxY\nfq8XqLK/5R3LXc3Rl3/CgYMHKIlLw33ll97o2cKrvenaM8bVTHP6j/klp8ONL3j/fE47h/J3fkci\nlQBUxKeR0O8CSre9TTJlQM3UJIRuiVEJ/D3tWi7tso+MCXfrn7uItCpmttY5l93geaHCmZmlABPx\nmtBeiLfx+SLgDedcZTPVetIUztq5+kJCc2snAbB8dj8SSw9RntyZxBk7aj33wexxDCvN4YPkbIbN\nWH7id+JvnbF/U81NAJmDvYX/25ZTZQmsix/G8PJ1GFBhSSRTVmukDIKHMjModgl88u2tjGzhPS/V\n50xEmlO44SzomjMzewYYD7wF/AW4wTlXEuz8lqQ1ZwK0zJqu1r6oP0xLky7lKyUv8HrSpUys81zS\n+Bl8sGw26SOv9gLxkEneE59/4n0/RXneGrJugyGpI0UH8okv+Iy4g7tIwVtDdl75OuJ8SSzeN1rW\n0N2XzsHeqgzS+pxLxoS7Gdm75TcjV58zEYmGUDcELAW+65w70lLFhMs5txhYnJ2dfUu0a5Eoaokt\nnVr7ov761G0S23s0F6fvJelIJRPK3vCeDxglHGy7IW47bF7g3WmZv95ri+H/mdTJOzGpI9yynMpZ\nvUin1Otr4RM4QuYXqiUGwI643ny59FdcHJfJgt6jWbvzEHOXbeaO8YNafARNRKQlhbohYAFw3Mwy\n/cfMLMnMbjWzT1ukOpFoa82L+usu3Pc/9t2FSV5O9YbkGRPuhtQuJJYe4oM/z2DtzoDWhsvv9UJY\nYS6kdqGgx8UUk0JFyRHKSKCivAQSO8CIKZC7mviUTtUbkTtXMzXpH4AKttDff/6RyiS2Jg6m9PKH\nai3wn7tsc9ANykVE2pJQ05rXA48Bx8xsC972TfPwWmF8s2XKE5GTVndK1v84K9v7A3DaOd7dleNm\nwg1/ZeuC26k4fohXX/07I2+72TvnvKmw6ndQVQHFx0j97A1SKaEmgQHl5VQtuZNSkkinZkTMAobM\n7n0r+EiZc1BqiaRYOR/EDyHlxpe9Tv6jas4JtUG5iEhbEmpa8y5gpHNuq5mdh9cS41rflKKIxLq6\nU7IBPzfuLaJs2WyG7nuKhPIj3ujYDX+lb9znJMYfYlDVfFi4GMZOp3DHOjJcJVRWUkU8iYmJUObL\nZgF3WcZRRSolYS30h4DmsUDuRb+kpPOZlC2bTdfxMxhcz7Sltl0SkfYiVDgrc85tBXDOrTOzLQpm\nIq1UnTssbf4ohlVuZo+dSo/URG/kbMUcEksPQWoXOlqJN8pWUsjc8hv5oXuPjlZGHJUklB0Gau9z\nWYsvnTXUPHZ1/HDG9O9K/Njp9PNPGzem0W0LUJ8zEYmGUOGsu5n9MODxKYGPnXO/jVxZIo3QTtpd\nhFTfdxA4rQm1Nx/3DXcVxZ9Cj5/61qSdOtT7mda1unM/R/dzR8cXORrfmY5VnwP157FAwaYv/SNl\nh5N7cMepT3vTkzG+sH/WrFnRLkFE2qFQ4ewJoFOIx1GjVhpSSztpdwEED6L1fQdjp3O08AB7d+WR\nMGoqWbvXkVh8kOMv3MYZtpfd8X1xX/kl5Myn4vW72FvVhaMTfsvgf1xXc93CXWQU7qTuXhyBi/wb\n2mYJoMrB58O+R4/jW+g8djoLGgrRMRK41edMRKIh7B0CYpGa0AoQM3+Rt4i6jXf9n33IJPj0lRO+\ng533nUPfyl3sjO/D8vSvc9XBp0ixctIopYo44pI6QGU5VHrB6ph1oEP/MbD9n2GX1NCasmKXyAOn\nPsA9/hsMTuZzRomZqc+ZiDSb5mhC+5xz7hu+33/lnPtpwHP/55y7rHlKlXapOQNVS/Q7ixVjp0NJ\noffH/x361oaRcuJes10rC6p/Xl/1Gml2lAI6k+AqSLLKmo7+Ph3cMaq2/bO6YSzUHh0LFGqkzDko\nzLoYM5hbfjVXXHFV4z9n4E8RkXYk1LTmwIDfLwV+GvC4W2TKkXajPU1FhimsJqu9R3shbNvymnBb\nUggFm6G0qGZNmW9bpYQOXag4VsKRc6bSY/MzAHTlEPstg45JiaSV+/qZBezGFlcniNUNZg01j3WA\nfeEHnHLpvQDc07ivoeZz6n8XItJOhQpnocbyNc4vTdMcIyNtbDrz1Vf/zrf3zOPVV79d02PML/Cz\n+r+zIZO8Y2VHobSIKiCu+CA8c53Xm+zdR0ipqgCg05732FlxCn0owoDuFFJUng6u0ntdPfXUHTFr\naKTMDI6RRu4VC70N0kVE5KSECmdpZjYC79/bqb7fzfcntSWKkzasOUZG2tjo2x2JL5IR/wEjEl8E\naoezwqX3kZG3ksLtqzl0wQz6Aaxf6HX5922fFIdv1Kr4IJXv/I54vOBV6hJIKPiYvpRT6uJIpIoC\ny6C8y1l0PLAKq9uYzKehhf7+QFYFrDn7HsaUvEOHsdMZ3AaCsohINIUKZ3uB39bzu/+xSHS1gnVJ\njdkPMmPC3bBiDhlDJsET47yDvr0v55ZfzffdOrpwhE6rfuY9120wpHaB86Zy/KNXSSncUj0CVuhS\n6WTFJFJJqlVUv0eyeRteZnIUDqzyzg/SG6OhUFZm8SSaEXfh9xlz6Y+AHzXim2kd1OdMRKJBd2uK\nRHB6dOpT77NySwEXD8wMv7u9/05F8LZZSslgx6njKH3/aU6v2EKiVVFOPImZA6FgI8esA67rQDoW\nbKjuzl9OHBafglUWEx+wCqHK1awpO9mF/jbsG3D8QJuZThYRaSnNcbfmKCDXObfX93gqcA2wE5jl\nnDvYXMVKOxYL68YiOD0a1n6Qdb8D/yL/0qOwfxOUHaHf7jVQWURxYgbxFYXk9phA9/I8OuLdYXnw\n4E7KkzsTV3qIeCCBKqzyOOBNdVYSTzyVtQbJGrPQ3x/krPtguOaJk/9CWhn1ORORaAg1rfkYMB7A\nzC4G5gC3A8OBx4FrI16dtH2xsG4sQtOjG9csI3HZbH4WZK/IasG+g6I8r9VFahdvXVlpEUkVRcQB\nvfa8TjyV1aGpc9UhrBSOuwRSqCDOqndRwoB4V+mFsZMYKSsnjnmVV/C9M4/D2OmNmqpt7bKystTn\nTERaXKhwFh8wOnYd8Lhz7gXgBTPbEPnSgtMOAW1I3b5d0Rg9i1DbhrJlsxlWmkPRazfDaS9Ubzae\nNH5G7bsZ6+tdludN11dZPHHnTYX3/gCAwwBHIhW19rb0jkKaVVDlao75NXb6ErxgNqN8GouqxpGW\nGMf3pnwVgLm+qVpAG5GLiERAfXfQ+8WbmT+8jQMCW4aHCnUR55xb7Jy7NSPjxKab0sr4+3bl5Xih\npLXKXe2tFctdXX0oafwMiiyddFcEK+ZUh7XuS27i/b896C369y/8938Hz1zHnrSBlPv+XzPOVeLe\neQgqSwGIx1vQ7x/LCRzT8eevwDVl9Zm1oqQ6mM0amxI0mJnBhPg1JMQZd115VvVzd4wfxMUDM0NP\n1YqIyEkLFbKeBd4yswKgGHgbwMwGAIUtUJu0F63grssG1Z2azF3N4I2/hyvuq95WKWlvEYVLbqSL\nHWXwRw+AFQO+NhkT7obda6D4IN0/fIx4HMUugRTzRsiq13z53s7/X1WhNiFvbPNYgDISKHGJ/Lli\nHOen7WFl9yn89YoLak1fjuzbufaIWSysGxQRaUOChjPn3P1mthzoAfyfq1l4EYe39kykebSFbvCB\nATN3tdcItti3KsD32QazmvK4SnCQQimlLp54qli7P55LVsyBTj2htKj67kpn8exzHenG4ZAhrCEN\nrSmrAsosEXdKP36T9F/M29WdzmmJjLlxFPcErilrzKbrIiJy0kJOTzrn3qvn2ObIlSPSSuTMh+X3\nwriZkP2t2gFz4dVeMItLgCGTWLvzEK+++nf+36FZpLgyoKbfGMDYsjdhm7eezHyrxxyQZFWcyuGg\nLS8geDsMaHikrMLBXeXT+FfGlfzrp5cAcMXOQ2wNttg/WAhrCyOfQajPmYhEg/qcSasQc3cI/qq/\nF8CSOnnBbMgkr2M/wIgpXnArPghnjGPewbO58eAjJFklFQ4SDMox4p23vL92uDKcb9n/yQqnJUa5\ni2NW5bdZ3WUSc64ZFt53qulLEZEmaXKfM5FYMnfZ5ti4Q9A/YjZgPGxdBh27e6NJ+etrpjHB23zc\nF2Sm/PkbJFolDjjIKXTnMAnO1Qpl/v9EsiYEs4ZCWSnxzKv4KtcnrKCLHeX+Mz+DKV8K/w3awvRz\nI6nPmYhEQ0yFMzO7CrgCSAeecs79X5RLkhgRVjPXSKg7WuQfEdu4BBJSYNAESM+C086BVb8DVwn7\nN7Hj0zUU7S4kaW8Rg7NvgncewoBuQaYp/Q9DTVMGExjKvjsyiR6dTrwJuzQuhQtsIV8a0o07N53P\n7K7/oGcbnIZsbupzJiLREPFpTTObB1wJ7HPOnR1wfAIwF4gHnnTOzQl4rjPwG+fctFDX1rSmRJxv\nK6UiSyf/8j8x2HbD6zOg/HjNOVfO9e7I3LYcLB5cJcWkkEoJpSSRTFnQywfZczwsgaEMTtz/shIo\nch1JTzYSvvI/3to4aRQzUzgTkWYT7rRmqD5nzWU+MCHwgJnFA48CXwWGApPNbGjAKXf5nhcJXz29\nxk7WxjXL+GD2OHacOq66V1nZstlewEnwQpD/r+zyJT9kT9pAr5N/h24AJPkCWWAwq+/v+JMJZoF9\nyqD+XmVm8K+qYfy3/ZRj3UfAqUPrXkZERGJUxMOZc24lUHcfztHAVufcdudcGbAI+Jp5fgX8wzm3\nLtK1SQsLEp7W7jzE1KfeZ+3OQ027vv9uwmZoZlvd3X/ti+Rf/ie2Jg7m9E4VXu0DxlePeFU5SKSS\nbh8+DsUHqTy6F4A4f7NYXyA7menKusIJZQDllsSmhDN5Mu4/+GHVfDLyVsLSGU17cxERaTHRWnOW\nBeQGPN4NjMHrnzYeyDCzAc65P9Z9oZndCtwK0KdPnxYoVZpNkFYMzbbYv7laOuTMZ2jVJnYn9K3Z\nasmH9qUAACAASURBVGnj773an7kOKkqrR7wMKCOeJCoBb47efzwwkDUlmIWavvRzDnJdN+I6daPX\n9XM5E3h06X0c2VuBrzQREWklYuqGAOfcw8DDDZzzON7G62RnZ2sxSGsSJDw122L/3qO9a9fX7qHO\nwv6Na5adsM+lv13HU/tmkVh+hF7xpbhXr+Ffb15Cr+Hj6bN9BXHFB6kioEO/eSNnULN+rLqbfzOM\nlNV6HGKbpbzEvlx8dDYXd8lkQe/RsPBqMvJWkpGVDSkD2mQPspagPmciEg0t0ufMzPoBS/w3BJjZ\nBcAs59xXfI9nADjnZjfmurohQE7gW8DPGeNqt32oc3zr/WMYUL6RnXG9KYlLA+dYlnIZ44teon/8\n576RMF+nfgfOWmaBJjQcyvyBrLpnWXJnto1/kl9+0IkJZ/dg6Ud7+NmwI972UepJJiISM2K9z9ka\nYKCZ9QfygOuBG6JUi7QlwaY262yv1K9qFwDdq/aTWuWFoT7HPiM1vvyESwbuaRls7VhzrSmr9TjI\n/pflvmnU/Qmn0b3fWSSOnc7g3qNZMAqmPvW+b4o4kwXT2ldPskhQnzOR/9/encdXXd35H3997pKE\nJCQQA4IQcIFotVIUkHa0mF9LLVNxmbQP22rdl3aqI7NoC1aUVi12nC6otR0rSu0m1lJbxKrFGUpb\nHYooRbEY0IqsIhKyL3c5vz/ukpuQS7Z7c+8N7+fj4SO52/d7OOYRPnzO53yOZELagzMz+wVQBZSb\n2U7gdufcUjO7AXiWSJnOw865zX245nnAeZMmTUrHkCWd0t1lPlmj1OjzW9av5pinr6TERVphhL15\nuGArZpBHkCbyKKI9abCVLAAbjJqy2D0C5uPv3km4Od9kx+hpLHmuhnmza5k2cWTm+sENUepzJiKZ\noOObZHAlW3ZMtYQgcMveeoqf/XfG2AHqQ37KwgcIO/AkLA06IICP5rCfUmuJB0LxOjL6348smd4u\nXwaBXeFyWl0+YzwHKLWW+PzFMmWzJpdn9uSEIUp9zkQklbJ9WVOOVKk8JDtJFq4jO1YPQPvOOsYH\ntwMQO0Gyu12UeQTJ8wQ73cK6fI0ZyDJmbzJlsUPJrx31GsGmg5wYfINW/wh+Xnwdny58hdLo/ClT\nJiIy9ChzJjmr8f6zKd6/kcbyqRTf8Id4sLbtnV1MCmyh3kpoP+5jjHjrNwB4o+dWpiML1hu9rSkD\neCV8AuGrn2fJ6hoat73AsoLvRILNdGccpRNlzkQklYZ05kw1Z0euWAuMkmnVjHp/KwB761qZBPE+\namPKp7KpYTol06qZ8MItnXZZJi5TBvDgd+EBF/L3pK81ZS34ee8fFnFOtIbsjpYAdwVv55ai38Qz\nZiIiMnTlZHDmnFsJrJw+ffq1mR6LDK545/4XayhyTdRbCcFz7opkzVrrYNx0ik+7lCmv/AReinRm\nScyUJX5Nd2DW25oygDDQRj6FtDFs3Ic4Z875AEybOJKSYX6Wbx3Lnsm3RnqYyaBRnzMRyYScDM7k\nyBNrEHv9pE9R/3oN7cd9DPaspeTjt1MyfXZko8Gulwjkj+St3z3AiaE3AAjiwQjj5dA6sXQFZr1d\nvky8v9dgt/84Jk0Yl74mvdJnixYtyvQQROQIpJozyazDtdZIeO0bKzczd899nOjbS5FrIugfji/Q\nQG3R8ewIljGqcjpjNz8E4SDh6I+0Jxr8hFwk+IHU9CNLpq/LlzFBjLf9JxI85674aQWSHdTnTERS\naUjXnMkQkuS8za6vzfMHKPW+GVmj9BcRCATwAaVNbzGStwi/GgnSHR1BWUxizVk6ArO+BGVBDIcX\nHyEaKMZckJ8UX831N9/V+xumu1ecxKnPmYhkgoIzyayE1hqHnHeZ8FopwLK5EGqDYCvDCEUCMYh/\nBXDmAxfstBszMSBLZeasL0FZ7LglvzmChPDgYNxp3OC5te/LlYcLaEVEJOflZHCm3ZpDx5a99bTv\nrCNvb3282H/T6sUwYza8+zrsfgW2rIK9rxIyb7R2LIRxaJG/Azwu2O19YlIRmPWlJUbiGZixe/tw\nMKyM0jkLOwr8e5ENi9Xd3TLly5wEOsxcRGSIysngTLs1h47EgCxv9oL4VwCe/zq0HIAX7gMXos7K\nKHEteMx126cs3b3LehuUJWbnHB3fhzz5eL0+KK2AC+7rHIT1Ihu2ZHWNzs0UETkC5GRwJrnlkOXK\nqA3ba3l82OfJD9Zz/PAgxWNKYMHzHR+cNBv36uMEHfiBke5A2nuSdacvQRkGbeangED8iCjwwLjT\n8c5ZnLxGrBcnJ2jXpojIkUHBmaTdIcuVRAKze5f9lHnBR5jg3cWw/a00Lr2A/f9wK8e++3wkSKl5\nJtKPLFpfFmseC4PT4d85x9f/0BZ/fLjlS0hYtvT6IRSgFT+FBGBUJVz7/GE/m/TA9gTTJo7U+ZmD\nTH3ORCQTFJxJ2h2yXElkie5fg49wuvfN+HPFNFPwwq1AGOp2QSCSsUrn4ePJJGbLegrKuvKNnEBd\n/mh+1Xxa5BzMOQtTPTwZJOpzJiKZoOBM0u6kGbPjGbMt61fje+5rfLvQT1t+EILgoo1iww58FgYg\nvH9LfAdmPCAbhOisr0FZmI6doiGgbcRkCi+4j9KKM/jQ9lr+ZXUN88KTmZaW0faSWm/0m/qciUgm\nKDiTwbPjL4xfdSnFNEMdNJdOhvKPY4VH4V59vFN/sliLjMSM2WAdtdSXTFlHYObBe/WzFCYEPx0F\n/GR0ObLumTso3bWWutYApdeuzNg4cpH6nIlIJig4k5R7+7nvU/bi3Rz4yHyOPed6IFJjZj/9KqfT\nHH/fgaZ2CsuJ15Z1NRhLmf0NysKAx5vPvlAhBa6V79ml3NYlK5UtBfxLAtXMCh1kbaCa2zI6EhER\n6Q0FZ5JyZS/eTYmrx/viXRAt7l+1ajNzW+to9ORTbG00UkhZUR68+TwhPHiSNIdNV2DW36CsU7AY\naqPU6+fD7lFu/uRJh7w3Wwr4zz33QpasPjnjQaKIiPSOztaUlHv7ue8z6sW7yPc4fKFmGsunEnr/\nLUpdPY0U4isuw9f0HoTb8A1ya4yBFPpHGC3kM4zodUadBNevS83gJOuYmZY1RSRldLamDLqODvYn\nUlSQH2kgO6yMvXWtTHL1BPBSTDOusTmSfRqEw8hjBp4piy2yOvx+P9s4ljGlBRSff89hPx+bk3mz\nK5k2cWQ/Ri4iIkeanAzOdHxTdlq16kmu2vMwvr3tEDgA+SWQP5xj299hp28iNZ7jqGpbg8c6B2TZ\nWOgfYwDDyuDjt8P//QAaduP7xB1Mmn5Frz6fLZsCpH/U50xEMkHLmpIy+797FuV1r3Kw6ARGjDkW\nWutgV8f/n5CvEG+wOfkFUmggQVksWxYyP95jPgSH6+zfA2XOREQkRsuaMugONgcoB/xNe+ADN8Kf\nvgMkBDvB9qSF/6nSn6DMuUiPslj9W7vzkm8h9niPYXxB6YDGky2bAqR/1OdMRDJBwZkMTEKD0+A5\nd9G06lKKaIbnboX2BiBareXATzBtgdlAMmVBPGyxEziVrQSchxV5F3KKZzvHDw/2eBi5DG3qcyYi\nmaDgTAZmzd3xAOakS1fAXybAe1vYFyqkxO8lP3AQ0pgt621QlmzTQdjBj4KfYv+42ZxU93X8bbV8\navR7lF77fOfO+jHqti8iImmm4EwGpmp+pLbs3c3w9TIoGgXAiOB+/IQiAVEaArO+ZsoSA7MwECCP\nfNp5f8Sp/F/JjcybXYnfcwqsuZvSWDAWPYx8w/ZalixdF6kbW3u3smkiIpJWCs7kUL3IDnU6BQCg\ncS8ALvo1z0JpGVq/W2J0ypx5yB83BYBRcxbzaPzPeAYbZi1lyXM1zJtdGy/g77Tj8pxo4JaYTRMR\nEUmhrAnOzOx44GtAqXPuM5kez5Gsp7MYt6xfzQkvLMRPiNALi2ksP4Fi0tuvbMAtMWI91QBPaUVk\nF+mwskPe113ri07HMFWM7H3GTEugIiLSD56e39J/Zvawme0zs9e6PD/HzN4ws21mNh/AOfeWc+7q\ndI5HemdJoJo1oSksCVR3+3r76sX4CRF2UOQaKXxvY9oCs0VrWuOB2aKqgr63xYjWcoccBJ3x1PCL\n4DMPRQKzlgOR4CnBvNmVzJpc3umoo9iOyz63wojV43W5h+QO9TkTkUxIa58zM5sFNAKPOuc+GH3O\nC9QAnwB2AuuBzzvnXo++/kRvM2fqc5YePfXm2rJ+NRVPX0aRa0rbGAZ+zFJEU1457e1tjKSBTfnT\nCVz8ROTPNBhZLWXOREQkQVb0OXPOrTWzY7s8fQawzTn3FoCZPQZcALyezrFI73XtzbVhey13PPU6\ns+qf4rq2ZRxbVIbfguBSv5SZiqAs9u8NM8gPNVNUPgHqdjBleCN4tsIOBidoim4oyAgFhimhPmci\nkgmZqDkbR+Svx5idwEwzOwq4CzjNzBY45xZ392Ezuw64DmDChAnpHqvs+Av20/l4Gs/jurylFFsb\nNHV0+U9VYDagjv4JAWLs+12MZphrppmjGL9/S+TF/Vs6lhiH+o7LNdpVmgrqcyYimZA1GwKcc+8D\nX+rF+x4EHoTIsma6x3Wkii1tPtDyFU4PbOSRvNfxEAYivcE8WRSUWfSszja8FER3iTY7PwsmrOCW\nKQ2wcTG0N0JeceddlkN5x2WVdpWKiOSqTARnu4CKhMfjo89JhnRXY7ZkdQ2N214gnF8DQKm1UBcu\nwBEgFRFxKpYvE3dgmkEILyHCeHGUF+d3LM3OmN2xzAeZXW4cLCn4M+pcUBGRzEjrbs0k1gOTzew4\nM8sDPgf8ti8XMLPzzOzBurq6tAww6+34C/ykOvJ1ADZsr+Wypeu446nXWbt1P0tW18Rfmze7kkUl\nT1FCM+FoNFZirZiBdwBZs4HuvoTIzst25yHkDLz5GJHGst6i0XijoePIEV3aZBxm52RsHjZsr+3z\nWICU/f/INrG2Iok/FyIikn5pzZyZ2S+AKqDczHYCtzvnlprZDcCzgBd42Dm3uS/Xdc6tBFZOnz79\n2lSPOSekqJ4o9pfv1PGlzJpczjcqXoJvfY49ky7CX/MSY/PbcK2pWcJM1e5LiASHjS6fUmuBMafC\ngbfwtBygYMQYGDEm8qY5nUsWt5z0Zdp31pF30pc5qcv1uutt1idDtL6rU383EREZNOnerfn5JM8/\nDTydznsPad3UE3VdgjrsktSOv1D3zB2MbTyfqRUn8+Hjynj0xe2UvXMnWDNHb/ohYw1ca+eC//4U\n/w80KHMumhWzSK1bGz6GWZC94TK2F44lb+oCHl+/g3llKyidszDpzsRvbhrO2rp/Z9am4Tw6o/Nr\nAw5Chmh9V9ddu0ci9TkTkUxIa5+zdFOfsw6XLV3H2q37mTW5nEevnsk3HniEWXseZu3Yq7jty1d2\nfvNPquHN53k5dAJFeT4s0IhzMMGzj2EWAAbeIiNVmbLtoXJ+ELqAr/iX85+BzwLwFf9ylhVcztkX\n3xzPesX+3MmofioJtdwQERk0WdHnTAbPLVMauGnfd8ibsgCAfw8vo9i7ienhZUCX4KxqPnWtAQr2\n7OXE0BudKg9jOzH7G5ilIlMWu3eb8/I+pdS4Cr4YvJnrvb+ihCbKrJGZbX9imudC7gvfyZIJ1Zw7\n+x86LtJNwKEsUBJDdEk2VdTnTEQyISeDMzM7Dzhv0qRJmR5KVtiwvRb/6sVMaXuJxnV3sGn1Yib4\n6jve8NIyAr9fxIO+S3jHfxy3FP2G0tM+TcOuOwg6I4SH/GgLiv4my1KVKXNECv59BmE8nO59kzv9\nP2dE2SiO2b+JXUWn8OemD/HmB25g+E8XMKXtJW47wQ8TOwLQ7s4GVeYsiSG6JJsq6nMmIpmQk8HZ\nkbohoLsAY8v61bSu+ga/bJ8Ow6GwrpEpgS1sapvExtAU1nqu4Lbnv46/rZbPty5jU/h4Sg9uon7X\nS4ynGQy8LhS/R18zZqks9IdI1q7N+fERIM+CAOR5PRxzwSJYczfjquYzruIM/nvpOp6sn8t/5Ac4\nqkuR/5JANbNCB1kbqOa22HMDLfofqo6EtiIiIjkmJ4OzI9UdKzezcWcd9S0BnrzhLCByCPmZ/BXy\nIHDxb3jrb39k74v/xR+8H+Zs9398+PijoPx2gs/eSm2glNfDEzjds5V82sH6X1uWyqAsNobY11A0\nf+fFEcCLb8ZlhwQR82ZXcs2uOi5prjykyP/ccy9kyeqTOxX4Z3znoWq7RESklxSc5ZJYFGUWz6J9\n4bR5BDd8l98WXcJFwAPbytjY9lWW+e/mLO8m/vDne/jSsM/z7UA7J7CTy337KLL2Qy7ZW6kOymrc\nOJ4PncbnfGt4LFjFyZ53eCY0g8sK/sjJ/r342+o59t3nges7fXbaxJE8dPmMeCax62tds2MZrzlT\nbZeIiPSSgrNsl5BxWTj35HgwsmrVk1y152F+V38Zz4UWULs3wJ7VNfFo675QNaU0MZwmFrR+myJP\nGwB+Qodky3qTPUv18qVzsCJ0Jj8LfYKH8v6LMmvkFM87XB6I1D5tOerTPHm+vyPb1I2MB1x9odou\nERHpJQVn2S4h4zLt0hXxYGSSfwWl3k34Dv6E5W1fZXi+j7/tqWd/Yzuf8zzPV/zLOWClTGJXvMO/\nc+Aj1GkJsafALNVBGXTsCD3O9nKjbwVl1ki9G8ZYz/v8Pv9mAt4iPGcshoozh06WSbVdOUl9zkQk\nE3IyODuidmsmaTi7KlDNXH8j32k8n5m+rfxz+Ffc21TNe1TyFf9yyqyREtdImI4O/2aH7sZMFpil\nIygDCDoI4GMYkWL/e4PVjPa3Mj68g8rYEathYMsDkTMxRTJo0aJFmR6CiByB1IQ2S8VqyuZ8cCzP\nvLaHOR8cy+Pr34mnuzburGNqxQhwjn99dwFV3k28HDqBeop4PTyBa3y/I886dmE2unwaXAFHW91h\nj2NKX1BmvOmOockVcLr3TQ64Yq5pv4l9Iz7EqrLvUrprLU0UYqXjKCwujRy/VHFGjy0w1CJD0kl9\nzkQkldSENsfFWj+8uquO2uZA/CvA1IoRXDVhH/P8P+SbTRdwb7AagBKaqPJuAuBz7QtZ7PsR4zz7\ned8N531XSqVnR9LALF3Llw6jDS+FFmQUdTwSnEOjFfFE8Rf42lUXRf6sq6r5R28Di5svIJx3Bk9e\ne+Yh8wDdt8BQiwxJJ/U5E5FMUHCWhTZsr6W+NcjU8aVcNGNCPHP2yJ//zt66Fi6aXsG5m+6mdNda\nPuNtYDEXAPB4qIqGaOZsWd63qHXFNIQLqPDsZ6JnP6Fu/o5JZ0sMAzzmyHMh6t0wyqyROd71zPMt\n5KHPzmDaxJGRY6feGc0v8+fT4EJMTfyLcMdfuj8BIEHGW2SIiIikmIKzLLRkdQ0bdxxk1uRyLp45\ngYtnTmDD9lp21bbQHAjxwJptPN38Ca4JH+RR72e40becKu8mSmiigSK+4HueEmuhxFo6XdebkDVL\nR1AWq18LA16gHQ/5hPGZY1voGBoo4t5gNbWBAEtW1/Do1TPjQVVs+bZTkLUmEoB2PQEgUU7t2BQR\nEekFBWdZKDFgufD+P8WjnuZApIZsd20LOzmBPzEfTxAO0rGsebZ3E2+ExwEH8BNkmAU67chctKY1\n/jhVy5d7w6W0m59x9n6k2N8CHHDF/Gfgs1zkXUOB38tTo7/ML98dS4ML4fNY/M+YGFxdPHNC5wur\n/YSIiByBtCEgww5X0H7Z0nXxeqpCv5eQc7QFw8z0beMG76/4bvs/8bKrxIicSXm61XCjbwX3Bqt5\n2VXGHx/Hbh754854C4uvnV2I38Kdgra+nhTgHDS5PGpcBXcGL+VG34pOmxJiYxie72XZVTOZNnEk\nP1/3Dvc8u4WbP3nSoYGYSBYyM9WciUjKaENAjkhW0L5hey17DrbEA6/mQIiPFf2dy2w5JTRxur1J\nyOe4IjC/28As1uvs/P+ZwFRPPeUG86uGsyU8gYWBKr7hX0aehQg72Boex7GeveTTsbszMVgLO6gP\nF1DsaSWIl+3hMSwIXsvLrmMJMrYpIXZ/AyaPLubuT0+JB52xJVqRXKE+ZyKSCQrOMqxrQXssk1bf\nEmDre03x9+V7jcvbl3N2NDu1JjQlHhAB8cwVEAnY/vwj7rV2zvLUcUtVMSVWAASop4jHwh+HANzh\nfwS/hcHg7fAYKjz7GEYgXj8WcB78FsZjsJFKCEOVdxN7OKpTYAbwsqvkikDH8qMD9je2qb2F5DT1\nORORTFBwlmFdC9pjmbSpFSOYPKqoI0AzY0mwGkdHdipRLFD75/8tZBj30uQp4JaqIvaGyyixXdS7\nYexxZYzlfVb4F3Jn8FJeDR/H6d43Od724PeEWROawjOhGSzw/5y94TIeCc3hIu+aTtfv+n0yHoPy\n4nw2bK9VgCY5S33ORCQTFJwNoq71ZYmPgXjT2frWIDhHUYE//tm2YJiX6ZydSvQ/f1zP/1ABwJP/\nbwdV3vZ4du1GIsudidm1G1nBncFLecgTOdfygCvm/nA1L4Ureazt4/HrPhbu+P4j/m34PMasylFs\n2moEw4fW4hT6PVQePRyAjTvr4rsyRXKR+pyJSCbkZHCWq8c3xbJi9a1BSgp81LcG2bjjIK/uqmPi\nUUVs3HGQV945CDga2kKHHLXUnYN/+ln8+xFnXQLAvcGa6NfqTsuN9warKaGp02vXtN/EPN8KlgSr\n2Zr3AfwuxKmuhn/1r+DtU/6F214pil//izzBWbaJU4PLWVV+E3vrWvB5PdQ2B/B7jQKfh4a2ECXD\n/MybXdkp8BQREZHe0W7NQdD1KKb6lkDk+KXxpWw/0ExtcwAPkTqt3v7f6C4o66/Jo4vZ39hGeXE+\nW/c1ssx/N1XeTWzKn87TH7qf/177Fg6YFt108ID7DOuCkcC40O+lORBi8uhirjzzuB53Y+q4Jckl\n2q0pIqmk3ZpZ5I6Vm9m4s476lgBP3nAWG7bXcsfKzTS1h/B7PUCkcWtvpCooqxg5jIPN7YwpHRbf\nUblhey3zn/grP6j9DF5ntJw2j9d31ccDxg2uksujWbhCv5fKo4tpaguy9b0mivK8PPPaHmqbAzzz\n2p6kwZmOWxIRETk8BWcpcrh6sqb2SIuKpvZQJDB76nVq3m2gOdDbkGxgQdl0TyTj9b1ANZs9JzLz\n+KOobwmwo7aF00oL4hmsaRNHUpTvY11wEuuCX2XWrnLmza6kviXA/qZ23q1vJRA9A6ry6OJ4oNl1\n+fJwS5k6bklEROTwFJwNQGJgknhQ+UOXz+j0uDg/Ms0tgRDX/Hh9/ADz3khFpuxG3wpmeTYR9sGX\n+VqnDQiHBEnR5mbD833xQPPJG87iwu//mZ21LUweXczY0oJOHf4T68t6yobpuCXJJepzJiKZoOCs\nnzZsr+0UaM2bXcmru+qobQ7EA5XY42AokiHbfbAl3qXf7zHaujuJPCqVNWXfC1STN8zLfe0X0BwO\nccdTr/Pk9Wd2GyQtnHty9zVh0bqbojzvIZ/TUqUMVepzJiKZoA0B/ZAYmI0s9PPQ5TPiS5l3rNwM\nZiycezLQ0R7jnme39CpjlsqgLJnJo4r4/X9U9fi+7lp9dFfI39v3ieQa9TkTkVTKuQ0BZlYEPAC0\nA2uccz/r4SMZs2R1zSGBWUxs92UsSItlnCaWFdLc1kBbqPs6s1QGZaOG5/FeQ3un5zwGfq+HtmC4\nU/+0w+maEetNVizxM4nLnQrUJBepz5mIZEJagzMzexiYC+xzzn0w4fk5wBLACzzknLsbqAaecM6t\nNLPlQNYGZ4lF7YlBR2LQ1tQeYuu+RgBe2/0awbDD26VxmQc4kIZM2YHGdkYW+qlrDlA+PJ+W9iAN\nbSE+MGZ4vAdZb/RUvB8/airar63rZ7TcKSIi0nfpzpwtA+4HHo09YWZe4PvAJ4CdwHoz+y0wHng1\n+rYQWSxZUXtiYDL/ib/Gn4910g854geZp3r50mORA8pj96ltDlDo97KvoY18n4fh+V4umtG3g8d7\nKt6PHzU1vpRZk8vjwWosMJvzwbHAoeeGKpMmIiKSXFqDM+fcWjM7tsvTZwDbnHNvAZjZY8AFRAK1\n8cBGIkmlnBFrj4FzLDzvlEjgYd33969NQ6bMa3D8qGKK8n38bXd9fOk0FI58bQuGaQty2P5j/XG4\nDGJ3GTNl0kRERHqWiZqzccCOhMc7gZnAvcD9ZnYusDLZh83sOuA6gAkTUhdoDMSS1TXxZb35v9rE\n3roWWoOda8vSVejvsUimbOu+RmZNLuf2809h8dN/Y0xJPpixdV9j5LzLMSUp7y3Wmwxib54XERGR\nDlmzIcA51wRc2Yv3PQg8CJHdmukeV2/Mm10ZP6z8zfcaaWjrWJVNDMomz7mS9xrbu7tEn8SWRieP\njmTLmloDFBX44xmsi2dOiGfzpo4vjWfzNmyv5bKl61K6rPjzde8ccmRTsqBNPc4k16jPmYhkQiaC\ns11ARcLj8dHncta0iSN58vozgUiwcudTm9n9vz+Jvx7LlB1oOnxg5qHzMU7eaFasK0ekSezeuhYa\n2kLMmlzebe+xjTsOMmtyeTwQS8eyYqxFyD3PbknpkqlINlCfMxHJhEwEZ+uByWZ2HJGg7HPAxX25\ngJmdB5w3adKkNAxvYGp+9zD+v+4EoHzWF5g7ZSzP/20foXC4x+OaLJYSi0oMzAr9Xm6dezKPv7Qj\n3p5j4846RhZ2v/uyuyXEdCwr3vzJk+KZM5GhRn3ORCQT0tqE1sx+AVQB5cC7wO3OuaVm9inge0Ra\naTzsnLurP9fPVBPa7iT+C7vyH6/inme3cHblKP5Q8x43f/IkThwznHmPvcKu2pb4smTizPu9xtEl\nBRxobKc50LEsGsumxRrHxpYrm9qCFOV5OzYgiEjKmZn6nIlIymRFE1rn3OeTPP808HQ67z1YYkHZ\n7oMttJ5aHW8jUdsc4MmNuwG45dev8s1/OpWmtmA8KCv0ezpl0orzfeysbWFqxQhKCnzM+eBYdIhg\n8QAACqJJREFUnnltD3vqWtm6rzHeODZx88HUihEKzERERIaYrNkQkGsSM2XnXTkvcpxTQmf82Lma\nMbGlv9hOyl0HW4HIbssp40fw4ePK+Nm6d2hqDbBw7smdCvsTj0aaN7uSV96ppaEtxJv7GtiwvVYB\nmoiIyBCSk2drJtScXbt169ZBvfcvf/lLNm/eDHQEaBd+/89s3HGQ4fk+ll11Rsc5m0+9zv7GNuqa\n21nwqZM7Fcx33eUYuwbA1PGlPHnDWUnHkHi2Z3ebAUQkNbSsKSKplBXLmuninFsJrJw+ffq1g3XP\n9evXs2rVKqAjKItltZpaIxmyE0YVxbNY0yaOpKTAx8YdB5laMYJnXtvDiWOGxwO3Z17b0/lczsS/\nAJI0sI2ZNnEkD10+o1NGTURERIaGnAzOBlNTUxO//vWv2bt37yHb6uPHF1WMiB9flCj2uL4lEG9h\nMeeDY7ntN6/Fj3SKZb0WnndK/LD0hXNPPmQcXY8+ivUMS0fvMhGJUJ8zEcmEnFzWjBmM3ZpNTU0U\nFRV1+1rXerDuvo9lymKPY8uRPo+x/Isf6XVAddnSdazduv+QZcxkz4uIiEh2GdLLmoMpWWAGnTve\nx2rG6luDlBT4OjV7TXxfrC/YZ6dX9OkQcB2JJDL41OdMRDJBwVmqxDKQzh02YLp45gQunjkhnvGK\nva+nQE1HIokMvnHjxmlDgIgMOk+mBzBULDzvFGZNLo83hY1lzJKZN7syXqcWq11bsrqmX/eO1Z1t\n2F7b3+GLiIhIlsjJmrNMttJIh67F/n2lujOR9FArDRFJpd7WnOVk5sw5t9I5d11paWna75WqrNTh\nrtObTNvhJGbhREREJLflZHA2mAa65Njb6wwkCBxocCciIiLZQxsCepCq3ZA9XScWvAFamhTJEupz\nJiKZkJM1ZzGD0edsoHpbTzbQujMRERHJbkO65iyX9HZZVEuTItln9+7dmR6CiByBtKyZZmoSK5K7\n1OdMRDJBmbM+6E/RvjJiIiIi0hcKzvogVTs3RURERJLRsmYfaIlSRERE0k3BWR/oHEsRERFJt5wM\nzmLHNwH1ZpaK85tKgbo0fOaQ91jesCJvcdkxwbp9zYQCu/p4z1SMaTCu2a+5SVAO7O/jPXuiuenf\n/Qbzulk5N2amuen7/Qbzutk4Nz3dc7CuqbkZ2GfSMTcTe/Uu59wR/x/wYDo+c7j3AC9lw59Dc6O5\nScfc9Oe6mhvNzVCZm3TNj+Ymtdfs6TOZmJvYf9oQELEyTZ/pz3UHIh3309yk9ppHytz057qam4G9\nX3OTumumQjb8ztHcDOwzmZgbIMdPCMhlZvaS60WX4COR5iY5zU1ympvkNDfJaW6S09wkl+65UeYs\ncx7M9ACymOYmOc1Ncpqb5DQ3yWluktPcJJfWuVHmTERERCSLKHMmIiIikkUUnImIiIhkEQVnIiIi\nIllEwVkWMLMiM/uxmf3IzC7J9HiyiZkdb2ZLzeyJTI8lG5nZhdGfm+Vmdk6mx5NNzOwDZvZDM3vC\nzP450+PJNtHfOy+Z2dxMjyWbmFmVmf0x+rNTlenxZBMz85jZXWZ2n5ldnunxZBMz+2j0Z+YhM3th\noNdTcJYmZvawme0zs9e6PD/HzN4ws21mNj/6dDXwhHPuWuD8QR/sIOvL3Djn3nLOXZ2ZkWZGH+fn\nyejPzZeAz2ZivIOpj3PzN+fcl4CLgDMzMd7B1MffOQBfBR4f3FFmRh/nxgGNQAGwc7DHOtj6ODcX\nAOOBAJqbrr9v/hj9ffMU8OMB3zydHW6P5P+AWcDpwGsJz3mBN4HjgTzgr8DJwAJgavQ9P8/02LNp\nbhJefyLT487y+fk2cHqmx55tc0PkHzu/Ay7O9NizaW6ATwCfA64A5mZ67Fk2N57o60cDP8v02LNs\nbuYDX4y+Z8j/Tu7n7+LHgeEDvbcyZ2ninFsLHOjy9BnANhfJBrUDjxH5l8hOIv8agSMgm9nHuTni\n9GV+LOJbwO+ccy8P9lgHW19/dpxzv3XO/SMw5MsF+jg3VcCHgYuBa81sSP/e6cvcOOfC0ddrgfxB\nHGZG9OPvqtroe8IMcX39fWNmE4A651zDQO+dkwef57BxwI6ExzuBmcC9wP1mdi4ZPC4iw7qdGzM7\nCrgLOM3MFjjnFmdkdJmX7GfnX4DZRA7onuSc+2EmBpdhyX52qoiUDOQDT2dgXNmg27lxzt0AYGZX\nAPsTApIjSbKfm2rgk8AI4P5MDCwLJPt9swS4z8w+CvwhEwPLAsnmBuBq4JFU3ETBWRZwzjUBV2Z6\nHNnIOfc+kXoq6YZz7l4iwb104ZxbA6zJ8DCymnNuWabHkG2ccyuAFZkeRzZyzjUTCUCkG86521N1\nrSGdys5Cu4CKhMfjo8+J5qYnmp/kNDfJaW6S09wkp7lJblDmRsHZ4FoPTDaz48wsj0hB7m8zPKZs\nobk5PM1Pcpqb5DQ3yWluktPcJDcoc6PgLE3M7BfAi8CJZrbTzK52zgWBG4Bngb8BjzvnNmdynJmg\nuTk8zU9ympvkNDfJaW6S09wkl8m50cHnIiIiIllEmTMRERGRLKLgTERERCSLKDgTERERySIKzkRE\nRESyiIIzERERkSyi4ExEREQkiyg4E5GsYWZfM7PNZrbJzDaa2czo82vM7I3ocxvN7Ino84vM7Kbo\n98vM7O/R1182s490c/1RZrbOzF4xs4+a2dtmVp6CccfGd34P76sys6d6eM+/mdk7ZnaknusocsTT\n2ZoikhWiwdRc4HTnXFs0aMpLeMslzrmXerjMzc65J8zsHOC/gSldXv848Kpz7proPVM0+l6Pr0fO\nue+aWS0wPQVjEpEcpMyZiGSLscB+51wbgHNuv3Nudz+vtRaYlPiEmU0F/hO4IJpdG5bw2rFm9lrC\n45uiWTmfma03s6ro84vN7K6ebh7NpE2Pfl9uZm93ed1jZlvNbFTC422xxyJyZFNwJiLZ4jmgwsxq\nzOwBMzu7y+s/S1jWvKeHa50HvJr4hHNuI3AbsNw5N9U519LTgKJHtVwB/MDMZgNzgK/38s9zuOuG\ngZ8Cl0Sfmg381Tn33kCvLSK5T8GZiGQF51wjMA24DngPWG5mVyS85ZJoUDXVOXdzksvcY2Ybo9e4\nOkXj2gz8BHgKuMo5156K6wIPA5dFv78KeCRF1xWRHKeaMxHJGs65ELAGWGNmrwKXA8v6cImbnXNP\n9OPWQTr/Y7Wgy+unAgeB0X24Zqygzd/di865HWb2rpl9DDiDjiyaiBzhlDkTkaxgZiea2eSEp6YC\n2wfp9u8Co83sKDPLJ7IxITauaqAMmAXcZ2YjennNGdGvVYA3yXseIrK8+ctoYCoiouBMRLJGMfBj\nM3vdzDYBJwOLEl5PrDlbncobO+cCwDeAvwC/B7ZApJgfuBu4xjlXA9wPLOnlZWeb2Xoi9WQHzOxG\nIqsVbQnv+S2RP7eWNEUkzpxzmR6DiEhOM7M1wE2xVhpdHye8bx4wzjn3lejj6cB3nXMf7fK+K4Dp\nzrkb0j96Eck2ypyJiAzcAWDZ4ZrQmtlS4GLg+9HH84FfAQu6vO/fos/Vp220IpLVlDkTERERySLK\nnImIiIhkEQVnIiIiIllEwZmIiIhIFlFwJiIiIpJFFJyJiIiIZBEFZyIiIiJZ5P8DzH0C5FOCM7cA\nAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "ax.scatter(seip['i1_f_ap1'][mask], master_catalogue[idx[mask]]['f_ap_servs_irac_i1'], label=\"SERVS\", s=2.)\n", "ax.scatter(seip['i1_f_ap1'][mask], master_catalogue[idx[mask]]['f_ap_swire_irac_i1'], label=\"SWIRE\", s=2.)\n", "ax.set_xscale('log')\n", "ax.set_yscale('log')\n", "ax.set_xlabel(\"SEIP flux [μJy]\")\n", "ax.set_ylabel(\"SERVS/SWIRE flux [μJy]\")\n", "ax.set_title(\"IRAC 1\")\n", "ax.legend()\n", "ax.axvline(2000, color=\"black\", linestyle=\"--\", linewidth=1.)\n", "ax.plot(seip['i1_f_ap1'][mask], seip['i1_f_ap1'][mask], linewidth=.1, color=\"black\", alpha=.5);" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAGHCAYAAADiPGXHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl41OW9/vH3M5M9IWEJFAgIKqCgIgqCVks5BT1UxFpo\ntaKiVbHLacuxyyn+qhi0Fo62p2K19aB4UOpapSpqUaEirVjZBRQEUUNIQAmELJCEWZ7fH9+ZZBKS\nySSZyUyS+3VdXJnlOzOfoRVunuXzGGstIiIiIpLYXPEuQERERESap9AmIiIi0gEotImIiIh0AApt\nIiIiIh2AQpuIiIhIB6DQJiIiItIBKLSJiIiIdAAKbSLSqRljPjPGTArcvsEY4zPGVBpjyo0x7xtj\nLmvkNVmBa/7WxHvOMMZsCFyz3xjzN2PMRU1c+wtjzHZjTIUx5lNjzC+i+w1FpKtQaBORruZda20W\n0B34I/CMMaZ7g2umAzXAxcaYvqFPGGN+CtwP/Ab4EnAS8BBweROfZ4CZQA9gMvAjY8x3ovRdRKQL\nUWgTkS7JWusHlgKZwNAGT18PPAxsBa4NPmiMyQHuAv7DWrvMWnvUWuux1r5irf2vJj7nXmvtJmut\n11r7EfAScGEMvpKIdHIKbSLSJRlj3MB3AQ9QEPL4IGAC8GTg18yQl10ApAF/beVnGuArwAetKlpE\nurSkeBcgItLOzjfGHMEZYfMC11prvwh5/jpgq7X2Q2NMGXCvMeYca+1moBdQYq31tvKz83H+sfx/\nrS9fRLoqjbSJSFfzL2ttd5w1Zi/jjHyFmokzwoa1tgh4G2e6FOAQkGuMafE/eI0xPwq89xRrbU0r\naxeRLkyhTUS6JGttJfAD4DpjzDkAxpgv46xvu80Yc8AYcwAYB8wIBLV3cTYoXNGSzzLG3AjMASZa\na/dF8WuISBei0CYiXZa19jDwKDA38ND1wJvACGBU4NeZQDrwdWttWeDah4wxVxhjMowxycaYrxtj\n7m3sM4wx1+DsNL3YWvtJbL+RiHRmWtMmIl3d/cAeY8xI4EpgprX2QOgFxpilOIFuubX2d4ERuNtx\nplErgI3APU28/69x1sKtd/YhAPBna+33o/5NRKRTM9baeNcgIiIiIs3Q9KiIiIhIB6DQJiIiItIB\nKLSJiIiIdAAKbSIiIiIdgEKbiIiISAfQKVt+5Obm2sGDB8e7DBGRLs3j8ZCcnBzvMkQS3saNG0us\ntb2bu65ThrbBgwezYcOGeJchItKlGWNQWymR5hljCiK5TtOjIiIiIh2AQpuIiIhIB6DQJiIiItIB\ndMo1bY3xeDzs27eP6urqeJcSd2lpaQwYMEALhEVERDqQLhPa9u3bR7du3Rg8eDAhhzZ3OdZaDh06\nxL59+zj55JPjXY6IdGJ33nlnvEsQ6VS6zPRodXU1vXr16tKBDZzdXL169dKIo4jEXH5+frxLEOlU\nukxoA7p8YAvS74OItIfi4uJ4lyDSqXSp0BZv99xzD2eccQYjR45k1KhRvPfee0yYMIHTTjuNUaNG\nMWrUKL71rW8Bzr9Q8/LyGDVqFCNGjODpp58G4PHHH+fqq6+u974lJSX07t2bmpoaXnnlFc455xzO\nPvtsRowYwf/+7/+2+/cUEQHIy8uLdwkinUqXWdMWb++++y6vvPIKmzZtIjU1lZKSEo4fPw7Ak08+\nyZgxY054za233srPf/5zdu/ezejRo/nWt77FN7/5TX72s59x7NgxMjIyAHj++eeZOnUqLpeLW265\nhXXr1jFgwABqamr47LPP2vNrioiISIxopK2d7N+/n9zcXFJTUwHIzc2lf//+Eb126NChZGRkUFpa\nSnZ2Nl/96ldZvnx57fPPPPMMV199NRUVFXi9Xnr16gVAamoqp512WvS/jIiIiLQ7hbZ2cskll1BY\nWMiwYcP44Q9/yNtvv1373DXXXFM7PfqLX/zihNdu2rSJoUOH0qdPHwCuvvpqnnnmGcBZM7Jr1y6+\n9rWv0bNnTy6//HIGDRrE1VdfzZNPPonf72+fLygiIiIx1alCmzFmqjFmUVlZWVTeb2NBKTMXv8fG\ngtI2v1dWVhYbN25k0aJF9O7dm6uuuoolS5YAzvToli1b2LJlC/fdd1/ta37/+99zxhlnMG7cOH71\nq1/VPj5lyhTeeecdysvLee6555g+fTputxuARx99lFWrVjF27Fh++9vfcuONN7a5dhEREYm/ThXa\nrLXLrbW35OTkROX9Fq7cxZrdJSxcuSsq7+d2u5kwYQLz5s3jwQcf5IUXXgh7/a233soHH3zACy+8\nwE033VTbpiM9PZ3Jkyfz17/+tXZqNNRZZ53FrbfeyptvvtnsZ4iIxIr6tIlEV6cKbdE2e9Iwxg/N\nZfakYW1+r48++ojdu3fX3t+yZQuDBg2K6LWXX345Y8aM4fHHH6997Oqrr+Z//ud/+Pzzz7ngggsA\nqKysZPXq1a36DBGRaFOfNpHo0u7RMEYP6sETN42LyntVVlby4x//mCNHjpCUlMSQIUNYtGgR3/rW\nt7jmmmtIT08HnA0KK1euPOH1c+fOZcaMGcyaNQuXy8XFF1/MzJkzuemmm2r7rllruffee/ne975H\neno6mZmZtVOwIiLtrbi4OOINVyLSPGOtjXcNUWOMmQpMHTJkyKzQUS2AHTt2MHz48PgUloD0+yEi\nsWaMoTP9HSMSK8aYjdbaE3t/NdCppkejvaZNREREJFF0qtAmIiIi0lkptImIiEiXETyNqCNSaBMR\nEZFOz+PxEK0+rvHSqUJbtJvriohI66lPmyQCay1lZWV4PB5ycnJISUmJd0mt1qlCmzYiiIgkDvVp\nk3irrKykoqKC7OxsMjIy4l1Om3Wq0Jbo7rnnHs444wxGjhzJqFGjmDdvHldccUXt8/Pnz2fIkCG1\n95cvX87ll18OwODBgykpKQGckxVGjRrFmWeeydSpUzly5AgAn332Genp6bXnmI4aNYonnniiHb+h\niEid4uLieJcgXdSxY8coKysjLS2N7Ozs2n6mHZ2a67aTd999l1deeYVNmzaRmppKSUkJR48e5U9/\n+lO9a7Kzs/niiy/o06cPa9eu5ctf/vIJ75Wens6WLVsAuP7663nooYdqzyY99dRTa58TEYmnvLw8\n9WmTdlVRUcEnn3zCl770Jfr27RvvcqJOI23tZP/+/eTm5pKamgo4Jx8MGjSI7OxsPv74YwCKioqY\nPn06a9euBWDt2rVceOGFYd/3ggsuoKioKLbFi4iIJLi///3vbNmyhbPPPrtTBjZQaGs3l1xyCYWF\nhQwbNowf/vCHvP322wBceOGFrF27lo8++oihQ4dy/vnns3btWrxeL++//z7nnXdek+/p8/lYtWpV\n7RQqwJ49e+pNj/7jH/+I+XcTERGJl23btvHqq69ywQUX8JWvfCXe5cSUpkfDKVwHqxfAhDkwcGyb\n3iorK4uNGzfyj3/8g7feeourrrqKBQsW8OUvf5m1a9fi8/m44IILGDt2LHfddRebN2/m9NNPJy0t\n7YT3qqqqYtSoURQVFTF8+HAuvvji2uc0PSoiIl3B559/zoYNGzjrrLOYMmVKvMtpFxppC2f1Atiz\nyvkZBW63mwkTJjBv3jwefPBBXnjhhdqRtrVr13LBBRfQrVs3qqurWb16daPr2aBuTVtBQQHWWh56\n6KGo1CciIpLofD4fr732GoWFhUyZMoWTTjop3iW1G4W2cCbMgVMnOj/b6KOPPiL0EPstW7YwaNAg\nhg8fTnFxMf/85z8555xzABg1ahQPP/xws+vZMjIyeOCBB/jd736H1+ttc40iItGkPm0SbevWrWPl\nypVMnjyZMWOaPV+90+lU06PGmKnA1NC2GW0ycCxctywqb1VZWcmPf/xjjhw5QlJSEkOGDGHRokUY\nYxg3bhxlZWUkJycDzuaCRYsWNTnSFuqcc85h5MiRPP3003zlK1+pXdMWdOONN/KTn/wkKt9BRKQl\n1KdNouXTTz/lww8/ZOzYsYwd27blSh2Z6YzbsceMGWM3bNhQ77EdO3YwfPjwOFWUePT7ISKxVlxc\nTP/+/eNdhnRglZWVvP3225x88smMGDEi3uXEjDFmo7W22aHDTjXSJiIiiUN92qQt3nrrLYwxXWaT\nQSQU2kRERCRhbN++nYKCAiZMmEBmZma8y0ko2oggIiIicbd3717+9Kc/Ya1lypQpCmyNSPiRNmOM\nC7gbyAY2WGsfb+17WWs7zfljbaHpChERSRQ+n49HHnmEAQMG8IMf/CDe5SS0uIQ2Y8xjwGXAF9ba\nM0MenwwsBNzAo9baBcA3gAHAIWBfaz8zLS2NQ4cO0atXry4d3Ky1HDp0qNGmvSIiIu3pL3/5CwUF\nBdx666243e54l5Pw4jXStgR4EHgi+IAxxg08BFyME87WG2NeBk4D1lpr/9cY8zywqjUfOGDAAPbt\n28fBgwfbWnuHl5aWxoABA+Jdhoh0curTJk158803effdd5kxYwbf/va3411OhxGX0GatXWOMGdzg\n4bHAx9baTwCMMc/gjLIVAscD1/hb+5nJycmcfPLJrX25iIi0kPq0SUMHDx7koYceYvDgwcydOzfe\n5XQ4ibSmLQ8noAXtA8bhTJf+wRjzFeDtpl5sjLkFuAXoUkdaiIgkKvVpk1DBEK8w33qJFNoaZa09\nBtwUwXWLgEXgNNeNdV0iIhKe+rQJwJNPPsnu3buZNWsWeXl58S6nQ0uk0FYEDAy5PyDwmIiIiHQw\n27dv5/nnn2fs2LEaXYuSRApt64GhxpiTccLad4AZ8S1JREREWsLn83H33XcDmgqNtni1/HgamADk\nGmP2AXdaaxcbY34EvI7T8uMxa+0H8ahPREREWi4Y0n75y1+Snp4e32I6oXjtHr26icdfA15r53JE\nRESkDZYuXcqePXv42te+xvjx4+NdTqeVSNOjIiLSiahPW+e3b98+Hn30UUBToe1BoU1ERGJCf4l3\nbmrh0f4U2kREJCbUp61zCoa0yy+/nHPPPTe+xXQxCm0iIhIT6tPWuTz//PNs374d0OhavCi0iYiI\nSJPUwiNxKLSJiIhIo4Ih7fvf/z59+/aNbzGi0CYiIiL1hY6oaXQtcSi0iYiICACbN2/mpZdeAhTW\nEpFCm4iIxIT6tHUswZB25513YoyJbzHSKIU2ERGJCY3UdAyaCu04FNpERCQm1KctsSmsdTwKbSIi\nEhPq05aY/H4/d911F6Cw1tEotImIiHQRwZB21llnMX369PgWIy2m0CYiItLJaSq0c1BoExER6aT+\n+te/8v777wMKa52BQpuIiEgnFAxpc+bMIS0tLb7FSFQotImISEyoT1t8aCq081JoExGRmFBgaF8K\na52fQpuIiMSE+rS1n2BIU1jr3BTaREQkJtSnLfY0uta1KLSJiIh0MAprXZNCm4iISAfxl7/8hQ8+\n+ABQWOuKFNpEREQ6gGBI+/73v0/fvn3jW4zEhUKbiIhIAtNUqAQptImISEyoT1vbKKxJQ6Yz7ewx\nxkwFpg4ZMmTW7t27412OiIhIq7S6hceGJfDmHdCtP3zjD85jK25zfg6+CNYvhoyekNkbep4CHyyD\nvmfDgffhjGlw7BAMvxx2vAwT5sDAsdH6ShKGMWajtXZMs9d1ptAWNGbMGLthw4Z4lyEi0qWpT1vL\ntWh0rXCdE8hqKsFbBRUHwFdT93xyBriSoKbcue9KAr+3+SLSe0LVYTh1Ily3LLIaACbPV8hrpUhD\nm6ZHRUQkJtSnLXIRhbXCdbB6Qd0I2OoFUBRmgMJzzPmZ0g16n9a6kbbmhNawekHzIU/aRKFNREQk\nTpYuXcqePXuABmEtNKCBM5r1+YfgPeY8d8mvoboMjAusP/Ai44yuZebCkQLndp8R9UfALp5Xv4Dp\njzRe2JgbIvsCE+Y4dQRvN6Zh2JRW61TTo1rTJiKSOIwxGmkLIxjSxo4dy6WXXuo8GAw41WV1I1gm\nCWyDac3gFGbu6VBeBDl5cPkfnFC0YQmsmgcT74w8fMXS0mmwZ1XddKtC3Am65PSotXY5sHzMmDGz\n4l2LiIhIY2pH1MqKyD/3EJx1ad3asIMfwfEKyAv5+zs0sCVnQp/hcM51TW8W2PGyE+h2vJwYoS04\nAhf8uXqBE+JA06kt1KlCm4iISMIJjCzl/8MP+98H33HyLx0AqcWwpxzKiuDwx3WbBFKznSnNna/C\nO/cH3sQFucOcHaHBkNZUIGsYkuJt4Nj64SzR6utAFNpERCQm1KcNJ7D9eTr5r38BuMifkOI8XrLT\n+ZneE8oK6+/qzB3mBJ2BY+H0KS2fSmwYkhJNS+rT7tR6OtWatiC1/BARkbgJrtnK6EX+H56ofTh/\nQlr964wbblwBL/3YCXE5gyB3iNZ6hQquh4PIWpB0UF1yTVvIRoR4lyIi0uV12T5tL/2Y/Oe31N51\nwpqBvNHO1OcnfwdXMlz6WyecfeMPWpjflIa7U7v4JgaNtImISEx0ud2jG5bw2sLZrCusBhqMrPU+\nHf7jvTgV1ok03InaSXTJkTYREZGoaNgnrbHRneB6q7J9UHmA/NXVtU/VBrbc0yBngBbdR0ukmxg6\n6YicQpuIiEhDoW0poPEWFYHTABoNazmD4Nat7VBoFxPpJobG2op0giCn0CYiItJQYyM6obffvJP8\nxa/W3q0Na8EjoybPb4cipUmN/e/XCfrDaU2biIjERKdb07ZhiTMd6qsh/62jQEhYM26Y8j+J0cxW\nGpfAI21a0yYiInHVIfq0Bdel1VSCAVKy6kbJVi+oOzw9oxdse67xqdBTvgYz/9r+tUvLJHr/ugho\npE1ERLqu0D5gQadOrDv707jB+hoPawAX/ueJh7CLtJBG2kREJK4Stk9baJf9c65zAlroSNuEOfD8\nzQC89UkNbxc4pxXUC2tnXQnTH2nnwqWrc8W7gGgyxkw1xiwqKyuLdykiIl1eXl5evEtoXGDXJ0Ub\n4JXZMPgi+NF7MO4HzoHtz14LZQXkr64+MbCl9YT8sjYFto0Fpcxc/B4bC0rDPvfUe3s5684VXPTf\nf+eKB//Z6PULXtvBkP/3Ggte29Hse0vH16lG2qy1y4HlY8aMmRXvWkREJAEVrnNG1lwp4D/uPPbu\ng84U5xu3w/EK8t84WHt5vdG1vDER7QrdWFDK3cs/AGO447IRjB7Uo97zC1fuYs3uEgCeuGlck89t\nKyqjosZHRU0V+0qruPuVD8lOS2L2pGG17/noPz/F67c8+s9PmXPp8LDvLR1fpwptIiIiYQVH2Yy7\n/uMPjj0hrFnAAjWZA7g38+dMueQKRg+sH8CCQoPa0WoPuw86u0sXrtx1QniaPWlYvZ9NPffRgQrm\nv/YhORkp5GamgLUnBLKbLzqZR//5KTdfdHKz7y0dnzYiiIhITCRky4+Qw9zZ9lztw8GNBnO/morL\nGCzwkbc/vzl5CQBrdpcwfmhubVh66r29zH/tQwAqanwkuw0en/Ndu6UmUVHjpVtqEktuHHvCSFtr\nbSwoZeHKXfVG2qRz0EYEERGRUBuWwN9+Cb4acDl//TXcFWoBr0nm7+Me45fr0vjFmf04rW83oP7o\n1X2v76Sixld73+OzdEt1c2qfblw5ZiArtu+PergaPaiHpjy7uA4R2owxmcDbQL619pV41yMiIs1L\nuD5tq+aBL3CY+98rah8OrlvzA//v+E3s7D+NPe9WUlHjYf5rH7LkxnHMnjSMhSt3MfnMfjy3fi9Z\nqUnUeHy4XYaKGh99uqXyp2tH14a0GeNOavevJ51fXKZHjTGPAZcBX1hrzwx5fDKwEHADj1prFwQe\nvwuoBD6MJLRpelRERE7w+7PY/cmnPLnNA9SFNWvhYFJfVgy7m/zNmfgbvCwj2Y3b5UyD9shIpvSY\n8/rQ6VKRtoh0ejReLT+WAJNDHzDGuIGHgK8DI4CrjTEjjDEXAx8CX7R3kSIi0nrFxcXxLsHxwizI\nzyH/pV31Apu14LUwj1sonPkvfv9R9xMCG8Axj682sP3i309n1IAcRg3srsX+0u7iMj1qrV1jjBnc\n4OGxwMfW2k8AjDHPAN8AsoBMnCBXZYx5zVrb2H9XIiKSQPLy8uK3ESHYQLdoQ6Pr1vwW/p/nJp7x\nT8QATy/6F9kZSaS6DWDIyUimstpLz8xk0lOSyExxc8fUMxg9qIemPiVuEmlNWx5QGHJ/HzDOWvsj\nAGPMDUBJU4HNGHMLcAvASSfpPygRkS5t8b+Tv/pY7d3aTQYWFnkv417fjNrnLFDj83Ow4rimPCWh\nJVJoC8tau6SZ5xcBi8BZ09YeNYmISAIpXAcv3AxHCmpH1644PZlRfd1YoMybxijvYye8zAApbhcn\n9UzXlKcktEQKbUXAwJD7AwKPiYiINC70HNFGpkLBmQr91vF8Ntn6gWxgj3R6ZabUTnuKJLpECm3r\ngaHGmJNxwtp3gBnhXyIiIl1W4Tp4fCp4qxsNa9bCUZvKTM9tJwS2K0b15/7vnNOu5Yq0VVxCmzHm\naWACkGuM2Qfcaa1dbIz5EfA6TsuPx6y1H8SjPhERabuo9mkLnmQwYY5zP7DJwOOz3POPGqD+OaE+\nC98OGV3rnpHE4F5ZjZ4FKtJR6BgrERFJfEunwZ5VzkkGxg2+mhN3hQb+OjMGNvlOZbrnbr43/hTm\nXDo8TkWLREbHWImISFwVFxfTv3//6LzZhDn496zC5fdy5+pKTODhYFjzW3jC9Q1erj6H2UnLWOid\nxleG5iqwSaei0CYiIjHR5j5twSnRvmfBO/cz761qjHF2e4auWzvgy2GiWcSH8yZzA7Cx4AayAger\ni3QmTYY2Y8y5EbzeY63dFsV6REREAKh48ga6VRdh96xi3monsEH90bWrvPl86B7O7ZeNqH2dDlaX\nzircSNvbODs6TZhrTgYGR7MgERHpwgItPDxFm8myPvLfPnHdmrXwou9CqqY+zPM6nUC6kHChbb21\n9mvhXmyM+XuU6xERka6qcB0smQq+au5pooVHgS+X+898Xu06pEtqMrQ1F9givUZERCQiiy8GqN0V\nGhrWfBZ+0/d+5v7wu9wftwJF4qvZjQjGmGXAYuBvOqhdREQiFVGftsJ1eB+fhttbQf5bJ65bsxZu\n6/Fb/vvWWcyNbbkiCa/ZPm3GmEnAd4Hzgb8A/2et/agdams19WkTEUlgheuofOkXHDt8gN7+A8xr\not/aAV8OxbPeVzNc6fSi1qfNWrsSWGmMyQGuDtwuBB4B/myt9bS5WhER6XQa7dNWuA7v/11Glr+G\n3zaybg3A54ffXvAv5lw6nH7tVaxIBxBRnzZjTC/gWuA6YDPwJHARcD3OcVQiIiL11OvTVriO6mdv\nJLWykCRo9DQDY6CGFFJveZU5A9UUV6ShSNa0/RU4DVgKTLXW7g889awxRnOQIiISXuE67OKLSePE\nsAbOurXPySE972xyJt8BA8fGqVCRxBbJSNsD1tq3GnsikvlXERHpuo7f1ZdkXxXz3m48rPksfDz1\nBU4/b1K8ShTpMMKdiDCtsdsBNcAea+3OWBUmIiId1weP/ycAKf6q2ga5oevWgtOhSUMmKrCJRCjc\nSNvUZl433Biz1lr7kyjXJCIiHVHgNANv0QZGBJayNdpzDTg48vv0O7YbJsyJU7EiHU+45rrfbeo5\nY8zJQAGgc0dFRDq74MHtE+bUrTcLeWzngXKyVvyUPF8BBvh1IKh9dZCrXlgD+LT/FE753lPaFSrS\nCpFsRGjYz9ANzLTWnhzo4SYiIp1NYNSsVlFg39nwy+GN28HnAV81lHzMsLICXDS9yQDjTIVy6kRO\nue6pdvsKIp2NK4Jrjob8Og6cBzwHELKTVEREOorCdbB0mvMT2Ll+JVvnT2Tn+pV116xe4AS1YFjL\nGwPVZfDmHXC8wglsgA0T2IrK/TzX72eYm96EUydqKlSkjSJprvu70PvGmHuBdTGrSEREYmv1Atiz\nyrl93TKOr5zPyJoNbF05H4KbAibMcUIawOT5da/J7IutKSdw2tQJpxkE+S0M+H0l1s6t/RwRaZtI\nRtoa6gF8Hu1CRESiZWNBKTMXv8fGgtJ4l5KYJsypN/KVMuk2tqaOIXv0tLoRuIFjYdYq5xdAyceA\ngaMHMDgja6GbDIINcv0WjmSeguvmN+Pz3UQ6sUjWtG0DggeUGmAwcCj4uLV2ZOzKExFpuYUrd7Fm\ndwkAT9w0Ls7VJKCBY+tGvgrXcfrOP8K1IaNpxZth4p2wealzTVkhVNb9W72xHaFQt8mge7t9EZGu\nJZLmupfFvAoRkSiaPWlYvZ8SRshU6WdfmkjentUkVx2GVfOg6jBQ11OtsXVroE0GIu0lkjVtBe1R\niIhItIwe1EMjbE1p2L4juDlgwhzK/3wbg/FRbrI53m88vfa8iDE0epoBOGHOY1JI6X2KNhmItINw\nJyJsstaeG+7FkVwjIl3HxoJSFq7cxexJwxg9qEe8y5GGCtfBU1fVjqBx3bJ6U6W9h43Bs20zGS4P\n3fa8GDas1eBmcdYP+I9f3NPkx915552x+R4iXVS4kbbhxpitYZ43QE6U6xGRDkxryRLc6gVOYEvv\n6TTFXb+SrBU/pa/rMEcGTqTvJy9iAOsNc1aocU4z+OWRac1OP+fn58fwy4h0PeFC2+kRvN4XrUJE\npOPTWrIEEjoNCk6j3OOVkHs6eKrgz9Pp6cmgj/8A+KidCm1q3RqAGTCGpFmr6Ac8EUEJxcXF9O/f\nP3rfSaSLC3eMldayiUiLaC1ZAgiEtcqyQ2SVbKGs2kNOWnJtk9zq5O6keY4A0NuWE2y4Fm4q1Iuh\n2D2QQZPnt6iUvLw8bHBrqYi0WWv6tCUsY8xUY8yisrKyeJciIkENuu9LFIT7PQ3sBj1QVs0m36kc\n/OILGH45x3KGctRksv74SbUtOkwgsDXstwZ1B7s/kzKdS7NfZHavh9noH9oOX05EmtKpQpu1drm1\n9pacHC21E0kYwZYSqxfEu5KOp6lwFu73NNA413vJPSRl9GCIZydlm19g9xFLpj3KRWytF9Ya9lwD\nJ7B9eMp3ceeXcfWvHqNf93S2FB5h4cpdsfqmIhKBSJrrjrDWftjgsQnW2tUxq0pEOo+QlhLSQg2O\nm6rV2O83jX2VAAAgAElEQVRp6Bq265ZxeuE6qpMO4KuBbkVrOCtwWVPr1oKjb77kbiRdv4wzBo6t\nvUZrFUUSg2luvYExZjuwFLgXSAv8HGOtvSD25bWMMWYqMHXIkCGzdu/eHe9yRETaJhDEdp7+Q36z\ntVvjrVSCYa26zFm3lt4Tzp0J7zwA+OtdGm6TQYE/l3emvMWMcSdFrXxjjNa0iUTAGLPRWjumuesi\nmR4dBwwE1gLrgWLgwraVFxuaHhXpALTGLXKBHmrPrS/kxs9+zquvvsjO9SvZOn8ib6x4mZmL36Ns\nxd3OaFzJLkjNdlp6vHM/wcAWzEzhApvXncHjfW/ntL7dolq++rSJRFckoc0DVAHpOCNtn1pr/eFf\nIiLShNaucYt32Iv257fg/WYnL2OCeyuzk5dxfOV8RtZsoO+/5nHjZz9nW2lglUtNOUdrvPgb/LE+\n7+0TD3YP8hs35I3hN71+w2N7+0R9zZr6tIlEVyRnj64HXgLOA3KBh40x0621345pZSLSObV2jVtT\n67vaS7Q/vwXvVzpoMqZ4C8d6juCUmn/xsf90+mckM7JsK/5jbgAskMkxZ2StmXVr1rhw9R6G6/I/\nwMCxTCko5ePASRbRpD5tItEVSWi7yVq7IXB7P/ANY8x1MaxJRDqzkGOTWiTeGxpa8vkNz/ds7LGm\n3q+R13rXP0G2LSdj2yKS8DMIN2W9psLRPRjvMaC23VrYBrk+4yIpv7T22qBY9ddTnzaR6IpkI0Kj\nq1KttXtjUlEUjBkzxm7YsKH5C0VEYqDskankFK2hLG88ObOWOw8uneaMrJ06MXxofWSis6EgpVvt\n2aDHfj+GjDJnc5UfZ11LYECtnnCja97UHiRf91xdiGwH2oggEplINyJEMtL2KnV/PqQBJwMfAWe0\nqcIYCNk9Gu9SRKQLW+iZxnjfEdZ4pjE3+GAzI3UbC0pZuHIXDx8tIwPgeIUT9K5bRkaKu/a6YGgL\nDWzhNhlUkcSOGz8+cdepiHQ4zY60nfACY84FfmitvTk2JbWdRtpEOqDGphQ76OcGA1ijLTqacNcf\n/4/L9v+BM90FpOCtfbzcZGNSs+hWXXzCa8KFNQAvLj6e8hdOP29SK75F22mkTSQy0Wz5UY+1dhNO\nGxARkeiJ18kJMfjc0YN68MQlhtFrbop4t+lP/Us4172nNrD5cUJXti0nqergCdc3FdishRrrooo0\nki77fdwCm4hEXyQnIvw05K4LOBenV5uISPTEa6NBaz+34Qhd8H7fs2DdI+A5Blin6e2sVU2/FmD1\nArKqDgB1a1H8FpKMn+O4SMNT+9Jwo2t+DHsvvIe5hWNaNMoXK+rTJhJdkWxECP2vzgt8Brxgra1u\n/BXxp+lREYm5hhsLgvddSeCvm94kb4wT2grXUfnSLzh0+DC9/CVkcQxOnUhZtYecojX4Mbio/+dx\n6MHu4cKaBUz3QTD90fadWhaRqIjaRgRr7bzolCQiEqF4rW9ridARusJ1zoha3hgYfFHdEVLJGTB5\nvvP8U1eRVXWYrMDLj5pMMsuLqDl0hEqbSoapAZygFjzQPfRg96DG1q4ZgF5DEu73Sn3aRKKrydBm\njFkONDkMZ629PCYViYiEazybKIEutN9csE1H3hi4eB6cPqV+jUunQdVh/MbN5+RS7u5Oz8wUMg9u\now/U2wpqTF1wa6qFhzFQY92kuoAzp8OxQydM77ZmM0S0qU+bSHSFG2n7bbtVISISqrF1Zg0PRi/e\nDDOeTbjRJaCueW4wuE2Yg2ffJpJrSumW249+qUlUFn2IteADkho0XJv3dtMjaz7gn76R7D3zx8y8\n6somS1i4chdrdpcAxKRxroi0v3Chba61dqIx5r+ttb9st4raQH3aRDqJxk5NCI6+5Y2B9J7Oweir\nF9RdF88RuHOug8OfOFOjS6fB8MvhzTugphz2vgt9RrAi5WLGVy8nqWQHUONMkxpwNxiICj0nNCg4\nuua1MNd7E9NvuYOZzYyeBY+kivbRVCISP01uRDDGfAjcDCwGZtCg+Xag9UdC0kYEkU6okR2X9QJa\npCcORLOeFbfB0YNwpBDwg3GD9dX9DBF6gkHourWgcOvWPrfd+cx9Mn/wTePSS69gxrhGD6pJOOrT\nJhKZaGxEmAvcAQwAfkf90GaBr7WpQhGRlmg4+tYwmLV3y5DVC5xp2lDW5+wCDQQ2izOd6W4Q0kJv\nh+u3Zgx4MZRetphx5006oUFmIqxbE5H202Ros9Y+DzxvjLnDWnt3O9YkItJyrT2IvqUCI34lthvd\nceFzp5PsOxrSqdzWjqoZAn/INjwklObDWpHpTYat5l7PlRRv7cYT5534Hom+bk192kSiK5KWHwps\nItJ1BELZZ1+aSPnGZaRMuq3+qQIrboOiDXTHRRJ+8B2rd4C7i0B/tUaCWlC4qdC9tjeF9Cf3srl8\n3mc0xYGRtMYk+rq1/Pz8eJcg0qm0+OzR9maMuQKYAmQDi621bzT3Gq1pE+lE2nODQaCfGlWHKTfZ\nZNty3uFs0r77EqMH9WDn+pUMfG0mmfYoPluXy1whAS04UtbwJzRzmoGF3TaPfPs93vUMYfzQ3IQc\nPWsJ9WkTiUzUmuvGgjHmMeAy4Atr7Zkhj08GFgJu4FFr7QJr7YvAi8aYHjhtSJoNbSLSSYSEKKB1\n058tCX2rFzif5Uri6BkzKNv6AmPZxj+evIHK7CP0L/mITKqwgLvBSFownDVsjNvcaQYAVTaZX2be\nw8uHBzBqYHfGpyUl7OhZS6hPm0h0NXlgvDHmayG3T27w3LQ2fu4SYHKD93QDDwFfB0YAVxtjRoRc\ncnvgeRHpKoIhKr1n6zcYtORA+AlzIDkT/F76Ff6NPHOQZOPn346vJqtkC9lUOeGskZc23A0aFNrC\no+HataAd/pN4tdQJbHdcNoInbhrX6MaCjQWlzFz8HhsLSpv/LiLS6TQZ2qjfXPeFBs/d3pYPtdau\nAQ43eHgs8LG19hNr7XHgGeAbxvHfwN8Suc2ISJdVuM5pt1G4LvrvPWGO08KjLU10g+8REvo+e+Mh\nyucN5LM36v4duLGglLuWf4Df44Qs75GCemvVGmpuACl/dXWTPdd8Ft5MmsAm36l86BrGfP9MfBay\n05LC7gINbjxYuHJXs19bRDqfcNOjponbjd2PhjygMOT+PmAc8GNgEpBjjBlirX24sRcbY24BbgE4\n6aSO0cNIpFMId+RUW0VjR2gj79Hj3QVk23Iy1t4OBcvgnOtIfnMps6p243L58FuwuMD4T+it1nD6\ns6FwU6E+C9f67+LnN8+kF3B/YJPBHKht3RFOom88EJHYChfabBO3G7sfM9baB4AHIrhuEbAInI0I\nsa5LRALauz9aa21YAqvmwbkzOUo63Ww5ScYPRRvwF21mJD5sIIi5DGD99V7eVEgLChfWrIXN/lO5\nj+uZetk3a0fTQjcaRLLpYPSgHh1+c4KItF640HaKMeZlnFG14G0C909u+mWtVgQMDLk/IPCYiCSy\naPVHC54wADB5fpt3iu5/4ZfkbnuEwn6TqTz8OSP8H5HkqYB37qc/1JsvcOHDT/1doMHbjZ1e0FBz\nge1O/828230quw8eJXn7/g5zokFbqU+bSHSFO8bqq+FeaK19u00fbMxg4JXg7lFjTBKwC5iIE9bW\nAzOstR+09L3V8kOkAwoeQwVROYrKk9+T5GAYA/aRSx4lGAJTBSFhrOH9SDW3K9RrDQ+k/ZAHyi5k\n1MDuZAd2her0AhEJ1eaWH+FCmTHmwtYWFnj908AEINcYsw+401q72BjzI+B1nJYfj7UmsIlIBzVh\nDlSX1d1uo5KzZpG77RH87jRSfUfpb0ucTQUmMMgWeqxUg/vNaS6sgXO4e5Kx3JS7jS19vlEb1oI7\nQEPvd9ajqNSnTSS6mgxtgRYcV+JsEFhhrd1ujLkM+H9AOnBOaz/UWnt1E4+/BrzW2vcVkQ5s4FiY\ntSo671W4jn7HdsNNK/D936VA49OdkUx9NtTYjtCGym0Gv/FczZWZmzl38h08ETLV2/DoqUQ/iqot\n1KdNJLrCrWlbjLPGbB3wgDGmGBgDzAk0vBURiZ1mmuLuXL+S4yvn03vYGPp9/BxMvJOddgDHV87n\nlG5eskq24Nvzd1yBxmoNd39CywJbJKNrfqA6Zyj3mO/z7IF+7Ow+nRdDay9cxx/8v2bhSdOYMunL\ngHaEikjkwoW2McBIa63fGJMGHABOtdYeap/SRKRLa6qVSCDMJe0t4nTPTjzbNgM+eGU2p5BECl72\neQeRjsFNXSfclo6oBUUS1oKB0AVkZOVw5SXT2d9YC4/VC8gpWsPcU5Nh0HcB7QgVkciFC23HrXX2\nvFtrq40xnyiwiUi7aaqVSCDMDU7uRoFrICkcp6//cwyQgheA/r69mDZ2JmourFkLXgyf0Z+skVPp\nt/0RsD4gTBDrKO1RRCQhhTsR4XRjzNbAr20h97cZY7a2V4EikuBidSJCsJVIg+lFqsvwuTNI8lSQ\n5y+in/9zDpse+HGClLXgwtbtEm2FSAKbMVBBFhfX3MfBXRucwJbek52jbmv6qKnGvlNbxfJEChFJ\nKOFG2oa3WxUi0nHF8kQE6tauufufxWmfPk4Sfrwk4waS8OPBRZYtd/4F2mAKtKUzopGGNQ8Gl4Ua\nVwY3nvQFKefdBjv/CBPm8Js3bPtuLIjx739bqE+bSHSFa/lR0J6FiEgHFYMpv8/eeIie7y7g8AVz\nOL5xGSNrNuD5dBNJOKcUJOEBnD5oycYf7q0iEtEmAwvGOON3KcYZw+tnP2dut+Vw3jI4bxIAsyeV\nBn7WX88Ws9YeCTzlmp+fH+8SRDqVcM11K2h8dsEA1lqbHcvC2kLNdUWiqJldnLFQPm8g2bYcD25K\nzppF5vanSHYb0r1ltddYAlOhbTwJOZIWHgAe63IConFD7lCngNSsiE9vmLn4PdbsLmH80Nwus/FA\nfdpEIhON5rrdoluSiHRIsZx+ayIQHj1zBlnbHiYZH/12LgV7FK/XWYJrLRBokNvaHaEQ2eha8PPK\nbTpHyCLXHCVzynwYc0OLP2/2pGEMqfmQ2f6HofCOdgvA8aQ+bSLRFa657v3AO8A71tri9itJRBJK\nLKffmgiE/Y7tdm6kZkNNJQBu63fCWpRG1qD5sGZxRvKsSWIQBynLG9+qwAbOjtLR3ZbDnjXO925N\nAI7DqKeIJI5wGxE+Br4J3Oes42Bt4Nc7wPvBdiAi0sm15UD45kJGU4EweL+8CA7urD1+qi0iDWtQ\nt+Fglz+PI+4+fOn8b9P981XktDW4tjEAl624m5yiNZRVe8iZtbxttYhIhxNuevRB4EEAY0x/4MuB\nX/8J9AESdk2biCSAwnXw1FVQddi534rgV32skjTq7wJty9FT0PzoGtS9f7VJ56pjv2B8YS5P3PQf\nLfvQxrQlAAMLPdMY7zvCGs805ra9GhHpYMKNtGGcIbazcMLahcAInBG4pbEvTUQ6tNULnMCW3rPp\nkaXg9GjxZpjxLBv9Q1m4chd/8P+anKI1JDfStCPaR08FhYbBoyaTfa485h2bQY+MZCaf2a/eIe/t\npeGO0ylTrmDhyhE68kqkiwq3pu1NnNG0LcC/gN9Ya3e0V2Ei0sGFTgU2tf5qwhwnsFUdhj9PZ6An\ngz/4ytiWeQEXGZezjq0VWhLWgNrpV2thmxlCfvW1+AeMJbt/Eo9OGha3Q90bfm5HO/JKfdpEoivc\nSNsnwEhgKHAIKDHGHLTWlrRLZSLSsUUyFThwLMx4Fs+fryS5ppQ+lIOBC4/9vdUf29LABmBMElgv\npa6ebJ/8V7K27683qtbqQ93buHGgox8mrz5tItHVZJ+22guMyQbOx5kiPR/oDWy31l4f+/JaR33a\nRBJYI0Fm+e9m8fXy53CZ8GfrhdOasAbgcyXjvvS3sOPl5sNVS0PY0mnO9O+pExPutIL2oD5tIpFp\nc5+2EDXAMaAqcHsAkNK28kSkK9pYUEryU7cxsmYD7P0XYCHnJL5euYekkLVqLdls0Kqp0MBtnzsV\n9w2vOAEsklYeLe1Zl8CnFbQH9WkTia5wa9p+jzO6NhTYDLwLPAxcb6090j7liUhH1nAh/d3LP8BV\nfhlPpm4n3XPUuahkJ+6QJBVpYGvtyJoBcKdC37MoHDSN8j/fRsqk2zg9cAxVWC0NYW3cLSoiEirc\nTMSnwA+B3tbaidba2621f1NgE5FILVy5i/57nmXokpGwYQlHj/sYZgpJpbredaEhLRaBreFgj9eV\nArNWcXj984ys2YD/b7exdf5E3ljxMjMXv8fGgtLG32jgWCewrV7gTJWKiLSjcNOjLwFHrLU+AGPM\nvwFXAAXAg9ba4+1Qn4gkuKYOQt9YUEp5lYcHUp4j21bge/VnjPPcwNzkJe2+bq06OYci04/k6hK6\nu47yQtaN3Ag8m3kN5Ye89LDHONu/gYp//ZY11b8EwuwSjeWxXiIiYYT7s/M5IBPAGDMK+AuwFzgb\n+GPsSxORhFG4zllU38joUrAtxcKVu0543FW0nhJy8FqD23qZ415KivHhtyeOfoWTv7q63sHuLQls\nAEWmH2XXrmD2lx7n+j4vcPYVtwJw5Ten89jg3/L5BXfykXsYPVxVXNV3f/jdmhPmOBsL2rpOLczv\naUxfKyIdVriRtvSQM0evBR6z1v7OGOPC6d0mIl1F6OhScHowEFr+4P81C0+axpRJX2ZjQSmvvvoi\nN/v/wqiKUdyQ8gQ9qcAXWLCWSQ3gnOcZqdaOrgXXxlWRRt+cNIa4dvPijy6qd01o37OtmxcysmYD\n11Q9zchBNzf9xtFap9aWEbsOMtqnPm0i0RUutIX+sfo14DYAa63ftPUQQBHpWEIX4AcCg3fvOmq8\nfnLsUX6aW86uPy/lxepz+U/X0/Q0lfzI/osU4+O4dZNifEDsTjMIFQxrxgDpPUnveQoUbah3SHtj\nU7opk25j68r5pEy6LfIi26ItO0s7yK5U9WkTia4m+7QZYx4A+gL7gcuBYdZajzGmH7A8kn4i8aI+\nbSJRFNKb7Knivry+4iUWuRaQ6qsE4Lh1c8D25CTXQTzWRbLx47fOaJrPGiwWN7Fp4RH6x1elP4Vi\n0xssuFyGfr1zyfrGfc6TDXqrzVz8Hmt2lzB+aG6HOmGgo1GfNpHItLlPm7X2J8aY7wD9gIustZ7A\nU32BX0WnTBFJdGUr7ianaA3FZdXMLf4RXv8p7EjtyyjzMR7rIsX46MchAJKNH2vrpj/dJvKFa89/\n6GH7F86IXOQnGTg/t9ghHCGDbHuUc917KMsbT9as5XUXNphCbNMJBysCI3GT57fqlIOuRH3aRKKr\nyY0IxpjXcQLb36y1RcHHrbWbrbWvt0dxIhI/T723l3PueoP/Ovh1VvtG8uL+HqxLnsV3XKu46/i1\nrPaN5GXfBfhtXVhrSVPcUPmrq1sc2KyFGuviI18efr9lgnsrbpdhU/Jo9o+afcL1GwtKueLBf3LF\nQ+8AdWd5tsjqBc5Ua3C6NVKhGwe0iUBEWincmrbrgclAvjFmGPAesAJYaa092h7FiUhsNNWmI9T8\n13ZQUePldQbxOnPYlHoLPU0ldyUvYa7nBrI5ykXubbWjaqaFzXGh9evWgtOvqfg56MrlucxrwPMM\nz2Zew7MH+jF+azeeOK/+a4K7WX+StIxXX72R0T/8bsSfV2vCHKguq7sdqcA6wLJqDwUlx5wTISCh\nNxGISOIJNz16AFgCLAnsGB0HfB34L2NMFfCGtfbedqkyQsaYqcDUIUOGxLsUkYQWbNMBdf3INhaU\ncvcrH4K13DH1DPpmp1Jx0Fv7mme8E/h+0iukGB//lfwsPU1lvfestwGgGa0Na0FVpHAsLY/DnhSW\nZ13H+V/+d+7fPorJZ/Zj//bGW3bMnjQMc2AO53q2ck7yMqB+aIskyDJwLMxa1eJ6gwFvYcVUtpQf\nIT8bRib4JgIRSTyRnD2KtdaPc4zVu8BcY0wu8O+xLKw1rLXLgeVjxoyZFe9aRBJZY2u6Fq7cxZZC\n58CTGx57j2vGDWL3wU841+ziJ0nLyOYoLuNsPHjLdzZXuN/B3Y6jaz4L+/y5dHcdJcdUsaU6m/8d\neB9rdpfwxus7KT3mLLsNt7HglR4zOTU5i5zJd5zwXGNBNmoCbUKmFJTy8cpdeCbdAANbODUrIl1e\nuLNHZwGrrbW7jdPjYzEwHedEhOuttU+2U40iEmWh/cmCJp/Zj3c+LsFnoaLGx8NrPgHgJ0nLmODe\nyibfqZTbdLJNFd9oRWBrSwuPA/4c/sN7K5vsMM5L2s1/Ji3j6Pk/Z/bwYbW1r2hihC1o4cpdrNnb\nh4+H3s4TjWwgaPXmhFAhO20b26TQ2O97Z6Y+bSLRFa7lx3bgnECbjxnAz4BLgHOAO621X2m/MltG\nLT9EWi7YBiPUuWYX85MfIc8cpMjfGwyc5ipq4h0a19ap0AP+7px/vO4QlqG9M1nwrbNbtomgcB1l\nK+5moWcaU6Zc0fINCJFaOs1penvqRK1XE5GIRdryI9wxVt6QNh+XAU9Yaw9Za1cCWdEoMtqMMVON\nMYvKysriXYpIQttYUFrvYPQFr+3gn7tLONfsYknyAs41zpFUP0laxmmuIrLMcU5zF5Fma6i0qREf\nQdWWo6eCim2v2tvJbsPug0dPODKrWasXkFO0hrndlscusEH0jrhqoYb/eyaK4uLi5i8SkYiFW9Pm\nDzTSLQUmAveEPNe6P31jTGvaRBr31Ht7mf/aDnLSk8jtlgbWsmVfGe99epjjXj/BDBacCgW4wTOH\nB7zTyOYop7v2kmE8DHCV1E6LhtPW0bVj1vmjyY+b53wTAHAb8Pgs3VLdzJ40rHbjQOjUaJOBrL1O\nEIjWEVctFNP1eG2gPm0i0RUutM0FNgBu4GVr7QcAxpivAp+0Q20i0kbBHaHb9h0JrFXzsu9INUP7\nZJHkMtR4/fWuf8A7rd5PgHIyOejPYZC7+cDWlrAWXLu2n1x+7b2uNkB+3b2eV5P/nYoaZyfrqb2z\nGD2oR+107raisuY3IQTC1MaCUhYufi98wOuAorIeT0QSXrjQ9jowCOhmrQ0dc98AXBXTqkQkKkJ3\nhAb16ZbKgbIqvP4TR0A22WHc4KkbjQoGp0qbCjS96aCtYW2vzeVWz4/YZOtCRzA4Lut2LUuuGluv\nHQnUBZRINiEEJeqIVFt1tQ0OIl1VuI0IXwAvA08Bb9kONMatjQgijo0Fpcx5YSufHKzEF/gv2ACR\n/sccbPdxsilmkKuk0WtaelZoaOjzWrjyeH69sBaqR0Yyj15/XtRGxSLqxZbA79/RGGM0PSoSgWhs\nRBgOrAfuAAqNMQuNMedHq8BY0EYEkfpGD+pBv5w0fBYykt1kJLsiDmxQN/JWHRhpC5W/urrFGw0s\nUGlT2e/vzlGbwh6b1+S1PTKS8fr8fHSgogUVhxcckYpVoAqO5LV4o4SISASaDG2BnaL/a639N2As\nzjq23xtj9hhj7mnqdfFkrV1urb0lJycn3qWIJIzZk4YxamB3hn0pi2F9s1v1HkdD9h61NKwFzyQF\n5+ipDf7TuOD4H1nvP53TXEX8JKnxhfulxzxU1Pi47/Wdrao5HmZPGsb4oblaWxagPm0i0RXpiQjF\nxpjFODtJfwrcDPwqloWJSHSMHtSD7LQk1uwuISPZhcs4Z3dG6lyzi0yqqbLJLFhdgTFNT4OGTn8G\nb1eRzLXHf8XtSUuBEzc7hG56COqWmsTE4X14e9dBfvHvp7fg28aX1pbVl5+fH+8SRDqVsKHNGJMG\nTAWuBr6Mc2D8HODN2JcmItEy+cx+rN1ziGMef7PXBtexPeCdxiY7jNuTlvL0P/YATgi786snBrbg\nSFowsPksvOi7kH9zv8+9nqvYZIcxzXN3vdeEbnrISHZxyRl9a0PajHEnteHbSqIoLi6mf//+8S5D\npNMId4zVU8Ak4G3gSWCGtba6qetFJH6aWgD/1Ht7ue/1neRmpjS6W7Sh77hWcVfyElKMD4AfvJXB\nc+5dpAXCmjFQZZNIx1vvdeWkk2OqKLPp7PH359fe65zNBd5GPqQRxzx+Pis5yua5l0T8nSXxqU+b\nSHSFG2lbAXzPWhu9VcAiEhONtbLYWFDK3Je24/VbvD5Lkss0G9z+K/lZUoyPO9+qZpXfyzjXDhb8\nmxu/dWMC06r/553M+a4dZOL8G+4oaTznm8Bk9/ra0blIXTGqP6t2fOH0YDNGuy9FRMJoMrRZa58w\nxriNMbnW2hIAY0wKcANwq7V2eDvVKCJhbCwopbzKw6iB3emZmcKpt71K/+7pAHj9FgMc9/rpluam\n9Fj4oa97PVeR/M6fcBsYYooov/BWVvuW8aH/JGYlvUay8XO+a8cJU50Az/gntrj2t3cd5LZLh9f2\nWYt1HzWFQhHpyJrcPWqM+Q5wGNhqjHnbGHMJzg7SrwPXtFN9IhKisTMmF67cxZZ9ZWSnJbH8/WJ8\nFgpLqygsrQKcNhs1Pn+zge3IP5/k4TUHeN43nglfGUv5hbfWrju71zeDbf6TAcg01fXOJ20Nl3HW\nsZUe87Bi+/7aNhyx3n2plhwi0pGFmx69HRhtrf3YGHMu8C7wrcD5niISB8HQUV4dCGDWcuV5zqL9\n2ZOGseNAOQcrjrfoPY/888na290vuoYq4AbPidf92nsdP2EZ2Rytdz5pS7hdcEpuFgumj6z9PqEB\nLda7L3Xck4h0ZOFC23Fr7ccA1tpNxpjdiR7YjDFTgalDhgyJdykiUdHwUPTJZ/YDoLzKw5Z9wSbS\ne8lOT+ajAxWUV0W48j8gGNi6X9T84Hlw1O1cs4ufsKzRVh2hGjt5wRfYvBoMa+3dHkMtOdqX+rSJ\nRFe4Y6z2Af8T8tBPQ+9ba//nhBclCB1jJZ3BxoJSbn58PaXHPPTISKb0mIdRA5zG0UePO7s7q447\nB8C3VMPRtVgI7QdngJQkFzVeP91S3VTU+Bg/NFcBSkSEyI+xCjfS9gjQLcx9EYmhhSt31Qa2q8YM\n5GMV+HEAABhpSURBVMn39rLr84raXmupgRDUEu0R1oL8tm60La97GrlZqWAMV44ZGPEB79KxqU+b\nSHSF2z06rz0LEZH6Jp/Zj817j5CbmcK/Pj3stMWgLgi1JLBFM6y5XXXTnM1Jcbuo8fk5fNTDviPV\n9MhI5rS+3dQ8t4tQnzaR6Aq3e/S5kNv/3eC5N2JZlEhXt7GglPte30lFjZfdB49ytNpDRrIblzlx\nnZhp5r2iPbqWkeyO+Dq3y6kur0d67RSvdm6KiLROuOnRoSG3LwZ+GXK/d2zKOZExJhP4I3AcWG2t\nfbKZl4h0eHcv/4DSYx5S3S5SkgxVXj/HPM46ttTA6FVQU+MY0Qpr3VLd9M1Jp6zKw6HKGiYO/xKH\njx4/oa9aqCSXoWdWCvtKq+iW6m5yt6iIiESuyZE2mv67oLnnmmWMecwY84UxZnuDxycbYz4yxnxs\njAn2EpgGPG+tnQVc3pbPFekoghsNwFJR4+Nged1mA6/fz4DujR/YDk5YC90V2tLANrR3Jt8ffwrd\nUt0M7ZPFbZeOoF9OGlXHvfgsrNrxRe21k8/sR4+MZL4//hTGD83lN988ix4ZyXj9lrJjTuuRU/t0\nY/SgHrU7N9XUVkSkdcKNtGUYY87BCXbpgdsm8Cu9jZ+7BHgQeCL4gDHGDTyEM6q3D1hvjHkZGABs\nC1zmQ6QTC7b4qA6MqjknsNu6nziHsReXNb5jNBjWci6cgTHNTZyeaECPdHYfPMqB8r3cdukInttQ\nyPzXPqSixsfQPllQVoXP7683ulZ6zMOH+8trd4Ke1rdbvTYlGlkTEYmOcKHtAHUtPkJvB++3mrV2\njTFmcIOHxwIfW2s/ATDGPAN8AyfADQC2EH4N3i3ALQAnnaRFztKxBMPa/rJqdn9RWft/9JN6pNOv\ne3rt48Ho1vAI0WhMhfbOSqkdHauo8XLf6zspPeZ02e2RkcyC6SNrp0N7ZCTXhrHyai/lVR42FpTW\nG1EDtOGgi1OfNpHoCrd7dEI71gGQBxSG3N8HjAMeAB40xvz/9u4+uKr6zuP455uEp4BABEUMCWpB\n8KEuLNHMClpGaWunUrvW1qg7CLU6uqXLdqfudndrRZ2udh2nPrS7LQtI7frE4o6jjlats9Y1rZEg\nbFFQpCAEAlggRCBIQvLdP+698RLznHPvOffc92smI/fcc8/9Mj/v5ZPf75zv+bKkLpv7uvsSSUuk\nRJ+2DNYJBK7juWFtSpxLds9Vf6b3dh/U3c9v0OSTR+icU0fq6XX17fsFeZHBxy1tOni0VcWDClRY\nUKCrK8r0xtb9krtum3tO+22mJB13786RQ4v02vt79a1frtbS689n+RPtFi9eHHYJQKx0GdrM7HxJ\nde6+O/l4nqSvSdomabG7789Gge5+WNKCbLwXEJZFc87U7/64T8fSptBOGTVMMyaWaP7yGh082io1\nHtHwwYkrNz/e9gd9XJc4a6CzsDZicKEONfd8NoFJKihIXNxwXWW5Nuz6qP1uC0/W1n0qhHV2R4FF\nc87U+p2N7VeGdnyem7TnL/q0AcHq7kKEXyhxxabM7GJJ9yhxDlqjkjNaAdspqSzt8YTkNiD2Zkws\n0Z1XnKuS4kEqK0mcMjp8SOJ3qlNGJR63trn2HW7WgdcfVevOtzVy6CCNnnWdhhQlPsaDChPnsE0o\nGfap5dOOigpM//KXn9Xo4kFqbZOaWtr0ZG2dFs05U7fNPadP7TlmTCzR0uvP7/JG79ykPX+VlpaG\nXQIQK92FtsK02bSrJS1x96fc/TZJmbi552pJk83sdDMbLKlK0jMZeB8gkq6tLNfaH35Bt8yepJLi\nQfpGReJ3mHu+dp5Kigep/n9+pfeeXy5JOulzf6UxFydm2CpPP1HTykZr3MihOmFIof569iSNGTH4\nU8efMHqoJpQMU4FJJwwt1A+eXq+GppbEbJvUHtJ6CmGd6e7K0EVzzuzTsQAAnevuQoRCMyty92OS\nLlXyJP9evK5HZva4pNmSxibvcXq7uy8zs4WSXpRUKGm5u78zkPcBctGv396lhqYWrayt06/f3qWh\n6/9bZxxq1q5BhfrbW/9Jj9Zs08Gjre23s/rdH/fpws+M0bq6A5Kklau360DygoJ0wwYXae+ho2pz\nqaHpkxvLe/In/eKCIG+szk3aASAY3YWvxyX91sz2Sjoi6X8lycwmKbFE2m/ufk0X25+X9PxAjg3k\nuvarMo+06JmHH9DEE4s19dJvaOjYRGuNz5x8QntAk6TLzxuvC04fo7XbGxJLqWY6eLS1vSmupMS5\ncGZ6/8NDOmFIoYYOLtS+Q80aM2KwRg8brOGDC9svNgAARFN3V4/+yMxekTRe0kv+yQ3kCiR9JxvF\nAfloxsQSnVH3guoPHNHEE4u1/KF7JR1/N4G7ntugP354UAePtmr/4Wb9+u1dOni0VdNHDW2/U8HZ\n40dq6etbdazN25cnU/3T7n3xXbW5VDq6WCOHFnGRAADkgG6XOd39jU62cTYxkCHpLRKW3H/cLX+P\nW2J8+tszj7sq873dB7V+Z6MuO3d8e2uOq3/xex1rcxUVWHsoe+SGSs1bVqOGphaVFA+S3NtbjbCE\niaDRpw0IVncXIgDIkubm5vbANnfBIm0p+5LWbGvo9jXpJ/+nzoO798V328NcKrDdecW5x82ipS4M\nWHr9+bpt7jn9ukhgzbYGzVtW02ONyG/0aQOCNaALCgAMXPo/bIsXL9a8ZTXdzn511vesY6+0zprg\npnS8MKA/M2x3PbdB6+oO6KOPj+npb8/s8+uRH+jTBgSL0AaEpGNYS0kPXJ1Jv3tCKnCl2nR0XC59\nb/fBzJyrljrF1bn5CLpWWloq5/8RIDAWxw9URUWF19bWhl0G0Kmuwlpv9eYOA9PvfKn9vLX0MBdU\ngOMuB+gNMyO0Ab1gZmvcvaKn/TinDciiVEhbsGBBl4Gtp/PFumtkm3LrF6eqpHiQbv3iVO5IAAAx\nwfIokAV9mV3rbPmzr66tLNe1leWSpCmnnCCp6+XW/giiRgBA3xDagAzqz1JoT+e09VUm7kgQdI0A\ngJ4R2oAMSYW0vp63lunbPgVxPhq3pkJv0KcNCBahDQjYQC80yDSWNpEtUfz/H8hlhDYgIFEPayks\nbSJb6NMGBIuWH8AAPfzww9q2bZukaIc1INto+QH0Tm9bfjDTBgxAKqTNmzdPZ5xxRrjFAABijdAG\n9EOuLIUCAOKD0Ab0AWENABAWQhvQS/1t4QEAQBAIbUAPmF0D+oc+bUCwCG1AFwhrwMDwuQGCRWgD\nOtiyZYseeeQRSfyjAwwEfdqAYBHagDSpkLZgwQJNnDgx3GKAHFdaWkqfNiBAhDZALIUCAKKP0Ia8\nRlgDAOQKQhvyFi08AAC5hNCGvBPH2bU12xr0wG82adGcMzVjYknY5QAAMiBWoc3M5kqaO2nSpLBL\nQQTFMaylPPCbTXrt/b2SpEduqAy5GiCBPm1AsCyOV/ZUVFR4bW1t2GUgIg4ePKj77rtPUvzCWgoz\nbQCQu8xsjbtX9LRfrGbagI7ypYXHjIklzLAhcujTBgSL0IZYivNSKJAr6NMGBCtWoY1z2vDyyy+r\nurpaEmENABAvsQpt7v6spGcrKipuDLsWZB8tPAAAcRar0Ib8lAppp5xyim6++eZwiwEAIEMIbchZ\nP/7xj3XkyBFJzK4BAOKP0Iac09raqrvuuksSYQ2IMvq0AcGKVZ+2tAsRbnz//ffDLgcZkAppt9xy\ni8aNGxduMQAABCAv+7RxIUJ80cIDyD30aQOCFavQhvjZsWOHli5dKomwBuQa+rQBwSK0IbJSIe32\n22+XmYVbDAAAISO0IXJSYe3SSy/VRRddFG4xAABEBKENkVFdXa2XX35ZEkuhAAB0RGhD6Nxdd9xx\nhyTCGgAAXSG0IVSpkLZw4UKNHTs23GIABIo+bUCwCG0IxVNPPaX169frtNNO0/z588MuB0AGMHMO\nBCtWoS2tuW7YpaALBw4c0P333y+JL3Qg7ujTBgQrVndESKmoqPDa2tqwy0AHtPAA8ouZ0acN6IW8\nvCMComnlypXasGGDrrrqKp177rlhlwMAQE4itCFj6urqtGzZMp111lkshQIAMECENgTO3fXYY4+p\noaGBsAYAQEAiH9rM7KuSvixppKRl7v5SyCWhGzU1Ndq6dauuvPJKDRs2LOxyAACIjYJMHtzMlpvZ\nh2b2doftl5nZe2a22cy+390x3P1pd79R0s2Srs5kvei/7du367HHHtPYsWNVVVVFYANAnzYgYBm9\netTMLpZ0SNIj7n5ucluhpE2SPi9ph6TVkq6RVCjp7g6H+Ka7f5h83X2SHnX3t3p6X64ezZ6Wlhat\nWrVKZWVlmjVrVtjlAACQcyJx9ai7v2Zmp3XYfIGkze6+RZLM7AlJV7j73ZIu73gMS/SGuEfSC70J\nbMieV155RQ0NDaqqqqKFB4BPoU8bEKwwzmkrlVSX9niHpMpu9v+OpDmSRpnZJHf/eWc7mdlNkm6S\npPLy8oBKRWc2btyodevW6ZJLLtG4cePCLgdARJWWltKnDQhQ5C9EcPcHJT3Yi/2WSFoiJZZHM11X\nPmpsbNQLL7ygqVOn6pprrgm7HAAA8koYoW2npLK0xxOS2xBhzzzzjIqKilRVVRV2KQAA5KUwQttq\nSZPN7HQlwlqVpGtDqAO9UFtbq82bN2vu3LkaPnx42OUAAJC3Mt3y43FJv5c0xcx2mNkN7n5M0kJJ\nL0raKGmlu7+TyTrQdzt37tQTTzyh0aNHq6qqisAGAEDIMn31aKcnPrn785Kez+R7o39aW1u1atUq\njR8/nqVQAANCnzYgWJG/EAHZ8+qrr2rv3r36+te/roKCjE7CAsgD3MYOCBahDdq0aZPWrl2riy++\nWLNnzw67HAAxQZ82IFiEtjx25MgRrV27VmPHjtXVV3OHMADBok8bECxCW55as2aNJOnCCy8MuRIA\nANAbhLY8s3XrVu3atUvTp0/npu4AAOQQzjbPEw0NDaqurtaQIUN04YUXEtgAAMgxzLTFXFtbm2pq\najRy5EjNnDkz7HIAAEA/EdpibOPGjTpw4IAqKytp4QEg6+jTBgTL4nhlT0VFhdfW1oZdRmh27dql\nLVu26KyzztKJJ54YdjkAAKAbZrbG3St62o/plxj5+OOPVV1draamJs2cOZPABiBU9fX1YZcAxArL\nozHx1ltvqbW1lfPWAEQGfdqAYBHactwHH3ygnTt3avr06SouLg67HAAAkCEsj+aoxsZGVVdXq6io\nSDNnziSwAQAQc8y05Rh31xtvvKERI0awFAoAQB4htOWQd999V/v371dlZaUKCwvDLgcAAGQRoS0H\n7NmzR5s3b9aUKVM0derUsMsBgF6hTxsQLPq0RVhzc7PefPNNjRs3TpMnTw67HAAAkAG97dPGTFtE\nrV27Vi0tLZo5c6bMLOxyAKDP6uvrdeqpp4ZdBhAbhLaI2bZtm+rq6jRt2jSNGDEi7HIAoN/o0wYE\ni5YfEfHRRx/p9ddfV0FBgWbNmkVgAwAAx2GmLWTurpqaGhUXF2vWrFlhlwMAACKK0BaivXv3qr6+\nXhUVFSoqYigAAEDXSAohOHz4sPbt26cxY8bovPPOC7scAACQAwhtWdTa2qodO3Zo+PDhKi8vD7sc\nAMgo+rQBwSK0Zcnu3bt17NgxlZeX08IDQF5YvHhx2CUAsUJoy7DGxkY1NjZq3LhxGjJkSNjlAEDW\n0KcNCFasWn6Y2VwzW9LY2Bh2KWpubtb27dvl7iovLyewAcg7paWlYZcAxEqsQpu7P+vuN40aNSrM\nGrRjxw7t379f5eXlGj16dGi1AACA+GB5NED79u3T4cOHVVpaqsLCwrDLAQAAMRKr0GZmcyXNnTRp\nUlbft6mpSfv27VNJSYnGjBmT1fcGAAD5geXRAWhra9P27dvV1NSksrIybj0FAAAyJlYzbdm0Z88e\ntbS0qKysjBYeANAJ+rQBwSK09UNbW5tGjRqloUOHhl0KAEQWfdqAYMVqeTRbCgoKCGwA0IP6+vqw\nSwBiJVahLUp92gAg39GnDQhWrEJbFPq0AQAAZEKsQhsAAEBcEdoAAAByAKENAAAgBxDaAAAZQZ82\nIFiENgBARtCnDQgWoQ0AkBH0aQOCRWgDAGQEfdqAYMUqtNFcFwAAxFWsQhvNdQEAQFzFKrQBAADE\nFaENAAAgB5i7h11D4MzsT5K2dfLUKEn9PeGtN6/tap+BvG/UjZW0t5+vZTyCF9Xx6O75uI5HVMei\nu33iOhYS4xE1UR2PsL6rJrr7ST3u5e558yNpSSZf29U+A3nfqP9IqmU8ovMT1fHo7vm4jkdUx6K7\nfeI6FoxH9H6iOh5R/67Kt+XRZzP82q72Gcj7xhnjES2ZHI/unmc8Po3PRrQwHtGSt99VsVweRfaY\nWa27V4RdBxIYj+hgLKKF8YgWxqN/8m2mDcFbEnYBOA7jER2MRbQwHtHCePQDM20AAAA5gJk2AACA\nHEBoAwAAyAGENgAAgBxAaEPGmNlXzew/zOxJM/tC2PXkGzMbbma/TI7BdWHXk+/4PERP8jNSa2aX\nh11LPjOzAjP7kZk9ZGbXh11PlBHa0CkzW25mH5rZ2x22X2Zm75nZZjP7fnfHcPen3f1GSTdLujqT\n9eaLPo7LlZJWJcfgK1kvNg/0ZTz4PGReP763/kHSyuxWmR/6OBZXSJogqUXSjmzXmksIbejKCkmX\npW8ws0JJP5P0JUlnS7rGzM42s8+a2XMdfk5Oe+kPkq/DwK1QL8dFiS/BuuRurVmsMZ+sUO/HI4XP\nQ+asUO+/tz4vaYOkD7NdZJ5Yod5/NqZI+p27/52kW7JcZ04pCrsARJO7v2Zmp3XYfIGkze6+RZLM\n7AlJV7j73ZI+tbxgZibpHkkvuPtbma04P/RlXJT4jXWCpHXiF7SM6Mt4mNlG8XnIqD5+PkZIGq5E\neDhiZs+7e1sWy421Po5FnaTm5D6MQTcIbeiLUn0ycyMlQkFlN/t/R9IcSaPMbJK7/zyTxeWxrsbl\nQUk/NbMvKwK3X8kjXY0Hn4dwdDoe7r5QksxsvqS9BLas6Oqz8YCkh8zsIkm/DaOwXEFoQ8a4+4NK\nBAeEwN0PS1oQdh1I4PMQTe6+Iuwa8p27N0m6Iew6cgFLJuiLnZLK0h5PSG5DuBiXaGE8ooXxiA7G\nYoAIbeiL1ZImm9npZjZYUpWkZ0KuCYxL1DAe0cJ4RAdjMUCENnTKzB6X9HtJU8xsh5nd4O7HJC2U\n9KKkjZJWuvs7YdaZbxiXaGE8ooXxiA7GIjO4YTwAAEAOYKYNAAAgBxDaAAAAcgChDQAAIAcQ2gAA\nAHIAoQ0AACAHENoAAAByAKENQOSZ2T+b2Ttm9gczW2dmlcntr5rZe8lt68xsVXL7YjP7XvLPK8xs\na/L5t8zsLzo5/klmVmNma83sIjP7wMzGBlB3qr6v9LDfbDN7rod9vmtm283spwOtC0Bu4t6jACIt\nGbIul/Tn7n40GaYGp+1ynbvX9nCYW919lZl9QdIvJJ3X4flLJa13928l3zOg6ntdX4/c/Sdm1iCp\nIoCaAOQgZtoARN14SXvd/agkufted6/v57FekzQpfYOZTZP0r5KuSM7GDUt77jQzezvt8feSs3hF\nZrbazGYnt99tZj/q6c2TM28VyT+PNbMPOjxfYGbvm9lJaY83px4DyG+ENgBR95KkMjPbZGb/Zmaf\n6/D8o2nLo/f2cKy5ktanb3D3dZJ+KOlJd5/m7kd6Kih5O575kv7dzOZIukzSHb38+3R33DZJ/ynp\nuuSmOZL+z93/NNBjA8h9hDYAkebuhyTNkHSTpD9JetLM5qftcl0ybE1z91u7OMy9ZrYueYwbAqrr\nHUm/kvScpG+6e3MQx5W0XNK85J+/KenhgI4LIMdxThuAyHP3VkmvSnrVzNZLul7Sij4c4lZ3X9WP\ntz6m43+5Hdrh+c9KOiDp5D4cM3XC3KDOnnT3OjPbY2aXSLpAn8y6AchzzLQBiDQzm2Jmk9M2TZO0\nLUtvv0fSyWY2xsyGKHFBRKquKyWdKOliSQ+Z2eheHvP85H9nSyrsYp+lSiyT/lcysAIAoQ1A5I2Q\n9Esz22Bmf5B0tqTFac+nn9P2myDf2N1bJN0p6U1JL0t6V0pcRCDpHknfcvdNkn4q6YFeHnaOma1W\n4ny1/Wb2N0qsehxN2+cZJf7eLI0CaGfuHnYNABBLZvaqpO+lWn50fJy23yJJpe7+98nHFZJ+4u4X\nddhvvqQKd1+Y+eoBRA0zbQCQOfslreiuua6ZLZN0raSfJR9/X9JTkv6xw37fTW77KGPVAog0ZtoA\nAAByADNtAAAAOYDQBgAAkAMIbQAAADmA0AYAAJADCG0AAAA5gNAGAACQA/4fT3/PQa0lxksAAAAA\nSUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "ax.scatter(seip['i2_f_ap1'][mask], master_catalogue[idx[mask]]['f_ap_servs_irac_i2'], label=\"SERVS\", s=2.)\n", "ax.scatter(seip['i2_f_ap1'][mask], master_catalogue[idx[mask]]['f_ap_swire_irac_i2'], label=\"SWIRE\", s=2.)\n", "ax.set_xscale('log')\n", "ax.set_yscale('log')\n", "ax.set_xlabel(\"SEIP flux [μJy]\")\n", "ax.set_ylabel(\"SERVS/SWIRE flux [μJy]\")\n", "ax.set_title(\"IRAC 2\")\n", "ax.legend()\n", "ax.axvline(2000, color=\"black\", linestyle=\"--\", linewidth=1.)\n", "\n", "ax.plot(seip['i1_f_ap2'][mask], seip['i1_f_ap2'][mask], linewidth=.1, color=\"black\", alpha=.5);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When both SWIRE and SERVS fluxes are provided, we use the SERVS flux below 2000 μJy and the SWIRE flux over.\n", "\n", "We create a table indicating for each source the origin on the IRAC1 and IRAC2 fluxes that will be saved separately." ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true }, "outputs": [], "source": [ "irac_origin = Table()\n", "irac_origin.add_column(master_catalogue['help_id'])" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "293912 sources with SERVS flux\n", "535110 sources with SWIRE flux\n", "124465 sources with SERVS and SWIRE flux\n", "293347 sources for which we use SERVS\n", "411210 sources for which we use SWIRE\n" ] } ], "source": [ "# IRAC1 aperture flux and magnitudes\n", "has_servs = ~np.isnan(master_catalogue['f_ap_servs_irac_i1'])\n", "has_swire = ~np.isnan(master_catalogue['f_ap_swire_irac_i1'])\n", "has_both = has_servs & has_swire\n", "\n", "print(\"{} sources with SERVS flux\".format(np.sum(has_servs)))\n", "print(\"{} sources with SWIRE flux\".format(np.sum(has_swire)))\n", "print(\"{} sources with SERVS and SWIRE flux\".format(np.sum(has_both)))\n", "\n", "has_servs_above_limit = has_servs.copy()\n", "has_servs_above_limit[has_servs] = master_catalogue['f_ap_servs_irac_i1'][has_servs] > 2000\n", "\n", "use_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)\n", "use_servs = (has_servs & ~(has_both & has_servs_above_limit))\n", "\n", "print(\"{} sources for which we use SERVS\".format(np.sum(use_servs)))\n", "print(\"{} sources for which we use SWIRE\".format(np.sum(use_swire)))\n", "\n", "f_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "f_ap_irac_i[use_servs] = master_catalogue['f_ap_servs_irac_i1'][use_servs]\n", "f_ap_irac_i[use_swire] = master_catalogue['f_ap_swire_irac_i1'][use_swire]\n", "\n", "ferr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "ferr_ap_irac_i[use_servs] = master_catalogue['ferr_ap_servs_irac_i1'][use_servs]\n", "ferr_ap_irac_i[use_swire] = master_catalogue['ferr_ap_swire_irac_i1'][use_swire]\n", "\n", "m_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "m_ap_irac_i[use_servs] = master_catalogue['m_ap_servs_irac_i1'][use_servs]\n", "m_ap_irac_i[use_swire] = master_catalogue['m_ap_swire_irac_i1'][use_swire]\n", "\n", "merr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "merr_ap_irac_i[use_servs] = master_catalogue['merr_ap_servs_irac_i1'][use_servs]\n", "merr_ap_irac_i[use_swire] = master_catalogue['merr_ap_swire_irac_i1'][use_swire]\n", "\n", "master_catalogue.add_column(Column(data=f_ap_irac_i, name=\"f_ap_irac_i1\"))\n", "master_catalogue.add_column(Column(data=ferr_ap_irac_i, name=\"ferr_ap_irac_i1\"))\n", "master_catalogue.add_column(Column(data=m_ap_irac_i, name=\"m_ap_irac_i1\"))\n", "master_catalogue.add_column(Column(data=merr_ap_irac_i, name=\"merr_ap_irac_i1\"))\n", "\n", "master_catalogue.remove_columns(['f_ap_servs_irac_i1', 'f_ap_swire_irac_i1', 'ferr_ap_servs_irac_i1',\n", " 'ferr_ap_swire_irac_i1', 'm_ap_servs_irac_i1', 'm_ap_swire_irac_i1',\n", " 'merr_ap_servs_irac_i1', 'merr_ap_swire_irac_i1'])\n", "\n", "origin = np.full(len(master_catalogue), ' ', dtype=' 2000\n", "\n", "use_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)\n", "use_servs = (has_servs & ~(has_both & has_servs_above_limit))\n", "\n", "print(\"{} sources for which we use SERVS\".format(np.sum(use_servs)))\n", "print(\"{} sources for which we use SWIRE\".format(np.sum(use_swire)))\n", "\n", "f_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "f_ap_irac_i[use_servs] = master_catalogue['f_servs_irac_i1'][use_servs]\n", "f_ap_irac_i[use_swire] = master_catalogue['f_swire_irac_i1'][use_swire]\n", "\n", "ferr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "ferr_ap_irac_i[use_servs] = master_catalogue['ferr_servs_irac_i1'][use_servs]\n", "ferr_ap_irac_i[use_swire] = master_catalogue['ferr_swire_irac_i1'][use_swire]\n", "\n", "flag_irac_i = np.full(len(master_catalogue), False, dtype=bool)\n", "flag_irac_i[use_servs] = master_catalogue['flag_servs_irac_i1'][use_servs]\n", "flag_irac_i[use_swire] = master_catalogue['flag_swire_irac_i1'][use_swire]\n", "\n", "m_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "m_ap_irac_i[use_servs] = master_catalogue['m_servs_irac_i1'][use_servs]\n", "m_ap_irac_i[use_swire] = master_catalogue['m_swire_irac_i1'][use_swire]\n", "\n", "merr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "merr_ap_irac_i[use_servs] = master_catalogue['merr_servs_irac_i1'][use_servs]\n", "merr_ap_irac_i[use_swire] = master_catalogue['merr_swire_irac_i1'][use_swire]\n", "\n", "master_catalogue.add_column(Column(data=f_ap_irac_i, name=\"f_irac_i1\"))\n", "master_catalogue.add_column(Column(data=ferr_ap_irac_i, name=\"ferr_irac_i1\"))\n", "master_catalogue.add_column(Column(data=m_ap_irac_i, name=\"m_irac_i1\"))\n", "master_catalogue.add_column(Column(data=merr_ap_irac_i, name=\"merr_irac_i1\"))\n", "master_catalogue.add_column(Column(data=flag_irac_i, name=\"flag_irac_i1\"))\n", "\n", "master_catalogue.remove_columns(['f_servs_irac_i1', 'f_swire_irac_i1', 'ferr_servs_irac_i1',\n", " 'ferr_swire_irac_i1', 'm_servs_irac_i1', 'flag_servs_irac_i1', 'm_swire_irac_i1',\n", " 'merr_servs_irac_i1', 'merr_swire_irac_i1', 'flag_swire_irac_i1'])\n", "\n", "origin = np.full(len(master_catalogue), ' ', dtype=' 2000\n", "\n", "use_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)\n", "use_servs = (has_servs & ~(has_both & has_servs_above_limit))\n", "\n", "print(\"{} sources for which we use SERVS\".format(np.sum(use_servs)))\n", "print(\"{} sources for which we use SWIRE\".format(np.sum(use_swire)))\n", "\n", "f_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "f_ap_irac_i[use_servs] = master_catalogue['f_ap_servs_irac_i2'][use_servs]\n", "f_ap_irac_i[use_swire] = master_catalogue['f_ap_swire_irac_i2'][use_swire]\n", "\n", "ferr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "ferr_ap_irac_i[use_servs] = master_catalogue['ferr_ap_servs_irac_i2'][use_servs]\n", "ferr_ap_irac_i[use_swire] = master_catalogue['ferr_ap_swire_irac_i2'][use_swire]\n", "\n", "m_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "m_ap_irac_i[use_servs] = master_catalogue['m_ap_servs_irac_i2'][use_servs]\n", "m_ap_irac_i[use_swire] = master_catalogue['m_ap_swire_irac_i2'][use_swire]\n", "\n", "merr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "merr_ap_irac_i[use_servs] = master_catalogue['merr_ap_servs_irac_i2'][use_servs]\n", "merr_ap_irac_i[use_swire] = master_catalogue['merr_ap_swire_irac_i2'][use_swire]\n", "\n", "master_catalogue.add_column(Column(data=f_ap_irac_i, name=\"f_ap_irac_i2\"))\n", "master_catalogue.add_column(Column(data=ferr_ap_irac_i, name=\"ferr_ap_irac_i2\"))\n", "master_catalogue.add_column(Column(data=m_ap_irac_i, name=\"m_ap_irac_i2\"))\n", "master_catalogue.add_column(Column(data=merr_ap_irac_i, name=\"merr_ap_irac_i2\"))\n", "\n", "master_catalogue.remove_columns(['f_ap_servs_irac_i2', 'f_ap_swire_irac_i2', 'ferr_ap_servs_irac_i2',\n", " 'ferr_ap_swire_irac_i2', 'm_ap_servs_irac_i2', 'm_ap_swire_irac_i2',\n", " 'merr_ap_servs_irac_i2', 'merr_ap_swire_irac_i2'])\n", "\n", "origin = np.full(len(master_catalogue), ' ', dtype=' 2000\n", "\n", "use_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)\n", "use_servs = (has_servs & ~(has_both & has_servs_above_limit))\n", "\n", "print(\"{} sources for which we use SERVS\".format(np.sum(use_servs)))\n", "print(\"{} sources for which we use SWIRE\".format(np.sum(use_swire)))\n", "\n", "f_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "f_ap_irac_i[use_servs] = master_catalogue['f_servs_irac_i2'][use_servs]\n", "f_ap_irac_i[use_swire] = master_catalogue['f_swire_irac_i2'][use_swire]\n", "\n", "ferr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "ferr_ap_irac_i[use_servs] = master_catalogue['ferr_servs_irac_i2'][use_servs]\n", "ferr_ap_irac_i[use_swire] = master_catalogue['ferr_swire_irac_i2'][use_swire]\n", "\n", "flag_irac_i = np.full(len(master_catalogue), False, dtype=bool)\n", "flag_irac_i[use_servs] = master_catalogue['flag_servs_irac_i2'][use_servs]\n", "flag_irac_i[use_swire] = master_catalogue['flag_swire_irac_i2'][use_swire]\n", "\n", "m_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "m_ap_irac_i[use_servs] = master_catalogue['m_servs_irac_i2'][use_servs]\n", "m_ap_irac_i[use_swire] = master_catalogue['m_swire_irac_i2'][use_swire]\n", "\n", "merr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", "merr_ap_irac_i[use_servs] = master_catalogue['merr_servs_irac_i2'][use_servs]\n", "merr_ap_irac_i[use_swire] = master_catalogue['merr_swire_irac_i2'][use_swire]\n", "\n", "master_catalogue.add_column(Column(data=f_ap_irac_i, name=\"f_irac_i2\"))\n", "master_catalogue.add_column(Column(data=ferr_ap_irac_i, name=\"ferr_irac_i2\"))\n", "master_catalogue.add_column(Column(data=m_ap_irac_i, name=\"m_irac_i2\"))\n", "master_catalogue.add_column(Column(data=merr_ap_irac_i, name=\"merr_irac_i2\"))\n", "master_catalogue.add_column(Column(data=flag_irac_i, name=\"flag_irac_i2\"))\n", "\n", "master_catalogue.remove_columns(['f_servs_irac_i2', 'f_swire_irac_i2', 'ferr_servs_irac_i2',\n", " 'ferr_swire_irac_i2', 'm_servs_irac_i2', 'flag_servs_irac_i2', 'm_swire_irac_i2',\n", " 'merr_servs_irac_i2', 'merr_swire_irac_i2', 'flag_swire_irac_i2'])\n", "\n", "origin = np.full(len(master_catalogue), ' ', dtype='= 2\n", "has_nir_flux = nb_nir_flux >= 2\n", "has_mir_flux = nb_mir_flux >= 2\n", "\n", "master_catalogue.add_column(\n", " Column(\n", " 1 * has_optical_flux + 2 * has_nir_flux + 4 * has_mir_flux,\n", " name=\"flag_optnir_det\")\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IX - Cross-identification table\n", "\n", "We are producing a table associating to each HELP identifier, the identifiers of the sources in the pristine catalogues. This can be used to easily get additional information from them.\n", "\n", "For convenience, we also cross-match the master list with the SDSS catalogue and add the objID associated with each source, if any. **TODO: should we correct the astrometry with respect to Gaia positions?**" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "126 master list rows had multiple associations.\n" ] } ], "source": [ "#\n", "# Addind SDSS ids\n", "#\n", "sdss = Table.read(\"../../dmu0/dmu0_SDSS-DR13/data/SDSS-DR13_ELAIS-N1.fits\")['objID', 'ra', 'dec']\n", "sdss_coords = SkyCoord(sdss['ra'] * u.deg, sdss['dec'] * u.deg)\n", "idx_ml, d2d, _ = sdss_coords.match_to_catalog_sky(SkyCoord(master_catalogue['ra'], master_catalogue['dec']))\n", "idx_sdss = np.arange(len(sdss))\n", "\n", "# Limit the cross-match to 1 arcsec\n", "mask = d2d <= 1. * u.arcsec\n", "idx_ml = idx_ml[mask]\n", "idx_sdss = idx_sdss[mask]\n", "d2d = d2d[mask]\n", "nb_orig_matches = len(idx_ml)\n", "\n", "# In case of multiple associations of one master list object to an SDSS object, we keep only the\n", "# association to the nearest one.\n", "sort_idx = np.argsort(d2d)\n", "idx_ml = idx_ml[sort_idx]\n", "idx_sdss = idx_sdss[sort_idx]\n", "_, unique_idx = np.unique(idx_ml, return_index=True)\n", "idx_ml = idx_ml[unique_idx]\n", "idx_sdss = idx_sdss[unique_idx]\n", "print(\"{} master list rows had multiple associations.\".format(nb_orig_matches - len(idx_ml)))\n", "\n", "# Adding the ObjID to the master list\n", "master_catalogue.add_column(Column(data=np.full(len(master_catalogue), -1, dtype='>i8'), name=\"sdss_id\"))\n", "master_catalogue['sdss_id'][idx_ml] = sdss['objID'][idx_sdss]" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['wfc_id', 'sparcs_intid', 'hsc_id', 'ps1_id', 'dxs_id', 'servs_intid', 'swire_intid', 'help_id', 'specz_id', 'sdss_id']\n" ] } ], "source": [ "id_names = []\n", "for col in master_catalogue.colnames:\n", " if '_id' in col:\n", " id_names += [col]\n", " if '_intid' in col:\n", " id_names += [col]\n", " \n", "print(id_names)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue[id_names].write(\n", " \"{}/master_list_cross_ident_elais-n1{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)\n", "id_names.remove('help_id')\n", "master_catalogue.remove_columns(id_names)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## X - Adding HEALPix index\n", "\n", "We are adding a column with a HEALPix index at order 13 associated with each source." ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(\n", " data=coords_to_hpidx(master_catalogue['ra'], master_catalogue['dec'], order=13),\n", " name=\"hp_idx\"\n", "))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## XI - Saving the catalogue" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": true }, "outputs": [], "source": [ "columns = [\"help_id\", \"field\", \"ra\", \"dec\", \"hp_idx\"]\n", "\n", "bands = [column[5:] for column in master_catalogue.colnames if 'f_ap' in column]\n", "for band in bands:\n", " columns += [\"f_ap_{}\".format(band), \"ferr_ap_{}\".format(band),\n", " \"m_ap_{}\".format(band), \"merr_ap_{}\".format(band),\n", " \"f_{}\".format(band), \"ferr_{}\".format(band),\n", " \"m_{}\".format(band), \"merr_{}\".format(band),\n", " \"flag_{}\".format(band)] \n", " \n", "columns += [\"stellarity\", \"stellarity_origin\", \"flag_cleaned\", \"flag_merged\", \"flag_gaia\", \"flag_optnir_obs\", \n", " \"flag_optnir_det\", \"zspec\", \"zspec_qual\", \"zspec_association_flag\", \"ebv\"]" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Missing columns: set()\n" ] } ], "source": [ "# We check for columns in the master catalogue that we will not save to disk.\n", "print(\"Missing columns: {}\".format(set(master_catalogue.colnames) - set(columns)))" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue[columns].write(\"{}/master_catalogue_elais-n1{}.fits\".format(OUT_DIR, SUFFIX))" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }