{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# COSMOS master catalogue\n", "\n", "This notebook presents the merge of the various pristine catalogues to produce HELP mater catalogue on COSMOS." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "0246c5d (Thu Jan 25 17:01:47 2018 +0000) [with local modifications]\n", "This notebook was executed on: \n", "2018-03-13 20:14:56.180271\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n", "import datetime\n", "print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "from collections import OrderedDict\n", "import os\n", "import time\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table\n", "import numpy as np\n", "from pymoc import MOC\n", "\n", "from herschelhelp_internal.masterlist import merge_catalogues, nb_merge_dist_plot, specz_merge\n", "from herschelhelp_internal.utils import coords_to_hpidx, ebv, gen_help_id, inMoc" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "SUFFIX = os.environ.get('SUFFIX', time.strftime(\"_%Y%m%d\"))\n", "\n", "try:\n", " os.makedirs(OUT_DIR)\n", "except FileExistsError:\n", " pass" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## I - Reading the prepared pristine catalogues" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#COSMOS was originally run with the official LAigle et al 2015 catalogue \n", "#so all those ids and photometry values must be preserved\n", "cosmos2015 = Table.read(\"{}/COSMOS2015_HELP.fits\".format(TMP_DIR))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "candels = Table.read(\"{}/CANDELS.fits\".format(TMP_DIR))\n", "cfhtls = Table.read(\"{}/CFHTLS.fits\".format(TMP_DIR))\n", "decals = Table.read(\"{}/DECaLS.fits\".format(TMP_DIR))\n", "hsc_deep = Table.read(\"{}/HSC-DEEP.fits\".format(TMP_DIR))\n", "hsc_udeep = Table.read(\"{}/HSC-UDEEP.fits\".format(TMP_DIR))\n", "kids = Table.read(\"{}/KIDS.fits\".format(TMP_DIR))\n", "ps1 = Table.read(\"{}/PS1.fits\".format(TMP_DIR))\n", "las = Table.read(\"{}/UKIDSS-LAS.fits\".format(TMP_DIR))\n", "wirds = Table.read(\"{}/CFHT-WIRDS.fits\".format(TMP_DIR))\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## II - Merging tables\n", "\n", "We first merge the optical catalogues and then add the infrared ones: CANDELS, CFHTLS, DECaLS, HSC, KIDS, PanSTARRS, UKIDSS-LAS, and CFHT-WIRDS.\n", "\n", "At every step, we look at the distribution of the distances to the nearest source in the merged catalogue to determine the best crossmatching radius." ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### COSMOS 2015" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue = cosmos2015\n", "master_catalogue['cosmos_ra'].name = 'ra'\n", "master_catalogue['cosmos_dec'].name = 'dec'" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add CANDELS" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4nOV57/HfrV2jfbes1fsGNhgZY0yIgSxAFpI0KYEU\nEpIcwsnSNFdP2/S0TXva056ma5aGEpqQHUgTaEMoBBICOGC8yMaS913LyJa1j/Z1nvPHjF3FMZZs\nv9I7kr6f69LFLM/Me3uwpZ+e93nvx5xzAgAAwOWL87sAAACA2YJgBQAA4BGCFQAAgEcIVgAAAB4h\nWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgkQS/Dpyfn+8qKyv9OjwAAMCk7dy5\ns805VzDRON+CVWVlpaqrq/06PAAAwKSZWf1kxnEqEAAAwCMTBisze8TMWsxs7xs8/yEzqzWzPWa2\nxczWeF8mAABA7JvMjNW3Jd16gedPSHqzc+5KSX8l6WEP6gIAAJhxJlxj5ZzbbGaVF3h+y7i7WyWV\nXn5ZAAAAM4/Xa6w+JulZj98TAABgRvDsqkAzu0mRYHXDBcbcL+l+SSovL/fq0AAAADHBkxkrM1st\n6RuS7nDOtb/ROOfcw865KudcVUHBhK0gAAAAZpTLDlZmVi7pSUn3OOcOX35JAAAAM9OEpwLN7DFJ\nmyTlm1lQ0p9LSpQk59xDkr4gKU/Sg2YmSaPOuaqpKhgAACBWTeaqwLsmeP7jkj7uWUUAAAAzFJ3X\nAQAAPEKwAgAA8AjBCgAAwCOe9bHC5Xl0W8Okxt29nv5fAADEKmasAAAAPEKwAgAA8AjBCgAAwCME\nKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCs\nAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrAC\nAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoA\nAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAA\nAI9MGKzM7BEzazGzvW/wvJnZV8zsqJnVmtla78sEAACIfZOZsfq2pFsv8PxtkpZEv+6X9K+XXxYA\nAMDMM2Gwcs5tltRxgSF3SPqui9gqKdvMir0qEAAAYKbwYo1ViaTGcfeD0ccAAADmlGldvG5m95tZ\ntZlVt7a2TuehAQAAppwXwapJUtm4+6XRx36Dc+5h51yVc66qoKDAg0MDAADEDi+C1VOS7o1eHXid\npJBz7pQH7wsAADCjJEw0wMwek7RJUr6ZBSX9uaRESXLOPSTpGUm3SzoqqV/SfVNVLAAAQCybMFg5\n5+6a4Hkn6VOeVQQAADBD0XkdAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAA\nADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA\n8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADA\nIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACP\nEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxC\nsAIAAPDIpIKVmd1qZofM7KiZff48z2eZ2U/NrMbM9pnZfd6XCgAAENsmDFZmFi/pa5Juk7RS0l1m\ntvKcYZ+StN85t0bSJkn/aGZJHtcKAAAQ0yYzY3WtpKPOuePOuWFJj0u645wxTlKGmZmkdEkdkkY9\nrRQAACDGTSZYlUhqHHc/GH1svH+RtELSSUl7JH3WORf2pEIAAIAZwqvF62+XtFvSfElXSfoXM8s8\nd5CZ3W9m1WZW3dra6tGhAQAAYsNkglWTpLJx90ujj413n6QnXcRRSSckLT/3jZxzDzvnqpxzVQUF\nBZdaMwAAQEyaTLDaIWmJmS2ILkj/oKSnzhnTIOkWSTKzIknLJB33slAAAIBYlzDRAOfcqJl9WtJz\nkuIlPeKc22dmD0Sff0jSX0n6tpntkWSS/sg51zaFdQMAAMScCYOVJDnnnpH0zDmPPTTu9klJb/O2\nNAAAgJmFzusAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcI\nVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFY\nAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAF\nAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUA\nAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcmFazM\n7FYzO2RmR83s828wZpOZ7TazfWb2srdlAgAAxL6EiQaYWbykr0l6q6SgpB1m9pRzbv+4MdmSHpR0\nq3OuwcwKp6pgAACAWDWZGatrJR11zh13zg1LelzSHeeMuVvSk865BklyzrV4WyYAAEDsm0ywKpHU\nOO5+MPrYeEsl5ZjZS2a208zu9apAAACAmWLCU4EX8T7XSLpFUqqk18xsq3Pu8PhBZna/pPslqby8\n3KNDAwAAxIbJzFg1SSobd780+th4QUnPOef6nHNtkjZLWnPuGznnHnbOVTnnqgoKCi61ZgAAgJg0\nmWC1Q9ISM1tgZkmSPijpqXPG/ETSDWaWYGYBSeslHfC2VAAAgNg24alA59yomX1a0nOS4iU94pzb\nZ2YPRJ9/yDl3wMx+JqlWUljSN5xze6eycAAAgFgzqTVWzrlnJD1zzmMPnXP/7yX9vXelAQAAzCx0\nXgcAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjB\nCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQr\nAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwA\nAAA8QrACAADwCMEKAADAIwQrAAAAjxCsZoDRsbD+vbpRuxs7/S4FAABcQILfBWBiz+5t1u7GLu0J\nhpSfnqzSnMCEr7l7ffk0VAYAAMZjxirG7WkK6bXj7VpXmaOM1AQ9ur1B/cOjfpcFAADOg2AVw9p6\nh/TkrqDKcwN695oS3bWuXD0Do/rxzqDCzvldHgAAOAfBKkaNjIX12PYGxceZPriuTPFxprLcgG6/\ncp4ONvfoV0fa/C4RAACcg2AVo56uPalToUF94JoyZQeSzj5+3cI8XVmSpZ/vb9aJtj4fKwQAAOci\nWMWg1xs6taOuU5uWFmjZvIxfe87M9L6rS5SblqTHtzeoZ3DEpyoBAMC5CFYxZmB4TD/ZfVIL8tN0\ny4qi845JTozX3ddWaHB0TM/ubZ7mCgEAwBshWMWYo629Gh4L660rihQfZ284bl5WitaUZuvAqW6N\nhVnIDgBALCBYxZgjp3uUnBCnstyJe1UtLcrQ0GhY9e2stQIAIBYQrGKIc05HWnq1qCD9grNVZywp\nTFe8mQ4190xDdQAAYCIEqxjS2jOk0MCIlhSlT2p8cmK8KvMDOniaYAUAQCwgWMWQIy29kqSlhRkT\njPxvy+ZlqrVnSB19w1NVFgAAmCSCVQw50tKj/PQk5aQlTTw4anlRJIQdau6eqrIAAMAkTSpYmdmt\nZnbIzI6a2ecvMG6dmY2a2fu9K3FuGBkL60Rbn5ZcxGyVJOVnJCsvLUmHOB0IAIDvJgxWZhYv6WuS\nbpO0UtJdZrbyDcZ9UdLzXhc5F9S192lkzE16fdV4y+Zl6Hhrn4ZHw1NQGQAAmKzJzFhdK+moc+64\nc25Y0uOS7jjPuM9IekJSi4f1zRlHTvcqPs60MP/SgtVo2OlYa+8UVAYAACZrMsGqRFLjuPvB6GNn\nmVmJpPdK+lfvSptbjrT0qCIvoKSEi1/2tiAvTUnxcbRdAADAZ14tXv+SpD9yzl3wXJSZ3W9m1WZW\n3dra6tGhZ77m0KBOdw9d1NWA4yXEx2lxYboOne6Rc3RhBwDAL5MJVk2SysbdL40+Nl6VpMfNrE7S\n+yU9aGbvOfeNnHMPO+eqnHNVBQUFl1jy7LP5SCRkXsr6qjOWzctQaGBEzd2DXpUFAAAuUsIkxuyQ\ntMTMFigSqD4o6e7xA5xzC87cNrNvS3raOfefHtY5q20+3KqM5ATNy0y55PdYdrbtQo+Ks1K9Kg0A\nAFyECWesnHOjkj4t6TlJByT9u3Nun5k9YGYPTHWBs91Y2OmVo21aXJgus4m3sXkjmamJmp+Vwjor\nAAB8NJkZKznnnpH0zDmPPfQGYz9y+WXNHXuaQurqH9GSlZe2vmq8ZfMy9NKhVvUPjXpQGQAAuFh0\nXvfZ5sOtMpMWF176+qozls3LlJN0uIW2CwAA+IFg5bPNh1t1xfwspSdPavLwgkpzUhVIimd7GwAA\nfEKw8lH34Iheb+zSjUvzPXm/ODMtKUzX8dY+2i4AAOADgpWPdtZ3aizstHGRN8FKkiry0tQzNKpg\n54Bn7wkAACaHYOWj2saQzKQrS7M8e8/y3IAkaVdDp2fvCQAAJodg5aPaYJcW5qcpIyXRs/csykxR\nUkKcdtYTrAAAmG4EK58451QTDGlNaban7xsfZyrLSSVYAQDgA4KVT06FBtXWO6TVHp4GPKM8N00H\nTnWrj35WAABMK4KVT2qDXZKk1WXezlhJUkVeQGEn1TR2ef7eAADgjRGsfFITDCkhzrSyONPz9y7L\niSxg53QgAADTi2Dlk9pgl5bNy1BKYrzn752aFK+lRenayZWBAABMK4KVD8Jhp9pgSKs9Xrg+3jUV\nOdpV36lwmEahAABMl8vfRwUXra69Tz2Do1ozBQvXz1hbnqPHtjfqWGuvlhRd/gbPAIDZ4dFtDZMa\nd/f68imuZHZixsoHtcGQJE35jJXEOisAAKYTwcoHNcEupSTGaWlR+pQdY0F+mnICiQQrAACmEcHK\nB3uCIa2an6WE+Kn7+M1M11TksIAdAIBpRLCaZqNjYe09GZqSxqDnWluRo+OtferoG57yYwEAABav\nT7sjLb0aHAl7vpXN+VxTHlln9XpDp25ZUTTlxwMA+Geyi9IxtZixmmZnO65Pw4zV6tJsJcQZ66wA\nAJgmzFhNs5pgSBkpCarMS5vyY6UmxWvV/EyCFQDEmNGxsB56+bh6BkfUPzymgeEx9Y+MqX94VM5J\nyQlxSk6IU1JCvN6yolDzs1O1an7mlK7NhTcIVtOsNtil1aVZiouzaTne2oocPba9QSNjYSXyDxIA\nptz4U3KjY2Gd7h7SydCAWnuG1NY7pLbeYXX2DWvM/WYDZ5NkJo3v7fzErqCkSNhakJ+mRQXpWliQ\npqLMFMXZ9PwsweQRrKbR4MiYDp7q0f+4ceG0HfOaihx969U6HTjVPaV9swBgrguHnY629mrbiXY1\ndQ7oZGhAp0NDZwNUQpwpPz1ZRZnJWjU/U3lpScpMTVQgKV6BpASlJsYrOTFOJmk07DQ8GtbQaFhD\no2Nq7RnS8dY+HWvt1cHmHklSdiBRt11RrCvmZ8oIWDGDYDWNDpzq1mjYTWnH9XONbxRKsAIA74yO\nhVXbFNKOEx3aUdeh6vpOdfWPSJJSE+NVkp2qjYszVJKTqpLsVGUHEic9w5QYb0qMj1NacuR+cVbq\n2e/hXf3DOtbapy3H2vTY9gYtKkjTu1bPV2FmypT8OXFxCFbTaDo6rp+rOCtV87NStLO+U/dtXDBt\nxwWA2cY5p8One/XK0TZtOdqmbSc61Ds0KklamJ+mt6+cp6rKHDWHBpWbljRls0jZgSRdU5Gkq8qy\ntb2uQz/f36yv/PKINi7K183LC5WcGD8lx8XkEKymUU2wS/npySrOmt7fKtZW5LCAHQAuQWvPkF45\n2qrNh9v08/2nzwapvLQkrZyfqUUF6arMCygjJVGSNDLmlJeePC21xceZNizM05UlWXp+X7N+dbRN\nNcEufeyGhSrImJ4a8JsIVtOoNhjSmtKsaT8XXlWRo6drT6mpa0Al2anTemwAmEmGRse0s75Tmw+3\nafPhVu0/1S1Jyk1L0sKCNC0uSNeiwnTlBJJ8rvS/pScn6H1rS7WuMlff3VqvR149oU/cuFDZMVTj\nXEKwmia9Q6M61tqrd62eP+3HrqrMlSRV13Wo5KqSaT8+AMQq55y++sJRHW7p0ZHTvTrR1qfhsbDi\nTKrIS9PbVhZpSWGGirNj/wq8styA7ru+Ut945bi++coJ3X/jwrMzaZg+BKtpsicYknPS6rLpW7h+\nxvJ5GUpLild1XafuIFgBmOPaeoe05Vi7Xj3SplePtSnYOSApcnrv6vJsLS3K0ML8tBm5Vml+dqo+\nvKFSj7x6Qt96tU7/400LlZo08/4cMxnBapqc7bheMv3BKiE+TmsrclTNOisAc1BX/7C2n+jQthMd\n2nKsXQeip/cyUxJ0/aJ8rS3P0dKiDOWmzY5TZxV5afqd6yr03dfq9Z3X6nTfxkolJxCupgvBaprU\nBkMqzUmdtkWN56qqyNWXXjis7sERZTI1DGAWOxUa0K76Ln1va73q2vrU3D0oKdJHqjw3oLetLNLi\nwnTNz06N+dN7l2pJYYburCrTY9sb9IOtDbr3+golxNEkejoQrKZJTbBrWjZefiNVlTlyTtpV36lN\nywp9qwMAvDQ4MqZ9J7v1ekOnXm/o0q6GTp0KRYJUYrypIi9Nbykp0oL8NJXlpM6pLWGuKMnS+9aW\n6oldQW0+3Kabl/O9fzoQrKZBe++Qgp0Duue6Ct9quKosW/HRDZkJVgBmosGRMR1s7tGeppD2BLtU\nGwzpSEuvxqL7v5Rkp6qqMldry7O1tjxHtcGQ4qdp+7BYdU1Fjg6d7tFLh1q0pjTLt7MmcwnBahqc\naQy6psy/Gau05AStmp+pHXUdvtUAABcyfo+93qFRNYcGdSo0oFOhQZ3siuy1d2YLvZxAoq4szdZb\nVhTpipIsXV2eraJzOo/vO9k9jdXHrndeWawjp3v0k90ndd/GSra/mWIEq2lQE+ySWWRa1k/XsCEz\ngBgzOhZWXXuf9p3s1s/2Nqu5OxKkegZHz47JSk1UcVaKVs3PUnFWij550yKVZKcSECYpMzVRb1s1\nTz+tOamaYEhX+fhL/lxAsJoGtcGQFhekKz3Z3497XWWuvvVqnfad7OYfFoBp1zM4ogOnenTgVLf2\nn+zWgeZuHWru0dBoWJIUb6aCjGQtLkjXvKwUFWelqjgrRWnnfO/cfLjNj/JntPULcvV6Q6f+a88p\nLS1KVyCJH/9ThU92ijnnVBvs0puX+r+uqSq6IXN1XQfBCsCUcc7pdPeQ9p0Mad/JSIjaf6pbDR39\nZ8fkpiVpRXGG7rmuQiuKM7WiOFPV9R1cuTZF4sz0nqtK9OBLR/Xcvma99+pSv0uatQhWU+xkaFBt\nvcNa40Nj0HMVZqaoPDegHXUd+vibFvpdDoBZwDmnho5+7W3q1t5okNrXFFJ73/DZMQvy03RlSZbu\nXFemldEQVZSZ/Bun8nY3dk13+XPK/OxUXb8oX68cbdPa8hxV5KX5XdKsRLCaYrXRbxSrfWy1MF5V\nZY42H26Vc471CQAuSjjsVN/Rrz1NIe1tCukX+0/rZGhAgyORU3lxJhVlpqgyL00bFuWpJDtV8zJT\nfq2D+anQ4Nl2CJh+t6wo1J6mkP7j9SZ9+ubFzBBOAYLVFKsJhpQYb1pRnOF3KZIi66ye3NWkuvZ+\nLcjntxUA5+ecU2PHgGqburQnGFJtMKS9J0NnF5UnJcSpMCNZq0uzVZKVqvnZqSrKTJ5TfaJmouSE\neL17zXx9b2u9dpzo0IZF+X6XNOsQrKZYbbBLy+dlxsx2AuPXWRGsAEiREHUqNKjaYEi1wS49v/+0\nmjoHNDAyJkmKjzMVZ6VoZXGmSrJTVZKTqsKMlDnfI2qmWj4vQxW5AW0+0qZ1C3KZtfIYwWoKhcNO\ne4Ih3XH1fL9LOWtRQbqyA4mqruvUB6rK/C4HgA86+oZVE+xSbWMkSNUEQ2rrHZIU2falMCNZV5Rk\nqiQ7oJKc6EwUP3xnDTPTpmWF+s5rddrd0KWqyly/S5pVCFZT6Hhbn3qGRmNmfZUkxcWZqipytKOe\nRqHAXDAwPKY9TZEAtbuxSzXBLjV2DEiSzCK/bN24NF9rSrN1ZWmWVhZn6sldTT5Xjam2tChd87NT\n9PLhVq2tyJm1eyb6gWA1hWqDkYXrfu4ReD7XVOTqFwda1N47xPYGwCxwpmN52Dm19Q4p2DGghs5+\nBTv61dw9qOiOL8pOTVRpTqpWrcpSSU6qSrJTlTJuYfnBUz06eKrHjz8CppmZadPSQj26vUF7mkIx\n93NqJiNYTaHaYEiBpHgtLkz3u5Rfs64yss5qZ32n3rZqns/VALhUfUOjqgl26cVDLWpo71dDR//Z\ndVHJCXEqywnoxqUFKssJqDQnVRkpiT5XjFiycn6mCjKS9fKhVl1ZksWslUcmFazM7FZJX5YUL+kb\nzrm/Pef5D0n6I0kmqUfS/3TO1Xhc64xTE+zSFfOzYm6B55WlWUpKiFM1wQqYUVp7hlRd16HtdR2q\nruvU/lPdZzcgLsxI1qr5mSrPDagsN6CCjGR+UOKC4sy0aWmBfrQzqEPNPVpRnOl3SbPChMHKzOIl\nfU3SWyUFJe0ws6ecc/vHDTsh6c3OuU4zu03Sw5LWT0XBM8XIWFj7T3brnusq/C7lNyQnxGt1SZaq\n2ZAZiFmPbmtQZ9+wTrT3qa6tTyfa+s423UyMN5XmBHTjknyV56apPDeg1KTYuPIYM8vq0my9cLBF\nLx5q0fJ5GfQ39MBkZqyulXTUOXdckszscUl3SDobrJxzW8aN3yppzvfKP7P/1eoY3TqmqjJX33zl\nuAaGx/iGDMQA55xOtPVp+4kObTvRoRcPtqhrYESSlJoYr4q8gNZV5qoyP03zs1O4Sg+eiI8z3bik\nQP+5u0nHWvtibunKTDSZYFUiqXHc/aAuPBv1MUnPXk5Rs0FtMCRJWlPq/1Y253PD4nw99PIxvXa8\nTTcvL/K7HGDOCYedjrb2atvxdm2LhqnWnkjLg/z0JJXmBvSmvIAW5KerMJPTepg6a8uz9cuDp/Xi\noRaClQc8XbxuZjcpEqxueIPn75d0vySVl5d7eeiYUxvsUnYgUeW5Ab9LOa91C3IUSIrXLw+2EKyA\naTAyFta+k93aEQ1R1fUd6uqPzEjNy0zR9YvytH5Bnq5dkKtFBWl6bHvjBO8IeCMhPk5vWlKg/9pz\nSvXtfewheJkmE6yaJI3vJFkafezXmNlqSd+QdJtzrv18b+Sce1iR9VeqqqpyF13tDLK7sUurS7Nj\n9nx1ckK8Ni7O14sH2TcQmAo9gyN6vaFL1fWdqq7r0O7GLvUPR67Yy0tL0qKCdFXmpWlBfppyAoln\n/w1uP9Gh7SdY/4jpta4yVy8eatErR9sIVpdpMsFqh6QlZrZAkUD1QUl3jx9gZuWSnpR0j3PusOdV\nzjADw2M60tKrt66M7Zmgm5cX6uf7T+toS6+WFMXGXobATOSc04MvHVNDe7/qO/pU396v5tCgnCKX\nShdnp2hNabYq89NUkRdQJm0PEGOSEuK0rjJXmw+3qqt/WNmBJL9LmrEmDFbOuVEz+7Sk5xRpt/CI\nc26fmT0Qff4hSV+QlCfpwehvXaPOuaqpKzu27TsZ0ljYxVTH9fPZtKxAkvTLgy0EK+AijIyFdeBU\nt6rrOrWzPvLV3D0oSUqKj1NZbqpuWl6oiryAynMCSk7kAhHEvvULIsFq6/EO3XoFrXgu1aTWWDnn\nnpH0zDmPPTTu9sclfdzb0mau3Y1nOq7H5sL1M4qzUrV8XoZePNSiT7x5kd/lADHp0W0NGhgeU0PH\nf89GBTv7NTIWWc2QlZoYvWIvR+V5aZqXyebEmJmyA0laOT9TO+o6dMuKQr/LmbHovD4Fth5vV2Ve\nQIWZKX6XMqGblxfq4c3H1T04wukJQJHTevXt/dpZ36nq+k69cOC0WqJX68VZ5BeSqspcVeQGVJ4b\n4JQJZpUNi/K072S3aqITBLh4BCuPjY6Fte14h965Zr7fpUzKTcsL9eBLx/TKkTbdfmWx3+UA025o\ndEx7m7q1s74jelqvS229kSCVkZKg4qwUrS7NVkVeZFuY5ARO62H2WhCddX3teDsXNl0igpXH9p3s\nVs/QqK5flOd3KZNydVm2MlMS9OLBFoIV5oTT3YPaWd+pR7c1qKGjX01dA2e3hclNS1JFbkAbF+ep\nIjeN/lGYc8xMGxbl6T9eb9L2Ex1av3Bm/CyLJQQrj205Fuk0cd0M+cuYEB+nG5cW6KXDrQqHneJY\nG4JZZHBkTHubQtrd2KXXG7q0u7FLTV0DkqSEONP87FRtWJin8tyAKvICbFIMSFpTmq2f7W3Wd16r\nI1hdAoKVx1473q6lRekqyEj2u5RJu3l5oZ6uPaV9J7t1ZYwvuAfeyFjY6Vhrr3Y3dqk22KWaxpAO\nnOrWaHQ2qjQnVVeXZ+ujNyzQ2vJs7WkKsS0McB5JCXGqqszRc/tO62TXgOZnp/pd0oxCsPLQ8GhY\nO0506M51ZRMPjiE3Li2QmfTioRaCFWYE55yCnQOqDYZUE+xSTWOX9jaF1BdtwJmcEKeSnFRtXJyv\n8tzI2qjxs1EHTvUQqoALuG5Bnl492qbvb63XH9663O9yZhSClYdqgl0aGBmbMacBz8hPT9bq0mz9\n8mCLfveN7V5VAAAXlElEQVSWJX6XA/yG9t6hXwtRNcGQOvqGJUX6Rq0oztD7rynV6tJsNXb2Kz+d\ntVHA5chJS9JbVhTpse0N+t1bliiFXmyTRrDy0GvH2mUmXbcw1+9SLtrNywr1pRcOq713SHnpM+c0\nJmafwZEx7TvZrdcbOrW7sUs1wS41dkTWRZmkgoxkVeal6YbF+SrNSdW8rJSzs09Do2EVZsR+mxNg\nJvjIxko9v/+0ntp9Ur89w87E+Ilg5aEtx9q0sjhzRva1uWl5gf75F4e1+Uir3nt1qd/lYI5wzulr\nLx5TQ0e/GjoijTdPdQ1qzEXWRWWnJqo0N6BVq7JUmpuqkqxUupgD02TDwjwtK8rQt7bU6QNVpbRe\nmCSClUcGR8a0q75LH76+wu9SLskV87OUn56kXx4kWGHqnLlKb2d9p3Y1/HrPqKT4yLqoG5bkqywn\noLLcVK7SA3xkZrpvY6U+/+QebT3eoQ0zpI2Q3whWHtlV36nhsbCuX5TvdymXJC7O9OalhfrFgdMa\nHQsrIZ6Fvbh8bb1DZ/fS21nfqT3BkIbHwpKkiryAblySr9GwU3luQEVsBQPEnPdcXaIv/uygvvXq\nCYLVJBGsPLLlWLvi40zrFsy89VVnvGVFoZ7YFdQrR9u0aRn7ROHiOBdpd1BdF9kK5sWDLWqPLjCP\njzOVZKdq/cJcVeSmqTwvoPRkvv0AsS4lMV53ry/Xgy8dU0N7v8rzAn6XFPP4zuaR1463a3Vp1oz+\nYXHzikLlpSXp+1vrCVaY0MDwmGqCXZHTevWd2tnQqa7+EUmRDuZFGclaV5mriryA5menKpFZUGBG\nuue6Sn395eP69pY6feFdK/0uJ+bN3BQQQ3qHRlXT2KVPvHmh36VcluSEeN11bbm+9tJRNXb0qyyX\n30wQcaZv1K6GTj2+vVENHf06FRpQtPemCtKTtbggPdrBPE356UksdAVmiXlZKbr9ymL9e3WjPvfW\nJax9nADBygM76jo0GnbasHBmrq8aLzLle1Tf31avP75thd/lwCf9w6OqDZ7ZCqZTuxq61NoTWWSe\nGG8qzQnoTUsKVJEXUHlOQIEZPFMLYGIfvWGBnqo5qR/vDOq+jQv8Liem8d3QA1uPtSspPk7XVOT4\nXcplm5+dqreuLNK/72jU596ylKZwc0A4uhXM6+P20zt8uufsxsQVeQFtXJSntRU5Wlueo9cbulhk\nDswxV5Vl6+rybH17S50+vKGSfWUvgGDlgS3H2nVVebZSk2ZHCPnwhko9t++0flpzUh+ooincbNPR\nN6xd9Z16vTHSgLO2MaSeoVFJUkpinMpyArpxSYHKc1NVmhNQ2rjZqNpgiFAFzFEf3bhAn3nsdf3y\nYIvesrLI73JiFsHqMoX6R7T3ZEifnUVbwWxYlKfFhen63tZ6gtUMFw47HW7pUXVdZIH5roZO1bX3\nS4pcqbd8XobefdV8XV2eoyBbwQC4gFuvmKfirBQ98uoJgtUFEKwu07YT7XJOM7Z/1fmYme7dUKEv\n/GSfdjd26aqybL9LwiSNjIW1tymk7Sc6tKOuQzvqOhUaiFypl5acoPLcgN6+ap7KcwMqyU5VUkLk\nSr1htoIBMIHE+Djds6FCf/ezQzrY3K3l8zL9LikmEawu08uHW5WSGKc1ZVl+l+Kp915doi8+e1Df\n3VKnq+68yu9ycB6PbmuQc07N3YM61tqnYy29OtHep+HRSAPO/PQkLSlMV2VemiryAspN40o9AJfn\nrnXl+soLR/TNX53Q339gjd/lxCSC1WUYHBnT07Wn9LaV85ScMDvWV52RkZKo960t1Q93NOpP3rGC\njZljSHvvkDYfadUPdzToaGuf+qLro/LSknRVWbYWFaSrMi/AJdEAPJeTlqQ7q8r0g20N+szNS2gY\neh4Eq8vwwoEWhQZG9IGq2bm33r0bKvS9rfX6YXWjPrlpsd/lzFnhsFNtU0gvHmzRS4dbVRvsknNS\nWlK8lhRlaFFBuhYVpM3Izb8BzDyfvGmxHtvRqK/+8gizVudBsLoMP9rZqOKslFm1vmq8JUUZ2rAw\nTz/Y2qBP3LiIq8Gm0cDwmF492qZfHDitFw62qLVnSGaRS54/95al2rSsQLXBEAvNAUy7oswU/c76\nCn3ntTp98qbFWpCf5ndJMYVgdYlOdw9q8+FWfXLT4pgMHI9ua5jUuLvXl1/w+Q9fX6EHvr9LT+wM\n6rfXcYXgVGrvHdILB1r0yKsndLSlV6Nhp+SEOC0tytBNywq0tDDjbCPOvU3dhCoAvnlg00I9ur1e\nX33hiP6Jdbi/hmB1iZ7c1aSwk37rmtl5GvCMt62cp2sX5Oqvnt6vjUvyVZKd6ndJs0pDe7+e39+s\n5/edVnV9h8JOyk5N1LrKXK0ozlRlfkAJceyxByC2FGak6MMbKvVvvzquT960WIsL0/0uKWYQrC6B\nc04/3tmoqoqcWT8FGhdn+of3r9GtX96sP/xxjb730fV03L0MzjkdONWj5/Y167l9zTrY3CNJWj4v\nQ5+5eYnetqpIuxu6uHoPQMy7/8aF+t7Wen35hSP66l1X+11OzCBYXYLdjV061tqnL/7WzN50ebLK\n8wL603es1P/+jz363tZ6ffj6Sr9LmlHGwk476zv15V8c1v5T3ersH5EpslXM7VfM08r5WcpNiyw8\nr2kMEaoAzAh56cn6yPWV+teXj+nTNy3WsnkZfpcUEwhWl+BHO4NKSYzT7VcW+13KtLnr2jI9v79Z\n/+/ZA3rTknwtLGDa90IGRyKLz5/b16wXDrSovW9Y8XGmxQXp2rSsUCuKM5XOxsUAZrj7b1yo775W\nry+/cFgPfugav8uJCXxnv0iDI2P6ac1J3X5F8ZzqE2Rm+uJvrdbb/nmzfv9HNfrRJzYoIZ61P+N1\n9g3rlwdb9PP9p7X5SKv6h8eUkZygm5YX6u2r5qmle1DJbGoNYBbJDiTpozcs0FdeOKL9J7u1cj7d\n2AlWF+n5/afVMziq98/yRevnU5SZor+8Y5U++/hufX3zcX3qJnpb1bf36Ys/O6QDp7pV396nsJMy\nUxJ0RUmWVhZnamFBmhLi4hQaGCFUAZiVPnbDAn371RP6x+cP6RsfrprzyxkIVhfpR9WNKslO1XUL\n8/wuxRfvXjNfz+1r1pd+cVjXLczTNRU5fpc0rUbHwnq9sSvSX+pAi4629EqSCjOSdeOSAq2cn6n5\n2am0QgAwZ2SlJurTNy/W3zxzUE/VnNQdV5X4XZKvCFYX4VRoQK8cbdNnbl4yZ6+MMzP93/dcqT1N\nId31b1v1d7+1Wu+5enb/IzqzhczLh1r18uFWdfaPKCHOtH5hru6+tlx9Q6Ns+QNgTvvYDQv17N5m\nfeEn+3TdwjwVZc7dTd0JVhfhyV1Nck56/9q5dxpwvNy0JP3nJzfqkz/Ypd/74W4daO7WH759eUw2\nSr0UI2Nh1TR2afPhVr10uFV7mkJyLrIX303LCnXLiiK9aWm+MqNr7CbbjBUAZqv4ONM/fmCNbv/K\nr/THT+7RN+fwKUGC1SS19Azq4c3H9aYl+Ww6qchltt//+Hr9n5/u09dfPq5DzT368gevVlbqzFvQ\nHw47HWju1paj7Xr1WJu2n+hQ//CYTFJZbkC3LC/S0qL0s6f4QgMjerrmlN9lA0BMWViQrs/fulx/\n8dP9+lH13N2tg2A1SX/x1D4NjIzpL969yu9SPHU5W98kxsfp/77nSq0oztSf/2Sf3vvgq/qHD6zR\n2vLYXnc1ODKmvU0h7ajr1M76DlXXd6qrf0SStLAgTe9bW6KNi/LV1DWgQBL/RABgsu7dUKnn9p3W\nXz69X9cvzlNpztybiOCnxiT8bG+zntnTrD94+zIton/Tb/jQ+gotLkjXJ3+wS+97cIvWlGbp3g2V\nesfqYqX4fCXc6FhYR1t7tScY0t6mkF481KqmrgGNhZ0kKT89WYsK0rUgL02LCtPPzrh19o8QqgDg\nIsXFmf7u/at165c26w9/XKvvf2zu7dbBT44JhPpH9Gc/2auVxZm6/8a50Wn9UqxfmKeX/mCT/uP1\nJn1nS51+/0c1+utnDujOdWV65+piLS3KUOIU9r0aCzsFO/t1tKX37Nfhll4dau7W4EhYkhRIildB\nRrKuX5inirw0lecFaNIJAB4ryw3oz965Up9/cm7u1sFPlQn8zTMH1NE3rG99ZN2UBoPZICMlUfdu\nqNQ911Voy7F2fWdLnb7+8jH960vHlJQQpxXzMrSqJEtXlmRpQX6asgOJyk5NUnYg8Q1ntsbCTqGB\nEXX1D6uzf0ShgWG19w7rZNegmrr61dQ1EL09oOHR8NnXFWQka3FBuj60vkJXlmTpiugxf7ijcbo+\nDgCYs+5cV6af7WvWX//XAZXmpOqWFUV+lzRtzDnny4GrqqpcdXW1L8eerFePtulD39imB968SJ+/\nbfmUHmu2XFl27lqsU6EBbT/Rob1NIe1t6tbekyH1DI7+xuuSEuIUSIrXWNid/Qo7p5GxN/77WZCR\nrPnZqSrNTlX3wIgKMpJVkJGswowUpSbRjBMALsf51tZejK7+Yd3zze062Nytr951tW69YmZvA2dm\nO51zVROOI1idX//wqG790q8UH2d69rNvmvK1QrMlWE0k7Jw6+4Z1dXlOZCZqYFihgRGF+kc0MDKm\n+DhTvJni40xxcaZDzT0KJMUrNTFegaQEBZLiFUiKV2ZqIjOIADCFLjdYSVL34Ig+8sh21QRD+qff\nXjOjm4dONlhxKvA8wmGnv/6vA2ro6Nfj91/n+wLs2STOTHnpyWro6JckmSxyOjA16bzjy+bgFSUA\nMFtkpiTqux9br49+e4d+74e7NTwa1geqZncbBn7lP0eof0T3f69aP9jWoI/fsGDObl0DAIAX0pMT\n9J37rtUNi/P1Bz+u1fe21vtd0pQiWI2z72RI7/qXV/Ty4Vb95R2r9CfvWOF3SQAAzHipSfH6t3ur\ndPPyQv3Zf+7VPd/cpoPN3X6XNSUIVlE/qm7U+x7copGxsH74iQ26d0PlnG3HDwCA11IS4/X1e67R\nn75jhWqDId3+5V/p80/UqqV70O/SPDWpYGVmt5rZITM7amafP8/zZmZfiT5fa2ZrvS/Ve+Gw0/YT\nHfrs46/rD35cq6rKHD39mRtivnM4AAAzUWJ8nD7+poV6+Q826SPXL9ATu4La9A8v6Z9/flh1bX1+\nl+eJCRevm1m8pK9JequkoKQdZvaUc27/uGG3SVoS/Vov6V+j/4054bDT642derr2lJ7Zc0qnu4eU\nkhinT9+0WJ9769JZs5EwAACxKjuQpC+8a6Xu3VChv332oL78whF9+YUjqsgL6M1LC/TmpQXasChv\nRu6AMZmKr5V01Dl3XJLM7HFJd0gaH6zukPRdF+ndsNXMss2s2Dnn2061fUOjqg2G1NjZr2BHvxo7\nBxTs7NeJtj619Q4rKSFOm5YW6J1r5uuW5YVKowM3AADTqjI/TQ/dc43q2vr08uFWvXy4VT+qDuq7\nr9UrMd5UmhNQaU5q9CugkuxUZQUSlZ4cab8T+W+CMlISYuYK/smkiRJJ49tVB/Wbs1HnG1Miybdg\ndaKtT3f921ZJUpxJxVmR/zGblhVq4+I8vWVFkTJSEv0qDwAARFXmp6kyP00fvr5SgyNjqq7r1JZj\nbapv71ewa0A/339abb3Db/j6u9eX62/ee+U0VvzGpnWaxszul3R/9G6vmR2armOfGHf7H6froBcn\nX1Kb30XMInye3uMz9Rafp/f4TD30Ib8LuAj/L/o1xSomM2gywapJ0vhuXqXRxy52jJxzD0t6eDKF\nzTVmVj2Zjq6YHD5P7/GZeovP03t8pogFk7kqcIekJWa2wMySJH1Q0lPnjHlK0r3RqwOvkxTyc30V\nAACAHyacsXLOjZrZpyU9Jyle0iPOuX1m9kD0+YckPSPpdklHJfVLum/qSgYAAIhNk1pj5Zx7RpHw\nNP6xh8bddpI+5W1pcw6nSL3F5+k9PlNv8Xl6j88UvrNIJgIAAMDlYksbAAAAjxCsfDbRdkG4OGb2\niJm1mNlev2uZDcyszMxeNLP9ZrbPzD7rd00znZmlmNl2M6uJfqb/x++aZgMzizez183sab9rwdxG\nsPLRuO2CbpO0UtJdZrbS36pmvG9LutXvImaRUUm/75xbKek6SZ/i7+hlG5J0s3NujaSrJN0avZoa\nl+ezkg74XQRAsPLX2e2CnHPDks5sF4RL5JzbLKnD7zpmC+fcKefcrujtHkV+cJX4W9XM5iJ6o3cT\no18sdr0MZlYq6R2SvuF3LQDByl9vtBUQEHPMrFLS1ZK2+VvJzBc9bbVbUouknzvn+Ewvz5ck/aGk\nsN+FAAQrABMys3RJT0j6Pedct9/1zHTOuTHn3FWK7FJxrZld4XdNM5WZvVNSi3Nup9+1ABLBym+T\n2goI8JOZJSoSqn7gnHvS73pmE+dcl6QXxbrAy7FR0rvNrE6R5RQ3m9n3/S0JcxnByl+T2S4I8I2Z\nmaRvSjrgnPsnv+uZDcyswMyyo7dTJb1V0kF/q5q5nHN/7Jwrdc5VKvI99JfOud/xuSzMYQQrHznn\nRiWd2S7ogKR/d87t87eqmc3MHpP0mqRlZhY0s4/5XdMMt1HSPYrMAuyOft3ud1EzXLGkF82sVpFf\nrn7unKNFADBL0HkdAADAI8xYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghWA\nCZnZWLSH1T4zqzGz3zezuOhzVWb2lQu8ttLM7p6+an/j2APRffligpndaWZHzYzeVcAsRLACMBkD\nzrmrnHOrFOkUfpukP5ck51y1c+53L/DaSkm+BKuoY9F9+SbNzOKnqhjn3A8lfXyq3h+AvwhWAC6K\nc65F0v2SPm0Rm87MvpjZm8d1aH/dzDIk/a2kN0Uf+1x0FulXZrYr+nV99LWbzOwlM/uxmR00sx9E\nt9SRma0zsy3R2bLtZpZhZvFm9vdmtsPMas3sE5Op38z+08x2Rmff7h/3eK+Z/aOZ1Uja8AbHXBW9\nvTt6zCXR1/7OuMe/fiaYmdmt0T9jjZm94OH/BgAxKsHvAgDMPM6549HwUHjOU/9L0qecc6+aWbqk\nQUmfl/S/nHPvlCQzC0h6q3NuMBpMHpNUFX391ZJWSTop6VVJG81su6QfSrrTObfDzDIlDUj6mKSQ\nc26dmSVLetXMnnfOnZig/I865zqi+/TtMLMnnHPtktIkbXPO/X50786D5znmA5K+7Jz7QXRMvJmt\nkHSnpI3OuREze1DSh8zsWUn/JulG59wJM8u96A8awIxDsALgpVcl/ZOZ/UDSk865YHTSabxESf9i\nZldJGpO0dNxz251zQUmKrouqlBSSdMo5t0OSnHPd0effJmm1mb0/+tosSUskTRSsftfM3hu9XRZ9\nTXu0lieijy97g2O+JulPzKw0+uc7Yma3SLpGkZAmSamSWiRdJ2nzmaDnnOuYoC4AswDBCsBFM7OF\nigSRFkkrzjzunPtbM/svSbcrMoP09vO8/HOSTktao8hyhMFxzw2Nuz2mC3+PMkmfcc49dxF1b5L0\nFkkbnHP9ZvaSpJTo04POubELvd4596iZbZP0DknPRE8/mqTvOOf++JxjvWuydQGYPVhjBeCimFmB\npIck/Ys7Zxd3M1vknNvjnPuipB2SlkvqkZQxbliWIrNBYUn3SJpoofghScVmti56jAwzS5D0nKT/\naWaJ0ceXmlnaBO+VJakzGqqWKzKrNOljRgPlcefcVyT9RNJqSS9Ier+ZFUbH5ppZhaStkm40swVn\nHp+gNgCzADNWACYjNXpqLlHSqKTvSfqn84z7PTO7SVJY0j5Jz0Zvj0UXhX9b0oOSnjCzeyX9TFLf\nhQ7snBs2szslfTW6LmpAkVmnbyhyqnBXdJF7q6T3TPDn+JmkB8zsgCLhaetFHvO3Jd1jZiOSmiX9\nTXS91p9Ket4iLShGFFlntjW6OP7J6OMtilxRCWAWs3N+4QSAWcPMKiU97Zy7wudSfk30lOTZBf0A\nZg9OBQKYzcYkZVmMNQhVZNau0+9aAHiPGSsAAACPMGMFAADgEYIVAACARwhWAAAAHiFYAQAAeIRg\nBQAA4JH/D0aLJbMKwCVmAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(candels['candels_ra'], candels['candels_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, candels, \"candels_ra\", \"candels_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add CFHTLS" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmU3Fd55//3raquXqp639Sr9l22ZFuWbWzAxDa2CcEQ\nSMAkZMKEcchA9pAw55czyUxmMmSyTGBYHIYACcE4QAyxwQt4X7Xakq19aS29qLeqXqu6u7b7+6Oq\n5EaW1C31t9b+vM7Rsbrq212Py7L60/c+3+caay0iIiIisnCuXBcgIiIiUiwUrEREREQcomAlIiIi\n4hAFKxERERGHKFiJiIiIOETBSkRERMQhClYiIiIiDpkzWBljvm6MGTTG7L/I88YY8wVjzHFjzOvG\nmGudL1NEREQk/81nxeqbwF2XeP5uYHXq133AVxZeloiIiEjhmTNYWWufB4KXuOQe4J9t0nagxhjT\n4lSBIiIiIoXC48DXaAO6Z33ck3rs7KU+qaGhwS5btsyBlxcRERHJrD179gxbaxvnus6JYDVvxpj7\nSG4X0tnZye7du7P58iIiIiJXxBhzej7XOXFXYC/QMevj9tRjb2Gt/aq1dqu1dmtj45yhT0RERKSg\nOBGsHgZ+LXV34I3AmLX2ktuAIiIiIsVozq1AY8x3gFuBBmNMD/BnQAmAtfZ+4FHgPcBxIAx8PFPF\nioiIiOSzOYOVtfbeOZ63wKccq0hERESkQGnyuoiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhY\niYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEPmnLwuznlgx5k5r/noDZ1ZqEREREQy\nQStWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxERERGHKFiJiIiIOETBSkRE\nRMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUrEREREYcoWImIiIg4RMFK\nRERExCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhYiYiIiDhE\nwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxERERGHKFiJiIiI\nOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUrEREREYcoWImI\niIg4RMFKRERExCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERh8wr\nWBlj7jLGHDHGHDfGfPYCz1cbYx4xxuwzxhwwxnzc+VJFRERE8tucwcoY4wa+BNwNbADuNcZsOO+y\nTwEHrbWbgVuBvzXGeB2uVURERCSvzWfFahtw3FrbZa2NAA8C95x3jQUqjTEG8ANBIOZopSIiIiJ5\nbj7Bqg3onvVxT+qx2b4IrAf6gDeA37XWJhypUERERKRAONW8fiewF2gFtgBfNMZUnX+RMeY+Y8xu\nY8zuoaEhh15aREREJD/MJ1j1Ah2zPm5PPTbbx4GHbNJx4CSw7vwvZK39qrV2q7V2a2Nj45XWLCIi\nIpKX5hOsdgGrjTHLUw3pHwEePu+aM8BtAMaYZmAt0OVkoSIiIiL5zjPXBdbamDHm08ATgBv4urX2\ngDHmk6nn7wf+AvimMeYNwAB/Yq0dzmDdIiIiInlnzmAFYK19FHj0vMfun/X7PuDdzpYmIiIiUlg0\neV1ERETEIfNasZK5PbDjTK5LEBERkRzTipWIiIiIQxSsRERERByiYCUiIiLiEAUrEREREYcoWImI\niIg4RMFKRERExCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhY\niYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxERERGH\nKFiJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUrERER\nEYcoWGVJJJZg18kg8YTNdSkiIiKSIQpWWXKgb4wf7O3lQN9YrksRERGRDFGwypJAKALAntMjOa5E\nREREMkXBKksCkzMAHB+cZCQcyXE1IiIikgkKVlkSDEVo8JcC8KpWrURERIqSglWWBEIRljf4WNnk\nZ8/pERJWTewiIiLFRsEqC6YiccKROPU+L1uX1jI6FeXE4GSuyxIRERGHKVhlQTDVuF7n87KhpYry\nEje7tR0oIiJSdBSssiAQSjau1/u9eNwurums4eDZccIzsRxXJiIiIk5SsMqC9IpVvS/ZvL51aR3x\nhOW17tFcliUiIiIOU7DKgsBkhMpSD15P8u1eUl1Ge205u08HsWpiFxERKRoKVlkQCEWo83t/5rHr\nltYyMD5Dz8hUjqoSERERpylYZUEwNEO972eD1eb2GkrcRk3sIiIiRUTBKsMisQTj0zHqUv1VaWUl\nbq5qq+b1nlEisUSOqhMREREnKVhlWDCcblz3vuW5azprmYklODGkmVYiIiLFQMEqw4KTqWDlf2uw\naqxMrmKNTUWzWpOIiIhkhoJVhp2bYXXeViCAv9SDASamNc9KRESkGChYZVggFKG8xE251/2W51zG\n4C/zMDGtFSsREZFioGCVYcFQ5ILbgGmVZR6tWImIiBQJBasMC0zOUHeBxvW0qrISxrViJSIiUhQU\nrDIolkgwGo5e8I7ANK1YiYiIFA8FqwwaDUex8JYZVrNVlpUQmokRT+hoGxERkUKnYJVBbx6+fOkV\nKwtMzmjVSkREpNApWGVQYDI1auESzetVZSUAujNQRESkCChYZVAgFMHrduEv9Vz0msqy5HPqsxIR\nESl8ClYZFAxFqPN5McZc9Jr0ipXuDBQRESl88wpWxpi7jDFHjDHHjTGfvcg1txpj9hpjDhhjnnO2\nzMIUmIxcctQCgE/T10VERIrGxfeoUowxbuBLwB1AD7DLGPOwtfbgrGtqgC8Dd1lrzxhjmjJVcKFI\nWEswHGFdS+Ulr3O7DP5SD+M6L1BERKTgzWfFahtw3FrbZa2NAA8C95x3zUeBh6y1ZwCstYPOlll4\nxqeixBP2gmcEnk+zrERERIrDfIJVG9A96+Oe1GOzrQFqjTHPGmP2GGN+zakCC1UgNWphrq1ASM6y\n0l2BIiIihW/OrcDL+DrXAbcB5cArxpjt1tqjsy8yxtwH3AfQ2dnp0Evnp+BkaobVJUYtpFWWeegb\nncp0SSIiIpJh81mx6gU6Zn3cnnpsth7gCWttyFo7DDwPbD7/C1lrv2qt3Wqt3drY2HilNReEQCiC\n2xiqy0vmvLaqvIRJTV8XEREpePMJVruA1caY5cYYL/AR4OHzrvl34BZjjMcYUwHcABxyttTCEgjN\nUOvz4rrEqIW09PT1kKavi4iIFLQ5twKttTFjzKeBJwA38HVr7QFjzCdTz99vrT1kjHkceB1IAF+z\n1u7PZOH5LhiKXPIom9k0y0pERKQ4zKvHylr7KPDoeY/df97Hfw38tXOlFS5rLYFQhGUNvnldr+nr\nIiIixUGT1zNgciZGJJaY94pVpVasREREioKCVQYEU6MW5hus/Jq+LiIiUhQUrDIgcC5YzT0cFJLT\n132lHs2yEhERKXAKVhmQPp6mumLuUQtpmr4uIiJS+BSsMiA0E8PrdlHinv/bW1VWoh4rERGRAqdg\nlQHhSJyKUvdlfY5WrERERAqfglUGhCNxfN7LOy2osqyEyWlNXxcRESlkClYZEIrEqPBe/oqVBQKT\nM5kpSkRERDJOwSoDwpE4vtLLW7FKT18fGFewEhERKVQKVhkQmrmyFSuAwYnpTJQkIiIiWaBg5bBY\nIsFMLHHZwaqqXCtWIiIihU7BymFTkTgAFZfZvJ6evq4VKxERkcKlYOWwUCpYXW6PldtlqCj1aMVK\nRESkgClYOSw8k5xFdblbgQBVZR6GtGIlIiJSsBSsHHZuxeoytwIh2cCuFSsREZHCpWDlsHAktWJ1\nmZPXITkkVD1WIiIihUvBymGhmXTz+pVuBc5o+rqIiEiBUrBy2FQkRqnHhcd1+W9tZVkJCQuBkLYD\nRURECpGClcNCkfgVrVbBrCGh6rMSEREpSApWDgtHYpc9aiEtfayN+qxEREQKk4KVw0IzC1+x0p2B\nIiIihUnBymHhSOyKRi0A+LUVKCIiUtAUrBwWXkCPlcflos7n1VagiIhIgVKwclAsnjqA+Qp7rACa\nKku1FSgiIlKgFKwcFI5c+QyrtKaqMh1rIyIiUqAUrBwUSk1dv9IeK4BmrViJiIgULAUrB51bsbqC\n42zSmqpKGZqcIaHp6yIiIgVHwcpBoRkHVqyqyognLIFQxKmyREREJEsUrBzkSI9VZSmgIaEiIiKF\nSMHKQeFUj1XFAlasmqrKAM2yEhERKUQKVg4KReKUlbhwu8wVf430itXAuFasRERECo2ClYPCM7EF\nrVYBNKaC1fCkVqxEREQKjYKVg8KROL4F9FcBlHrcVJZ6GJ5U87qIiEihUbByUCiy8BUrgHq/V3cF\nioiIFCAFKwct5JzA2Rr8pQS0FSgiIlJwFKwcFJ6J41vAOYFp9X4vAW0FioiIFBwFK4dE4wki8YQj\nK1b1/lICIa1YiYiIFBoFK4ekh4MuZOp6WoPPSzAUIa5jbURERAqKgpVD0sfZLOScwLR6fykJC6Nh\nbQeKiIgUEgUrh7x5nI0zPVaA7gwUEREpMApWDnnzOBsHVqx8GhIqIiJSiBSsHBJK91g5cFdgQ3rF\nSncGioiIFBQFK4eEUz1W5SXO9FgBmmUlIiJSYBSsHBKKxCkvcS/oAOa0mvISXEY9ViIiIoVGwcoh\n4UjMkf4qAJfLUOcrVY+ViIhIgVGwckg44szU9bQGv1cHMYuIiBQYBSuHhGecW7GC9LE2WrESEREp\nJApWDglF4o7MsEpr8Jeqx0pERKTAKFg5JByJ4XNyxcpXqnELIiIiBUbBygFTkTjRuKXCwR6rer+X\nyZkY09G4Y19TREREMkvBygEjqTP9nFyxatCxNiIiIgVHwcoBwVT4cbLHKn2sjRrYRURECoeClQPS\nK1ZO3xUIOtZGRESkkChYOeDcilWpk1uBOohZRESk0ChYOWAklO6xcrZ5HdRjJSIiUkgUrBwQDEcx\nQLmDW4EVXg/lJW71WImIiBSQeQUrY8xdxpgjxpjjxpjPXuK6640xMWPMh5wrMf+NhiOUe924zMIP\nYJ6tXsfaiIiIFJQ5g5Uxxg18Cbgb2ADca4zZcJHr/gr4idNF5rtgKOLoHYFp9X4dxCwiIlJI5rNi\ntQ04bq3tstZGgAeBey5w3W8D/wYMOlhfQRgJRxy9IzCtwefVXYEiIiIFZD7Bqg3onvVxT+qxc4wx\nbcAHgK84V1rhCIaijg4HTav3ewmEtGIlIiJSKJxqXv974E+stYlLXWSMuc8Ys9sYs3toaMihl869\nkVDE0eNs0hr8yfMCrbWOf20RERFx3nyCVS/QMevj9tRjs20FHjTGnAI+BHzZGPP+87+Qtfar1tqt\n1tqtjY2NV1hyfrHWEgxHMrRiVUosYRmfijn+tUVERMR581lm2QWsNsYsJxmoPgJ8dPYF1trl6d8b\nY74J/Mha+0MH68xbU9E4kVgiI83r6fMCh0MzVFeUOP71RURExFlzrlhZa2PAp4EngEPAd621B4wx\nnzTGfDLTBea79NR1n4NT19PePC9QDewiIiKFYF7LLNbaR4FHz3vs/otc++sLL6twjISigLMHMKe9\neV6gGthFREQKgSavL1AwAwcwp9Wf2wrUipWIiEghULBaoEycE5hWV6EVKxERkUKiYLVAI+kVqwz0\nWHncLmorStRjJSIiUiAUrBZoJBTBZaCsxPlgBTrWRkREpJAoWC1QIBShpsLr+AHMafU61kZERKRg\nKFgtUDAUod7nzdjXb/CXMqxjbURERAqCgtUCBSYj1GUwWNX7tWIlIiJSKBSsFigQmqHBX5qxr1/v\nK2VsKkokdsljGEVERCQPKFgtUCCU2RWrhsrk107ffSgiIiL5S8FqAWLxBKPh6LlBnpmQPtZGdwaK\niIjkPwWrBRgJJ4+zyWzzenpIqFasRERE8p3z48IXkUDqbr16fymjqZDltPpU/1ZAdwaKiEieeGDH\nmXld99EbOjNcSf7RitUCBFOrSJm+KxC0YiUiIlIIFKwWIH04ckMGe6wqSz143S6GFaxERETynrYC\nFyCYaiiv82Vu3IIxJjXLSluBIiKSefPd5pMLU7BagEDqnMCa8pKMvk6930sgpBUrERFxVjSeIDQT\nY2I6xnQ0zrIGX65LKngKVguQnmHlcmXmnMC0ep8OYhYRkSsXjsR4vWeMb7x4kjPBML2jU4QjcWIJ\n+zPX1fm83Lauic0dNRk7A7fYKVgtQGByJqON62n1fi/HBycz/joiIlIcApMz7Do1wo6TAXadCnLo\n7ATxVIhq8HtZ2ejHX+ah1OOm1OOirMSFtfBKV4Dv7enhuaND3L6+mY2tVRgFrMuiYLUAyQOYM9df\nldbgT65YWWv1B1xERN6id3SK3aeC7DyZ/HUs9cN4qcfFNZ01/NY7V3Lt0hq6BkNUlF78W/+1S2vZ\n3zvGk4cGeWDnGdpqyvnANW201pRn61+l4ClYLUBgMsL61qqMv069z8tMLEEoEsd/if8hRESk+MUT\nlqMDE+w+FWTXqRF2nwrSNzYNJIPU0voK7tzQzLIGH2215XhcyQEA/WMzlwxVAC5juLq9ho2t1ezt\nHuUnB/p5cFc3v3vbatwZbnspFvouvQCBUISGrGwFpoaETs4oWImILDLT0Th/+5OjnA6EOBUIcSYY\nZjqaAKCqzMPSeh/XLa1lab2P5qoyRwKQ22W4bmktFV4339p+mp2ngty0on7BX3cx0HfpKxSNJxib\nimZ01EJaek7W8GSEpfW6Y0NEpJhFYgn2do/yyokAr3QN8+qZUSKxZJBqqizl6rYaltZXsKzeR01F\nSUZbRNYtqWR5g4+nDg2wpb2Gcq87Y69VLBSsrtBIavxBJg9gTmuYtWIlIiLFxVrLkYEJXjg6zPPH\nhth1Ksh0NIExsH5JFR+7cSmRWIKldRVzbuU5zRjDe65q4cvPHOfZo4Pcvaklq69fiBSsrlB6Enom\nD2BOO3esjWZZiYgUhcDkDC8cSwapnx4cYGI6BkBjZSlbOmpZ2ehjeYOPCm/uv0231ZRzTWcNL58I\ncMPy+qzcDV/Icv9frEAFz61YZX4rMP2HWCtWIiKFKRZP8Fr3KM8fHeK5o0O80TuGtVBbUcKyeh+r\nm/ysavJTU5GfoeWODUt4o3eMJw70c++2xXew8uVQsLpCgVD6OJvM/09Q6nFTVeZhcELBSkSkUPSN\nTp0LUi8eH2ZiOobLwLWdtfzB7Wt459pGNrVW8+Cu7lyXOqfq8hLevrqRpw8PcnMgRKf6fS9KweoK\nBbK4FQjQUl3O2dTttCIikn+mo3F2ngzy/NEhnj82xNGB5Cyp6vIS1jZXsrq5klWN/nMN4Pt7x9nf\nO57Lki/L21c3sOtkkB+/cZZPvnOl5ipehILVFQqGIrhdhuoMnxOY1lJTxtmxqay8loiIzM1ay/HB\nSZ47OsTzx4bZ0RVgJpbA63axbXkdv3RdB5MzMZoqS4sihJR63NyxoZmHXuvljd4xrm6vyXVJeUnB\n6goFQjPUVmT+nMC0lupy3ugZy8priYjIhQ2OT/Pi8WFePD7MkwcHGE83nftLuW5pLaubkuMJvJ7k\nUE5fkc0evHZpLS8eH+al48MKVhdRXP/FsygwGTk3XyobWqvLCIQiTEfjlJVojoiISDYMT86woyvI\njpMBtncFzm3v1fm8LK33sarJz+o8bjp3mssYNrVV88zhQcIzsayPfygEekeuUCAUyeotpy2pc5r6\nx6ZZ1qCmQRERp1lr6RmZYs/pEXaeCrKjK8CJoRAAFV431y2t5YPXtnPzqgY2tFQVRNN5JqxpruTp\nw4McG5pks1at3kLB6goFQxE2tVVn7fVaq8sA6BubUrASEXHAdDTO/t4xXj0zwp7TI7x6ZpSh1N3X\n587c27iE5Q0+2mrKzx0V83rPGK8v4taM9tpyykvcHBtQsLoQBasrNDw5k7U7AuHNFauzo7ozUETk\ncqVXo149M8KDu7rpDoY5OzpN3FogubXXWVfBTSvqWVpfQXNVGa4iaDjPBJcxrGryc2xgAmttUTTm\nO0nB6gpEYgkmpmPZDVapFSvdGSgiMrd4wnK4f5zdp0bYdSrI7lMj9I8nfzAtcRvaayu4ZXUDHbUV\ndNSVU1mWnTu8i8WaZj9v9I7RPz5NS3V5rsvJKwpWVyA9db0ui83rZSVu6nxe+jTLSkTkLRIJy6H+\ncb70zAm6hiY5ORxiJnVwcXV5CUvrK7h+eR1L65KrUe4s3dFdrFY3VQJwbGBSweo8ClZXID11PZsr\nVpBctTo7qhUrERFrLacD4XO3/m/vCjASjgLJv5uvbq9heUMFy+p9i+aOvWyqKi9hSVUZRwcmeMea\nxlyXk1cUrK7AuanrWTgncLaW6nJ6RsJZfU0RkXwRDEV4+cQwLx5LzpHqGUn+oNlaXcbt65u5aWU9\nA+MzWRvcvNitbvbz8vEAM7E4pR6NAUpTsLoC57YCs7xi1VpTxs6Tgay+pohIrkxH4+w5PcILx4Z5\neF8vZ0ensUBZiYsVDX7et7mWVY1+6v1ejDFMRxMKVVm0prmSF44N0zUUYn1LVa7LyRsKVlcgkApW\nDb7sr1iNT8eYnInh11A2ESky6T6p9IrUrlNBpqMJPC5De205t61vYlVT5c+MPpDcWVpXgdft4ujA\nhILVLPrufAUCkzN4XIaq8uy+fa01qTsDR6dY3VyZ1dcWEcmEs2NT/M0TRzg2OMmJwUlCkTgATZWl\nXNNZy+pGP8sbfJTqxIm843G7WNHo49jgZK5LySsKVlcgmJq6nu3ZHek7L/rGphWsRKQgTc7E2NEV\n4IVjw7xwbOjcZHN/qYfVzZWsavKzstGvLb0Csbq5ksP9EwQmZ7Led5yvFKyuwPBkdo+zSTs3y0p3\nBopIgYgnLK/3jPLisWFeOD7Mq6dHiCUsZSUuti2v595tnYxPxWiuKtWgyQK0pskPwNGBCW5SsAIU\nrK5IMDRDQw7+AC2pLsMYNMtKRPLa6UCIF48n79579sgQU9Hk9l5rTRlvW9nAqiY/S+srKHG7AKjw\n6ltRoar3l1Lv83J0YJKbVjbkupy8oD/NVyAQitBeW5H11y1xu2j0l2rFSkTySjAU4ZUTAV48PsSL\nx4fpDib/jmqpLmNDSxWrmpPbe7rppjitbq5kz+kgsXgCTyosL2b6U34FgjnaCoTkmYFntWIlIjkU\njsTYdWqErz3fxYmhyXOr6KUeFysa/fxCagxCgz/7vaiSfWua/GzvCnAqEGZVamtwMVOwukwzsTgT\nMzEaMnSczQM7zlzy+Vg8QZ/OCxSRLIrGE+zrHuWl4wFeOjHMa2dGiMYtbpehs66C29c3s6rJrzEI\ni9TyRh9ul+HYwISCFQpWl+3N4aC5adKrKS+hayikE8VFJGMSCcvh/glePjHMyycC7OgKEIrEMQY2\ntlbxH29Zzs0rG+gaCuH1aOtnsSv1uFlaX8HxIY1dAAWry/bmcTa52QqsLi9hKhpnbCqq869ExBHp\nc/deOjHMy8cDvNIVOPdDZIPfy6a2alY2+lnR6DvXaN4zMqVQJecsq/fxzOFBIrHEov9zoWB1mdJT\n17N9AHNadSpM9Y1OK1iJyBUbHJ/m5RMBXjqeXJXqTd0Us6SqjFvXNuIyRvOkZN7aasqxJAe+Lq33\n5bqcnFKwukyByRkg+wcwp6X/kjs7NsWGVh0hICLzMx2Ns/NkkBeODfHIvrP0jycbzstL3Kxo9HHd\n0lpWquFcrlBbbXKAdc+IgpWC1WXK1QHMaelgpVlWInIp1lpODIV49sggzx0dYsfJYHKbxu2io66c\nOzcuYVWjn5aaMlwKUrJAVWUlVJV5zq18LmYKVpcpEIpQ4jZUleXmrass8+BxGc2yEpG3mI7G+ctH\nD3Gkf4KjAxOMhKNA8ty9bcvqWNXkZ1m9b9H3wEhmtNVW0DOi700KVpcpMDmTk3MC01zG0FxVpllW\nIgIke6WeOjzIU4cGePH4MNPRBCVuw6pGP+9Y08ja5kr1Y0pWtNWUc+jsONPROGWL+NBsBavLFAxF\nqM/RqIW0luoy+rRiJbIoWWs5eHacJw8O8tThAV7vGQOgvbacj1zfiQGWN/g0AVuyrj3VZ9U7OsXK\nxsU7z0rB6jINT0ZyNmohraWmnH3dozmtQUSyZyYWZ3tXkC8/c5zD/ROMTUUxQEddBe/e0My6liqa\nK3WIseRWW00qWI0oWMllCIYiLK3P/jmBs7VWl/HE/mkSCYtLU45FitLQxAzPHElu8b1wbJhwJE6J\n27C6qZLb1zexdkmVzt6TvOIr9VBbUULPIt9Rmdf/lcaYu4DPA27ga9baz533/K8AfwIYYAL4LWvt\nPodrzQuByZm82AqMxBMEQhEaK3Nbi4g4I5FIbvE9fXiQpw4PnluVXlJVxvuvaeP29U10B6co0Raf\n5LG22gp6R8K5LiOn5gxWxhg38CXgDqAH2GWMedhae3DWZSeBd1prR4wxdwNfBW7IRMG5NB2NE4rE\n82IrEJKzrBSsRArXxHSUF48N88yRQR57o5+JmRiQ7FW5fX0T65ZU0VJdhjGG/rEZhSrJe+015ezv\nHSM8E6Nika6ozuffehtw3FrbBWCMeRC4BzgXrKy1L8+6fjvQ7mSR+SLXU9fTWquTwapvdJqri/Kd\nFilO1lqODU7yzOFBnjkyyO5TI8QSlsoyD8safKxtrmR1s5/KMk07l8J0blDo6BRrmitzXE1uzCdY\ntQHdsz7u4dKrUb8BPLaQovJVcDK3w0HTWmrKgOSKlYjkt6lIarbUwARH+ycYnUrOllpSVcbbVjaw\ndkklnXUVuNUvKUXgXAO7gpUzjDHvIhmsbrnI8/cB9wF0dnY6+dJZMRzK7XE2afU+L16PS7OsRPJU\ndzDMM0eLlYkxAAAdBElEQVQGefrwIK+cCDCTmni+qsnPu9Y2sWZJpc7gk6JUVuKmwe+ldxEPCp1P\nsOoFOmZ93J567GcYY64Gvgbcba0NXOgLWWu/SrL/iq1bt9rLrjbH0itWud4KNMbQqllWInkjnrC8\ndmaEpw4P8vShQY4MTACwrL6Cj96Q/CFyeb1mS8ni0F5bQdfQZK7LyJn5BKtdwGpjzHKSgeojwEdn\nX2CM6QQeAj5mrT3qeJV5InBuxSr3U4xbqsu1YiWSQ2PhKH/52JvHx4QjcVwGljX4eM+mJaxbUkWD\nbi6RRaitppy93aOMT0dzXUpOzBmsrLUxY8yngSdIjlv4urX2gDHmk6nn7wf+K1APfDk1oC5mrd2a\nubJzIxCK4HW78mJ2TEtNGdtPXHBhUEQywFrL8cHJc+MQ9pweIZ6wVHjdrG2uZF1LFaub/Iv6KA8R\neLPPqm+RbgfOKyFYax8FHj3vsftn/f4TwCecLS3/BCcjOT0ncLbW6nIGJmaIJ6yaXkUyZCoS55Wu\nYZ45PMQzRwbPHTC7vqWKT75zBfG4pb2uAlce/J0gki9aa8oxsGgHheZ+6aWADE7M0FCZ+21ASK5Y\nxROWwYlpWlLjF0Rk4U4Nh3jmyCDf2XmGrqEQsYQ9d6jxPVtadaixyBy8HhdNVaWLtoFdweoydAfD\nrGvJj9tHZ8+yUrASuXLT0TjbuwI8e2SIZ48MciqQnBrd4Pdyw/I61iypVOO5yGVqq6ngSP841tq8\n2OXJJgWreYonLN0jYd69cUmuSwHOn2VVm9tiRApMz0iYZ44M8czhQV4+Mcx0NEGpx8XbVtbz8ZuX\nc+vaRl46rh5GkSvVXlvOq2dG6BubPtdztVgoWM1T3+gU0bjN+QHMaelVqrOjujNQZC6xeIJXz4zy\n1OEBnj40yLHB5K3gdT4v13TUsqa5khWNvnNHxihUiSxMOky90TOqYCUXdiaY3B5YWpcfwaqqzIPP\n66ZP09dFLmhsKspzR4d4+tAAzx4dYjQcpcRt2La8jtXNlaxtrqTBnx83o4gUmyXVZbgM7OsZ465N\nLbkuJ6sUrObpdKrvojNPVqyMMbTWlNMdVLASSesOhvmrxw9z8Ow4p4ZDJCxvjkPYpHEIItlS4nax\npLqMN3rGcl1K1ilYzdPpYAiv25VXjeLrWqp49fRIrssQyRlrLQfPjvPEgQF+cqCfw/3JieeNlaXc\nsqqR9S2VdGgcgkhOtNVU8HrP6KJrYFewmqczgTDtdeV5NTNqU2sVj+zrYyQUoTbHx+yIZMMDO86Q\nsJbuYJgDfeMc6BtjJBzFAEvrK7h70xLWt1TRkOPzPEUEOmrL2XUqyKlAmOUNvlyXkzUKVvN0OhDO\nm/6qtE1t1QAc6BvnltUNOa5GJHMSCcueMyM8sq+P/X1jTEzHcBtz7lDjdS1VeXEigoi8qb02+T1z\nX/eogpX8LGstpwMhti2vy3UpP2NjaxUA+/vGFKyk6Fhrea17lB+/fpZH3zjL2bFpPC7D2iWVbGqt\nZu2SSvVLieSxpqpSKrxu9naP8v5r2nJdTtYoWM1DIBQhFInTmWcrVjUVXtpqytnfu/iaA6V4HRuY\n4Id7e3l4Xx/dwSm8bhfvWNPIZ+9eR3AyQqnClEhBcBnDprZq9naP5rqUrFKwmof0HYH5MsNqtk1t\nVRzoG891GSIL0js6xV88cpB9PaOcHZvGAKua/Hzw2nY2tFRR7nUTmokrVIkUmC0dNXzzpVNEYgm8\nnsVxeoGC1TycCYaAPA1WrdU8cWCAiekolWUluS5HZN5GwxF+/MZZ/n1vHztPBoFks+t7r27hqrZq\n/XkWKQKb22uIxBMc7h/n6vaaXJeTFQpW83A6EMaYNxvx8km6gf3Q2Ym86wETOV84EuOpQ4P8+94+\nnjs6SDRuWdno4w/vWANAve7mEykqmzuS36P2dY8qWMmbzgTCtFSV5WWj7Ma2VAN775iCleSlmVic\n//GjQ+zrGeXw2Qki8QRVZR5uWF7Plo4aWqrLFtWMG5HFpK2mnAa/l73dY3zsplxXkx0KVvNwOhjO\nm4nr52uqLKOpspT9fWpgl/wRjSd46fgwP379LE8c6Gd8OkaF182Wjhqu7qhmWb1PQztFFgFjDJvb\na9jXs3ga2BWs5uF0IMRt65pzXcZFbWqr5kCvGtglt6LxBK+cCCTD1MF+RsNRKks93LGhmcqyElY1\n+fNqwK6IZMeWjhqePjLI+HSUqkXQO6lgNYfJmRjDk5G8XbGC5Dyr544OMR2N5+V2pRSvWDzB/3z0\nEG/0jHHw7DjhSJxSj4v1LVVcdXU1q5r8lLgXx51AInJhmztqsBb294zxtlXFP3NRwWoOZ/J41ELa\nxtZq4gnL4f4JtnQsjuZAyZ14wiZXpt7o4/H9/YyEo3g9LtYvqeSqtmpWN1cqTInIOVe3JxvY9/aM\nKljJm6MWltXn7zj+TbMa2BWsJBPSU9Af3tvHj14/y/DkDBVeN7evb6aqzKMwJSIXVVPhZXmDj32L\nZFCogtUc0sNB83krsK2mnJqKEg6ogV0c9vknj/HamRH29YwyEo6eO1Lmjg3NrFuiMCUi87O5vZpX\nugK5LiMrFKzmcDoYpraiJK8b7owxbGqtZr8a2MUBo+EIj+zr4/uv9rKvexSXgZWNfm5b18yG1ir1\n8YnIZdvcUcMP9/bRPzbNkuqyXJeTUQpWczgTCNOZx9uAaRvbqvjGi4vr2ABxTiye4PljQ3x3Vw9P\nHR4gGresW1LJezYtYXNHjaagi8iCbE61qeztHuWu6iU5riazFKzmcCoQ4trO2lyXMadNrdVE4gmO\nDU6wsbU61+VIgTgdCPHd3d18f08PA+Mz1Pu8fOzGZXzwujY2tlbzwI4zuS5RRIrAhpYqPC7Dvp5R\n7tqkYLVoRWIJ+kan+MA1bbkuZU4bW5MN7Af6xhWs5JKmo3Ee39/P5586xsnhEAZY01zJ7eubWbek\nCrfLsK97jH3d6tkTEWeUlbhZ31K1KBrYFawuoXd0ioSFpQWwFbis3ofP6+ZA7xhs7ch1OZKHDveP\n8+DObn7wWi9jU1HqfF7evaGZazprqS7XVp+IZNbmjmp++FofiYTFVcTDghWsLuF0IDlqIZ9nWKW5\nXIaNrdXs71MDu7wpHInxyL4+HtjZzb7uUbxuF3duWsK913fQNRzSsTIikjWb22v4l+1n6BqeZFVT\nZa7LyRgFq0s4E0wNB63L/2AFyQb2B3d2E09YHR2yyP3tT46w82SQvd2jzMQSNFWW8vNXtXBNRw0V\npR5OBcIKVSKSVdd0phvYxxSsFqvTgTDlJW4aK0tzXcq8bGqtZip6ipNF/tOAXNhUJM4jr/fx7R1n\n2Nc9isdluKqtmm3L6+isq8AoSIlIDq1o8OMv9bCve5QPXdee63IyRsHqEk4HQgX1DWlTW7JpfX/v\nuILVInJyOMS3t5/me3t6GJuKsqrJn1yd6qyhwqv/xUUkP7hchqvbq9nXU9wN7Ppb9xJOB8Isa8j/\nxvW0lY0+Sj0u9veO8f4CuJNRrlw8YXnq0ADf2n6aF44N43EZ7ty0hI/duJQbltfxnZ3duS5RROQt\nNnfU8LUXupiOxot22LCC1UUkEpYzwTC3rm3MdSnz5nG7WN9Sxes9uk2+WH3thS52nxphx8kAI+Eo\n1eUl3L6+ma3LaqkqK6FrKETXUCjXZYqIXNANy+v4yrMneKUrwLvWNuW6nIxQsLqIwYkZZmKJgpi6\nPts71zTyhaeP0R0M01EgTfcyt8P94/zTy6f4/p4eonHL8gYfd29qYX1LlW5UEJGCcdPKenxeNz89\nOKBgtdicG7VQYOHkl6/v4AtPH+N7u7v5g3evzXU5sgCJhOXpw4N84+WTvHQ8QKnHxeb2Gm5aWU9L\ndXmuyxMRuWylHjfvWNPIU4cGSNyzqSjnWSlYXcTp9KiFAphhNVtbTTnvXNPId3f38Du3rcbj1rmB\nhWZyJsb3d3fzzZdPcSoQpqW6jD++ay33Xt/JY/v7c12eiMiC3LGhmcf297O/b4yr22tyXY7jFKwu\n4kwgjNtlaK0pvJWBe7d18pvf2sOzR4a4fUNzrsuRefri08fZ3hVg16kgM7EEHbXlfOT6Dja2VuN2\nGYUqESkK71rbhMvATw8OKFgtJqcCIdpqyikpwBWfn1vXRGNlKQ/uOqNgleestew8GeTrL53kJwcG\nMCY5NuPmlQ3qkRORolTr87J1WR0/PTjAHxZhy4qC1UV0DYUKbhswrcTt4pe3tvOVZ09wdmxK/Th5\naDoa55F9fXzz5VMc6BunpqKEd6xp5MYV9Tq3T0SK3rs3NPM/fnyoKG+0KrzlmCw4OzbFwbPj3Lii\nPtelXLEPb+0kYeF7u3tyXYrM0j82zd88cYS3fe5pPvP914nEEvyvX7yKVz57G3duXKJQJSKLwm3r\nk7spTx4ayHElztOK1QX85EDyP/Rdm5bkuJIr11lfwS2rGvjXXd186l2rdEt+Dllr+ctHD7O9K8CB\nvjGshXUtVXzgmjZWNPiwFn7wWm+uyxQRyZrlDT5WNfl58tAAH795ea7LcZSC1QU8tv8sa5r9rGz0\n57qUC3pgx5k5r/noDZ3cu62TTz3wKi8cG+LWIp0Xks8mpqP84LVe/mX7aY4OTFJW4uJtKxu4cUU9\ndT5vrssTEcmpOzY08/+e72JsKlpUq/UKVucJTM6w82SQT79rVa5LWbA7NjRT7/PynZ1nFKyyaH/v\nGN/ZeYYfvNZLOBJnU1sVv3hNG1e31+D1aPddRATg9vXNfOXZEzx7ZJB7thTPMWwKVud58tAACQt3\nFvA2YJrX4+JD17Xzjy+eZHBimqbKslyXVLTGp6M8vLePB3edYX/vOF6Pi1+4upWP3bSUze3VOrtP\nROQ8WzpqaPB7efKQglVRe2x/Px115Wxoqcp1KY748PUd/MPzXXx/Tw//+dbCX4XLJ4mEZdepIH/1\n+BHe6B0lGrcsqSrjF65uYUtHLeVeNwf7xjnYN57rUkVE8o7bZfi5dU08tr+fSCxRNCv6ClazjE9H\neen4MB+/eTnGFEez94pGPzeuqONbr5zm3us7qVVvz4KdDoR46NVeHnqth+7gFF6Piy0dtVy/rJa2\nmvKi+bMjIpJpd2xYwnd397DzZJBbVjfkuhxHKFjN8szhQaJxy50bC38bcLY/vmsdH/nqdu771m6+\n9Rs3UFbiznVJBWc0HOGx/f089GoPu06NYAzcvLKBP7hjDWPhWNH8pCUikk23rGqg1OPiyUMDClbF\n6LE3+mmqLOWajuIasX9tZy1/98ub+fQDr/GZ77/O5z+8pSgPvnTaVCTOf3vkAPu6Rzk6MEncWhr8\npbx7QzNbOmqoqfAyFSme5WsRkWwr97p5++oGfnpwgD/7hQ1FseKvYJUyFYnz7NFBfum6jqIMHe+9\nupWekSk+99hhOuvK+cyd63JdUl6ajsZ57ugQj75xlp8eHCAciVNV5uFtK+vZ3FFDS3VZUfyPLyKS\nL+7Y0MyThwbZeTLIDQU8mDtNwSrluaNDTEcT3F0EdwNezG++YwVngmG+9MwJ2msruHdbZ65LygtT\nkTjPHR3kx2/08/ShAUKROLUVJdyzpRVfqYdl9T5cClMiIhnx3qtb+fsnj/FnDx/gkd++pSDP6J1N\nwSrl8f1nqakoYdvyulyXkjHGGP77+zbSOzLFn/5wP6015bxzTWOuy8qJwfFp/tdjhzl0dpwTQ5NE\n45YKr5uNrdVc1VbN8gafptWLiGSBr9TDn79vI7/5rT1846WT3PeOlbkuaUEUrIBILMFThwa5a9MS\nPAWelOficbv40q9cyy/d/wr3/fNu/tPbV3DfO1dQVVY8U28vJBpP8HrPKC8eC/D04QH29YwBUFNR\nwnVL69jQUqUwJSKSI3duXMLt65v5Pz89xnuuaqG9tnAPZlawAl46MczETKygzwY831zH3rx/SysH\n+sb54jPH+faO03z651bzqzd2UuopjjsG4wnLkf4JXj4xzMsnAuzoChCKxDEGNrfX8Jk71zITTdBc\nVaqeKRGRPPDn79vAHX/3PH/+8EG+9h+25rqcK6ZgBTyxvx9/qYebVxXHrZ7zUVlWwhfuvYb/9PYV\n/NXjh/mLHx3k6y+e5PduX81dm5ZQWWArWMOTM+w9M8pr3SO8dmaU3adHiMQSADT4vWxqq2Zlo58V\nDT4qSvXHXkQk37TXVvD7d6zmLx89zBMH+gt29NGi/w6zv3eMH79+lneta1qU852uaq/mXz5xAy8c\nG+Jzjx3mM99/nc8+9AZbOmq4eVUDb1/dwJaOmrxpJhyfjnJ6OMzh/nGO9E9wZGCCw/0TDE3MAMlJ\nvhtaqri2s4aO2gqWN/ioqdBQVBGRQvDxm5fz0Ku9/PnDB7hlVQO+AvxBuPAqdtCe00F+/Ru7qCov\n4TPvXpvrcnLq7asbuXllAztPBXnx2DAvHB/mi08f4wtPHaPC62ZFo4+l9T6W1lWwrN5HZ30FDf5S\nqstLqC4vWfAsp3jCMj4VJRCaYWgiwvDkDMOTMwyMz9A9EqY7GOZMMMxoOHruczwuQ1NVKR215Wxd\nWkt7bQVtNeWaKyUiUqBK3C7+5weu4kP3v8z/+elR/vS9G3Jd0mVbtMHqpePDfOKfdrOkuox/+cQN\ntNWU57qkrLtYH1ZrTTkf3trB+65upa22jO1dQU4OhzjQO8bj+/uJJ+xbPsfndVNdXkK5102J24XX\n40r+M7XSFbeWRMKSsJa4hZlonHAkTjgSY3ImxnQ0ccFaStyGtppyOuoq+PmrWuisq+B0IExzVRn1\nfq/GIIiIFJnrltZy77ZOvvHyKda1VPGL17QV1HzJeQUrY8xdwOcBN/A1a+3nznvepJ5/DxAGft1a\n+6rDtTrmyYMD/OcHXmV5vY9vfWIbTZVluS4pL5V73QRDUdY0V7KmuRJIriyNhiMEwxFCM3GmonGm\nIjGmIsnfR+OWeMIyHY0TmokRS4UwlzEYAy6S//S4DHU+L0uqyyhNBbGyEjf+Ug/+Mg/+Ug++Ug8V\nXvdbwtOmtuqsvxciIpI9f3LnOg72jfNH39vHt7af5r++dwPXLa3NdVnzMmewMsa4gS8BdwA9wC5j\nzMPW2oOzLrsbWJ36dQPwldQ/80o0nuCRfX388fdfZ0NrFf/08W06lPgyuV2Gen8p9f7SXJciIiJF\nqrqihId+62384LVe/vcTh/ngV17mfZtb+ZO71+X9DtN8Vqy2AcettV0AxpgHgXuA2cHqHuCfrbUW\n2G6MqTHGtFhrzzpe8TwlEpZTgRD7ekbZ1z3Gvp5RDvSNE4kl2Lasjn/89a0Fd+ebiIjIYuFyGT54\nXTt3bVrCPzx3gn94vosnDvRzbWctyxp8LG9I9vwub0j2/ebLuKD5BKs2oHvWxz28dTXqQte0ATkL\nVq91j/DBr7wCQHmJm6vaqvkPNy1lc0cNt69vXpR3AIqIiBQaX6mHP3j3Wj68rZOvPHucA33jPL7/\nLCOzbmb6peva+etf2pzDKt+U1eZ1Y8x9wH2pDyeNMUey9dqHge9l9iUagOHMvoSk6L3OHr3X2aP3\nOnv0XmfJr2Tpdf4m9SvDls7novkEq16gY9bH7anHLvcarLVfBb46n8IKjTFmt7W2cEfFFhC919mj\n9zp79F5nj95ryaT5DPzZBaw2xiw3xniBjwAPn3fNw8CvmaQbgbFc9leJiIiI5MKcK1bW2pgx5tPA\nEyTHLXzdWnvAGPPJ1PP3A4+SHLVwnOS4hY9nrmQRERGR/DSvHitr7aMkw9Psx+6f9XsLfMrZ0gpO\nUW5x5im919mj9zp79F5nj95ryRiTzEQiIiIislA6VE1ERETEIQpWC2SMucsYc8QYc9wY89lc11PM\njDFfN8YMGmP257qWYmaM6TDGPGOMOWiMOWCM+d1c11SsjDFlxpidxph9qff6v+W6pmJnjHEbY14z\nxvwo17VIcVKwWoBZx/3cDWwA7jXGFN5R3IXjm8BduS5iEYgBf2it3QDcCHxKf64zZgb4OWvtZmAL\ncFfqzmrJnN8FDuW6CCleClYLc+64H2ttBEgf9yMZYK19Hgjmuo5iZ609mz5E3Vo7QfKbUFtuqypO\nNmky9WFJ6pcaXzPEGNMO/DzwtVzXIsVLwWphLnaUj0hRMMYsA64BduS2kuKV2praCwwCP7XW6r3O\nnL8H/hhI5LoQKV4KViJyQcYYP/BvwO9Za8dzXU+xstbGrbVbSJ5Ysc0YsynXNRUjY8x7gUFr7Z5c\n1yLFTcFqYeZ1lI9IoTHGlJAMVd+21j6U63oWA2vtKPAM6iPMlJuB9xljTpFs2/g5Y8y/5LYkKUYK\nVgszn+N+RAqKMcYA/wgcstb+Xa7rKWbGmEZjTE3q9+XAHSTPjBeHWWv/i7W23Vq7jOTf1U9ba381\nx2VJEVKwWgBrbQxIH/dzCPiutfZAbqsqXsaY7wCvAGuNMT3GmN/IdU1F6mbgYyR/ot+b+vWeXBdV\npFqAZ4wxr5P8Qe2n1lqNARApYJq8LiIiIuIQrViJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGI\ngpWIiIiIQxSsRERERByiYCUiczLGxFPzrA4YY/YZY/7QGONKPbfVGPOFS3zuMmPMR7NX7Vteeyp1\nFl9eMMZ82Bhz3BijeVUiRUjBSkTmY8pau8Vau5HkdPC7gT8DsNbuttb+ziU+dxmQk2CVciJ1Ft+8\nGWPcmSrGWvuvwCcy9fVFJLcUrETkslhrB4H7gE+bpFvTqy/GmHfOmtb+mjGmEvgc8PbUY7+fWkV6\nwRjzaurX21Kfe6sx5lljzPeNMYeNMd9OHa+DMeZ6Y8zLqdWyncaYSmOM2xjz18aYXcaY140xvzmf\n+o0xPzTG7Emtvt036/FJY8zfGmP2ATdd5DU3pn6/N/Waq1Of+6uzHv+HdDAzxtyV+nfcZ4x5ysH/\nDCKSpzy5LkBECo+1tisVHprOe+qPgE9Za18yxviBaeCzwB9Za98LYIypAO6w1k6ngsl3gK2pz78G\n2Aj0AS8BNxtjdgL/CnzYWrvLGFMFTAG/AYxZa683xpQCLxljfmKtPTlH+f/RWhtMnc23yxjzb9ba\nAOADdlhr/zB19ufhC7zmJ4HPW2u/nbrGbYxZD3wYuNlaGzXGfBn4FWPMY8D/A95hrT1pjKm77Dda\nRAqOgpWIOOkl4O+MMd8GHrLW9qQWnWYrAb5ojNkCxIE1s57baa3tAUj1RS0DxoCz1tpdANba8dTz\n7wauNsZ8KPW51cBqYK5g9TvGmA+kft+R+pxAqpZ/Sz2+9iKv+Qrw/xlj2lP/fseMMbcB15EMaQDl\nwCBwI/B8OuhZa4Nz1CUiRUDBSkQumzFmBckgMgisTz9urf2cMebHwHtIriDdeYFP/31gANhMsh1h\netZzM7N+H+fSf0cZ4LettU9cRt23ArcDN1lrw8aYZ4Gy1NPT1tr4pT7fWvuAMWYH8PPAo6ntRwP8\nk7X2v5z3Wr8w37pEpHiox0pELosxphG4H/iiPe8Ud2PMSmvtG9bavwJ2AeuACaBy1mXVJFeDEsDH\ngLkaxY8ALcaY61OvUWmM8QBPAL9ljClJPb7GGOOb42tVAyOpULWO5KrSvF8zFSi7rLVfAP4duBp4\nCviQMaYpdW2dMWYpsB14hzFmefrxOWoTkSKgFSsRmY/y1NZcCRADvgX83QWu+z1jzLuABHAAeCz1\n+3iqKfybwJeBfzPG/BrwOBC61AtbayPGmA8D/zfVFzVFctXpayS3Cl9NNbkPAe+f49/jceCTxphD\nJMPT9st8zV8GPmaMiQL9wF+m+rX+FPiJSY6giJLsM9ueao5/KPX4IMk7KkWkiJnzfuAUESkaxphl\nwI+stZtyXMrPSG1JnmvoF5Hioa1AESlmcaDa5NmAUJKrdiO5rkVEnKcVKxERERGHaMVKRERExCEK\nViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHPL/A4EfykOYO4yyAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(cfhtls['cfhtls_ra'], cfhtls['cfhtls_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, cfhtls, \"cfhtls_ra\", \"cfhtls_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add DECaLS" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4nGd97//3d0b7aN9lLZb33XGCsxMSlhCHBEI5tEAK\nFE77S9MDpTule+npdQ4crnKVliXNoRzglAA9QBISkjgQkjirEyde5X3Xvu+7NPfvj5lxhGNbsv2M\nnpnR53VduqSZeaTnq7EsfeZ+7vt7m3MOEREREbl8Ab8LEBEREUkVClYiIiIiHlGwEhEREfGIgpWI\niIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeSfPrxKWlpa6+\nvt6v04uIiIjM2WuvvdblnCub7TjfglV9fT07duzw6/QiIiIic2Zmp+ZynC4FioiIiHhEwUpERETE\nIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRE\nRMQjClYiIiIiHlGwEhEREfGIgpWIiIiIR9L8LkDgge2nZz3m7mvr5qESERERuRwasRIRERHxiIKV\niIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGI\ngpWIiIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER\n8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiIiHhEwUpERETEI7MGKzP7lpl1mNm+\n8zxuZvYvZnbUzPaY2VXelykiIiKS+OYyYvVtYMsFHr8dWBF9uwf4xuWXJSIiIpJ8Zg1WzrltQM8F\nDrkL+K6LeBkoNLMqrwoUERERSRZezLGqBhpn3G6K3iciIiKyoMzr5HUzu8fMdpjZjs7Ozvk8tYiI\niEjceRGsmoHaGbdrove9iXPufufcZufc5rKyMg9OLSIiIpI4vAhWPwU+Hl0deB3Q75xr9eDrioiI\niCSVtNkOMLPvA7cApWbWBPwdkA7gnLsPeAx4D3AUGAE+Ga9iRURERBLZrMHKOfeRWR53wKc8q0hE\nREQkSanzuoiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERj8w6eV0u3wPbT/tdgoiIiMwDjViJiIiI\neETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8oWImI\niIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhY\niYiIiHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGP\nKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUrERER\nEY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsR\nERERjyhYiYiIiHhEwUpERETEIwpWIiIiIh6ZU7Aysy1mdsjMjprZ587xeIGZPWJmu82swcw+6X2p\nIiIiIolt1mBlZkHga8DtwFrgI2a29qzDPgXsd85dAdwC/JOZZXhcq4iIiEhCm8uI1TXAUefccefc\nBPAD4K6zjnFAnpkZkAv0AFOeVioiIiKS4OYSrKqBxhm3m6L3zfRVYA3QAuwF/sA5F/akQhEREZEk\n4dXk9duAXcAiYBPwVTPLP/sgM7vHzHaY2Y7Ozk6PTi0iIiKSGOYSrJqB2hm3a6L3zfRJ4Ccu4ihw\nAlh99hdyzt3vnNvsnNtcVlZ2qTWLiIiIJKS5BKtXgRVmtiQ6If3DwE/POuY08E4AM6sAVgHHvSxU\nREREJNGlzXaAc27KzD4NbAWCwLeccw1mdm/08fuA/w5828z2Agb8uXOuK451i4iIiCScWYMVgHPu\nMeCxs+67b8bHLcC7vS1NREREJLmo87qIiIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4\nRMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiI\niHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJ\niIiIeETBSkRERMQjClYJZnRimh+91khL36jfpYiIiMhFSvO7AHnDxFSY77x0ktM9I2SnB1lUmO13\nSSIiInIRNGKVIKamw3xv+ykae0bIy0rjdM+I3yWJiIjIRVKwSgBh5/jPHY0c6Rji166s5qq6Ilr6\nxpicDvtdmoiIiFwEBSufOed4cGcz+1oGeM+GKjbXF1NXnMO0czT3ap6ViIhIMlGw8pFzjsf3tfHa\nqV7evqqcty4vBaCuOAdAlwNFRESSjIKVj9oGxnj+aBfXLinmXWvKz9wfykyjNDeDUwpWIiIiSUXB\nykdt/WMAXL+sBDP7lcfqinM43T2Mc86P0kREROQSKFj5qHNwnIBBcSjjTY/VFYcYnpimZ3jCh8pE\nRETkUihY+ahzaJziUAZpgTf/M9SVaJ6ViIhIslGw8lHn4DiluZnnfKw8L5PMtIDmWYmIiCQRBSuf\nhJ2je3iCsrxzB6uAWXSelYKViIhIslCw8knv8ATTYUfZeUasIDKBvX1gjLHJ6XmsTERERC6VgpVP\nuobGAc47YgWReVYOaOzVqJWIiEgyULDySedgJFidb44VQG1RDga6HCgiIpIkFKx80jk0QU5GkFBm\n2nmPyUoPUpGfpZWBIiIiSULByicXWhE4U11JDqd7RgiH1ShUREQk0SlY+aRraPyC86ti6opzGJ8K\nc6RjaB6qEhERkcuhYOWD0YlphsanLrgiMGZxdEPm1071xrssERERuUwKVj6Yy4rAmOJQBqGMoIKV\niIhIElCw8sFcVgTGmBl1JSFeP61gJSIikugUrHzQOXT+zZfPZXFxDie6humOjnSJiIhIYlKw8kHn\n4DjFoUyCAZvT8XXReVavn+6LZ1kiIiJymRSsfDDXFYEx1UXZpAWMnbocKCIiktAUrObZdNjRPTRB\nWe7cLgMCpAcD1BbncEod2EVERBLanIKVmW0xs0NmdtTMPneeY24xs11m1mBmz3pbZuroG5lg2rmL\nGrECqCnK1p6BIiIiCW7WYGVmQeBrwO3AWuAjZrb2rGMKga8D73POrQN+PQ61poSLWRE4U21xDo3a\n2kZERCShzWXE6hrgqHPuuHNuAvgBcNdZx9wN/MQ5dxrAOdfhbZmpozPWw+pig1VRDr0jkwyOTcaj\nLBEREfHAXIJVNdA443ZT9L6ZVgJFZvaMmb1mZh/3qsBU0zk4Tk5GkJwLbL58LrXF2QA09ozGoywR\nERHxgFeT19OAtwB3ALcBf2NmK88+yMzuMbMdZrajs7PTo1Mnl4tdERhTWxRpuaB5ViIiIolrLsGq\nGaidcbsmet9MTcBW59ywc64L2AZccfYXcs7d75zb7JzbXFZWdqk1J7XOwfGLvgwIb/Sy0jwrERGR\nxDWXYPUqsMLMlphZBvBh4KdnHfMw8FYzSzOzHOBa4IC3pSa/kYkphiemL2nEqjAnndzMNJp6dSlQ\nREQkUc060cc5N2Vmnwa2AkHgW865BjO7N/r4fc65A2b2BLAHCAPfdM7ti2fhyajrElcEQmTPwJqi\nbI1YiYiIJLA5zaB2zj0GPHbWffeddftLwJe8Ky31dA5NAFzSiBUQbRI67GVJIiIi4iF1Xp9HnYPj\nBM0oypl71/WZaotyaOwZxTnncWUiIiLiBQWredQ1NE5xbsacN18+W21xNqOT03QPT3hcmYiIiHhB\nwWoeXeqKwJhYy4XTmmclIiKSkBSs5sl02NEzPHHJ86sgMscK1HJBREQkUSlYzZPe4cjmy5eyIjAm\n1n1dLRdEREQSk4LVPOk6s0fgpU1cB8jJSKM0N0MjViIiIglKwWqe9I1GNk8uDF16sAKoKcrRtjYi\nIiIJSsFqngyMThIwyL3IzZfPVluco42YRUREEpSC1TwZGJskLyudgF1aq4WY2qJsWvpGmQ6rl5WI\niEiiUbCaJwOjU+RnXd5oFURGrKbCjtZ+jVqJiIgkGgWredI/Okl+dvplfx31shIREUlcClbzZGDM\no2AVa7mgeVYiIiIJR8FqHoxPTjM+FaYg6/KD1aLCbAKGVgaKiIgkIAWredA/Fmm1kJ99+XOs0oMB\nqgqy1ctKREQkASlYzYOB0SkATy4FQuRyYKO6r4uIiCQcBat5MBBtDurFpUCITGDXiJWIiEjiUbCa\nBwNnLgV6NWKVQ8fgOGOT0558PREREfGGgtU86B+dJDs9SHrQm6dbmzGLiIgkJgWreTAwOkmBR6NV\n8EYvK60MFBERSSwKVvNgYGzKkxWBMbXF0WCleVYiIiIJRcFqHgyMTpLv0cR1gLLcTDLTAgpWIiIi\nCUbBKs4mp8MMjU95NnEdIBAwaoqyaVT3dRERkYSiYBVnHYPjOLxrtRBTW5yjOVYiIiIJRsEqztr6\nxwBvuq7PpF5WIiIiiUfBKs7aB2LByusRq2wGxqbojzYfFREREf8pWMVZa3TEyvNLgUVaGSgiIpJo\nFKzirH1gjLSAkZ0R9PTrxlouNGmelYiISMJQsIqztv4x8rPTMTNPv25sxOq0RqxEREQShoJVnLUN\njJGf5e3EdYCCnHTys9LUckFERCSBKFjFWWzEKh5qi3N0KVBERCSBKFjFkXOOtoExzyeux1QXZtPc\npxErERGRRKFgFUd9I5NMTIXjNmJVXZRNU+8ozrm4fH0RERG5OApWcdTaH58eVjHVhdmMTEzTN6Je\nViIiIolAwSqOYs1BC+IweR2gpigbQJcDRUREEoSCVRy1xanrekxNUayXlYKViIhIIlCwiqO2/jHM\nIC+Ok9dBI1YiIiKJQsEqjtr6xygJZRIMeNscNKYwJ52cjKBaLoiIiCQIBas4ahsYo6ogK25f38wi\nLRd0KVBERCQhKFjFUfvAGBX58QtWEJnArkuBIiIiiUHBKo7aBsaoLMiM6zmqFaxEREQShoJVnIxN\nRvpLVRVkx/U81YU59I1MMjQ+FdfziIiIyOwUrOKkLdocNN6XAqtjvaw0z0pERMR3ClZxEuthVRnv\nYHWm5YJWBoqIiPhNwSpOYl3X4z3HqlYjViIiIglDwSpOYvsEVsZ5jlVpbiYZwQBNmsAuIiLiOwWr\nOGnrHyM3M43czPjsExgTCBiLCrO0rY2IiEgCiO9f/QUs0sPKu8uAD2w/fd7HggFjT2OfZ+cSERGR\nS6MRqzhp7R+jMo5d12cqysmgb2RyXs4lIiIi5zenYGVmW8zskJkdNbPPXeC4q81sysw+6F2Jyal9\nYIzK/PjOr4opzElncHyKscnpeTmfiIiInNuswcrMgsDXgNuBtcBHzGzteY77IvCk10Umm+mwo2Nw\nPO4rAmMKczKANybMi4iIiD/mMmJ1DXDUOXfcOTcB/AC46xzH/T7wY6DDw/qSUvfQONNhF/ceVjGF\nOekANPWql5WIiIif5hKsqoHGGbebovedYWbVwK8B3/CutOTVOk9d12OKoiNW6mUlIiLiL68mr/8z\n8OfOufCFDjKze8xsh5nt6Ozs9OjUiSfWdT3e+wTG5GelEzC0GbOIiIjP5tJuoRmonXG7JnrfTJuB\nH5gZQCnwHjObcs49NPMg59z9wP0AmzdvdpdadKKLdV2vmKc5VsGAkZ+VrhErERERn80lWL0KrDCz\nJUQC1YeBu2ce4JxbEvvYzL4NPHp2qFpIWvvHSA8apaH5CVYQmWel7usiIiL+mjVYOeemzOzTwFYg\nCHzLOddgZvdGH78vzjUmnda+USryswgEbN7OWZiToRErERERn82p87pz7jHgsbPuO2egcs594vLL\nSm6t/WNUzVNz0JiinHT2NvczNR0mLai+ryIiIn7QX+A4aBsYi/vmy2crzMlgOuzOTJwXERGR+adg\n5THnHK39Yyya5xGrWC8rXQ4UERHxj4KVx3qGJ5iYCs/bPoExRdmRXlZNClYiIiK+UbDyWKw56Hz1\nsIopiI1YaWWgiIiIbxSsPPZGsJrfEav0YICyvExdChQREfGRgpXH2vojwaaqcH6DFUB1YbZGrERE\nRHykYOWxlv4x0gLz2xw0prpIwUpERMRPClYea+sfm/fmoDE1hdk0944SDqfsbkEiIiIJTcHKYy19\noyzy4TIgQE1RNhPTYbqGxn05v4iIyEI3p87rMndtA2NsrCn05dzVRZGViE19o5Tn+xPuREQkdTyw\n/fSsx9x9bd08VJI8FKw8FGsOumWdP6GmujAHiDQJvaquyJcaREQkOcwlNMnF06VAD/nVHDQmNmKl\nCewiIiL+0IiVh/xqDhqTm5lGYU46Tb0jvpxfREQSg0aj/KNg5SG/moPOVB1dGSgiIgvH5HSYxp4R\n2vrHCASMU93DBANGMGBkpgUpyknHbP5Xqy9EClYe8rM5aExNUTZHO4Z8O7+IiMSPc45//eVRmnpH\nae0fpWtwnM6hCXqGx7lQp53qwmyuX1rChpoC0oOaBRRPClYe8rM5aMyS0lx+ebCD6bAj6EMvLRER\n8U7P8ASvn+plZ2Mve5r62dPUT//oJADBgFESyqAiP5N1i/Ipy82kMCcdB0yHHeGwYyrs6B+d5JWT\nPfzo9SYe29fK1fXFXLOkmKKcDH+/uRSlYOUhP5uDxiwtDTE57WjuHaWuJMe3OkRE5OKEw46jnUPs\nONnL66d7ef1UL8e7hoFIiFpVkcd7NlQxNjlNTVE25XlZc34BfcOyEo51DvPy8W62He7kuSOdfOCq\nGq0gjwMFKw+19vvXHDRmSVkIgONdQwpWIiIJbHI6TEPLAK+e6OGVkz28erKHvpHIaFQoI0hdSYjb\n1lVSV5xDdWE2GWmXfgnPzFhensvy8lx6Ryb48WtN/OT1JvKz0llenuvVtyQoWHmqtd+/5qAxS0sj\nwepE1zC3rPK1FBERmcE5x5d/fphjncMc6xjiRPcwE1NhAEpCGSwrzaW+NIfFJSFKQhlxm2xelJPB\nR69bzL9tO8b3tp/id29eRqWaSntGwcojfjcHjSkOZZCflcaJ6PCxiIj4p3tonGcPd/LMoU5ePNZF\n19AEEAlSm2oLWVoaor40RH5W+rzWlZUe5Leur+cbzx7jOy+e5PduXkZ+9vzWkKoUrDzid3PQGDNj\nSVkuxzsVrERE5tMD208Tdo6WvlEOtQ1yqH2Q5t5RHBDKTGNFeS43ryxjWVkuhQkwcbwwJ4Pfur6e\n+587zndeOsk9Ny0lMz3od1lJT8HKI343B51paWmIV070+F2GiMiCMDIxxfNHuvjJ600cahtkcHwK\nI9L+5p1ryllZkceiwmwCCdhHalFhNndfU8d3XzrJ9189zceuq9eK8sukYOWRtgRoDhqzpDTEgzub\nGZucJkuvPkREPNfWP8ZTB9t56kAHLxztYnwqTGZagJUVeayuzGNlRR6hzOT4E7uyIo+7rqjmwV3N\nPHekk1tWlftdUlJLjn/1JNAaaw6aIMEK4GT3MKsr832uRkQk+YXDjoaWAX5xoJ2nDrazr3kAgNri\nbD5yTR23rq3gWOcQaYHkbL559ZJi9rcO8PzRLm5YVnpZKxAXOgUrj7TGmoPm+tccNCYWrE50KliJ\niFyq/pFJth2JTDzf2tDGUPQSX11xDretq2R1ZR7leZmYGae6R5I2VMXcvLKM+587zo5TPdywrNTv\ncpKWgpVHWhOgOWhMLFgd18pAEZE5m5wOs7uxjxeOdrPtSCc7T/cSdlCYk87SshArK/JYlUSX+C5W\nfWmIxSU5PH+ki2uXlGiu1SVKzZ8OHyRCc9CYUGYaFfmZarkgInIB4bDjUPsgX/3lUY51DnG8K9JX\nyohM6r55ZTmrKnKpKc5JyInn8XDzyjK++9Ipdjf1qSv7JVKw8khb/xgbfG4OOtPS0lyOd2ozZhGR\nmOmw40DrAC8f72b7iV/tdB7rK7W8LJelZSFyMhbmn8dVFXlU5mex7XAnm2oLF0yg9NLC/MnxWKw5\n6G0+NwedaUlZiMf3tvpdhoiIb8Ymp9nT1M+r0e1iXjvZy+D4FBCZJ3XrmgquXVpC+8CYNiSOMjPe\ntrKM/9zRyMHWQdYu0jzdi6Vg5YHekUnGE6A56ExLS0P0jkzSOzxBUUi/MEQk9Q2OTfLaqd5IkDrR\ny66mvjNbxpTlZbK6Kp/6khyWlIbONOicmAorVJ1lQ3UBP9/fxrOHO1hTlRe3rXVSlYKVB1r6EqfV\nQsyZlYHdwwpWIpKSeoYn+KcnD3Gia5iT3cO09o3hgIBF5khdU19MfUlk771UnXAeD8GAcdOKMn66\nu4UT3cMsLdUmzRdDP2keaEugrusxM1suaAKiiKSCjsExth/vYfuJbl450cPh9sg80vSgUVuUw9tX\nl1NfEqK2OJvMNDVHvhxvWVzEUwc7ePZQp4LVRVKw8kDrQOJ0XY+pLc4hGDCtDBSRpNUxMMbLJ3oi\nk82Pd3MsugdqKCPI5vpi7tpUzcDoJNVF2UnfQyrRpAcD3LishCf3t9PSN8qiwsQZOEh0ClYeaO0b\nTZjmoDHpwQB1xTkKViKSNLqHxnn5eA8vHe/ipWNvBKnMtAD1JSFuX1/JktIQVQXZZ3osaX5U/Fy7\npIRnD3fy4rFuPviWGr/LSRoKVh5oS6DmoDMtKQ1xTC0XRCRBDY9P8cqJHp4/2sULR7s42DYIREak\nrllSzMqKvDcFKZk/2RlB1lbls7+1n6nwIo0KzpGClQdaEqg56ExLS0O8eKyLcNglXOgTkYUnHHbs\nae5n2+FOfvJ6E6d7Rgg7SAsYi0tyePfaCpaW5VJdqCCVKNZXF7CzsY/jncOsrMjzu5ykoGDlgURr\nDhqzpCzE2GSYtoExXR8XEV/E9tt7+mAHzx7upHt4AjNYVJDNW5eXsbw8l8UlOaQHNRqSiJaX55KZ\nFmBfc7+C1RwpWF2mWHPQdydQc9CYMysDu4YVrERk3nzt6aPsbxmgoWWAU93DOCAnI8jKijzeuaaC\nFeW5an+QJNKDAVZX5tHQMsBdm5xGEudAP9mXKdYcNJFWBMbElsge7xrmxuXaqVxE4udI+yCP72tj\na0MbDS0DAFTmZ3HLqjJWVeZTU5St7VGS1PrqAnY39XOia5jl5Wq9MBsFq8vU2p94zUFjKvIzyU4P\ncqJTKwNFxBsPbD995uOOgTH2tvSzt6mfjsFxILJVzJZ1laxblE9JAq2Ulku3siKPjGCAfS39ClZz\noGB1mVr7Eq85aIyZsaQ0xIkurQwUEW90DY6zp7mffc39tA2MYcDikhDvvaKEdYvyyc9K97tE8Vh6\nMMCq6OXA912xSCOPs1CwukyJ2Bx0piVlIfY19/tdhogksdPdIzy6t4VHd7eyvzVymW9xcQ53bqxi\n/aIC8rMVplLd+uoC9jb3c1Jb3MxKweoyJWJz0JmWloZ4fG8rE1NhMtK06kZE5uZk1zCP72vjiX2t\n7G6KvDi7sq6QOzZUsb66gAKFqQVlZUUu6UFjX/OAgtUsFKwu06mekcikzARdKbG0LETYwemeEV0b\nF5Hzcs5xpGOIx/e28fi+1jPNOq+oKeAvbl/NHRurqCnK+ZU5VrJwZKZFVnU2tPRz58YqXQ68AAWr\ny3SsY4ilZYkbWJZEX1loNYeInG1yOswrJ3r4xYF2njrQwemeEQyoK8nhjg1VrFuUT2F0y5hth7v8\nLVZ8t35RAQ0tAzT2jLC4JOR3OQlLweoyhMOOk93D3LQicVsZLCmJ9bIaAir8LUZEfNc5OM6zhzt5\n+lAH2w51Mjg+RUZaZMPde962lKHxKU1Al3NaVZlHWsDY19yvYHUBClaXoaV/lLHJcEKPWBXkpFMS\nytBmzCIL1NR0mF2NfTxzqJNnDnewrzky+bw0N5PbN1TyrjUVvHVFKTkZkT8HutQn55OVHmRFeS77\nWga4fYMuB57PnIKVmW0BvgIEgW86575w1uO/Cfw5YMAg8HvOud0e15pwYjuvLy1N7OS+pDTEcfWy\nElkw2vrH2Ha4k2cPd/LckU4GxqYIBoyaomzevbaCFRV5VBVkETCja2iCh3a2+F2yJIn11QUcaBuk\nuXeU2uIcv8tJSLMGKzMLAl8DbgWagFfN7KfOuf0zDjsB3Oyc6zWz24H7gWvjUXAiOd4Z6Q+1LMHn\nLi0pDfH0oQ6cc5heYYiknKnpMF984hCH2gY53D5IW7QNTH5WGisr8lhRkcfyslyyM4I+VyrJbnVl\nPkEz9jb3K1idx1xGrK4BjjrnjgOY2Q+Au4Azwco59+KM418GarwsMlEd6xwiPyuNklCG36Vc0LpF\n+fy/15po7ddmzCKpond4gmcOd/DLg51sO9xJ/+gkAYP6khBb1lWysiKPivxMvZgST2VnBFlWHuJA\n6wDv2VDldzkJaS7BqhponHG7iQuPRv028PjlFJUsjncOs7QsN+F/cV1ZVwTArsY+BSuRJBSb99Q9\nNM6B1gH2tw6e2dw4lJnGqoo8VlXmsaI8l6x0jUpJfK2qyOOR9la6h8a1bdE5eDp53czeTiRYvfU8\nj98D3ANQV1fn5al9cbwzOTY3XlOVT0ZagJ2ne/UKQySJOOfY29zPkw1t7G8dOLMfX2xz4zVV+Swq\n1ObGMr9WVuQBrRxqH+QGBas3mUuwagZqZ9yuid73K8xsI/BN4HbnXPe5vpBz7n4i86/YvHmzu+hq\nE8jQ+BRtA2MsLUvsiesAGWkB1i/KZ1djn9+liMgspsOOV0/28MS+Nn6+v53mvlECFtmP7476YtZU\n5VOc4NMPJLWV5GZSmpvB4fZBbliW+IML820uwepVYIWZLSESqD4M3D3zADOrA34CfMw5d9jzKhPQ\niegqu2UJ3Gphpk21RXxv+ykmp8OkB7W1jUgimZgK88KxLrZGw1T38AQZaQHetqKUP3zXCvpHJsnJ\nVHccSRze5CW5AAAbA0lEQVSrKvLYfqKHiamw36UknFn/pzrnpszs08BWIu0WvuWcazCze6OP3wf8\nLVACfD0632jKObc5fmX771hsRWASjFhBZI+vb71wgkNtg6yvLvC7HJEFb3RimmcPd3Lfs8c42DbA\n2GRkP8/VlXm8e10lKytyyUwLMjntFKok4ayszOOFY93R5tMy05z+tzrnHgMeO+u++2Z8/DvA73hb\nWmI73jlEwCJbPySDTbWFAOw83atgJeKTwbFJfnmwgyf2tfHMoU5GJ6fJTg+yrqqAdYvyWVaeqxFl\nSQpLSkKkB41D7YN+l5Jw9DLoEh3rGqauOIfMtORYgVNTlE1pbiY7G/v42PV+VyOyMDyw/TTD41Mc\naB2goWWAo51DTIcdeZlpbKwpYN2iApaUhggm6CbuIueTFgywrCyXQ22D6pF4FgWrS5Tomy+fzczY\nVFvIrtOawC4Sb639ozzZ0M53XjzJia5IW4TCnHSuW1LM+uoCaotztJJPkt6qyjwOtg1yrHOY5Qne\nKHs+KVhdgtjmy29NglYLM11ZV8gvDrTTNzJxZsd6EfHG8c4htja0s7Wh7cwK3PK8TG5ZVca6RQVU\nFWTpVb2klEjbBXjmUIeC1QwKVpcgtvlyom9lc7Yro/OsdjX2ccuqcp+rEUluzjn2tw6wdV8bTzS0\ncbg9Mon3ipoC/uy2Vdy2rpJXTvT4XKVI/BTlZFCel8kzhzr5nZuW+l1OwlCwugTJsvny2TbWFmKm\nYCVyqcJhx66mPp7Y18YT+9o43TOCAfWlIe7cWMXaqvwzo8EKVbIQrKrI4+UT3QyPTxHS6lVAweqS\nxDZfTqY5VgC5mWmsLM9jp+ZZicxZOOzYcaqXx/a28sS+NtoGxkgPGjcsK+UtdUWsWZRPrv6gyAK1\nsjKP54528cLRLt69rtLvchKCfhtcgtjmy6W5yTdPaVNtIU80tGkVh8gFhMOO//n4QfY299PQ0s/g\n2BRpAWNFRR43rShldWU+2RnJsSJYJJ4Wl+SQm5nG04c6FayiFKwuQbJsvnwuV9YV8sMdjZzoGk66\nETeReHLO8frpPh7d08LP9rTSMThOWsBYWZHHhuoCVlfmkakNjkV+RVogwI3LS3j2UIdesEcpWF2C\nZNl8+Vw21b0xgV3BShY65xwNLQM8sruFR/e00tw3SkZagFtWllEUymB1hcKUyGzevqqcrQ3tHG4f\nYlVlnt/l+E7B6iIl0+bL57KiPI9QRpCdp/v4wFU1fpcj4ouv/OIIu5v62NPUR9fQBAGL/N/49bfU\nsKYqnyyFKZE5iy2GevpQh4IVClYX7Y3Nl5MzWAUDxsaawjN9dkQWipa+UR7d08LDu1poaBnAgCWl\nIW5aXsa66nxyMvTrUORSVBZksaYqn18e7ODem5f5XY7v9JvkIr2x+XLyXka7sq6Q+7cdZ2xyWq/M\nJaX1Dk/w+L42HtrVfKb9wRW1hdyxoYoN1QXkZ6f7XKFIanjn6nK+8ewxeocnKAol38IuLylYXaRk\n23z5XDbVFjIVduxr7mdzfbHf5Yh46tsvnORA2wC7G/s40j7EtHOU5WbyrjUVXFFTQElupt8liqSc\nd6+r4KtPH+Wpgx188C0Le5qJgtVFOtY1TG0Sbb58LjMnsCtYSSqYnA7z/JEuHt7VzGN725iYDpOf\nlcYNy0q4orZQ28mIxNmG6si2TVsb2hSs/C4g2RzrGErYy4APbD896zF3X1tHeV4W1YXZahQqSS0c\ndrx+upeHomGqZ3iCgux0rqgt5IraAupLQtroWGSemBnvXlvBD3c0MjoxvaD7vClYXYRw2HGiK/k2\nXz6XK+sKFawk6Tyw/TRtA2Psbuxjd1MffSOTpAeN1ZX53LGhihUVuaQFAn6XKbIg3bauku+8dIpn\nD3eyZf3CbRaqYHURmvtGGZ8Kp0T/p82Li3h0TyvHO4dS4vuR1NbSN8rDu1r4zosnaRsYI2CwvDyX\nW9dUsLYqX72mRBLA1UuKKchO58n9bQpWMjfHu5K71cJMW9ZX8flH9/PQrhb++NaVfpcj8ib9I5M8\ntq+Vh3Y2sz26oq+2KJv3bqxiQ02h9ucTSTDpwQDvXF3OUwc6mJwOkx5cmKPH+s10EZJ18+VzqSzI\n4vqlJTy8q5k/etcKTeyVhDA+Nc3TBzt4cGczTx/sZGI6zNKyEH9860ru2rSIF452+12iiFzAu9dV\n8pOdzbx6oocbUmDazKVQsLoIybz58rm8/8pqPvujPexq7OPKuiK/y5EFKhx2vHKyh4d3NfPgzmbG\nJsPkZqZxdX0Rm2qLWFQYWdGnUCWS+N62spTMtABbG9oUrGR2e5sHWFWZlzKjO1vWV/LXD+3j4V0t\nClYy7w63D/LgzmYe3tlMS/8YORlB1lTms6m2kKVluQQDqfH/TGQhyclI420ry3hyfzt//751KfP3\n8mIoWM1R38gEe5r6+IN3rvC7FM/kZ6XzrjXlPLK7hb+6Y82CvR4u86e1f5RHd7fy4M5m9rcOEAwY\nN60o5c9vX82tayt4aGeL3yWKyGV699oKfr6/nb3N/WysKfS7nHmnYDVHLx7rxjm4aUVqDW3etama\nx/a28fzRLt4e3UhTxEt9I5FtZe7fdpyTXcM4oKYomzs3VrExOgl9eHxaoUokRbxrTQUBgycb2hWs\n5PyeO9JJXmYaV6TYD8ktq8ooyE7n4Z3NClbimeHxKX5xoJ1Hdrfy7OEOJqcdpbkZvGNNOZtqCrWt\njEgKKwplcM2SYrY2tPGnt63yu5x5p2A1B845th3u4oblJaSl2OWyzLQg79lQxUM7mxkenyKkJexy\nicYmp3n2cCeP7G7hqQMdjE5OU5Gfycevr+f9m6rZ09S3IOdbiCxEt62r5POP7F+QvRL1V3QOTnaP\n0Nw3yr23LPO7lLh4/6ZFfP+V0/x8fzvvv7La73IkiYxPTfPc4S6++vRRDrQOMD4VJpQRZGNNARtr\nCllckkPAjL3N/QpVIgvIrWsr+Pwj+3lyfzv33qxgJWd57kgnAG9LsflVMVfXF7OoIIuHdjUrWMms\nxqemef5IFz/b28rPG9oZHJ8iOz3IhuoCNlQXaEWfiFBTlMP66ny2NrRx782pOShxPgpWc7DtcBe1\nxdksLkn+juvnEggYd11Zzf3bjtM1NE6p5r/IWcYmp9l2uJPH97Xxi/2RMJWflcaW9ZXcsbGKxp5R\nhSkR+RW3r6/iS1sPcaxziGUL6HKggtUsJqfDvHy8m/dtWuR3KXH1/k3VfOOZYzy6u4VP3LjE73Ik\nAYxMTPHsoU6+8ewxDrYNMjEVJjs9yNqqfNZXF7CsPERaIEBL35hClYi8yYeuruUrvzjCd188yefv\nWu93OfNGwWoWuxr7GBqfStnLgDGrKvNYXZnHQ7sUrBaywbFJfnmwg8f3tvHM4Q7GJsPkZAS5oqaA\n9Yt0mU9E5q40N5M7N1bxo9ea+NPbVpGXle53SfNCwWoWzx3uJGBw/bLUDlYQ2eLmC48fZF9zP+ur\nC/wuR+ZJ19A4v9jfztaGNl442s3EdJjyvEx+Y3MtW9ZXcqxjWGFKRC7Jb91Qz092NvPj15oWzIt2\nBatZPHe0iytqCynITv2k/eGra/nmc8f5ywf38uB/u1F/TFNYY88IT+5v5/++dIpT3ZGmnUU56Vyz\npJh1i/KpLY6s5jvZNaKfAxG5ZFfUFrKptpDvvnSKj19fT2AB/D5RsLqA/pFJdjf28el3pM42NhdS\nmJPB3753HZ/5/k7+zwsn+J2blvpdknjEOUdDywBPNrTx5P52DrYNAlCRn8nbV5eztiqfqoIstUQQ\nEc994oZ6/vCHu3juaBc3ryzzu5y4U7C6gBePdRFOwW1sLuS9G6t48PUm/unJw9y2rpLa4hy/S5JL\nNDY5zUvHu/nlgQ6eOtBOS/8YAYO3LC7iL9+zmlvXVvLSsW6/yxSRFPeeDVX8488O8J0XTypYLXTP\nHe0iNzONTbWptY3NhZgZ//hrG7j1y8/y1w/t49ufvFqjGEmkfWCMpw928IsDHWe2kkkPGsvL87h+\nWQmrKvPJjXbXV6gSkfmQkRbg7mvr+NdfHuFU93DKti6KUbA6j8g2Np1ct7SE9BTbxmY21YXZ/Nlt\nq/j8I/v56e4W7tqkpqGJanI6zGunennmUCfPHOo4c4mvujCbtywuYnVlPktKQwvuZ1hEEstvXlvH\n158+yndfOsXf3LnW73LiSsHqPE51j9DUO8o9b0uteUYPbD896zF3X1vHx6+v5+FdLXz+kf3ctKKM\n4lDGPFQnc9HYM8K2I508sP00RzuGGJ8KEzBYXBLitnWVrKrIoyI/UyONIpIwKvKzuH1DFf+5o5E/\nvnVlSu9Lm7rf2WWKbWNz04rUvx58LsGA8YX/soE7/+V5/vFn+/nyb2zyu6QFa2BskpePdfP80S6e\nO9LFia5hAAqy09lQXcDKijyWl+eSlR70uVIRkfP7xA2LeWR3Cw/ubOaj1y32u5y4UbA6j2cPd1Fd\nmE19ycKdvL26Mp/fvXkpX3v6GJtqC/n49fV+l7QgjE1OR7aB6BjiaOcQzb2jOCAjGGBpWYg7N1ax\nojyP0twMjUqJSNK4qq6I9dX5fOfFk9x9TV3Ktl5QsDqHPU19PHWwnXtuWrrg/3D9/jtWcLB1kL99\nuIFjHUP8zZ1rSdN8HU+NTU6zq7GPl4938/Lxbl4/3cdE9PJeTVEOb19dzrKyXGqLs0kL6LkXkeRk\nZvx/Ny3lD36wi2+/eJL/+tbUbBiqYHWW6bDjbx7aR2luJp96x3K/y/FdVnqQ+z++mS88foD//dwJ\njncN89W7r1oQDVPjpX90ktdP9/LayV5ePdnDzsZIkDKDdYvy+dh1i5mcClNfGtLlPRFJKe+7YhGP\n7G7hC48f5PplJaypyve7JM8pWJ3lB6+eZndTP//8oU3kL5B9jWYTDBh/dcdalpfn8lcP7uMDX3+B\nf/+tq6kvTe0ls16YDjuOdAyyp7GfXU19vHayl8PtgzggYFBVkM019cUsKQ1RXxIiO0NBSkRSl5nx\nxf+ykS1feY7PfH8nj/z+W1PuBaSC1Qw9wxP8rycOce2SYu7atMjvchLOh66uY3FJiHv/4zXe//UX\n+Oxtq/nAVdUp95/iUo1PTXOsY5iDbQM0tAywp6mPfc0DjE5OA5CXmcamukJqirNZXByitjibzDQ9\ndyKysJTkZvJPv34FH//WK/yPxw7wD3et97skTylYzfDFxw8yPD7Ff3//+gU/t+p8rltawkP/7UY+\n84Od/OWDe/nS1oNn2jNU5Gf5Xd68GJuc5lT3CMc6hzjeOcTRjiEOtA5yrHOIqbADIC1gVBVksam2\nkJqibKqLsinNzSSgnysREd62sozffusS/v35E9y8sox3rqnwuyTPKFhFvXaqlx/uaOSety1lZUWe\n3+X4ai69rh7+1I1sP9HDt54/wdefOca/PXucOzdWcefGRVy1uCip+16Fw46u4XFa+sZo7BmhsXeE\nxp5RmnpHONUdue3cG8cvKshidVU+71xTTs/wBJX5WZTkZmrzYhGRC/jsllW8cLSLz/5oD4//4U2U\n56XGi3MFK96YsF6Rn8ln3rkwNly+XGbGdUtLuG5pCae7R/j2iyf5zx2NPLSrBYAlpSGuqiviLYuL\nWFWZS1VBNuV5mb6sKHTOMTIxzcDYJAOjU/QMT0TfxukainzcOThO28AY7QNjdA6Onxl5iikOZZCT\nEaQoJ4Pl5eWU5WZSmpdJaW7Gr1zOqylauO05REQuRmZakH/9yJXc+a/P82f/bw/f+sTVKfGCVMEK\n+I+XT7G/dYCv3n3lmX3UZO7qSnL42/eu5bNbVrG3uZ/XTvVGt1np4MevN505LhgwyvMyqSqIjOjk\nZqaRkxEkNzONUGYaWekBAmYEzAgGjIABZoTDjqmwO/N+OhxmYirM+Jm3acYnw4xMTDM8MRV5Pz7F\n8MQUg2ORt+mzgtJMhTnplOVm4oCqgixWVeSRn51OQXY6RTkZFIXSNRdKRCQOVlTk8dd3ruVvHtrH\nh/7tJb7061ewJMkXRi3oFDEyMcXXnj7K/duO89blpdyxocrvkpLGhS4X5mel8/ZV5dyysoye4Qm6\nhiboH52kfzTyvm90kpa+MdLTjJHxaYbGpxifCl/U+Q1ICxppgUD0vZGRFiAjGCAzLUh6WoDinAwW\nFWSTnR4kKz1IdnqQzPQAocw0QhlphDKD5GSkpcQrJBGRZPXRa+sIZQT5u582cPtXtvG5Lav5+PX1\nSdtAdE7Bysy2AF8BgsA3nXNfOOtxiz7+HmAE+IRz7nWPa/WMc46tDW38wyP7aekf4wNXVfPXd6zV\nhHWPmRkluZmU5GbOeux02DE1HcYBYedwLvI+9nWCZpgRGdEKEL2tfy8RkWRnZnzgqhpuWFbKn/94\nD3//yH62NrTzvz64kdri5JteMWuwMrMg8DXgVqAJeNXMfuqc2z/jsNuBFdG3a4FvRN8nnKMdQ/zD\no/vZdriT1ZV5fOUjV3J1fbHfZS14wYARDOhym4jIQlVZkMW3P3k1P3y1kX/82QFu++dt3Lq2ghuX\nlXLD8pKkmcM6lxGra4CjzrnjAGb2A+AuYGawugv4rnPOAS+bWaGZVTnnWj2veI7GJqc50DrAobZB\nDrUPRt63DdI9PEFeZhp//961fPS6xdqeRUREJEGYGR++po63rijlyz8/zLbDXTwcXRRVX5LDDctL\nWVISojiUQXFuBqWhTIpzMygJZSRMT8W5BKtqoHHG7SbePBp1rmOqAd+C1aG2QX7t6y8CkJ0eZGVF\nLu9cU86qynzed8UiyvJmvzwlIiIi86+mKIcv/8YmnHMc6Rji+SNdvHisi0d2tTA4PvWm4z9yTS3/\n8wMbfaj0zeZ18rqZ3QPcE705ZGaH5uvcB+frROdWCnT5W0JK0/MbX3p+40vPb/zpOY6j3/S7AOAL\n0bc4WzyXg+YSrJqB2hm3a6L3XewxOOfuB+6fS2GpxMx2OOc2+11HqtLzG196fuNLz2/86TmW+TSX\nCUavAivMbImZZQAfBn561jE/BT5uEdcB/X7OrxIRERHxw6wjVs65KTP7NLCVSLuFbznnGszs3ujj\n9wGPEWm1cJRIu4VPxq9kERERkcQ0pzlWzrnHiISnmffdN+NjB3zK29JSyoK7/DnP9PzGl57f+NLz\nG396jmXemHPn3+pDREREROZOTZxEREREPKJgFUdmtsXMDpnZUTP7nN/1pBoz+5aZdZjZPr9rSUVm\nVmtmT5vZfjNrMLM/8LumVGJmWWb2ipntjj6/n/e7plRkZkEz22lmj/pdiywMClZxMmMroNuBtcBH\nzGytv1WlnG8DW/wuIoVNAX/inFsLXAd8Sj/DnhoH3uGcuwLYBGyJrqoWb/0BcMDvImThULCKnzNb\nATnnJoDYVkDiEefcNqDH7zpSlXOuNbaZunNukMgfp2p/q0odLmIoejM9+qZJrx4ysxrgDuCbftci\nC4eCVfycb5sfkaRjZvXAlcB2fytJLdHLVLuADuDnzjk9v976Z+CzQNjvQmThULASkQsys1zgx8Af\nOucG/K4nlTjnpp1zm4jsVnGNma33u6ZUYWZ3Ah3Oudf8rkUWFgWr+JnTNj8iiczM0omEqu85537i\ndz2pyjnXBzyN5gx66UbgfWZ2kshUjHeY2X/4W5IsBApW8TOXrYBEEpaZGfDvwAHn3Jf9rifVmFmZ\nmRVGP84GbsX3/eJTh3PuL5xzNc65eiK/f3/pnPuoz2XJAqBgFSfOuSkgthXQAeA/nXMN/laVWszs\n+8BLwCozazKz3/a7phRzI/AxIq/0d0Xf3uN3USmkCnjazPYQeSH2c+ecWgKIJDl1XhcRERHxiEas\nRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASkVmZ2XS0j1WDme02\nsz8xs0D0sc1m9i8X+Nx6M7t7/qp907lHo/vxJQQz+5CZHTUz9awSSUEKViIyF6POuU3OuXVEOoTf\nDvwdgHNuh3PuMxf43HrAl2AVdSy6H9+cmVkwXsU4534I/E68vr6I+EvBSkQuinOuA7gH+LRF3BIb\nfTGzm2d0ad9pZnnAF4Cbovf9UXQU6Tkzez36dkP0c28xs2fM7EdmdtDMvhfdVgczu9rMXoyOlr1i\nZnlmFjSzL5nZq2a2x8x+dy71m9lDZvZadPTtnhn3D5nZP5nZbuD685xzXfTjXdFzroh+7kdn3P9v\nsWBmZlui3+NuM3vKw38GEUlQaX4XICLJxzl3PBoeys966E+BTznnXjCzXGAM+Bzwp865OwHMLAe4\n1Tk3Fg0m3wc2Rz//SmAd0AK8ANxoZq8APwQ+5Jx71czygVHgt4F+59zVZpYJvGBmTzrnTsxS/n91\nzvVE9+d71cx+7JzrBkLAdufcn0T39zx4jnPeC3zFOfe96DFBM1sDfAi40Tk3aWZfB37TzB4H/jfw\nNufcCTMrvugnWkSSjoKViHjpBeDLZvY94CfOuabooNNM6cBXzWwTMA2snPHYK865JoDovKh6oB9o\ndc69CuCcG4g+/m5go5l9MPq5BcAKYLZg9Rkz+7Xox7XRz+mO1vLj6P2rznPOl4C/MrOa6Pd3xMze\nCbyFSEgDyAY6gOuAbbGg55zrmaUuEUkBClYictHMbCmRINIBrInd75z7gpn9DHgPkRGk287x6X8E\ntANXEJmOMDbjsfEZH09z4d9RBvy+c27rRdR9C/Au4Hrn3IiZPQNkRR8ec85NX+jznXMPmNl24A7g\nsejlRwO+45z7i7PO9d651iUiqUNzrETkophZGXAf8FV31i7uZrbMObfXOfdF4FVgNTAI5M04rIDI\naFAY+Bgw20TxQ0CVmV0dPUeemaUBW4HfM7P06P0rzSw0y9cqAHqjoWo1kVGlOZ8zGiiPO+f+BXgY\n2Ag8BXzQzMqjxxab2WLgZeBtZrYkdv8stYlICtCIlYjMRXb00lw6MAX8X+DL5zjuD83s7UAYaAAe\nj348HZ0U/m3g68CPzezjwBPA8IVO7JybMLMPAf8anRc1SmTU6ZtELhW+Hp3k3gm8f5bv4wngXjM7\nQCQ8vXyR5/wN4GNmNgm0Af8jOl/rr4EnLdKCYpLIPLOXo5PjfxK9v4PIikoRSWF21gtOEZGUYWb1\nwKPOufU+l/Iropckz0zoF5HUoUuBIpLKpoECS7AGoURG7Xr9rkVEvKcRKxERERGPaMRKRERExCMK\nViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPPL/A3pqzePUNqAnAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(decals['decals_ra'], decals['decals_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, decals, \"decals_ra\", \"decals_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add HSC-UDEEP" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4m+d55/vvgx0gwB2kKFH7aileYst2EsexE8eOs7eZ\nbE2Tnrbp+LjTzLQ57Zlk5sycmXN1zmlyOume1HXdtE2b1G7qpEkTJ94deZUl2ZZtLZQoipIoieK+\nkyCWZ/4AQNOqFpB8gRcAf5/r0mURAIFbsET++DzPe9/GWouIiIiILJ3H7QJEREREqoWClYiIiIhD\nFKxEREREHKJgJSIiIuIQBSsRERERhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiI\niEN8br1wc3OzXbdunVsvLyIiIlKwffv2DVhr45d7nGvBat26dezdu9etlxcREREpmDHmRCGP01ag\niIiIiEMUrEREREQcomAlIiIi4hAFKxERERGHKFiJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGI\ngpWIiIiIQxSsRERERByiYCUiIiLiEAUrEREREYcoWImIiIg4xOd2AdXsO7tPXvYxn7lxTQkqERER\nkVLQipWIiIiIQxSsRERERByiYCUiIiLiEAUrEREREYcoWImIiIg4RMFKRERExCFqt7AIhbRREBER\nkeVHK1YiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUrEREREYcoWImIiIg4RMFK\nRERExCEKViIiIiIOKShYGWPuNMZ0GGM6jTFfvsD9dcaYfzHG7DfGHDDG/IrzpYqIiIiUt8sGK2OM\nF/g68H5gO/ALxpjt5z3sN4CD1tqrgVuBrxljAg7XKiIiIlLWClmxugHotNZ2WWtngfuBj573GAvE\njDEGiAJDQMrRSkVERETKXCHBahVwat7HPbnb5vsz4ArgDPAa8JvW2owjFYqIiIhUCKcOr78PeAVY\nCVwD/Jkxpvb8Bxlj7jLG7DXG7O3v73fopUVERETKQyHB6jSwet7H7bnb5vsV4Hs2qxM4Dmw7/4ms\ntfdaa3daa3fG4/HF1iwiIiJSlgoJVnuAzcaY9bkD6Z8GfnjeY04CtwEYY1qBrUCXk4WKiIiIlDvf\n5R5grU0ZY74APAx4gW9aaw8YY+7O3X8P8LvA3xhjXgMM8CVr7UAR6xYREREpO5cNVgDW2oeAh867\n7Z55vz8D3OFsaSIiIiKVRZ3XRURERByiYCUiIiLiEAUrEREREYcoWImIiIg4RMFKRERExCEKViIi\nIiIOUbASERERcYiClYiIiIhDFKyKYGo2xeGzY26XISIiIiWmYFUEe7uH+dYLJxicSLhdioiIiJSQ\nglURjM0kATjWP+lyJSIiIlJKClZFMJFIAXCsf8LlSkRERKSUFKyKYGImG6y6+ifIWOtyNSIiIlIq\nClZFMJFI4TEwOZumb0znrERERJYLBasiGJ9JsbklBmg7UEREZDlRsHJYOmOZTqZpbwjTWBNQsBIR\nEVlGFKwclj+4Hg352BiPcnxgknRG56xERESWAwUrh+WDVSzoY2O8hkQqw5mRaZerEhERkVJQsHLY\nRK6HVTToY0M8CuiclYiIyHKhYOWwN7YC/USDPlbUhhSsRERElgkFK4fle1hFgz4ANsZrODE4RTKd\ncbMsERERKQEFK4dNJFIEfB4CvuxbuyEeJZWxnByacrkyERERKTYFK4eNJ1Jzq1UA65tr8JhsF3YR\nERGpbgpWDpuYeXOwCvm9rKoPayCziIjIMqBg5bCJ81asADbGo/QMT5FIpl2qSkREREpBwcph4zMp\nYqE3B6sN8SgZC8cHtWolIiJSzRSsHJQfZ3P+itXapgg+j6FL24EiIiJVTcHKQfPH2czn93pY0xhR\nPysREZEqp2DloLlgdd6KFcDGlihnR2eYzD1GREREqo+ClYPy42xiFwhWbXUhAIYmZ0tak4iIiJSO\ngpWD5o+zOV8kkA1bU7NasRIREalWClYOOn+czXyRgBeAqVm1XBAREalWClYOmkikCHjfGGczX8Sf\nDVbT6mUlIiJStRSsHDSeSP2rKwLzQlqxEhERqXoKVg46f5zNfB5jCPk9ClYiIiJVTMHKQRcaZzNf\nJOBjWofXRUREqpaClYMmLrEVCNkD7FqxEhERqV4KVg5JZyxTs+kL9rDKC/u9OrwuIiJSxRSsHHKx\ncTbzacVKRESkuilYOeRS42zywgGfGoSKiIhUMQUrh1yqOWheJOBlJpkhY22pyhIREZESUrByyEQi\nNyfwAuNs8vLd12e0HSgiIlKVFKwcUsiKVTjXfX1KB9hFRESqkoKVQy41ziZP8wJFRESqm4KVQy41\nziYvEsjeryahIiIi1UnByiGXGmeTF9aKlYiISFVTsHLI5cbZAET8ClYiIiLVTMHKIZcbZwMQCngx\noO7rIiIiVUrBygH5cTaXW7HyGEPIr+7rIiIi1UrBygH5ruuxy6xYQfaclbqvi4iIVCcFKwcUMs4m\nLxLwMq0VKxERkaqkYOWAQpqD5kUCXp2xEhERqVIKVg7Ij7MpJFiFdcZKRESkailYOWBuxaqgM1Y+\nnbESERGpUgpWDsiPswn6vJd9bCTgZSaZIWNtCSoTERGRUlKwckAh42zy8vMCZ7QdKCIiUnUUrBxQ\nyDibvLC6r4uIiFQtBSsHFDLOJi8/iHlKVwaKiIhUHQUrBxQyziYvvxU4rQPsIiIiVUfBaokKHWeT\nFw5oK1BERKRaKVgt0ULG2cAbK1YKViIiItVHwWqJFjLOBiDk92JA3ddFRESqkILVEi1knA2AxxhC\nfg1iFhERqUYFBStjzJ3GmA5jTKcx5ssXecytxphXjDEHjDE/c7bM8rWQcTZ54YDG2oiIiFSjy6YB\nY4wX+DpwO9AD7DHG/NBae3DeY+qBbwB3WmtPGmNailVwuVnIOJu8SMDLtIKViIhI1SlkxeoGoNNa\n22WtnQXuBz563mM+A3zPWnsSwFrb52yZ5WsikcLvNQWNs8mLBLw6YyUiIlKFCglWq4BT8z7uyd02\n3xagwRjzlDFmnzHml5wqsNzNJDNz3dQLFfZrK1BERKQaFb5/dfnnuQ64DQgDzxtjXrDWHpn/IGPM\nXcBdAGvWrHHopd2VSKUJLjBYRQI+HV4XERGpQoWsWJ0GVs/7uD1323w9wMPW2klr7QCwC7j6/Cey\n1t5rrd1prd0Zj8cXW3NZSaQyBH0Lu7gyHPAyk8yQsbZIVYmIiIgbCkkEe4DNxpj1xpgA8Gngh+c9\n5gfAO40xPmNMBLgROORsqeVpJpkmtIDzVTB/rI22A0VERKrJZbcCrbUpY8wXgIcBL/BNa+0BY8zd\nufvvsdYeMsb8FHgVyAD3WWtfL2bh5SKRylAb9i/ocxSsREREqlNBZ6ystQ8BD5132z3nffz7wO87\nV1plWNRWoD/7tk/pykAREZGqos7rS5RIpRfUagHmzwvUAXYREZFqomC1BNZaEskMQf/C3kZtBYqI\niFQnBaslSKYtFhZ8eD08t2KlYCUiIlJNFKyWYCaVDUaBBZ6xCvm9GBSsREREqo2C1RIkkhkAQgvc\nCvQYQ8jvZTqpM1YiIiLVRMFqCRK5FauFHl6H7DkrrViJiIhUFwWrJUiksitWC223ANlzVjq8LiIi\nUl0UrJYgketDtdBZgaAVKxERkWqkYLUE+RWr0CJWrCIBH9NqECoiIlJVFKyWYCYXrBZ6VSBA2O9V\ng1AREZEqo2C1BPmtwNAitgLDAS8zyQypdMbpskRERMQlClZLkEhl8BjwecyCPzfffX1sRqtWIiIi\n1ULBagnycwKNWXywGpmadbosERERcYmC1RIsZk5gXtjvA2B4KulkSSIiIuIiBaslmEllFjwnMC+/\nYjU6rRUrERGRaqFgtQTZrcDFvYVvbAVqxUpERKRaKFgtwZK2AhWsREREqo6C1RLkD68vRsjvxaDD\n6yIiItVEwWoJEqnMorcCPcYQ8nsZmdaKlYiISLVQsFqCRDKzqOageZGAV1uBIiIiVUTBapEy1jKb\nzixqnE1eOOBlWFuBIiIiVUPBapFmlzCAOS8S8DKqrUAREZGqoWC1SDO5OYHBJW0F+rQVKCIiUkUU\nrBYpkVuxWuzhdYCwX1uBIiIi1UTBapHeCFZLO7w+PpMilc44VZaIiIi4SMFqkRK5rcDQIhuEwhtN\nQsdmUo7UJCIiIu5SsFqkmdyK1VKuCsyPtdF2oIiISHVQsFqkuRWrJW0F+gCNtREREakWClaLNHfG\nailbgf78vECtWImIiFQDBatFSqRy7RaWsGKVP2OlXlYiIiLVQcFqkRLJDD6Pwesxi36OiF/BSkRE\npJooWC1SIpVZUnNQgFAgvxWoYCUiIlINFKwWaSaVXtI4GwCPMcRCPq1YiYiIVAkFq0VKJDNL6rqe\nVxf2M6ZgJSIiUhUUrBbJia1AyAarEQUrERGRqqBgtUiJVNqRFav6iF9bgSIiIlVCwWqREqkMIadW\nrNTHSkREpCooWC1SIple0jibvLpwgNFpzQoUERGpBgpWi5RIZZZ8VSC8cXjdWutAVSIiIuImBatF\nSKUzpDLWkcPr9RE/s+kM07nZgyIiIlK5FKwWYW5OoEMrVqDu6yIiItVAwWoR3ghWzhxeB3VfFxER\nqQYKVovwxgBmB9otaMVKRESkaihYLcJMMrdi5V/621erYCUiIlI1FKwWYTa3YhVyYCuwPpILVtoK\nFBERqXgKVoswo8PrIiIicgEKVouQmNsKXPqKVTTow+sxjEyr+7qIiEilU7BaBCcPrxtjqAtrXqCI\niEg1ULBahHy7BSdG2gC5YKWxNiIiIpVOwWoREsk0QZ8HjzGOPJ8GMYuIiFQHBatFSKQyjmwD5uXn\nBYqIiEhlU7BahJlUxpGu63l1YT8jClYiIiIVT8FqERLJtCPNQfPqIzq8LiIiUg0UrBYhkco40hw0\nL78VmMlYx55TRERESk/BahESqbRjVwRCNlhlLIwndGWgiIhIJVOwWoREMkPIwa3AfPd1HWAXERGp\nbApWizCTSjt+eB1gRPMCRUREKpqC1QJZa5l1uN1CfSQAaF6giIhIpVOwWqCZZIaMdWZOYJ4GMYuI\niFQHBasFGk9kw4+zK1a5rUANYhYREaloClYLNJlwbgBznlasREREqoOC1QJNzGRbIoQc3AoM+b0E\nfB5GdXhdRESkoilYLVAxtgIB6sPqvi4iIlLpFKwWaG4r0MEVK8huBypYiYiIVLaCgpUx5k5jTIcx\nptMY8+VLPO56Y0zKGPNx50osLxPFWrGK+NXHSkREpMJdNh0YY7zA14H3A9uBXzDGbL/I474KPOJ0\nkeUkf8bK6WClFSsREZHKV0g6uAHotNZ2WWtngfuBj17gcf8eeBDoc7C+spOf5+fk4XWAWgUrERGR\nildIsFoFnJr3cU/utjnGmFXAzwN/7lxp5WkykcJjwOcxjj5vfTigYCUiIlLhnNrP+iPgS9bazKUe\nZIy5yxiz1xizt7+/36GXLq2JmRRBnxdjnA1WdWE/E4kUyfQl30IREREpY4UEq9PA6nkft+dum28n\ncL8xphv4OPANY8zPnf9E1tp7rbU7rbU74/H4Ikt213giRdDv/MWU+e7rY1q1EhERqVi+Ah6zB9hs\njFlPNlB9GvjM/AdYa9fnf2+M+RvgR9baf3awzrIxmUg5fnAd3tx9vSkadPz5RUREpPguG6ystSlj\nzBeAhwEv8E1r7QFjzN25++8pco1lZSKR3Qp0Wj5YjWjFSkREpGIVsmKFtfYh4KHzbrtgoLLW/vLS\nyypfEzMpQkXYCqyLaF6giIhIpVPn9QUq9oqVzliJiIhULgWrBZoo0hmr+vxWoLqvi4iIVCwFqwXK\ntltw/m2rDWsrUEREpNIpWC1AJmOZnE07PoAZwO/1EA36tGIlIiJSwRSsFmBytjhzAvM0L1BERKSy\nKVgtwER+TmARDq+D5gWKiIhUOgWrBZjMBatidF6H7AH20enZojy3iIiIFJ+C1QKMz+S3AouzYqWt\nQBERkcqmYLUA+a3AYp2xqo8oWImIiFQyBasFmJgp7lZgXdivqwJFREQqmILVApTi8HoilWEmmS7K\n84uIiEhxKVgtQCm2AkFNQkVERCqVgtUC5LcCA0XcCgQFKxERkUqlYLUAE7PZcTY+T7HaLQQABSsR\nEZFKpWC1ABMzKaJBX9Gev06DmEVERCqagtUCTCRSREPFD1ZasRIREalMClYLUPQVq0h+xUrd10VE\nRCqRgtUCjE4n51aViiEW9GEMjGnFSkREpCIVb/mlCo1MJ9ncEi3a83s8RmNtRESkIn1n98nLPuYz\nN64pQSXu0orVAoxOJ+d6TRVLXdjPiIKViIhIRdKKVYGstYxOJ6kt4lYgaBCziIiUn0JWoyRLwapA\nM8kMs6lMUc9YgeYFiohIeZhJpunsm6Au7MdaizHG7ZIqgoJVgfKrSPkmnsVSF/Zzeni6qK8hIiIy\n3/Rsmv09I7x+epSDZ8Y4cGaMzv4J0hkLQCTgZXVDhPbGMKsbIqxvrsHv1WmiC1GwKlA+WBV7q64+\noq1AEREprv7xBPtODLG3e5g9J4Y5cHqUVC5EtcSC7FhZy+3bW7mirZaR6Vm+t+80p4anOHJuHAus\naYxw17s24NEq1r+iYFWgUgWr/OF1LbuKiIgTrLV0D06xp3uIPceH2HtimOMDkwD4PIb2hjA3bWpm\nbVOEVfVhYqE3jryMTicxGP7Nde1Adntw34lhfvzaWfZ2D3PD+kZX/kzlTMGqQPmmnaU4Y5XOWCZn\n00VtRioiItXr5OAUf/joEY4NTNDVP8lEIgVA2O9lXVOEO3esYF1zDSvrQwuafxvye3nHxiYOnh3j\n4QO97FhZS42+V72J3o0CzZ2xKnK7hfwZrpGpWQUrEREpyPDkLM90DvD00X6eOzZIT+6sbizkY2O8\nhvXNUdY2RYjHgkvevjPG8JGrV/KnTxzl4QO9fOzadif+CFVD37kLlA9WxW63UDtvXmB7Q1FfSkRE\nKlQqnWF/zyi7jvTzsyP97O8ZwVqoDfl4+8Ym7nrXBoYmZonHgkU5VtJaG+KmTc08fXSAnWsbWNNU\n4/hrVCoFqwKNTicxJjt2ppjyK2I6wC4iIvP1DE+x60h2VerJjj5mkhkM0N4Q5t1bW9jSGqO9ITy3\nItVSGypqPe/Z1sKrPaP8YP8Z/t2tm/B6dC4YFKwKNjqdpDbkx1Pkvzj5M1yj6mUlIrKs9Y8n2H18\nkBe6Bnmuc5Cu3IHztroQO1bWsbklyqaWKJGAO9/Kgz4vH7yyje+8eJLdxwd5x8ZmV+ooNwpWBSrF\nOBt4I1hprI2IyPLSOzrDi91D7O7Khqlj/dkgVRPwcv36Rj77trW8a0szG+NR/uHFUy5Xm7VjZS2b\nW6I8evAcb1lVR22o+N8ny52CVYFGppJFvyIQoLEme3h9aHK26K8lIiLusNZyYnCK3ccHefH4MC92\nD3JqKHvgPOjzsK6phjt3rGB9cw0r68Nz22wvHh/mxePDbpb+JsYYPnz1Sv748aM8/Hovn9i52u2S\nXKdgVaDR6dIEq5DfS23IR9/YTNFfS0RESufeXV0c65/gWN8Enf0Tc+PLIgEv65pq+MCV9axvqmFF\nXaiizis1R4Nct7aBV06O8LGMrajai0HBqkBj00naG8Ilea2W2hB944mSvJaIiBRHJmPZ3zPCE4f7\neOJwHwfOjAEQ8nvY0BzlXZvjrG+uoaVIV+6V0obmGl48PsTZ0WnaGyJul+MqBasClWrFCrLjBBSs\nREQqz0QixdNH+nn8cB9PdfQxMDGLx8B1axu4fXsrm+LRN23tVYu1uXYLJwanFKzcLqASWGsZKXGw\n2neyfPbQRUTk4s6OTvN7Dx3mcO8Yx/onSWcsIb+HLa0x3rOtlS2t7l25Vyp1YT8NET8nBie5adPy\nvjqwuv9PO2RyNk06Y0sXrGpD9I0lNC9QRKQMpTOWV06N8LOOPp7o6OP109ktvsaaAG/f0MS2thhr\nG2uqblXqctY21XCsb2LZf+9SsCpAqcbZ5LXEgiRSGcamU9SV6DVFROTizo3N8GznAE919LPraD8j\nU0k8Bt66poH/eOdWZpOZonU5rxRrmyK8cmqE4ank3BXuy5GCVQFKNYA5L98tt298RsFKRMQFp0em\n2d01yO6uIR47dI7BXAucmqCPLS1Rtu6Ivbk5Z2mubSpr+XNW3YOTClZyaaWaE5jXEgsC0DeeYHNr\nrCSvKSKyXI3PJHmtZ5RXekbYf2qE/adG6c21vKkL+1lZF+LG9Y2sj0dpqwsteYhxtWqJBQn5PZwY\nnOTaNct32K2CVQHG8luB4dIk8DeClXpZiYg4aXo2zcGzY7zaM8IPXzlDz/A0AxMJbO7+ppoA7Q1h\ndq5rYH1zDa21ClKF8hjD2sYaTgxOuV2KqxSsCpBv4laqbbm5rcAxtVwQEVksay3HByZ56eQIL58c\n5uWTI3ScGyedycaoWNDHqoYwV6+uo70hQnt9mEhQ3xaXYm1ThI5z40zNpqr+SsiLWZ5/6gXKbwWW\n6oxVNOgjEvCql5WIyAIk0xlePz3K7uNDfP+l05wcmmI6mQayY2JWN0S4eXMz7fURVjWES/Y1fTnJ\nn7M6OTjFtrZal6txh4JVAUank3g9hpqAt2SvqSahIiKXlslYDp4dY9fRfl7oGmJf9xCTs9kgFY8G\n2bGyljWNEVY3RojHgtrSK4H2hjBeY+hWsJJLGZ1OUh/2l/Qy2pZYiHOaFygi8iYDEwm++pPDHO2b\n4GjfBJOJFJD9YfQtq+pY31zD+uYaYiGtRrnB7/Wwsj7EicFJt0txjYJVAUrZdT0vXhvkYG6ulIjI\ncpVtxjnMUx39PNXRz2unR4Hs4OLNLVE2t8bY3BJVkCoj65pqeK5rkGQ6g9/rcbucklOwKsDYdLJk\nrRbyWmJBntKKlYgsQ72jMzx9tJ9dRwfYdaSf0elsM85r1zTwO3dsYXo2Q1u9rtYrV2ubIjzdOcCZ\nkem5M1fLiYJVAUani9dF9ju7T17w9rMjM0zOpvnrZ4/zKzetL8pri4iUg+nZNLuPD/L00QH+Zf+Z\nufOl0aCPLa1RtrSe14xz+X2vrihr5g1kVrCSCxqZSrK+ubR/OWKh7P+a8ZlUSV9XRKTY0hnL66dH\neaZzgGeODrDvxDCz6QwBn4c1jRGuW9vAppYoK2pDy3pETKWKBn00R4N0D07yLuJul1NyClYFGHXh\njFX+vICClYhUg2882Tl34PxY38RcG4S2XFfzTS1R1jXXLMszOdVobVOEg2fGyFi77LZsFawuI5Ox\njM24EazyK1bJkr6uiIgTEqk0u7uG5oYWd/ZNAFAb8rG9rZZNLVE2tkSJqiFnVVrXFGHfiWEGxhNz\nTa+XC/2NvozxRAprS9ccNC8frMa0YiUiFeLs6DRPHu7nicN9PNs5wHQyTcDn4cb1jWzJXcHXEgtq\ne28ZWDvvnJWClbzJ6FRpu67nhf1efB6jFSsRKVuZjGV/zwh/8vhRDveOc3Y0eyVzfcTPVe11bFsR\nY31zlIBP23vLTVNNgJqAl+7BSa5f3+h2OSWlYHUZpR5nk2eMIRry6YyViJSVyUSKZzoHePzQOZ44\n3M/ARAJDdoXizh0r2LpCq1KS/R62tqmGE0PLbyCzgtVluBWsIDsgVCtWIuK27oFJnjjcx5Mdfezu\nGmI2nSEW8nHLljjvvaKVgYnEsh24KxfX3hDm4NkxEsk0QX/pRsK5Tf8SLmNkehaA+khx+lhdSm3Y\nT7/mBYpIiU0mUrzQNciuI/386NWzDE5mvw7GY8HseakVMdY11eD1GKZm0wpVckHxWBCA/okE7Q0R\nl6spHf1ruAxXV6xCPrr6l++8JREpjWQ6w6s9o3Nh6qWTwyTTlrDfy+rGMG/f2MS2FbVFa5Qs1Ske\nzQWrcQUrmcfdYOVnOplmJpkmtIyWUUWkuFLpDAfOjPF81yDPHxtkb/cQk7PZvlI7Vtby+Xdu4F2b\nm7luXQMP7jvtcrVSqRqjATwmu2K1nChYXcboVJKAz0PIX/qrWmK5/i794wlWNy6ftC8izppJpnm1\nZ5Q93UPsPj7EvnlBKh4L8pZVdWyIR1nfXDPXV6p7cIruweV38Fic4/N4aKwJLLsjLQpWl5Hvuu7G\nFS757ut94zMKViJSsOnZNC+fHOaF40Ps7hrk5VMjzKYyAGxtjfGxa9uZTWdY31xDbaj0q/GyfMRj\nIQUreTM3xtnk5ZuE9o0tr7+UIrIws6kMr5wa4Zmj/Tx3bJCXT46QthYDrKwPc/3aBtY3R1nXFCGi\nTudSQvFokCPnxklnLF7P8mjBoX9hl1EWwWqZpX0Rubyu/gme6ujnmc4BdncNMjmbxmPgyvZ6btrU\nxPrmGtY21eh8prgqHguSzlhGpmZpyh1mr3YKVpcxMpWkrc6ddvw1QR8ek90KFJHlbTaVYW/3EF9/\nspPDveNzLRCaagK8ZVUdm1qibGiOEg4oSEn5mGu5MJ5QsJrPGHMn8MeAF7jPWvuV8+7/ReBLgAHG\ngV+31u53uFZXjE4n2bYi5spre4whGvRpK1BkmRqdSvJkRx+PHjrHro5+xhMpfB7DhngNN21qZmtr\njAa1QJAyNtdyYSLBNpdrKZXLBitjjBf4OnA70APsMcb80Fp7cN7DjgO3WGuHjTHvB+4FbixGwaU2\nNp2k1qWtQMgeYNdWoMjycXJwiscOnePRg+d4sXuIdMbSHA3ygSvbuO2KFs6MzGj2nlSMcMBLNOhb\nVgfYC1mxugHotNZ2ARhj7gc+CswFK2vtc/Me/wLQ7mSRbkmlM4wnUtRH3AxWPs6NaStQpFolUmle\nPD7Ek4f7+eH+Mwzkev60xIK8c1Mz29tqWdUQxmMMAxOzClVSceKxoILVeVYBp+Z93MOlV6M+D/xk\nKUWVi7HcAGS3Dq9DdsWqq3/CtdcXEWdZaznaN8GznQM8c3SA544NMp1ME/B5WNsY4W0bGtnaGls2\n51Gk+sWjQV4/M+p2GSXj6OF1Y8y7yQard17k/ruAuwDWrFnj5EsXhZtd1/NiIR+Dk7Mk0xn8Xv2k\nKlKJzoy0pj40AAAd1UlEQVRM82znQPbXscG5n97XNkX4xM52bt0a5+0bmvn+y+pyLtUnHgsyNZtm\nMpFyu5SSKCRYnQZWz/u4PXfbmxhjrgLuA95vrR280BNZa+8le/6KnTt32gVXW2IjU9mrbtwOVgAD\nEwna6sKu1SEihRuanOX5Y4M8e2yA5zoH5jqY1wR9bIzXcPOmZja2RGnIDXfvHU0oVEnVyl8ZuFzO\nCxcSrPYAm40x68kGqk8Dn5n/AGPMGuB7wOestUccr9Il+RUrN89Y5bsi940pWImUq0Qqzb7uYXYd\nHeCZzn4OnBnDWogGfdy4vpEdK+vYGI/SWht0ZYqDiJvyVwYOKFhlWWtTxpgvAA+TbbfwTWvtAWPM\n3bn77wH+b6AJ+Ebui0bKWruzeGWXRrlsBcLySfoilcBaS2ffBD870s8De07RPThJMm3xGFjTGOG2\nbS1sikdZ1RBZNt2mRS6mLuLH5zHLZhhzQWesrLUPAQ+dd9s9837/a8CvOVua+8ZywcrtdgugJqEi\nbhudSvJM5wC7jvSz62g/Z0ez/yabo0F2rm3MNeisIahO5yJv4jFmWV0ZqM7rlzAy5f6KVTTowxg4\npyahIiWVyVi+9sgROs6Nc/TcOKeGp8hYCPk9bIxHuXF9E5tb3zgnJSIX1xwNcnpk2u0ySkLB6hJG\np5OE/V6CPvd+AvV6DE01Afq1YiVSdKPTSZ4+2s8Th/vYdaSfgYnsBSyr6sPcsiXO5pYYqxu1vSey\nUPFYkNdPjzKTTFf9/EoFq0twcwDzfPFYSGNtRIrAWsux/kmeOHyOJw73sbd7mFTGUh/x867NcYI+\nD5tbY0SD+lIpshTxWBALdA9Osm1FrdvlFJW+WlzCSJkEq5ZYUIfXRRwym8rwlZ8cpqN3jEO94wzl\nhhmvqA1x06Zmtq2I0a5D5yKOyl8ZeKxPwWpZG51OUudiq4W8lliQw71jbpchUrH6xmZ46kg/P+vo\nZ9eRN4YZb4xHeWcuTNXrrJRI0TTng9UymCSiYHUJY9NJVjdG3C6DltogAxOzpDNWP0WLFCCZzvDy\nyRGe6ujjqY5+Dp7N/mDSWhvkg1e14fdmD6Br7p5IaQR8HuojfgWr5W50OslbymIrMEQ6YxmanJ3r\nYCsib7DW0j04xdNH+/mH3SfpGpgkkcrk+krV8L7trWxZEWNFbUgNOkVcEo8GFayWu5GpJPVlEKxa\na/PjAGYUrERypmZTPNc5yFNHsqtSPcPZS7kbIn6ubq9nU0uUjfEo4UB1X4EkUinisSAvnxwhk7F4\nqnj3RcHqImZTGaaT6bI4vB6PhYDsWJsdK10uRsRFf/r4UQ71jnOkd5zjg5OkM5aA18PGeA0fuXol\nm1uiNNYEtColUobisSDTyTS9YzOsrK/eEW0KVhcxN86mTA6vg7qvy/JjreXAmTEeOdDLIwfPcbh3\nHMj+m3j7hia2tMZY1xTB59VZKZFyl99xOdY/oWC1HI1OZy/BLo8Vq1ywUi8rWQYyGcsrPSM89OpZ\nfvJ6L6dHpvEY2LmukQ9c2cb2tloaa3QFn0ileaPlwgQ3b467XE3xKFhdRDkMYM4L+b00RwOcGp5y\nuxSRoshkLF/96WFeOz3KgTNjjE4n8RrDppYoH3vrKra11apJp0iFiwZ91IZ8HOufdLuUotJXqoso\np2AFsHVFbG4bRKQazKYyvNA1yMO5bb7+8QRej2FLS5Q7treybUWtDp6LVBFjDBtbolV/ZaCC1UWU\nwwDm+a5YUcvfvXCCVDqj8yRSsUankzxzdIBHD/by+OE+xmdShP1ebt0aJxbysW1FbdXPERNZzjbG\nozx9tN/tMopKweoiym3FaltbLYlUhu7BKTa1RN0uR6Qg1lr+6LGjdPSO03FunBODk2QshP1ermir\nZcfKWja1RPHrhwWRZWFjPMo/7ethbCZJbag8vr86TcHqIsotWF3RFgPg0NkxBSspa2MzSZ7rHORn\nR7LjY06PZPtLragNcfPmOFtbY6xu1Cw+keVoc+7719FzE1y3tsHlaopDweoiRqeTRIO+stl229QS\nxecxHO4d48NXq5mVlA9rLYfOjvNkRx8/6+hn38lh0hlLNOjjpk1NXL+uka0rYmXzQ4qIuGfriuwi\nwZFz4wpWy83oVLKsvhEEfV42xqMcOqsD7OK+qdkUz3YOcu+uLo6cG59b4V1ZF+LmTc1sbo2xRqtS\nInKeVfVhagJeOqr4YiwFq4sYnS6vYAWwrS3GnuNDbpchy9TI1CyPHerjp6/38vTRfhKpDEGfh00t\nUW7b1sKWFbGqPTMhIs7weAybW2MKVstROQarK9pq+cErZxiZmqU+ogaJUnwDEwl+8novD7/ey/Nd\ng6QzlpV1IX7hhjXcvr2VY/0T+DzlsV0uIpVha2uMxw6dc7uMolGwuoiBiQQ7Vta5XcabbMvtTR/u\nHedtG5pcrkaq1cjULD99vZf7nj7Osf4JLNBUE+Cdm5rZsbKWVfVhjDGcGJxSqBKRBdu6IsYDe0/R\nP56YmyxSTRSsLiCZznBqeJoPXtXmdilvsr2tFsheGahgJU4am0ny6IFz/OjVMzx9dIBUxtJYE+CW\nLXGubK9jRW1Ig41FxBHzD7ArWC0TPcPTpDOWdU01bpfyJvFYkMaaAId1gF0cMDWb4rFDffxo/xme\nOtLPbCrDqvowv/rO9Xz4qpW82jOiMCUijtvSmg1WHb3j3LSp2eVqnKdgdQHHB7Lt9tc3l1ewMsZw\nRVuMQ71jbpciFWommebJw318/aljdPSOkUxbYiEfO9c2cNWqOtobI3iM4bXTowpVIlIU8ViQppoA\nR85V5yKBgtUFHB/IDjteV2bBCmDbilr+XqNtZAESqTS7jgzwo1fP8NjBc0zOpqkJeLl2TQNXttex\nrqkGj0KUiJTQltbqnX+rYHUB3QOTxII+mmrK78q7KzTaRgqQyVj2nhjm+y+f5qHXzjI6naQ+4ucj\n16zkQ1etpKt/Uj2mRMQ1W1fE+O7eU2QyFk+VfS1SsLqA7sFJ1jXXlOVWSP7KQI22kQv5o8eO8PLJ\nEfb3jDAylcTvNexYWcfV7fVsaoni9WSv5lOoEhE3bWmNMTmb5vTINKsbI26X4ygFqws4PjDJW9eU\nZ6v9za3Zb44abSN5k4kUP371LA/sPcW+E8N4THYE0h3bW7mirZagz+t2iSIib5K/MrCjd1zBqtol\nUmnOjEzzsbeucruUC8qOtqnRaJtlzlrLSydHeGDPSX706lmmZtNsiNdw544VvHVNPTF1QBeRMral\nNbvj0nFunPdub3W5GmcpWJ3n1NAUGQvr4+V3cD3virZajbZZpkanknzv5R7uf/EUHefGiQS8fOiq\nNj51/WquXdPAP7x4yu0SRUQuKxbys6o+XJVXBipYnWfuisAy62E137YVGm2znFhr2dM9zO89dIjX\nTo+SylhW1Yf5+WtWcVV7HUG/l47eCTp6J9wuVUSkYFtXVOfMQAWr85RrD6v5rmjTaJvlYGAiwfde\n6uH+Pafo6p8k6PNw3doGrl/XyMr6sNvliYgsyZbWGE8f7SeZzuCvovZBClbnOT4wRX3EX9YrQVdo\ntE3VymQsz3QOcP+ekzx68BzJtGXn2gZ+/eMbmUykCfiq54uPiCxvW1dESaYt3QOTbM51Y68GClbn\n6R6YLOttQIAWjbapOn/+1DH2nhhi34lhRqaSRAJeblzfxHVrG2itDZFMW4UqEakqW1uziwQd58YV\nrKpZ9+Bk2a8CabRNdUilMzx+uI/7XzzJUx39WGBTPMqdO1awva1WnfVFpKptiNfg9Rg6esf50FVu\nV+McBat5pmfTnB2dKfsVK3hjtE06Y9XsscKcHpnmgRdP8sDeU5wbS9BaG+SWrXF2rm2ksQy7/YuI\nFEPI72VdU6TqDrArWM1zYmgSgHXN5d+sLD/a5vjApDqwV4B0xvKzI318+4WTPNnRhwVu2RLndz+6\nhvdsa+Ef9/a4XaKISMltXRHj4Jnq2n1RsJqneyAbrDY0l39QyY+2Odyr0Tbl7L6nu9h3YpgXugYZ\nnkoSDfp41+Y4169rpKEmwMDErEKViCxbW1tr+cnrvUzNpogEqiOSVMefwiFzPawqYMUqP9rm0Nkx\nPnSVRtuUmwNnRvnWcyd48KUeUhnLuqYa3rdjBTtW1mnrVkQkZ+uKKNZCZ98EV7XXu12OIxSs5uke\nmKQ5GqiIcSBBn5ctrTF2d6kDe7nIZCyPH+7jvqe72H18iJDfw1vXNPC2DY201anvlIjI+ba0vjEz\nUMGqCh2vgFYL83346jb+/5920NU/wYa4tgPdMjWb4sF9PXzz2W6OD0yysi7Ef/7ANj61cw0/fu2s\n2+WJiJSttU01BH2eqhpto2A1z/HBSW7ZEne7jIJ9/Np2vvbIEf5xbw9ffv82t8tZdu7d1cVzxwbY\n3TXEdDJNe0OYT1+/em67T6FKROTSvB7D5tYoh6voykAFq5yJRIr+8URZj7I5X0ttiHdvjfPgSz38\nzh1b1PeoRE4OTnHv08e4/8VTpDOWK9pquXlzM2saIxij81MiIguxpTXGs50DbpfhGAWrnPwVgZW0\nFQjwyZ2reexQH0929HP79la3y6lqB86M8udPHeOh187i83i4ZnU9N2+OE48F3S5NRKRibW2N8b2X\nTjMyNVvW4+QKpWCV0z2YDVaVtGIF8O5tLTRHgzyw55SCVZG8eHyIrz/Zyc+O9BMN+vi3N2/gV9+5\nnscP9bldmohIxdu+Mjva5uVTI7x7a4vL1SydglXO3IpVGbZa+M7uk5e8f3tbjCc7+ugbm6GlNlSi\nqqrbt184Qce5cX7W0c+JoSlqAl7u2N7KjeubCAe8ClUiIg65fl0jkYCXxw6eq4pgpUM5OccHpmit\nDVZkg7Lr1jaSzlgefOm026VUvFQ6ww9eOc2fPtHJt54/weh0kg9f1cb/+b5t3Lq1hXDA63aJIiJV\nJeT3cuvWOI8ePEcmY90uZ8kqL0UUSfdgZbVamC8eC3LDuka+u/cUd9+yQQeoF2Emmea7+3q4d9cx\nTg1N0xIL8vFr27l6db0aeoqIFNnt21t56LVe9veM8NY1DW6XsyQKVjndA5MVfUbpk9ev5ne+u589\n3cPcsL7R7XIqxuh0kr9/4QR//Ww3AxMJrlldz3/94Hb6xhN4FFBFREriPVtb8XoMjx48V/HBSluB\nZL+5Dk7Osq7CDq7P94ErVxAN+rh/z6XPY0lW7+gM/++PD/KO33uc33+4g+0ra7n/rrfx/X/3Du7Y\nsUKhSkSkhOoift62oZFHDp5zu5Ql04oVldtqYb5IwMeHr17J91/u4b9/ZAe1FTCWxw2dfeN86Z9e\n45VTI2Ss5cr2Ot61Oc7K+jBd/ZN09U+6XaKIyLJ0x/YV/LcfHuBY/wQbK3iaiFasqNxWC+f71PWr\nmUlm+Jf9Z9wupaxYa9ndNcjn/2YP7/2DXbx6eoTr1zfy23ds5dPXr2Flveb4iYi4LX8c59EKX7XS\nihXZGYHGwNqm8mu1sBBXt9extTXGfU8f50NXraQuvLxXrVLpDD890Mtf7upif88ojTUBfvO2zdQE\nfUSD+qsvIlJOVtaHecuqWh450Mvdt2x0u5xF04oV2a3AlXVhQv7KvpTeGMN//8gOTg1N8Rvffolk\nOuN2Sa4Ym0ly39NdvPtrT/GF77zM6HSS//Fzb+HZL72HL96+RaFKRKRM3bF9BS+fGqFvfMbtUhZN\nwQo4PjhVlo1BF+PtG5v4vY9dyTOdA/zXf34dayu/J0ih/uSxo3z63ufZ+buP8T9+fAiPMfzijWv4\ntZs34DGG7798+rLNVkVExD137GjFWiq6CfOy/9F9MpGi89w4P3/tKrdLccwndq7mxOAUf/ZkJ+ua\nayp6SfVyUukMT3b08+3dJ3iqox+vx3DVqjresamZVTo7JSJSUba2xljTGOGRA738wg1r3C5nUZZ9\nsPrb57uZnE3zb65td7sUR/0ft2+he3CSr/zkMGsaI3zgyja3S3LUicFJHthzin/a10PfeIJ4LMht\n21q4YX0jMV0RKSJSkYwx3L69lb97/gQTiVRFHt2ovIodND6T5N5dXdy6NV7xDcnO5/EY/ucnrubs\n6AxffOAV2upCFf9nHJ6c5eEDvfzglTM83zWIx8B7trXwqevX8O6tcf5xb4/bJYqIyBLdsb2Vv3rm\nOD/r6OeDV1XeosCyDlZ/+1w3I1NJvvjeLW6XUhQhv5d7P3cdP/+N5/jsfbu5+5aNfP7m9RU1D3Fo\ncpZHDvRy3zPH6eqfIGOhsSbA7dtbuXZNA3VhP/3jCYUqEZEqcd3aBhprAjx6sFfBqpKMzST5y6eP\nc9u2Fq5eXe92OUt2qUPZn7p+NT9+9Sxfe/QIf/fCCX7rvVv45M52fN7yu3Yhmc6w/9QIz3QO8Gzn\nAC+dHCGdsTTWBLh5c5wrV9XRVhfSPEQRkSrl83q4bVsLPz3QSzKdwV+G36suZdkGq79+ppvR6SRf\nvL06V6vma4gE+Ozb1nJicJK9J4b5z99/jb96posv3r6Fd29tocbFPezR6SSvnx7l1Z5R9nYP8ULX\nIJOzaYyBq1bVcfctG3j/W9rYf2pEYUpEZJm4Y8cKvruvhx+/epafe2tlXVy2LIPV6HSS+57p4vbt\nrbxlVZ3b5ZTM2qYavvz+bTxy8Bxf/elhvvCdl/F5DG9dU887NjZz06ZmrlldT8Dn/E8HU7Mpugem\n6B6c5PjAJId7x3mtZ4Tuwam5xzTVBNixqo5N8Sgb4jVzW5av9owqVImILCO3bIlzzep6vvTgq7TV\nhbhxQ5PbJRVsWQarv3rmOOMzKX7rvZvdLqXkjDG8b8cKbtvWwgtdQzx7bIDnOgf40yeO8sePHyXo\n87CqIcyq+jDtDWHaGyK01YWoCfoI+b2EfB5Cfi9Bv4dU2pJIpUkkMyRSGWaSaYankvSPJxiYSMz9\n99TwFOfGEm+qY1V9mCtX1fGJnasZmEiwqj5cUWe/RESkeAI+D3/9y9fz8Xue49e+tZcH7no721fW\nul1WQYxbDSR37txp9+7dW/LXHZma5eavPslNm5q553PXLeo5qrHJ5PRsmq6BCU4OThEL++gZnub0\n8DSDk7OLer76iB+/10M06KM+7Kc5FqSpJkBzNEhTNEDQV9ld7kVEZOE+c+PCelOdHpnm43/+HKmM\n5cG738EaF0fPGWP2WWt3Xu5xBS0RGGPuBP4Y8AL3WWu/ct79Jnf/B4Ap4JettS8tuOoSuO/p44wn\nUvzmMlytupRwwMuOlXXsWPnmrdHZVIax6SSz6QzJdIZk2pJKZ0hmLF5j8HsNPq8Hn8fg8xoiAR81\nQS8+T2UdNhQRkfKzqj7Mt371Bj7xF8/zS9/czXfvfgfxWNDtsi7pssHKGOMFvg7cDvQAe4wxP7TW\nHpz3sPcDm3O/bgT+PPffspDOWHYfH+QHL5/hn185zQevbOOKtspYUnRbwOehucz/EouISPXa3Brj\nr/636/nsfbv55b9+ka9/5lrWNkXK9uxtIStWNwCd1touAGPM/cBHgfnB6qPAt2x2X/EFY0y9MabN\nWnvW8YoLZK3lwJkxfvDKaX64/wznxhLUBLx88Mo2vvT+bW6VJSIiIgt03doGvvHZa/m3f7uXW//n\nUzRHg+xc28DOdQ1ct7aBHSvrinLh1WIUEqxWAafmfdzDv16NutBjVgGuBas93cN88i+ex+cx3Lo1\nzn/54Cree0Ur4YDO9oiIiFSad29t4fHfvoVnOgfY2z3M3hND/PRALwAfu3YVf/DJa1yuMKukl2EZ\nY+4C7sp9OGGM6SjF6x4D/srZp2wGBpx9SrkMveelp/e89PSel5be7xL7xSI97x8Cf/ipIj35G9YW\n8qBCgtVpYPW8j9tzty30MVhr7wXuLaSwcmaM2VvIlQHiHL3npaf3vPT0npeW3m8phkI2JPcAm40x\n640xAeDTwA/Pe8wPgV8yWW8DRt08XyUiIiLihsuuWFlrU8aYLwAPk2238E1r7QFjzN25++8BHiLb\naqGTbLuFXyleySIiIiLlqaAzVtbah8iGp/m33TPv9xb4DWdLK2sVv51ZgfSel57e89LTe15aer/F\nca51XhcRERGpNuXR9EFERESkCihYLZAx5k5jTIcxptMY82W366l2xphvGmP6jDGvu13LcmCMWW2M\nedIYc9AYc8AY85tu11TtjDEhY8yLxpj9uff8/3G7puXCGOM1xrxsjPmR27VI9VCwWoB5433eD2wH\nfsEYs93dqqre3wB3ul3EMpICfttaux14G/Ab+jtedAngPdbaq4FrgDtzV1dL8f0mcMjtIqS6KFgt\nzNx4H2vtLJAf7yNFYq3dBQy5XcdyYa09mx+gbq0dJ/tNZ5W7VVU3mzWR+9Cf+6XDr0VmjGkHPgjc\n53YtUl0UrBbmYqN7RKqOMWYd8FZgt7uVVL/cltQrQB/wqLVW73nx/RHwH4GM24VIdVGwEpF/xRgT\nBR4EfstaO+Z2PdXOWpu21l5DdmrFDcaYt7hdUzUzxnwI6LPW7nO7Fqk+ClYLU9DoHpFKZozxkw1V\n37bWfs/tepYTa+0I8CQ6V1hsNwEfMcZ0kz3S8R5jzN+7W5JUCwWrhSlkvI9IxTLGGLIzyw9Za//A\n7XqWA2NM3BhTn/t9GLgdOOxuVdXNWvufrLXt1tp1ZL+OP2Gt/azLZUmVULBaAGttCsiP9zkE/KO1\n9oC7VVU3Y8w/AM8DW40xPcaYz7tdU5W7Cfgc2Z/gX8n9+oDbRVW5NuBJY8yrZH94e9Raq8v/RSqU\nOq+LiIiIOEQrViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhYichl\nGWPSuZ5WB4wx+40xv22M8eTu22mM+ZNLfO46Y8xnSlftv3rt6dwcvrJgjPmUMabTGKNeVSJVSMFK\nRAoxba29xlq7g2xn8PcD/w3AWrvXWvsfLvG56wBXglXOsdwcvoIZY7zFKsZa+wDwa8V6fhFxl4KV\niCyItbYPuAv4gsm6Nb/6Yoy5ZV7H9peNMTHgK8DNudu+mFtFetoY81Lu1ztyn3urMeYpY8w/GWMO\nG2O+nRuxgzHmemPMc7nVsheNMTFjjNcY8/vGmD3GmFeNMf97IfUbY/7ZGLMvt/p217zbJ4wxXzPG\n7AfefpHX3JH7/Su519yc+9zPzrv9L/LBzBhzZ+7PuN8Y87iD/xtEpEz53C5ARCqPtbYrFx5azrvr\nd4DfsNY+a4yJAjPAl4HfsdZ+CMAYEwFut9bO5ILJPwA7c5//VmAHcAZ4FrjJGPMi8ADwKWvtHmNM\nLTANfB4YtdZeb4wJAs8aYx6x1h6/TPm/aq0dys3l22OMedBaOwjUALuttb+dmwV6+AKveTfwx9ba\nb+ce4zXGXAF8CrjJWps0xnwD+EVjzE+AvwTeZa09boxpXPAbLSIVR8FKRJz0LPAHxphvA9+z1vbk\nFp3m8wN/Zoy5BkgDW+bd96K1tgcgdy5qHTAKnLXW7gGw1o7l7r8DuMoY8/Hc59YBm4HLBav/YIz5\n+dzvV+c+ZzBXy4O527de5DWfB/4vY0x77s931BhzG3Ad2ZAGEAb6gLcBu/JBz1o7dJm6RKQKKFiJ\nyIIZYzaQDSJ9wBX52621XzHG/Bj4ANkVpPdd4NO/CJwDriZ7HGFm3n2Jeb9Pc+mvUQb499bahxdQ\n963Ae4G3W2unjDFPAaHc3TPW2vSlPt9a+x1jzG7gg8BDue1HA/yttfY/nfdaHy60LhGpHjpjJSIL\nYoyJA/cAf2bPm+JujNlorX3NWvtVYA+wDRgHYvMeVkd2NSgDfA643EHxDqDNGHN97jVixhgf8DDw\n68YYf+72LcaYmss8Vx0wnAtV28iuKhX8mrlA2WWt/RPgB8BVwOPAx40xLbnHNhpj1gIvAO8yxqzP\n336Z2kSkCmjFSkQKEc5tzfmBFPB3wB9c4HG/ZYx5N5ABDgA/yf0+nTsU/jfAN4AHjTG/BPwUmLzU\nC1trZ40xnwL+NHcuaprsqtN9ZLcKX8odcu8Hfu4yf46fAncbYw6RDU8vLPA1Pwl8zhiTBHqB/y93\nXuu/AI+YbAuKJNlzZi/kDsd/L3d7H9krKkWkipnzfuAUEakaxph1wI+stW9xuZQ3yW1Jzh3oF5Hq\noa1AEalmaaDOlFmDULKrdsNu1yIiztOKlYiIiIhDtGIlIiIi4hAFKxERERGHKFiJiIiIOETBSkRE\nRMQhClYiIiIiDvlfs78Vc8mSgWsAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(hsc_udeep['hsc-udeep_ra'], hsc_udeep['hsc-udeep_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, hsc_udeep, \"hsc-udeep_ra\", \"hsc-udeep_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add HSC-DEEP" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl05Hd55/vPU1WqUlVpX3rR1upuum3aS3tpbxibLQ6G\nhDgLE4JJSJgkhlwIWc9NmJkb5k5mJuSQZEIGiEOAIRAMSS4mGGNiCIsB46Xbvdm92b1oV3ertS9V\nUi3f+0dVyXK73SpJP6kWvV/n6FiqKlU9Xe7lo+/3+T1fc84JAAAAK+crdAEAAADlgmAFAADgEYIV\nAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOCRQKFeuKmpyXV2\ndhbq5QEAAPL2zDPPXHDONS/2uIIFq87OTu3bt69QLw8AAJA3M+vO53FsBQIAAHiEYAUAAOARghUA\nAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4JFFg5WZfdbMzpvZ\nc69wv5nZ35jZSTM7bGY3eF8mAABA8ctnxepzku6+zP1vkbQj+3GfpL9deVkAAAClZ9Fg5Zz7gaSR\nyzzkHkmfdxlPSqozs81eFQgAAFAqAh48R6uk3gVf92VvG/TguYvSA0/1LPqYe2/pWINKAABAMVnT\n5nUzu8/M9pnZvqGhobV8aQAAgFXnRbDql9S+4Ou27G0v45z7lHNuj3NuT3NzswcvDQAAUDy8CFYP\nSXp39urAWyWNO+fKdhsQAADglSzaY2VmX5L0eklNZtYn6cOSKiTJOXe/pEckvVXSSUkzkt6zWsUC\nAAAUs0WDlXPunYvc7yS937OKAAAAShST1wEAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrAC\nAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoA\nAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAA\nAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAA\nPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADw\nCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAj\nBCsAAACPEKwAAAA8klewMrO7zeyEmZ00sz++xP21ZvZ1MztkZkfM7D3elwoAAFDcFg1WZuaX9AlJ\nb5G0S9I7zWzXRQ97v6Sjzrndkl4v6S/NLOhxrSVjdHpOf/+D03LOFboUAACwhvJZsbpZ0knn3Gnn\n3JykL0u656LHOEnVZmaSqiSNSEp6WmkJeaZnVP/jkWPqG40VuhQAALCGAnk8plVS74Kv+yTdctFj\nPi7pIUkDkqolvcM5l/akwhJ0YWpWkvSZH53Rzo3Vl33svbd0rEVJAABgDXjVvP5mSQcltUi6TtLH\nzazm4geZ2X1mts/M9g0NDXn00sVneGpOkjQ0OVvgSgAAwFrKJ1j1S2pf8HVb9raF3iPpQZdxUtIZ\nSVde/ETOuU855/Y45/Y0Nzcvt+ai5pzT8HQmUBGsAABYX/IJVnsl7TCzrdmG9F9SZttvoR5Jb5Ik\nM9so6QpJp70stFRMz6UUT2R2QYemCFYAAKwni/ZYOeeSZvYBSY9K8kv6rHPuiJm9L3v//ZL+VNLn\nzOxZSSbpj5xzF1ax7qI1nA1T1ZUBVqwAAFhn8mlel3PuEUmPXHTb/Qs+H5D0k96WVppy/VVXbqrW\n3q5RxeZSCgf9Ba4KAACsBSave+zC9Kx8pvmrAdkOBABg/SBYeWx4ak51kaA21VRKooEdAID1hGDl\nseGpWTVVBVUXCcrvMw1NxgtdEgAAWCMEKw8553Rhek6N0ZD8PlNTVZAVKwAA1hGClYemZpOaS6bV\nWJU5JrG5KkSPFQAA6wjBykO5KwKbqkKSpObqkEam55RMr9vTfQAAWFcIVh7KTVxvjGZXrKpDSjtp\nJBu4AABAeSNYeejC1Jx8JtVFcluB2SsD2Q4EAGBdIFh5aHhqVvXZqwElqak6E7BoYAcAYH0gWHlo\neHpuvr9KkkIBv2rDFQQrAADWCYKVR5xzGp6am78iMKe5misDAQBYLwhWHpmMJzWXSqtxwYqVlB25\nMDkr51yBKgMAAGuFYOWRC9krApuiL1+xmk2mNRlPFqIsAACwhghWHsnNsHrZilV15uvz9FkBAFD2\nCFYeGZ6ald9nqotUvOT2XLCizwoAgPJHsPLIhak5NUSC8pm95PbqUEChgI8rAwEAWAcIVh4ZmX75\nFYGSZGZqrg7pAsEKAICyR7DyQNo5DU/PvmSG1UIcxgwAwPpAsPLAZDypRMpdcsVKyvRZjccSmk2k\n1rgyAACwlghWHrgwlTt8+RVWrGhgBwBgXSBYeSA3aqHpMitWEmcGAgBQ7ghWHhiemlXAZ6oJV1zy\n/sZoSD5jxQoAgHJHsPLAhek5NURfPmohx+8zNURDrFgBAFDmCFYeGJ6afdnE9Ys1VxOsAAAodwSr\nFUo7p5HpuZedEXix5qqQhqfnlEpzGDMAAOWKYLVC47GEkmmX14pVKu00NjO3RpUBAIC1RrBaoRcP\nX778ilVNOCApM/MKAACUJ4LVCuVmWL3S1PWcaDATrGbmCFYAAJQrgtUKjUzPKeAzVVcGLvu4SNAv\nSZqZY/o6AADlimC1QjNzKUVDgVcctZATya5YTROsAAAoWwSrFYonUqqsWPxtDAZ8CviMrUAAAMoY\nwWqFMsHKn9djo6GAZmZZsQIAoFwRrFYonkwpnGewigT9rFgBAFDGCFYrFE+k816xigT99FgBAFDG\nCFYrlG+PlZRpYOeqQAAAyhfBagWcc5lgFWArEAAAEKxWZC6VVtppCVuBAcXmUko7zgsEAKAcEaxW\nIJ5IS8o/WEVDfjlJcbYDAQAoSwSrFYgnMgEp/x4rpq8DAFDOCFYr8GKwyn8rUJKm6bMCAKAsEaxW\nIBesljLHSmLFCgCAckWwWoFcj1Uoz63AaHbFiisDAQAoTwSrFYixYgUAABYgWK3A7BJ7rIIBn/w+\n0zTnBQIAUJYIVisQS6Tl95kCPsvr8WbGkFAAAMoYwWoF4smUKgM+meUXrKRMnxVbgQAAlCeC1Qpk\nzgnMbxswJ8yKFQAAZYtgtQLLCVaRoF/TrFgBAFCWCFYrEE+k874iMIetQAAAyhfBagUyK1ZLewsj\nQb9ic0k5DmIGAKDsEKxWYFlbgaGA0u7F4aIAAKB8EKxWIJ5IL6vHSmL6OgAA5YhgtUyptNNcKr3k\nrcAo09cBAChbeaUCM7vbzE6Y2Ukz++NXeMzrzeygmR0xs8e8LbP4xJc4dT0nkj0vcJoVKwAAyk5g\nsQeYmV/SJyTdJalP0l4ze8g5d3TBY+okfVLS3c65HjPbsFoFF4vlBytWrAAAKFf5rFjdLOmkc+60\nc25O0pcl3XPRY+6V9KBzrkeSnHPnvS2z+OSaz5c6biG3YjUzy4oVAADlJp9g1Sqpd8HXfdnbFtop\nqd7Mvm9mz5jZu70qsFjFk5kVp9ASe6wqK3zyGStWAACUo0W3ApfwPDdKepOksKQnzOxJ59zzCx9k\nZvdJuk+SOjo6PHrpwohlg9FSV6zMTOFggOnrAACUoXyWW/oltS/4ui1720J9kh51zk075y5I+oGk\n3Rc/kXPuU865Pc65Pc3NzcutuSjMZlesKgNLC1ZS5spAxi0AAFB+8glWeyXtMLOtZhaU9EuSHrro\nMV+T9FozC5hZRNItko55W2pxiWV7rJbavC5lGtjZCgQAoPwsuhXonEua2QckPSrJL+mzzrkjZva+\n7P33O+eOmdm/STosKS3p086551az8ELLXRW41B4rKdPAPjw963VJAACgwPLqsXLOPSLpkYtuu/+i\nrz8q6aPelVbc4omUQgGffGZL/t5I0K/eEVasAAAoN0xeX6blHGeTEw0FNDOX4iBmAADKDMFqmeKJ\n1JKvCMyJBP1KOae5JAcxAwBQTghWyxRPpJbVXyUtPNaG7UAAAMoJwWqZVrpiJYmRCwAAlBmC1TLF\nkyvoseK8QAAAyhLBaplicylVrnArkBUrAADKC8FqGZxzmk2mlr1ildsKnJ5lxQoAgHJCsFqGuVRa\nabe842wkqTLol4mtQAAAyg3Bahni2eNsltu87jNTmPMCAQAoOwSrZVjJcTY5kWCAFSsAAMoMwWoZ\ncsFquStWUqbPapoVKwAAygrBahlywWq5zetSZuRCjBUrAADKCsFqGWLZHquVBKtIMKDpWVasAAAo\nJwSrZXhxxWoFPVYhPwcxAwBQZghWy+DFVmAkGFAy7RRLsB0IAEC5IFgtQzyRlt9nqvAv/+3LHWsz\nOpPwqiwAAFBgBKtliCeWP3U9Jzd9fXR6zouSAABAESBYLUM8mVJlYGVvXe68wNEZghUAAOWCYLUM\n8URK4aA3K1YjrFgBAFA2CFbLEE+kl31OYE4klFmxGqPHCgCAskGwWoZYIrWiUQvSi1PbWbECAKB8\nEKyWYdaD5nW/zxSu8GuMHisAAMoGwWoZYh4EKynTZzXCViAAAGWDYLVEiVRaiZTzLFixYgUAQPkg\nWC3RZDxzvt9Ke6ykzMgFeqwAACgfBKslmohltu7CHqxYRUN+rgoEAKCMEKyW6MUVKy+2AlmxAgCg\nnBCslmginllh8qrHKpZIzR/qDAAAShvBaokm54OVNz1WEsfaAABQLghWSzQR83IrMHcQM31WAACU\nA4LVEs1vBa7wSBtJioSywYoVKwAAygLBaokm4kmZpJAHW4HR7FYgDewAAJQHgtUSTcYTCgZ88pmt\n+LmiIYIVAADlhGC1RBOxpCczrKRMj5WZNEywAgCgLBCslmgynvCkcV2SfGaqC1doeGrWk+cDAACF\nRbBaool4wpNRCzmNVSG2AgEAKBMEqyWajCc9W7GSpIZokK1AAADKBMFqiSY83AqUpMZokBUrAADK\nBMFqiTIrVt69bQ0EKwAAygbBagmcc55vBTZGgxqdmVMq7Tx7TgAAUBgEqyWYmUsplXaejVuQMitW\nzjF9HQCAckCwWgIvj7PJaawKSWJIKAAA5YBgtQTzBzAHvd0KlKThKYIVAACljmC1BJPzK1YeNq9X\nZYIVK1YAAJQ+gtUSzG8FetxjJUkj00xfBwCg1BGslmAynt0K9DBY1UcyweoCW4EAAJQ8gtUSTMRy\nK1bevW0Vfp/qIhVsBQIAUAYIVkswsQorVhJDQgEAKBcEqyWYiCcUDPhU4ff2bWuMBjVMjxUAACWP\nYLUEk/GkaioDnj8vK1YAAJQHgtUSTMQSqqms8Px5G6Ih5lgBAFAGCFZLMBFPqjrsfbDKnReY5rxA\nAABKGsFqCcZjCdWuRrCqCirtpLHsVYcAAKA05RWszOxuMzthZifN7I8v87ibzCxpZm/3rsTiMbFK\nwYohoQAAlIdFg5WZ+SV9QtJbJO2S9E4z2/UKj/tzSd/yushiMTYzp9qw983rjdHMQcz0WQEAUNry\nWbG6WdJJ59xp59ycpC9LuucSj/ttSV+RdN7D+oqGc04T8eQqr1gRrAAAKGX5BKtWSb0Lvu7L3jbP\nzFol/Zykv/WutOIyNZtUKu1WrcdKki4QrAAAKGleNa//taQ/cs6lL/cgM7vPzPaZ2b6hoSGPXnpt\njGcby1cjWOXOCxxhKxAAgJKWT7Dql9S+4Ou27G0L7ZH0ZTPrkvR2SZ80s5+9+Imcc59yzu1xzu1p\nbm5eZsmF8WKwCnr+3MGATzWVAZrXAQAocfl0Yu+VtMPMtioTqH5J0r0LH+Cc25r73Mw+J+lh59y/\nelhnwS1csVqNXqjGqpCG2QoEAKCkLRqsnHNJM/uApEcl+SV91jl3xMzel73//lWusShMrOJWoMSx\nNgAAlIO8Zgc45x6R9MhFt10yUDnnfm3lZRWfsZlssIqsXrDqHZlZlecGAABrg8nreVrN5nUpc6zN\nBZrXAQAoaQSrPI3HEvL7TNGgf1Wev7GK8wIBACh1BKs85c4JNLNVef6GaEiptNNEnPMCAQAoVQSr\nPK3WAcw5jdnp61wZCABA6SJY5Wm1gxXH2gAAUPoIVnmaWKNgNTzFkFAAAEoVwSpPq71i1VQVksRW\nIAAApYxglaexVQ5W9dHMc3NeIAAApYtglYd02q36VmAo4Fd1KMCKFQAAJYxglYepuaTSbvWGg+Y0\nVHGsDQAApYxglYfxmdWdup7DeYEAAJQ2glUecsfZ1KxysMoca8NVgQAAlCqCVR4mssGqbpUOYM5p\njIZYsQIAoIQRrPKw2gcw5zRkzwt0jvMCAQAoRQSrPIytUbBqjAaVSDlNxJOr+joAAGB1EKzysGYr\nVhxrAwBASSNY5WE8llDAZ4oE/av6OhxrAwBAaSNY5SF3nI2ZrerrcKwNAACljWCVh9U+JzCHrUAA\nAEpboNAFlIKJWGLVZ1hJBCsAQOl64KmeRR9z7y0da1BJYbFilYfxWGLVZ1hJUmWFX9GgX8McxAwA\nQElixSoPYzMJbW2KrslrZc4LpHkdAFA46bRT/1hMpy9MKxTw6WDPmKorA6vea1wOCFZ5WKseK0lq\niIZoXgcArJnzk3Ed6Z/QkYFxPX9uSifPT+n0hSnFE+mXPK7Cb2qMhtRYFdT17fXa1VJToIqLG8Fq\nEem000R87YJVUzSowfH4mrwWAGD9SKedekZmdGxwQkcHJ/Rc/7iODEzo/OSLuyT1kQo1V4d0Y0e9\nmqsr1VwdUjKV1vD0nIanZjU8Pae+0ZiODU7o11+7bc12c0oJwWoRk7NJObf6w0FzGqJBHRmYWJPX\nAgCUp3gipRNnJ3V0cEJHBzJB6vjghKbnUpIkv8/0quYqvXZHk2YTabXUhbW5tlKVFZee17hjweex\nuZQ++f2TeuDpHn3gDa9as38fSwXBahG5A5jX4qpAKddjlTkvkL1sAMBi4omUjgxM6GDvmJ7tG9PR\nwQmdGppWKp05dzYU8GlzbaWuaatTS22lNtVWamNNpSr8y7t+LRz065dv3aK/feyUvvhUt37zjm3L\nfq5yRLBaxFodZ5PTGA1qLpXW1GxS1ZX8FAAAeJFzTl3DM/rEd0+qZ3RGfaMzOjseVzZDqaYyoJa6\nsO7c0aTNtWG11IVVF6mQz+Mf1DfWVOoXb2zTPz7Vo68dHNAv3NDKYkAWwWoRax2sGqLZ6etTcwQr\nAFjnYnMpPds/rv09o9rXNar9PaPzsw5DAZ/a6yO6c0ez2uojaqsPr9nuiiTtaqnVG6/coO8eP6/W\nukrdtr1pzV67mBGsFjE2kwlWazHHSpIaq7LnBU7PqZOmQABYN9Jpp67haR3oGdPB3jEd6B3VscHJ\n+S29rU1RvfHKDbpxS73OjsfVXB3yfCVqqd545QYNjMX0jWcHtbG2UtuaqgpaTzEgWC2iEFuBEtPX\nAaDcnZ+M61DvuA71julQ35gO9Y5pIp6UlFmNaqsP644dTeqoj6itIaKqUOafbOcyW3HFwGemX9zT\nrk9+/6S+ur9fv3/XznW/JUiwWsTabwXmghVDQgGgXMQTKf31t59Xz2hMvSMz6h2dmd8R8Zm0qaZS\nV26qUVt9WG0NEW0ogtWofFVW+PWa7U166NCAhiZntaFIQl+hEKwWMR5LqMJvCr/CJahea67O9Fid\nHSdYAUCpOj8Z1/7uUT3TPap93aN6rn9ciVRmS68uXKH2hohesz2i9vqwNteGFQyU9lV1V26q1kOH\npBPnJglWhS6g2OWmrq/V0mYo4NfGmpB6R2fW5PUAACuTTjt97DsvqGt4Wj3DM+oemZlv5wj4TK11\nYd26rVEdDRG110fWtMF8rdRFgtpUU6njZyd1x47mQpdTUASrRUzEEmv+h6CtPqI+ghUAFKXp2aQO\n9Y5pf8+o9veM6Znu0fm2kWgooC0NEd2ytUFbGiJqqQsrsE5mPF2xqVo/fGFIsbmUwsG12eUpRgSr\nRazlOYE57fVh7eseXdPXBAC8XCrtdPL8lA73ZRrM93eP6fjZifm5Udubo7r7qk1Kpp22NEbUGA2u\n2+btKzZW67Hnh/TC+Uld21ZX6HIKhmC1iPFYYn4Ewlppq4/o64cHlUyl181POgBQaMlUWqcvTOvI\nwLie65/Q4b4xPdc/oVgicwxMMOBTe31Yr9vZnNnWa4goEuSf0Zz2hojCFX6dOEuwwmWMxea0vXlt\n50m1N4SVSjsNjsfV3hBZ09cGgPUgd5bekYEJHRnIHEZ8/OyE4om0pMy4g6taavSOm9o1PZtUa11Y\nTSV0pV4h+H2mnRur9Py5SaWdW7fvFcFqEeMza78V2FafCVO9ozMEKwBYofFYQkezAeq5/vGXnaVX\nWeHT5tqwbuyozxxGXBdWc1VIft/6DAYrccWmGh3qG1f/aGzd/vtFsLqMdNppcjZZgB6rzG/GvtHY\nmr4uAJS68VhCz/WP6/NPdKt/LKaBsdhLBi5f6iy9+sjaXfld7nZurJJJOn52gmCFl5uMJ+Wc1vyq\nwE21lfKZ1DfClYEA8Epmkyk91z+hAz2jOtw3rmf7x3XmwvT8/fWRCrXWhbVnS2YlqqUuPD+9HKsj\nEgyoozGiE2cnddeuTYUupyD4HXYZaz11PScY8GlTTSUrVgCwwNnxuJ7pHtUDT3WrZ2RGA+Px+e28\n2nAmRP3kro1qrQ+rtS5MY3mBXLmxWo8ePVeQcUXFgN91l1GoYCVJbQ0RghWAdSuVdjpxdlLPdI9o\nX/eo9nWNqn8s83diwGdqrQ/rNdsa1d4QUUdDeQ7dLFVXbKrRo0fP6cS5Sd3U2VDoctYcweoy1iJY\nPfBUzyVvTyQzl/0+8FSP7r2lY9VeHwCKwcj0nA70jGaGbnaP6XDfmKbnMmMONlSHtKezXv/xtVt1\n45Z6He4bU8DHKJpitbEmpLpwhY6fJVjhImOxTMNjbWTtfxKqjwY10TumZDq95q8NAKspnkjpyMC4\nDvaO61BvZvBm93Cmp9RnmT7Ta9pq1V4f0ZbG6Euay48OTBCqipyZ6YpN1TrQM7Yu5zESrC4jt2JV\nF17bAaGSVB8Jyikz7gEASlVucvnfPXZKfaMx9Y3O6OxEfH5yeW24Qm31Yb35qk3qaIiota70DyRG\n5nibp86M6MyFae3YWF3octYUweoyCtljVZ9dJRslWAEoIecn4zrYM6YDvWPzV+vNZLf0Kit8aquL\n6I4dzWqvj6itPkxvVJna1lSlgM90/NwkwQovGo8lFPT7VFmx9j891Uczq2SjC+avAEAxSabSOn52\nUn/32Cl1j8yod2Rm/odBn0ktdWFd21an9vqw2uojaqwKrttp3OtNMODT9uYqnTg7qbddW+hq1hbB\n6jJyl4oWYnBcTWWFfCaNzhCsABSH6dmkDvaO6ekzI3qme1QHekbnG8xrKgPqaIjotuyVei11YVWs\ns94avNS25qhOnJvU1GxyXc0PWz+/0mUYjyVUGy7MW+T3mWrDFQQrAAUzNDmr//Xt59U9PK3ukRkN\njMWUdpIp02B+dWuttjRGtaUxoroC/RCK4tVSF5YkDY7HtGPD+tkOJFhdRiZYFW7/vz4SpMcKwJpI\npZ1ODU3pmezMqH3dI/NX6gV8prb6iO7c2azOxqg6GiKqrPAXuGIUu821lZKkwbE4wQoZYzMJbagO\nFez166NBPX9usmCvD6A8OefUPxbT4b4Xxx081z+hqdmkJKkxGtQNW+p1780dGpmeU2tdeN1dMo+V\niwQDqgtXaGB8fQ27JlhdxngsoR0bqgr2+vWRCk3Gk4onUvx0CGBZEqm0Tg9N68jAuI4OTOjoYOZj\nLLsa7veZNtdW6urWGrXVZaaYN1YF57f1qiu5ag/Lt7kurMGxeKHLWFMEq8sYjyVUF1n7GVY59dnX\n7h+LaXtz4QIegNIQT6R0dHBCn3u8S4PjMQ2MxXVuIq5kdmhUwGfaVFupHRuqtbm2Um31YW2qqWQ1\nCqumpbZSxwcnNJdMr5v5ZHkFKzO7W9LHJPklfdo595GL7n+XpD9SpqdxUtJvOecOeVzrmkqlnSbj\nyYLOWMkFq96RGYIVgJdIptJ64fzU/Fbeod5xnTg3OX8ocbjCr811lbp1W6M211aqpS6spqqQ/D4a\nzLF2WurCcpLOjsfU0RgtdDlrYtFgZWZ+SZ+QdJekPkl7zewh59zRBQ87I+l1zrlRM3uLpE9JumU1\nCl4rk/HCDQfNyc2y4jBmAOMzCe3vHdXnf9yl7pEZ9Y3ENJfKHHlVWeFTW31Ed7yqSa31YbXUhblK\nD0Uh18A+MB4nWC1ws6STzrnTkmRmX5Z0j6T5YOWc+/GCxz8pqc3LIguhkFPXc6orA/KbEayAdcY5\np+7hGe3rHtUz3SPa1zWqF85PSXrxLL0bttSroyE7eDMaJEShKNWGKxSu8GtwHTWw5xOsWiX1Lvi6\nT5dfjfp1Sd9cSVHFoBiClc9MdZEK9Y7OFKwGAKtvZi6pZ/vG9X8e71LPyIy6R2Y0nb1Cr7LCp46G\niH7i1Ru1pTFzDEwowMUsKA1mppa6Sg2sowZ2T5vXzewNygSr177C/fdJuk+SOjo6vHxpzxVDsJIy\nfVasWAHlI512On1hWgd7x3Swd1QHesZ0/OyLvVGN0aB2bqiaH7zZXB3iGBiUtM21YT15enj+93i5\nyydY9UtqX/B1W/a2lzCzayV9WtJbnHPDl3oi59ynlOm/0p49e4r6Hc5dilzwYBWt0Omh6YLWAGD5\nRqbndLB3dP5g4kO9Y5qIZ1ajqkIB7W6v1f/1+u26vqNOp85PK7qOjv7A+tBSV6lk2mloarbQpayJ\nfP4E75W0w8y2KhOofknSvQsfYGYdkh6U9CvOuec9r7IAimnFanh6VDNzSUWC/IULFLO5ZFrHBid0\noGdUB3rHdLB3bH56ee4YmCs21ai9Pqz2hpeuRp0dnyVUoSxtrs0ebTO2PnZfFv1T7JxLmtkHJD2q\nzLiFzzpQ5zEyAAAa50lEQVTnjpjZ+7L33y/pTyQ1SvpktoEy6Zzbs3plr75csKqLFD5YSZkrA3du\nXD9HAgCl4PxEPHMYce+Y9neP6tn+cc0mM1fqbagO6fqOOr3z5g4NT2Wml6+XOT7AQk1VIQV8pgGC\n1Yucc49IeuSi2+5f8PlvSPoNb0srrIlYQsGAr+ATz+uzwa5vdIZgBRRQMpXW8bOT2t8zqme6Mx+5\n/ke/z9RaF9aeLfVqb8hML69dMO6ghunlWMf82cG0g+Pro4GddedXUOgDmHOYZQUURmwupb/41gl1\nD0+ra3hGPSMzmsuuRtVUBtTRENG1bXXqaIiopZbp5cDltNSGdbh/TM65sh8NQrB6BcUSrKpCAYUC\nPvWOMHIBWE1jM3Pa2zWqvV0jevrMiJ7rH1cy7WSSNtZU6oaOOm1pyFypV8vwTWBJNtdV6umutPpG\nY2pviBS6nFVFsHoFxRKszEyt9WFWrAAPOefUMzIzv6W3r2tUJ85NSpKCfp92t9fqN+/cppnZpDoa\nogoHmRsFrERLtoH9yMAEwWq9Gp1JzI/iL7T2+ghDQoEVmJ5N6tn+cR3MNpk/fmp4fgBnKJAZwHnX\nro3qbIyqrT6sCrb1AE9trKmUSTo6OKG7r95U6HJWFcHqFQyMxXTjlrpClyFJaqsP61DfWKHLAEpC\nKu10amhKB3pGdbB3TAd6xvT8uUnlZhNuaYxo54YqdTRGtKUhqg01DOAEVlsw4FNTdUhHB8YLXcqq\nI1hdwngsofFYQu31xbFc2d4Q0dhMQpPxhKq5ugh4idHpuezIg0yQ2tc1Oj/yIFzhV1t9WK/buUHt\n2XP1qpgVBRRES22ljgxMFLqMVcffMJeQaxTvKJJ94Lb6zN5032hMr95MsML6lTuceG/XiJ7pzjSa\nn8qeTOD3mV69uVrXtdepvSGi9vqImqo4nBgoFi11YR3qG9fI9Jwasle8lyOC1SXkglWxNNjlVs4y\nwaqmwNUAayeddnr+/KSePjOip86M6AcnhjS54HDiLQ1R/eSujdrSGGUAJ1DkchPYjw5M6LU7mgpc\nzeohWF1CT27FqrE4glVuxYqRCyh3iVRaRwYmtDcbpPZ2jcyfgrC5tlLbmqPqbIqqszHK4cRAiWnJ\nXhB2ZGCcYLXe9I7OqDZcUTTTkhuiQVWFAjp9YarQpQCeis2ldKA3M+7goUMD6hme0Vwq0x/VVBXU\njg1V6myKamtjVHURZkcBpSwSCqyLPiuC1SX0jMSKpr9Kysyyuq69Tvu7uTIQpe38RHz+SJi9XaMv\nDuE0aWN1pW7YUq+tTVF1Nka4UAMoQ7taanR0kGC17vSOzGhXkfUy7ems18e+84Im4omiWUkDLmc2\nmdKxwUl9+oen1TOSORJmbCazrRfwmdrqw7r9VU3qbIyqoyHCEE5gHdjVUqvvHj+vmbmkIsHyjCDl\n+atagVTaqW90Rm++qrgGmN3U2SDnpP3do3r9FRsKXQ7wEum00+kL0zrUO6ZDfWM61Dumo4MTSqQy\nw6NqwxVqb4joNdsjnK0HrGNXt9Qo7aRjgxO6cUtDoctZFQSri5ybiCuRcmpvCBe6lJe4rr1Ofp9p\nXxfBCoU3NDmrg71j+uKT3eobjalvbEbxRKY3KhjwqbUurNu2NamtPqz2hkhRHA8FoPB2t2cGbx/q\nHSdYrRc9RTbDKicaCujqlhrt7RopdClYZ1JppxfOT2pf16j2d49qX/fo/J8Tn0mbaip1bWud2urD\namuIaANX6wF4BRtrKrWxJqRn+8t3AjvB6iLFGqwkaU9ng/7xyW7NJlMKBehHwepIpZ2ODU7ok987\nqdMXptU1PD2/GlUVCqijIaK3XL1JHQ0Rba5ldhSApbmmta6sj2kjWF2kd2RGPstMiC02N3XW6zM/\nOqPn+id045b6QpeDMpFOOx0/O6knTg/riVMX9NSZEU3GM0M4m6qCuqa1Vp2NUW1pjKqekQcAVmh3\nW63+/di5sr0Yi2B1kd6RGW2uLc7T7XP70fu6RghWWDbnnE4NTc8HqSdODWs0e7VeZ2NEP33tZt26\nrVGDY3HV0BsFwGPXtNVKkp7rH9drtpffoFCC1UV6RmaKchtQkpqrQ9rWFNXerlG993WFrgalIne+\nXiZIDet7J87Pr0jVhiu0vTmqNzVXaVtTVHWRzPld07MpQhWAVXFtW6aB/XAfwWpd6BmJ6U1XFu9V\nd3s66/Wto+eUTjv5fGzJ4NLOTcT1+MkL+vGpYf345AUNjMclZcL51qaotjdVaWtzVI1RDikGsLYa\nokG11Yf1bF95NrATrBaYmUvqwtRs0ZwReCl7Ohv0z/v6dGpoSjs2Vhe6HBSJyXhCT54e0Wd+dEan\nzk9paGpWkhSu8Gtbc1R7Ohu0rTmq5qoQQQpAwe1uK98GdoLVAn2jMUkvHnpcjG7qzPRZ7e0aJVit\nY6m00+G+Mf3whQv64QtDOtAzpmTaqcJv2toU1Z7Oem1vrtKm2kpGHwAoOte21eobzw5qZHpODdFg\nocvxFMFqgZ7h4h21kNPZGFFTVUj7ukZ07y0dhS4Ha+jseFw/eH5Ij70wpMdPXtDYTEJm0tUttfrN\nO7fpjh1NOnluionmAIperoH9cN9Y2Q29JlgtUMwzrHLMTDd11utpBoWWvdlkSs90jeqx54f02PND\nOn52UpJUHQpox8Yq7dhQre0bqlQVyvwx7rowQ6gCUBKuac0Eq2f7xglW5axnZEbRoL/olyX3dDbo\nm8+d1eB4TJtri3fbEkvXOzKj7z8/pMdOnNePTw1rZi6lCr/pps4G3X3VJu3YWKVNNZX0SQEoadWV\nFdrWHNWhMmxgJ1gt0Dc6o/aGSNH/o3VTZ2aG1b6uUb1tN8GqlM0mU9p7ZlT3P3ZKJ85Ozjed10cq\ndE1rrXZurNa25iiT9gGUnd1tdfrxqQuFLsNzBKsFekZmtKUxWugyFrVrc40iQb/2dY3obbtbCl0O\nlmh4albfPX5e3zl2Xj98YUjTcyn5faZtTVHdvLVBOzdWq6mKMQgAyts1rbX66oF+nZuIa2NNZaHL\n8QzBKss5p96RmO7Y0VzoUhYV8Pt0Q0e9nu4aLXQpyNOpoSk9euSs/v3oOR3oHZNzmcOLf/b6Vr3x\nyg3qHYlx5h6AdWV3e66BfVx37SJYlZ0LU3OKJVJF3bi+0J7Oen3sOy+U7VlLpc45pyMDE/rLb53Q\nkYEJnZ/MbPG11oX1xis26MrNNWqpzfRKnZuYJVQBWHd2ba6V32c63Demu3ZtLHQ5niFYZZXCFYEL\n3dzZIOek/d2jZXdFRalyzum5/gk9fHhAjzw3qN6RmEzS1qaobtnaoF0ttarlmBgAkCSFg37t2FBV\ndg3sBKus3mywam8ojWbw6zrq5PeZ9naNEKwKyDmnY4OTevjwgL7x7KC6h2cU8Jluf1WTPvCGV2k8\nlpwfhwAAeKndbXX61tGzcs6VTV8pf+Nn5Vas2upLY8UqEgzoxo56ff3QoH7vJ3Yyv2iNdQ9P608f\nPqZDfWMampyVz6RtzVX6+etbtaulRpFgQKm0CFUAcBnXtNXqn/b1qm80pvYS2TFaDH/rZ/WOzGhj\nTUiVFaVzWftv3LFV933hGX398IB+7vq2QpdT9i5Mzerrhwb0tYMDOtibOeOqszGq11zXqKtaaglR\nALBEu9vqJGUa2AlWZaZnZKZo+6seeKrnkrenndPGmpD+7JHjumd3q3y+8lhGLSazyZS+c+y8vvJM\nn77//JBSaaddm2v0obdcqVTaqS5S3MNkAaCYXbGpWkG/T4f7xvRT124udDmeIFhl9Y7M6NZtjYUu\nY0l8Znr9zg36p329+tbRs7r76vL4TVlozjl99NET2tc9qmf7xhVLpFRTGdDt2xt1fUd9Wc1bAYBC\nCgZ8evXmah0uowZ2gpUyqxKDE/GSXIa8pq1W/37snD7+vZN681Wbyqb5rxAm4gl97UC/Hni6V8cG\nJxTwma5qqdENHfXavqFKPt5bAPDctW11+tcD/UqnXVnsvBCsJA2MxeVc6YxaWMhnptftbNaDB/r1\n/eeH9AauEFwS55wO9o7pgad69PDhQcUSKe3aXKN7rmvR7ra6kuq5A4BSdE1brb7wZLdODU1px8bq\nQpezYgQrLZhh1Vh6wUrKjF548vSwPvHdk3r9zmZWrfIQT6T0jcOD+ocnunS4b1zRoF8/e32r3nlz\nu65prdWXnu4tdIkAsC7csaNJZtIjz57V7xCsykMuWLWXyKiFiwV8Pr33ddv14YeO6KkzIyXXK7aW\n/vb7p/TU6WHt7RrR9FxKzdUh/czuFl3fXqdQhV/P9U/ouf6JQpcJAOvG5tqwbtvWqAcP9OmDb3pV\nyS8OEKyUaVwPBnzaUB0qdCnL9o6b2vW/v3tSn/jeSYLVJRzsHdNnfnRG3zg8IOekKzdV67btTdre\nHC35P8QAUOp+/oY2/eG/HNL+njHduKW+0OWsCMFKmWDVXh8u6aa5ygq/fuOOrfrIN4/rYO+Yrmuv\nK3RJBZdKO33ryFl9+kdn9Ez3qKpDAb1me5Nu3daohihjEgCgWNx99Sb9l399Vg/u7yv5YMW4bhX3\nDKul+OVbt6g2XKGPfPOY5pLpQpdTMJPxhD79w9N63Ue/p9/64n6dn4zrT356l378oTfqrddsJlQB\nQJGpCgV091Wb9PDhQc0mU4UuZ0XWfbCamUvqzIVpbWmMFrqUFasKBfSf3/pqPXl6RO9/YP+6C1cf\n/+5Jvevvn9Se//7v+u/fOCa/z/SuWzr03ju3q7LCr68fGix0iQCAV/BzN7RpPJbQ946fL3QpK7Lu\ntwK/sr9fM3MpvW13eQzX/MWb2hVPpvQnXzui3/7Sfn383htUUcbnCDrn9OTpEX3+iS7923NnZSZd\n01qr21/VVDLnPgIApNu3N2pDdUhf2d9f0gOv13WwSqedPvf4GV3bVqsbOkp7T3ehd9/WKeekDz90\nRB94oDzD1UQ8oa/u79cXnuzWyfNTqg1X6M6dzbp1W6NqwxWFLg8AsEQBv0/3XNeiz/24SyPTcyXb\ntlFe/9ou0Q9eGNKpoWm95/bOsrsy7Fdf06kPv22XHj1yTh/80gElUqW/Leic04GeUf2nrz6rW//n\nd/Thh44oGvTro2+/Vk/9pzfpzVdtIlQBQAn7+RvalEg5PXx4oNClLNu6XrH6P493qbk6pJ+6pqXQ\npayK99y+Vc5J/+3ho3rvF57Rh9+2qyR7ybouTOtPHz6qg71jGp6eU8Bn2t1Wp1u2NaitPqJEyunB\n/f2FLhMAsEKv3lyjKzdV68H9/Xr3bZ2FLmdZ1m2wOnl+So89P6Tfv2ungoHSX7h74KmeS95eWeHX\n23a36JvPDuqNf/mYfuGGVv32G3cU9bmIzjkdPzup758Y0qNHzupg75hM0tbmqF5/RbOuaqnlqBkA\nKFO/cEOb/scjx3RqaErbm6sKXc6Srdtg9bkfn1HQ79O9t3QUupRVd9u2Rl3VUqNzE3F98akePbi/\nX/9hT7ve/4btRdPgPTI9pydPD+uxE0N67PkhnZ2IS5KuaqnRh95ypdJObPMBwDpwz3Ut+rNvHtNX\n9/frD998RaHLWbJ1GazGZxL6yjP9+pnrWtRUVbrT1peiprJC73vddr33zu365PdP6stP9+pLT/do\n1+Ya3bGjSbe/qkk3b21Yk5Wgmbmkjg1O6GDvuA72junxkxc0Mj0nSaqs8OlVzVV6zfZG7dxYrRrC\nFACsKxtqKvXaHc366oF+/f5dO0tuePe6DFZf3tujWCKl99zeWehS1tym2kr9t3uu1ntft11f3d+n\nH528oM8+fkZ/94PTCgZ8ur69Tts3VGlLQ0QdDRG1Zz+qQ4G8fnOn007jsYSGp2c1PDWnC1Nz6hud\nUdfwtE4PTatreFrnJmbnH99SW6nNtZW6ubNh/vX8JfaHCADgrZ+/vlW/+08H9fXDA7rnutZCl7Mk\n6y5YJVNpff6Jbt2ytUFXtdQWupw1dXEfVkM0pJ/Z3aq7r9qsruFpnTw/pe7hab1wfmp+BWmhSNCv\nSDCQ/a9fzkmJVFpzqXTmv8m0JuJJpdLuZd8bDfrVWBVSa11Eu9vqtKG6Um0NYdVUsiIFAHipu6/e\npOufqNPv//MhJVNOv3BjW6FLytu6C1bfPnpO/WMx/T8/vavQpRSNYMCnnRurtXNj9fxt8URKI9Nz\nGpme0+jMnGaTmeCU+W9Kcyknv08KVQTkN5Pfl/kIB/2qCgUUDQUy/w0GVBuuUDhIszkAID+VFX79\n46/fovu+sE9/8C+HNBlP6Ndu31rosvKSV7Ays7slfUySX9KnnXMfueh+y97/Vkkzkn7NObff41pX\nLJ5I6e9/eFpt9WHdtWtjocspapUVfrXUhdVSFy50KQCAdSgaCugzv3qTPvilA/qvXz+q8VhSH3zT\nq4p+7uSicwbMzC/pE5LeImmXpHea2cXLPW+RtCP7cZ+kv/W4zhXpH4vpz//tuG77s+9of8+Y3nvn\nNvp4AAAocpUVfn3yXTfo529o1f/69+f1pw8fU/oS7SbFJJ8Vq5slnXTOnZYkM/uypHskHV3wmHsk\nfd455yQ9aWZ1ZrbZOVewU2+dc3ri9LD+4cdd+vbRc5Kku3Zt1K/e1qnbtjcWqiwAALAEAb9Pf/H2\n3aqprNBnHz+jf9nXq10tNbqqpVZXt9bo6tZabWuKKlAkR7flE6xaJfUu+LpP0i15PKZVUsGC1dNn\nRnTv3z+lukiF7rtzu3751o6imdkEAADy5/OZPvy2XdrTWa8nTw/ruf4JPfB0t+KJzHFtb7+xTX/x\nH3YXuMqMNW1eN7P7lNkqlKQpMzux2q/ZLemQpA95+7RNki54+5RYBO/52uM9X3u852uP93wNvWuV\nnvcvsx+rbEs+D8onWPVLal/wdVv2tqU+Rs65T0n6VD6FFTMz2+ec21PoOtYT3vO1x3u+9njP1x7v\nObyWz4bkXkk7zGyrmQUl/ZKkhy56zEOS3m0Zt0oaL2R/FQAAQCEsumLlnEua2QckParMuIXPOueO\nmNn7svffL+kRZUYtnFRm3MJ7Vq9kAACA4pRXj5Vz7hFlwtPC2+5f8LmT9H5vSytqJb+dWYJ4z9ce\n7/na4z1fe7zn8JRlMhEAAABWqjiGPgAAAJQBgtUSmNndZnbCzE6a2R8Xup71wMw+a2bnzey5Qtey\nHphZu5l9z8yOmtkRM/udQtdU7sys0syeNrND2ff8/y10TeuFmfnN7ICZPVzoWlA+CFZ5yvNoH3jv\nc5LuLnQR60hS0h8453ZJulXS+/l9vupmJb3RObdb0nWS7s5eXY3V9zuSjhW6CJQXglX+5o/2cc7N\nScod7YNV5Jz7gaSRQtexXjjnBnMHqDvnJpX5R6e1sFWVN5cxlf2yIvtB8+sqM7M2ST8l6dOFrgXl\nhWCVv1c6tgcoS2bWKel6SU8VtpLyl92SOijpvKRvO+d4z1ffX0v6vyWlC10IygvBCsDLmFmVpK9I\n+l3n3ESh6yl3zrmUc+46ZU6tuNnMri50TeXMzH5a0nnn3DOFrgXlh2CVv7yO7QFKnZlVKBOqvuic\ne7DQ9awnzrkxSd8TfYWr7XZJP2NmXcq0dbzRzP6xsCWhXBCs8pfP0T5ASTMzk/QZScecc39V6HrW\nAzNrNrO67OdhSXdJOl7Yqsqbc+5Dzrk251ynMn+Xf9c598sFLgtlgmCVJ+dcUlLuaJ9jkv7ZOXek\nsFWVPzP7kqQnJF1hZn1m9uuFrqnM3S7pV5T5Cf5g9uOthS6qzG2W9D0zO6zMD3Dfds5x+T9Qopi8\nDgAA4BFWrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKwKLMLJWdaXXEzA6Z\n2R+YmS973x4z+5vLfG+nmd27dtW+7LVj2XP4ioKZvcPMTpoZs6qAMkSwApCPmHPuOufcVcpMBn+L\npA9LknNun3Pug5f53k5JBQlWWaey5/Dlzcz8q1WMc+6fJP3Gaj0/gMIiWAFYEufceUn3SfqAZbw+\nt/piZq9bMLH9gJlVS/qIpDuyt/1edhXph2a2P/vxmuz3vt7Mvm9m/5+ZHTezL2aP2JGZ3WRmP86u\nlj1tZtVm5jezj5rZXjM7bGbvzad+M/tXM3smu/p234Lbp8zsL83skKTbXuE1r8p+fjD7mjuy3/vL\nC27/u1wwM7O7s7/GQ2b2HQ//NwAoUoFCFwCg9DjnTmfDw4aL7vpDSe93zj1uZlWS4pL+WNIfOud+\nWpLMLCLpLudcPBtMviRpT/b7r5d0laQBSY9Lut3Mnpb0T5Le4Zzba2Y1kmKSfl3SuHPuJjMLSXrc\nzL7lnDuzSPn/0Tk3kj2Xb6+ZfcU5NywpKukp59wfZM8DPX6J13yfpI85576YfYzfzF4t6R2SbnfO\nJczsk5LeZWbflPT3ku50zp0xs4Ylv9EASg7BCoCXHpf0V2b2RUkPOuf6sotOC1VI+riZXScpJWnn\ngvueds71SVK2L6pT0rikQefcXklyzk1k7/9JSdea2duz31sraYekxYLVB83s57Kft2e/Zzhby1ey\nt1/xCq/5hKT/bGZt2V/fC2b2Jkk3KhPSJCks6bykWyX9IBf0nHMji9QFoAwQrAAsmZltUyaInJf0\n6tztzrmPmNk3JL1VmRWkN1/i239P0jlJu5VpR4gvuG92wecpXf7vKJP02865R5dQ9+sl/YSk25xz\nM2b2fUmV2bvjzrnU5b7fOfeAmT0l6ackPZLdfjRJ/+Cc+9BFr/W2fOsCUD7osQKwJGbWLOl+SR93\nF53ibmbbnXPPOuf+XNJeSVdKmpRUveBhtcqsBqUl/YqkxRrFT0jabGY3ZV+j2swCkh6V9FtmVpG9\nfaeZRRd5rlpJo9lQdaUyq0p5v2Y2UJ52zv2NpK9JulbSdyS93cw2ZB/bYGZbJD0p6U4z25q7fZHa\nAJQBVqwA5COc3ZqrkJSU9AVJf3WJx/2umb1BUlrSEUnfzH6eyjaFf07SJyV9xczeLenfJE1f7oWd\nc3Nm9g5J/zvbFxVTZtXp08psFe7PNrkPSfrZRX4d/ybpfWZ2TJnw9OQSX/MXJf2KmSUknZX0P7P9\nWv9F0rcsM4IioUyf2ZPZ5vgHs7efV+aKSgBlzC76gRMAyoaZdUp62Dl3dYFLeYnsluR8Qz+A8sFW\nIIBylpJUa0U2IFSZVbvRQtcCwHusWAEAAHiEFSsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAA\nj/z/wSDtmF+/JzwAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(hsc_deep['hsc-deep_ra'], hsc_deep['hsc-deep_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, hsc_deep, \"hsc-deep_ra\", \"hsc-deep_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add KIDS" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4nGd97//3PTPal9G+S17lPU5CnBVCtgaSEEhp86MB\n2v56uqTpIaftaU9bTtuLc7rTctrTUgIhBUophBCyQAgOScgekji243jf5EX7Llmjbfb7/KGRI4wd\nj+1n5pkZfV7X5euSRo81X49l66P7/j7f21hrEREREZEL53G7ABEREZFcoWAlIiIi4hAFKxERERGH\nKFiJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEJ9bT1xT\nU2OXLl3q1tOLiIiIJG379u0j1tras13nWrBaunQp27Ztc+vpRURERJJmjOlM5jptBYqIiIg4RMFK\nRERExCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhYiYiIiDhE\nwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEN8bhewGD24peus13ziyrY0VCIiIiJO0oqViIiI\niEMUrEREREQcomAlIiIi4hAFKxERERGHJBWsjDG3GGMOGmM6jDGfPs3H/8gY83bi1x5jTMwYU+V8\nuSIiIiKZ66zByhjjBe4DbgXWAR83xqxbeI219nPW2kustZcA/xN4yVo7loqCRURERDJVMitWVwAd\n1tqj1tow8BBwx7tc/3Hg204UJyIiIpJNkglWzUD3gvd7Eo/9DGNMMXAL8OiFlyYiIiKSXZxuXv8w\n8JMzbQMaY+42xmwzxmwbHh52+KlFRERE3JVMsOoFWhe835J47HTu4l22Aa21D1hrN1lrN9XW1iZf\npYiIiEgWSCZYbQXajTHLjDH5zIWnJ069yBjjB64Dvu9siSIiIiLZ4axnBVpro8aYe4GnAS/wNWvt\nXmPMPYmP35+49KPAM9ba6ZRVKyIiIpLBkjqE2Vq7Gdh8ymP3n/L+14GvO1WYiIiISLbR5HURERER\nhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxER\nERGHKFiJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUr\nEREREYcoWImIiIg4RMFKRERExCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQ\nBSsRERERhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi\n4hAFKxERERGHKFiJiIiIOCSpYGWMucUYc9AY02GM+fQZrrneGPO2MWavMeYlZ8sUERERyXy+s11g\njPEC9wE3Az3AVmPME9bafQuuqQC+CNxire0yxtSlqmARERGRTJXMitUVQIe19qi1Ngw8BNxxyjWf\nAB6z1nYBWGuHnC1TREREJPMlE6yage4F7/ckHltoFVBpjHnRGLPdGPOrThUoIiIiki3OuhV4Dp/n\nMuAmoAh43RjzhrX20MKLjDF3A3cDtLW1OfTUIiIiIpkhmRWrXqB1wfsticcW6gGettZOW2tHgJeB\ni0/9RNbaB6y1m6y1m2pra8+3ZhEREZGMlEyw2gq0G2OWGWPygbuAJ0655vvA+4wxPmNMMXAlsN/Z\nUkVEREQy21m3Aq21UWPMvcDTgBf4mrV2rzHmnsTH77fW7jfG/AjYBcSBr1hr96SycBEREZFMk1SP\nlbV2M7D5lMfuP+X9zwGfc640ERERkeyiyesiIiIiDnHqrkBJeHBLl9sliIiIiEu0YiUiIiLiEAUr\nEREREYcoWImIiIg4RMFKRERExCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQ\nBSsRERERhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi\n4hAFKxERERGHKFiJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUi\nIiLiEAUrEREREYcoWImIiIg4RMFKRERExCEKViIiIiIOUbByWc/4DNZat8sQERERByhYuejYyDRf\nfPEIe/oCbpciIiIiDlCwctGevgkAjg5PuVyJiIiIOCGpYGWMucUYc9AY02GM+fRpPn69MWbCGPN2\n4tdnnC81t1hr2Z9YqTo2Mu1yNSIiIuIE39kuMMZ4gfuAm4EeYKsx5glr7b5TLn3FWnt7CmrMSf0T\nQU7MRqgtLWBoMsR0KEpJwVn/OkRERCSDJbNidQXQYa09aq0NAw8Bd6S2rNy3rz+AAT64vh6AzlGt\nWomIiGS7ZIJVM9C94P2exGOnusYYs8sY85QxZr0j1eWwfX0BllSXsKq+DJ/HaDtQREQkBzjVvP4W\n0Gat3Qj8K/C9011kjLnbGLPNGLNteHjYoafOPmPTYQYCQdY1lePzemitKub46IzbZYmIiMgFSiZY\n9QKtC95vSTx2krU2YK2dSry9GcgzxtSc+omstQ9YazdZazfV1tZeQNnZbV/ibsB1jeUALKspoe/E\nLMFIzM2yRERE5AIlE6y2Au3GmGXGmHzgLuCJhRcYYxqMMSbx9hWJzzvqdLG5Yl9/gIbyQqpK8oG5\nYGWBTq1aiYiIZLWzBitrbRS4F3ga2A88bK3da4y5xxhzT+KyO4E9xpidwOeBu6zGiZ/WVChK5+gM\n65rKTz7WWlmMx8BxNbCLiIhktaTu709s720+5bH7F7z9BeALzpaWmw70B7C8sw0IkO/z0FJZrAZ2\nERGRLKfJ62m2rz9ARXEejf7Cn3p8aXUJveOzhKNxlyoTERGRC6VglUahaIyOoSnWNZaTaEk7aVlN\nMTFr6R5Xn5WIiEi2UrBKo8ODU0Tj9qe2AectqS7BAMe1HSgiIpK1FKzSaH9/gKI8L0uqS37mY4V5\nXhorCjmmBnYREZGspWCVJrG4Zf9AgLWNZXg95rTXLKsuoXtshmhcfVYiIiLZSMEqTTpHpwlG4qw9\nzTbgvKU1JURilt7x2TRWJiIiIk5RsEqTkakwAM0VRWe8Zn6LUH1WIiIi2UnBKk0CwQgGKCvMO+M1\npQU+6soK1GclIiKSpRSs0iQwG6G0wHfG/qp5y2pK6BydIRbX4HoREZFso2CVJoFghLKisw+6X1pT\nQigaZ39/IA1ViYiIiJMUrNIkMBul/F22AectTfRZbe8cT3VJIiIi4jAFqzQJBCNJBavyQh8+j6FH\nE9hFRESyjoJVGkRjcWbCMcqT2Ao0xuAvyqNvIpiGykRERMRJClZpMBmMAiS1YgVQUZxH3wnNshIR\nEck2ClZpEAhGACgvSjJYFeXTf0IrViIiItlGwSoNJmYTwSrJFSt/cR6Dk0EiMR1tIyIikk0UrNLg\nna3As/dYAVQU5WEtDAa0aiUiIpJNFKzSIDAbwecxFOV7k7ren9gy7NN2oIiISFZRsEqDQDBCeVEe\nxrz71PV5/uL5YKUGdhERkWyiYJUGgWCUsiS3AWGueR2gb0LBSkREJJsoWKVBYDa54aDz8n0ejVwQ\nERHJQgpWKWatJRCMnOybSlajv0gjF0RERLKMglWKBSNxIjF7TluBAM0VhfRqxUpERCSrKFil2LkO\nB53XVFFEv461ERERySoKVil2MlidQ48VzG0FTsxGmA5FU1GWiIiIpICCVYoFZs9tOOi8popCAPp1\nZ6CIiEjWULBKsckL2AoE6FUDu4iISNZQsEqxidkIRXle8rzn9lLPB6t+NbCLiIhkDQWrFJsMRikv\nOrdtQID6sgI8RtPXRUREsomCVYoFguc2HHSez+uhvrxQW4EiIiJZRMEqxc516vpCjf5CNa+LiIhk\nEQWrFIpbe95bgTDXZ6WtQBERkeyhYJVCU8EoFig7zxWr5ooi+iaCWGudLUxERERSQsEqheaHg57r\nOYHzGv2FhKNxRqfDTpYlIiIiKaJglULzw0HP9ZzAee+MXFADu4iISDZIKlgZY24xxhw0xnQYYz79\nLtddboyJGmPudK7E7HW+5wTOe2dIqPqsREREssFZg5UxxgvcB9wKrAM+boxZd4br/h54xukis1Ug\nGMFjoLTgAlesdGegiIhIVkhmxeoKoMNae9RaGwYeAu44zXX/DXgUGHKwvqwWmI1SWuDDY8x5/f7K\n4jwKfB7dGSgiIpIlkglWzUD3gvd7Eo+dZIxpBj4KfOndPpEx5m5jzDZjzLbh4eFzrTXrTAYj570N\nCGCMOXlnoIiIiGQ+p5rX/xn4E2tt/N0ustY+YK3dZK3dVFtb69BTZ66JCxgOOq+xolArViIiIlki\nmeafXqB1wfsticcW2gQ8ZOa2vGqA24wxUWvt9xypMksFghGW15Zc0Odo8hfxyuERhyoSERGRVEom\nWG0F2o0xy5gLVHcBn1h4gbV22fzbxpivA08u9lAVjsYJRuIXvGLVVFHE4GSQSCxOnlfTMURERDLZ\nWb9TW2ujwL3A08B+4GFr7V5jzD3GmHtSXWC2mpwftXDBwaoQa2FAfVYiIiIZL6k5ANbazcDmUx67\n/wzX/tqFl5X9AsG54aAX0rwOC0cuBGmtKr7gukRERCR1tLeUIoHZuRWr8526Pq/RPxes1MAuIiKS\n+RSsUuRCzwmc11RRCECfhoSKiIhkPAWrFAnMRsj3eijwXdhLXJzvo6I4TytWIiIiWUDBKkUCwShl\nhT7MeU5dX6jJX6SDmEVERLKAglWKBC5w6vpCTRWFOohZREQkCyhYpUhgNkL5BTauz2uqKKJf4xZE\nREQynoJVClhrmQxGHVyxKmJiNsJ0KOrI5xMREZHUULBKgdlwjGjcXvBw0HmN/rk7A/t1Z6CIiEhG\nU7BKgYn5qesOrVg1J4aE9qqBXUREJKMpWKXA5PzUdYd6rBrnp6+rgV1ERCSjKVilwPzUdadWrOrL\nCvAYTV8XERHJdApWKTCZaDIvK3Bmxcrn9VBXVqg7A0VERDKcglUKTIWiFPg8+LzOvbwN/kIGAgpW\nIiIimUzBKgWmQ1FKHVqtmtdQXsiAVqxEREQymoJVCkyHopQ4Hay0YiUiIpLxFKxSYDoUc37Fyl/I\nZDCqIaEiIiIZTMEqBaZCUUoKvI5+zobyuSGhWrUSERHJXM4uqwhxa5kJp2YrEGBgIsiK2lJHP7eI\niEgyHtzSddZrPnFlWxoqyVxasXJYMBwjbklJ8zqgBnYREZEMphUrh00leqBStmKlrUAREUmBZFaj\n5Oy0YuWwqXAiWOU7G6wK87xUFOdpxUpERCSDKVg5bDoUA5zfCoTELCutWImIiGQsbQU6bPrkVqCz\ndwVCYpaVVqxEROQcaZsvfRSsHDYVimKAYoe3AmFuxWpvX8DxzysiIrkrGIkxGAgyMhViZDLEyFSY\nidkIS2qKubS1kqqSfLdLzCkKVg6bDkUpyvfi9RjHP3eDv5CRqRCRWJw8B88hFBGR3GGt5eDgJC8c\nGOaFA0Ns7xonFrcnP15W4KO00Mdz+4d4bv8QS6uLubStkoua/RTmOb/bstgoWDlsKgXH2cxrKC/E\nWhiaDNFcUZSS5xARkewzG47x2pERnjswxIsHhuhLtI2sayznt65dzvh0mJrSAqpL80+Gp/GZMDu7\nT/BW1wke39HLD3b2cedlLWxsqXDzj5L1FKwclorjbObVnxwSOqtgJSKyyPVPzPL8gSGe3z/Eqx0j\nhKJxSvK9vK+9ht+9qZ3rV9edHNVzuh6ryuJ8rl9dx3Wrauk9McsTO/v4/tt9LKspoawwL91/nJyh\nYOWw6VD0ZAByWuPJYBVKyecXEZHMFYrG2H58nJcODfPSoWEODEwCUFmcx3uWVLKmoYxl1SX4vB7i\nFp4/MJTU5zXG0FJZzP93WSuff/4wT+7q5+NXLO7p6RdCwcphU6Eoy/NTs0et8wJFRBYPay1Hhqd5\n9fAwrxwe4bUjo8xGYuR5DZuWVPEnt6zh59bW8eaxMYy58L7e2rICblhdx4/3D3Jpf4A1jeUO/CkW\nHwUrB0VicWYjqdsK9BflUZjnYWBiNiWfX0RE3DU6FeLVjhFePTzCqx0j9Cd6papK8rm41U97XRnL\na0so8M39AL/1+LgjoWre+1fVsLv3BN/fObclWKBm9nOmYOWg8Zkw4MxxNmeaOVKS72PLsTEe3NK1\n6A+6FBHJZg9u6SJuLT1jMxwamuLQ4CS947NYoCjPy4raEq5cVs3KutK0jUTweTx89NIWvvzSEZ7e\nN8hHLm5Ky/PmEgUrB41OzQWrVK1YAZQX5TExG0nZ5xcRkdSaDkV56dAw39naxaHBKWYjMQzQWlXM\nTWvraK8ro7myCI+DK1Hnoq2qmKuWV/PG0VEuafHTVl3iSh3ZSsHKQfPBKlXjFmBuO7BzdDpln19E\nRJw3Ph3mx/sHeXrvAC8fHiEcjVOc72VtYxmr6stYWVeaksHS5+sD6+rZ1x/gsR293HvjSnwezU5M\nVub8LeaA0em5u/VScZzNvPJCH4FgFGvt2S8WERHXzIZjPLt/kO/t6OXlQ8NE45YmfyGfvLKNW9Y3\ncHhoyrVVqbMpyPNyxyVNfOP1Tl7rGOX9q2rdLilrJBWsjDG3AP8CeIGvWGs/e8rH7wD+CogDUeD3\nrbWvOlxrxkvXVmAsbpkOx1L2HCIicn5icctPOkb4v88eYm9/gHA0jr8oj6tXVLOxuYKmikKMMRwZ\nns7YUDVvTUM5bVXF7Oo5oWB1Ds6aAIwxXuA+4GagB9hqjHnCWrtvwWXPAU9Ya60xZiPwMLAmFQVn\nstHpEB5DSo8EKE8MbQuoz0pEJGN0jc7w3e3dPLK9h/6JIIV5HjY2+7mktYKlNSUZH6LOZE1DGc/s\nGyQwG6G8SENDk5HM0soVQIe19iiAMeYh4A7gZLCy1k4tuL4EWJT7VKNTYUryfSn9B+QvUrASEckE\nwUiMp/b0852t3bxxdAxj4P3ttfz5h9YxMhXKiTNdVyeC1aHBSTYtrXK7nKyQTLBqBroXvN8DXHnq\nRcaYjwJ/B9QBH3KkuiwzMhVOaeM6cPInhomggpWIiBv+6ZlDbD0+xo7ucYKROFUl+dy8rp5LWyuo\nKM5nYjaSE6EK5gZTlxf6OKhglTTHUoC19nHgcWPM+5nrt/q5U68xxtwN3A3Q1pZ7M5jGpkMp7a+C\nuf4tg1asRETSaSYc5cld/Tz0ZhdvdZ3A6zGsbyrn8qVVLMvirb6zMcawqr6M3b0TxOIWryc3/5xO\nSiYF9AKtC95vSTx2Wtbal40xy40xNdbakVM+9gDwAMCmTZtybrtwdDpMRYr3oL0eQ1mhj8BsNKXP\nIyIisK8vwLff7OJ7O3qZDEVZUVvCbRc1cmlrRcp3KDLF6oYytnWO0zk2zfKaUrfLyXjJfFVsBdqN\nMcuYC1R3AZ9YeIExZiVwJNG8/h6gABh1uthMNzoVprmiKOXPU16Up61AEZEUeHBLF6FojN09E7x5\nfIye8Vl8HsOGZj+XL61iaXWxo0fIZIMVtaV4jeHQwKSCVRLOGqystVFjzL3A08yNW/iatXavMeae\nxMfvB34R+FVjTASYBX7JLrJBS8FIjKlQNOVbgTDXwD48GUr584iILBbWWrZ3jvPoWz3s7pkgHItT\nV1bAhy5q5NK2iowa3pluhXleltQUc3Bwkls2NLpdTsZL6ivFWrsZ2HzKY/cvePvvgb93trTsMjad\n+qnr88oL8zgyPHX2C0VE5F0NTQZ5/K1eHt7WzZHhafK9Hi5q8bNpSSVtVYtvdepMVteX8dSeAU7M\nhKkoTs+5hdlq8UZwh6VjOOg8f1EewUic6VB00ezxi4g4ZToU5Zl9Azz2Vi8/6RghbuHypZX89nUr\nmA5FKfClbhZhtpoPVgcHJ7lyWbXb5WQ0fVd2yMj8cTb5qf8HWV4099c2EAiyolb73SIiZxOOxvmb\nH+5jZ88Ee/smiMQslcV5XLeqlktaK6ktKyAaswpVZ1BbVkBlcR6HBhSszkbByiHpOIB53vz09YEJ\nBSsRkTMJR+O82jHMD3cN8Oy+AQLBKEV5Xi5treSS1graqotzdkyC0+bHLrzVNU40FseXI3O6UkHB\nyiFjiRWrdG0FwlywEhGRd0yForxyaJhn9w3y7P5BJoNRygp93LyuntJ8HyvrShUKztPqhjK2HBvj\n2Og07XVlbpeTsRSsHDI6FabA5yHfl/p/sPPT1wcCClYiIn0nZvnsUwc4MBDgyPA0sbilKM/L2sYy\nNjT7WVmrMOWE5TWl+DxzYxcUrM5MwcohI1Nhqkvy03IHSZ7XQ1GeVytWIrIoBSMxth0f56VDQ7x0\naJhDg3N3SVeX5HP18mrWNpbTVlWsKeEOy/d5WF5bwsHBycV5bl2SFKwcMjodorq0IG3P5y/K04qV\niCwK1lqODE/x8qERXjk8zOtHRwlG4uR7PVyxrIo7L2thJhSjtqxA4xFSbFV9GU/u6md0Kr3f87KJ\ngpVDxqbDVJemb7ZHeZFPK1YikrNOzIR5+fAIrxwa5um9c43nMLcqdWlrJe31pSyvKT3ZflFakNrj\nxGTO6voynqSfg4OTXKNgdVoKVg4ZnQqndc+5vDCPzrGZtD2fiEgqza9KPbd/iOf2D7Gtc4y4nVud\nb6suob22lJV1pVSWaDilm6pLC6guyefw4BTXrKhxu5yMpGDlAGstI1OhNK9Y5TEyFSISi5OnpkwR\nyVL/99lDvN19gt29EydPsGj0F3LdqlpWN5TTUlmkkQgZpq2qmA6d/nFGClYOmA7HCEXjVKfxJyl/\nUR7WwtBkKC0HP4uIOGVgIsgTO3t5fEcf+/sDeAysrCvl2vYaVteX6ciUDNfoL2RH94m0nY+bbfSK\nOGAsMRy0urSAcDSelud8Z0jorIKViGSkB7d0nXw7bi2HB6d44+gohwYnsUBLZRG3b2xkY0uFvkFn\nkcbE95z+iVmNXTgNfSU7YP44m+rSfPpPpKeh/J0hoaG0PJ+IyPmYDcd4q2ucN46OMjodpqzAx/Wr\na7m0rZIaNT9npcbyQgD6TwQVrE5DwcoB88fZVJekL1gtPC9QRCTTHB+Z5vtv9/JW1ziRmKWtqpif\nW1vP+uZyfB71hWaz4gIf/qI8+idm3S4lIylYOWB0an7FKn0/fRXleSnweRjQF7aIZAhrLds7x/m3\nV47yzL5BPMZwcUsFV6+oVstCjmn0F9KvkT+npWDlgNHpd1as0sUYoy9sEckIkVicZ/YO8pVXj7Kj\n6wQVxXl86vqVlBX6KCvUfKlc1Ogv5NDgpO5MPw0FKweMToUpLfBRmOdN6/O2VBbTM64VKxFxx+hU\niG+/2cU33+hiIBBkSXUxf3nHeu68rIXifN9PNa9Lbmn0FxG3MBgI0lJZ7HY5GUXBygGj0yGqXBha\n11pVzDN7B9L+vCKyeFlr2dUzwV/8YC87eyaIxS3tdaV8YN0SVjWU4TGG7+3oc7tMSbFGf6KBfULB\n6lQKVg4YnUrvcTbz2qqKGZ0Oa5aIiKTc0GSQ7+3o5ZHtPRwanCLf5+HypZVctbyaurJCt8uTNKss\nyafA51ED+2nou7EDRqfDrjRmtlXN/ZTQNTrDuqbytD+/iOS2YCTG8weGeHR7Dy8eGiYWt1zaVsHf\nfvQigpFY2tsfJHN4jKGhXH2+p6Ng5YDRqRAXt/jT/rxLqhPBakzBSkScEYrGePnQCE/u6uPH+waZ\nDseoKyvgt65dzp2XtbCyrhRA/VNCY0UhO7pOELdWxw4toGB1geJxy9h02LUeK4BuHcYsIhcgFI3x\nk44RNu8e4Om9A0wGoxTleVnfVM7GlgqW1ZTg9RjePDbGm8fG3C5XMkSjv4g3omOMT4fTOm4o0ylY\nXaBAMEI0bl35ovIX5eEvyqNLwUpEzlEwEuOlQ8M8tbuf5/YPMRmKUlbo4wPrGigt8LGyrhSvR6sQ\ncmYLG9gVrN6hYHWB5mdY1bjQvA5zfVYKViKSjKlQlL9+ch97+gIcGpgkHItTlOdlXVM5G5r8rKgr\n0VR0SVp9eSEeMxesNjSnvx0mUylYXaB3jrNxJ623VRWzvz/gynOLSOY7MRPmx/uH+NGefl4+PEI4\nGqekwMclrRVsaPaf3OYTOVd5Xg81pQW6M/AUClYXaP44Gzd6rCAxy2rfALG41X+OIgLMDW18Zu8A\nP9o7wBtHx4jFLc0VRfzylUvwegxLqovVbCyOaPQXcnxUuyYLKVhdoJEM2AqMxCwDgaDO4hJZxLrH\nZvjbzfvZ0ztBd+JEhprSAt63sob1TeU0VxRhFKbEYY3+Inb2TDATjlKcr0gBClYXbCyxFVjp0orV\nyZELozMKViKLzNHhKZ7aM8BTe/rZ0zvXEtBUUcgH1tWzrrGcunIN7pTUaqx4p4F9RW2py9VkBgWr\nCzQyFaKiOM+1QyjbFoxcuHpFtSs1iEjqzc+NGp8Os6vnBLt6J04OZ2ytLOLWDQ2sb/K71pYgi1Oj\nf+4HegWrdyhYXaCBQJB6F49zaPQX4vUY3RkoksOGJ0O8dmSEXT0TJ/+tt1YW8aGLGlnfVE5FscKU\nuKO0wEdZoY/+E2pgn6dgdYEGA0Hq/e4FK5/XQ3NFkYKVSI4JRmI8t3+Ix9565ziZhvK5bb6NLRVa\nmZKM0ejX0TYLKVhdoIGJIGsaylytQbOsRHKDtZYd3Sd4dHsPP9jZRyAYpb587jiZfJ+HBvVMSQZq\n9BfRMTRMNBbH51JbTCZRsLoA0VickamQ6//ZtVYV8/TeAVdrEJHzNzwZ4vEdPTy8rYeOoSkK8zzc\nsr6BX7yshWtW1OD1GJ3NJxmr0V9I3MLQZIgm3USlYHUhRqbCxC2ubgXC3IrV2HSYyWCEssI8V2sR\nkeREYnFePDjMw9u6eW7/IHE792/5Fy5tZkOzn8I8L91js3xnrNvtUkXeVdOCBnYFqySDlTHmFuBf\nAC/wFWvtZ0/5+CeBPwEMMAn8jrV2p8O1ZpyBwNyestsrVvMjF7rHZlnXpGAlksk6hqb47vZuHt3e\ny8hUiNq2jDNMAAAgAElEQVSyuVlT71lSSZ2LN8KInK+q0nzyvCYxgb3S7XJcd9ZgZYzxAvcBNwM9\nwFZjzBPW2n0LLjsGXGetHTfG3Ao8AFyZioIzyUCiWa/e5WA1P3Kha2yGdU3lrtYiIj/twS1dhKIx\ndvdMsL1znM6xGTwGVjeUc+uGBlbVl+nUBMlqHmNoKFcD+7xkVqyuADqstUcBjDEPAXcAJ4OVtfa1\nBde/AbQ4WWSmGgxkRrBqXTDLSkQyg7WW7Z3jPPpWD7t7JgjH4tSUFnDL+gYubavQtr3klAZ/EXt6\nJ7DWul2K65IJVs3Awk3+Ht59Neo3gKcupKhsMRAIkuc1VLt827O/KA9/UZ7uDBTJAIOBII+91ct3\nt3VzdGSafJ+HjS1+LltSSVtVsY6VkZxUV1bAbCTGdDjmdimuc7R53RhzA3PB6n1n+PjdwN0AbW1t\nTj61KwYngtSVFeLJgGX8tqpiOhWsRFwRjMR4Zt8gj27v4ZXDw8QtXLG0it+5fgVToSgFPq/bJYqk\nVF15AQBDAW0HJhOseoHWBe+3JB77KcaYjcBXgFuttaOn+0TW2geY679i06ZNWb9eODgZpD7xxeS2\ntqpi9vUH3C5DZNGw1vLZpw7wVtcJdveeIBiJU1GUx3Wrarm0rZKa0gIiMatQJYvC/I0XQ5Mhlytx\nXzLBaivQboxZxlygugv4xMILjDFtwGPAr1hrDzleZYYamAiy2uXhoPNaq4p5Zt8AsbhVI6xICh0d\nnuJ7O3p5/O1eusdmyfMaNjT5ec+SSpbVlODRVp8sQuWFPgp8HgUrkghW1tqoMeZe4Gnmxi18zVq7\n1xhzT+Lj9wOfAaqBLyb6B6LW2k2pKzszDAZCXNte63YZwNzIhUjMMhAI0qw5IiKOGpkK8eTOPh5/\nu4+d3SfwGHjvyhquWlbNuqZyrUrJomeMoa6sgKFJbQUm1WNlrd0MbD7lsfsXvP2bwG86W1pmmwpF\nmQpFaXB5OOi8kyMXRmcUrEQc8O8/Oca+vgA7e07QMTRF3M5NmL51QwMXt1RQXqS7+kQWqisr5NDg\npNtluE6T18/T/Awrt4eDzmtbMHLh6hXVLlcjkp2isTivdozw+I5eNu/uJxKzVBTncW17LZe0Vrg+\nWkUkk9WVF7C9a5wTM2EqihfvIeEKVudpKENmWM1r9Bfi9RiNXBA5R9Za9vUHePytXr6/s4/hyRD+\nojwuba3kktYK2qqL1TclkoS6srmbuTqGpti0tMrlatyjYHWeTh5nkyFbgT6vh+aKIo1cEEnCg1u6\nmA5Febv7BNs7xxkIBPEaw+qGMm5eW8+ahjJ8Xo/bZYpklfk7Aw8rWMn5GDi5YpUZ4xZgbjtQK1Yi\nZxaNxXnl8Ajf2tLJgf5JYtbSUlnERy5uYmOzn+IC/Zcocr78xXnkeQ0dQ1Nul+Iq/S9yngYngpQV\n+ijOz5yXsLWqmKf3DrhdhkjG6T0xy3e2dvPw1m4GAkGK871ctbyKy5ZUZcyqs0i28xhDbVkBhxWs\n5HwMBIIZ07g+b0l1MWPTYSaDEZ1DJoteNBbnhYPDfPvNLl48OIQFrltVy//+yDqGJkP4PNrqE3Fa\nXVkhHYv8zkAFq/M0EAhl3E+679wZOMu6JgUrWZy+9OIRth0fY+vxMQLBKGWFPq5bVcumJVVUluQz\nNh1RqBJJkbqyAt7uPrGof8BXsDpPQ4Eg7XU1bpfxU07OshqbYV1TucvViKRPPG75yZERvvlGJ8/u\nG8RaaK8v5SMXV7G6oVynEYikyXwD+5HhaS5prXC5GncoWJ2HWNwyNBnKuK3A1pPBatrlSkTSY3w6\nzCPbe/jWlk6Oj85QVZLP+1bWcMWyaqpKFu8cHRG3zI9cODw4qWAlyRudChGLW+ozbCvQX5SHvyhP\ndwZKTrPWsrNngv98vZMnd/URisbZtKSS/37zKm7Z0MCj23/mjHgRSZPKknzyvR46hhdvA7uC1Xk4\nOWqhLHNGLcybG7kw63YZIo4LRmL86WO72XJsjN4Ts+T7PFzaWsGVy6pp8BcyHYopVIm4zOsxLK8t\noWNQwUrOwcnjbDJsxQpgWU0J246PuV2GiGM6R6f55hudPLyth4nZCHVlBXzk4iYuaa2gME+HH4tk\nmpV1pezqmXC7DNcoWJ2HwUBmnRO40Ibmcp7Y2cfoVIjq0sxbURNJRjxueenwMN947TgvHhrGYwy3\nrG+gsaKQZdUlGB0xI5Kx2uvK+OHufmbDMYryF98PPwpW52EwEMLrMRkZXDY0+wHY3TvB9avrXK5G\nJHkPbukiGInxVtc4rx8ZZXQ6TGmBjxtW13H50ir8RYvz1m2RbNNeX4q1cGR46uT3pMVEweo8DASC\n1JUVZOQt3PNfxHsUrCSLHBme4gc7+9jeNU44Gqe1soib1rayoblcM6dEsszKulJAwUrOwWAgSH0G\nbgMClBfmsbS6mN29i3d/W7JDLG554cAQ//H6cV45PILXY9jY7OfqFdW0VBa7XZ6InKel1SV4PYbD\ni7SBXcHqPAxMBFleW+J2GWe0odnPjq4Tbpchclrj02Ee3tbNf77RSc/4LA3lhfyPD6wiz+tZtJOa\nRXJJvs/D0upiDg8tzqNtFKzOw0AgyDUrqt0u44wuavbz5K5+xqfDVGpIomQAay3bO8d5cEsXT+7u\nJxyNc8WyKv70trXcvK6ePK+HB7d0uV2miDikva6MQwpWkoyZcJTJYDTjhoMudNGCBvb3r6p1uRpZ\nzALBCN/b0ct9L3QwGAhRkJg9dcWyKhr9RZyYifDdbT1ulykiDmuvL+XZ/YOEojEKfIvrzkAFq3M0\nGAgBmTlqYd56BStxkbWWLcfGeHhrN5v39BOMxGmuKOKjlzazscW/6P6TFVmMVtaVEotbjo/MsLqh\nzO1y0krB6hydHA6awcHKX5THkupi9qiBXdJoMBDkke09fHdbN8dHZygr8PEL72nhrstb2dMbcLs8\nEUmj+TsDO4amFKzk3c0PB83krUCYa2Df2a0GdkmtSCzOXzyxl22d4xwanCRu5+4IuvOyFjY0+cn3\neRSqRBahFbWlGEOigb3R7XLSSsHqHJ08JzCDV6xgrs/qh2pglxTpGJrk4W09PPZWDyNTYcoKfVzb\nXstlSyqpycDBuSKSXoV5Xtqqijk8tPhGLihYnaOBiSClBT5KCzL7pZtvYN/TN8G17eqzkgs3G47x\n5K4+vrO1m22d4/g8hpvW1lFfXkh7XVlGDswVEfe015UuysOYMzsdZKC54aCZ/xP5+qZyYK6BXcFK\nzteDW7roOzHL1uNjvN19glA0Tk1pPrduaOCS1grNnRKRM1pZV8ZLh4YJR+Pk+xbPCQoKVudoMBCk\nIcP7qwAqivNprSpSA7ucl+lQlB/s7OO+FzroPTGLz2O4qNnPpqVVLK0u1iHIInJW65rKicQsh4cm\nWd+0eI62UbA6R4OBEFcur3K7jKRc1OxX47Cck319AR58s5Pv7ehjKhSlrqyA2zc2cmlr5aI8pV5E\nzt/8zsnevoCClZxePG7nVqwyvHF93oZmP5t3DzAxE8FfrC0bOb1gJMZTe/r5z9c7eavrBPk+D7df\n1Mgnrmzj4MCkVqdE5Lwsqy6hON/Lvr7F9QO+gtU5GJ0OE43bjL8jcN7CBvb3rqxxuRrJNF94voM3\nj42xrXOMmXCM6pJ8btvQwHuWVFKc7+PQ4JRClYicN4/HsLaxnL19i6slRcHqHAxm2KiFs52tNhOK\nAnMN7ApWAnNT0V/tGOE/XjvOc/uHAFjbWM5Vy6tZXluCR0FKRBy0vqmcR7f3EI9bPIvkzmEFq3Nw\ncup6FjSvAxQX+GipLGK3GtgXvelQlMd29PIfrx2nY2iK6pJ8rl9dyxXLqvEXaZtYRFJjfVM533g9\nRufYDMtqStwuJy0UrM7B4GTmH2dzqrkGdgWrxWZ+NfPETJjXjoyyrXPs5Jl9d17WwsZmPz7v4rn9\nWUTcMd+0vrdvQsFKftbgRBCPgZrS7JlkvqHZz1N7BpiYjWhlYhHpHZ/llY7hk6F6fZOf966oprVK\noxJEJH3a60vxeQx7+wLcvrHJ7XLSQsHqHAwEgtSWFWTVT/rzDex7eye4Rn1WOc1aywsHh/jyS0fZ\ncmyMAp+Ha1bUcPWKaiqLs+eHARHJHQU+L+31ZexdRHcGJhWsjDG3AP8CeIGvWGs/e8rH1wD/DrwH\n+DNr7f9xutBM0D02S6O/yO0yzsmGRLDarWCVsyKxOE/u6uPLLx3lwMAkTf5Cbt3QwOVLqyjM0+wp\nEXHX+qZyXjw4hLV2UayYnzVYGWO8wH3AzUAPsNUY84S1dt+Cy8aA3wV+PiVVZgBrLQcGAnxwfYPb\npZyTqpJ8mivUwJ6LZsMxHt7WzQMvH6X3xCyr6kv5p49dzIcvbuK723rcLk9EBJgLVo9s72FoMpQx\nd9WnUjIrVlcAHdbaowDGmIeAO4CTwcpaOwQMGWM+lJIqM8DwZIjxmQhrGsrcLuWcbWguV7DKIf/+\n6jHeODbGq4eHmQ7HaKsq5levWsKqhjKCkbhClYhklIUN7ApWc5qB7gXv9wBXpqaczLV/YBKANY3l\nLldy7q5aXs3Tewc5MjzFitpSt8uR8zQxE+HfXzvGl186ymwkRntdKdevrls0d9qISHZa2zi3ILG3\nN8CNa+pdrib10tq8boy5G7gboK2tLZ1PfcEODsw13mXjitUtGxr4ix/s46nd/dx7Y7vb5cg5Gp8O\n85VXj/Ifr3UyFYqytrGcG1bX0lJZ7HZpIiJnVVaYx9Lq4kXTwJ5MsOoFWhe835J47JxZax8AHgDY\ntGmTPZ/P4ZYD/ZM0lBdSkYV3VzX6i7hsSSWbdw8oWGWR+UD19Z8cZyYS47YNjXzqhpW83X3C7dJE\nRM7J+iY/u3oXx/9dyQSrrUC7MWYZc4HqLuATKa0qA+0fmGRNY/atVs27dUMDf/3D/RwfmWapto4y\n1oNbupgJRXm1Y4TXjo4SicbZ0OznhjV1NJQXKlSJSFZa11TOD3f3L4qZimcdyGStjQL3Ak8D+4GH\nrbV7jTH3GGPuATDGNBhjeoA/AP7cGNNjjMm+ZqQziMTidAxNsqYhe/9It17UCMDmPf0uVyJnMjEb\n4dl9g/zDMwd56dAwq+vL+G83tfPxK9qyatq/iMip1jfNff/ctwi2A5PqsbLWbgY2n/LY/QveHmBu\nizAnHRuZJhKzWdlfNa+5oohLWivYvLuf/3r9SrfLkQWmQ1G+/tpxHnj5KBOzETY0lXPj2nqFKRHJ\nGQvvDLx6RbXL1aSWJq8nYX9/onE9i7cCAT50USN/s3k/XaMztFWr8dltwUiMb77RyZdePMLodJib\n1tSxtrGcporsGkIrInI2tWUF1JUVLIoVq+w5m8VFBwYmyfMaltdk96iCWzbMDTfVdqC7YnHLY2/1\ncNM/vsRf/3A/axrLeOy/XsNXf+1yhSoRyVnrm8oXxZ2BWrFKwoH+ACtqS8n3ZXcOba0qZmOLn6d2\n93PPdSvcLmfR+dYbnRwemuJHewYYCARpriji19+7jJV1pRzon+RA/6TbJYqIpMz6Jj8vHx4hGInl\n9HFb2Z0U0uTAwGRW91ctdNtFjezsmaB7bMbtUhaVPb0TfPXVY3z9teOEY3HuuryV37l+BSvrsnsV\nVEQkWeubyonFLQcHcvuHSAWrs5iYidA/EczKieunc9uGubsDf7RnwOVKFoehySB//MhOPvyFVxkI\nBLl9YyO//3PtbGypwLMIDiMVEZn3TgN7bm8HaivwLA5k8cT102mrLmZD89w8kd96/3K3y8lZwUiM\nr756jC++0EE4Fuc337eMhvIiivJzd/lbROTdtFYVUVboY29fbp9dq2B1FgfmzwjM4hlWp7p1QyOf\ne/ogvSdmaVaztKOstfxozwB/s3k/PeOz3Lyunj+9bS3Lakp4cEuX2+WJiLjGGMO6xtxvYFewOosD\nAwEqivOoLy9wuxTH3HbRXLB6anc/v3mtVq2c8OCWLgYDQZ7c1ceR4WkaygtPNqa/fmSU14+Mul2i\niIjr1jf5efDNTmJxi9eTm+0Q6rE6i/nGdZND/TDLakpY21jOU+qzcsTEbIQf7urjX58/TN+JIB++\nuIlP3bBSjekiIqe4uNVPMBJnV0/uHs+lYPUu4om7F3JpG3De7Rsb2d45zp7e3N7rTqV43PKdrV3c\n+H9e5LUjo2xaUsUf3LyKq5dX5+xPYiIiF+L97bV4DLxwYMjtUlJGwepddI/PMBOO5Uzj+kK/cvUS\nqkvy+csf7MNa63Y5WWd75xh33PcT/uTR3SyrKeFTN6zk5y9tpqRAu+siImdSWZLPZUsq+fF+BatF\naX9iYGOujFpYqLwwjz/8wGrePD7G5t3aEkzWwESQ339oB7/4pdcZngzxL3ddwnfvuVoT00VEknTT\n2nr29Qfon5h1u5SU0I/X7+LAQABjYFV9bvbK/NLlrXzj9eP87eb93LS2Lqcn4V6IB7d0EY7GebVj\nhJcPDRO3lutX13L9qjqmQzG+/Wa32yWKiGSNm9bU8dmnDvD8gSE+eeUSt8txnILVuzg4MMnS6hKK\n87P3ZTrbLf7vXVnDV189xldeOcq9N7anqarsEYtbtneO8ey+QQLBKOubyrl1QyNVJflulyYikpVW\n1pXSWlXE8/tzM1hpK/BdHBiYZHV97vVXLbSitpQPrq/niy8eYTAQdLucjPLyoWE+9PlXePStXvxF\nedx97XI+eeUShSoRkQtgjOGmNfW82jHCbDjmdjmOU7A6g5lwlOOj06xpzO1gBfBnt60jGrP8/Y8O\nuF1KRtjRNc6vfHULv/q1N5kOR7nr8lbuuW4FS2tK3C5NRCQn3LS2jlA0zmtHRtwuxXEKVmdwaHAK\na3Nr4vqZtFUX8+vvW8Zjb/Wyszt3Z4uczZ7eCX7961v56BdfY29fgD//0Fp+/AfXsbGlIqfmmImI\nuO2KZVWU5Ht5LgfHLihYncHBxBmBaxfBihXAvTeupKa0gL/4wV7i8cU1fuHAQIB7/nM7t//rq2zv\nHOePPriaV/74Bn7z2uUU+NTQLyLitAKfl2vba3l+/1DOjfzJ3q7sFNvfP0lxvpfWymK3S0mL0gIf\nf3LLav7okV185ok9/OVHNuDJ8SGX2zvH+LPH93BgYJICn4cb19TxvpU1FOZ5+f7bfW6XJyKS025c\nW8eP9g6wty/Ahma/2+U4RsHqDPb1B1hVX5bz4WKhOy9r4ejINF968QhAToYray0vHhrmSy8c4c3j\nYxTne7lpbR1XL6/O6rs/RUSyzQ2r6zAGnj8wpGCV6/pOzLLt+Bj3XLfC7VLSyhjDH39wNQBfevEI\n1sJf3ZEb4Wo2HOP7b/fy9deOc2BgkkZ/IZ+5fR0eY8j3aUdcRCTdassKuLilgucODPG7N+XOuB8F\nq9N46M0uLPDxK9rcLiXtTg1XkN3hqntshv98o5PvbO1mYjbCmoYyPnfnRu64pJl8n+esc75ERCR1\nblpTxz8+e4jhyRC1ZQVul+MIBatTRGJxHtrazfWrammtWhz9Vaf6mZUr4K+zKFyFo3FePDjEPz17\niIMDkxgD6xrL+dimVpZWFxOJWR7Z3uN2mSIii96Na+eC1QsHhvjY5a1ul+MIBatTPLtvkKHJEH93\nVe5Ngz0Xp4ar3T0T/K8Pr2PT0iqXKzuzvX0TPLK9h++/3cfYdJjSAh/Xra7lymXV+Ivy3C5PRERO\nsa6xnEZ/Ic8dGFSwylXffKOT5ooirl9d53YpafNu22EtFUX80qZWXj48zJ33v85HLm7i07euyYhD\nh621HBqc4um9A2ze3c+BgUnyvR5+bl0dd17WQu94EG+WrLKJiCxGxhhuXFPH4zt6CUVjOTHiRsFq\ngSPDU7x2ZJQ/+uBqfUNOMMZwcWsF/+sj67j/paN8+aUjPLNvgHuuW8GvXbOUiuL0Hu8SjcXZ2TPB\nP//4EPv6AoxOhwForSziwxc3cXGzn+ICHwMTIf0diohkgZvX1fOtLV18d1sPv5wDu0UKVgt8640u\n8ryGj23KjeVIJxXn+/iDm1fxsU0t/N1TB/jnHx/mC893cM3KGm7b0MDN6+qpLnW+8TASi7O7d4It\nR8fYcmyUbcfHmQpF8Zi5cw7f117D2sZyygu11Sciko2uW1XLVcur+IcfHeCD6xuyvoldwSphNhzj\nke3dOfGXmkotlcXc94n38DvXTfDkrn6e2tPPpx/bzZ8+vpurlldz+dIqVtSVsrK2lOW1JRTmJbes\na61laDLEocFJDg1OcXhwkoODkxwcmGQmcUjnitoS7rikiauWVzMUCFGUn/1LxiIii50xhr/++Yu4\n9V9e5u827+effukSt0u6IApWCT/Y1UcgGM2JZchUOF0fVltVMXdfu5z+iSB7+iboHZ/l888fZv50\nAmOgpbKI2tICCnxe8n0eCnwe8n0eojHL2EyY8ekw4zMRTsyEiS44Sqc430t9eSEXt1SwtKaEpdXF\nlCVWpSaDUYUqEZEcsrKulN9+/wq+8EIHd25q4ZoVNW6XdN4UrBK+9UYn7XWlXLksc+96y0TGGJoq\nimiqKOITV7YRjMQ4NjLNkeEpOobmfk3MRghF4pyYCROKxglH43g9hsqSfFbUllJZkk9VSR51ZYW0\n15eypzdAaYG+NEVEFpN7b1zJ93f28uff28NTv3dt1jay67sXsLtngp09E/zvD6/DGDU8n69TV7Xq\nygqpKys8p89xfGRGoUpEZBEqzPPylx/ZwH/5+lb+7eWj3Htjdk5j11kewLe2dFKU5+UXLmtxuxQR\nEZFF64Y1ddx2UQP/+nwHXaMzbpdzXhZ1sLLW8m8vH+Xhbd38/KXNurNMRETEZZ+5fT0+j+EzT+zB\nWnv235BhFm2wmg3H+L2H3uZvNu/ng+sb+PMPrXW7JBERkUWvwV/IH3xgNS8eHObTj+5mLDGvMFsk\nFayMMbcYYw4aYzqMMZ8+zceNMebziY/vMsa8x/lSndM9NsMvfOk1frCrjz/64Gq++Mn3UKK+HhER\nkYzw/1+9hLvfv5xH3+rh+s+9wDdeP040Fne7rKScNVgZY7zAfcCtwDrg48aYdadcdivQnvh1N/Al\nh+t0RCxueeHAEB/+wqv0js/wtV+7nE/dsFIN6yIiIhnE5/Xwp7et5anfu5aLWvx85vt7uf1fX+XN\nY2Nul3ZWySzTXAF0WGuPAhhjHgLuAPYtuOYO4Bt2bjP0DWNMhTGm0Vrb73jFSYrG4nQMT7G7Z4I9\nvRPs6Quwry/AbCTGqvpSHviVTSytKXGrPBERETmL9voyvvkbV/KjPQP81ZP7+NiXX6elsoj2ulJW\n1pXSXlfGyvq5tzOlTzqZYNUMdC94vwe4MolrmgHXgtWu3gl+4YuvAXPDJtc3lXPXFa1sbPHzwfUN\nFOdr609ERCTTGWO49aJGrl9dx7e2dLKrZ4LDQ1P85Mgo4ejc9uDHNrXwD3de7HKlc9KaLowxdzO3\nVQgwZYw5mK7n3g88kp6nqgFG0vNUi5pe5/TQ65weep3TQ69zGnzShef8XOJXiiV1NEsywaoXWHgq\ncUvisXO9BmvtA8ADyRSWrYwx26y1m9yuI9fpdU4Pvc7podc5PfQ6Szokc1fgVqDdGLPMGJMP3AU8\ncco1TwC/mrg78Cpgws3+KhERERE3nHXFylobNcbcCzwNeIGvWWv3GmPuSXz8fmAzcBvQAcwA/yV1\nJYuIiIhkpqR6rKy1m5kLTwsfu3/B2xb4lLOlZa2c3urMIHqd00Ovc3rodU4Pvc6SciYbx8WLiIiI\nZKJFe6SNiIiIiNMUrBx0tqN/5MIZY75mjBkyxuxxu5ZcZoxpNca8YIzZZ4zZa4z5PbdrykXGmEJj\nzJvGmJ2J1/kv3K4pVxljvMaYHcaYJ92uRXKbgpVDkjz6Ry7c14Fb3C5iEYgCf2itXQdcBXxKX88p\nEQJutNZeDFwC3JK4s1qc93vMjTQUSSkFK+ecPPrHWhsG5o/+EQdZa18GMv+wqCxnre231r6VeHuS\nuW9Ize5WlXvsnKnEu3mJX2p8dZgxpgX4EPAVt2uR3Kdg5ZwzHesjktWMMUuBS4Et7laSmxJbVG8D\nQ8Cz1lq9zs77Z+CPgbjbhUjuU7ASkTMyxpQCjwK/b60NuF1PLrLWxqy1lzB3YsUVxpgNbteUS4wx\ntwND1trtbtcii4OClXOSOtZHJFsYY/KYC1XfstY+5nY9uc5aewJ4AfUQOu29wEeMMceZa9G40Rjz\nTXdLklymYOWcZI7+EckKxhgDfBXYb639J7fryVXGmFpjTEXi7SLgZuCAu1XlFmvt/7TWtlhrlzL3\n//Lz1tpfdrksyWEKVg6x1kaB+aN/9gMPW2v3ultV7jHGfBt4HVhtjOkxxvyG2zXlqPcCv8LcT/dv\nJ37d5nZROagReMEYs4u5H86etdZqHIBIFtPkdRERERGHaMVKRERExCEKViIiIiIOUbASERERcYiC\nlYiIiIhDFKxEREREHKJgJSIiIuIQBSsROStjTCwxy2qvMWanMeYPjTGexMc2GWM+/y6/d6kx5hPp\nq/Znnns2cRZfRjDG/JIxpsMYo3lVIjlIwUpEkjFrrb3EWrueuengtwL/C8Bau81a+7vv8nuXAq4E\nq4QjibP4kmaM8aaqGGvtd4DfTNXnFxF3KViJyDmx1g4BdwP3mjnXz6++GGOuWzCpfYcxpgz4LHBt\n4rH/nlhFesUY81bi1zWJ33u9MeZFY8wjxpgDxphvJY7WwRhzuTHmtcRq2ZvGmDJjjNcY8zljzFZj\nzC5jzG8nU78x5nvGmO2J1be7Fzw+ZYz5R2PMTuDqMzzn+sTbbyeesz3xe395weNfng9mxphbEn/G\nncaY5xz8axCRDOVzuwARyT7W2qOJ8FB3yof+B/Apa+1PjDGlQBD4NP+vvfsJkbqM4zj+/mCLmtiC\nkCAYmpJ/KCxRIRHEMBMsQUHcg9ghL3owDL2InSMvgiUi2CERjQ4rCOY/CCJYXF3oElIR6EUqV1RU\nzACQVcAAAAK3SURBVK11/HT4PSvjsu3swIA6fF6nH8+feZ6Zw/Cd7/Od3w922f4AQNKLwCrbAyUw\n+QZYXOYvBF4H/gB6gGWSLgHfAl22+yS9BDwAtgB3bC+RNB7okXTe9tUG2//I9q3ybL4+Sd22bwKT\ngIu2d5bnff46wppbgf22j5Ux4yTNB7qAZbYHJR0ENkk6AxwGltu+KmlK0x90RDx3ElhFRCv1APsk\nHQNO2L5Wkk71OoADkt4CasCcur5Ltq8BlLqomcAd4E/bfQC275b+94AFkjaUuZ3Aa0CjwOpjSevL\n9Stlzs2yl+7SPvd/1rwA7JE0vby/3yWtBBZRBWkAE4F+4G3gx6FAz/atBvuKiDaQwCoimiZpFlUg\n0g/MH2q3/bmk74A1VBmk1SNM/wS4DrxJVY4wUNf3T911jdG/owRst32uiX2vAN4Fltr+W9IPwITS\nPWC7Ntp828clXQTeB06X40cBR2zvHrbW2rHuKyLaR2qsIqIpkl4GDgEHPOwp7pJm2/7Z9l6gD5gH\n3AMm1w3rpMoGPQI2A40KxX8DpklaUtaYLOkF4BywTVJHaZ8jaVKD1+oEbpegah5VVmnMa5aA8ort\nL4CTwALge2CDpKll7BRJM4BeYLmkV4faG+wtItpAMlYRMRYTy9FcB/AQOArsG2HcDknvAI+Ay8CZ\ncl0rReFfAweBbkkfAmeB+6MtbPtfSV3Al6Uu6gFV1ukrqqPCn0qR+w1gXYP3cRbYKukXquCpt8k1\nNwKbJQ0CfwGflXqtT4Hzqm5BMUhVZ9ZbiuNPlPZ+qn9URkQb07AfnBERbUPSTOCU7Tee8laeUI4k\nHxf0R0T7yFFgRLSzGtCpZ+wGoVRZu9tPey8R0XrJWEVERES0SDJWERERES2SwCoiIiKiRRJYRURE\nRLRIAquIiIiIFklgFREREdEi/wHRKgtvAXbJvgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(kids['kids_ra'], kids['kids_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, kids, \"kids_ra\", \"kids_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add UKIDSS LAS" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4nGd57/HvPaN93xdrly1vSWyHOHZCFrIQcNhSWqAh\nBboAaXqaFtrThW6n59BzTtsDp6UtSwicNNBCoGWLCQ4JJHEMiePYTmzHlndZmyVZy2jfl+f8oZER\nxrHH9jt6R6Pf57p8RTPzWnMzJPZPz3O/92POOURERETkygX8LkBEREQkXihYiYiIiHhEwUpERETE\nIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeCTBrzcu\nKChw1dXVfr29iIiISMT27t3b7ZwrvNh1vgWr6upq9uzZ49fbi4iIiETMzJoiuU5bgSIiIiIeUbAS\nERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiIiHhEwUpERETEIwpWIiIiIh5R\nsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4pEEvwtYar6+q/mCr9+3uXKBKhERERGvacVKRERE\nxCMRBSsz22JmR83shJl94jyvZ5vZ981sv5kdMrPf9L5UERERkdh20a1AMwsCnwPuAlqB3Wa21TlX\nP++y3wXqnXPvNLNC4KiZfc05NxGVquPYxbYKQduFIiIisSqSFatNwAnnXEM4KH0DuOecaxyQaWYG\nZAAhYMrTSkVERERiXCTBqgxomfe4NfzcfJ8F1gBtwGvAx5xzM+d+IzO738z2mNmerq6uyyxZRERE\nJDZ51bz+VmAfsAzYAHzWzLLOvcg597BzbqNzbmNhYaFHby0iIiISGyIJVqeBinmPy8PPzfebwHfc\nrBPAKWC1NyWKiIiILA6RBKvdQJ2Z1ZhZEnAvsPWca5qBOwHMrBhYBTR4WaiIiIhIrLvoXYHOuSkz\nexB4CggCjzjnDpnZA+HXHwL+BnjUzF4DDPhT51x3FOsWERERiTkRTV53zm0Dtp3z3EPzvm4D3uJt\naSIiIiKLiyavi4iIiHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi\n4hEFKxERERGPKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUi\nIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJg\nJSIiIuIRBSsRERERjyhYiYiIiHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEciClZmtsXM\njprZCTP7xHle/2Mz2xf+ddDMps0sz/tyRURERGLXRYOVmQWBzwF3A2uB95vZ2vnXOOc+5Zzb4Jzb\nAPwZ8LxzLhSNgkVERERiVSQrVpuAE865BufcBPAN4J4LXP9+4DEvihMRERFZTCIJVmVAy7zHreHn\nfoGZpQFbgG9feWkiIiIii4vXzevvBF54vW1AM7vfzPaY2Z6uri6P31pERETEX5EEq9NAxbzH5eHn\nzudeLrAN6Jx72Dm30Tm3sbCwMPIqRURERBaBSILVbqDOzGrMLInZ8LT13IvMLBt4E/C4tyWKiIiI\nLA4JF7vAOTdlZg8CTwFB4BHn3CEzeyD8+kPhS98NPO2cG45atSIiIiIx7KLBCsA5tw3Yds5zD53z\n+FHgUa8KExEREVlsNHldRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIR\nBSsRERERjyhYiYiIiHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi\n4hEFKxERERGPKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUi\nIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPBJR\nsDKzLWZ21MxOmNknXuea28xsn5kdMrPnvS1TREREJPYlXOwCMwsCnwPuAlqB3Wa21TlXP++aHODz\nwBbnXLOZFUWrYBEREZFYFcmK1SbghHOuwTk3AXwDuOeca+4DvuOcawZwznV6W6aIiIhI7IskWJUB\nLfMet4afm28lkGtm281sr5l9yKsCRURERBaLi24FXsL3uQ64E0gFdprZS865Y/MvMrP7gfsBKisr\nPXprERERkdgQyYrVaaBi3uPy8HPztQJPOeeGnXPdwA5g/bnfyDn3sHNuo3NuY2Fh4eXWLCIiIhKT\nIglWu4E6M6sxsyTgXmDrOdc8DtxsZglmlgZsBg57W6qIiIhIbLvoVqBzbsrMHgSeAoLAI865Q2b2\nQPj1h5xzh83sh8ABYAb4snPuYDQLFxEREYk1EfVYOee2AdvOee6hcx5/CviUd6WJiIiILC6avC4i\nIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJg\nJSIiIuIRBSsRERERjyhYiYiIiHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8\nomAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERE\nRDyiYBWDmnqGGZmY8rsMERERuUQJfhcgP693eIIv7mggJzWR92+qpCIvze+SREREJEJasYoxDd1D\nAEzOOB7e0cDOhh6ccz5XJSIiIpFQsIoxDV3DpCcF+YM761hRlMH397fxzT0tjE9N+12aiIiIXISC\nVQxxznGqe5iawgzSkhP44I1VvGVtMa+19vP57ScJDU/4XaKIiIhcQETBysy2mNlRMzthZp84z+u3\nmVm/me0L//pv3pca/3pHJukbnaS2IB2AgBm3rSrit26uoX9kku1HO32uUERERC7kos3rZhYEPgfc\nBbQCu81sq3Ou/pxLf+Kce0cUalwyGrpm+6tqwsFqzvLCDKry02jtHfWjLBEREYlQJCtWm4ATzrkG\n59wE8A3gnuiWtTSd6p7tryrKTP6F18pzUzkzMMbE1IwPlYmIiEgkIglWZUDLvMet4efO9UYzO2Bm\nT5rZVZ5Ut4Q452gI91eZ2S+8Xp6bhgPa+rRqJSIiEqu8al5/Bah0zq0D/gX43vkuMrP7zWyPme3p\n6ury6K3jQ+/IJP3z+qvOVZabCkCrgpWIiEjMiiRYnQYq5j0uDz93lnNuwDk3FP56G5BoZgXnfiPn\n3MPOuY3OuY2FhYVXUHb8meuver1glZWSSFZKAq29IwtZloiIiFyCSILVbqDOzGrMLAm4F9g6/wIz\nK7Hw/pWZbQp/3x6vi41nDd3DpCcnUHie/qo55blpnFYDu4iISMy66F2BzrkpM3sQeAoIAo845w6Z\n2QPh1x8C3gP8jplNAaPAvU7jwiM2N7+qtiD9vP1Vc8pzU6lvH6B/ZJLstMQFrFBEREQiEdFZgeHt\nvW3nPPfQvK8/C3zW29KWjtDwBP2jk78wZuFcc31WB073cUudtlJFRERijSavx4BT3cMA1BZeOFiV\n58weyHygtT/qNYmIiMilU7CKAQ3dw2QkJ1CY8fr9VQCpSUHy05PY39K3QJWJiIjIpVCw8plzjoau\nIWou0l81pyw3VStWIiIiMUrBymeh4QkGxqYuug04pzw3jY6BMToHxqJcmYiIiFwqBSufNYT7qy7W\nuD6nPGe2gX2/Vq1ERERijoKVz051D5MZQX/VnGU5qQQMDrSqz0pERCTWKFj56Gx/VWFk/VUASQkB\nVhZnasVKREQkBilY+WiuvyrSbcA568qzOdDah2awioiIxBYFKx91DY0DUJqdekm/b115Dn0jk7SE\ndLyNiIhILFGw8lFoeAKAvPSkS/p968tzANivPisREZGYomDlo97hCRKDRnpS8JJ+36qSTJKCATWw\ni4iIxBgFKx+FRibJS0+KuHF9TlJCgDXLstTALiIiEmMUrHzUOzxBXtqlbQPOWV+ezcHT/UzPqIFd\nREQkVihY+cQ5R2h4gtxL7K+as648h5GJaU52DXlcmYiIiFwuBSufDE9MMzE9c8mN63PWl2cD6EBm\nERGRGKJg5ZPeuTsCL3MrsLYwg/SkoA5kFhERiSEKVj6ZG7VwuVuBwYCxujSLY2cGvSxLREREroCC\nlU96R8LB6jJXrACq89Np7Bn2qiQRERG5QgpWPgkNT5CZnEBSwuX/X1Cdn8aZgXFGJqY8rExEREQu\nl4KVT67kjsA51eEzBpt6RrwoSURERK6QgpVPekcmLvuOwDlzhzc3dms7UEREJBYoWPlgesbRNzJ5\nRf1VAFX5aQCcUp+ViIhITFCw8kHfyAQOyEtPvKLvk5mSSEFGEk3d2goUERGJBQpWPugdmQQuf9TC\nfNX56VqxEhERiREKVj4IXeFw0PmqC9LVYyUiIhIjFKx8EBqeIGhGVuqVbQXCbAN75+A4w+MauSAi\nIuI3BSsf9I5MkJOWSMDsir/XXAO7Ri6IiIj4T8HKB6HhKx+1MKc6PzxyQX1WIiIivlOw8oEXw0Hn\nzA0JPaU+KxEREd9FFKzMbIuZHTWzE2b2iQtcd72ZTZnZe7wrMb6MTU4zOjntSeM6QEZyAoWZyTRp\nxUpERMR3Fw1WZhYEPgfcDawF3m9ma1/nur8Hnva6yHhy9o5Aj1asYPbMwEbNshIREfFdJCtWm4AT\nzrkG59wE8A3gnvNc93vAt4FOD+uLO3PByqutQNAsKxERkVgRSbAqA1rmPW4NP3eWmZUB7wa+4F1p\n8al3xLsZVnOqC9LpGhxnSCMXREREfOVV8/pngD91zs1c6CIzu9/M9pjZnq6uLo/eenEJDU+Qmhgk\nNSno2fecuzNQfVYiIiL+iiRYnQYq5j0uDz8330bgG2bWCLwH+LyZ/dK538g597BzbqNzbmNhYeFl\nlry49Y5MkHuFZwSeq7pgdpaV+qxERET8lRDBNbuBOjOrYTZQ3QvcN/8C51zN3Ndm9ijwhHPuex7W\nGTdCw5OUZCV7+j01y0pERCQ2XHTFyjk3BTwIPAUcBv7DOXfIzB4wsweiXWA8mZlx4RUr7/qrANKT\nEyjKTNaZgSIiIj6LZMUK59w2YNs5zz30Otf+xpWXFZ/ODI4xPeM8HbUwpzo/XStWIiIiPtPk9QXU\nEhoFvL0jcE51QRqn1GMlIiLiKwWrBdQcmg0+Xm8FwuzIhe6hcQbHJj3/3iIiIhIZBasF1BwawYCc\nNG/vCgSoOTtyQatWIiIiflGwWkCtoRGyUxNJCHj/sVfpzkARERHfKVgtoObQSFS2AWH+LCsFKxER\nEb8oWC2g5tBIVBrXAdKSEijOSlYDu4iIiI8iGrcgV25scprOwXHWledc8ff6+q7m8z6flpTAnsYQ\nX9/VzH2bK6/4fUREROTSaMVqgbT2zq4k5Xl8nM18+elJdA9PRO37i4iIyIUpWC2Qs6MWorQVCJCf\nkczw+BRjk9NRew8RERF5fQpWC+R03xgQ5WAVbozv0aqViIiILxSsFkh73ygJASMjJXptbQUZs4c7\n9wyNR+09RERE5PUpWC2Q9v4xirNSCJhF7T3mziDsHtKKlYiIiB8UrBZIW98oy3JSovoeSQkBslIS\ntGIlIiLiEwWrBdLeP0ZpdmrU3yc/I1k9ViIiIj5RsFoAMzOOjv4xSqO8YgWzDewKViIiIv5QsFoA\nPcMTTEzPsGwBVqwKwiMXBscmo/5eIiIi8vM0eX0BtPePAlCanRL1xvK5BvamnhGuLsuO6nuJiEj8\neb3TPebT6R6vTytWC6AtPMNqWc5C9FjNBqvGHh3GLCIistAUrBbA/BWraMtPn51l1dSjw5hFREQW\nmoLVAmjvHyM5IXB2my6akhICZKYk0NitFSsREZGFpmC1ANr6RinNTsGiOBx0vvz0JK1YiYiI+EDB\nagEs1AyrOfnpyeqxEhER8YGC1QJo7xtdkBlWc/IzkugcHGdkYmrB3lNEREQ0biHqpmccZwbHF2SG\n1Zz88GHMjd0jrF2WtWDvKyIisS2SUQpyZRSsoqxzcIzpGbewK1ZnZ1kNK1iJiCwhCk7+U7CKsrMz\nrBZwxWru7sNGNbCLiMSdqekZQiMTjE/OUJiZTEpi0O+SZB4Fqyhr6wvPsFrAFauUxCAFGUk0qYFd\nRGRRGhib5Ej7IIfbBzjSMUBTzwg9QxN0D40TGpnAuZ9dm5WSQFFWCoUZyUzNzHBjbQElCzA3Uc5P\nwSrKfjYcdOFWrACq8tN1Z6CIyCLgnOMzPz5OQ/cwp7qGaO0bpW/kZ+e9poZ/WM5MSaS2MIN1yQlk\npCSQGDAGx6cYHJs9H/Z03ygdA2PsbuzlqmVZ3LG6aMH/7hEFq6hr6xsjPSlIVsrCftRV+WnsPNmz\noO8pIiK/6Hx9T/2jkxzpGOBk5xCnuocZnpgGIDs1kcq8NDZVp1CSnUJpdipZKQkRz0EcmZjihRPd\nvHiyh0NtA6wtnQ1YC3GkmsyK6G97M9sC/BMQBL7snPu7c16/B/gbYAaYAj7unPupx7UuSu39o5Tm\npC7YcNA51fnpfOeV04xNTmv/XUTEZ845zgyMU98+wOH2AU6H20SyUxNZWZxJbWE6NQUZ5KYlXtHf\nF2lJCdy1toSbVxTywsluXjzZzeHnBrh3UyXXlGV79T9HLuCiwcrMgsDngLuAVmC3mW11ztXPu+wZ\nYKtzzpnZOuA/gNXRKHixmR0OuvB73dUF6cDsmYGrSjIX/P1FRASOnxnkR/Ud7G/tJzQ8AUBFbipv\nWVvMmtIsijKTo/KDd2pSkDevKeam5QV8ZWcj39rbQn56klauFkAkK1abgBPOuQYAM/sGcA9wNlg5\n54bmXZ8OOASY3QpcU7LwIw+q89MAaOwZVrASEVlAp/tG+f7+Nh7f18bh9gEMWF6Uwa11hawuzSQr\nJXHBaklNCvJrmyv5/PaT/PtLTfyX21eQkawuoGiK5NMtA1rmPW4FNp97kZm9G/hboAh4uyfVLXLj\nU9N0D40v6B2Bc6ry5las1MAuIhJtw+NTbHutne+8cpqdDbP9rddW5vDf37mW8akZMhcwTJ0rMyWR\nD2yu4os7TvK1XU18+OYaEgI6eCVaPIutzrnvAt81s1uZ7bd687nXmNn9wP0AlZWVXr11zDrTPw7g\ny9JrdloiuWmJmmUlIhIl0zOOlxp6+PRTRznY1s/ktCM/PYk3ryliQ0Xu2ZmCSQn+97mW5abyK9eV\n883dLXx/fxu/tKFswXt/l4pIgtVpoGLe4/Lwc+flnNthZrVmVuCc6z7ntYeBhwE2btwY99uFbeFR\nCws5HHS+qvx0rViJiHjs2JlBvvPKab736mk6BsZISQywoSKXN1TmUJmXFrOBZX15Dmf6x9h+rIuS\n7FRurM33u6S4FEmw2g3UmVkNs4HqXuC++ReY2QrgZLh5/Q1AMrDk7/U/O8PKh61AmO2z2t3Y68t7\ni4jEk86BMbbub+O7r57mUNsAwYBx28pC/vIda+gZmiAxuDi21t68tpiOgTF+cKCN8pxUKvLS/C4p\n7lw0WDnnpszsQeApZsctPOKcO2RmD4Rffwj4FeBDZjYJjAK/6pyL+xWpi/HjOJv5qvLTeXx/m0Yu\niIhchp6hcT75RD0HWvtp7B7GAWU5qbxjXSnrynPISE5gYHRq0YQqgIAZ79tYwaefPsrzx7r4wA1V\nfpcUdyLqsXLObQO2nfPcQ/O+/nvg770tbfFr7x8lJy2R1CR/Qk1NQTrOQWvvCCuKdGegiMjFdA2O\n88zhM2w72MELJ7qZnnEUZiRz++oi1pVnU5S5+I+KSUkMsrkmj+1Hu+gZGic/I9nvkuKK7rmMova+\nMV+PE6iaG7nQrWAlIvJ6TnUP86P6Dp4+dIa9zb04B5V5afz2rbUEA0ZJVkrM9k1drhtq89lxvJsX\nTvbwrvXL/C4nrihYRVFb/xjLfDwIszp/duSCzgwUEfmZiakZ9jSGeO5oJ88e6eRk1+yfkVcty+Lj\nd67kLVcVs7okEzM773E08SAzJZH15TnsbQrx5jVFpCUpDnhFn2QUtfePcl1Vjm/vn5OWSFZKAk0a\nuSAiS1xb3yg7jnWx/WgXPz3RzdD4FMGAUVOQztuvKWXtsixy02bHI7za3MerzX0+Vxx9N63I55Xm\nXnafCvGmVUV+lxM3FKyiZHRimr6RSV+3As2M6oJ0rViJyJIzOjHN3//wCMfPDHKsc4iuwdm5gtmp\niawtzWJVyez5fMkxMGPKL6XZqawozGBnQw831RVoaKhHFKyi5OwMK59GLcypyk9nf0v8/+QlIkvb\n9Izj4Ol+fnqimxdOdLOnsZeJ6RkSwqtS11flUlecGbWz+Rarm1bMniX4Wms/11bm+l1OXFCwipL2\n8KgFP1esYHaW1Q8OtDExNUNSgn4aEZH44JzjeOcQO0/2zP5q6KF/dBKANaVZ/Pobq5icdtQUpC+q\ncQgLbWVxBkWZybxwopsNFTkKnR5QsIoSv6euz6nKT2cmPHKhtjDD11pERC6Xc44TnUO83Bhi58ke\nnjvaxfD4FAA5qYmsKMpgRWEGtYXpvp7Lt9iYGTetKOC7r57mVPew/p7wgIJVlMytWBVn+zsfpKZg\nduRCU4+ClYgsHhNTMxxq62d3Y4iXT/WytylE78jsilRxVjJ1RRnUFqRTW5hBblqiVlquwIaKHJ4+\n1MFPT3Tr7wkPKFhFSXv/KAUZyb43RlZp5IKIxJjzjTAYGZ+iOTRCU2iE0clp9rf0MT41A8y2NLx5\nTTHX1+RxfXUe1flpPPZyy0KXHbcSgwE21+bz7JFOugbHKczUwNAroWAVJW39Y743rgPkpyeRkayR\nCyISO5xz9I5M0tQzTGPPCI09w2fv2gsYXFOew69trmJjdS4bq3IpyvL/z9J4d0NtPtuPdrK3KcSW\nq0v9LmdRU7CKkva+UWoL0/0uAzOjKj9NK1Yi4quW0Agvnuxm58kenj3SycDYbH9USmKAqrx0rq3I\noSo/nbKc1LM32vSNTPLjw51+lr1kZCQnUFuQweGOQQWrK6RgFQXOOdr6RrlpRYHfpQCzE9gPtfX7\nXYaILCF9IxPsON7NT4938eLJHlp7Z2/oKchIpio/neqCdKrz0yjOSiGg/qiYsLo0kycOtOv8wCuk\nYBUFA2NTDE9Mx8RWIMwexvzDQx2MT0373vMlIvHJOcfh9kGeO9oZ3lLqZcZBVkoCNy7P56O31PLG\n5fmsKMpQf1SMWl2SxRMH2jncMcjNKxSsLpeCVRS0h0ct+D3Das7KkkymZxwNXcOsKc3yuxwRiRNT\n0zO83Bji6UNnePpQB239s3dDl+Wk8qaVhawqzqQ8L+3sitTuxl52N/b6WbJcQF56EkWZyRxpH+Dm\nGNlxWYwUrKJgbtRCrKxYrSyevX322JlBBSsRuWxf39XM1PQMJzqHONQ2wOGOAUYmpkkIGHXFmdy4\nPJ+VxZmaI7WIrSnN4ifHuxidmCY1STscl0PBKgraYmzFqqYgnWDAOHZm0O9SRGQRmpia4acnuvjW\n3hbq2wcYm5whJTHA6pIs1pZmsbI4Uyc7xIk1JZk8f6yLY52DrC/P8bucRUnBKgpO946SEDCKYmQW\nSHJCkJqCdI6dGfK7FBFZJCanZ/jpiW5+cKCdpw91MDA2RUpigLWl2VxTls3yonQd2huHyvPSSE8K\ncrh9QMHqMilYRUFzaISy3FQSYuh8qpXFGRxqG/C7DBGJYVPTM+xs6OGJ/e08Vd9B38gkmckJvOWq\nEt6xrpSW3hGFqTgXMGNVSRb17f1MzziCAd2xeakUrKKgpXeUitw0v8v4OXVFmTx5sEP75iLycyan\nZ3jxZA//8sxx6ttne6aSEwKsKc3imnXZ1BVlkBAM0N4/plC1RKwpzeSV5l6aenR24OVQsIqC1tAI\nb7mq2O8yfs6qkkycg5NdQ1xdlu13OSLio/GpaV440c221zr4Uf0Z+kcnSUoIsLokk3Vl2dQVZ5IY\nQyvusrBWFGUQDBhHOgYVrC6DgpXHhsen6BmeoCIvtlas5u4MPNoxqGAlsgQNjU/x3JFOnjrUwfaj\nXQyNT5GZksBda4u5++pS2vpGFaYEmO3LXV6YzuH2Ae6+ukQHXF8iBSuPtfTOnskXa1uBVfnpJAUD\nHOvUnYEiS0VoeIIf15/hh4c62HGsi6kZR3pSkDWlWVy1LIvlRRkkBAJ0DY4rVMnPWV2Sxdb9bXQN\njVOUGRujgxYLBSuPtYRmRy3E2opVYjBAbWE6x3VnoEjc+fqu5rNf941MUN8+wKG2ARq7h3FATloi\nm2vyWLssm6r8NB0hIxe1uiSTrfvhSPuggtUlUrDyWEtobsUqNmZYzVdXnMkrTZp6LBJvQsMTHDzd\nz8G2/rNn8hVlJnPbqkKuWpZNaXaKtnPkkuSkJVGancKRjgFuXVnodzmLioKVx5pDI6QnBclLT/K7\nlF+wqjiD7+9vY3h8ivRk/V8vspi1hEb4wWvtbHutnQOts4esl+Wk8ta1xVy1LJuCGJmjJ4vX6pIs\nth/tZGR8ijT9nRExfVIea+0doSIvLSZ/OqwrzgTgeOcQGyo0+E1ksekdnuAHr7Xz+L7TZ8/cW1ee\nzZarSri6LDsmf6CTxWtNaSbPHe3k6JlBrq3M9bucRUPBymMtodGY66+aszIcrI51DCpYiSwSE1Mz\n/PjwGb7zymmeP9bJ5LRjRVEGf/zWVbxr/TIq8tJ+rsdKxCvLclLJTE5QsLpEClYecs7R0jvCG1fk\n+13KeVXmpZGcENCZgSKLwLEzg3xzdwuPvdzMyMQ0WSkJbK7JZ0NFztmeqZ8c7/a7TIljATNqCtNn\nb4JwLiZ3YmKRgpWHeoYnGJmYpjJGV6yCAWNFUQbHOnVnoEismL/aNDE1w/7WPvY0hmjpHSVoxprS\nTDZW57GiKEN388mCqylI50BrPz3DExRkqG8vEgpWHvrZHYGxGaxgdjtw58kev8sQkXk6B8bY1Rji\n1eZexibMjC46AAAgAElEQVRnKMpM5m3XlLKhIocMNQ2Lj2oLZodLn+oaVrCKUET/xZrZFuCfgCDw\nZefc353z+q8BfwoYMAj8jnNuv8e1xryW3ticYTXfyuJMvvvqafpHJ8lOTfS7HJEla3J6hh/Vn+HL\nP2mgoXuYYMC4piybzTV5VMboDTCy9BRkJJGZnMCpnmGur8nzu5xF4aLBysyCwOeAu4BWYLeZbXXO\n1c+77BTwJudcr5ndDTwMbI5GwbFsbsWqPAZnWM2ZO9rm+JlBNlbrPxKRhdYzNM43drfwbzub6BgY\nIzctkbeuLea66jytTknMMTOqC9Jp6BpSn1WEIvmveBNwwjnXAGBm3wDuAc4GK+fci/Oufwko97LI\nxaIlNEJBRlJMz4g6e2fgmSEFK5EF9FprP4++2Mj3D7QxMTXDLXUF/M9fupqOgTH1TklMqy1M57XT\n/YSGJ8jXduBFRZIAyoCWeY9bufBq1IeBJ8/3gpndD9wPUFlZGWGJi0dL7wjlMdxfBbMDBNOSgroz\nUGQB/NvOJg629bPzZA/NoRGSggGurczhxtp8irJS6BwcV6iSmFdTkA7Aqe5hBasIeLq0Yma3Mxus\nbj7f6865h5ndJmTjxo3Oy/eOBS2hUdbH+HyoQMCoK8pQsBKJou6hcR7b1cyXftLAwNgUeelJvP2a\nUq6ryiUlMeh3eSKXpDAjmYzkBBq6h7XTEYFIgtVpoGLe4/Lwcz/HzNYBXwbuds4tudvOpqZnON03\nyjvXl/pdykXVFWey/WiX32WIxJ19LX189cVGnjjQzsT0DHVFGfzStfmsLM7UypQsWmZGTUE6pzTP\nKiKRBKvdQJ2Z1TAbqO4F7pt/gZlVAt8BPuicO+Z5lYtAe/8Y0zMupkctzFlVnMm39rYSGp7QERgi\nV2hscpofHGjnqzsb2d/aT3pSkHs3VfChG6t5+VTI7/JEPFFTMNtn1Tsyqb83LuKiwco5N2VmDwJP\nMTtu4RHn3CEzeyD8+kPAfwPygc+Hk+yUc25j9MqOPS294RlWMTxqYU5d+M7AY2cGuaE2NqfEi8S6\nzz93gpdPhdjdGGJ4YpqCjGTeua6Uaytnt/sUqiSe1Ib7rBq6hshL13bghUTUY+Wc2wZsO+e5h+Z9\n/RHgI96WtrgshuGgc+buDDyuYCVySZxzvNQQ4isvNvJ0fQfOweqSTG5cXsDywnRtkUjcKsxMJj05\ngVPqs7qo2J0LsMi0hEYJBozSnBS/S7mo0uwUMpMTOHZGR9uIRGJ0YprvvnqaR188xbEzQ+SkJXLz\nigI21+STq20RWQLO7bOS16dg5ZGW3hFKs1NIDAb8LuWizIy64gyO6s5AkQtq7x/lqzubeOzlZvpG\nJllbmsX/ec863rV+Gd955Rfu4RGJa7UF6RwM91nJ61Ow8khLaGRRbAPOWVWSyQ8PdugOD5Hz2NfS\nx1997yCH2vpxDtYuy+K911VQnZ/G1LRTqJIl6WfzrLTbcSEKVh5pDo1yx+pCv8uI2OqSLB57uYX2\n/jGW5cTuETwiC2VmxrH9WCdffL6BXadCpCQGeOPyAm6s1XafCEBRZjJpSUFOdQ/7XUpMU7DywOjE\nNN1D41QugjsC57yhMheAPU29vEvBSpaYr+9qPvv11MwMB1r62XG8i87BcbJTE3nbNaVcX5VLsoZ5\nipxlZtQWpNOgYHVBClYeaF1EoxbmrCnNJC0pyJ7GEO9av8zvckQW3OT0DLsbQ/zkeDf9o5OUZKXw\n3uvKWVeeQzCg7XGR86kpSOdg28Bs+8si+jtvISlYeaA5PGoh1s8JnC8hfGbZnsZev0sRWVBD41Ps\nONbFT050Mzw+RXV+Gu++toy6ogz1G4pcRE3h7BzEXadCClavQ8HKA3MzrBbTViDAxqo8/uXZ4wyO\nTZKZkuh3OSJR1T8yyb++eIp/faGR/tFJ6ooyuG1V0dmGXBG5uLk+q50ne3jPdeV+lxOTFKw80NI7\nSmpikIKM2Glwnd9D8no2Vucy4+DV5j5uXbl4Gu9FLkVoeIL/99MGvvJiE0PjU9y1tpi6ooxFtcIs\nEisC4XlWu04tuSOBI6Zg5YGW0AjluamLbhvh2spcAgZ7GkMKVhJ3ugbH+fJPGvi3l5oYnZzmbVeX\n8uAdK1hTmhXRDx4icn41Bek8caCd032jlOnmp1+gYOWB5kXaxJeRnMCa0iz2NKnPSuLHF7afZMfx\nLvY0hpiadqwrz+a2VUUUZ6XwanMfrzb3+V2iyKI2t32+q6GHX36DtgPPpWB1hZxztPaOLtoz966v\nzuObu1uYnJ5ZFFPjRV5Pc88IX3j+JP+xuwWHY0NFDm9aWURhZrLfpYnEleKsFHLSEnlJweq8FKyu\nUN/IJEPjU5TnLs7l0Ouqcnn0xUYOtw+wrjzH73JELtmxM4M8tP0kj+9vI2jGddW53FpXSJ6GeopE\nRcCM66vz2HUq5HcpMUnB6grNjVpYjFuBMNvADrC7sVfBShaVvU0hvrD9JD8+3ElqYpDfeGM1999a\nyzOHO/0uTSTuba7J40f1Z+joH6MkO8XvcmKKgtUVapkbDrpI7zAqzU6lLCeVPY0hPnxzjd/liFyQ\nc46/3nqIHce6aOwZITUxyJ2ri7ixNp+05ASFKpEFMtf+sutUD/dsKPO5mtiiYHWFWkKjAFTkLc6t\nQIDrq3N54WSPDmSWmDU+Nc3j+9r40o4GjncOkZ2ayDvWlbKxKo+kBPUGiiy0NaVZZKYk8FKDgtW5\nFKyu0KnuIfLTkxb1gM2N1Xl8b18bzaERqvI1LFFiR//IJP++q4lHX2yka3Cc1SWZOnZGJAYEA8am\n6jx2NajP6lwKVlfocPsgq0sz/S7jisz1We1p7FWwkpjQEhrhkRdO8c3dLYxMTHNLXQH/8L713Lyi\ngMdebvG7PBFhdjvwmSOddA6MUZSlPqs5ClZXYGp6hqNnBvn1G6v8LuWKrCzKJDMlgT1NIX5FRxSI\njw609vHwjga2vdZOwIx3rl/GR2+pZe2yLL9LE5FzbK7NA+ClUyHetX6Zz9XEDgWrK9DQPczE1Myi\n/0M/EDCuq8rVgcziC+cc24918cXnT/JSQ4jkhAA3LS/gjSsKyE5NZF9LH/taNNRTJNasLc0iIzmB\nXQ09ClbzKFhdgfq2AQDWlmb7XMmVu746j+1Hj9I3MkFOmub/SPRNzzi2vdbOF7afpL59gJKsFO6+\nuoTrq/NISQz6XZ6IXERCMMDG6lzNszqHgtUVqG8fICkhQG3h4u9Luq5qts9qb1Mvd64p9rkaiUdz\n5/NNTc/wSnMfO453ERqeoCAjmV95QxnrK3JICOgOP5HF5IbafP7uySN0DY7rlIMwBasrUN82wKri\nzLg4CmZ9eQ6JQWN3o4KVRMfk9Ax7GkM8f6yLgbEpynJSuW9TJWuXZRHQmA+RRWlzzWyf1cunQrx9\nXanP1cQGBavL5Jyjvn2AN68p8rsUT6QmBblqWTZ7m7SkK94am5zmsZeb+ccfHWNgbIrq/DTec10F\nywvTNTdNZJG7uiybtKQgu071KFiFKVhdps7BcULDE6wtXdyN6/NdX53LV3Y2MT41TXKCelzkyoxP\nTfPYrmY+v/0knYPj1BSk896NFdQWKFCJxIvEYIDrqnJ5qaHH71JixuLfw/LJ2cb1ZYu/cX3Oppp8\nJqZmNPBNrsjk9AyPvdzM7Z/azn//fj01Bek89tEb+OgttSwvzFCoEokzN9Tmc+zMEKHhCb9LiQla\nsbpM9e2zwWqxDwed75a6AjKTE9i6v41bVxb6XY4sIl/f1cyMc+xv6eOZI52EhieoyE3lt26qYUVR\nBqe6h/0uUUSi5IbauT6rHrZcre1ArVhdpvq2ASrz0shaxEfZnCslMciWq0v44cEOxian/S5HFgnn\nHPVt/fzzM8f5z72tJCcE+NANVTzwpuWsKMrwuzwRibJrynJISQzwknY7AAWry1bfPhBX/VVz7tlQ\nxtD4FM8d6fS7FFkEXjzRzbs//yL/vquZGQf3Xl/B796+gtWlWdryE1kikhICbKzKY+dJ9VlBhMHK\nzLaY2VEzO2FmnzjP66vNbKeZjZvZH3lfZmwZHp+isWeYNXEYrG5cnk9BRjKP72vzuxSJYftb+vjA\nl3dx35d30Tkwxi9fW8bH7qxjXXmORieILEG31BVw9MwgbX2jfpfiu4sGKzMLAp8D7gbWAu83s7Xn\nXBYCfh/4tOcVxqAjHYM4x6I/yuZ8ggHjnetLefZoJ/2jk36XIzHmSMcAH/3qHu753AvUtw/wV+9Y\ny7N/dBsbq/MIBhSoRJaqO8Ojh57VbkdEK1abgBPOuQbn3ATwDeCe+Rc45zqdc7uBJfE38VzjejwG\nK4B3rV/GxNQMTx3q8LsUiRENXUP83mOvcvc//YSXTvbwh3etZMef3M6Hb67R8TMiwvLCDCryUhWs\niOyuwDKgZd7jVmBzdMpZHOrbBshOTWRZdorfpUTFhoocKvPS2LqvjfdtrPC7HPFRS2iEf3n2ON/a\n20owYNxaV8gtdQWkJSWwVdvFIhJmZty5upjHXm5mdGKa1KSl+wPXgo5bMLP7gfsBKisrF/KtPTXX\nuB6vzblmxj0blvG5507QOThGUWZ8Bkh5fS2hET777Am+/UorgYBxQ20+b1pZSGYc3QUrIt66Y3UR\nj77YyM6Gbu5YvXSPRotkK/A0MH/Zojz83CVzzj3snNvonNtYWLg45yRNzziOdgzE7TbgnHs2LGPG\nwQ8OtPtdiiygltAIf/qtA9z+6e18d99pPnBDFTv++HbesW6ZQpWIXNDm2jzSkoJLfjswkhWr3UCd\nmdUwG6juBe6LalUx7FT3MGOTM3F5R+B8K4oyWVuaxeP72vjNm2r8Lkei7GTXEJ9/7iSP7ztNIGB8\nIDyHqiROt7tFxHvJCUFuXlHAs4c7cfe4uN3VuZiLBivn3JSZPQg8BQSBR5xzh8zsgfDrD5lZCbAH\nyAJmzOzjwFrn3EAUa/fF2cb1OA9WMLtq9bdPHqGpZ5iq/HS/y5EoqG8b4E+/fYCDp/tJCBqbavK4\npa6Q7NTEJf9Tp4hcujtWF/F0/RmOdAzG/QLE64mox8o5tw3Yds5zD837uoPZLcK4V982QGLQlsRE\n6Xeunw1WW/e18Xt31vldjnhob1OIzz93kmeOdJKcEODWlYXctKKAjGSdciUil+/21T8bu6BgJRGp\nbx+griiTpIT4H1q/LCeVTTV5fG/faR68Y8WSXdaNF845njvayRe2n2R3Yy85aYn84V0rSU9KWNJ3\n8IiId4qzUri6LItnj3Tyu7ev8LscXyhYXaL6tgFuW7U4G+8vxz0blvEX3z3Ia6f7WVee43c5com+\nvquZ6RnHgdY+dhzv4szAONmpibxjXSkbq/KWxA8IIrKw7lhdzGefPU5oeIK89CS/y1lw+lP1EnQO\njtE9NL4k+qvmvGPdMrJTE/nUU0dxzvldjlyCofEpfnqim08/fZT/3NuKc/De68r5o7es4o3LCxSq\nRCQq7lxdxIyD548tzT5NrVhdgsPtgwBxs2/89V3NF3z9vs2VZKcm8rE76/jkE/U8d7RzSc8mWSzO\nDIzxry808rVdTQyOTVGdn84965exsiRT5/iJSNRdU5ZNQUYyzxzu5N3XLon265+jYHUJ6tuWzh2B\n833wxir+/aUm/ucPDnNLXSGJQa10xKL6tgEeeeEUj+87zfSMY8vVJVTlpVORl+Z3aSKyhAQCxu2r\nCnnqUAeT0zNL7u8MBatLcPB0P2U5qWSnLa1BiYnBAH/+tjV85Kt7+NpLTfyG5lrFjH9/qYljHYP8\n9GQ3DV3DJAaNN1TmcvOKAvIzkv0uT0SWqDtWF/Gfe1vZ29TLDbX5fpezoBSsIjQ+Nc2OY11subrE\n71J8ceeaIm5akc9nnjnOu68tX3LhMtYMjk3ynVdO8y/PHqd7aIKslATeelUJ11fnkpak/6xFxF83\n1xWQGDSeO9K55ILV0lqfuwIvnOhmcHyKt60r9bsUX5gZf/n2tQyMTvJPzxz3u5wl60jHAH/x3dfY\n/L+f4a+3HiIlMcivbqzgj9+6mjetLFSoEpGYkJmSyKaaPH58+MySu/FJfwpHaNtrHWSmJHDT8gK/\nS/HNmtIsfvX6Cr66s5EP3FBJbWH8D0mNBWOT0zx1qIOvvdTMy40hkhICvGv9Mj54QxWH2uLucAMR\niRN3X13KX37vIK+29PGGyly/y1kwWrGKwMTUDE8f6uCutcVL/hb1P7hrJckJAf72ySN+lxLXnHPs\nb+njL7/3Gpv+14/52Df20TEwxp+/bTW7/uxOPv3e9ayv0FwxEYld7762jMzkBL76YqPfpSworVhF\n4MWT3QyMTfG2q5fmNuB8RZkp/JfbV/Cpp47yzOEz3LlG4xe81N4/yhP72/nW3laOnhkkOSHAlqtL\neN/GCm6szScQ0LgEEVkc0pMT+JXryvnarib+4u1rKcxcGjfUKFhF4MnXOshITuDmuqW7DTjfh2+u\n4YkD7fzu11/h3z68meur8/wuaVHrHhrnydfa+f7+dl5uDAGwvjybezYsY11ZDqlJQZp6RmjqGfG5\nUhGRS/OhG6t49MVGHnu5md9fImfOKlhdxOT0DE/Vd3DnmiJSEnWeGkBKYpCv/tYmfvXhnfzWv+7m\nax/drONuLtEXtp/kcPsA9W0DnOwawgGFmcm8eU0R68pyKFgiP9mJSHyrLczg1pWFfG1XE79z2/Il\nMdNKweoidjWE6BuZ5G3XaBtwvsLMZL72kc2896GdfOiRl/nm/TeyqiTT77JilnOOY2eG+FF9B0/X\nn+FAaz8A+elJvGllIevKcyjOStZB1yISd379xio+/JU9PH3oDG9fAnfWK1hdxLaD7aQlBXnTyqVz\n8HKkSrNT+dpHNvO+L+7k1768i/984EZqCtL9LitmDI5N8sKJbp4/1sXzR7to6x8DYENFDm9dW8ya\n0iwKMxWmRCS+3baqiIq8VL6ys1HBaqmbnnE8dbCDO1ZrG/D1VOWnh8PVS/zal17isftvoCp/aYar\n8alp9jX3sbOhh++92kZzaJgZB8kJAVYUZbC5Jp9VJZlkpWq4qogsHcGA8cEbqvjf245wuH0gbs7b\nfT0KVhew61QPPcMT2ga8iBVFmfzbhzfx/odfYstnfsLv31nHh2+uifvRFKMT0+xv7WNPY4idDT3s\nbeplbHIGMyjNTuGWukJWFmdSmZdGUHfzicgS9r6NFfzfp4/x1Z1N/O0vX+N3OVGlYHUBT77WQUpi\ngNtWLc1twK/var7oNfdtrgTgqmXZPPnxW/nk9w/x9z88wrdfaeVv7rmaG5fHx1EGzjmaQyPsa+nj\nlaZeXmnuo759gOmZ2YnCa0qzeP+mSm6szWdzTT4/eK3d54pFRGJHTloSv7ShjO+9eppPbFkd18ei\nKVi9jukZxw8PdXD7qiIdExKhspxUvvjBjTx75Ax/vfUQ7//SS/zShmX8yZbVLMtJ9bu8iE1Oz9DU\nM8yhtgEOnu7n4OkBDrb1Mzg2BUBSMEB5biq31BVQmZdGZW4aacmz/450D00oVImInMcHb6zim3ta\n+M+9LXzkllq/y4kaJYbXsbepl67BcW0DXoY7VhdzY20Bn99+gi8+38Dj+9u4vjqPd64r5e5rSinI\niI1RAmOT0zSHRmjoGuZE5yDHzgzx8qkQXYPjTIfPtkoIGCXZKawpzaIsO5Wy3FSKs1K0tScicomu\nLstmY1UuX93ZxG+8sZqEOB29oGD1Ora91k5yQoDbVxf5XUpMu9B2YWl2Kh+7s44Z59i6v42/evwQ\nf731EDetKOD2VUWsXZbF6pJMctKSolKbc47uoQlO943S2jvC6d5RWntHaewZ5lT3MKf7Rpl/NmhZ\nTirZqYmsLM6kOCuZkuwUijIVokREvPLRW2v57X/by2efO8HH37zS73KiQsHqPFpCI3xrbyt3rC4i\nI1kf0ZXITU/ivs2V/N6ddRztGOT7+9v4/oE2PvlE/dlrSrNTWF2SSW1hBrlpieSkJZGTlkhuWhIZ\nyQmY8XMBaNo5hsamGBqfYmhsioGxSQbHpugeGqdrcJyu8D87B8eZmJr5uXpSEgPkpyeTn5HEyuJM\nCjKSKchIoiAjWXd+iohE2VuvKuHd15bxz88c56YVBXF5codSwzmmZxx/+B/7APjzt63xuZr4MH9V\na1lOKvffUsvg+BQd/WN09I+RkhjgSMcgu06FGJmYvuz3SUsKkpmSQGZyIoUZydTkp5MdDmhzQU3h\nSUTEX5+85yr2NvXyscde5cmP3Rp3jewKVuf44o6T7G7s5f++dz0VeWl+lxOXzIyslESyUma33ebu\nLITZWVD9I5P0jkzSOzLB8Phsw/jzR7sgvCNnGCmJAZITgiQnBkgJ/zOgQZsiIjEvMyWRf37/tbzn\nCy/yZ989wOfue0NcDUpWsJrn4Ol+/vFHx3j7NaX88hvK/C5nyYhkrMPqOB8oJyKylGyoyOEP37KS\n//PDo3xzdwv3bqq8+G9aJOKzJf8yjE1O8/Fv7iMvPYn/9e6r4yo9i4iIxJoHbl3OTSvy+R/fr+dE\n55Df5XhGwSrs7548wonOIT793vVRu0tNREREZgUCxj+8bwMpiQF+77FXGRib9LskTyhYATuOdfHo\ni4385k3V3FK3NKesi4iILLTirBQ+/d71HO0Y4K3/uIMdx7r8LumKLelgNTE1wyM/PcWDX3+FuqIM\n/nTLar9LEhERWVLuXFPMt3/njaQmBfnQIy/z5999jaHwjUuLUUTBysy2mNlRMzthZp84z+tmZv8c\nfv2Amb3B+1K945zjydfauesfn+eTT9SzviKHL//6Rt2KLyIi4oNrK3PZ9vu38NFbanjs5Wa2fGYH\nO0/2+F3WZbnoXYFmFgQ+B9wFtAK7zWyrc65+3mV3A3XhX5uBL4T/GVMmpmZ4pbmXTz91lD1Nvaws\nzuDR37yeN60sVLO6iIiIj1ISg/zF29fylqtK+KP/3M/7v/QSVy3L4taVhdxSV8DGqjySEmJ/oy2S\ncQubgBPOuQYAM/sGcA8wP1jdA3zVOeeAl8wsx8xKnXO+nUY7PD7F3qZeDrcPcKRjkMPtA5zoHGJq\nxlGQkczf/vI1vPe68rg9q0hERGQxur46jyc/dgtfebGJ54528qUdDXxh+0nSkoLcUJvPiqIMCjOS\nKcxMpihz9p/F2SlkpcTGoNFIglUZ0DLvcSu/uBp1vmvKAN+CVUPXMB965GXgZ0em3L66iDWlWTqq\nRkREJIalJSXwO7ct53duW87g2CQ7T/bwk+PdvHCymxdOdDN+znFl799Uwd/+8jqfqv15C5ouzOx+\n4P7wwyEzO7oQ79sEvLQQbxSZAqDb7yLilD7b6NFnGz36bKNHn22U/JrfBZzj78K/oqwqkosiCVan\ngYp5j8vDz13qNTjnHgYejqSweGVme5xzG/2uIx7ps40efbbRo882evTZih8iaTDaDdSZWY2ZJQH3\nAlvPuWYr8KHw3YE3AP1+9leJiIiI+OGiK1bOuSkzexB4CggCjzjnDpnZA+HXHwK2AW8DTgAjwG9G\nr2QRERGR2BRRj5Vzbhuz4Wn+cw/N+9oBv+ttaXFrSW+FRpk+2+jRZxs9+myjR5+tLDibzUQiIiIi\ncqU0xElERETEIwpWC+RixwLJ5TOzR8ys08wO+l1LPDGzCjN7zszqzeyQmX3M75rihZmlmNnLZrY/\n/Nn+D79rijdmFjSzV83sCb9rkaVFwWoBzDsW6G5gLfB+M1vrb1Vx5VFgi99FxKEp4L8659YCNwC/\nq39vPTMO3OGcWw9sALaE76gW73wMOOx3EbL0KFgtjLPHAjnnJoC5Y4HEA865HUDI7zrijXOu3Tn3\nSvjrQWb/kirzt6r44GYNhR8mhn+p4dUjZlYOvB34st+1yNKjYLUwXu/IH5FFwcyqgWuBXf5WEj/C\nW1X7gE7gR845fbbe+QzwJ8DMxS4U8ZqClYhckJllAN8GPu6cG/C7nnjhnJt2zm1g9qSKTWZ2td81\nxQMzewfQ6Zzb63ctsjQpWC2MiI78EYk1ZpbIbKj6mnPuO37XE4+cc33Ac6hP0Cs3Ae8ys0Zm2y7u\nMLN/97ckWUoUrBZGJMcCicQUMzPg/wGHnXP/4Hc98cTMCs0sJ/x1KnAXcMTfquKDc+7PnHPlzrlq\nZv+sfdY59wGfy5IlRMFqATjnpoC5Y4EOA//hnDvkb1Xxw8weA3YCq8ys1cw+7HdNceIm4IPM/sS/\nL/zrbX4XFSdKgefM7ACzP3j9yDmnsQAicUCT10VEREQ8ohUrEREREY8oWImIiIh4RMFKRERExCMK\nViIiIiIeUbASERER8YiClYiIiIhHFKxE5KLMbDo8x+qQme03s/9qZoHwaxvN7J8v8Hurzey+hav2\nF957NHwmX0wws181sxNmprlVInFIwUpEIjHqnNvgnLuK2SnhdwN/DeCc2+Oc+/0L/N5qwJdgFXYy\nfCZfxMwsGK1inHPfBD4Sre8vIv5SsBKRS+Kc6wTuBx60WbfNrb6Y2ZvmTWl/1cwygb8Dbgk/9wfh\nVaSfmNkr4V9vDP/e28xsu5l9y8yOmNnXwsfqYGbXm9mL4dWyl80s08yCZvYpM9ttZgfM7Lcjqd/+\nf3t3F5p1GcZx/PsjR5nZQEgIiqzQFMOKEhJBil7pBQqkHZQdFIQRRZEHRR1HHSRUIkUdFGHRwaSg\n8gWECEbTUSQRFYGeSC8LFXtztR5/HfyvxdOYezZ4YPrw+xz9ue//vfv6bzCuXfe15y+9L+nzqr49\n1Db+u6QXJe0H1pxkz5V1/WXtubTW3tc2/tpEYibp1nrG/ZL2dPHHEBGnqHlzHUBEnH5sH6jkYfGk\nqU3AI7aHJJ0DjAFPAZts3wEg6WzgJttjlZi8C1xT668CVgI/AEPAWkn7gPeAAdsjks4FjgMPAsds\nr5Z0JjAkabftgx3Cf8D2kXpH34ikQduHgQXAXttP1js9v51iz43AS7a31T1nSFoBDABrbY9L2grc\nK2iVKPMAAAI0SURBVGkH8DqwzvZBSYtm/Y2OiNNOEquI6KYhYLOkbcB224eq6NSuD9gi6UqgBSxr\nm9tn+xBA9UUtAY4BP9oeAbD9a83fDKyStL7W9gNLgU6J1WOS7q7rC2vN4YplsMYvO8menwHPSLqg\nnu97STcAV9MkaQDzgVHgWuDTiUTP9pEOcUVED0hiFRGzJukSmkRkFFgxMW77eUkfAbfRVJBumWL5\nE8DPwBU07QhjbXN/tV23mP53lIBHbe+aRdzXATcCa2z/KekT4KyaHrPdmm697Xck7QVuBz6u40cB\nb9l+etJed840rojoHemxiohZkXQe8CqwxZPe4i7pUttf2X4BGAGWA78BC9tu66epBp0ANgCdGsW/\nA86XtLr2WChpHrALeFhSX40vk7Sgw9fqB45WUrWcpqo04z0roTxg+2XgA2AVsAdYL2lx3btI0kXA\nMLBO0sUT4x1ii4gekIpVRMzE/Dqa6wP+Ad4GNk9x3+OSrgdOAF8DO+q6VU3hbwJbgUFJ9wM7gT+m\n29j235IGgFeqL+o4TdXpDZqjwi+qyf0X4K4Oz7ET2CjpG5rkaXiWe94DbJA0DvwEPFf9Ws8Cu9V8\nBMU4TZ/ZcDXHb6/xUZr/qIyIHqZJf3BGRPQMSUuAD21fPseh/E8dSf7X0B8RvSNHgRHRy1pAv06x\nDwilqdodnetYIqL7UrGKiIiI6JJUrCIiIiK6JIlVRERERJcksYqIiIjokiRWEREREV2SxCoiIiKi\nS/4FpfwB2OCnurkAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(las['las_ra'], las['las_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, las, \"las_ra\", \"las_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add CFHT-WIRDS" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd03Od55v3vPQMMymDQQQAESbGBVVSlKKvZli0pal7F\nJbbjlE02u4rzRonT4012s++2bBzveuNsFCtaW3acXVmRrWqZMm3LapQsiqTYRIoFrKhE72Xas39g\nhoJpihwSv8EUXJ9zcA5m5gfMzRE0uPCU+zHnHCIiIiIye75MFyAiIiKSLxSsRERERDyiYCUiIiLi\nEQUrEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPFKQqSeu\nra11S5cuzdTTi4iIiKRs586dvc65ugtdl7FgtXTpUnbs2JGppxcRERFJmZmdTOU6TQWKiIiIeETB\nSkRERMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4\nRMFKRERExCMKViIiIiIeUbASERER8UhKwcrM7jSzQ2bWYmafP8fjf2xmuxMfb5tZzMyqvS9XRERE\nJHsVXOgCM/MDDwK3A23AdjN71jl3IHmNc+6LwBcT138E+H3nXH96Ss5tj247dcFrPnP9kjmoRERE\nRLyWyojVJqDFOXfMORcGHgPuO8/1vwh8y4viRERERHJJKsGqCWidcbstcd/PMLNS4E7gidmXJiIi\nIpJbvF68/hHgtfeaBjSz+81sh5nt6Onp8fipRURERDIrlWDVDiyecXtR4r5z+TTnmQZ0zj3snNvo\nnNtYV1eXepUiIiIiOSCVYLUdaDazZWYWYDo8PXv2RWZWAXwAeMbbEkVERERywwV3BTrnomb2ALAF\n8AOPOOf2m9lnE48/lLj0o8APnHNjaatWREREJItdMFgBOOc2A5vPuu+hs25/A/iGV4WJiIiI5Bp1\nXhcRERHxiIKViIiIiEdSmgqU1KTSVV1ERETyl0asRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4\nRMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiI\niHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJ\niIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8o\nWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHUgpWZnanmR0ysxYz+/x7XPNBM9tt\nZvvN7GVvyxQRERHJfgUXusDM/MCDwO1AG7DdzJ51zh2YcU0l8PfAnc65U2a2IF0Fi4iIiGSrVEas\nNgEtzrljzrkw8Bhw31nXfAZ40jl3CsA51+1tmSIiIiLZL5Vg1QS0zrjdlrhvplVAlZm9ZGY7zexX\nvSpQREREJFdccCrwIr7PtcCHgRLgJ2b2hnPu8MyLzOx+4H6AJUuWePTUIiIiItkhlRGrdmDxjNuL\nEvfN1AZscc6NOed6gVeAK8/+Rs65h51zG51zG+vq6i61ZhEREZGslEqw2g40m9kyMwsAnwaePeua\nZ4CbzazAzEqB64F3vC1VREREJLtdcCrQORc1sweALYAfeMQ5t9/MPpt4/CHn3Dtm9n1gLxAHvuqc\nezudhYuIiIhkm5TWWDnnNgObz7rvobNufxH4oneliYiIiOQWdV4XERER8YiClYiIiIhHFKxERERE\nPKJgJSIiIuIRBSsRERERjyhYiYiIiHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrERE\nREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSs\nRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhH\nFKxEREREPKJgJSIiIuIRBSsRERERjyhYzaFoPI5zLtNliIiISJoUZLqA+eJU/zgPv3IUwygN+CkJ\n+CkNFFBeUsA9GxoJFRdmukQRERGZJY1YzZH2wQniDq5fXs3qhhC1ZUXE4nH2tg3R0j2a6fJERETE\nAxqxmiND4xH8PuPuDY34zACIxOL8h2f3MzAeznB1IiIi4gWNWM2RwYkwFSWFZ0IVQKHfR6i4gIGx\nSAYrExEREa8oWM2RoYkIFSU/u46qqjSgESsREZE8kVKwMrM7zeyQmbWY2efP8fgHzWzIzHYnPv7C\n+1Jz29BEhMpzBKvK0kIFKxERkTxxwTVWZuYHHgRuB9qA7Wb2rHPuwFmXvuqcuzcNNea8uHMMn2fE\n6u32IWJxh99n5/hqERERyRWpjFhtAlqcc8ecc2HgMeC+9JaVX0Ymo8QdVJT+bLCqLg0QdzAyqXVW\nIiIiuS6VYNUEtM643Za472w3mtleM3vezNZ7Ul2eGJqYDk3nnAoMTt/Xr+lAERGRnOfV4vW3gCXO\nuSuA/wU8fa6LzOx+M9thZjt6eno8eursN5gITRUlgZ95rKp0+r5B7QwUERHJeakEq3Zg8YzbixL3\nneGcG3bOjSY+3wwUmlnt2d/IOfewc26jc25jXV3dLMrOLckRq3OtsUqOYmkBu4iISO5LJVhtB5rN\nbJmZBYBPA8/OvMDMGsymGzSZ2abE9+3zuthcNTgRoajAR3Hhz77cBX4f5cUFDIxrxEpERCTXXXBX\noHMuamYPAFsAP/CIc26/mX028fhDwCeA3zKzKDABfNrptOEzhsandwSanXvXn3pZiYiI5IeUjrRJ\nTO9tPuu+h2Z8/nfA33lbWv54r+agSVXBACf6xuawIhEREUkHdV6fA4MTESrP0WohqbK0kOGJCLG4\nBvlERERymYJVmkVjccamoucfsUr0shqe0DorERGRXKZglWbv9rD62VYLScmWC1pnJSIiktsUrNJs\nMNlq4TxTgVWlyZYLGrESERHJZQpWaXa+HlZJFaWFGBqxEhERyXUKVmmWSrAq8PkoLylkYEzBSkRE\nJJcpWKXZ4HiEYMBPof/8L3VlaaGmAkVERHKcglWaDU2Ez7u+Kqm6NHDmTEERERHJTQpWaTY4Hjnv\njsCkytIAQ+plJSIiktMUrNLsQl3Xk6pKC3G8uyZLREREco+CVRpNRmJMReOpBaugelmJiIjkOgWr\nNEr2sDrfcTZJZ5qEamegiIhIzlKwSqOh8Qu3WkiqKEn2stJUoIiISK5SsEqjM8fZlF548brfZ1SU\nFGpnoIiISA5TsEqjwYkwPoNQcUFK11eWBuhXsBIREclZClZpNDQeIVRciM8speurSgsZ1FSgiIhI\nzlKwSqOhiQiVKayvSqoKBhieiBCOxtNYlYiIiKSLglUaDU5EUuq6nlRVGsABnUMT6StKRERE0kbB\nKk3izjGcYnPQpKpECGsbULASERHJRQpWaTI2FSUadxc3FZjYPdjaP56uskRERCSNFKzSJNlqoSKF\ncwKTyksK8ZlGrERERHKVglWanAlWF7HGKtnLqm1AI1YiIiK5SMEqTZJtEy5mKhCme1lpxEpERCQ3\nKVilydBEhAKfURrwX9TXVSlYiYiI5CwFqzQZSuwItBSbgyZVlRZyemSSqWgsTZWJiIhIuihYpcng\neJjKi1hflVQVDOAcdAxOpqEqERERSScFqzSZHrFKfUdgUrLlghawi4iI5B4FqzSIxR0jk9FLG7FK\nfE1rv9ZZiYiI5BoFqzQYnozg4KK6rieFiqe/pntEU4EiIiK5RsEqDYbGk81BLz5Y+X1GVWkhvaNT\nXpclIiIiaaZglQaDE5fWwyqptqyInhEFKxERkVyjYJUGI5PTwar8EoNVXaiI3tGwlyWJiIjIHFCw\nSoOxqRh+n1FUcGkvb21ZkaYCRUREcpCCVRqMh6MEA/6Lbg6apKlAERGR3KRglQZj4RilgYJL/vq6\nUBHj4Rjj4aiHVYmIiEi6pRSszOxOMztkZi1m9vnzXHedmUXN7BPelZh7xsPRiz4jcKbasukmob0j\nWmclIiKSSy4YrMzMDzwI3AWsA37RzNa9x3VfAH7gdZG5ZnwqNqtgVRcqAqBnVL2sREREckkqI1ab\ngBbn3DHnXBh4DLjvHNf9DvAE0O1hfTlpPByltOjSpwJryxLBSiNWIiIiOSWVYNUEtM643Za47wwz\nawI+CnzFu9JyU9w5xsMxgp6MWGkBu4iISC7xavH63wB/6pyLn+8iM7vfzHaY2Y6enh6Pnjq7TEXi\nOJjV4vXqYAAz6NXOQBERkZySym//dmDxjNuLEvfNtBF4LNFeoBa428yizrmnZ17knHsYeBhg48aN\n7lKLzmZjiZ18s1ljVej3UVUaUC8rERGRHJNKsNoONJvZMqYD1aeBz8y8wDm3LPm5mX0DeO7sUDVf\njE8lg9Wlj1jB9M5A9bISERHJLRf87e+ci5rZA8AWwA884pzbb2afTTz+UJprzCnj4RgAwaJLH7GC\n5LE2ClYiIiK5JKVhFefcZmDzWfedM1A5535t9mXlrrFEsJr9iFURu04NelGSiIiIzBF1XvfYuAdr\nrEDH2oiIiOQiBSuPjYdj+O3SD2BOqgsVMRGJMTalY21ERERyhYKVx8ampo+zudQDmJPebRKqUSsR\nEZFcoWDlsfFwjNJZLlyHd5uEagG7iIhI7lCw8tj0AcyzW7gOMw5iVrASERHJGQpWHhsPz+4A5qQ6\nTQWKiIjkHAUrj42FYwQ9GLFKHmvTM6qDmEVERHKFgpWHnHNMhKOejFgV+H1U61gbERGRnKJg5aHJ\nSJy4g9Ki2Y9YgXpZiYiI5BoFKw8lm4MGPRixAh1rIyIikmsUrDw0fuY4G2+CVW2ZpgJFRERyiYKV\nh8bOHGfjzVRgXWh6KtA558n3ExERkfRSsPKQ9yNWRUxG4mcOdhYREZHspmDlofHEuX5BDxevg3pZ\niYiI5AoFKw+NhWP4jFkfwJykY21ERERyi4KVh6a7rhfM+gDmpOSIVa9GrERERHKCgpWHxj1qDppU\nG5o+L7BHI1YiIiI5wZvFQAK8O2LllZpgET7TiJWIiGSPR7eduuA1n7l+yRxUkp00YuWhsakowSLv\nRqz8PqM6GNB5gSIiIjlCwcpDXo9YgY61ERERySWaCvSIc87zNVagY21ERGTupDLNJ+enESuPjExF\niTvvzglM0oiViIhI7lCw8sjgWATw7jibpOSIlY61ERERyX6aCvRI//j0AvNSDxevw/RBzFPROKNT\nUULFhZ5+bxERyX/OOTqHJnn4lWN0j0zRPTxJ/3iYBaEiltYEWVYb1O8XDylYeWQgGazSsHgdpo+1\n0Q++iIicy9lro4YmIhzuGuHQ6RGO9owyFY2feSwY8FMVDPDWyUHeONYPTP8Rv6w2yAdWLaA6GJjT\n2vONgpVHBsamg5XXa6zePdYmzPI6T7+1iIjkCecc7YMT7O8Y5lDXCF3DkwBUlBRyxaIKFlaWsCBU\nTF2oiLLEebaxuKNjcIITfWMc7x1jd+sgJ/rG+f8+uIKiAm9/l80nClYe6R9L74iVdgaKiMhMzjne\nbh/muX0dPL69lYHxCD6Dy2qC3Lm+gdUNIRaEit7zmDW/z1hcXcri6lJuaa6jpXuUr792nGd2d/AL\n1y7y7Hi2+UbByiODiR/o4kJv9wMkR6y0M1BERAAOnx7hmd3tfHdPJ6f6xynwGcvrgnxozQLWNpZf\n8h/4KxeU8eG19fzondNcVlPK9ctqPK58flCw8kj/eJgSDw9gTqoqDUwfa6MRKxGReat9cILv7ung\n6V3tHOwawe8zblxRwwO3ruSO9fVs3tflyfN8cHUdp/rHeG5vJ02VJSyqKvXk+84nClYeGRwPe94c\nFJLH2qhJqIjIfDM4Hmbzvi4efuUYJ/rGAFhcVcK9VzSyoamCUHEh0bjzLFQB+Mz4hWsX83cvtvCt\nN0/xwK3NlKThd1s+U7DySP9Y2POF60l1ITUJFRGZDybCMX70zmme2d3By4e7icQcdWVF3LZ2AVcu\nqqQmse42nYJFBfzipiX871eO8e2drfzy+y7Dp/VWKVOw8sjAWMTzhetJtWU6iFlEJF9FYnFePdLD\ns7s7+OGB04yFY9SXF/FrNy7lvqua2NM6OOcLyZdUl3LXhgae29vJG8f6uHFF7Zw+fy5TsPLIwHiY\nJdXpmYuuKyviWM9YWr63iIjMvVjc8ebxfr70w8O83T7ERCRGSaGf9QvLuXJxJctqg/jM2Ns2lLHd\neTcsr2FP6yA7Tw4oWF0EBSsPOOcYGA+ztrE8Ld+/LlRET+JYG21/FRHJTfG4461TAzy3t5Pv7euk\nZ2SKgN/H2sYQVy6qZGV9GQW+7Dlpzsy4vKmC59/uYmAsTJUah6ZEwcoDY+EYkZhLy+J1mO5lFY7G\nGZmKUq7u6yIiOcM5x+7WQb6XCFOdQ5MUFfi4dfUC7r2ykd6RMIGC7AlTZ1vbWM7zb3dxoHOYm1Zq\n1CoVKQUrM7sT+DLgB77qnPursx6/D/jPQByIAr/nnNvqca1ZayBNzUGTZvayUrASEcluyTD1P34w\nPc03OBHBb0ZzfRm3NNeytqGcokI/wxPRrA5VMP2H/YJQkYLVRbhgEjAzP/AgcDvQBmw3s2edcwdm\nXPYC8KxzzpnZFcDjwJp0FJyN+tN0nE3Sme7rI1OsqCtLy3OIiMilc86xq3WQ5/d1snlfF+2DE/jN\nWLmgjNvW1bO2oTxn2xasW1jOy4d6GJ+KUlqkia4LSeUV2gS0OOeOAZjZY8B9wJlg5ZwbnXF9EHBe\nFpnt3j2AOU3BKjQ9r92rnYEiIlkjHp8OU5v3dfL8vk46hiYp9Bu3NNfx+7evYmg8krNhaqZ1jeW8\ndKiHg10jXHNZVabLyXqpBKsmoHXG7Tbg+rMvMrOPAv8NWADc40l1OeJMsEpTkq8rS04FTqbl+4uI\nSGpmTvPtax9iaCKC32c0LyjjxpW1Z0amwtF4XoQqgKbKEsqLCzjQOaxglQLPkoBz7ingKTN7P9Pr\nrW47+xozux+4H2DJkiVePXXGDYxFgPSNWFWVBvD7jB51XxcRmXPOOfa2DfG9fZ18b2/nmWm+5voy\nbs/xab5UmBnrFpaz8+QA4Wg869eFZVoqwaodWDzj9qLEfefknHvFzJabWa1zrvesxx4GHgbYuHFj\n3kwXDoyHEwcwp+d/LJ/PqC0L0D2sYCUiMheccxzsGuG5vR1nDjsu9Bvvb67jD25fxWCeTPOlam1j\nOW8c6+doz2jaWgvli1SC1Xag2cyWMR2oPg18ZuYFZrYSOJpYvH4NUAT0eV1sthoYDycOS05fj6mG\n8mK6hjUVKCKSTid6x/gv3zvAnrYhekam8BmsqCvj49c0sa6xgpKAn6k8muZL1bLaIMWFPg50DCtY\nXcAFg5VzLmpmDwBbmG638Ihzbr+ZfTbx+EPAx4FfNbMIMAF8yjmXNyNSFzIwFqGyNL1tEOrLi88c\nwikiIt7pHpnkuT2dPLOngz2tgwAsrSnlhisXcnlTBWXaCUeBz8fq+hDvdA0Tizv8PjWrfi8p/bQ4\n5zYDm8+676EZn38B+IK3peWO/rEw1WnuSNtQUcy24/1pfQ4RkflieDLClre7eHZPB6+19BJ307vf\n/u1da4jFHZWl6jJ+tnULK9jTNsSp/nGW1QYzXU7WUgz3wMB4mMVpOicwqb68mKGJCJORWNrWcomI\n5LPJSIz/9N0D7Gkb5FDXCNG4ozoY4P2r6rhyUSX15cWZLjGrrVpQht9nHOgYUrA6DwUrDwyMh7ly\nUWVanyP5P3zX0CRL9QMtIpKSqWiMrUd6eW5vJz88cJrRqSjBogKuW1bNVYsqWVRVojNYU1RU6Gdl\nXRnvdI1w9wadXfteFKxmafoA5kjaD6dsSAarYQUrEZHzCUfjvNbSy/f2dbJlfxcjk1EqSgq5e0MD\nwUABy+vKtEboEq1rLOep3e2cHp6ioUIjfOeiYDVL4+EY4WicqjQvXm+omG4Selo7A0VEfsZkJMbL\nh3v4/ttd/Oid04xMRgkVF3DHugbuvbKRm1bUEijw8ei2U5kuNaetaQxhu+FA55CC1XtQsJql5DmB\nVcEA0Vj6NkLOnAoUEZHpMPXSoW6e29vJjw92Mx6OUVLoZ11jOeubyllZV0aB30fn4CTf2dmW6XLz\nQqi4kKaqEo50j/KhNfWZLicrKVjN0uD4dNf1qtIAPSPpa+AZKi4kGPCrl5WIzGtT0RivHO7lub0d\n/OjAacbCMaqDAe67qoniQh/LazXNl25NlSXsbh0k7lxa+zfmKgWrWepPnBNYHSxMa7ACqK8o1lSg\niMw7zjm+8P1DvHVygL3tg0xG4pQU+lm/sJwrFlWyrDaoMDWHFlaUsO14P4PjkbS3GspFClazNJgI\nVlVz0POkobyY0zrWRkTmia6hSZ7a1c53drZytGeMQr+xfmEFVy2uZIUWoGdMY+X00pSOwQkFq3NQ\nsJqlM2us5iBY1ZcX86aahIpIHovHHVtbevmnN07ywjuniTvYtLSaKxdVcnlThfr4ZYH68mIM6Bya\n5PKmikyXk3UUrGZpYDyCz6C8JL27AmH6h7l7ZJJ43OHTX2oikice3XaK8XCUt04OsO14P31jYYIB\nP7c017HxsipqyooyXaLMUOj3URcqonNoItOlZCUFq1nqH5uioqRwToakG8qLiMQc/eNhavVGIyJ5\nYH/HEE++1cbu1kGiccdl1aV8eG09ly8sp8Dvy3R58h4aK4o50Tee6TKykoLVLPWNzl3ISfYM6Rqa\nVLASkZwVicXZsr+Lf3z9BNtPDFDoN65eUsX7llfTWFGS6fIkBY0VJexpG2J8KkqpDqn+KXo1Zqlv\nNExN2dws3kv2sjo9rHltEck9nUMTPL69jW+9eYqu4UkWV5fw53evxWdGSUBrp3JJY+IP/c7hSVbU\nlWW4muyiYDVLvaNTrFtYPifPdWbESi0XRCRHxOKOlw938+i2Vn58cHox+i3NtfyXn7+cW9cswO8z\ndUPPQcnfR52DEwpWZ1GwmqXe0ak5m5arKyvCZ3Ba3ddFJMud7Bvjybfa+cfXTzA4ESFYVMAtzXVc\nt7Sa6mCA7pEp/nl7a6bLlEsUKi4kVFxAp34f/QwFq1kIR+MMT0apmaM+HgV+H7VlRRqxEpGsNDQe\n4bl9HTz5Vjs7Tw5gBitqy7hrQyNrG0MU+LQYPZ80VhQrWJ2DgtUs9I1NN+ucy63A9WoSKiJZZDIS\n48cHu3l2dwc/PthNOBZnVX0Zf3rnGn7+6oW8eLAn0yVKmjRWlNDS3UM0FtcOzhkUrGahb3S6OWjt\nHC1eh+lg1TagLa4ikjmRWJzXWnr58o+OcKBzmKlonFBRAdctreLqJVU0VhRjZgpVea6xopi4g+6R\nKRZWajdnkoLVLPSOzv2IVUNFETtOqvu6iMwt5xxvnRrgmd0dfG9vJ31jYYoLfWxoquCKRZUsrwvq\nQN55ZmGiNUbn0ISC1QwKVrPQm4ERq4byYgbHI0xGYjraQUTS7sjpEZ7e3c4zuztoG5igqMDHbWvr\n+RdXLeT00KSmgOax6rIAAb+PjqFJrs10MVlEwWoW+hIjVnPZrHNmL6vLaoJz9rwiMn/8w8tH2dM2\nxO5TA3QMTWLAygVlfOLaRaxrLKe40E/faFihap7zmdFQUUznoBawz6RgNQvJofDSOWxsN7P7uoKV\niHhlPBzlB/tP8+Sudl493IMDmipLuGdDI1csqiBUnP7zUCX3NFQUs6d1EOccpqlgQMFqVnpHpqgJ\nFs3pD1NDuZqEiog34nHHG8f6eOKtdr7/didj4RhNlSV8YFUdVy2uZEHi/UbkvTRWFPPm8TgD4xGq\n56j1ULZTsJqF3rEwtaG5PbOvvuLdqUARkYv16LZTnB6eZHfrILtbBxmaiFBU4OPypgquXlzJ0lot\nQpfUzVzArmA1TcFqFvpGp86MIM2VUFEBJYV+9bISkYtyeniS7+7p4Gtbj9M5NInPoHlBiLsub2Bt\nYzmFWi8ll6C+vBgDOocmWb9QZ9iCgtWs9I5OsX6OzglMssRiQU0FisiFDE9G2PJ2F8/u6eC1ll7i\nDhZVlXDvFY1saNK6KZm9QMH0iSDqwP4uBatL5JyjbzQ8pzsCk+rLi3ReoIic02QkxkuHunlmdwcv\nHOwmHI2zuLqEB25dyX1XN7HtmPrgibcaK4s51a/G1UkKVpdoeCJKNO7mtDloUkN5MTtODsz584pI\ndorG4rx+tI+/+dER9ncMMRWNEywq4NrLqrhqUSWLqkowM4UqSYvGihL2tg0xEY5RMoe75LOVgtUl\n6jnTw2ruF+vVVxTTPTyl7a0i89h0J/RBvrung+f2dtA7GqaowMf6heVcubiS5bVl+H16f5D0a0xs\nquocmmB5XVmGq8k8BatLlGwOWhP0fsTq0W2nzvt4+8AE4Vic/rFwRkbMRGTuJd8Xekenzuzo6x8L\nU+AzVjeEuGNdA6sbQlqELnPu3WA1qWCFgtUl6xtLHGcTmvsRq/LEgtOu4UkFK5F5YGAszBvH+th1\naoDWgQkMWFFXxq2rF7B+YbmOt5KMChUXEioqoHNoItOlZAUFq0uUzhGrCykvnv7PdnpY21tF8lU0\nFueVIz18e0cbP3rnNJGYo6G8mDvXN3Dl4koqSrSjT7JHQ0WxdgYmKFhdop7RMGZQVTr3b27liTdU\n9bISyT9He0b59o42nnyrje6RKaqDAX7lfUsJFvlpTDRjFMk29eXFHD/WR9y5ed9gVsHqEvWNTlFd\nGsjIIaSh4kLMps8LFJHc9/Wtx9nXPsSOkwOc6h/HZ7CqPsTt6+pZ3RCiwKd1U5Ld6sqKiMYdQ+MR\nquZ5B3YFq0vUNxqmJgM7AgH8PqMmWKRjbURymHOO7ScGeHxHK8/sbicSc9SVFXHn+gauXlKp5p2S\nU5LHu/WMTilYpXKRmd0JfBnwA191zv3VWY//EvCngAEjwG855/Z4XGtW6R2dysj6qqSGiiJ1XxfJ\nQaf6xnnEpjRFAAAgAElEQVTirTae3NVGa/8EZUUFXLW4kmuXVLG4ulQtVCQn1SWD1cgUq+pDGa4m\nsy4YrMzMDzwI3A60AdvN7Fnn3IEZlx0HPuCcGzCzu4CHgevTUXC26BsLc3lT5haON5QX0zagHRgi\nuWB4MsLz+zp5Ymc7b57oxwxuWlHL79+2ijsvb+DpXR2ZLlFkVoIBPyWF/jM9HuezVEasNgEtzrlj\nAGb2GHAfcCZYOeden3H9G8AiL4vMRtMjVpkb7qwvL2anuq+LZK1wNM7Lh3v48gtHONg5TDTuqC0r\n4o519Vy1uJLK0gCTkbhCleQFM6MuVETPiIJVKsGqCWidcbuN849G/Qbw/GyKynaTkRgjk9GMdF1P\naigvZmA8wmQkph42Ilki2Q39qV1tPLe3k8HxCMGAn+uWVf/U0TIi+aiurIjDp0cyXUbGebp43cxu\nZTpY3fwej98P3A+wZMkSL596TvUnm4NmsDlnffl0p9vu4SmW1JRmrA4RgeO9Yzy1q52nd7Vzqn+c\n4kIfd6xr4KNXN9E2MKGjZWReqA0VsfPUAJORWKZLyahUglU7sHjG7UWJ+36KmV0BfBW4yznXd65v\n5Jx7mOn1V2zcuNFddLVZom90Olhlsut5feIIgdMjkwpWIhkwOB7mL57Z/1Pd0JfXBfnENYtYl+iG\n3jk0qVAl80Zd2bsL2OezVILVdqDZzJYxHag+DXxm5gVmtgR4EvgV59xhz6vMMr3JrusZngoE9bIS\nmUuRWJyXD/XwxFttvPBON+FYnPryInVDF2HGzsB5voD9gsHKORc1sweALUy3W3jEObffzD6bePwh\n4C+AGuDvE+sHos65jekrO7OSwao2k+0WEsFKvaxE0u9Q1wiP72jl6V3t9I2FqQkG+KX3LSEYKKCx\noljrpkSA6mAAn2nEKqU1Vs65zcDms+57aMbn/xr4196Wlr0yeQBzUnlJAcWFPo1YiaTJ1149zt72\nQXaeHJheJ2XGmsYQd29oZFV9SFN8ImdJNq9WsJKL1jsyRUmhn9JA5l4+M6OhvJhOjViJeMY5x7bj\n/fzz9la+u6eDaHz64ON7NjRy1eJKgkV6yxQ5n9pQ0ZlZnflK7xKXoG8sc8fZzHRZTZATvWOZLkMk\n53WPTPLEznYe39HK8d4xQsUFXHtZFRsvq2Zhpab6RFJVV1bE4a4RorF4Rs7SzQYKVpegd3Qqo60W\nkpbXBXnzeD/xuMOnaQmRixKNxXnlSA+PvdnKCwe7icUdm5ZV8zsfWsldlzfy1K6f2fwsIhdQFyoi\n5hytAxMsqw1mupyMULC6BL2jYZoqizNdBivqypiIxOganmRhZUmmyxHJCa394/zFM2+z8+QAw5NR\ngkUF3Liihusuq6Y2VMRkJK5QJXKJkjsDj3aPKlhJ6vpGp7gig+cEJq2oKwPgaM+ogpXIeUxGYvzg\nwGke397K1pZeDFhVH+IjV1axpqFcC9FFPJLsZXW0Z5TbqM9wNZmhYHWR4nFH/1g4ozsCk1YsmP5r\n4Gj3KLc012W4GpHsc6BjmMd3tPLUrnaGJiI0VZbwe7c1E/D7qCzN/P/DIvmmJOAnWFTAsZ75u/5X\nweoiDU1EiMYdNRnsYZVUV1ZEqLiAo/P4B1jkbF979Th72qbbJLQPTh8ns66xnI1Lq1hRV4ZPC9FF\n0qqurIijPaOZLiNjFKwuUt9Y5ruuJ5kZK+rK5vUPsAhALO7Y2tLLt3e08v23u4jGHY0Vxdx7RSNX\nLaqkVG0SROZMXaiIlu75exiz3m0uUu9o5g9gnmlFXRlbW3oyXYZIRpzsG+M7O9v4zs42OocmqSwt\n5Lql1Vx7WZXWHYpkSF1ZgO0nIvSPhakOZn4QYq4pWF2kM8fZZEuwWhDkibfaGJ2KUqa/ymUeGA9H\neX5fF4/vaGXb8X58Brc01/Hv7lnHbesW8MRO7egTyaTkzsBjPaNUB6szXM3c02/ii9SXGLHKhqlA\ngOW10zsDj/WMcsWiygxXI5I+b7cP8Z+eO8Ce1kGmonGqgwHuWFfP1UuqqCgpZGgiolAlkgXqQtPt\niI72jLJxqYKVXEDf6BQ+g6os2VG0MrkzUMFK8tDIZIRn93Tw2Jut7GsfosBnbGiqYOPSapbWlKoj\nukgWqiwtJFDgm7cbqxSsLlLP6PSccbb0vVlSHcTvM452z88fYMlPB7uG+eZPTvL0rnbGwzHWNIT4\nj/9iPdGYoyTgz3R5InIePjOW1wY52j0/N1YpWF2kvtGprGi1kBQo8HFZdal2BkrO+6efnORA5zBv\nHOvjeO8YBT7jikWVXL+smkVVJZgZhcpUIjlheV2Qdzrn585ABauLlC0HMM+0XC0XJIf1j4V5dNtJ\nHn7lGMOTUapKC7lzfQMbL6tSmwSRHLWirowt+08zFY1RVDC//iLSu9ZF6h2d4sosW8u0YkGQVw73\nzOvTxCX3HOoa4euvHeepXe1MReM0Lyjj56+qYVVDSE08RXLciroyYnHHqb5xmutDmS5nTilYXaS+\n0ewbsVpRV0Y4FqdtYIKl8/TQS8kN8bjj5cM9fG3rcba29FJc6OPj1y7i129cyvYTA5kuT0Q8MvMs\nWwUreU+TkRijU9Gs6WGVlPwBPtY7qmAlWekbr53grVMDvH60j97RKcqLC7hjXT2bllZTWlSgUCWS\nZ5bVJXesz7+NVQpWF+Hd5qDZNmKVPIx5jA+tyXAxIjN0DU3yzZ+c4OuvnWAiEqOpsoRPblzMhqaK\nrNlZKyLeKysqoKG8eF6u/1WwughnmoNm0a5AgMrSADXBwLz8AZbs9NapAb7+2gme39dJ3DnWNpZz\n04paLlPvKZF5Y8WCoEas5Pyy6QDms+kwZsm0cDTO5n2dfP31E+xpHSRUXMCv3biUX71hKVtbejNd\nnojMsRV1ZTz1VjvOuXn1B5WC1UXoHcmuA5hnWrEgyJb9pzNdhsxDD710lDdP9LP9eD8jU1FqywJ8\n5MqFXLOkkqICv0KVyDzVXB9iZCpK59DkvDoUXcHqIvRm+YhV/1jrvD1NXOaWc46dJwf4xusn2Lyv\nE+dgVX2IG1bUsHJBmdoliAirE7sBD3WNKFjJufWNhikN+CkNZN/LdmZn4Dw9TVzmxkQ4xrN72vnH\n16e7pIeKC7hxRS3XL6umJgtHckUkc5LB6mDXCLeuWZDhauZO9iWELNY7OpWVo1Xw0z1D5uNp4pJe\nrf3j/NMbJ/nn7a0MTURYXR/iv370cj56dRNP7+rIdHkikoUqSgtprCjmUNdwpkuZUwpWF6FzcJL6\nUHGmyzinpqoSAgU+js3DHRiSHs45/vNz7/D60V4OdY1gBusay/mFjYtYVhPEMIUqETmv1Q0hDnbN\nrzMDFawuwvG+MT6wqi7TZZyT32csqwlqZ6DM2kQ4xlO72vnG68c5fHqUYMDPB1fXsWlZDRUlhZku\nT0RyyOqGEK+19BKJxSmcJ0euKVilaGwqSs/IFMuyuLP5igXz9zRxmb2uoUn+8Scn+Nabpxgcj7Cu\nsZyPX7OIKxZVzJs3RBHx1pqGEJGY43jvGKvmydE2ClYpOtE3PcW2tCaLg9U8Pk1cLt2BjmG++uox\nnt3TQdw57ljXwK/ftJRNy6r51putmS5PRHLY6vpyYHoBu4KV/JQTveMALK0tzXAl720+nyYuF8c5\nx///7AG2tvRwtGeMgN/HpmXV3LiilupggKM9Y/OyY7KIeGvFgiB+n00vYL9yYabLmRMKVinKlREr\nmJ+niUtqIrE4393TwT+8fIxDp0coLy7g59Y3sGlpNSUBjXKKiLeKCvwsrw1yaB4tYFewStHx3jEW\nhIoIFmXvS7Z8Hp8mLuc3NhXlse2tfO3VY3QMTbKqvoxPXDu9fqrAp/VTIpI+qxtC7GkbzHQZcyZ7\nU0KWOdE7ltWjVQDBogIaK+bnaeJybr2jU/zj6yf45k9OMjQR4fpl1fzXj27gg6vrtH5KRObEmoYQ\nz+3tZHQqSlkWD054Jf//hR450TfOh9ZkZ6uFmVbUlc2rIVc5t//1whG2tvSy8+QAsbhjbWM5n9m0\nhMXVpXQOTSpUicicWd0wvYD98OkRrllSleFq0k/BKgUjkxF6R6dYmsWtFpI2Lq3iyy8cYXA8TGVp\ndnaJl/TZ1zbEQ68cZfPeTnw+4+rFldzSXEddSMfNiEhmzDwzcD4Eq5QWV5jZnWZ2yMxazOzz53h8\njZn9xMymzOyPvC8zs072Te8IXJblU4EAtzTX4hy8frQv06XIHHHO8eLBbn7x4Tf4yN9t5ZVDPdzS\nXMsf37Gaj12zSKFKRDJqUVUJpQH/vJlNueCIlZn5gQeB24E2YLuZPeucOzDjsn7gd4GfT0uVGXa8\nN7EjMAdGrK5cVEmoqIBXj/Ry94bGTJcjaTQVjfHs7g7+96vHOHx6lIbyYv7s7jV8etMSntvTmeny\nREQA8PmMVfUhDs6TMwNTmQrcBLQ4544BmNljwH3AmWDlnOsGus3snrRUmWEnEsHqsprs7WGVVOD3\n8b4VNWxt6cl0KZImQxMRHt12iq+/dpzukSnWNIT40iev5N4rFhIo0A4/Eck+axpCbNnfhXMOM8t0\nOWmVSrBqAmaudG0Drk9POdnpeN8Y9eVFlAZyY0naLc21/PDAaU71jbMkB8KgpKZtYJxHtp7g/2w7\nSTgaZ2VdGXdvaKR5QRmTkTjf2dmW6RJFRM5pdUOIx7a30jMyxYLy4kyXk1ZzmhTM7H7gfoAlS5bM\n5VPPysm+8axvtTDTTStrAXi1pYdfqrksw9XIbL3TOcxDLx/lub2dGHB5UwU3r6xlYWVJpksTEUnJ\n6obpBewHu0YUrIB2YPGM24sS910059zDwMMAGzdudJfyPTLhRO8Yt6+rz3QZKVteG2RhRTFbj/Ty\nS9crWOWSR7edOvP5id4xXj7cw6HTIwQKfNywvIYbV9Rot6eI5Jw1iZYLh7pGeP+q7G9dNBupBKvt\nQLOZLWM6UH0a+Exaq8oiw5MR+sbCObFwPcnMuLm5li37TxOLO/y+/J7PzifOOQ6fHuWlw92c7Bun\nNODntrX13LC8RkfOiEjOqg4GqAsVceh0/u8MvGCwcs5FzewBYAvgBx5xzu03s88mHn/IzBqAHUA5\nEDez3wPWOedyfgtAcuF6Lk0FAtzcXMfjO9rY1z7EVYsrM12OXIBzjpcO9fCVl4/SNjBBZUkh917R\nyMbLqrUgXUTywpqG0LxouZDSGivn3GZg81n3PTTj8y6mpwjzTrLVwrIcGrECuGlFDQBbj/QoWGUx\n5xwvHe7hb350hD2tg1SVFvKxq5u4ekmVRhpFJK+srg/xT2+czPuZlNzY5pZBJ3qnm4Muqc6t3XU1\nZUWsayzn1SO9PPCh5kyXI+fwWksvX9xyiN2tgyyqKuELH99AOJrfbzgiMn+tbggxFY1zsm+M5XVl\nmS4nbRSsLuBk3xiNFcU5ub7lluZaHnntOOPhaM60ipgPdp0a4ItbDvH60T6aKkv4q49t4GPXLCJQ\n4PupxesiIvlk5gJ2Bat57HjfWFaur0rlF3A4FicSc2w73s+tqxfMQVVyPl/64WF+eOA073QOEwz4\nufeKRjYtrSbuUA8qEcl7KxeUYTbdcuGuPD4ZRMHqAk70jnHn5bn5A7C0JkigwMfWI70KVhnUPjjB\nl35wmCffaiNQ4OO2tfXctLKGooLcGwUVEblUJQE/S2uCeb+AXcHqPIbGIwyMR1hWm1vrq5IK/T42\nLa1m65HeTJcyLw2Mhfn7l1r4x5+cBODmlbV8YFUdpUX6305E5qfV9aG8b7mgfdzncbwvN1stzHTT\nyloOnR6he3gy06XMGxPhGA++2ML7//pFvrr1OPdduZCX/uiD3LWhUaFKROa11Q0hTvSNMR6OZrqU\ntNG7/Hmc6WGVY60WZrqluZYvfB+2tvTysWvysiNGVnh02yliccdbJwd44eBphiejrGkIccf6BhrK\ni3npkA7FFhG5akklzsHOkwPc0pyfHdgVrM7jRN8YZrnXamGmdY3lVAcDClZp5Jxjf8cQW/afpnd0\niiXVpXzquiU51/tMRCTdrl9WTaHf2NrSq2A1H53oHWNhRQnFhbm7yNjnM25cUcMrh3uYjMRy+t+S\njd441scXvn+QXacGqSsr4pevX8LaxnLM1ItKRORspYECrllSNb32965MV5MeWmN1Hsf7xlmaowvX\nZ/rFTUvoHQ3z7R2tmS4lb+xrG+JXvraNTz/8Bp2Dk3zs6iZ+98PNrFtYoVAlInIeN6+sZX/HMP1j\n4UyXkhYKVudxojc7e1hdrBtX1HDd0ioefPEoU9FYpsvJaS3dI/zW/9nJR/5uK2+3D/Hnd6/lpT/+\nIBuXVqtjuohICm5urgWmT5/IRwpW72FgLMzQRCQv1smYGb932yq6hid5fLtGrS7F8d4x/uDx3dzx\nP1/hlcM9fO7DzbzyJ7fyb96/XNOrIiIXYUNTBaHigrwNVlpj9R6SrRYuy4MRK/jpUatPXrdYzSlT\ndCIRqHa3DuL3GTeumO5FFSwq4Lt7OjNdnohIzinw+7hxRQ2vHunFOZd3yyc0YvUeTiaCVa42Bz2b\nRq0uzsm+Mf7o23v48JdeZm/bEDeuqOWP7ljN3RsaCaoXlYjIrNy8spb2wQlO9o1nuhTP6TfEezje\nO47PYHEOt1o4m0atLuxAxzBfefko39vbQaHfx6/duJQFoSJCxYWZLk1EJG/cnGi18GpLb073ijwX\njVi9hxO9YyysLMmr8GFmfO7DGrU6l+0n+vn1r7/J3X/7Ki8e7ObfvH85r/7prfz7e9cpVImIeGxp\nTSlNlSW8lodHrmnE6j20dI/mxcL1s920soaNl2nUCiAWd/z7p9/mtZZeTvaPUxrwc9vaem5YXkNJ\nwM+PDnRnukQRkbxkZty8spbn3+4kFnd5tataI1bn0D44wYHOYW5YUZPpUjyntVYwPBnhq68e4wNf\nfJFH3zzF8GSEe69o5E9+bg0fWrOAksD8DZsiInPlpuZahiej7GsfynQpntKI1Tl8/+0uAO66vDHD\nlaTHzFGre65YSHUwkOmS5sTh0yM8uu0U397Rylg4xqZl1XxgVR1rG8vx5dmuFBGRbHdTYvBi65Ee\nrlpcmeFqvKMRq3N4fl8naxvL83IqEKZHrf78nrUMjIf5l4+8yfBkJNMlpc1kJMaTb7Xxia+8zh3/\n8xUe3XaKO9Y38N0Hbubx37yB9QsrFKpERDKgpqyIdY3lbM2zflYasTpL19AkO04O8Ie3r8p0KWl1\n9ZIqvvLL13D/N3fyG9/Yzjf/1fV5MwU2fSjyMH+5+R12nRpkIhKjJhjgrssbuHpJFWVFBexrH8q7\n4WcRkVxzS3Mtj7x2nPFwlNJAfkSS/PhXeOj7b083fbxrQ35MAz667dR5H/+FjYv55+2nuP+fdvDV\nf7kxpxeztw9O8PSudp7e1c6R7lH8ZqxbWM6mZdUsrw3mXRM6EZFcd3NzLf/wyjHePN7PB1cvyHQ5\nnlCwOsvmt7tYXR9i5YKyTJcyJzY0VXD14iv4kyf28rvf2sWDn7mGAn/uzBB3DU3ygwNdfG9vJ9uO\n9wNw3dIq/utHL2ciHMubv4BERPLRdUurCRT42HqkV8EqH3WPTLL9RD+f+3BzpkuZU5+8bjFj4Sj/\n8bsH+OPv7OW/fWxDVp9/19o/zl9ufof9HcOc6p/u2lsXKuK2tfVctbjyzGJ8hSoRkexWXOjnuqVV\nebXOSr95Ztiy/zTOwd15Mg14MX79pmWMTUX57z84zJvH+/mTO1fzkSsW4suC3iJT0Rg7Tgzw0qFu\nXjrUw5HuUQAWVhRz+7p61jeWs6C8OMNViojIpbhpZS1//f1DdA9P5sV7uYLVDM/v62RFXZDmeTIN\neLYHPtTMVYur+MvN7/C5x3bzta3H+bO71/K+5XPbzysWdxzsGubN4/281tLH60d7GQ/HCPh9XLes\nik9dt5jJSHzetIkQEclnP7e+gf++5RD/8Mox/v296zJdzqwpWCX0jU7xxrE+fvvWlfN6kfPNzbU8\n9zs389Sudv77Dw7x6Yff4La1C/j4NYu4cUUtFaXeH+8yPBnhnY5hdrcOsu14P68f7WUyEgegqrSQ\ny5sqWF0fYnld8Mzi+lJlKhGRvLCiroxPblzMN39ygl+94TIuq8ntVkcKVglb9p8m7vK3KejF8PmM\nj1+7iHuuaORrW4/zDy8f5UfvdOMzuGJRJbc013LzylqW15VREwykNF3onKN3NEzH4ATtgxMc7R5l\nf8cwBzrfXScFsLwuyIamCpbWBFlWG6RSCUpEJO/9we2reGZ3B3+95RAPfuaaTJczKwpWCc+/3cmy\n2iBrG0OZLmXOna8lQ1VpgD/+uTWsbQzx6pFeXj3Sw4MvtvC/ftwCQIHPqC0rYkF5EQtCRfh9RjTm\nCMfiRGJxwtE4/WNhOoYmCUfjP/W9a4IBGitLuGNdPY0VxSysLNGBxyIi89CC8mL+zfuX87cvHOE3\nbh7gmiVVmS7pkilYAQNjYV4/2sdvvn/5vJ4GfC9+n3H49Cj15cV84trF3LNhISf6xhgcDzMyGWVk\nMsrwZIT2wUmccxT6fRT6jUK/j9JAAY2VJfzc+gYWVpbQ0j1KZWkh1aUBirJ456GIiMyt33z/ch7d\ndoq//N47fPuzN+Ts72MFK+CHB04Ti7t5uRvwUpQE/KxtLL+kr73UrxMRkfwWLCrgD25fxZ89tY8t\n+09z5+UNmS7pkuROJ8g0+t6+ThZXl7B+oX7pi4iIZMonNy5i5YIyvvD9g0Ri8Qt/QRaa98Hq4VeO\n8vLhHj56VVPODjuKiIjkgwK/jz+7ew3He8cueCRbtprXwerBF1v4y80HueeKRn5nnnVbFxERyUa3\nrl7ADctr+PILRxgcD2e6nIs2b4PV375whC9uOcR9Vy3ky5+6isIcOh9PREQkX5kZf37PWoYnItz5\nN6/y44OnM13SRUkpTZjZnWZ2yMxazOzz53jczOxvE4/vNbOsbULhnONLPzzMl354mI9d08SXPnlV\nTh06LCIiku8ub6rgid+6kYqSQv7VN3bwe4/ton8sN0avLpgozMwPPAjcBawDftHMzu45fxfQnPi4\nH/iKx3XOmnOOYz2j/Ofn3uFvXzjCJzcu4oufuBJ/FpyFJyIiIj/tysWVfPd3buZzH27mub2d3P6l\nl3lubwfOuUyXdl6ptFvYBLQ4544BmNljwH3AgRnX3Ad8003/a98ws0oza3TOdXpecYqisTgHOqfP\nm9txYoAdJ/vpHZ1Ou5+5fgn/5b7Ls+KAYRERETm3QIGP3799FXdtaOBPvrOXBx7dxb8rfZvV9SFW\nNyQ+6kOsaghRniUNplMJVk1A64zbbcD1KVzTBGQsWO1pG+LjX3kdgMXVJby/uY7rllVz3dIqVi6Y\nf93VRUREctWahnKe/K0beWpXO2+dGuRQ1zBPvtXO6FQUmG7T8NefuDLDVU6b0wahZnY/01OFAKNm\ndmgunvcksHUunghqgd65eap5T6/13NDrPDf0Os8dvdZz4Jfm+Pm+mPhIs8tSuSiVYNUOLJ5xe1Hi\nvou9Bufcw8DDqRSWi8xsh3NuY6brmA/0Ws8Nvc5zQ6/z3NFrLemWyna47UCzmS0zswDwaeDZs655\nFvjVxO7A9wFDmVxfJSIiIpIJFxyxcs5FzewBYAvgBx5xzu03s88mHn8I2AzcDbQA48Cvp69kERER\nkeyU0hor59xmpsPTzPsemvG5A37b29JyUt5Oc2YhvdZzQ6/z3NDrPHf0WktaWbb3gxARERHJFWo5\nLiIiIuIRBSuPXOjYH/GGmT1iZt1m9nama8lnZrbYzF40swNmtt/MPpfpmvKRmRWb2ZtmtifxOv/H\nTNeUz8zMb2a7zOy5TNci+UvBygMpHvsj3vgGcGemi5gHosAfOufWAe8Dfls/02kxBXzIOXclcBVw\nZ2JntaTH54B3Ml2E5DcFK2+cOfbHORcGksf+iMecc68A/ZmuI9855zqdc28lPh9h+pdRU2aryj9u\n2mjiZmHiQwtf08DMFgH3AF/NdC2S3xSsvPFeR/qI5DwzWwpcDWzLbCX5KTE9tRvoBn7onNPrnB5/\nA/wJEM90IZLfFKxE5D2ZWRnwBPB7zrnhTNeTj5xzMefcVUyfWLHJzC7PdE35xszuBbqdczszXYvk\nPwUrb6R0pI9ILjGzQqZD1f91zj2Z6XrynXNuEHgRrSFMh5uAf2FmJ5heqvEhM/s/mS1J8pWClTdS\nOfZHJGeYmQFfA95xzn0p0/XkKzOrM7PKxOclwO3AwcxWlX+cc//WObfIObeU6ffnHzvnfjnDZUme\nUrDygHMuCiSP/XkHeNw5tz+zVeUnM/sW8BNgtZm1mdlvZLqmPHUT8CtM/2W/O/Fxd6aLykONwItm\ntpfpP9B+6JxTKwCRHKbO6yIiIiIe0YiViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiI\neETBSkRERMQjClYickFmFkv0stpvZnvM7A/NzJd4bKOZ/e15vnapmX1m7qr9meeeSJzFlxXM7FNm\n1mJm6lclkocUrEQkFRPOuaucc+uZ7g5+F/AfAJxzO5xzv3uer10KZCRYJRxNnMWXMjPzp6sY59w/\nA/86Xd9fRDJLwUpELopzrhu4H3jApn0wOfpiZh+Y0al9l5mFgL8Cbknc9/uJUaRXzeytxMeNia/9\noJm9ZGbfMbODZvZ/E0frYGbXmdnridGyN80sZGZ+M/uimW03s71m9pup1G9mT5vZzsTo2/0z7h81\ns/9hZnuAG97jOdcnPt+deM7mxNf+8oz7/yEZzMzszsS/cY+ZveDhfwYRyVIFmS5ARHKPc+5YIjws\nOOuhPwJ+2zn3mpmVAZPA54E/cs7dC2BmpcDtzrnJRDD5FrAx8fVXA+uBDuA14CYzexP4Z+BTzrnt\nZlYOTAC/AQw5564zsyLgNTP7gXPu+AXK/1fOuf7E2XzbzewJ51wfEAS2Oef+MHHm58FzPOdngS87\n5/QuKxQAAAKfSURBVP5v4hq/ma0FPgXc5JyLmNnfA79kZs8D/xt4v3PuuJlVX/QLLSI5R8FKRLz0\nGv+vvfsJsTEK4zj+/ZUpk6ZbilJkkDFKQ0mxERFFippYjTULYinWYmPBJAsLEruZUv7MKCUbw5SN\nJCmrKYyYEIZx57E4Z3RNY+7cemv09vus3s55zz3P3dye+5znvhfOSboO9EbEUC461WoCuiWtA6pA\nW83ck4gYAsh9Ua3AJ+BNRAwCRMTnPL8D6JDUmddWgJVAvcTqqKR9+XpJXvMhx9KTx1f9Y89HwElJ\ni/P7eyVpG7CelKQBNAPDwEbg4USiFxEf68RlZiXgxMrMGiZpOSkRGQZWT4xHxBlJt4FdpArSzimW\nHwfeAWtJ7QijNXM/aq6rTP8ZJeBIRPQ3EPcWYDuwKSK+SXoAzM3ToxFRnW59RNyQ9BjYDdzJx48C\nrkbEiUl77ZlpXGZWHu6xMrOGSFoAXAK6Y9K/uEtaERHPIuIsMAi0A1+AlprbKqRq0DjQBdRrFH8J\nLJK0Ie/RImkO0A8cltSUx9skzavzWhVgJCdV7aSq0oz3zAnl64g4D9wEOoD7QKekhfne+ZKWAgPA\nZknLJsbrxGZmJeCKlZnNRHM+mmsCfgHXgHNT3HdM0lZgHHgO3M3X1dwUfgW4CPRIOgj0AV+n2zgi\nfko6AFzIfVHfSVWny6Sjwqe5yf09sLfO++gDDkl6QUqeBhrccz/QJWkMeAuczv1ap4B7So+gGCP1\nmQ3k5vjePD5M+kWlmZWYJn3hNDMrDUmtwK2IWDPLofwlH0n+aeg3s/LwUaCZlVkVqOg/e0AoqWo3\nMtuxmFnxXLEyMzMzK4grVmZmZmYFcWJlZmZmVhAnVmZmZmYFcWJlZmZmVhAnVmZmZmYF+Q3AgBXV\nHZevQgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(wirds['wirds_ra'], wirds['wirds_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, wirds, \"wirds_ra\", \"wirds_dec\", radius=1.*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Add PanSTARRS" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8nGd97/3vb2Y02vfdWixb3nc7zgYBQkPIRqCUtCwB\nWgoN4QClPe3Tcp7ntD3Lq+fQ0lJKCUlDmkPLIWwlhQSykX0xSbxvsbxItrVZ+2jfNdfzh0ZGcWxL\ntu7RzEif9+ulVzRz35r7p4ltfXVd1/27zDknAAAAzJ0v1gUAAAAsFAQrAAAAjxCsAAAAPEKwAgAA\n8AjBCgAAwCMEKwAAAI8QrAAAADwyY7AyswfNrM3MDl3g+J1mdsDMDprZDjPb7H2ZAAAA8W82I1bf\nkXTzRY6flPQu59xGSf9T0v0e1AUAAJBwAjOd4Jx70cyqLnJ8x7SHr0oqn3tZAAAAiWfGYHWJPi3p\n8dmcWFBQ4Kqqqjy+PAAAgPd2797d4ZwrnOk8z4KVmb1bk8Hquoucc5ekuySpsrJSu3bt8uryAAAA\nUWNmp2dznid3BZrZJkkPSPqAc67zQuc55+53zm13zm0vLJwx9AEAACSUOQcrM6uU9LCkTzjnjs29\nJAAAgMQ041SgmX1f0vWSCsysUdJfSUqSJOfcfZL+UlK+pG+ZmSSNO+e2R6tgAACAeDWbuwI/OsPx\nz0j6jGcVAQAAJCg6rwMAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhW\nAAAAHiFYAQAAeGTGzuuYm4deq5/xnI9dXTkPlQAAgGhjxAoAAMAjBCsAAACPEKwAAAA8QrACAADw\nCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAj\nBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8Q\nrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKw\nAgAA8AjBCgAAwCMEKwAAAI8QrAAAADwyY7AyswfNrM3MDl3guJnZN8zshJkdMLNt3pcJAAAQ/2Yz\nYvUdSTdf5PgtklZGPu6SdO/cywIAAEg8MwYr59yLkroucsoHJP2bm/SqpBwzK/WqQAAAgEThxRqr\nMkkN0x43Rp4DAABYVOZ18bqZ3WVmu8xsV3t7+3xeGgAAIOq8CFZNkiqmPS6PPPcWzrn7nXPbnXPb\nCwsLPbg0AABA/PAiWD0i6ZORuwOvkdTjnDvjwesCAAAklMBMJ5jZ9yVdL6nAzBol/ZWkJElyzt0n\n6TFJt0o6IWlQ0qeiVSwAAEA8mzFYOec+OsNxJ+nznlUEAACQoOi8DgAA4BGCFQAAgEcIVgAAAB4h\nWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRg\nBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIV\nAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYA\nAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEA\nAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgkVkFKzO72cyOmtkJM/vyeY5nm9mjZrbf\nzA6b2ae8LxUAACC+zRiszMwv6R5Jt0haJ+mjZrbunNM+L+kN59xmSddL+nszC3pcKwAAQFybzYjV\nVZJOOOfqnHOjkn4g6QPnnOMkZZqZScqQ1CVp3NNKAQAA4txsglWZpIZpjxsjz033TUlrJTVLOijp\nS865sCcVAgAAJAivFq/fJGmfpCWStkj6ppllnXuSmd1lZrvMbFd7e7tHlwYAAIgPswlWTZIqpj0u\njzw33ackPewmnZB0UtKac1/IOXe/c267c257YWHh5dYMAAAQl2YTrHZKWmlmyyIL0j8i6ZFzzqmX\ndIMkmVmxpNWS6rwsFAAAIN4FZjrBOTduZl+Q9KQkv6QHnXOHzezuyPH7JP1PSd8xs4OSTNKfO+c6\nolg3AABA3JkxWEmSc+4xSY+d89x90z5vlvReb0sDAABILHReBwAA8AjBCgAAwCMEKwAAAI8QrAAA\nADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA\n8AjBCgAAwCMEKwAAAI8EYl0ApIdeq5/xnI9dXTkPlQAAgLlgxAoAAMAjBCsAAACPEKwAAAA8QrAC\nAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoA\nAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAA\nAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEqxpxzsS4BAAB4ZFbBysxu\nNrOjZnbCzL58gXOuN7N9ZnbYzF7wtsyFqWtgVH/zRI1eP9kV61IAAIAHAjOdYGZ+SfdIulFSo6Sd\nZvaIc+6NaefkSPqWpJudc/VmVhStgheSmpZe9Q6P66f7muQzaXtVXqxLAgAAczCbEaurJJ1wztU5\n50Yl/UDSB84552OSHnbO1UuSc67N2zIXptr2AeWkJWlVcYb+Y2+Tdp8OxbokAAAwB7MJVmWSGqY9\nbow8N90qSblm9ryZ7TazT3pV4EIVdk4nO/q1ojBDd169VNVFGXp4T6P21hOuAABIVF4tXg9IukLS\nbZJukvQXZrbq3JPM7C4z22Vmu9rb2z26dGJq7h7S8FhY1YUZSvL79PGrl2pZYbr+fXej9jd0x7o8\nAABwGWYTrJokVUx7XB55brpGSU865waccx2SXpS0+dwXcs7d75zb7pzbXlhYeLk1Lwi17QOSpOWF\n6ZKkYMCnT15TpaqCdP1oV4PqOvpjWR4AALgMswlWOyWtNLNlZhaU9BFJj5xzzs8kXWdmATNLk3S1\npCPelrqw1Lb3qygzWZkpSWefCwZ8+uS1SxXwm95o7o1hdQAA4HLMeFegc27czL4g6UlJfkkPOucO\nm9ndkeP3OeeOmNkTkg5ICkt6wDl3KJqFJ7LxibBOdw6c9y7A5IBfS7JT1RgaikFlAABgLmYMVpLk\nnHtM0mPnPHffOY+/Kumr3pW2cNWHBjU24VRdkHHe42W5qdp5qksTYSe/z+a5OgAAcLnovB4Dde0D\nMknLCtLPe7w8N1VjE05tfcPzWxgAAJgTglUM1Lb1qyw3ValB/3mPl+WkSZKamA4EACChEKzm2cj4\nhBpCg6ouPP80oCTlZwSVHPCpsZtgBQBAIiFYzbNTHYMKu1+3WTgfn5nKclIZsQIAIMEQrOZZXXu/\n/D7T0rwLBytpcp1VS8+wxifC81QZAACYK4LVPKtt71dlXpqCgYu/9WW5aZpwTi29LGAHACBREKzm\n0eDIuM70DKv6ItOAU8pzUiWJflYAACQQgtU8qusYkJMuunB9Sk5aktKCfjWxgB0AgIRBsJpHte39\nCgZ8Ks9Nm/FcM1N5LgvYAQBIJASreVTXPqBl+emz7qZelpOq1t5hjY6zgB0AgERAsJonPUNjau8f\nuWibhXOV56bJSTrTw6gVAACJgGA1T+q7BiVdeBub8yljATsAAAmFYDVPOvtHJEmFmcmz/pqs1CRl\npQRYwA4AQIIgWM2TroFRpScHlBw4//6AF1KWk8qIFQAACYJgNU+6BkaVnx685K8ry01TR/+IeofH\nolAVAADwEsFqnnQNjCrvMoJVee7kOqtDTT1elwQAADxGsJoH4xNh9QyNXVawmlrAfqCRYAUAQLwj\nWM2D7sExOemyglV6ckC5aUk6SLACACDuEazmQefAqCRd1horaXKd1f7Gbi9LAgAAUUCwmgddA5Ot\nFnIvM1iVR+4M7IoENAAAEJ8IVvOga2BUSX5TZnLgsr6+LHdqnRWjVgAAxDOC1TyYuiPQbHZ7BJ5r\nagE766wAAIhvBKt50DU4qry0y5sGlKSUJL8q89J0rK3fw6oAAIDXCFZR5py77B5W01UXpquWYAUA\nQFwjWEVZ38i4xiac8jJmv0fg+VQXZqiuo1/hsPOoMgAA4DWCVZSFInfyzWUqUJKqizI0PBZmQ2YA\nAOIYwSrK5trDakp1YYYkqbad6UAAAOIVwSrKugZGZZJy0pLm9DrVhemSpNr2AQ+qAgAA0UCwirKu\ngVFlpyYp4J/bW52XHlROWhIjVgAAxDGCVZR5cUegJJmZqgszuDMQAIA4RrCKsk6PgpUUabnAVCAA\nAHGLYBVFAyPjGhgZ9zBYZaijf0Q9g2OevB4AAPAWwSqK6rsGJcnTYCVJtR1MBwIAEI8IVlF0utPj\nYFUUCVasswIAIC4RrKKoITJilZ8+t67rUypyU5XkN9ZZAQAQpwhWUXS6a0CpSX6lBv2evF7A71NV\nfjotFwAAiFMEqyiq7xrybBpwSnVhBsEKAIA4RbCKovrOAe+DVVG66jsHNTYR9vR1AQDA3BGsomR8\nIqzGUHRGrMbD7uzCeAAAED8IVlFypmdY42EXlWAlsRkzAADxiGAVJV73sJqy/OxmzAQrAADiDcEq\nSrzuYTUlMyVJxVnJqm2j5QIAAPGGYBUl9V2DSvKbslOTPH9t7gwEACA+EayipL5rQBW5afKZef7a\nU8HKOef5awMAgMtHsIqS052DqshLi8prVxemq294XO39I1F5fQAAcHkIVlHgnFN956CW5kcpWJ3d\nM5B1VgAAxJNZBSszu9nMjprZCTP78kXOu9LMxs3sDu9KTDzdg2PqGxlXZdRGrGi5AABAPJoxWJmZ\nX9I9km6RtE7SR81s3QXO+xtJT3ldZKI5HWm1EK1gVZKVorSgn2AFAECcmc2I1VWSTjjn6pxzo5J+\nIOkD5znvi5J+IqnNw/oS0lQPq6X56VF5fZ/PtLwwXbXtTAUCABBPZhOsyiQ1THvcGHnuLDMrk/RB\nSfd6V1riaogEq4q81Khdo7owQ7VtjFgBABBPvFq8/nVJf+6cu+jOwGZ2l5ntMrNd7e3tHl06/jSG\nhpSfHlRaMBC1a1QXZqipe0hDoxNRuwYAALg0swlWTZIqpj0ujzw33XZJPzCzU5LukPQtM/vNc1/I\nOXe/c267c257YWHhZZYc/xpDgyrPjd5olSStiNwZWNfBqBUAAPFiNsFqp6SVZrbMzIKSPiLpkekn\nOOeWOeeqnHNVkv5d0n9yzv3U82oTRFNoSGVRDla/vjOQdVYAAMSLGYOVc25c0hckPSnpiKQfOecO\nm9ndZnZ3tAtMNM45NXUPqTw3OncETlmanyafiXVWAADEkVktAnLOPSbpsXOeu+8C5/7e3MtKXO39\nIxoZD6ssJ7ojVilJflXkpekELRcAAIgbdF73WFNoSJKivsZKklYWZeh4a1/UrwMAAGaHYOWxxrPB\nKrpTgZK0qjhTde0DGh2/6M2YAABgnhCsPNbUPRmsor14XZoMVuNhp1OdLGAHACAeEKw81hgaVE5a\nkjKSo9fDasqq4kxJ0tEWpgMBAIgHBCuPNYaGor5wfcrywnT5faZjrLMCACAuEKw81hQampeF69Lk\nnYFL89MIVgAAxAmClYecc5ERq+gvXJ+yujhTx1ppuQAAQDwgWHkoNDimobGJeRuxkibXWZ3qHNDw\nGHsGAgAQawQrDzWGBiXNTw+rKatLMuWcdIIO7AAAxBzBykNTPazmo9XClFXFk3sGss4KAIDYI1h5\nqGkem4NOWZqfrqDfp6MEKwAAYo5g5aHG0KAykwPKTk2at2sm+X1aXpiuY/SyAgAg5ghWHmrqHprX\nacApq7gzEACAuECw8lBjaGhepwGnrC7JVFP3kPqGx+b92gAA4Neiv+/KIuGcU1NoSNcsz5/3a09t\nbXO8rV/bKnPn/foAgIXpodfqZzznY1dXzkMliYNg5ZHeoXH1jYzPa6uFKVN3Bh5v7SNYAQBmZTah\nCZeOqUCPNER6WM3XPoHTVeSmKSXJp6MtrLMCACCWCFYeaeqe/1YLU3w+iyxg585AAABiialAjzSe\n7WE1/yNWkrSyKFMvHW+PybUBAPMvHHbqGhxVS8+wWnuH1do7otDgqAI+U8DvU9BvSvL7lJ4c0HUr\nCpSbHox1yYsCwcojTaEhpQX9ykmbvx5W060uydBP9jQqNDDKXx4AWCDCYafmniHVtg/oVMeATnYM\n6FTngA429qh7cEwTzs3qdXw2+Qv4pvJsrSvNUnKSP8qVL14EK480hgZVnpsqM4vJ9afuDDzW2qer\nY3BnIgDg8jnn1No7oiNnevXDnQ1q7R1WW9+I2vtGNDoRPnte0O9TfkZQpTmpWr8kW9mpAWWmJCk7\nNUlZqUlKC/rlnDQRdppwThNhp77hMR1q6tWBxm79eHefAj7T2tIs3byhRLlp/CLuNYKVR5q6h6K6\ncH2muze6B0clScfa+glWABDHJsJOde39OtjUozeae/XGmV4dOdOr0OCvexFmpQRUlJWi7VW5KspM\nUWFmsvIzgspMDlzyL/DZqUkqz03Te9cXq6FrUPsbu7W3vlsNXYP69HXLlJ+R7PW3uKgRrDzSGBqK\naauD7NQkZSYH2NoGAOJIOOxU1zGgg03dOtDYo2dr2nSme/jsKFTAZyrOSlF1YYZKs1NUmp2q4qwU\npQa9n6rzmWlpfrqW5qdr+9I8/cvLJ/Xtl+r06euWqzCTcOUVgpUH+obH1DM0FrOF65JkZlpVkslm\nzAAQI845NXQN6WBTjw40dmt/Y7cONfWqf2RckpSS5FNRZoquWJqrspxULclNVWFGsvy++V9CsiQn\nVX/wjuX6l5frIuFqmYqzUua9joWIYOWBqVYLsdgncLpVxRl64lCLnHMxW+sFAIuBc06NoakQ1aND\nTT062NSjnqHJ6byg36e1pZn6za1LtKk8R5vKs7WiMEM/2tUY48p/rSQ7RZ95x3I9+PJJPfBSnX7/\numUqzY7tz7GFgGDlgcau2PWwmm5Vcaa+/3qD2vtHVJTJbx4A4AXnnOq7BicDVPNkiDrU1Hs2RCX5\nTatLMrWqOENlOWkqy0lVcXayAr7JVpHjE057Tndrz+nuWH4b51WclaI/eMdyPfBynR546aT+4J3L\nVcLI1ZwQrDxwdsQqBl3Xp1s9dWdgSz/BCgAug3NOZ3qGdaBxck3UgcY3j0T5zVScnaxVxRlakpOq\nspxUlWSlKOBP3H7bBZnJuuud1br3+RN6ZF+T/uAdy5n1mAOClQcaQ4NKDvhUkBHb21ZXRoLV0dY+\nXbeyIKa1AEAi6B0e09d/eVyNoUE1hIbU2DWovsiaKJ9JJVkpFxyJWkjy0oO6YW2xHtnfrKOtfVpT\nkhXrkhIWwcoDjaEhlcWwh9WUgoyg8tKDOs4CdgB4i4mw0/G2Pu2t79be+pD21nfrRHu/pnpsFmQk\na0VRhspzU1Wem6aS7BQlJfBI1KW6sipPr5zo0FOHW7WqOFM+Rq0uC8HKA03dQzFfXyVF7gwsztAR\nWi4AgFp7h7W3vlsPvVavhtCgmrqHNDo+2eYgLehXRW6ablhTrIpIkIpGi4NE4veZblxXrB/sbNC+\nhu6YthBKZAQrDzSGhrShLDvWZUiSNpfn6P+8ckrDYxNKYcsCAItE9+Do2Tv0ptZHnekZljS5Lqok\nO0XbKnNVkZuqyrw05aUHYz7LEI82lGWr7HiHnn6jVRvLshfViJ1XCFZzNDg6rq6B0ZgvXJ+ybWmu\n/vnFOh1u7tEVS/NiXQ4AeK6zf0SHmnt1uLlHh5t6dai5R6c7B88eX1aQriur8rS5IkdbKnJ0qKmH\ngDBLPjPdtL5ED75yUq+d7NJ1K1ive6kIVnPUFJpqtRAnwSoydLv7dIhgBSChjU+EdapzQEfO9OlI\nZNuXI2f61NI7fPacvPSgSrNTdNO6YpXlTi4wnz6ld7Slj1B1iVYUZWhlUYaeq2nT9qW5zH5cIoLV\nHDV2x1ewKsxM1tL8NO0+HYp1KQAwK845NfcM61hLn4629p3979GWPo2HJ1eW+0wqykyJTOnlqDQn\nVUuyUxf9uqhouWl9ib753Am9eKxd711fEutyEgrBao4aQ/HRHHS6Kypz9eLxDjqwA4grZwNUa5+O\nt/bpeGu/jrX160RrnwZGJ86eV5KVolUlmbpmeVAl2SkqzU5RYUZyQveKSjRLclK1uTxbr9R26Jrl\n+cpKTYp1SQmDYDVHjaFBBf0+FcbR7uDblubq4b1NaugaUmV+/AQ+AItHZ/+Ialr6VNMyOQJ1rG0y\nSE3tmydJGckBFWUla2N5jooyk1WSlRK1DYhx6W5cV6JDTb168Xi73rdpSazLSRgEqzk61TGgyvw0\n+WKwieaFXLE0ss6qvotgBSCqJsJOJzsGdLi5R2809+pIS5/21ofUN/zrAJUW9Ks4K0UbyrJUnJWi\noswUFWcmKy2ZH0HxLC89qHVLsrSvoVs3byhZkI1Ro4E/1XNU2z6g6sL0WJfxJquKM5WRHNDu0yF9\ncGt5rMsBsEBMhJ3q2vu1v3Fqv7wevXGmV4ORabyg36cVRRlaUZgRmcJLVXFWsjKSAyxLSFDbKnN1\nsKlHx1r6tG5JfLQVincEqzkYmwjrdOeA3ruuONalvInfZ9pamaPdcbjhJ4DE4JxTY2hI+xq6daCx\nW/sbe3S4qefsWqig36fSnBRtLs/RkpxULcmZHInyx9HoPeZuRVGGMpID2lPfTbCaJYLVHDR0DWps\nwqm6MCPWpbzFtspc/dOzx9U3PKbMFBYdAri43uEx7W/o1r/uOH1237yByHqogM9Ump2ijeU5k9u9\n5KSqIDOZLU8WAb/PtKUiR7+q7dTAyLjSmb6dEe/QHNS2D0iSqoviL1htr8pV2En7G3rYkBnAm0yE\nnY61Tu6Zt6/hrXvmFWYka3Vxhspz01SRm7ZgNx7G7GytzNHLJzp0oLFb11bz82QmBKs5qG3vlyQt\nj7M1VpK0pSJHZpONQglWwOLWPTiqvfXd2lMf0p76kPY39Jy9Oy83LUlbK3P1/s1LtKUyR8db+2kI\niTcpzU5VaXaK9jYQrGaDYDUHJ9r6VZSZrKw4nGrLTEnS6uJM7a6nUSiwmITDTifa+7X7dEh7Toe0\nuz6kusjous8me0StX5Klyry0t+yZ19A1RKjCeW2tzNVjB8+orXdYRVkpsS4nrhGs5qC2vT8u11dN\nuWJprh7Z16xw2MVVOwgA3ukbHtO+hm59Z8cp1XcOqiE0qOGxsKTJNgdL89J007piVeSnqTwnTcEA\nU3q4dJvLs/XEoTPa29Ctm+jEflEEq8vknFNtW7/evyV+m6ZdsTRX33utXsfa+rSmJCvW5QCYo3DY\nqa6jX3vqu7W3vlt760M62ton5ySTVJyVok1lOarMT9PSc0ajgLnITEnSyqJM7a0P6cZ1xdy4cBGz\nClZmdrOkf5Tkl/SAc+4r5xy/U9Kfa/Lvdp+kzznn9ntca1zp6B9V7/B43I9YSZPrrAhWQOLpGhjV\n/oZu7W3o1r6Gbu2rD6k30ngzMyWgLRU5unlDia5YmsvaKETd1socHd3Zp7r2Aa2Iw5u24sWMwcrM\n/JLukXSjpEZJO83sEefcG9NOOynpXc65kJndIul+SVdHo+B4MbVwPZ6DVWVemgoygtp9OqQ7r14a\n63IAXMTw2IQON/dqX0O39keCVH3XoKRfj0atLslSZV6qKnLT3tTugLVRmA9rS7OUkuTTnvoQweoi\nZjNidZWkE865Okkysx9I+oCks8HKObdj2vmvSlrw7b7PBqs4/sNlZtpWmas9p1nADsQT55xOdQ5q\nz+nQ5EhUQ7eOnOnVeHiy30Fpdoq2VOToY1dXaktFjo6c6VVygOCE2Ery+7SxLEf7GkIaGVuiZML8\nec0mWJVJapj2uFEXH436tKTH51JUIqhtG1Bqkl+lcX53xBVLc/XUG63q6B9RQRxtFA0sFg+9Vq+x\nibAaQ0Oq7xxQfdegTncNnt0GJjngU1luqt6+okAVuakqz0t7053Gde0DhCrEjW2VOdp5qkuHm3u1\nLbLcBG/m6eJ1M3u3JoPVdRc4fpekuySpsrLSy0vPu9r2fi0vTI/7u+2m1lntOR3Se7mTA5gXw2MT\n2nM6pFdPdunR/c1q6Bo8OxpVkJGsNSVZWpqXpor8NBXRwRwJZKpFx76GboLVBcwmWDVJqpj2uDzy\n3JuY2SZJD0i6xTnXeb4Xcs7dr8n1V9q+fbu75GrjSG17v7ZVxv8fqg1l2Urym3bXE6yAaJkIOx1q\n6tHLJzr08vEO7T4d0uhEWD6bbK54zfJ8LStIV2VeGluCIKGZmTaWZeul4+0aHB1XWpA/z+eazTuy\nU9JKM1umyUD1EUkfm36CmVVKeljSJ5xzxzyvMs4MjU6oqXtIv31Fxcwnx1hKkl8byrJZZwV4rKVn\nWH/7RI2Otfaptn1AQ2OTU3ul2Sm6almelhemqyo/nUXlWHDWL8nSC8faVXOmj1Gr85gxWDnnxs3s\nC5Ke1GS7hQedc4fN7O7I8fsk/aWkfEnfivRMGXfObY9e2bF1smNAzknVRfG3lc35XFWVpwdfOame\noTFlp8Zfl3ggEYxNhLX7dEjPH23X80fbVNPSJ0nKSglobWmWVhRlqLownU3PseCV5aQqOzVJh5t7\nCFbnMasxPOfcY5IeO+e5+6Z9/hlJn/G2tPiVCK0Wprt5Q4n++cU6/fKNVt1xxYK/YRPwTEf/iJ4/\n2q7natr04vF29Q2PK+Azba/K1ZdvWaPBkQkVZyXThBOLiplp3ZIs7TzZpZHxiViXE3eYHL0Mte39\nMpOWFSTGiNWWihyV5aTqFweaCVbARYTDToebe/VsTZt+vLtBTaEhOU0241xdnKlVxZlaUZRxdnov\nHvcJBeZoy1pUAAAZpElEQVTD+iVZ+lVtp4619se6lLhDsLoMte0DKs9NTZi1E2am2zaV6sGXT6pn\ncEzZafwwAKYMjIzr5RMdeq6mTc/WtKmtb0RmUnlOqm5YW6TVJVkqzU7hzj1gmqr8dKUH/Trc3BPr\nUuIOweoy1LbF9+bL5/O+TaW6/8U6PflGi35ne/wvugeiqb5zUM/UtOrZmja9Vtel0YmwMpMDeueq\nQr17TZGuX12opw63xrpMIG75zLS2NEsHm3o0Mj5Br7VpCFaXaGoT1Gur82NdyiXZWJatirxU/fzA\nGYIVFp2phefPRkalTrRNTl8UZCTrqmV5Wl2Sqar8dPl9ptHxMKEKmIX1S7K163RIO0506t1rimJd\nTtwgWF2i5p4hDY+FE27Eysx028Yl+vZLdQoNjCo3PRjrkoCoCg2M6oVj7Xqmpk0vHG1T7/C4kvym\nq5fla3VxptaUZCqf3QiAy1ZdmK7kgE9PHGohWE1DsLpEte0Dkib/QCWa920q1X0v1OrJwy36yFWJ\n3fkeOJ/a9n599Ymjqmnp1enOQTlJ6ckBrSnO1OqSTK0symB/M8AjAb9Pa0oy9csjrfrribACfl+s\nS4oLBKtLVNsW/5svX8j6JVmqyk/TLw6eIVhhQZgIO+2pD+mpwy16+kibTnZM/uJTmp2i61cXak1J\nlspyU1l4DkTJ+iXZ2t/Yo52nQgm3RCZaCFaXqLa9X9mpScqPw6m0h16rn/Gc2zaV6r4X6tTZP8I0\nCBLS8NiEdtR26MlDrXr6SKs6B0aV5DddW12gT729Sn3D48pNi7+/n8BCtKo4U8kBn5483EKwiiBY\nXaLa9n5VF6YnbEPA2zYu0T3P1eqJwy268+qlsS4HmJWh0Qk9f7RN975Qq5qWPo2Oh5Uc8Gl1SaZu\nXFesVcWZZ9ufEKqA+RMM+PSuVYV68nCL/ur2dQn7s9FLBKtLVNs+oOtXFca6jMu2tjRTywvT9YsD\nZwhWiGuDo+N6tqZNjx08o+dq2jU0NqG0oF+by7O1fkm2lheks6YDiAM3rS/RU2+06kBjjzZX5MS6\nnJgjWF2CnqExtfeNJOT6qilmpvdtLNU3nzuh9r4RFWYyHYj48W87TulYa78ONHXryJlejU04ZSQH\ntKk8WxvKss+2RAAQP25YW6SAz/TE4RaClQhWl6QuwfYIvJDbNi3RN549oScOndEnrq2KdTlY5CbC\nTjtqO/TIvmY9eqBZw2NhpQX92lqZq01l2aoqSGfxORDHctKCurY6X48fPKM/u2n1op8OJFhdgkRu\ntTDd1G3nPz9AsEJsOOd0qKlXP93XpEf3N6utb0SZyQGtK83SpvIcVRdmMDIFJJDbNpbqyw8f1KGm\nXm0sz451OTFFsLoEte39SvKbKvLSYl3KnL1v0xJ9/ZljOtHWrxUJPLWJxNIYGtRP9zbp4b1Nqmsf\nUNDv0/WrC/XBrWV695oiPbynKdYlArgMt2wo1V/87JAe2d9EsIp1AYnkWEufluanK2kBLJj9+DWV\nuv/FWv3DL4/pnju3xbocLGB9w2N6/FCL7n2+9myfqar8dH1wS5k2lGUrNehXaHCMUAUksOy0JL1r\nVaF+fuCM/ssta+VbxCPOBKtZmgg7vX6qS7dtLI11KZ7Iz0jWp69bpm88e0Kfa+rRhrLF/RsGvBUO\nO+2o7dSPdzfoycMtGh4LKz89qPesLdbWihy2VAIWoNs3L9HTR9q063RIVy3Li3U5MUOwmqXDzT3q\nGx5fUA3QPvPO5frXX53W3z11VN/51FWxLgcLwOnOAf377kb9ZHejmnuGlZUS0Ie2letDV5TrSHPv\nol/UCixk71lbrJQknx7Z30Swwsx21HZKkt5WXRDjSryTlZKkz11fra88XqPXT3Yt6r8IuHxDoxP6\ny58d0s5TIZ3qHJBJWlGUoY9cWaG1pVlK8vtUc6aPUAUscOnJAb1nbbEeO9iiv7p9/YJYNnM5CFaz\ntKO2U6uKMxZc36ffvbZK//LySX31yRr96LPX8sMPs3aoqUc/3Nmgn+5rUt/wuPLSg3rvumJtrcxV\ndmpSrMsDEAO3b16inx84ox21nXpXAjfTnguC1SyMjoe182SXPnxlRaxL8Vxq0K8//I0V+oufHdYL\nx9p1/eqiWJeEONY/Mq5H9jXr+6/X62BTj4IBn27dUKKCjGT6TQHQ9asLlZkS0CP7mglWuLD9jd0a\nGptYUOurpvvwlZX65xfr9NUnj+qdKwsX9d0ceKuHXqtXU/eQdp7s0r7Gbo2Oh1WSlaL3bSrV1opc\npQb9sS4RQJxIDvh18/oSPXGoRcNjG87u4bmYEKxm4ZUTHTKTrlm2MINVMODTH79nlf7kx/v1xOEW\n3bpA7nzE3AyOjuvR/c361vMn1BgaUpLftLEsR1cty1NFbirTxgDO6/bNS/Tj3Y16/mibbt6w+H6e\nEKxmYUdtpzYsyVZ22sJdN/KbW8t03wu1+vunjuq964rZ3HYRq2np1UOv1es/9jSpb2RcRZnJjE4B\nmLW3VeerICOoR/efIVjhrYZGJ7S3PqTfv25ZrEuJKr/P9Gc3r9Ef/Nsu/e/Ha/QX71sX65Iwj4bH\nJvSLA2f00Ov12n06pGDAp9s2lurOqyt1tIU7+gDMXsDv060bS/XDnQ3qHxlXRvLiihqL67u9DLtO\nd2lswi2YNgsPvVZ/0ePXVufrX14+qbWlWbrjivJ5qgqx8rVfHtPOk13a2xDS8FhYBRlB3bqhRNsq\nc5WWHNCx1n5CFYBLdvvmJfq3X53WL99o0Qe3Lq6fJQSrGeyo7VTAZ7qyKjfWpcyLWzeUyiT9v/9x\nUNWF6dpauTi+78Wkf2Rcjx04ox/srNee+m75faYNS7J05bI8LctPJ0gBmLMrKnO1JDtFj+4/Q7DC\nm+2o7dTWyhylBRfHW+X3me752Da9/56X9dnv7tajX7xOxVkpsS4Lc+Sc0+7TIf1wZ4N+cfCMBkcn\nVF2Yrls3lmprRY7SF9lQPYDo8vlM799Spm+/VKfG0KDKc9NiXdK8YYXyRfQOj+lgY7euXSDTgLOV\nmx7Utz+5Xf0j4/rsd3dreGwi1iXhMjV1D+me507ohq+9oDvu+5UeO3hG79+8RD/53Nv09H9+l65b\nUUCoAhAVn7h2qUzSAy+djHUp84p/US/i9bouhd3kHQ6LzZqSLH3tdzbr7v+7R//1p4f01Ts2MUWU\nIPqGx/T4wRbd+0KtTnYMSJKq8tP0oW3l2liWrWDAp6MtfTra0hfjSgEsZGU5qfrAljL9cGeD/vCG\nlcpbJJuvE6wu4pXaDqUk+bS1MifWpcTEzRtK9aUbVuofnzmuYMCn/3b7egUDDHLGo+GxCT1/tE2P\n7j+jp4+0amQ8rPz0oN6ztkhbKnIXzT9oAOLL3e9arp/sadS/7jilP75xVazLmRcEq4v4VW2nrqzK\nU3Jg8fbu+dINKzU6Eda9z9fqeGufvnXnFQtuv8RENToe1kvH2/XzA2f01OEWDYxOKD89qN/ZXqEP\nbivTkeZeRhkBxNTK4ky9Z22x/vVXp/TZdy1fFOuVF/53eJk6+kdU09Kn929ZEutSYsrnM/35zWu0\ntjRLf/bv+/X+b76s+z+xXRvLs2Nd2qI0ODquF46264nDLXrycIuGx8JKTfJr/ZIsbSrP0bKCdPl9\nppoz9J4CEB8+d/1yfejeVv3g9YYF3xNSIlhd0Kt1nZK0YPpXzdX7Ny/R8oJ0ffa7u3XHfTv0t3ds\n0ge2lMW6rEWhvW9Ezx9t01NvtOrFY+0aGQ8rNy1J60uztb4sSyuKMhTwMUULID5dsTRPV1Xl6YGX\n6vSJa5cqaYHv7EGwuoAdtZ3KTA5ow5KsWJcy7y7WRPR331alp4+06ks/2Kenj7Tpz25arYq8xXMb\n7XwIh50ONffo2Zo2PVfTpv2NPZKk0uwUffSqSt20vkRXVuXqR7saY1wpAMzO3dcv1+9/Z5ce2des\nDy3w5tMEq/MYGBnXU4dbdU11PnvmnSMjOaDvfeZq/dMzx3X/S3V64tAZfeKaKn3xN1YolwXSl625\ne0gvn+jQK5GPjv5RmaSKvDTduK5Yq4szVZqdIjPTyY6Bs3f7AUAiePfqIq0uztR9L9Tqg1vL5PMt\n3KUKBKvzeOClk+roH9Hnrq+OdSlxKcnv039+72rdec1S/cMvj+k7O07qx7sb9Lnrq/V7b6taFIsT\n56qlZ1ivn+rSzpNdeuVEh+oiQakwM1nXrShQkt+nVcWZ9JgCsCCYmT53fbX+6If79GxNm96zrjjW\nJUUN/2qfo71vRPe/WKtbIvul4cKKs1L0lQ9t0u9ft0x/83iN/vaJo7rn2RO6bVOpPrStXFcty2MB\ntaSJsNOJtn7tawjp9ZMhPXe0TV0Do5KkYMCnZfnpum1jqaqLMlScmcx7BmBBet+mUn31yaO694Va\n3bC2aMH+W0ewOsc3njmu4fGw/p+bVse6lLh1vjVYN6wt1oqiDO06HdJP9zXrR7saVZk32ZTy1o0l\nWlGUsWD/Ek03EXY61TmgN5p7daCxW/sbe3SoqUeDo5Pd6/PSgyrJStE1y/NVlZ+m0uxU+RfwkDgA\nTAn4fbr7Xcv1Fz87rO+9Vq+PX7M01iVFBcFqmpMdA/r+6/X62FWVWl6YEetyEs7S/HQtzU/X7ZuW\nKCs1oJ/sadTXnzmmf3j6mAozk3Xt8ny9rTpf11bnqzIvLaGD1kTYqbl7SHUdAzrR1q+aM72qaenT\nkTO9Gg87SVLAZyrNTtHm8hyV56aqPDdNBRnBhP6+AWAu7rx6qZ6padN/f/Sw1i/J0tYFODNEsJrm\nq0/WKDng0x/esDLWpSS0YMCn39pWrt/aVq7m7iG9dLxdO2o79avaTj2yv1mSVJCRrLWlmVpdnKnV\nJZlaUzLZNiA1GD/NWIfHJtQYGlJjaFCNoSE1hAZV3zmouvYBnewc0Oh4+Oy5BRlBrSnJ0jXL81Wc\nlaKS7BQVZyXTBgEApvH5TF//8Bbd/s2X9Z++t0ePfvE6FWQsrKbTBKuIPfUhPXawRX/8nlV0FvfA\nudOFVy/L11VVeWrvH1Fd+4AaQ0PqHhzTd189rZFpASU/PaglOakqy0lVWW6qSrNTlJceVG5aULnp\nQeWlBZWdlqS0oP+Se6GMT4Q1ODah3qExdQ+OKTQ4qtDgmLoHR9XRN6LW3hG19g2rtXdEbb3D6oys\ng5ri95ly05JUkJGsq6vyVJCRrILMZBVmJiuDReYAMCs5aUHde+cV+tC9O/TFh/bqu5++akHdgc9P\nA0nOOX3lsRoVZCTrM+9Y+F1hY8XMVJSZoqLMlLPPhZ1TZ/+oWnqH1dE/ou5I0NldH9IzNa0am3AX\nfD2/z5Sa5FdKkl8pST75zplic3IaGQtraGxCw2MTF30t02QriazUJGWmBFRdmKGtlUnKS09SblpQ\nOWlBZaYE3nINAMCl21CWrb/+4Eb96Y/36++eOqYv37Im1iV5hmAl6ekjbXr9VJf++oMbuL19nvnM\nVBgZ9TmXc07DY2ENjo5rcHRCA6PjGhyZ0ODYhMYmwhobD2tsIqylBekaHp3Q+WJTSpJPKUl+1bUP\nKMnvU9BvSknyKy3oV2owoLSgP/IRYBE5AMyjO64o1976kO57oVZbKrJ184bSWJfkiUWfImpaevU/\nfn5YywvT9eHtFbEuB9OYmVKDfqUG/cqf42utLMr0pCYAgHf+8vZ1OtTcqz/98QGNh51u21ia8Df4\nLJxJzUs0EXa6/8Vavf+fXtHQ6IS+esemBTXHCwBAvEsO+HXfx7epqiBNX3hor373/+zU6c7E3lli\nVknCzG42s6NmdsLMvnye42Zm34gcP2Bm27wv1TsNXYP66Ldf1f96rEbvXlOoJ//onbpiaV6sywIA\nYNEpzU7Vzz5/nf7b7eu053RI7/2HF/VPzxzXyPhErEu7LDNOBZqZX9I9km6U1Chpp5k94px7Y9pp\nt0haGfm4WtK9kf/GDeecWnqH9fSRNv3N4zWSpL/77c360LayhB92BAAgkfl9pt97+zLdsrFU/+Pn\nb+jvf3lM/7G3Sb+5tUxXVuVpa2WOUpLipx3PxcxmjdVVkk445+okycx+IOkDkqYHqw9I+jfnnJP0\nqpnlmFmpc+6M5xXP0uDouHadCulAY7f2NfRof2O32vtGJElXLcvT3//2ZlXkpcWqPAAAcI7irBTd\n87Ft+u0r2vR3Tx3VPzx9TM5JSX7TpvIcXVmVp4q81MkWPGlB5Z69cztJyYH4CF6zCVZlkhqmPW7U\nW0ejzndOmaSYBavatgF98sHXJUnLC9P1jhUF2lyRo03l2dpcnrOgd9YGACCRXb+6SNevLlLP4Jh2\nne46u2n9Ay/Vnd3dYrqPXlWh//1bm2JQ6VvN612BZnaXpLsiD/vN7Oh8XPe0pOfm40LnVyCpI3aX\nXxR4j6OL9ze6eH+jj/c4iu6MdQGSvhL5iLJZbW44m2DVJGl6H4LyyHOXeo6cc/dLun82hS0UZrbL\nObc91nUsZLzH0cX7G128v9HHe4z5NJu7AndKWmlmy8wsKOkjkh4555xHJH0ycnfgNZJ6Yrm+CgAA\nIBZmHLFyzo2b2RckPSnJL+lB59xhM7s7cvw+SY9JulXSCUmDkj4VvZIBAADi06zWWDnnHtNkeJr+\n3H3TPneSPu9taQvGopr6jBHe4+ji/Y0u3t/o4z3GvLHJTAQAAIC5Yg8XAAAAjxCsomimrYAwN2b2\noJm1mdmhWNeyEJlZhZk9Z2ZvmNlhM/tSrGtaSMwsxcxeN7P9kff3v8e6poXIzPxmttfMfh7rWrA4\nEKyiZNpWQLdIWifpo2a2LrZVLTjfkXRzrItYwMYl/Ylzbp2kayR9nj/DnhqR9BvOuc2Stki6OXJX\nNbz1JUlHYl0EFg+CVfSc3QrIOTcqaWorIHjEOfeipK5Y17FQOefOOOf2RD7v0+QPp7LYVrVwuEn9\nkYdJkQ8WvXrIzMol3SbpgVjXgsWDYBU9F9rmB0g4ZlYlaauk12JbycISmabaJ6lN0i+dc7y/3vq6\npD+TFI51IVg8CFYALsrMMiT9RNIfOed6Y13PQuKcm3DObdHkbhVXmdmGWNe0UJjZ+yS1Oed2x7oW\nLC4Eq+iZ1TY/QDwzsyRNhqrvOecejnU9C5VzrluTW5qyZtA7b5f0fjM7pcmlGL9hZv83tiVhMSBY\nRc9stgIC4paZmaR/kXTEOfe1WNez0JhZoZnlRD5PlXSjpJrYVrVwOOf+i3Ou3DlXpcl/f591zn08\nxmVhESBYRYlzblzS1FZARyT9yDl3OLZVLSxm9n1Jv5K02swazezTsa5pgXm7pE9o8jf9fZGPW2Nd\n1AJSKuk5MzugyV/EfumcoyUAkODovA4AAOARRqwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAA\nPEKwAgAA8AjBCsCMzGwi0sfqsJntN7M/MTNf5Nh2M/vGRb62ysw+Nn/VvuXaQ5H9+OKCmX3YzE6Y\nGT2rgAWIYAVgNoacc1ucc+s12SH8Fkl/JUnOuV3OuT+8yNdWSYpJsIqojezHN2tm5o9WMc65H0r6\nTLReH0BsEawAXBLnXJukuyR9wSZdPzX6Ymbvmtalfa+ZZUr6iqR3RJ7748go0ktmtify8bbI115v\nZs+b2b+bWY2ZfS+yrY7M7Eoz2xEZLXvdzDLNzG9mXzWznWZ2wMw+O5v6zeynZrY7Mvp217Tn+83s\n781sv6RrL3DN9ZHP90WuuTLytR+f9vw/TwUzM7s58j3uN7NnPPzfACBOBWJdAIDE45yri4SHonMO\n/amkzzvnXjGzDEnDkr4s6U+dc++TJDNLk3Sjc244Eky+L2l75Ou3SlovqVnSK5LebmavS/qhpA87\n53aaWZakIUmfltTjnLvSzJIlvWJmTznnTs5Q/u8757oi+/PtNLOfOOc6JaVLes059yeR/T1rznPN\nuyX9o3Pue5Fz/Ga2VtKHJb3dOTdmZt+SdKeZPS7p25Le6Zw7aWZ5l/xGA0g4BCsAXnpF0tfM7HuS\nHnbONUYGnaZLkvRNM9siaULSqmnHXnfONUpSZF1UlaQeSWecczslyTnXGzn+XkmbzOyOyNdmS1op\naaZg9Ydm9sHI5xWRr+mM1PKTyPOrL3DNX0n6/8ysPPL9HTezGyRdocmQJkmpktokXSPpxamg55zr\nmqEuAAsAwQrAJTOz5ZoMIm2S1k4975z7ipn9QtKtmhxBuuk8X/7HklolbdbkcoThacdGpn0+oYv/\nG2WSvuice/IS6r5e0nskXeucGzSz5yWlRA4PO+cmLvb1zrmHzOw1SbdJeiwy/WiS/tU591/Oudbt\ns60LwMLBGisAl8TMCiXdJ+mb7pxd3M2s2jl30Dn3N5J2SlojqU9S5rTTsjU5GhSW9AlJMy0UPyqp\n1MyujFwj08wCkp6U9DkzS4o8v8rM0md4rWxJoUioWqPJUaVZXzMSKOucc9+Q9DNJmyQ9I+kOMyuK\nnJtnZkslvSrpnWa2bOr5GWoDsAAwYgVgNlIjU3NJksYlfVfS185z3h+Z2bslhSUdlvR45POJyKLw\n70j6lqSfmNknJT0haeBiF3bOjZrZhyX9U2Rd1JAmR50e0ORU4Z7IIvd2Sb85w/fxhKS7zeyIJsPT\nq5d4zd+R9AkzG5PUIul/RdZr/VdJT9lkC4oxTa4zezWyOP7hyPNtmryjEsACZuf8wgkAC4aZVUn6\nuXNuQ4xLeZPIlOTZBf0AFg6mAgEsZBOSsi3OGoRqctQuFOtaAHiPESsAAACPMGIFAADgEYIVAACA\nRwhWAAAAHiFYAQAAeIRgBQAA4JH/H12N32spRjWJAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(ps1['ps1_ra'], ps1['ps1_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, ps1, \"ps1_ra\", \"ps1_dec\", radius=1.*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Cleaning\n", "\n", "When we merge the catalogues, astropy masks the non-existent values (e.g. when a row comes only from a catalogue and has no counterparts in the other, the columns from the latest are masked for that row). We indicate to use NaN for masked values for floats columns, False for flag columns and -1 for ID columns." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "for col in master_catalogue.colnames:\n", " #print(col)\n", " if (col.startswith(\"m_\") \n", " or col.startswith(\"merr_\") \n", " or col.startswith(\"f_\") \n", " or col.startswith(\"ferr_\") \n", " or \"stellarity\" in col):\n", " master_catalogue[col] = master_catalogue[col].astype(float)\n", " master_catalogue[col].fill_value = np.nan\n", " elif \"flag\" in col:\n", " master_catalogue[col].fill_value = 0\n", " elif \"id\" in col:\n", " master_catalogue[col].fill_value = -1\n", " \n", "master_catalogue = master_catalogue.filled()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhelp_idcosmos_idradeccosmos_stellaritym_cosmos-vista_ksmerr_cosmos-vista_ksf_ap_cosmos-vista_ksferr_ap_cosmos-vista_ksm_cosmos-vista_ymerr_cosmos-vista_yf_ap_cosmos-vista_yferr_ap_cosmos-vista_ym_cosmos-vista_hmerr_cosmos-vista_hf_ap_cosmos-vista_hferr_ap_cosmos-vista_hm_cosmos-vista_jmerr_cosmos-vista_jf_ap_cosmos-vista_jferr_ap_cosmos-vista_jm_cosmos-megacam_umerr_cosmos-megacam_uf_ap_cosmos-megacam_uferr_ap_cosmos-megacam_um_cosmos-suprime_bmerr_cosmos-suprime_bf_ap_cosmos-suprime_bferr_ap_cosmos-suprime_bm_cosmos-suprime_vmerr_cosmos-suprime_vf_ap_cosmos-suprime_vferr_ap_cosmos-suprime_vm_cosmos-suprime_ipmerr_cosmos-suprime_ipf_ap_cosmos-suprime_ipferr_ap_cosmos-suprime_ipm_cosmos-suprime_rcmerr_cosmos-suprime_rcf_ap_cosmos-suprime_rcferr_ap_cosmos-suprime_rcm_cosmos-suprime_zpmerr_cosmos-suprime_zpf_ap_cosmos-suprime_zpferr_ap_cosmos-suprime_zpm_cosmos-suprime_zppmerr_cosmos-suprime_zppf_ap_cosmos-suprime_zppferr_ap_cosmos-suprime_zppm_cosmos-suprime_ia484merr_cosmos-suprime_ia484f_ap_cosmos-suprime_ia484ferr_ap_cosmos-suprime_ia484m_cosmos-suprime_ia527merr_cosmos-suprime_ia527f_ap_cosmos-suprime_ia527ferr_ap_cosmos-suprime_ia527m_cosmos-suprime_ia624merr_cosmos-suprime_ia624f_ap_cosmos-suprime_ia624ferr_ap_cosmos-suprime_ia624m_cosmos-suprime_ia679merr_cosmos-suprime_ia679f_ap_cosmos-suprime_ia679ferr_ap_cosmos-suprime_ia679m_cosmos-suprime_ia738merr_cosmos-suprime_ia738f_ap_cosmos-suprime_ia738ferr_ap_cosmos-suprime_ia738m_cosmos-suprime_ia767merr_cosmos-suprime_ia767f_ap_cosmos-suprime_ia767ferr_ap_cosmos-suprime_ia767m_cosmos-suprime_ib427merr_cosmos-suprime_ib427f_ap_cosmos-suprime_ib427ferr_ap_cosmos-suprime_ib427m_cosmos-suprime_ib464merr_cosmos-suprime_ib464f_ap_cosmos-suprime_ib464ferr_ap_cosmos-suprime_ib464m_cosmos-suprime_ib505merr_cosmos-suprime_ib505f_ap_cosmos-suprime_ib505ferr_ap_cosmos-suprime_ib505m_cosmos-suprime_ib574merr_cosmos-suprime_ib574f_ap_cosmos-suprime_ib574ferr_ap_cosmos-suprime_ib574m_cosmos-suprime_ib709merr_cosmos-suprime_ib709f_ap_cosmos-suprime_ib709ferr_ap_cosmos-suprime_ib709m_cosmos-suprime_ib827merr_cosmos-suprime_ib827f_ap_cosmos-suprime_ib827ferr_ap_cosmos-suprime_ib827m_cosmos-suprime_nb711merr_cosmos-suprime_nb711f_ap_cosmos-suprime_nb711ferr_ap_cosmos-suprime_nb711m_cosmos-suprime_nb816merr_cosmos-suprime_nb816f_ap_cosmos-suprime_nb816ferr_ap_cosmos-suprime_nb816m_cosmos-wircam_hmerr_cosmos-wircam_hf_ap_cosmos-wircam_hferr_ap_cosmos-wircam_hm_cosmos-wircam_ksmerr_cosmos-wircam_ksf_ap_cosmos-wircam_ksferr_ap_cosmos-wircam_ksm_cosmos-suprime_ymerr_cosmos-suprime_yf_ap_cosmos-suprime_yferr_ap_cosmos-suprime_yf_cosmos-irac_i1ferr_cosmos-irac_i1m_cosmos-irac_i1merr_cosmos-irac_i1f_cosmos-irac_i2ferr_cosmos-irac_i2m_cosmos-irac_i2merr_cosmos-irac_i2f_cosmos-irac_i3ferr_cosmos-irac_i3m_cosmos-irac_i3merr_cosmos-irac_i3f_cosmos-irac_i4ferr_cosmos-irac_i4m_cosmos-irac_i4merr_cosmos-irac_i4f_cosmos-vista_ksferr_cosmos-vista_ksflag_cosmos-vista_ksm_ap_cosmos-vista_ksmerr_ap_cosmos-vista_ksf_cosmos-vista_yferr_cosmos-vista_yflag_cosmos-vista_ym_ap_cosmos-vista_ymerr_ap_cosmos-vista_yf_cosmos-vista_hferr_cosmos-vista_hflag_cosmos-vista_hm_ap_cosmos-vista_hmerr_ap_cosmos-vista_hf_cosmos-vista_jferr_cosmos-vista_jflag_cosmos-vista_jm_ap_cosmos-vista_jmerr_ap_cosmos-vista_jf_cosmos-megacam_uferr_cosmos-megacam_uflag_cosmos-megacam_um_ap_cosmos-megacam_umerr_ap_cosmos-megacam_uf_cosmos-suprime_bferr_cosmos-suprime_bflag_cosmos-suprime_bm_ap_cosmos-suprime_bmerr_ap_cosmos-suprime_bf_cosmos-suprime_vferr_cosmos-suprime_vflag_cosmos-suprime_vm_ap_cosmos-suprime_vmerr_ap_cosmos-suprime_vf_cosmos-suprime_ipferr_cosmos-suprime_ipflag_cosmos-suprime_ipm_ap_cosmos-suprime_ipmerr_ap_cosmos-suprime_ipf_cosmos-suprime_rcferr_cosmos-suprime_rcflag_cosmos-suprime_rcm_ap_cosmos-suprime_rcmerr_ap_cosmos-suprime_rcf_cosmos-suprime_zpferr_cosmos-suprime_zpflag_cosmos-suprime_zpm_ap_cosmos-suprime_zpmerr_ap_cosmos-suprime_zpf_cosmos-suprime_zppferr_cosmos-suprime_zppflag_cosmos-suprime_zppm_ap_cosmos-suprime_zppmerr_ap_cosmos-suprime_zppf_cosmos-suprime_ia484ferr_cosmos-suprime_ia484flag_cosmos-suprime_ia484m_ap_cosmos-suprime_ia484merr_ap_cosmos-suprime_ia484f_cosmos-suprime_ia527ferr_cosmos-suprime_ia527flag_cosmos-suprime_ia527m_ap_cosmos-suprime_ia527merr_ap_cosmos-suprime_ia527f_cosmos-suprime_ia624ferr_cosmos-suprime_ia624flag_cosmos-suprime_ia624m_ap_cosmos-suprime_ia624merr_ap_cosmos-suprime_ia624f_cosmos-suprime_ia679ferr_cosmos-suprime_ia679flag_cosmos-suprime_ia679m_ap_cosmos-suprime_ia679merr_ap_cosmos-suprime_ia679f_cosmos-suprime_ia738ferr_cosmos-suprime_ia738flag_cosmos-suprime_ia738m_ap_cosmos-suprime_ia738merr_ap_cosmos-suprime_ia738f_cosmos-suprime_ia767ferr_cosmos-suprime_ia767flag_cosmos-suprime_ia767m_ap_cosmos-suprime_ia767merr_ap_cosmos-suprime_ia767f_cosmos-suprime_ib427ferr_cosmos-suprime_ib427flag_cosmos-suprime_ib427m_ap_cosmos-suprime_ib427merr_ap_cosmos-suprime_ib427f_cosmos-suprime_ib464ferr_cosmos-suprime_ib464flag_cosmos-suprime_ib464m_ap_cosmos-suprime_ib464merr_ap_cosmos-suprime_ib464f_cosmos-suprime_ib505ferr_cosmos-suprime_ib505flag_cosmos-suprime_ib505m_ap_cosmos-suprime_ib505merr_ap_cosmos-suprime_ib505f_cosmos-suprime_ib574ferr_cosmos-suprime_ib574flag_cosmos-suprime_ib574m_ap_cosmos-suprime_ib574merr_ap_cosmos-suprime_ib574f_cosmos-suprime_ib709ferr_cosmos-suprime_ib709flag_cosmos-suprime_ib709m_ap_cosmos-suprime_ib709merr_ap_cosmos-suprime_ib709f_cosmos-suprime_ib827ferr_cosmos-suprime_ib827flag_cosmos-suprime_ib827m_ap_cosmos-suprime_ib827merr_ap_cosmos-suprime_ib827f_cosmos-suprime_nb711ferr_cosmos-suprime_nb711flag_cosmos-suprime_nb711m_ap_cosmos-suprime_nb711merr_ap_cosmos-suprime_nb711f_cosmos-suprime_nb816ferr_cosmos-suprime_nb816flag_cosmos-suprime_nb816m_ap_cosmos-suprime_nb816merr_ap_cosmos-suprime_nb816f_cosmos-wircam_hferr_cosmos-wircam_hflag_cosmos-wircam_hm_ap_cosmos-wircam_hmerr_ap_cosmos-wircam_hf_cosmos-wircam_ksferr_cosmos-wircam_ksflag_cosmos-wircam_ksm_ap_cosmos-wircam_ksmerr_ap_cosmos-wircam_ksf_cosmos-suprime_yferr_cosmos-suprime_yflag_cosmos-suprime_ym_ap_cosmos-suprime_ymerr_ap_cosmos-suprime_yflag_cosmos-irac_i1flag_cosmos-irac_i2flag_cosmos-irac_i3flag_cosmos-irac_i4ps1_flag_cleanedcosmos_flag_gaiaflag_mergedcandels_idcandels_stellarityf_ap_candels_f140wferr_ap_candels_f140wf_candels_f140wferr_candels_f140wf_ap_candels_f160wferr_ap_candels_f160wf_candels_f160wferr_candels_f160wf_candels_f606wferr_candels_f606wf_candels_f814wferr_candels_f814wf_candels_f125wferr_candels_f125wm_ap_candels_f140wmerr_ap_candels_f140wm_candels_f140wmerr_candels_f140wflag_candels_f140wm_ap_candels_f160wmerr_ap_candels_f160wm_candels_f160wmerr_candels_f160wflag_candels_f160wm_candels_f606wmerr_candels_f606wflag_candels_f606wm_candels_f814wmerr_candels_f814wflag_candels_f814wm_candels_f125wmerr_candels_f125wflag_candels_f125wcandels_flag_cleanedcandels_flag_gaiacfhtls_idcfhtls_stellaritym_megacam_umerr_megacam_um_megacam_gmerr_megacam_gm_megacam_rmerr_megacam_rm_megacam_imerr_megacam_im_megacam_zmerr_megacam_zm_ap_megacam_umerr_ap_megacam_um_ap_megacam_gmerr_ap_megacam_gm_ap_megacam_rmerr_ap_megacam_rm_ap_megacam_imerr_ap_megacam_im_ap_megacam_zmerr_ap_megacam_zf_megacam_uferr_megacam_uflag_megacam_uf_megacam_gferr_megacam_gflag_megacam_gf_megacam_rferr_megacam_rflag_megacam_rf_megacam_iferr_megacam_iflag_megacam_if_megacam_zferr_megacam_zflag_megacam_zf_ap_megacam_uferr_ap_megacam_uf_ap_megacam_gferr_ap_megacam_gf_ap_megacam_rferr_ap_megacam_rf_ap_megacam_iferr_ap_megacam_if_ap_megacam_zferr_ap_megacam_zcfhtls_flag_cleanedcfhtls_flag_gaiadecals_idf_decam_gf_decam_rf_decam_zferr_decam_gferr_decam_rferr_decam_zf_ap_decam_gf_ap_decam_rf_ap_decam_zferr_ap_decam_gferr_ap_decam_rferr_ap_decam_zm_decam_gmerr_decam_gflag_decam_gm_decam_rmerr_decam_rflag_decam_rm_decam_zmerr_decam_zflag_decam_zm_ap_decam_gmerr_ap_decam_gm_ap_decam_rmerr_ap_decam_rm_ap_decam_zmerr_ap_decam_zdecals_stellaritydecals_flag_cleaneddecals_flag_gaiahsc-udeep_idm_ap_hsc-udeep_gmerr_ap_hsc-udeep_gm_hsc-udeep_gmerr_hsc-udeep_gm_ap_hsc-udeep_rmerr_ap_hsc-udeep_rm_hsc-udeep_rmerr_hsc-udeep_rm_ap_hsc-udeep_imerr_ap_hsc-udeep_im_hsc-udeep_imerr_hsc-udeep_im_ap_hsc-udeep_zmerr_ap_hsc-udeep_zm_hsc-udeep_zmerr_hsc-udeep_zm_ap_hsc-udeep_ymerr_ap_hsc-udeep_ym_hsc-udeep_ymerr_hsc-udeep_ym_ap_hsc-udeep_n921merr_ap_hsc-udeep_n921m_hsc-udeep_n921merr_hsc-udeep_n921hsc-udeep_stellarityf_ap_hsc-udeep_gferr_ap_hsc-udeep_gf_hsc-udeep_gferr_hsc-udeep_gflag_hsc-udeep_gf_ap_hsc-udeep_rferr_ap_hsc-udeep_rf_hsc-udeep_rferr_hsc-udeep_rflag_hsc-udeep_rf_ap_hsc-udeep_iferr_ap_hsc-udeep_if_hsc-udeep_iferr_hsc-udeep_iflag_hsc-udeep_if_ap_hsc-udeep_zferr_ap_hsc-udeep_zf_hsc-udeep_zferr_hsc-udeep_zflag_hsc-udeep_zf_ap_hsc-udeep_yferr_ap_hsc-udeep_yf_hsc-udeep_yferr_hsc-udeep_yflag_hsc-udeep_yf_ap_hsc-udeep_n921ferr_ap_hsc-udeep_n921f_hsc-udeep_n921ferr_hsc-udeep_n921flag_hsc-udeep_n921hsc-udeep_flag_cleanedhsc-udeep_flag_gaiahsc-deep_idm_ap_hsc-deep_gmerr_ap_hsc-deep_gm_hsc-deep_gmerr_hsc-deep_gm_ap_hsc-deep_rmerr_ap_hsc-deep_rm_hsc-deep_rmerr_hsc-deep_rm_ap_hsc-deep_imerr_ap_hsc-deep_im_hsc-deep_imerr_hsc-deep_im_ap_hsc-deep_zmerr_ap_hsc-deep_zm_hsc-deep_zmerr_hsc-deep_zm_ap_hsc-deep_ymerr_ap_hsc-deep_ym_hsc-deep_ymerr_hsc-deep_ym_ap_hsc-deep_n921merr_ap_hsc-deep_n921m_hsc-deep_n921merr_hsc-deep_n921hsc-deep_stellarityf_ap_hsc-deep_gferr_ap_hsc-deep_gf_hsc-deep_gferr_hsc-deep_gflag_hsc-deep_gf_ap_hsc-deep_rferr_ap_hsc-deep_rf_hsc-deep_rferr_hsc-deep_rflag_hsc-deep_rf_ap_hsc-deep_iferr_ap_hsc-deep_if_hsc-deep_iferr_hsc-deep_iflag_hsc-deep_if_ap_hsc-deep_zferr_ap_hsc-deep_zf_hsc-deep_zferr_hsc-deep_zflag_hsc-deep_zf_ap_hsc-deep_yferr_ap_hsc-deep_yf_hsc-deep_yferr_hsc-deep_yflag_hsc-deep_yf_ap_hsc-deep_n921ferr_ap_hsc-deep_n921f_hsc-deep_n921ferr_hsc-deep_n921flag_hsc-deep_n921hsc-deep_flag_cleanedhsc-deep_flag_gaiakids_idkids_stellaritym_kids_umerr_kids_um_kids_gmerr_kids_gm_kids_rmerr_kids_rm_kids_imerr_kids_if_ap_kids_uferr_ap_kids_uf_ap_kids_gferr_ap_kids_gf_ap_kids_rferr_ap_kids_rf_ap_kids_iferr_ap_kids_if_kids_uferr_kids_uflag_kids_uf_kids_gferr_kids_gflag_kids_gf_kids_rferr_kids_rflag_kids_rf_kids_iferr_kids_iflag_kids_im_ap_kids_umerr_ap_kids_um_ap_kids_gmerr_ap_kids_gm_ap_kids_rmerr_ap_kids_rm_ap_kids_imerr_ap_kids_ikids_flag_cleanedkids_flag_gaialas_idm_ukidss_ymerr_ukidss_ym_ap_ukidss_ymerr_ap_ukidss_ym_ukidss_jmerr_ukidss_jm_ap_ukidss_jmerr_ap_ukidss_jm_ap_ukidss_hmerr_ap_ukidss_hm_ukidss_hmerr_ukidss_hm_ap_ukidss_kmerr_ap_ukidss_km_ukidss_kmerr_ukidss_klas_stellarityf_ukidss_yferr_ukidss_yflag_ukidss_yf_ap_ukidss_yferr_ap_ukidss_yf_ukidss_jferr_ukidss_jflag_ukidss_jf_ap_ukidss_jferr_ap_ukidss_jf_ap_ukidss_hferr_ap_ukidss_hf_ukidss_hferr_ukidss_hflag_ukidss_hf_ap_ukidss_kferr_ap_ukidss_kf_ukidss_kferr_ukidss_kflag_ukidss_klas_flag_cleanedlas_flag_gaiawirds_idm_wirds_umerr_wirds_um_ap_wirds_umerr_ap_wirds_um_wirds_gmerr_wirds_gm_ap_wirds_gmerr_ap_wirds_gm_wirds_rmerr_wirds_rm_ap_wirds_rmerr_ap_wirds_rm_wirds_imerr_wirds_im_ap_wirds_imerr_ap_wirds_im_wirds_zmerr_wirds_zm_ap_wirds_zmerr_ap_wirds_zm_wirds_jmerr_wirds_jm_ap_wirds_jmerr_ap_wirds_jm_wirds_hmerr_wirds_hm_ap_wirds_hmerr_ap_wirds_hm_wirds_kmerr_wirds_km_ap_wirds_kmerr_ap_wirds_kf_wirds_uferr_wirds_uflag_wirds_uf_ap_wirds_uferr_ap_wirds_uf_wirds_gferr_wirds_gflag_wirds_gf_ap_wirds_gferr_ap_wirds_gf_wirds_rferr_wirds_rflag_wirds_rf_ap_wirds_rferr_ap_wirds_rf_wirds_iferr_wirds_iflag_wirds_if_ap_wirds_iferr_ap_wirds_if_wirds_zferr_wirds_zflag_wirds_zf_ap_wirds_zferr_ap_wirds_zf_wirds_jferr_wirds_jflag_wirds_jf_ap_wirds_jferr_ap_wirds_jf_wirds_hferr_wirds_hflag_wirds_hf_ap_wirds_hferr_ap_wirds_hf_wirds_kferr_wirds_kflag_wirds_kf_ap_wirds_kferr_ap_wirds_kwirds_flag_cleanedcfht-wirds_flag_gaiaps1_flag_cleaned_1ps1_idm_ap_gpc1_gmerr_ap_gpc1_gm_gpc1_gmerr_gpc1_gm_ap_gpc1_rmerr_ap_gpc1_rm_gpc1_rmerr_gpc1_rm_ap_gpc1_imerr_ap_gpc1_im_gpc1_imerr_gpc1_im_ap_gpc1_zmerr_ap_gpc1_zm_gpc1_zmerr_gpc1_zm_ap_gpc1_ymerr_ap_gpc1_ym_gpc1_ymerr_gpc1_yf_ap_gpc1_gferr_ap_gpc1_gf_gpc1_gferr_gpc1_gflag_gpc1_gf_ap_gpc1_rferr_ap_gpc1_rf_gpc1_rferr_gpc1_rflag_gpc1_rf_ap_gpc1_iferr_ap_gpc1_if_gpc1_iferr_gpc1_iflag_gpc1_if_ap_gpc1_zferr_ap_gpc1_zf_gpc1_zferr_gpc1_zflag_gpc1_zf_ap_gpc1_yferr_ap_gpc1_yf_gpc1_yferr_gpc1_yflag_gpc1_yps1_flag_cleaned_2ps1_flag_gaia
degdegmagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJyuJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJymagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmaguJyuJyuJyuJyuJyuJyuJyuJy
0HELP_J095914.43+021600.80COSMOS2015_J095914.43+021600.80149.8101136052.266885839861.0nannan-2.22482995014e-050.0321263000369nannan0.0307902004570.0447486005723nannannannan26.32570075990.3331409990790.08171340078120.069775201380327.72290039060.379294991493-0.001634830026890.016533099114929.33679962161.41305005550.006685560103510.0096023799851527.51370048520.4707289934160.01351640000940.018334299325927.70409965520.8654019832610.01880040019750.021642500534727.51580047610.4509769976140.02479780092840.0147521002218nannan-0.01803950034080.14826600253627.1131992340.528717994690.02121699973940.0357417017221nannannannan31.63899993938.7386016846-0.002777819987390.030392700806327.12899971010.8493750095370.04261979833250.039053898304725.62610054020.2046239972110.07468000054360.0542262010276nannan-0.04015880078080.0494364984334nannan-0.03290389850740.0625786036253nannan-0.01760420016940.0339404009283nannannannannannan-0.03568980097770.041039701551232.5750999451129.8509979250.03239509835840.0547765009105nannan-0.03633879870180.0410583987832nannan-0.0239991005510.0625353977084nannan0.03730649873610.0778475999832nannan-0.007673860061910.064408503472825.47039985660.9133350253110.09047289937730.287485003471nannannannannannan0.03021439909930.127738997340.1863709986210.095002397894925.72410011290.553453981876-99.9000015259-99.9000015259-99.9000015259-99.90000152590.02.30679988861-99.9000015259-99.90000152590.02.68687009811-99.9000015259-99.9000015259nannanFalsenan-1567.79125977nannanFalse27.67897033691.577942729nannanFalsenannan0.107082709670.0328566357493False26.61927032470.927111864090.02956919558350.0103298090398Falsenan-10.9800910950.006687752436850.00870389118791False29.33715820311.559428215030.03585251420740.0155441239476False28.5728454591.472745180130.03008570522070.0239802524447False28.21458435061.249869465830.03578322380780.0148631036282False27.91397094730.64589959383nannanFalsenan-8.923625946040.05184659734370.0252475980669False28.08329010011.829007864nannanFalsenannan0.0008024165290410.0286298766732Falsenan-11.87926292420.05109751597050.0399737507105False27.32597351070.9948950409890.2039669603110.0384407714009False26.71699523930.788368284702nannanFalsenan-1.33656859398nannanFalsenan-2.06491804123nannanFalsenan-2.09326887131nannanFalsenannannannanFalsenan-1.248487949370.0003388127079230.0405210442841False27.62380218511.83585870266nannanFalsenan-1.22674918175nannanFalsenan-2.8291451931nannanFalse27.47054290772.26560950279nannanFalsenan-9.112837791440.2354181855920.198036745191False26.50870513923.45001459122nannanFalsenannannannanFalse27.699470524.59022378922FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
1HELP_J095802.73+023603.69COSMOS2015_J095802.73+023603.69149.5113469492.601021760211.026.02269935610.868928015232-0.0001093449973270.093030802905628.23100090032.48985004425-0.03367010131480.0348929017782nannannannannannannannannannan-0.008407889865340.02373839914830.48430061343.697730064390.002372609917070.0101004000753nannan-0.007114380132410.0186650995165nannannannan29.28000068662.02817010880.007434390019630.0153112998232nannan-0.06911160051820.153556004167nannan-0.01903980039060.0356316007674nannan-0.02769030071790.033716801554nannannannan27.17989921570.6364240050320.02929740026590.032889600843227.92630004881.371749997140.008198570460080.0516379997134nannannannannannan-0.0523221008480.0608161985874nannannannannannannannan27.35050010680.8683090209960.03527329862120.0441102012992nannan-0.01739620044830.053029801696526.62520027160.4375370144840.06194819882510.045974001288426.54179954530.4755319952960.06188200041650.0712374970317nannan-0.02168460004030.0783277973533nannan-0.01575749926270.064438000321424.99819946290.4934889972210.3584299981590.282492995262nannan-0.1219490021470.348091989756nannan-0.06147760152820.1790809929370.05679529905320.041922401636827.01420021060.801415026188-99.9000015259-99.9000015259-99.9000015259-99.90000152590.02.70620989799-99.9000015259-99.90000152590.03.59382009506-99.9000015259-99.90000152590.1415532678370.113286823034Falsenan-923.7451171880.01851823367180.0424666963518Falsenan-1.12516701221nannanFalsenannannannanFalsenannannannanFalsenan-3.065411329270.002324232598770.00791572127491False30.46193695074.62206983566nannanFalsenan-2.84850859642nannanFalsenannan0.007046923972670.0131637500599False29.22188568122.23609900475nannanFalsenan-2.41234922409nannanFalsenan-2.03187632561nannanFalsenan-1.32203507423nannanFalsenannan0.04875736683610.0285800192505False27.7329254151.218860030170.02451769448820.0309763513505False29.11565399176.83841657639nannanFalsenannannannanFalsenan-1.2619972229nannanFalsenannannannanFalsenannan0.04166770726440.0333234220743False27.53137969971.35774207115nannanFalsenan-3.309709787370.08126802742480.0327499173582False26.91992950440.8057640790940.08775668591260.0384357795119False26.92108917241.24988079071nannanFalsenan-3.92182993889nannanFalsenan-4.439960479740.3636804521080.165300101042False25.01398468020.855712115765nannanFalsenan-3.099132061nannanFalsenan-3.16269207001FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
2HELP_J095901.32+013751.84COSMOS2015_J095901.32+013751.84149.7554853951.631063991481.0nannan-6.758159725e-050.051553998142524.69239997860.1327420026060.1425189971920.0601480007172nannan0.06490419805050.13322700560125.94079971310.7053369879720.1841489970680.0947631001472nannannannan27.59020042420.507965981960.01620789989830.0092782899737430.99780082721.4993991852-0.01247030030940.017312599346nannan0.04085579887030.0217528995126nannan-0.006400519981980.0134477000684nannan0.009490719996390.147536993027nannan-0.03490870073440.035560701042426.94179916380.945086002350.01366170030090.0325365997851nannan0.008082809858020.0270215999335nannannannannannan0.01075469981880.0520065017045nannan0.03724319860340.044126201421nannan-0.02793310023840.0592668987811nannan0.01107770018280.0336522012949nannannannan26.01049995420.487657994032-0.02445220015940.0377418994904nannannannan26.35980033870.647179007530.08777429908510.0388326011598nannan0.001382309943440.064678601920625.99320030211.14011001587-0.03528809919950.0687372013927nannan-0.04942389950160.065035000443523.79220008850.4724769890310.06117840111260.358990013599nannannannan27.55010032657.799170017240.06922180205580.1952970027920.5253660082820.065041802823524.59880065920.1344169974330.7699800133710.072426296770624.18379974370.102127000690.02.05527997017-99.9000015259-99.90000152590.03.15706992149-99.9000015259-99.9000015259nannanFalsenan-828.2437744140.4819918274880.0589282736182False26.01531982420.458218634129nannanFalse26.86931610112.228659868240.1526441127060.099163621664False25.73707580570.558719992638nannanFalsenannan0.03341331332920.0156325511634False28.37568664550.6215348839760.001448368770070.028680132702Falsenan-1.50733447075nannanFalse27.37186431880.578079760075nannanFalsenan-2.28116679192nannanFalse28.956756591816.8781967163nannanFalsenan-1.106014728550.06071281433110.0528478547931False28.56124114992.58578085899nannanFalse29.13109588623.62971878052nannanFalsenannannannanFalse28.82100677495.25029468536nannanFalse27.47238159181.28639364243nannanFalsenan-2.30365467072nannanFalse28.78887939453.29828500748nannanFalsenannan0.1431528031830.0642970278859Falsenan-1.67583048344nannanFalsenannan0.1037719324230.0618557445705False26.54158782960.480345159769nannanFalse31.048484802250.80184555050.1454520076510.152736261487Falsenan-2.11489033699nannanFalsenan-1.428678274151.104383468630.480591654778False26.93350982676.37101364136nannanFalsenannan0.0346704833210.249048531055False26.79939270023.06321120262FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
3HELP_J095824.46+014508.83COSMOS2015_J095824.46+014508.83149.6019007091.752450148971.027.62619972234.17363977432-0.000207357996260.095258399844225.23410034180.169237002730.1803060024980.098160497844225.90040016170.5140020251270.2125679999590.13914600014728.43709945683.98148989677-0.01265219971540.043021101504626.33620071410.1395339965820.08034829795360.02400919981326.25740051270.094910196960.08275499939920.012464799918226.41370010380.1781580001120.07929970324040.022014500573327.01469993590.5597950220110.05174620077010.02914400026226.10400009160.1508100032810.1020580008630.020201999694127.89730072022.300440073010.05719060078260.14986099302825.55290031430.1176230013370.1873860061170.036845400929526.7392005920.3630940020080.0369305014610.031576801091426.95120048520.4254559874530.05447009950880.027318900451126.30570030210.3228940069680.08837430179120.034883901476926.03619956970.2576850056650.1179319992660.051727999001726.24449920650.3676219880580.08679749816660.044741798192325.83629989620.3069289922710.1083969995380.065082699060426.63179969790.3478760123250.04856489971280.033176898956326.0664005280.2245739996430.1043289974330.0377836003926.46789932250.3505220115180.09926120191810.0375351011753nannan0.05540009960530.043907098472127.76370048521.096909999850.01743079908190.037619899958426.08460044860.3043969869610.1589020043610.065850399434627.03610038761.37987005711-0.002285880036650.066888101398927.32869911190.85594701767-0.002456529997290.064756803214626.96940040593.40187001228-0.1217269971970.29451099038124.68849945070.6014350056650.2076070010660.427302002907nannan-0.0317630991340.1894250065090.1125959977510.015165000222626.27120018010.1462330073120.1463810056450.035701800137825.98629951480.2648079991340.03.16672992706-99.9000015259-99.90000152590.03.0843501091-99.9000015259-99.90000152590.03232362493870.124254100025Falsenan-498.777465820.2926574945450.0456174127758False25.7599792480.5910862684250.1584307998420.075003258884False25.58126068120.710717678070.01531652174890.0561670251191Falsenan-3.691813945770.1060521304610.0136293489486False26.63756561280.3244332075120.1140354126690.00996846519411False26.60552215580.163536742330.09874603897330.0162031967193False26.65182495120.3014127016070.05677012726660.029270125553False27.11530303960.6114979386330.1313407868150.0182433854789False26.37788391110.2149174213410.02518138848250.0533539094031False27.0066909792.845039129260.2181923538450.0236378218979False25.71815490720.2134865075350.0731677711010.0244689062238False27.48153686520.9283403158190.06018933653830.0235857591033False27.05960845950.5445394515990.1090736165640.0324380993843False26.53418731690.4285715818410.1398041993380.0331806614995False26.22092437740.4762317240240.1153984814880.0390730425715False26.55373382570.5596680641170.1680660843850.0475109443069False26.3124618530.6518874764440.08077555894850.0258809439838False27.18419647220.7417159080510.1359688937660.0281238462776False26.35398864750.3932082355020.09393778443340.0303271301091False26.40805053710.410565435886nannanFalse27.04122161870.8604952692990.02847867272790.0287717599422False28.29670715332.343282222750.1337087005380.0374865680933False25.89717864990.4499387145040.05566211417320.0707413852215Falsenan-31.77018356320.04251283034680.0335152596235Falsenan-28.62118339540.05918882042170.185452669859Falsenan-2.626871824260.4837265312670.267956495285False25.60689544682.23468971252nannanFalsenan-6.47498464584FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
4HELP_J095836.75+014228.42COSMOS2015_J095836.75+014228.42149.6530973941.707891841781.0nannan-0.0002465799916540.10322000086326.05200004580.311015009880.08066640049220.10296300053625.23259925840.2463500052690.2588169872760.14938899874727.06839942930.9899320006370.03981989994650.11974799633nannannannan28.22039985660.3978680074210.01988529972730.010072899982327.35409927370.3214589953420.03921059891580.019547199830427.72859954830.6845070123670.03402160108090.022133899852626.81069946290.2487400025130.06963930279020.02018829993926.16449928280.3869319856170.1237339973450.15360000729625.92480087280.1442289948460.1401219964030.039022799581327.06940078740.4057089984420.04808440059420.031565200537428.76679992681.924219965930.007695950102060.028085799887826.65679931640.3882539868350.06536559760570.036590199917626.64179992680.4050500094890.1299829930070.056775398552426.08259963990.2954640090470.1185780018570.050233598798527.0438003540.7837049961090.07536870241170.0646798983216nannan-0.006132349837570.0331675000489nannan0.01374370045960.043287098407726.92460060120.6061459779740.03258680179720.051478300243627.17989921570.566783010960.04314570128920.045691300183526.41119956970.2781530022620.08915960043670.039994701743125.82180023190.1944160014390.1431539952750.063665598630926.00650024410.4592559933660.1566620022060.069492101669326.82169914250.4428319931030.06510320305820.064317300915725.30999946590.5620149970050.3318060040470.27258899807928.49850082416.34869956970.03665940091010.42379400134125.96750068660.6327869892120.1254180073740.176188006997-99.9000015259-99.9000015259-99.9000015259-99.90000152590.1358959972860.064418099820626.06699943540.5146650075910.02.46672010422-99.9000015259-99.90000152590.02.71726989746-99.9000015259-99.9000015259nannanFalsenan-454.4963073730.1377843022350.0394690558314False26.63327026371.385839104650.293062299490.0664948746562False25.36752319340.6266862154010.05403065681460.0492630489171False27.39974975593.26506924629nannanFalsenannan0.01869993656870.00685259094462False28.15367126460.5499796867370.04152981936930.0122959278524False27.41649627690.5412593483920.02941441535950.0185444448143False27.57061767580.7063623070720.06850465387110.0156942792237False26.79286956790.3147528171540.1242224648590.0442700944841False26.16877746581.347803235050.1549100875850.0205782279372False26.03372955320.3023684024810.05398085340860.0201711207628False27.19499206540.7127358913420.01130524184550.0200359635055False29.18434906013.962314128880.07893692702050.0282274633646False26.86162567140.6077708601950.08003496378660.0298582315445False26.11528778080.4742397367950.1339552700520.0364535711706False26.21498870850.4599540531640.05526877194640.0398940481246False26.70702362060.931756734848nannanFalsenan-5.87232494354nannanFalse28.55474090583.419629812240.06168217957020.0344359949231False27.61739349371.71516835690.04875736683610.0254526361823False27.31266021731.149794697760.09897377341990.0253559313715False26.52458190920.4870333075520.1703255623580.0304991342127False26.01049041750.4828649163250.1436811089520.0607757270336False25.91259002690.4816106557850.06781414151190.027658900246False26.86599731451.072629451750.2728976905350.141261383891False25.09779357910.8919662237170.01447437144820.217950865626False27.489540100112.55144500730.1489358991380.0868025794625False26.15409851071.52524900436FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
5HELP_J095739.74+020106.13COSMOS2015_J095739.74+020106.13149.4155822.018367062211.026.76289939880.753624975681-0.0001133800033130.041202299296925.63249969480.113378003240.1713860034940.056491799652628.56180000314.187200069430.01265999954190.12574300169925.29949951170.1393480002880.2478870004420.089410796761527.48139953610.3202170133590.03097259998320.020800799131426.92480087280.1463650017980.04903170093890.010996899567526.7891006470.2216839939360.05283220112320.020421199500626.52020072940.2569899857040.07533170282840.022845700383226.73769950870.2008910030130.0688574984670.016304999589925.4913997650.2514489889140.2013040035960.16523499786926.14949989320.1857379972930.08983220160010.036255098879331.036500930818.67690086360.02211610041560.033686801791226.68199920650.3291600048540.06547389924530.029289299622226.32279968260.3040849864480.08669430017470.034937601536525.99869918820.2548420131210.1368640065190.05722710117726.0603008270.3341569900510.1241640001540.052249200642126.6835994720.5920159816740.09773139655590.062003400176826.89179992680.4304729998110.06721659749750.0349991992116nannan-0.00679223984480.041219498962226.5506992340.4201520085330.07791110128160.0449797995389nannan0.003064770018680.053068801760726.49740028380.3713780045510.09716919809580.044397000223426.56500053410.4687910079960.03667490184310.069125100970327.02400016781.508360028270.0367432981730.079844400286727.53599929810.9614880084990.04133069887760.0648398995399nannan-0.3131250143050.36148300766925.44899940490.9694979786870.186428993940.371540009975nannan0.03769740089770.200175002217-0.01863580010830.0352833010256-99.9000015259-99.9000015259-99.9000015259-99.9000015259-99.9000015259-99.90000152590.02.16131997108-99.9000015259-99.90000152590.03.47568011284-99.9000015259-99.90000152590.07158800214530.0496902577579Falsenan-394.556579590.2027683407070.0211740843952False25.81506347660.3578774929050.0136546213180.0526597835124False28.64391326910.7838649750.2755496501920.035365216434False25.41436767580.3916161060330.03693516179920.0108933160082False27.67255401610.7291663885120.06167080253360.0083136651665False27.17380523680.2435104399920.06988104432820.0142682082951False27.09275817870.419668942690.08951989561320.0211890470237False26.70755767820.3292690813540.07326897978780.0135567719117False26.80512237550.25709515810.2309085726740.0534768253565False25.640373230.8911974430080.1259504407640.0215464700013False26.5164184570.4381888806820.001397652202290.024042500183False28.0382308961.653771638870.07712591439490.0233820769936False26.85983276370.4856966137890.1073692590.0300711914897False26.55502319340.4375491738320.1447171717880.0339677520096False26.05928039550.4539800882340.1367349326610.0420829057693False26.16500854490.4568863809110.0770122706890.0419922396541False26.42491912840.6888199448590.06357404589650.0252058561891False26.83130645750.565335035324nannanFalsenan-6.588916301730.08704025298360.0336823426187False26.6710052490.626819431782nannanFalse30.184013366718.80033874510.09141965210440.0312702544034False26.43117523190.4960772395130.0859012603760.0370898023248False27.48908233642.046402931210.05628589913250.0781952440739False27.48705291752.359340429310.03512367233630.0311042312533False27.35932159421.70331084728nannanFalsenan-1.253413677220.2401044368740.214399009943False25.72371673582.16379666328nannanFalse27.45922088625.76531076431FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
6HELP_J100054.82+014728.67COSMOS2015_J100054.82+014728.67150.2283919451.791294082831.029.24659919746.05383014679-0.0002375610056330.040557298809327.11599922180.3364399969580.05023150146010.045074198395nannan-0.004802720155570.036164399236426.98089981080.4516319930550.05480059981350.063886202871829.45969963071.334560036660.006226019933820.016847100108927.9899005890.3249289989470.02300859987740.010755900293627.91099929810.5444920063020.02508939988910.021300999447726.85729980470.241903007030.06540630012750.01889799907828.41279983520.7220950126650.01561590004710.014678600244227.15760040280.8167690038680.05132760107520.13927200436626.38660049440.1805710047480.1023430004720.0342869982123nannan-0.01240960042920.03511530160927.68549919130.6387630105020.02925899997350.027239600196527.41710090640.6481980085370.03956390172240.0327850989997nannan-0.03728500008580.051008898764827.37960052490.8332549929620.04123469814660.046518899500427.74440002441.261749982830.03022509999570.059937398880729.22800064092.890069961550.005414620041850.032935198396426.97349929810.3806880116460.06163389980790.0360668003559nannan-0.007592460140590.038871601223926.76919937130.3651109933850.06881099939350.046465098857927.30209922790.5917850136760.04551630094650.040585801005425.76510047910.1641490012410.1745450049640.06101899966625.99510002140.4543190002440.1444730013610.075010798871526.32699966430.2595149874690.106601998210.0643362030387nannan-0.113889001310.357834011316nannan-0.1868209987880.37527701258725.86160087590.3682020008560.163532003760.1212309971450.1006259992720.023088200017826.39319992070.249117001891-99.9000015259-99.9000015259-99.9000015259-99.90000152590.02.32438993454-99.9000015259-99.90000152590.02.16131997108-99.9000015259-99.90000152590.007267090026290.0405197180808Falsenan-185.3609161380.05171305313710.0160244610161False27.14756011960.9742628932nannanFalsenan-8.175574302670.05856526643040.0243613030761False27.05303955081.265744566920.005972004961220.00734064076096False29.41447448732.93791317940.02312274649740.00691995956004False27.99527740480.507552385330.02486567944290.0124700302258False27.90127563480.9217942953110.06562661379580.0146216703579False26.86095428470.3137043714520.01566318236290.0104171764106False28.41608428961.020568013190.04976906627420.03743987903False27.12412261962.94602990150.1012417525050.0168377216905False26.37485504150.363743811846nannanFalsenan-3.072294950490.03060555458070.0180059354752False27.73435211181.010800719260.0391885936260.0233960766345False27.406753540.899708211422nannanFalsenan-1.485374927520.0405657514930.0311324372888False27.36184692381.22487246990.02898943424220.0336890481412False27.69908142092.153051614760.007392634171990.0196781046689False29.5660781866.604144573210.05896581709380.0206749849021False26.9254531860.635348916054nannanFalsenan-5.558712482450.07117380946870.0239343028516False26.80585479740.7331508398060.04356725141410.0237465109676False27.25458526610.9681249856950.1794566959140.0271314866841False25.79523468020.3795613348480.1451976746320.0607569888234False26.00053405760.563717305660.1069547533990.0255645513535False26.33058929440.655261099339nannanFalsenan-3.41133308411nannanFalsenan-2.180974483490.1641949117180.0556828565896False25.86599731450.804887533188FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
7HELP_J100148.56+015305.15COSMOS2015_J100148.56+015305.15150.4523315121.884759897271.023.81959915160.0921522974968-0.0002521039859860.032368499785723.35840034480.02699040062730.4151970148090.0467310994864nannannannan25.23870086670.2368279993530.06583669781680.068573698401526.08460044860.1787260025740.003673689905550.017781499773327.50309944150.6248720288280.001243649981920.011272500269126.267200470.302100986242-0.01813169941310.019397500902425.83359909060.316940009594-0.01350449956950.022365599870725.72789955140.173035994172-0.01360219996420.014094100333824.74690055850.271941989660.05359189957380.14892399311126.98360061650.895524978638-0.02195090055470.034578800201426.1476001740.482416003942-0.01409699954090.033418498933326.15979957580.479447990656-0.001568609965030.02942729927627.03470039371.343090057370.02529240027070.034306000918125.50880050660.358393996954-0.03035029955210.053749401122326.48270034791.1038299799nannannannannannan26.91589927670.9699239730830.009506010450420.032875098288126.40880012510.6944720149040.08561930060390.039321798831225.03499984740.2413329929110.03350659832360.044328801333924.70019912720.162542000413-0.02423530071970.048973299562925.98180007930.5067870020870.01195420045410.041410401463526.49539947510.983574986458nannan24.36940002440.279796987772-0.01501979958270.073017403483425.30439949040.2858369946480.04646819829940.064169600606nannannannan24.44709968570.7317259907720.1851750016210.30703398585324.71780014040.3696199953560.03629760071640.1235259994860.14323900640.062579602003126.00979995730.474346995354-99.9000015259-99.9000015259-99.9000015259-99.90000152590.00.349896013737-99.9000015259-99.90000152590.01.08697998524-99.9000015259-99.90000152591.076862573620.091399140656Falsenan-139.4014282231.64679491520.0409378036857False24.85437011720.122201368213nannanFalsenannan0.2914201021190.0635664910078False26.85382843021.130872964860.1337087005380.0220101531595False29.98725128175.25521135330.03620430082080.0208366028965False31.16325378429.841161727910.1130107268690.0314447022974Falsenan-1.161533117290.1684845685960.04918275401Falsenan-1.798151731490.1857119351630.0295972917229Falsenan-1.124999880790.4583947360520.114813134074False27.0772552493.017100572590.05841973796490.0481851249933Falsenan-1.710337877270.1261710673570.05606052652Falsenan-2.573858022690.1247612833980.0550930760801Falsenan-20.36853218080.05573390796780.0689446106553False27.89252471921.472666263580.2272373139860.075009457767Falsenan-1.922803640370.09266588836910.0942101553082FalsenannannannanFalsenannan0.06217848509550.0555460937321False28.95500183113.754854440690.09919276088480.0634468942881False26.5685729980.4986387491230.3515604734420.0781434252858False27.58717346191.436414957050.4785421788690.0716409757733Falsenan-2.193993091580.1469872742890.06860896945False28.7061996463.761085748670.09158833324910.0829704254866Falsenannan0.6489924788480.167247012258Falsenan-5.27820873260.2743090093140.0722161233425False27.23210906981.49933195114nannanFalsenannan0.6041710376740.407177746296False25.7310485841.800231695180.4708468914030.160291627049False27.50030517583.69491744041FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
8HELP_J095825.28+024722.91COSMOS2015_J095825.28+024722.91149.6053239922.789695439451.024.89179992680.480482012033-0.001257349969820.143710002303nannannannan25.01160049440.2879070043560.2943649888040.186651006341nannan0.01083000004290.13997900486nannan-0.01778200082480.025298900902328.56529998780.6193090081210.01393250003460.010006600059631.792600631720.2787990570.003072400111710.018112499266927.50180053710.5967649817470.03310110047460.020975099876527.67589950560.4262180030350.03069910034540.0141307003796nannan0.006488529965280.14663800597225.80949974060.1406289935110.1500010043380.036846298724429.93160057077.334469795230.007880040444430.0356824994087nannan-0.01206659991290.0303269997239nannan-0.01838959939780.0339297987521nannan0.02927340008320.053245399147327.27140045171.053089976310.04668119922280.052594099193826.65060043330.537006974220.03286759927870.0565650984645nannan-0.02410270087420.037144798785427.84169960021.103629946710.005159109830860.037970099598226.82139968870.5514510273930.04978369921450.0448064990342nannan0.01222409959880.047931898385329.69330024726.502059936520.009545629844070.039777800440826.11050033570.2879320085050.1208949983120.062897399067928.11470031743.697449922560.02645459957420.069537200033727.3171997070.8093860149380.02932759933170.0649005994201nannannannan24.55439949040.4204460084440.4526889920230.35663300752625.02700042720.4429689943790.2250099927190.2536689937110.00.138348996639-99.9000015259-99.90000152590.4447950124740.10927899926924.77960014340.266748994589-0.4560669958590.738372981548-99.9000015259-99.90000152590.04.19750976562-99.9000015259-99.90000152590.4011253118520.177514106035Falsenan-124.095230103nannanFalsenannan0.3592194616790.0952549949288False25.22778320310.68844383955nannanFalse28.813430786114.0332660675nannanFalsenan-1.544704198840.01361067499970.00776359252632False28.53992462160.7797974348070.0006965613574720.0130099998787False30.1813125616.400662422180.03624761477110.0199231710285False27.60039520260.6879960298540.0308773666620.0121212583035False27.68218994140.499760955572nannanFalse29.369636535624.53717041020.1722661107780.0223126113415False25.95977020260.2667005956170.003866868559270.0261218417436False29.15868377694.91644430161nannanFalsenan-2.72878217697nannanFalsenan-2.003241539nannanFalse27.73381805421.974845886230.04481668025260.043469119817False27.22714996341.223261594770.07938889414070.0392658859491False27.60808563231.86855053902nannanFalsenan-1.673233628270.02650451287630.0269413255155False29.61856842047.990818500520.06783283501860.034452650696False27.15728759770.977188050747nannanFalse28.68196105964.257277965550.00481592956930.028840765357False28.95049285894.524394512180.1305569261310.0346230715513False26.1939773560.5648701786990.02061198465530.0701936408877False27.843752.853910207750.0429655164480.0320295915008False27.7318038942.40268301964nannanFalsenannan0.5473186373710.211946457624False24.76050567630.8553539514540.3541600704190.144493594766False25.51950073241.22402381897FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
9HELP_J100154.84+020628.04COSMOS2015_J100154.84+020628.04150.4784586922.10778545261.025.03599929810.235457003117-0.0003081999893770.0347601994872nannan0.08508999645710.048627600073826.24909973140.7630349993710.06652569770810.10621599853nannan0.019316399470.0723173990846nannan-0.00492380978540.0161146000028nannan-0.007347479928280.00969650037587nannannannannannan-0.006511160172520.021082300692828.95339965822.484339952470.004510439932350.013834999874225.56739997860.4667159914970.03285469859840.155055001378nannan0.03178200125690.036014299839726.41900062560.4519430100920.01083150040360.0314282998443nannannannannannan0.01241459976880.034431900829125.22629928590.2181739956140.100950002670.0549835003912nannan0.005276429932560.0458666011691nannan-0.01812460087240.05750240013nannannannannannan0.01347579993310.0385274998844nannan-0.04049969837070.041980698704730.243799209619.2409992218-0.01884130015970.0456095002592nannan-0.02988320030270.0406818017364nannan-0.01782369986180.066022597253327.58219909674.148960113530.03416689857840.0716423988342nannan0.01638999953870.064195200800923.70459938050.2511419951920.09447640180590.26201501488723.72509956360.284247010946-0.08578349649910.29173499345825.22730064390.4381519854070.1021249964830.118270002306-99.9000015259-99.9000015259-99.9000015259-99.90000152590.1046810001130.043459899723526.35029983520.450762003660.02.60392999649-99.9000015259-99.90000152590.02.40874004364-99.9000015259-99.90000152590.3512367308140.0761705711484Falsenan-122.45426178nannanFalse26.57530975340.620481252670.1149105653170.0807569846511False26.84252166751.7335036993nannanFalse28.18518829354.06481647491nannanFalsenan-3.55338740349nannanFalsenan-1.43285059929nannanFalsenannannannanFalsenan-3.515474319460.009520057588820.0217834301293False29.76445770263.33030915260.215297892690.0925482362509False27.6085052495.12404108047nannanFalse27.64454650881.23031985760.09826519340280.0409033671021False28.81327819823.15033388138nannanFalsenannannannanFalse28.66516876223.011289834980.2947677969930.0592323169112False26.38973236080.591357767582nannanFalse29.59415435799.43801498413nannanFalsenan-3.44462394714nannanFalsenannannannanFalse28.57611846923.10413479805nannanFalsenan-1.125439524650.002900551306080.0514024570584Falsenan-2.62826251984nannanFalsenan-1.47807812691nannanFalsenan-4.021786689760.03366046771410.128627881408False27.56598663332.27661108971nannanFalse28.36355590824.252535343171.197182297710.276920646429False26.46169281013.011113643651.174789667130.307561308146Falsenan-3.692403078080.2944960594180.118844740093False26.37717437741.25738096237FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "master_catalogue[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## III - Merging flags and stellarity\n", "\n", "Each pristine catalogue contains a flag indicating if the source was associated to a another nearby source that was removed during the cleaning process. We merge these flags in a single one." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "flag_cleaned_columns = [column for column in master_catalogue.colnames\n", " if 'flag_cleaned' in column]\n", "\n", "flag_column = np.zeros(len(master_catalogue), dtype=bool)\n", "for column in flag_cleaned_columns:\n", " flag_column |= master_catalogue[column]\n", " \n", "master_catalogue.add_column(Column(data=flag_column, name=\"flag_cleaned\"))\n", "master_catalogue.remove_columns(flag_cleaned_columns)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Wirds was created with a merge so contains a flag to be merged with the merg flag produced here" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# master_catalogue['flag_merged'] |= master_catalogue['wirds_flag_merged']\n", "# master_catalogue.remove_columns('wirds_flag_merged')" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Each pristine catalogue contains a flag indicating the probability of a source being a Gaia object (0: not a Gaia object, 1: possibly, 2: probably, 3: definitely). We merge these flags taking the highest value." ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "flag_gaia_columns = [column for column in master_catalogue.colnames\n", " if 'flag_gaia' in column]\n", "\n", "master_catalogue.add_column(Column(\n", " data=np.max([master_catalogue[column] for column in flag_gaia_columns], axis=0),\n", " name=\"flag_gaia\"\n", "))\n", "master_catalogue.remove_columns(flag_gaia_columns)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Each prisitine catalogue may contain one or several stellarity columns indicating the probability (0 to 1) of each source being a star. We merge these columns taking the highest value." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cosmos_stellarity, candels_stellarity, cfhtls_stellarity, decals_stellarity, hsc-udeep_stellarity, hsc-deep_stellarity, kids_stellarity, las_stellarity\n" ] } ], "source": [ "stellarity_columns = [column for column in master_catalogue.colnames\n", " if 'stellarity' in column]\n", "\n", "print(\", \".join(stellarity_columns))" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "\n", "# We create an masked array with all the stellarities and get the maximum value, as well as its\n", "# origin. Some sources may not have an associated stellarity.\n", "stellarity_array = np.array([master_catalogue[column] for column in stellarity_columns])\n", "stellarity_array = np.ma.masked_array(stellarity_array, np.isnan(stellarity_array))\n", "\n", "max_stellarity = np.max(stellarity_array, axis=0)\n", "max_stellarity.fill_value = np.nan\n", "\n", "no_stellarity_mask = max_stellarity.mask\n", "\n", "master_catalogue.add_column(Column(data=max_stellarity.filled(), name=\"stellarity\"))\n", "\n", "stellarity_origin = np.full(len(master_catalogue), \"NO_INFORMATION\", dtype=\"S20\")\n", "stellarity_origin[~no_stellarity_mask] = np.array(stellarity_columns)[np.argmax(stellarity_array, axis=0)[~no_stellarity_mask]]\n", "\n", "master_catalogue.add_column(Column(data=stellarity_origin, name=\"stellarity_origin\"))\n", "\n", "master_catalogue.remove_columns(stellarity_columns)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## IV - Adding E(B-V) column" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " ebv(master_catalogue['ra'], master_catalogue['dec'])\n", ")" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## V a - Adding HELP unique identifiers and field columns\n", "\n", "First we make a help_id column using the old values where we have them" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#master_catalogue.add_column(Column(gen_help_id(master_catalogue['ra'], master_catalogue['dec']),\n", "# name=\"help_id\"))\n", "#Use HELP ids from original cat to make sure they are identical\n", "\n", "master_catalogue['help_id'] = master_catalogue['help_id'].astype('S27')\n", "master_catalogue.add_column(Column(gen_help_id(master_catalogue['ra'], master_catalogue['dec']),\n", " name=\"help_id_temp\"))\n", "mask = (master_catalogue['help_id'] == '-1') | (master_catalogue['help_id'] == '')\n", "master_catalogue['help_id'][mask] = master_catalogue['help_id_temp'][mask]\n", "master_catalogue.remove_column('help_id_temp')\n", "\n", "master_catalogue.add_column(Column(np.full(len(master_catalogue), \"COSMOS\", dtype='" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(specz['ra'] * u.deg, specz['dec'] * u.deg)\n", ")" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue = specz_merge(master_catalogue, specz, radius=1. * u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VI - Choosing between multiple values for the same filter\n", "\n", "### VI.a HSC-DEEP and HSC-UDEEP and COSMOS\n", "\n", "On COSMOS2015 we have early HSC y band photometry. To ensure values are the same as for the original run, we take fluxes in this order: COSMOS, HSC-DEEP, HSC-UDEEP." ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "suprime_origin = Table()\n", "suprime_origin.add_column(master_catalogue['help_id'])" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/numpy/core/numeric.py:301: FutureWarning: in the future, full(6, 0) will return an array of dtype('int64')\n", " format(shape, fill_value, array(fill_value).dtype), FutureWarning)\n" ] } ], "source": [ "suprime_stats = Table()\n", "suprime_stats.add_column(Column(data=['g','r','i','z','y', 'n921'], name=\"Band\"))\n", "for col in [\"HSC-UDEEP\", \"HSC-DEEP\", \"COSMOS2015\"]:\n", " suprime_stats.add_column(Column(data=np.full(6, 0), name=\"{}\".format(col)))\n", " suprime_stats.add_column(Column(data=np.full(6, 0), name=\"use {}\".format(col)))\n", " suprime_stats.add_column(Column(data=np.full(6, 0), name=\"{} ap\".format(col)))\n", " suprime_stats.add_column(Column(data=np.full(6, 0), name=\"use {} ap\".format(col)))\n", " " ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "suprime_bands = ['g','r','i','z','y', 'n921'] \n", "for band in suprime_bands:\n", "\n", " # Suprime total flux \n", " has_hsc_udeep = ~np.isnan(master_catalogue['f_hsc-udeep_' + band])\n", " has_hsc_deep = ~np.isnan(master_catalogue['f_hsc-deep_' + band])\n", " if band == 'y':\n", " has_cosmos = ~np.isnan(master_catalogue['f_cosmos-suprime_y'])\n", " elif band != 'y':\n", " has_cosmos = np.full(len(master_catalogue), False, dtype=bool)\n", " \n", " use_cosmos = has_cosmos\n", " use_hsc_udeep = has_hsc_udeep & ~has_cosmos\n", " use_hsc_deep = has_hsc_deep & ~has_hsc_udeep & ~has_cosmos\n", " \n", " \n", " f_suprime = np.full(len(master_catalogue), np.nan)\n", " if band == 'y':\n", " f_suprime[use_cosmos] = master_catalogue['f_cosmos-suprime_y'][use_cosmos]\n", " f_suprime[use_hsc_udeep] = master_catalogue['f_hsc-udeep_' + band][use_hsc_udeep]\n", " f_suprime[use_hsc_deep] = master_catalogue['f_hsc-deep_' + band][use_hsc_deep]\n", " \n", "\n", " ferr_suprime = np.full(len(master_catalogue), np.nan)\n", " if band == 'y':\n", " ferr_suprime[use_cosmos] = master_catalogue['ferr_cosmos-suprime_y'][use_cosmos]\n", " ferr_suprime[use_hsc_udeep] = master_catalogue['ferr_hsc-udeep_' + band][use_hsc_udeep]\n", " ferr_suprime[use_hsc_deep] = master_catalogue['ferr_hsc-deep_' + band][use_hsc_deep]\n", "\n", " \n", " m_suprime = np.full(len(master_catalogue), np.nan)\n", " if band == 'y':\n", " m_suprime[use_cosmos] = master_catalogue['m_cosmos-suprime_y'][use_cosmos]\n", " m_suprime[use_hsc_udeep] = master_catalogue['m_hsc-udeep_' + band][use_hsc_udeep]\n", " m_suprime[use_hsc_deep] = master_catalogue['m_hsc-deep_' + band][use_hsc_deep]\n", "\n", "\n", " merr_suprime = np.full(len(master_catalogue), np.nan)\n", " if band == 'y':\n", " merr_suprime[use_cosmos] = master_catalogue['merr_cosmos-suprime_y'][use_cosmos]\n", " merr_suprime[use_hsc_udeep] = master_catalogue['merr_hsc-udeep_' + band][use_hsc_udeep]\n", " merr_suprime[use_hsc_deep] = master_catalogue['merr_hsc-deep_' + band][use_hsc_deep]\n", "\n", "\n", " flag_suprime = np.full(len(master_catalogue), False, dtype=bool)\n", " if band == 'y':\n", " flag_suprime[use_cosmos] = master_catalogue['flag_cosmos-suprime_y'][use_cosmos]\n", " flag_suprime[use_hsc_udeep] = master_catalogue['flag_hsc-udeep_' + band][use_hsc_udeep]\n", " flag_suprime[use_hsc_deep] = master_catalogue['flag_hsc-deep_' + band][use_hsc_deep]\n", "\n", "\n", " master_catalogue.add_column(Column(data=f_suprime, name=\"f_suprime_\" + band))\n", " master_catalogue.add_column(Column(data=ferr_suprime, name=\"ferr_suprime_\" + band))\n", " master_catalogue.add_column(Column(data=m_suprime, name=\"m_suprime_\" + band))\n", " master_catalogue.add_column(Column(data=merr_suprime, name=\"merr_suprime_\" + band))\n", " master_catalogue.add_column(Column(data=flag_suprime, name=\"flag_suprime_\" + band))\n", "\n", " old_hsc_udeep_columns = ['f_hsc-udeep_' + band,\n", " 'ferr_hsc-udeep_' + band,\n", " 'm_hsc-udeep_' + band, \n", " 'merr_hsc-udeep_' + band,\n", " 'flag_hsc-udeep_' + band]\n", " old_hsc_deep_columns = ['f_hsc-deep_' + band,\n", " 'ferr_hsc-deep_' + band,\n", " 'm_hsc-deep_' + band, \n", " 'merr_hsc-deep_' + band,\n", " 'flag_hsc-deep_' + band]\n", " old_cosmos_columns = ['f_cosmos-suprime_' + band,\n", " 'ferr_cosmos-suprime_' + band,\n", " 'm_cosmos-suprime_' + band, \n", " 'merr_cosmos-suprime_' + band,\n", " 'flag_cosmos-suprime_' + band]\n", " \n", " old_columns = old_hsc_udeep_columns + old_hsc_deep_columns\n", " if band == 'y':\n", " old_columns += old_cosmos_columns\n", " master_catalogue.remove_columns(old_columns)\n", "\n", " origin = np.full(len(master_catalogue), ' ', dtype='Table length=6\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxBandHSC-UDEEPuse HSC-UDEEPHSC-UDEEP apuse HSC-UDEEP apHSC-DEEPuse HSC-DEEPHSC-DEEP apuse HSC-DEEP apCOSMOS2015use COSMOS2015COSMOS2015 apuse COSMOS2015 ap
0g1146131.01146131.01257414.01257414.01643773.0956277.01838222.01044705.00.00.00.00.0
1r1156722.01156722.01268883.01268883.01679055.0989440.01903240.01102607.00.00.00.00.0
2i1160356.01160356.01291883.01291883.01714230.0987298.01953737.01086535.00.00.00.00.0
3z1132842.01132842.01260729.01260729.01701530.0984971.01933534.01081349.00.00.00.00.0
4y1035328.0500551.01157878.0574161.01467985.0798995.01669840.0893700.0661669.0661669.0693726.0693726.0
5n9211088153.01088153.01207243.01207243.0879166.0494988.0996296.0546326.00.00.00.00.0
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "suprime_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "suprime_origin.write(\"{}/cosmos_suprime_fluxes_origins{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VII.b Megacam\n", "\n", "### COSMOS vs CFHT-WIRDS vs CFHTLS\n", "\n", "We take COSMOS over CFHTLS over CFHT-WIRDS" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "megacam_origin = Table()\n", "megacam_origin.add_column(master_catalogue['help_id'])" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/numpy/core/numeric.py:301: FutureWarning: in the future, full(5, 0) will return an array of dtype('int64')\n", " format(shape, fill_value, array(fill_value).dtype), FutureWarning)\n" ] } ], "source": [ "megacam_stats = Table()\n", "megacam_stats.add_column(Column(data=['u','g','r','i','z'], name=\"Band\"))\n", "for col in [\"COSMOS2015\", \"CFHTLS\", \"CFHT-WIRDS\"]:\n", " megacam_stats.add_column(Column(data=np.full(5, 0), name=\"{}\".format(col)))\n", " megacam_stats.add_column(Column(data=np.full(5, 0), name=\"use {}\".format(col)))\n", " megacam_stats.add_column(Column(data=np.full(5, 0), name=\"{} ap\".format(col)))\n", " megacam_stats.add_column(Column(data=np.full(5, 0), name=\"use {} ap\".format(col)))" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "megacam_bands = ['u','g','r','i','z'] \n", "for band in megacam_bands:\n", "\n", " # megacam total flux \n", " has_cfhtls = ~np.isnan(master_catalogue['f_megacam_' + band])\n", " has_wirds = ~np.isnan(master_catalogue['f_wirds_' + band])\n", " if band == 'u':\n", " has_cosmos = ~np.isnan(master_catalogue['f_cosmos-megacam_' + band])\n", " elif band != 'u':\n", " has_cosmos = np.full(len(master_catalogue), False, dtype=bool)\n", " \n", " \n", " use_cosmos = has_cosmos\n", " use_cfhtls = has_cfhtls & ~has_cosmos\n", " use_wirds = has_wirds & ~has_cfhtls & ~has_cosmos\n", " \n", " master_catalogue['f_megacam_' + band][use_wirds] = master_catalogue['f_wirds_' + band][use_wirds]\n", " master_catalogue['ferr_megacam_' + band][use_wirds] = master_catalogue['ferr_wirds_' + band][use_wirds]\n", " master_catalogue['m_megacam_' + band][use_wirds] = master_catalogue['m_wirds_' + band][use_wirds]\n", " master_catalogue['merr_megacam_' + band][use_wirds] = master_catalogue['merr_wirds_' + band][use_wirds]\n", " master_catalogue['flag_megacam_' + band][use_wirds] = master_catalogue['flag_wirds_' + band][use_wirds]\n", "\n", "\n", " master_catalogue.remove_columns(['f_wirds_' + band,\n", " 'ferr_wirds_' + band,\n", " 'm_wirds_' + band, \n", " 'merr_wirds_' + band,\n", " 'flag_wirds_' + band])\n", " \n", " if band == 'u':\n", " master_catalogue['f_megacam_' + band][use_cosmos] = master_catalogue['f_cosmos-megacam_' + band][use_cosmos]\n", " master_catalogue['ferr_megacam_' + band][use_cosmos] = master_catalogue['ferr_cosmos-megacam_' + band][use_cosmos]\n", " master_catalogue['m_megacam_' + band][use_cosmos] = master_catalogue['m_cosmos-megacam_' + band][use_cosmos]\n", " master_catalogue['merr_megacam_' + band][use_cosmos] = master_catalogue['merr_cosmos-megacam_' + band][use_cosmos]\n", " master_catalogue['flag_megacam_' + band][use_cosmos] = master_catalogue['flag_cosmos-megacam_' + band][use_cosmos]\n", " \n", " master_catalogue.remove_columns(['f_cosmos-megacam_' + band,\n", " 'ferr_cosmos-megacam_' + band,\n", " 'm_cosmos-megacam_' + band, \n", " 'merr_cosmos-megacam_' + band,\n", " 'flag_cosmos-megacam_' + band])\n", " \n", " origin = np.full(len(master_catalogue), ' ', dtype='Table length=5\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxBandCOSMOS2015use COSMOS2015COSMOS2015 apuse COSMOS2015 apCFHTLSuse CFHTLSCFHTLS apuse CFHTLS apCFHT-WIRDSuse CFHT-WIRDSCFHT-WIRDS apuse CFHT-WIRDS ap
0u640825.0640825.0688187.0688187.0455496.0183226.0459328.0182038.0156347.017152.0157331.016078.0
1g0.00.00.00.0516573.0516573.0518549.0518549.0164107.031365.0163978.030985.0
2r0.00.00.00.0526336.0526336.0529160.0529160.0165217.031524.0165010.031136.0
3i0.00.00.00.0520668.0520668.0523948.0523948.0165648.031737.0165316.031298.0
4z0.00.00.00.0474766.0474766.0480581.0480581.0164234.030996.0164359.030824.0
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "megacam_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "megacam_origin.write(\"{}/cosmos_megacam_fluxes_origins{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## WIRcam\n", "\n", "### COSMOS vs WIRDS\n", "\n", "We take COSMOS over WIRDS to ensure values are the same as for the original run" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "wircam_origin = Table()\n", "wircam_origin.add_column(master_catalogue['help_id'])" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/numpy/core/numeric.py:301: FutureWarning: in the future, full(2, 0) will return an array of dtype('int64')\n", " format(shape, fill_value, array(fill_value).dtype), FutureWarning)\n" ] } ], "source": [ "wircam_stats = Table()\n", "wircam_stats.add_column(Column(data=['h','ks'], name=\"Band\"))\n", "for col in [\"CFHT-WIRDS\", \"COSMOS2015\"]:\n", " wircam_stats.add_column(Column(data=np.full(2, 0), name=\"{}\".format(col)))\n", " wircam_stats.add_column(Column(data=np.full(2, 0), name=\"use {}\".format(col)))\n", " wircam_stats.add_column(Column(data=np.full(2, 0), name=\"{} ap\".format(col)))\n", " wircam_stats.add_column(Column(data=np.full(2, 0), name=\"use {} ap\".format(col)))\n", " " ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "wircam_bands = ['h','ks'] \n", "for band in wircam_bands:\n", "\n", " # wircam total flux \n", " has_wirds = ~np.isnan(master_catalogue['f_wirds_' + band.rstrip('s')])\n", "\n", " has_cosmos = ~np.isnan(master_catalogue['f_cosmos-wircam_' + band])\n", "\n", " \n", " use_cosmos = has_cosmos\n", " use_wirds = has_wirds & ~has_cosmos\n", "\n", " \n", " \n", " f_wircam = np.full(len(master_catalogue), np.nan)\n", " f_wircam[use_cosmos] = master_catalogue['f_cosmos-wircam_' + band][use_cosmos]\n", " f_wircam[use_wirds] = master_catalogue['f_wirds_' + band.rstrip('s').rstrip('s')][use_wirds]\n", "\n", " \n", "\n", " ferr_wircam = np.full(len(master_catalogue), np.nan)\n", " ferr_wircam[use_cosmos] = master_catalogue['ferr_cosmos-wircam_' + band][use_cosmos]\n", " ferr_wircam[use_wirds] = master_catalogue['ferr_wirds_' + band.rstrip('s')][use_wirds]\n", "\n", "\n", " \n", " m_wircam = np.full(len(master_catalogue), np.nan)\n", " m_wircam[use_cosmos] = master_catalogue['m_cosmos-wircam_' + band][use_cosmos]\n", " m_wircam[use_wirds] = master_catalogue['m_wirds_' + band.rstrip('s')][use_wirds]\n", "\n", "\n", " merr_wircam = np.full(len(master_catalogue), np.nan)\n", " merr_wircam[use_cosmos] = master_catalogue['merr_cosmos-wircam_' + band][use_cosmos]\n", " merr_wircam[use_wirds] = master_catalogue['merr_wirds_' + band.rstrip('s')][use_wirds]\n", "\n", "\n", "\n", " flag_wircam = np.full(len(master_catalogue), False, dtype=bool)\n", " flag_wircam[use_cosmos] = master_catalogue['flag_cosmos-wircam_' + band][use_cosmos]\n", " flag_wircam[use_wirds] = master_catalogue['flag_wirds_' + band.rstrip('s')][use_wirds]\n", "\n", "\n", "\n", " master_catalogue.add_column(Column(data=f_wircam, name=\"f_wircam_\" + band))\n", " master_catalogue.add_column(Column(data=ferr_wircam, name=\"ferr_wircam_\" + band))\n", " master_catalogue.add_column(Column(data=m_wircam, name=\"m_wircam_\" + band))\n", " master_catalogue.add_column(Column(data=merr_wircam, name=\"merr_wircam_\" + band))\n", " master_catalogue.add_column(Column(data=flag_wircam, name=\"flag_wircam_\" + band))\n", "\n", " old_wirds_columns = ['f_wirds_' + band.rstrip('s'),\n", " 'ferr_wirds_' + band.rstrip('s'),\n", " 'm_wirds_' + band.rstrip('s'), \n", " 'merr_wirds_' + band.rstrip('s'),\n", " 'flag_wirds_' + band.rstrip('s')]\n", "\n", " old_cosmos_columns = ['f_cosmos-wircam_' + band,\n", " 'ferr_cosmos-wircam_' + band,\n", " 'm_cosmos-wircam_' + band, \n", " 'merr_cosmos-wircam_' + band,\n", " 'flag_cosmos-wircam_' + band]\n", " \n", " old_columns = old_wirds_columns + old_cosmos_columns\n", " master_catalogue.remove_columns(old_columns)\n", "\n", " origin = np.full(len(master_catalogue), ' ', dtype='Table length=2\n", "\n", "\n", "\n", "\n", "
idxBandCFHT-WIRDSuse CFHT-WIRDSCFHT-WIRDS apuse CFHT-WIRDS apCOSMOS2015use COSMOS2015COSMOS2015 apuse COSMOS2015 ap
0h164175.032620.0165228.033198.0589027.0589027.0684053.0684053.0
1ks169103.035504.0170077.036333.0594551.0594551.0681987.0681987.0
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wircam_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "wircam_origin.write(\"{}/cosmos_wircam_fluxes_origins{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Final renaming\n", "\n", "We rename some columns in line with HELP filter naming standards" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "renaming = OrderedDict({\n", " '_wirds_j':'_wircam_j',\n", " #'_wirds_h': '_wircam_h', #These two now merged with COSMOS\n", " #'_wirds_k': '_wircam_ks',\n", " '_kids_': '_omegacam_',\n", " '_cosmos-suprime_': '_suprime_',\n", " '_cosmos-vista_':'_vista_',\n", " '_cosmos-irac_':'_irac_',\n", " '_candels_f140w':'_wfc3_f140w',\n", " '_candels_f160w':'_wfc3_f160w',\n", " '_candels_f125w':'_wfc3_f125w',\n", " '_candels_f606w': '_acs_f606w',\n", " '_candels_f814w':'_acs_f814w',\n", "})\n", "\n", "\n", "for col in master_catalogue.colnames:\n", " for rename_col in list(renaming):\n", " if rename_col in col:\n", " master_catalogue.rename_column(col, col.replace(rename_col, renaming[rename_col])) " ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VII.a Wavelength domain coverage\n", "\n", "We add a binary `flag_optnir_obs` indicating that a source was observed in a given wavelength domain:\n", "\n", "- 1 for observation in optical;\n", "- 2 for observation in near-infrared;\n", "- 4 for observation in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source observed both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: The observation flag is based on the creation of multi-order coverage maps from the catalogues, this may not be accurate, especially on the edges of the coverage.*\n", "\n", "*Note 2: Being on the observation coverage does not mean having fluxes in that wavelength domain. For sources observed in one domain but having no flux in it, one must take into consideration de different depths in the catalogue we are using.*" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "candels_moc = MOC(filename=\"../../dmu0/dmu0_CANDELS-3D-HST/data/CANDELS-3D-HST_COSMOS_MOC.fits\")\n", "cfhtls_moc = MOC(filename=\"../../dmu0/dmu0_CFHTLS/data/CFHTLS-DEEP_COSMOS_MOC.fits\")\n", "decals_moc = MOC(filename=\"../../dmu0/dmu0_DECaLS/data/DECaLS_COSMOS_MOC.fits\")\n", "hsc_udeep_moc = MOC(filename=\"../../dmu0/dmu0_HSC/data/HSC-PDR1_deep_COSMOS_MOC.fits\")\n", "hsc_deep_moc = MOC(filename=\"../../dmu0/dmu0_HSC/data/HSC-PDR1_uDeep_COSMOS_MOC.fits\")\n", "kids_moc = MOC(filename=\"../../dmu0/dmu0_KIDS/data/KIDS-DR3_COSMOS_MOC.fits\")\n", "ps1_moc = MOC(filename=\"../../dmu0/dmu0_PanSTARRS1-3SS/data/PanSTARRS1-3SS_COSMOS_MOC.fits\")\n", "las_moc = MOC(filename=\"../../dmu0/dmu0_UKIDSS-LAS/data/UKIDSS-LAS_COSMOS_MOC.fits\")\n", "wirds_moc = MOC(filename=\"../../dmu0/dmu0_CFHT-WIRDS/data/COSMOS_Ks-priors_MOC.fits\")\n", "\n" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "was_observed_optical = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " candels_moc + \n", " cfhtls_moc + \n", " decals_moc + \n", " hsc_udeep_moc + \n", " hsc_deep_moc + \n", " kids_moc +\n", " ps1_moc) \n", "\n", "was_observed_nir = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " las_moc + wirds_moc\n", ")\n", "\n", "was_observed_mir = np.zeros(len(master_catalogue), dtype=bool)\n", "\n", "#was_observed_mir = inMoc(\n", "# master_catalogue['ra'], master_catalogue['dec'], \n", "#)" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " Column(\n", " 1 * was_observed_optical + 2 * was_observed_nir + 4 * was_observed_mir,\n", " name=\"flag_optnir_obs\")\n", ")" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VII.b Wavelength domain detection\n", "\n", "We add a binary `flag_optnir_det` indicating that a source was detected in a given wavelength domain:\n", "\n", "- 1 for detection in optical;\n", "- 2 for detection in near-infrared;\n", "- 4 for detection in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source detected both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: We use the total flux columns to know if the source has flux, in some catalogues, we may have aperture flux and no total flux.*\n", "\n", "To get rid of artefacts (chip edges, star flares, etc.) we consider that a source is detected in one wavelength domain when it has a flux value in **at least two bands**. That means that good sources will be excluded from this flag when they are on the coverage of only one band." ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "nb_optical_flux = (\n", " 1 * ~np.isnan(master_catalogue['f_megacam_u']) +\n", " 1 * ~np.isnan(master_catalogue['f_megacam_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_megacam_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_megacam_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_megacam_z']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_suprime_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_z']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_y']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_n921']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_gpc1_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_z']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_y']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_decam_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_decam_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_decam_z']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_omegacam_u']) +\n", " 1 * ~np.isnan(master_catalogue['f_omegacam_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_omegacam_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_omegacam_i']) \n", ")\n", "\n", "nb_nir_flux = (\n", " \n", " 1 * ~np.isnan(master_catalogue['f_vista_j']) +\n", " 1 * ~np.isnan(master_catalogue['f_vista_h']) +\n", " 1 * ~np.isnan(master_catalogue['f_vista_ks']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_wircam_j']) +\n", " 1 * ~np.isnan(master_catalogue['f_wircam_h']) +\n", " 1 * ~np.isnan(master_catalogue['f_wircam_ks']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_ukidss_y']) +\n", " 1 * ~np.isnan(master_catalogue['f_ukidss_j']) +\n", " 1 * ~np.isnan(master_catalogue['f_ukidss_h']) +\n", " 1 * ~np.isnan(master_catalogue['f_ukidss_k'])\n", ")\n", "\n", "nb_mir_flux = np.zeros(len(master_catalogue), dtype=bool)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "has_optical_flux = nb_optical_flux >= 2\n", "has_nir_flux = nb_nir_flux >= 2\n", "has_mir_flux = nb_mir_flux >= 2\n", "\n", "master_catalogue.add_column(\n", " Column(\n", " 1 * has_optical_flux + 2 * has_nir_flux + 4 * has_mir_flux,\n", " name=\"flag_optnir_det\")\n", ")" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VIII - Cross-identification table\n", "\n", "We are producing a table associating to each HELP identifier, the identifiers of the sources in the pristine catalogue. This can be used to easily get additional information from them." ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "64 master list rows had multiple associations.\n" ] } ], "source": [ "\n", "#\n", "# Addind SDSS ids\n", "#\n", "sdss = Table.read(\"../../dmu0/dmu0_SDSS-DR13/data/SDSS-DR13_COSMOS.fits\")['objID', 'ra', 'dec']\n", "sdss_coords = SkyCoord(sdss['ra'] * u.deg, sdss['dec'] * u.deg)\n", "idx_ml, d2d, _ = sdss_coords.match_to_catalog_sky(SkyCoord(master_catalogue['ra'], master_catalogue['dec']))\n", "idx_sdss = np.arange(len(sdss))\n", "\n", "# Limit the cross-match to 1 arcsec\n", "mask = d2d <= 1. * u.arcsec\n", "idx_ml = idx_ml[mask]\n", "idx_sdss = idx_sdss[mask]\n", "d2d = d2d[mask]\n", "nb_orig_matches = len(idx_ml)\n", "\n", "# In case of multiple associations of one master list object to an SDSS object, we keep only the\n", "# association to the nearest one.\n", "sort_idx = np.argsort(d2d)\n", "idx_ml = idx_ml[sort_idx]\n", "idx_sdss = idx_sdss[sort_idx]\n", "_, unique_idx = np.unique(idx_ml, return_index=True)\n", "idx_ml = idx_ml[unique_idx]\n", "idx_sdss = idx_sdss[unique_idx]\n", "print(\"{} master list rows had multiple associations.\".format(nb_orig_matches - len(idx_ml)))\n", "\n", "# Adding the ObjID to the master list\n", "master_catalogue.add_column(Column(data=np.full(len(master_catalogue), -1, dtype='>i8'), name=\"sdss_id\"))\n", "master_catalogue['sdss_id'][idx_ml] = sdss['objID'][idx_sdss]" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['help_id', 'cosmos_id', 'candels_id', 'cfhtls_id', 'decals_id', 'hsc-udeep_id', 'hsc-deep_id', 'kids_id', 'las_id', 'wirds_id', 'ps1_id', 'specz_id', 'sdss_id']\n" ] } ], "source": [ "id_names = []\n", "for col in master_catalogue.colnames:\n", " if '_id' in col:\n", " id_names += [col]\n", " if '_intid' in col:\n", " id_names += [col]\n", " \n", "print(id_names)" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue[id_names].write(\n", " \"{}/master_list_cross_ident_cosmos{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)\n", "id_names.remove('help_id')\n", "id_names.remove('old_help_id')\n", "master_catalogue.remove_columns(id_names)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## IX - Adding HEALPix index\n", "\n", "We are adding a column with a HEALPix index at order 13 associated with each source." ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(\n", " data=coords_to_hpidx(master_catalogue['ra'], master_catalogue['dec'], order=13),\n", " name=\"hp_idx\"\n", "))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## IX - Saving the catalogue" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "columns = [\"help_id\", \"old_help_id\", \"field\", \"ra\", \"dec\", \"hp_idx\"]\n", "\n", "bands = [column[5:] for column in master_catalogue.colnames if 'f_ap' in column]\n", "for band in bands:\n", " columns += [\"f_ap_{}\".format(band), \"ferr_ap_{}\".format(band),\n", " \"m_ap_{}\".format(band), \"merr_ap_{}\".format(band),\n", " \"f_{}\".format(band), \"ferr_{}\".format(band),\n", " \"m_{}\".format(band), \"merr_{}\".format(band),\n", " \"flag_{}\".format(band)] \n", " \n", "# columns += ['f_wfc3_f125w', 'ferr_wfc3_f125w', 'm_wfc3_f125w', 'merr_wfc3_f125w', 'flag_wfc3_f125w',\n", "# 'f_acs_f606w', 'ferr_acs_f606w', 'm_acs_f606w', 'merr_acs_f606w', 'flag_acs_f606w',\n", "# 'f_acs_f814w', 'ferr_acs_f814w', 'm_acs_f814w', 'merr_acs_f814w', 'flag_acs_f814w'\n", "# ]\n", "\n", "for tot_band in ['wfc3_f125w', 'acs_f606w', 'acs_f814w', 'irac_i1', 'irac_i2', 'irac_i3', 'irac_i4']:\n", " columns += ['f_' + tot_band,'ferr_' + tot_band,'m_' + tot_band,'merr_' + tot_band,'flag_' + tot_band,]\n", " \n", "columns += [\"stellarity\", \"stellarity_origin\", \"flag_cleaned\", \n", " \"flag_merged\", \"flag_gaia\", \"flag_optnir_obs\", \"flag_optnir_det\", \"ebv\",'zspec_association_flag', 'zspec_qual', 'zspec']" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Missing columns: set()\n" ] } ], "source": [ "# We check for columns in the master catalogue that we will not save to disk.\n", "print(\"Missing columns: {}\".format(set(master_catalogue.colnames) - set(columns)))" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue[columns].write(\"{}/master_catalogue_cosmos{}.fits\".format(OUT_DIR, SUFFIX), overwrite = True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }