EGS master catalogue

Preparation of UKIRT Hemisphere Survey (UHS) data

The catalogue comes from dmu0_UHS. This is a J band only survey documented in https://arxiv.org/pdf/1707.09975.pdf

In the catalogue, we keep:

  • The identifier (it's unique in the catalogue);
  • The position;
  • The stellarity;
  • The magnitude for each band in aperture 4 (2 arcsec aperture corrected).
  • The kron magnitude to be used as total magnitude (no “auto” magnitude is provided).

We don't know when the maps have been observed. We will use the year of the reference paper.

In [1]:
from herschelhelp_internal import git_version
print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version()))
This notebook was run with herschelhelp_internal version: 
44f1ae0 (Thu Nov 30 18:27:54 2017 +0000)
In [2]:
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))

from collections import OrderedDict
import os

from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.table import Column, Table
import numpy as np

from herschelhelp_internal.flagging import  gaia_flag_column
from herschelhelp_internal.masterlist import nb_astcor_diag_plot, remove_duplicates
from herschelhelp_internal.utils import astrometric_correction, mag_to_flux
In [3]:
OUT_DIR =  os.environ.get('TMP_DIR', "./data_tmp")
try:
    os.makedirs(OUT_DIR)
except FileExistsError:
    pass

RA_COL = "uhs_ra"
DEC_COL = "uhs_dec"

I - Column selection

In [4]:
imported_columns = OrderedDict({
        'SOURCEID': "uhs_id",
        'RA': "uhs_ra",
        'DEC': "uhs_dec",
        'PSTAR':  "uhs_stellarity",
        'JPETROMAG': "m_uhs_j", 
        'JPETROMAGERR': "merr_uhs_j", 
        'JAPERMAG4': "m_ap_uhs_j", 
        'JAPERMAG4ERR': "merr_ap_uhs_j", 

    })


catalogue = Table.read("../../dmu0/dmu0_UHS/data/UHS-DR1_EGS.fits")[list(imported_columns)]
for column in imported_columns:
    catalogue[column].name = imported_columns[column]

epoch = 2011

# Clean table metadata
catalogue.meta = None
In [5]:
#Vega to AB
#Vega ZPT (1548.66 Jy) from http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=UKIRT/WFCAM.J

vega_to_ab = {
    "j": -2.5*np.log10(1548.66 / 3631)
}
print(vega_to_ab["j"])
0.925175419285
In [6]:
# Adding flux and band-flag columns
for col in catalogue.colnames:
    if col.startswith('m_'):
        
        errcol = "merr{}".format(col[1:])
        
        # Some object have a magnitude to 0, we suppose this means missing value
        catalogue[col][catalogue[col] <= 0] = np.nan
        catalogue[errcol][catalogue[errcol] <= 0] = np.nan  
        
        # Convert magnitude from Vega to AB
        catalogue[col] += vega_to_ab[col[-1]]

        flux, error = mag_to_flux(np.array(catalogue[col]), np.array(catalogue[errcol]))
        
        # Fluxes are added in µJy
        catalogue.add_column(Column(flux * 1.e6, name="f{}".format(col[1:])))
        catalogue.add_column(Column(error * 1.e6, name="f{}".format(errcol[1:])))
        
        # Band-flag column
        if "ap" not in col:
            catalogue.add_column(Column(np.zeros(len(catalogue), dtype=bool), name="flag{}".format(col[1:])))
        
# TODO: Set to True the flag columns for fluxes that should not be used for SED fitting.
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/astropy/table/column.py:1096: MaskedArrayFutureWarning: setting an item on a masked array which has a shared mask will not copy the mask and also change the original mask array in the future.
Check the NumPy 1.11 release notes for more information.
  ma.MaskedArray.__setitem__(self, index, value)
In [7]:
catalogue[:10].show_in_notebook()
Out[7]:
<Table masked=True length=10>
idxuhs_iduhs_rauhs_decuhs_stellaritym_uhs_jmerr_uhs_jm_ap_uhs_jmerr_ap_uhs_jf_uhs_jferr_uhs_jflag_uhs_jf_ap_uhs_jferr_ap_uhs_j
degdeg
0459882485803215.60490170553.99446138320.0030674918.93660.15841719.1960.070242296.686514.1073False76.13784.92577
1459882485812215.6077779653.98805036510.0030674919.72970.33269719.61820.10240246.571114.2705False51.60954.8676
2459882485821215.60427258753.98380763270.99386517.57050.032174917.5740.0178509340.24410.0829False339.1635.57627
3459882485824215.59837753653.98357166850.99386515.21550.0046191315.20320.003597512977.2412.6663False3010.969.97659
4459882485840215.55329415153.97402926410.99386516.59390.013692216.58070.00853913836.4710.5487False846.6826.65901
5459882485841215.59705107353.97274871940.0030674919.54710.13847720.29550.18944755.10187.02782False27.65684.82574
6459882485842215.59789825553.97279495050.0030674919.02930.11358320.02370.14812888.77319.28685False35.52294.84644
7459882485843215.59830825753.97253046120.0030674919.56170.14033520.13780.1642454.3657.02686False31.97874.83743
8459882485847215.53322695753.97000186590.0030674921.46040.97866220.44950.2183639.458848.52601False23.99964.82678
9459882485850215.57584049653.96958554250.99386519.19560.16009919.74910.11585576.166711.2312False45.74754.88156

II - Removal of duplicated sources

We remove duplicated objects from the input catalogues.

In [8]:
SORT_COLS = ['merr_ap_uhs_j']
FLAG_NAME = 'uhs_flag_cleaned'

nb_orig_sources = len(catalogue)

catalogue = remove_duplicates(catalogue, RA_COL, DEC_COL, sort_col=SORT_COLS,flag_name=FLAG_NAME)

nb_sources = len(catalogue)

print("The initial catalogue had {} sources.".format(nb_orig_sources))
print("The cleaned catalogue has {} sources ({} removed).".format(nb_sources, nb_orig_sources - nb_sources))
print("The cleaned catalogue has {} sources flagged as having been cleaned".format(np.sum(catalogue[FLAG_NAME])))
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/astropy/table/column.py:1096: MaskedArrayFutureWarning: setting an item on a masked array which has a shared mask will not copy the mask and also change the original mask array in the future.
Check the NumPy 1.11 release notes for more information.
  ma.MaskedArray.__setitem__(self, index, value)
The initial catalogue had 34310 sources.
The cleaned catalogue has 31771 sources (2539 removed).
The cleaned catalogue has 2427 sources flagged as having been cleaned

III - Astrometry correction

We match the astrometry to the Gaia one. We limit the Gaia catalogue to sources with a g band flux between the 30th and the 70th percentile. Some quick tests show that this give the lower dispersion in the results.

In [9]:
gaia = Table.read("../../dmu0/dmu0_GAIA/data/GAIA_EGS.fits")
gaia_coords = SkyCoord(gaia['ra'], gaia['dec'])
In [10]:
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], 
                    gaia_coords.ra, gaia_coords.dec)
In [11]:
delta_ra, delta_dec =  astrometric_correction(
    SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]),
    gaia_coords
)

print("RA correction: {}".format(delta_ra))
print("Dec correction: {}".format(delta_dec))
RA correction: -0.13122841110089212 arcsec
Dec correction: -0.07189033726717753 arcsec
In [12]:
catalogue[RA_COL] +=  delta_ra.to(u.deg)
catalogue[DEC_COL] += delta_dec.to(u.deg)
In [13]:
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], 
                    gaia_coords.ra, gaia_coords.dec)

IV - Flagging Gaia objects

In [14]:
catalogue.add_column(
    gaia_flag_column(SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), epoch, gaia)
)
In [15]:
GAIA_FLAG_NAME = "uhs_flag_gaia"

catalogue['flag_gaia'].name = GAIA_FLAG_NAME
print("{} sources flagged.".format(np.sum(catalogue[GAIA_FLAG_NAME] > 0)))
9047 sources flagged.

V - Saving to disk

In [16]:
catalogue.write("{}/UHS.fits".format(OUT_DIR), overwrite=True)