{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# COSMOS master catalogue\n", "\n", "This notebook presents the merge of the various pristine catalogues to produce HELP mater catalogue on COSMOS." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "017bb1e (Mon Jun 18 14:58:59 2018 +0100)\n", "This notebook was executed on: \n", "2019-04-02 16:36:15.244738\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n", "import datetime\n", "print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/pyenv/versions/3.7.2/lib/python3.7/site-packages/matplotlib/__init__.py:855: MatplotlibDeprecationWarning: \n", "examples.directory is deprecated; in the future, examples will be found relative to the 'datapath' directory.\n", " \"found relative to the 'datapath' directory.\".format(key))\n", "/opt/pyenv/versions/3.7.2/lib/python3.7/site-packages/matplotlib/__init__.py:846: MatplotlibDeprecationWarning: \n", "The text.latex.unicode rcparam was deprecated in Matplotlib 2.2 and will be removed in 3.1.\n", " \"2.2\", name=key, obj_type=\"rcparam\", addendum=addendum)\n", "/opt/pyenv/versions/3.7.2/lib/python3.7/site-packages/seaborn/apionly.py:9: UserWarning: As seaborn no longer sets a default style on import, the seaborn.apionly module is deprecated. It will be removed in a future version.\n", " warnings.warn(msg, UserWarning)\n" ] } ], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "from collections import OrderedDict\n", "import os\n", "import time\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table\n", "import numpy as np\n", "from pymoc import MOC\n", "\n", "from herschelhelp_internal.masterlist import merge_catalogues, nb_merge_dist_plot, specz_merge\n", "from herschelhelp_internal.utils import coords_to_hpidx, ebv, gen_help_id, inMoc" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "SUFFIX = os.environ.get('SUFFIX', time.strftime(\"_%Y%m%d\"))\n", "\n", "try:\n", " os.makedirs(OUT_DIR)\n", "except FileExistsError:\n", " pass" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## I - Reading the prepared pristine catalogues" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#COSMOS was originally run with the official LAigle et al 2015 catalogue \n", "#so all those ids and photometry values must be preserved\n", "cosmos2015 = Table.read(\"{}/COSMOS2015_HELP.fits\".format(TMP_DIR))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "candels = Table.read(\"{}/CANDELS.fits\".format(TMP_DIR))\n", "cfhtls = Table.read(\"{}/CFHTLS.fits\".format(TMP_DIR))\n", "decals = Table.read(\"{}/DECaLS.fits\".format(TMP_DIR))\n", "hsc_deep = Table.read(\"{}/HSC-DEEP.fits\".format(TMP_DIR))\n", "hsc_udeep = Table.read(\"{}/HSC-UDEEP.fits\".format(TMP_DIR))\n", "kids = Table.read(\"{}/KIDS.fits\".format(TMP_DIR))\n", "ps1 = Table.read(\"{}/PS1.fits\".format(TMP_DIR))\n", "las = Table.read(\"{}/UKIDSS-LAS.fits\".format(TMP_DIR))\n", "wirds = Table.read(\"{}/CFHT-WIRDS.fits\".format(TMP_DIR))\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## II - Merging tables\n", "\n", "We first merge the optical catalogues and then add the infrared ones: CANDELS, CFHTLS, DECaLS, HSC, KIDS, PanSTARRS, UKIDSS-LAS, and CFHT-WIRDS.\n", "\n", "At every step, we look at the distribution of the distances separating the sources from one catalogue to the other (within a maximum radius) to determine the best cross-matching radius." ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### COSMOS 2015" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue = cosmos2015\n", "master_catalogue['cosmos_ra'].name = 'ra'\n", "master_catalogue['cosmos_dec'].name = 'dec'" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add CANDELS" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4XGeZ9/Hvrd6LVdwkWe4tsR1b6c0QAg6EhKWFQMIuCxhYetld9oUFFvbaC3Z5YV+WULKQpSwhJKGlEloaduxIjuMeF8lFsmyrN8uy2v3+MWNHkWVrbI000tHvc11zZeacM+fcE0u/efSc8zzH3B0REQmWuFgXICIi0adwFxEJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAFK4i4gEkMJdRCSAFO4iIgGUEKsD5+fne2lpaawOLyIyIW3atKnB3QuG2y5m4V5aWkpFRUWsDi8iMiGZ2cFIthu2W8bM7jGzOjPbfpb17zKzrWa2zczWm9ny8y1WRESiK5I+9x8Ba86xfj9wvbtfDHwFuDsKdYmIyAgM2y3j7s+YWek51q8f8HIDUDTyskREZCSifbXMe4HHz7bSzNaaWYWZVdTX10f50CIickrUwt3MXkUo3P/xbNu4+93uXubuZQUFw57sFRGRCxSVq2XMbBnwA+Amd2+Mxj5FROTCjbjlbmYlwK+AO919z8hLEhGRkRq25W5mPwdWA/lmVgN8EUgEcPfvAV8A8oDvmBlAr7uXjVbBIiIyvEiulrl9mPXvA94XtYpERGTEYjZCdSK4d+OhIZe/8/KSMa5EROT8aOIwEZEAUriLiASQwl1EJIAU7iIiAaRwFxEJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAFK4i4gEkMJdRCSAFO4iIgGkcBcRCSCFu4hIACncRUQCSOEuIhJACncRkQBSuIuIBJDCXUQkgBTuIiIBpHAXEQkghbuISAAp3EVEAkjhLiISQAp3EZEAGjbczeweM6szs+1nWW9m9i0z22dmW81sZfTLFBGR8xFJy/1HwJpzrL8JmB9+rAW+O/KyRERkJIYNd3d/Bmg6xya3Aj/xkA1AjplNj1aBIiJy/qLR5z4TqB7wuia8TEREYmRMT6ia2VozqzCzivr6+rE8tIjIpBKNcD8MFA94XRRedgZ3v9vdy9y9rKCgIAqHFhGRoUQj3B8C3h2+auYKoNXdj0RhvyIicoEShtvAzH4OrAbyzawG+CKQCODu3wMeA14P7AM6gfeMVrEiIhKZYcPd3W8fZr0DH45aRSIiMmIaoSoiEkAKdxGRAFK4i4gEkMJdRCSAFO4iIgGkcBcRCSCFu4hIACncRUQCSOEuIhJACncRkQBSuIuIBJDCXUQkgBTuIiIBpHAXEQkghbuISAAp3EVEAkjhLiISQAp3EZEAUriLiASQwl1EJIAU7iIiAaRwFxEJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAIoo3M1sjZntNrN9ZvbZIdaXmNmTZrbZzLaa2eujX6qIiERq2HA3s3jgLuAmYAlwu5ktGbTZ54H73f0S4B3Ad6JdqIiIRC6SlvtlwD53r3L3buA+4NZB2ziQFX6eDdRGr0QRETlfCRFsMxOoHvC6Brh80DZfAn5vZh8F0oHXRKU6ERG5INE6oXo78CN3LwJeD/zUzM7Yt5mtNbMKM6uor6+P0qFFRGSwSML9MFA84HVReNlA7wXuB3D354AUIH/wjtz9bncvc/eygoKCC6tYRESGFUm4lwPzzWy2mSUROmH60KBtDgE3AJjZYkLhrqa5iEiMDBvu7t4LfAR4AthF6KqYHWb2ZTO7JbzZp4H3m9kW4OfA37i7j1bRIiJybpGcUMXdHwMeG7TsCwOe7wSujm5pIiJyoTRCVUQkgBTuIiIBpHAXEQkghbuISAAp3EVEAkjhLiISQAp3EZEAUriLiASQwl1EJIAU7iIiAaRwFxEJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAFK4i4gEkMJdRCSAFO4iIgGkcBcRCSCFu4hIACncRUQCSOEuIhJACncRkQBSuIuIBJDCXUQkgBTuIiIBpHAXEQmgiMLdzNaY2W4z22dmnz3LNm83s51mtsPM7o1umSIicj4ShtvAzOKBu4AbgRqg3MwecvedA7aZD/wTcLW7N5tZ4WgVLCIiw4uk5X4ZsM/dq9y9G7gPuHXQNu8H7nL3ZgB3r4tumSIicj4iCfeZQPWA1zXhZQMtABaY2Toz22Bma6JVoIiInL9hu2XOYz/zgdVAEfCMmV3s7i0DNzKztcBagJKSkigdWkREBouk5X4YKB7wuii8bKAa4CF373H3/cAeQmH/Cu5+t7uXuXtZQUHBhdYsIiLDiCTcy4H5ZjbbzJKAdwAPDdrmN4Ra7ZhZPqFumqoo1ikiIudh2HB3917gI8ATwC7gfnffYWZfNrNbwps9ATSa2U7gSeDv3b1xtIoWEZFzi6jP3d0fAx4btOwLA5478KnwQ0REYkwjVEVEAkjhLiISQAp3EZEAUriLiASQwl1EJIAU7iIiAaRwFxEJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAFK4i4gEkMJdRCSAFO4iIgGkcBcRCSCFu4hIACncRUQCSOEuIhJACvfzsHF/I/eVH6Knrz/WpYiInFNE91AVqG05wcNbaul3+OD/buKGRVPP2Oadl5fEoDIRkTOp5R6B3r5+HthUTXpyAkumZ/HkS3Ucbj4R67JERM5K4R6BP+6q41jbSd58yUzesrKIjOQE7t9Ure4ZERm3FO7DONh4nGf31lM2K5eF07JITYrnzSuLqG8/yR92Hot1eSIiQ1K4D+PJ3XVkpiTwhounn162YGomZbNyWV/ZwInuvhhWJyIyNIX7OfT1OwcaO1k8PYvkxPhXrFtRkkO/w/6G4zGqTkTk7BTu51DbcoLu3n7mFGScsa4kN43EeKOyviMGlYmInFtE4W5ma8xst5ntM7PPnmO7t5iZm1lZ9EqMnVOt8tn56WesS4iPozQvnX0KdxEZh4YNdzOLB+4CbgKWALeb2ZIhtssEPg5sjHaRsVLV0EFhZjIZyUMPB5hXmEF9+0laT/SMcWUiIucWScv9MmCfu1e5ezdwH3DrENt9Bfga0BXF+mKmt6+fA42dQ7baT5kb7q6pUutdRMaZSMJ9JlA94HVNeNlpZrYSKHb3R6NYW0xtr22ju7f/nOE+LTuFtKR49tUp3EVkfBnxCVUziwO+AXw6gm3XmlmFmVXU19eP9NCjakNVIzB0f/spcWbMLcigsr4Ddx+r0kREhhVJuB8Gige8LgovOyUTuAh4yswOAFcADw11UtXd73b3MncvKygouPCqx8CGqkYKMpPJTEk853ZzCzJo6+qlvuPkGFUmIjK8SMK9HJhvZrPNLAl4B/DQqZXu3uru+e5e6u6lwAbgFnevGJWKx0BvXz/l+5uYc45W+ynzCkP97pX1ut5dRMaPYcPd3XuBjwBPALuA+919h5l92cxuGe0CY2F7bRvHu/vO2SVzypT0JHLTEqlUv7uIjCMRTfnr7o8Bjw1a9oWzbLt65GXF1sYI+tsHmluQwfbaVvr6nfg4G83SREQiohGqQ9i4v4m5BenD9refMjs/na6efl01IyLjhsJ9CNsPt7K8OCfi7WfmpgKwtaZltEoSETkvCvdBGjpOUtd+kiXTsyJ+T35GMkkJcWw73DqKlYmIRE7hPsiuI20ALJkRebjHmTEzJ5UtNQp3ERkfFO6D7KwNh/t5tNwBinJS2XUkNKpVRCTWFO6D7DzSxozsFHLSks7rfTNzU+nu7WfPsfZRqkxEJHIK90F2HWk7ry6ZU2bmhE6qqt9dRMaDiK5znyy6evqorD/O65ZOO+/3TklPIislga01rdx+2SgUJyJRc+/GQ0Muf+flJWNcyehRy32APcfa6ev38+5vBzAzlhXl6HJIERkXFO4DXMiVMgMtK8pm99F2unp002wRiS11ywyws7aN9KR4inPTLuj9y4qy6e13XjrazorzGAQlIqPjbN0vk4HCfYBdR9pZPD2LuAucH+biolCgb6tpUbiLRIm7c7Sti311HdxfXk3HyV6Od/fR2d1HQpyRnBDHqlm5XDwzm6vn55MV4bQhQadwD+vvd3YeaePNK2cOv/FZzMhOIS89ia0azCRywdq7evj6E7s51NRJddMJalo66ep5efyIAWlJ8aQmJdDvTldPH+UHmuh3iDOYlZfOlXPyuGhmduw+xDigcA+raT5Bx8leFl/AydRTzIyLi7IV7iLnoa/febG6mad31/OXfQ1sqQnNsGqEbmW5bGYOU7NTKMxMpiB8w/o4szP2caipkz3H2tlR28q9zx/iopnZ3LJ8xllvcB90k/NTD2HnkQsbmTrYsqIcntmzl87uXtKS9L9XZCjtXT08vaeeP+48xtN76mnu7CHOQr8/H7p+Lid6+ijKTSU5IT6i/cXHGbPz05mdn85rFk/l2b31/OmlOqrqO3h7WTELpmaO8icaf5Q+YTuPtBFnsHDayH4Ils3Mpt9hR20bl5ZOiVJ1IhNfbcsJ/rTrGL/feYwNVY309DlpSfEsnJrJ65ZmMr8wk9SkyML8XOLjjNULC1k8PYv7K6r52caDvP/aORRd4IUSE5XCPWxnbRtzCjJISRzZD9ey4lA/35bqFoW7TGr9/c722lb+tKuOByqqqW3tAiAvPYkr5uSxZHoWxVPSzuhiiZapWSn8zVWlfPfpSn664SB/t3oe2amT52Srwj1s15E2Vs7KHfF+CjNTmJGdohkiZVJq6DjJun0NPLu3gad219PQcRIzKM5NY83SaSyanklhZsqY1ZOZksi7ryzl+09X8pPnDrD2ujkRd/VMdAp3oLWzh8MtJ7jzyllR2d/y4hy2VGukqgRf0/Funt/fxIaqRjbubzo9EDA1MZ55hRm8amEBC6Zmkh7Dk5rTslJ4x6Ul/OS5A/z2xVreXlYcs1rGksKd6J1MPWV5cQ6Pbz9K0/FupqSf3+ySIuNVT18/u4+282J1C5sPtfDCoWb2NxwHICUxdK35jUumMr8wgxk5qaPW3XIhFk7LZPXCAp7cXc8Vs6dQkhfZ/ZEnMoU7L4f7SC6DHGh5eDDT1poWVi8sjMo+RcZSX79TVd/B95+p4nDzCWqaOznS2kVvvwOQn5HEJSW53HZpMZeW5nLxzBySEuLG9YjQ6xYUUHGgmUe3HeGD18/FxtGXz2hQuBM6mXrqGtpouLgoGzPYUt2qcJdxzz10jfiWmla2Vrew9XArOw63crw7NEdSUnwc03NSuGJOHkW5qRTlppGblng6HHcf7WD30fF/c/jkhHhuXDKVX20+zLbDrSwrCvYocoU7oZZ7tFrtABnJCcwryGCLZoiUcails5vN1S28eKiFF6tb2FLTQktnDwBJCXEsnZHF28qKuWhmNtVNnRRkJo+rLpaRWDkrl/WVjTyx4yiLp2eRGB/cuRMnfbh39/azr66d1QsLorrf5cU5PLW7DncP/J9/Mn719Tt7jrWz6WAzmw+18PSeOho6uoHQMP7CrGTmFmRQnJtGUW4qU7NSiA/PrdTd28/UrLG7smUsxJnx+ounc8+6/TxX2ch1C6L7ez+eTPpw31vXTk/fhc3hfi7Li7J5cFMNh1tOTLrBExI7bV09bD7UwqaDzbxwsJkXq1voONkLhK4vL8xMZmVJLsVT0ijKSSV5hOM6JqJ5hRksmJrBM3vruXJuXmBb75M+3HcdCd3z9ELncD+b5eFZIbdUtyrcZVS4OzXNJ6g42ET5gVCY7z7Wjjun52VZOiOLkilplExJY0p6kv6KDLt2fgE//Mt+tlS3UBbQwYaTPtx31raRmhhPaZQvjVo0LYuk+Di21rTwhmXTo7pvmZz6+509de2U729i4/4myg80caztJBA6z3NJSQ43XTSdVbNy2XusfVK2yiM1Jz+daVkprK9sZNWs3EB+6UUU7ma2Bvh/QDzwA3f/6qD1nwLeB/QC9cDfuvvBKNc6KnYeaWXR9MzT/YzRkpQQx+IZWbyowUxygdyd3cfaea6ykQcqatjfcJwT4bt8ZaUkUJqfzmWz8yjNS2NqVsrpk56HmjoV7MMwM66cm8evNx9mf8Nx5hRkxLqkqBs23M0sHrgLuBGoAcrN7CF33zlgs81Ambt3mtmHgH8HbhuNgqPJ3dlZ28bNy2eMyv5XFGXzwKYa+vo96l8eEky1LSf4y94G/rKvgfWVjTR0hFrmuWmJLJmexez8dErz019xKaJcmBXFOTyx4yjrKxsnZ7gDlwH73L0KwMzuA24FToe7uz85YPsNwB3RLHK0HG45QVtXb9RPpp6yvDiHHz93kL117SyaNjrHkImt42QvG6saeXZvA8/sraeqPjTiMyM5gXmFGVy/IJ85BRnkpmmkc7QlxsdxaekUntlTH8jR5JGE+0ygesDrGuDyc2z/XuDxoVaY2VpgLUBJSUmEJY6enbUjuyH2cE7NCrmhslHhLgD09vWzpaaVdftCrfMXDjbT2++kJMZx2ew8Fk3NZF5hJlOzktUyHwNXzMnj2b31bKhq5PUXB+vcWFRPqJrZHUAZcP1Q6939buBugLKyMo/msS/EziNtmMGiEc7hfjbFU9IonpLKuspG/ubq2aNyDBnf+vtD/ebrKxt5rrKBjVVNtJ/sxYDpOSlcNTef+VMzKJmSFthL8saz7NREls7IpuJgEzcumRrrcqIqknA/DAycRq0ovOwVzOw1wOeA6939ZHTKG107a9uYnZ8+qndMunpuPo9uO0JvXz8J+uUNPHensr6D5yobea6qkad219MZHsafl57EoulZzCvMYE5+ekxnSpSXXVo6hW2HW0//JR8Ukfx0lQPzzWw2oVB/B/DOgRuY2SXA94E17l4X9SpHyY7aNlaUjO78ElfNy+e+8mq217axojjYc1lMRu7OgcbO02G+oaqR+vZQ22ZGdgoLp2YypyCDuQXp5KjffFyaUxA6Qb3pYHOsS4mqYcPd3XvN7CPAE4QuhbzH3XeY2ZeBCnd/CPgPIAN4INxPeMjdbxnFukfsWFsXh1tO8J6rS0f1OFfNzQNg3b4GhXtAVDd1hoI8HOhHwncYykxJYE5+OtfMy2dOfroGDU0QcWasnJXLn3bVUd3USfGUYAw6jOjvQnd/DHhs0LIvDHj+mijXNeoqDoS+pUd7dFp+RjKLpmXyXGUjH37VvFE9lkSfu1PddIKN+xvZUBW6KcXhlhPAy7eLu3JuHo0d3eRnKMwnqlUlufx5Vx0PbqrhkzcuiHU5UTFpO/0qDjaRkhiaAW+0XTU3n59tPEhXT9+I79Eqo+vURFsVB5p4/kAz5fubONoWaplPSU9ienYKl5TkMKcgg6mZL1/REq3poiU2ctKSmFeYwYObavjYDfMDMS5l0ob7poPNLC/KGZMrFK6am8c96/bzwqFmrpqbP+rHk8h1dvfyYnULmw40U3GwmRcONdPeFZpo6+VRoFMozU+nMEBT38qZVs3K5b7yatZXNnDt/Ik/W+SkDPfO7l521LbxwevnjMnxLp8zhfg4Y/2+RoV7jDV2nKT8QDMVB5ooP9jMtpoWwjcXojAzmUXTsijNS2NWnkaBTjZLpmeRk5bIL8qrFe4T1YvVLfT1O2WzxmY2uMyURJYVZbOusoHPsHBMjikhdW1dbNjfxP8+d5D9jcdPX8mSEGcU5aZx3fwCZuWlUTIlndQkdZlNZgnxcbxpxUzu3XiI5uPd5E7wEauTMtw3hU+mrizJHbNjXj03n+8+XUl7Vw+ZKYljdtzJpqHjJBuqGk9fmnhqOH9yQhyz8tJYWZJLaV4aM3NSNe5AznDbpcX8aP0Bfr35MH97zcQeeDgpw73iYDMLpmaQnTZ2IXv1vHy+/eQ+nt3bELhhzrHU0tl9+iqWx7cfOT0FbnJCHKV56dx00TTm5GcwPSdF/eUyrMXTs1henMN95Yd4z9WlE7pbbtKFe3+/88KhZm5eNjozQZ7NpaW5FGYm88tNNQr3EWjt7OHrv99NVX0HVQ3HOdrahQOJ8casvHSWF+UwtyCDGTmpgbjiQcbeOy4t5p9+tY3N1S1j+td9tE26cN9T1057Vy9ls8b2Hy0hPo43ryziv5+toq69i8LMYN2bcrTUt5+k/EATz+8PPXYdbcM91GdeMiWNVy8uZE5+BsVTUkmIUzeLjNwbl8/gK4/s5L7nDyncJ5KXBy+N/T/aW1cV8b2nK/nN5sOsvW7umB9/Iqhu6gzdZSh8p6GqhlCfeUpiHCtLcvnEDQvoONlLUW6qJtqSUZGRnMAbl83goS21/PPNSybsObJJF+6bDjaTn5FMSQyGGM8rzOCSkhweqKjh/dfOmdD9edFypPUE6/Y1sj48Y+Kp0Z/ZqYlMz05hzdJplOanMyMn5XTLXAOGZLTddlkxv6io5uEtR3jn5bGfnvxCTKpwd3fKDzRRFsN7Jr5tVTH/59fb2FrTevom2pPFvRsP0dvXz/7G4+w+2s7eYx3Uh+80lJYUz+z8dFaW5DA7P4PCLA0Ykti5pDiHhVMzua/8kMJ9Ith9rJ2a5hN84PrYdYncvHw6//LwDh7YVD1pwr31RA9/fukYP9t4kL3HOuju6ychzpidn05ZaS7zCjNecQ9QkVgzM26/rJgvPbyTTQebWTXG5+iiYVKF+6NbjxBnsGbptJjVkJWSyJqLpvHQi7V8/g1LAjvXTGtnD0/sOMoj246wfl8Dvf1OZkoCK4pzWDQtNA1uUoL6zGX8eltZMd/8417ufqaS799ZFutyztukCXd355GtR7hybt6o9dneu/HQkMsH/1n3tlXF/PbFWn69+TC3XzYx/+QbSsfJXv6w8yjfe6qKfXUd9LmTm5bIVXPzWDIjm6LcVLXOZcJIT07gjitK+M5TlVTVd0y4m2hPmnDfUdvG/objrL1ubOaTOZer5uaxalYu//67l1izdNqEHuZ8srePp3bX89CWWv606xhdPf1kpyZy5dw8lhVlMzMnVSeOZcL666tK+e9n9/ODv+zn3/7q4liXc14mTbg/uu0I8XHG62LYJXNKXJzxr2+6iJv/6y987Xcv8dW3LIt1Seelr9/ZUNXIN/+wh+21rXT19JOWFM/yohyWF+VQkpemFroEQmFmCm9ZOZMHN9XwqRsXkJ8xca7UmhThHuqSqeXqeflMGSet5MXTs3jvNbO5+5kq3lZWxKoxmsTsQrk7m6tbeHhLLY9sPUJ9+0mSEuJYMj2LFcWhUaEaESpB9L5r53BfeTU/WX+AT7124kz8NynCfWtNK9VNJ/joq+fHupRX+PgN83lkSy2f+/V2Hv7oNeNuUI67s/1wG//xxEtsO9xKc2cPCXHGgqmZvGbxVBZNyxx3NYtE29yCDF6zeCo/2XCQ9103h6wJMqhpUoT7o9uOkBhvvG5J7LtkBkpPTuCLtyzlAz/dxBd+u4N/fdNFMW/99vc7W2pa+N2Oozy+7SiHmjqJs9AArBsWT2XJ9KzAXuEjcjYfe/V8brnrL3zj93v40i1LY11ORAIf7n39zqNbj3Dt/IIxnQUyUq9dMpUPrZ7Ld5+qpKWzm2/etmLMw7Orp4/nqhr58646fr/zKMfaTpIQZ1w1L5+PvGoebV09pCUF/kdF5KwuLsrmjstn8ZPnDvDWVUVcNDM71iUNK/C/sfeVH+Jwywn++ebFsS5lSGbGP65ZRH5GMl95ZCfNnc/zvTtWkZM2eucG+vud3cfaWbevgXX7Glhf2cjJ3n4S4435hZlcN7+ARdOySE2Kp7ffFewiwGdet5DHtx/hc7/Zzq8/dBVx4/wcU6B/a1s7e/j6E7u5fPaUmF4lE8n17++9Zjb5GUl8+v4tXPO1J3nX5SX87TWzmZo18tkj27p62HG4jc3VzbxwsIX1lQ10dvcBkJeexMpZuSycmsns/HT1oYucRXZqIp97w2I++Yst3FdePe6nJQh0uH/zj3toPdHDF9+4dEJca33ripksmJrJd5+q5L+freJ/1h3gqnl5XFKcy8pZOczOTyc3LYm0pPhXfJ6evn6aO7tpPt7D0bYuDjV1cqjxOFX1x3npaPvpybgA5uSnnx4hOic/fVT/QhAJmjetmMl9z1fztd+9xLXz8ymOwQSEkQpsuO851s5PNxzk9stKWDIjK9blDOlsLfpv3X4Jn3ntQv5n/X7W72vk6T17cH95fVJ8HMmJcfT1O739Tndv/xn7SEqIIyc1kWnZKVw0I4tp2akU56aSlhzYf3KRUWdm/NubL+av7lrHu+95nvs/cOW4naU0kL/p/f3Ovzy8g/SkeD49ga5LPeVU6M8vzGR+YSZdPX3UNJ9g0bRMmjq7aT7efXryrbg4Y9+xDtKTE0hPTiAjOYG89CQyUhI0kEhkFMwtyOB/3nMpd/zgef76nuf5+doryE4dfxdrBC7cu3r6+PsHt7JuXyNfvnXpuBm0NBIpifHMK8ygt9/JSkk84zrbWVPSY1SZyOS0atYUvnfnKt7343Le9+Ny7r6zbNxNIxLR2TMzW2Nmu81sn5l9doj1yWb2i/D6jWZWGu1CI9F0vJs7f7iRh7fU8g9rFnLnFbNiUYaITALXLyjgP2+7hM2HWrjhG0/z4KYafGD/aYwNG+5mFg/cBdwELAFuN7MlgzZ7L9Ds7vOAbwJfi3ah59LW1cPPnz/Em+5ax5aaVr79zkv4u9XzJsRJVBGZuN6wbDqPfOwaZuen85kHtnDb3Rt4fNsRjp/sjXVpEXXLXAbsc/cqADO7D7gV2Dlgm1uBL4WfPwh828zMR+FrrKunjwONxznQ0MnBxuNsO9zKH3Ye42RvP/MLM/j5+y8f9/O0iEhwLJqWxQMfuJJfVFTz9Sd286GfvUBSQhzXzMtn6YwsZuWlMysvjdy0JDJTQufFBl/xNhoiCfeZQPWA1zXA5Wfbxt17zawVyAMaolHkQL/bfpRP/OLF06/zM5J5e1kxb11VxLKibLXWRWTMxcUZt19WwttWFVFxsJnf7zjGU7vreGp3Hf1DNHHff+1sPveGwR0g0TWmJ1TNbC2wNvyyw8x2j3SfB4FNwL+OdEdDy2cUvqBiJCifJSifA/RZxp13jdFxPv81+PyFvz2ik4mRhPthoHjA66LwsqG2qTGwWpONAAAGQUlEQVSzBCAbaBy8I3e/G7g7ksLGAzOrcPeJd3+tIQTlswTlc4A+i4yuSK6WKQfmm9lsM0sC3gE8NGibh4C/Dj9/K/Dn0ehvFxGRyAzbcg/3oX8EeAKIB+5x9x1m9mWgwt0fAn4I/NTM9gFNhL4AREQkRiLqc3f3x4DHBi37woDnXcDbolvauDBhupAiEJTPEpTPAfosMopMvSciIsGj+V1FRAJI4T6E4aZbmCjM7B4zqzOz7bGuZaTMrNjMnjSznWa2w8w+HuuaLpSZpZjZ82a2JfxZ/iXWNY2EmcWb2WYzeyTWtcjLFO6DRDjdwkTxI2BNrIuIkl7g0+6+BLgC+PAE/nc5Cbza3ZcDK4A1ZnZFjGsaiY8Du2JdhLySwv1Mp6dbcPdu4NR0CxOOuz9D6OqlCc/dj7j7C+Hn7YTCZGZsq7owHtIRfpkYfkzIk19mVgS8AfhBrGuRV1K4n2mo6RYmZIgEVXjW0UuAjbGt5MKFuzJeBOqAP7j7RP0s/wn8A3DmHWMkphTuMqGYWQbwS+AT7t4W63oulLv3ufsKQiO+LzOzi2Jd0/kys5uBOnffFOta5EwK9zNFMt2CxICZJRIK9p+5+69iXU80uHsL8CQT89zI1cAtZnaAUPflq83sf2NbkpyicD9TJNMtyBiz0HSfPwR2ufs3Yl3PSJhZgZnlhJ+nAjcCL8W2qvPn7v/k7kXuXkro9+TP7n5HjMuSMIX7IO7eC5yabmEXcL+774htVRfGzH4OPAcsNLMaM3tvrGsagauBOwm1Dl8MP14f66Iu0HTgSTPbSqgx8Qd312WEElUaoSoiEkBquYuIBJDCXUQkgBTuIiIBpHAXEQkghbuISAAp3EVEAkjhLmPGzPrC16fvCE93+2kziwuvKzOzb53jvaVm9s6xq/aMY58IzwUzLpjZbeEpqXV9vAxJ4S5j6YS7r3D3pYRGZd4EfBHA3Svc/WPneG8pEJNwD6sMzwUTsfD00aPC3X8BvG+09i8Tn8JdYsLd64C1wEcsZPWpVqiZXT9gFOpmM8sEvgpcG172yXBr+lkzeyH8uCr83tVm9pSZPWhmL5nZz8JTF2Bml5rZ+vBfDc+bWWZ4dsb/MLNyM9tqZh+IpH4z+42ZbQr/FbJ2wPIOM/u/ZrYFuPIsx1wafv5i+Jjzw++9Y8Dy75/6cgjfPOaF8D7+FMV/Bgkyd9dDjzF5AB1DLGsBpgKrgUfCyx4Grg4/zyB0I/fT68PL04CU8PP5QEX4+WqgldCEb3GEpl+4BkgCqoBLw9tlhfe7Fvh8eFkyUAHMHlRjKbB90LIp4f+mAtuBvPBrB94efn62Y/4X8K4B26QCi8OfOzG8/DvAu4ECQlNQzx543AGf9ZGh/l/roUfCeX4XiIyFdcA3zOxnwK/cvSbc+B4oEfi2ma0A+oAFA9Y97+41AOF+8lJCgX/E3csBPDxdsJm9FlhmZm8Nvzeb0JfF/mFq/JiZ/VX4eXH4PY3hWn4ZXr7wLMd8Dvhc+EYXv3L3vWZ2A7AKKA9/1lRCc71fATzj7vvD+wjEzVdk9CncJWbMbA6hMKwj1HIFwN2/amaPAq8H1pnZ64Z4+yeBY8ByQi30rgHrTg543se5f84N+Ki7P3Eeda8GXgNc6e6dZvYUkBJe3eXufed6v7vfa2YbCd3B6LFwV5ABP3b3fxp0rDdGWpfIQOpzl5gwswLge8C33d0HrZvr7tvc/WuEZk1cBLQDmQM2yybUKu4nNFvkcCcvdwPTzezS8DEyzSyB0OyfHwrPFY+ZLTCz9GH2lQ00h4N9EaHWdcTHDH+pVbn7t4DfAsuAPwFvNbPC8LZTzGwWsAG4zsxmn1o+TG0igFruMrZSw90kiYRueP1TYKi52T9hZq8idOu2HcDj4ed94ROVPyLUJ/1LM3s38Dvg+LkO7O7dZnYb8F/hOdRPEGp9/4BQt80L4ROv9cCbhvkcvwM+aGa7CAX4hvM85tuBO82sBzgK/Ju7N5nZ54Hfhy8P7QE+7O4bwidsfxVeXkfoSiORc9KUvyLDsNA9Wx9x93F1K7xw99Bn3P3mWNci44+6ZUSG1wdkj7dBTIT+emmOdS0yPqnlLiISQGq5i4gEkMJdRCSAFO4iIgGkcBcRCSCFu4hIAP1/YRauBsmxlEgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(candels['candels_ra'], candels['candels_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, candels, \"candels_ra\", \"candels_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add CFHTLS" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl0m3ed7/H3V7YsL/Iar3GSZnP2tilN041CS1tIC6XMZaDAMNxhmXLnwAwwMHfgwIU7zJm5MMzl3mFggLJMGS6lFFo6AUJLadOFrkmbtNmXOpudOF7ifZMl/e4fklw3TWLFlizr0ed1jk+lR4+kr+r4459/z+/5PuacQ0REvMWX6QJERCT1FO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBCncREQ+aNNzN7Idm1m5mO8/yuJnZN8zsoJm9ZGavS32ZIiJyPpIZud8JbDjH4zcBTfGv24FvT78sERGZjvzJdnDOPW5mC8+xy63Af7jYqa7PmFmFmTU4506c63Wrq6vdwoXnelkRETnd888/3+mcq5lsv0nDPQmNwLEJ91vi214T7mZ2O7HRPQsWLGDr1q0peHsRkdxhZkeS2W9GD6g65+5wzq1zzq2rqZn0F4+IiExRKsK9FZg/4f68+DYREcmQVIT7RuAD8VUzVwC9k823i4hIek06525mPwWuBarNrAX4EuAHcM59B9gE3AwcBIaAD6arWBERSU4yq2XeO8njDvhYyioSEZFp0xmqIiIepHAXEfEghbuIiAcp3EVEPCgVZ6h6xl3PHn3NtvddviADlYiITI9G7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kFJhbuZbTCzfWZ20Mw+e4bHF5jZZjPbZmYvmdnNqS9VRESSNWm4m1ke8C3gJmAV8F4zW3Xabl8A7nHOXQK8B/i3VBcqIiLJS2bkvh446Jxrds6FgLuBW0/bxwFl8dvlwPHUlSgiIucrP4l9GoFjE+63AJefts//BH5nZn8JlAA3pKQ6ERGZklQdUH0vcKdzbh5wM/BjM3vNa5vZ7Wa21cy2dnR0pOitRUTkdMmEeyswf8L9efFtE30YuAfAOfc0UAhUn/5Czrk7nHPrnHPrampqplaxiIhMKplw3wI0mdkiMysgdsB042n7HAWuBzCzlcTCXUNzEZEMmTTcnXNh4OPAg8AeYqtidpnZl83s7fHdPg38uZm9CPwU+DPnnEtX0SIicm7JHFDFObcJ2HTati9OuL0buDq1paXPXc8ezXQJIiJppTNURUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEK97jvPdHMkwc7M12GiEhKKNyBUDjKoc5Bnm7uQtf1FhEvULgDPUMhAE4NhmjpHs5wNSIi06dwB7qHxsZvb2/pyWAlIiKpoXAHuuMj9/mVRexs6SWqqRkRyXIKd2LTMvk+4+ql1fSPhmnuGMx0SSIi06JwJzYtU1HsZ2VDGQX5Pl7S1IyIZDmFO7FpmcriAvx5PlY1lLHzeC/hSDTTZYmITJnCncTIvQCAi+dVMDIWZf/JgQxXJSIydTkf7qFwlMHRMJXFfgCW1gYp8uexp60vw5WJiExdzod7Yo17ZXzknucz5gQL6B0eO9fTRERmtZwP98Qa98TIHSAYyGdgJJypkkREpk3hHh+5V5QUjG8LBvIZHFW4i0j2UrjH17gHA/nj24KBfAZDYZ3MJCJZS+EeX+PuMxvfFizMJ+pgKBTJYGUiIlOX8+HeE1/jPlFiFD+gqRkRyVJJhbuZbTCzfWZ20Mw+e5Z93m1mu81sl5ndldoy06d7MDS+xj1hPNx1UFVEslT+ZDuYWR7wLeBGoAXYYmYbnXO7J+zTBHwOuNo5121mtekqOJVC4SiDocirVsqARu4ikv2SGbmvBw4655qdcyHgbuDW0/b5c+BbzrluAOdce2rLTI/u09a4JwQLFe4ikt2SCfdG4NiE+y3xbRMtA5aZ2ZNm9oyZbUhVgen0yglMrx65F/nzyDPTtIyIZK1Jp2XO43WagGuBecDjZnahc+5V7RXN7HbgdoAFCxak6K2nLnEC08Q17gBmRkkgTyN3EclayYzcW4H5E+7Pi2+bqAXY6Jwbc84dAvYTC/tXcc7d4Zxb55xbV1NTM9WaU+ZMa9wTgoX5DIyqBYGIZKdkwn0L0GRmi8ysAHgPsPG0fe4nNmrHzKqJTdM0p7DOtDjTGveEYCBfI3cRyVqThrtzLgx8HHgQ2APc45zbZWZfNrO3x3d7EOgys93AZuBvnHNd6So6Vc60xj0hGPBrzl1EslZSc+7OuU3AptO2fXHCbQf8dfwra3QPhmiYW37Gx2L9ZSI457AzjOxFRGaznD1DNRyJrXEvL/Kf8fFgYT4R59T6V0SyUs6G+9BYrG9MSSDvjI8nDrJ2DozOWE0iIqmSs+E+HG8KVuQ/d7h39IdmrCYRkVRRuBecO9y7BjVyF5Hsk7vhHp+WKfaf+ZhyogVBZ7/CXUSyT86G+9AkI/figjwM6BzQtIyIZJ+cDffhUGwNe/FZwt1nRkkgXwdURSQr5Wy4D41F8BkE8s/+vyCocBeRLJWz4T4cilDozzvnCUrBwnw6NC0jIlkod8N9LHLWZZAJwUC+DqiKSFbK3XAPRc46356QmJaJdVcQEckeORvuQ6HIWVfKJAQD+YyGo+oOKSJZJ2fDfXgsQnHBufumja9117y7iGSZnA33oVA4qTl3UH8ZEck+ORnuUecYHYsmNS0DOktVRLJPTob7yFgEx9mbhiW8Mi2jcBeR7JKT4Z5oGjbZapmSgnzM0Fp3Eck6ORnuk/WVScjzGZXFBRq5i0jWyclwf6Uj5LnDHaA6WKA5dxHJOjkZ7q+M3Ce/hGxVSQHdQ5qWEZHskpPhnhi5TzYtA7FwPzWocBeR7JKb4R5v9zvZahmAyuICuod0kWwRyS45Gu4RAvk+8nxn7wiZUFVSQM9QiGhU/WVEJHvkZLgn01cmobK4gKiDvhGN3kUke+RkuA+PRZJaKQOxkTugeXcRySo5Ge7nM3KvKPYDaMWMiGSVnAz3ZC7UkfDKyF3TMiKSPXIz3EORpNa4Q2zOHaBb0zIikkVyLtydc0ldhSlhfOSuaRkRySI5F+5DoQgR55KelikuyKMg36eRu4hklZwL957h2Nx5siN3M6OqWC0IRCS75F64x0M62dUyAJUlBTqgKiJZJefCvTc+ck92WgagqsSvkbuIZJXcC/d4n5jzGblXFBdozl1EskrOhfsrc+7JLYUEqCou0GoZEckqSYW7mW0ws31mdtDMPnuO/d5pZs7M1qWuxNTqGTr/aZnKkgJ6h8cIR6LpKktEJKUmDXczywO+BdwErALea2arzrBfKfAJ4NlUF5lKPcMh8n2GP2/yjpAJVcV+nHtlvl5EZLZLZuS+HjjonGt2zoWAu4Fbz7Df3wNfBUZSWF/K9Q2PUeTPwyz5cK+Mn8ikg6oiki2SCfdG4NiE+y3xbePM7HXAfOfcb871QmZ2u5ltNbOtHR0d511sKvQMjZ3XwVR45SxVXbRDRLLFtA+ompkP+Drw6cn2dc7d4Zxb55xbV1NTM923npKphHuiv4za/opItkgm3FuB+RPuz4tvSygF1gCPmtlh4Apg42w9qNozPJZ0L/eE8WkZhbuIZIlkwn0L0GRmi8ysAHgPsDHxoHOu1zlX7Zxb6JxbCDwDvN05tzUtFU9T71Ao6Y6QCVXFah4mItll0nB3zoWBjwMPAnuAe5xzu8zsy2b29nQXmGo9w2NJ95VJKCrIo9Cv5mEikj2SGsI65zYBm07b9sWz7Hvt9MtKj1A4ylAoQuF5TstA/EQm9ZcRkSyRU2eo9gzHRt7nO3KH2Ly7lkKKSLbIrXAfOr92vxNVKdxFJIvkVLgn5szPp69MQqWah4lIFsmtcB+axrRMsV/r3EUka+RYuE99WqaypIC+kTBjah4mIlng/OcnstgrI/fz/9iJFgQ9Q2PUlAZSWpeIzE53PXv0jNvfd/mCGa7k/OXWyH0wRKHfR0H++X/sRAsCHVQVkWyQYyP3sfGQPl+Jkbvm3UW8IxSO0j8yRlmRn59vbcl0OSmVU+HeMxSacriPj9wV7iJZqa13hGeau3j2UBcP7W6nZyhEOOoAKC/ys2F1PRfNKz+vduCzWU6F+6nBEJUl/ik9V21/RbJL/8gYWw6f4okDnTxxoJOD7QMAlBbm01hRxMr6UgL+PAL5PrYd6+ZnW4/xdHMXt66dS0N5UYarn76cCveeoTEaKqb2Tasojv1S0Jy7yOw0MhbhhaPdPHWwi6de7uTFll4iUUe+z1hUXcJNa+pZUhOkvrwQ32mj8yuXzOGFI908uPsk//7kYT7z5uVTOjY3m+RUuHcPhcY7PJ6vQn8exQV5mnMXmSWccxxoH+CxfR08tr+DZ5q7CEcdPoN5lcVc01TN4uogF8wpxp937qD2mbFuYRVzggG+90Qzzx3q4vVNmbnmRKrkTLhHoo6e4TEqi6c2LQM6S1Uk00bDEZ5+uYuH97TzyN52WnuGAWiqDbJ+URVLaoIsqi6ZUnNAgEXVJSypKeGxA52sXzQnq0fvORPufcNjOAcVUxy5Q2zeXT3dRWZW79AYm/e187vdbTy2r4PBUAR/ntFUW8r6RVU01Qan9XN9uhtW1vHdx5t59lAX12Tx6D1nwj0xV15Z4mc4NLWzTCtLCjQtIzIDjvcM89Dukzy0++T4dEttaYBbL2nE7/OxuKZk0qmWqbpgTglNtUEe39/B5Vk8es+hcI+tcqksLmA4NDKl16grDbC/rT+VZYkIsfnz3Sf6+P3udh7a08bO1j4AaoIBrlpSzeq5ZTRWFr3mQGi6XL+yju889jLPNHfxhmXZOXrPnXCPj7griws43jPFcC8rpGNglEjUkefzxlpYkUwZDkV4prmLh/ee5FcvnqB3eAwD5lcV85bV9axsKKW2tDAjtS2oKqapNshTL3dyTVN1Vq59z51wH3ol3KeqrixAJOroGhzN2D86kWwViTr2nOjjyYOxdefPHT5FKByluCCPhXNKuH5FLcvrSyktnPqih1Ra01jOgfYBOgay8+c9Z8I9caGOqZ7EBFBbFvsGn+zNzm+2yEyKRB27j/fx7KEunmk+xXOHuugbCQOxgdL6hbGDoYuqS8hP0/z5dCyuLgGguWMwK3/ecybcTw2FyPcZwcDUP3JdItz7RriQ8lSVJuIJ0ahjT1sfT7/cxVMvd/HkwU5Gw7HFC1UlBSyrK2VxTZDF1SWUFc2O0fm5VJUUUF7k51DnIFcsnpPpcs5bzoR7z1CIiuKCac2d1ZXFWv2e7J/anL2I15waDPH4/g7ufOowB072MxiKAFAdLODieRUsqi5hYXUJ5VkQ5qczi53ZeqB9AOdc1s2750y4dw+OUTWNKRmA6mAAMzjZN5qiqkSyi3OOfSf7eXhPOw/vOcm2Yz04F7sAzrK6UpbWBllSE8zKMD+TxdUlbD/WQ3v/6Phf7tkiZ8L9VHzkPh3+PB/VwQDtfRq5S+4YGYutanlkbzsbXzw+fvyqsaKINy2PHQSdWzFzyxRn0uKaIADNnYMK99mqZyjEovgBkumoKwtwUuEuHtfeP8Lmve08vKedPxzsZCgUodDvY9GcEq5bFgv0bJg3n67KYj8VRX6aOwa4Msvm3XMm3LuHxri0ZPqnKNeVFnKiV+Eu3uKcY8+Jfh7ec5Lf723nxWM9QKzP+YWN5ayojx0MTddZobNVYt5938l+os5l1V8nORHuzjm6B6c/LQOx5ZDb4//wRbLZyFiEZw+d4tuPHmTviX564icRzass4oaVdaxsKKW+rDDrDiSm2uKaINuO9dDeN0p9efZMzeREuA+MhglH3bQ6QibUlQXoGgwRCkeztueE5K6TfbHplkf2vjLd4s8zltaW8qZZdhLRbDG+3r1zQOE+2/RM6CszXYmDKh0DozRO8cIfIjMlEnVsP9bD5r3tbN7Xzq7jsZ4tr0y3lKW1CZcXVJYUUFnsp7ljkKuWVGe6nKTlRLifGpx664G7nj36qvt722I/HCf7RhTuMit1D4Z4/EAHm/e289j+DrqHxvAZXHpBJW9ZVcfy+jLqygI5P91yPhZVB9lzoi+r1rvnRLhPbPc7XWXxP1m1HFJmC+ccu4738ei+2HTL9mM9RCesPX/z6lKW1ZZSVDC1C1hI7DjEC0e74xf8SV3v+HTKiXBP5bRMYvmXTmSSTBoZi12R6Pd7TvKrF4+P92xprCji2uW1LK8rndEWuV7XEJ9rb+sdUbjPJqnoCJlQXJBHvs+01l1m3MBomM1723lgVxuP7m1nMBShpCCPhdUlrKgvY1ldUAdD06Q+fqztRO8wKxvKMlxNcnIj3AdDmJGSky58ZtSWBjRylxkxMBrm4T0n+c1LJ3h0fwehcJSSQD6r55azam4Zi2dpR0WvCfjzqCopyKpzXHIj3IfGqCjyp+wCG7VlhRq5S9oMhcI8vKedX790nM37YoFeVxbgfesX4M/zccGcYk23ZEBDeSFtXgt3M9sA/AuQB3zfOfeV0x7/a+AjQBjoAD7knDuS4lqnrHsolNJ5srqyAM0dgyl7PZGhUJhH9razaccJHtnbzshYlNJAPpcuqGRNY7kCfRaoLy9k9/E+RsORTJeSlEnD3czygG8BNwItwBYz2+ic2z1ht23AOufckJn9BfBPwG3pKHgquodCVKTgBKaEurJCnn65K2WvJ7mpd3iMR/ae5IGdbTy2v4ORsSjVwQDvunQ+Ab+PhXNKFOizyNzyIhxwMktG78mM3NcDB51zzQBmdjdwKzAe7s65zRP2fwZ4fyqLnK7uwbHxo92pUFdWSN9ImOFQRMvL5Lx09I/y0O6TPLCrjadf7mQs4igrzGft/ErWNJYp0GexxNmpxz0U7o3AsQn3W4DLz7H/h4HfTqeoVOsZCrFqbuqOcCfOUm3vH+GCOdPvNCne1tY7wgM7T3DnU0c40jWII3aVnysWzWF1YznztGQxK1QU+Sn0+7Jm3j2lB1TN7P3AOuCNZ3n8duB2gAULFqTyrc/p1FAoJX1lEsavyNQ3qnCXM2rtGea3O06waccJXjgaazRXWxrguhW1rJ5bpoZcWcjMqC8r4kTvcKZLSUoy4d4KzJ9wf15826uY2Q3A54E3OufOuE7QOXcHcAfAunXr3HlXOwUjYxFGxqIp6QiZMPFaqiIJx04N8dudJ9i0o228c2hDeSE3rKxjTWNZVl5kWV6tobyQ5490E406fClafZcuyYT7FqDJzBYRC/X3AO+buIOZXQJ8F9jgnGtPeZXTkDiBqSoFvdwT6koV7hJzsL2fB3a28cCuNna2xvoOXdhYzptX1bGmsZzqYCDDFUoqNZQXEopEOXJqKCUX/0mnScPdORc2s48DDxJbCvlD59wuM/sysNU5txH4GhAEfh7/U/Ooc+7taaw7aR39sT8i5qQw3MuK8gnk+xTuOcg5x47WXh7Y2caDu9p4Ob4kdkFVMTetqWf13PKUDiRkdkkcVN1zoi/7wx3AObcJ2HTati9OuH1DiutKmdbu2PxYY2XqOjiaGXVlhTpLNUdEoo7nj3SPB3przzB5PuOKxVWsmlvOqoYyz1wQWs6trqwQIxbuN1/YkOlyzsnzZ6i2xMN9XmVxSl9X11L1tkjUseXwKTbtOMFvd7bR0T9Kvs9YWhvkna9rZGV9GcUBz//4yGn8eT5qSgPsOdGX6VIm5fl/nS3dQ5QW5qd8ZFVXVshLLb0pfU3JrGjUse1YN//84H52tvbSPxom32csr49dpWhFXSkBv85ryHX15YXsOdGf6TIm5flwb+0ZTstFNZbUBPnNjhM6kckD9rb1cf+24/zqxeO09gyPB/qFjeUsry8lkK/vr7yiobyIl1p66RlKzXWZ08Xz4d7SPZzyKRmAFfWlOAcH2vu5aF5Fyl9f0qtzYJT/3H6c7z/RzIneEXwGS2uDvOvSeaxsKKNQI3Q5i7nxg6q7j/dx1dLZe9k9T4e7c46W7mGuWDwn5a+9rL4UgL1tCvdsEY5EefxAB3c/d4xH9rYTjjrmVRbxtosauGheBUHNoUsSGuIzAbtPKNwzpm84zMBomHkpXCmTsHBOCYF8H/vbZv/cW647dmqIe7Ye40dPHaZvJExJIJ8rFs/hdRdUjl+EQSRZwUA+dWWB8YuNz1aeDvdj3UMAaQn3PJ/RVBdk30mF+2w0Go7w+93t3L3lKH842AnAstpSbrm4khX1ZSnr7S+5afXccnYr3DOntSe+xr0i9XPuAMvrynj8QEdaXlumZm9bHz/bcoz7t7XSPTRGY0URn7x+Ge9aN49H9+l7JamxqqEs3qY5MmuPz3g63F9Z4576kTvEDqre+0ILpwZDOisxg7riB0fvfaGFXcf7yPMZqxrKuHVtJUtrg/jMFOySUqvnlhGJOva19XPx/Nl5zM3j4T5ESUFeSi/UMdHy8YOqfVy1ZPYeWPGiUDjKI3vb+ZeHD7CvrY+og7kVhbztogbWzqvQCUaSVqvnlgOxg6oK9wxo7R6msbIoba1VE+G+r61f4T5D9rX1x6ZdtrdyajBEaSCfq5dUc4kOjsoMml9VRGkgn13HZ++JjJ4O93StcU+oLQ1QUexnvw6qptVwKMLnf7mD5w6foqV7mDwzVs4t45aLGlhaW6qDozLjLP5vcDavmPF4uA+xbmFl2l7fzFheV8peLYdMi+aOAX78zBHufb6FvpEwtaUB3nphA2vnV1CiaRfJsNVzy7j7uWNEom5WDjA8+xPSNzJG30g4La0HJlpRX8ovnm/Jiub92SAadTx2oIM7nzzMY/s78OcZN61poK6skIVzinX1Ipk1Vs8tZ3jsMIc6B1laG8x0Oa/h2XBvTVM3yNMtry9jMBShtWeY+VXpfS8vGxwNc98LLfz7k4dp7hykNJDP9StrWb+witJCtdOV2WdVQ+y6zLuO9yrcZ1K6l0EmLJ/QhkDhfv6O9wzzo6cO89PnjtI3EubieeW8e9081jSWk+/zZbo8kbNqqgtSkOdj94k+bl3bmOlyXsOz4d4aPzs1lRfpOJNldbHf2Pva+rhxVV1a38tLdrT08vn7d7CztRfnYvOXVy+tZkGVpl4kO/jzfCyrD87aM1U9G+4t3cMU+n0pvbzemZQW+mmsKNJB1SQ453hsfwfffayZp5u7COT7uGpJNVcunkOlTgKTLLSqoYzf72nHOTfrBiWeDfdEH/eZ+B++or6UfQr3swpHonz+lzt5bH8HbX0jlBXmc9Oaei5bWDVrT90WScaaxnLu2dpCS/fsO+bm2XBP9xr3idbOr+CRfe2c6B2moTy900DZZDQc4b4XWvnOYy9zpGuImtIA73zdPC6er/l08YZEO/EnD3bynvULMlzNq3n2J6yleyjtB1MTbrl4Ls7Bxu3HZ+T9ZruRsQh3PnmIa7/2KJ+7bwflRX7+5PIFfOL6Ji69oFLBLp7RVBukvqyQJw50ZrqU1/DkyH1wNBzrCDhD4b6wuoS18yu4f/txPvrGJTPynrPR4GiYz/z8RZ440MnAaJgL5hTzwasWsrQ2OOvmI0VSwcy4pqma3+0+OetOZvLkECrR6nempmUA3rF2LntO9OXk3Hvv8Bj/+vABXv/VR/jtzjbqywr5yDWL+OgbltBUV6pgF097w7IaeofHeKmlJ9OlvIonR+7bjnYDryxTnAlvu3guf/+bPdy/vZW/3bBixt43kzr6R/nhk4f48dNHGBgN86YVtSyrK2XBLDuwJJJOr19ajRk8vr+TSxakr93J+fJkuG/e20FDeSHL60rT8vp3PXv0jNuvaapm4/bj/M2bl3u6FcHhzkG+90QzP9sS66uxprGcNy6rYW6aWz2IzEaVJQVc1FjOEwc6+MQNTZkuZ5znwj0UjvKHg53ccvHcGZ8OeMfaRj75s+1sPdLN+kVVM/re6eacY+uRbn7wxCEe3N2G3+dj7fwK3tBUQ3VpINPliWTUNU01fPuxl+kbGaNslrTL8Fy4bz1yioHRMNctr5nx975xVR1F/jx+ua3VM+E+Go7whV/u5KmXu2jtGabIn8cbm2q4cskc9XwRiXvDshq+ufkgTx3sZMOahkyXA3gw3B/dF+skePXSmb94Rkkgn7esruM3Lx3nUzc2UVuavRePONo1xE+eO8LPt8YuI1hTGuDWtXO5ZH4lBfmePA4vMmWXLKggGMjn8QMK97TZvLedyxfNyVi/77+4dikP7Grj43dt4ycfuRx/XvYE4Wg4wkO7T/KzLcf4w8FOfGbcsLKWuRVFLK3RckaRs/Hn+bhyyRwe398xa1oReCrcj50a4kD7ALddNj9jNSyvL+V//ZcL+dTPXuSfHtjL59+6KmO1JMM5x87WPu59oYWNLx7n1GCIiiI/1y2v5bKFVZQXaepFJBlvaKrmod0n2XW8jzWN5Zkux1vh/uj+2BXur1tRm9E6/uiSeWw72sP3njjE2vmVvPWi2fFn2kTNHQNs2nGC/9x+nAPtAxTk+bhxVR01pQGW1gbxzYKRh0g2ueXiuXztwX187cF9/OhD6zNdjsfCfW87C6qKWVxdkulS+MJbV7GjtZdP/3w7rT1DfPDqRRmdoolGHTtae9m8r53f7TrJ7hOxNqULqoq5de1cLmqsoKhATbxEpqqiuIC/fFMT/7BpD4/v7+ANy2Z+UcdEngn3kbEIT77cyW3r5mdsvuv09e8bVtdTVVzAP27ayz1bW/jSLaviJzykvz7nHC93DPLsoS6eO3SKJw920jkQwgwumV/BF966klA4SkWxWu2KpMoHrrqAHz9zhH/ctIerl1ZntB2BZ8L9p88dZWQsyrUZnpKZqLTQzw/+7DJ+v/skf/frXfzpD56jvqyWKCv6AAAJNklEQVSQN62s5brltaxsKGVuedG0T3jqHgxxqGuQQx2D7DvZz87WXna29tI3Eo7VEchnUU0J1y2PnUGaONisXBdJrUB+Hn+7YQUfu+sFfvH8MW67LHOdIpMKdzPbAPwLkAd83zn3ldMeDwD/AVwKdAG3OecOp7bUs7t/Wytf/vVurltewzUZWAJ5LonR/Edev5iXWnrZ29bHL55vGd9e6PexcE4JNaUBqkoKqCwuoNCfR0GeUZDvwzkIRx1R5xgKRRgcDdM/GqZrYJT2/lE6+kbpHw2Pv1++z6gvL2RFfRmNlUUsqi5hTknBrDh6L5ILbr6wntctqOCff7ef61fWUR3MzEl+k4a7meUB3wJuBFqALWa20Tm3e8JuHwa6nXNLzew9wFeB29JR8Ol+t6uNT//8RdYvrOLb77+U/Fm69NCf5+PSCyq59IJKwpEox7qHae8fobN/lM6BEIc6B9l1vI+hUJhwxBGOulc93wB/vo9A/KukIJ/SIj9r5hVSWeSnOhigOhigsqRgVnWmE8k1Zsb/eNsqbvvuM9zw9cf4wltX8c7XNc74ACuZkft64KBzrhnAzO4GbgUmhvutwP+M3/4F8E0zM+fcqxMqBZxzNHcO8vzhbrYeOcX9246zprGcH/zZZVlzVZ/8PB+LqktYdI4Dv845Is5hGGZo9YpIFrlkQSW/+avX87n7dvCZn7/Ivc+3cPOF9SypDbK0NkhNMJD2sE8m3BuBYxPutwCXn20f51zYzHqBOUDKO9h/4+GD/J/f7wegotjPjavr+Id3rCGYoZOW0sXMyFegi2StprpS7vnolfx0y1H++cF9PN3cNf7Yl25ZxQevXpTW95/RRDSz24Hb43cHzGzfdF7vCPAi8G/n/9Rq0vCLZ5bw6mfz6ucC7342r34u/mSaz//QV+FDU3/6BcnslEy4twITT/mcF992pn1azCwfKCd2YPVVnHN3AHckU1g6mdlW59y6TNeRDl79bF79XODdz+bVz5Utkjn6uAVoMrNFZlYAvAfYeNo+G4H/Gr/9x8Aj6ZhvFxGR5Ew6co/PoX8ceJDYUsgfOud2mdmXga3OuY3AD4Afm9lB4BSxXwAiIpIhSc25O+c2AZtO2/bFCbdHgHeltrS0yvjUUBp59bN59XOBdz+bVz9XVjDNnoiIeM/sPONHRESmJefC3cw2mNk+MztoZp/NdD2pYmY/NLN2M9uZ6VpSyczmm9lmM9ttZrvM7BOZrikVzKzQzJ4zsxfjn+vvMl1TqplZnpltM7NfZ7qWXJRT4T6hlcJNwCrgvWY2u6+mkbw7gQ2ZLiINwsCnnXOrgCuAj3nkezYKvMk5dzGwFthgZldkuKZU+wSwJ9NF5KqcCncmtFJwzoWARCuFrOece5zYSiVPcc6dcM69EL/dTywsGjNb1fS5mIH4XX/8yzMHwMxsHvBW4PuZriVX5Vq4n6mVQtYHRa4ws4XAJcCzma0kNeLTFtuBduAh55wnPlfc/wX+OxDNdCG5KtfCXbKUmQWBe4FPOuf6Ml1PKjjnIs65tcTO+l5vZmsyXVMqmNnbgHbn3POZriWX5Vq4J9NKQWYZM/MTC/afOOfuy3Q9qeac6wE2451jJlcDbzezw8SmPt9kZv8vsyXlnlwL92RaKcgsYrG+qD8A9jjnvp7pelLFzGrMrCJ+u4jY9RL2Zraq1HDOfc45N885t5DYz9gjzrn3Z7isnJNT4e6cCwOJVgp7gHucc7syW1VqmNlPgaeB5WbWYmYfznRNKXI18KfERn/b4183Z7qoFGgANpvZS8QGHQ8557RkUFJGZ6iKiHhQTo3cRURyhcJdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuM8bMIvF16rvirW4/bWa++GPrzOwb53juQjN738xV+5r3Ho73gZkVzOy2eNtqrY2XM1K4y0wads6tdc6tJnZG5k3AlwCcc1udc391jucuBDIS7nEvx/vAJC3eYjotnHM/Az6SrteX7Kdwl4xwzrUDtwMft5hrE6NQM3vjhLNRt5lZKfAV4Jr4tk/FR9NPmNkL8a+r4s+91sweNbNfmNleM/tJvIUBZnaZmT0V/6vhOTMrjXdm/JqZbTGzl8zso8nUb2b3m9nz8b9Cbp+wfcDM/reZvQhceZb3XB2/vT3+nk3x575/wvbvJn45xC8w80L8NR5O4bdBvMw5py99zcgXMHCGbT1AHXAt8Ov4tl8BV8dvB4ldyH388fj2YqAwfrsJ2Bq/fS3QS6wpnI9YS4bXAwVAM3BZfL+y+OveDnwhvi0AbAUWnVbjQmDnaduq4v8tAnYCc+L3HfDu+O2zvee/An8yYZ8iYGX8c/vj2/8N+ABQQ6xN9aKJ7zvhs/76TP+v9aWv/PP8XSAyE54Evm5mPwHuc861xAffE/mBb5rZWiACLJvw2HPOuRaA+Dz5QmKBf8I5twXAxdsGm9mbgYvM7I/jzy0n9svi0CQ1/pWZ/VH89vz4c7ritdwb3778LO/5NPD5+AUt7nPOHTCz64FLgS3xz1pErM/7FcDjzrlD8dfw3AVZJD0U7pIxZraYWBi2Exu5AuCc+4qZ/Qa4GXjSzN5yhqd/CjgJXExshD4y4bHRCbcjnPvfuQF/6Zx78Dzqvha4AbjSOTdkZo8ChfGHR5xzkXM93zl3l5k9S+xKRZviU0EG/Mg597nT3uuWZOsSmUhz7pIRZlYDfAf4pnPOnfbYEufcDufcV4l1TFwB9AOlE3YrJzYqjhLrGjnZwct9QIOZXRZ/j1IzyyfWIfQv4j3jMbNlZlYyyWuVA93xYF9BbHSd9HvGf6k1O+e+AfwncBHwMPDHZlYb37fKzC4AngHeYGaLEtsnqU0E0MhdZlZRfJrET+zC1z8GztSj/ZNmdh2xS7TtAn4bvx2JH6i8k9ic9L1m9gHgAWDwXG/snAuZ2W3Av8b7pw8TG31/n9i0zQvxA68dwDsm+RwPAP/NzPYQC/BnzvM93w38qZmNAW3APzrnTpnZF4DfxZeHjgEfc849Ez9ge198ezuxlUYi56SWvyKTsNi1W3/tnJtVl8GLTw99xjn3tkzXIrOPpmVEJhcBymfbSUzE/nrpznQtMjtp5C4i4kEauYuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAf9fz8KbjYkEH7lAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(cfhtls['cfhtls_ra'], cfhtls['cfhtls_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, cfhtls, \"cfhtls_ra\", \"cfhtls_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add DECaLS" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd0nHed7/H3V72PumU1y3EvSZzEcRoEEwgxARJ2NwuEGi5LttB2YQtcuLQ9ZwlwLncXCBdygWVhCSGkEJM4cUJ6seOaxN2Wu2Srd8lqM7/7x4yMotjWyJrRzDzzeZ2jk5lnHs3zHcf+6Kff8yvmnENERLwlJdYFiIhI5CncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAelxerCpaWlrq6uLlaXFxFJSFu3bm1zzpVNdl7Mwr2uro4tW7bE6vIiIgnJzI6Gc566ZUREPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDwoZjNU493dLx874/EPXlE7w5WIiEydWu4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPmjTczeznZtZiZjvP8rqZ2ffNrN7MXjOzSyNfpoiITEU4LfdfAGvO8fo7gQWhr9uB/zv9skREZDomDXfn3HNAxzlOuRn4pQvaCBSa2exIFSgiIlMXiT73KuD4uOcNoWNvYGa3m9kWM9vS2toagUuLiMiZzOgNVefcXc65lc65lWVlZTN5aRGRpBKJcG8EasY9rw4dExGRGIlEuK8FPhoaNXMl0O2cOxmB9xURkfOUNtkJZvYbYDVQamYNwNeAdADn3I+BdcCNQD0wAHw8WsWKiEh4Jg1359ytk7zugE9FrCIREZm2ScM9Gdz98rFYlyAiElFafkBExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxoLDC3czWmNk+M6s3sy+e4fVaM3vazLab2WtmdmPkSxURkXBNGu5mlgrcCbwTWArcamZLJ5z2FeBe59wlwAeAH0W6UBERCV84LfdVQL1z7pBzbhi4B7h5wjkOKAg99gEnIleiiIhMVVoY51QBx8c9bwCumHDO14HHzewzQC7w9ohUJyIi5yVSN1RvBX7hnKsGbgR+ZWZveG8zu93MtpjZltbW1ghdWkREJgon3BuBmnHPq0PHxvsEcC+Ac24DkAWUTnwj59xdzrmVzrmVZWVl51exiIhMKpxw3wwsMLO5ZpZB8Ibp2gnnHAPeBmBmSwiGu5rmIiIxMmm4O+dGgU8D64E9BEfF7DKzb5rZTaHTvgB80sxeBX4D3Oacc9EqWkREzi2cG6o459YB6yYc++q4x7uBayJbmoiInC/NUBUR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUrifg3OOdTtO8tLBtliXIiIyJQr3c3hqXwsv1Lex8VBHrEsREZkShftZvNbQxZN7WsjJSKWtb4jBEX+sSxIRCZvC/QyOdwxw39YG6kpy+PNLqgA40XUqxlWJiIRP4X4GD25vJD8rjQ9eMYfaklwAGhXuIpJAFO4T+AOOlt5BLq4uJC8zjbzMNAqz02noVLiLSOJQuE/QNTBMwEFJXsbpY1VF2Wq5i0hCUbhP0N4/DEBxbubpY1WF2XT0D3NqWDdVRSQxKNwn6AiFe0nun1ru1UU5gPrdRSRxKNwnaO8bIj3VyM9KO32sqjAbgMbOgViVJSIyJQr3CTr6hynOzcDMTh/LzkilODeDBrXcRSRBKNwnaO8fpmRcf/uYqkLdVBWRxKFwHyfg3OmW+0TVRdl0DYzQ3jcUg8pERKZG4T5O7+AoowH3umGQY8b63Xc0ds90WSIiU6ZwH6e9P9gqP1PLvXIs3BsU7iIS/xTu43T0jQ2DfGOfe1Z6KqV5mbyqcBeRBBBWuJvZGjPbZ2b1ZvbFs5zzPjPbbWa7zOzuyJY5M9r7h0kx8GWnn/H1ioJMDrf1zXBVIiJTlzbZCWaWCtwJXA80AJvNbK1zbve4cxYAXwKucc51mll5tAqOpvb+YYpyMkhNsTO+XpiTwcGjnTjnXjdUUkQk3oTTcl8F1DvnDjnnhoF7gJsnnPNJ4E7nXCeAc64lsmXOjI6+oTPeTB3jy07n1IifroGRGaxKRGTqwgn3KuD4uOcNoWPjLQQWmtmLZrbRzNZEqsCZ4pyjvX/4dWvKTFSYE+yu0Xh3EYl3kbqhmgYsAFYDtwL/z8wKJ55kZreb2RYz29La2hqhS0dG/7CfodHA69aUmWisL14bd4hIvAsn3BuBmnHPq0PHxmsA1jrnRpxzh4H9BMP+dZxzdznnVjrnVpaVlZ1vzVFxpgXDJirMCb52sntwRmoSETlf4YT7ZmCBmc01swzgA8DaCef8nmCrHTMrJdhNcyiCdUbd2MzT4nP0uedmpJKRlqKWu4jEvUnD3Tk3CnwaWA/sAe51zu0ys2+a2U2h09YD7Wa2G3ga+CfnXHu0io6Gjv5hDCjOOXu4m5nWmBGRhDDpUEgA59w6YN2EY18d99gBnw99JaT2/mF82emkpZ77511lYZZa7iIS9zRDNeRsC4ZNNNuXzYku9bmLSHxTuIe0hxnulYXZtPQOMuIPzEBVIiLnR+EOjAYC9A+N4ss587ID41UVZhFw0Nyj1ruIxC+FO9A/FNz4uiBz8nAfWx1SXTMiEs8U7kDvYHA5gbysye8v/yncdVNVROKXwp3gJh3A6zbFPptKX2izbIW7iMQxhTvjw33ybpnsjFSKctI52a1wF5H4pXBnXLdMZljD/qks1HBIEYlvCnegd2iUnIzUs67jPlEw3NVyF5H4pXAn2C1TEEaXzBgtQSAi8U7hDvQNjoQ1UmbMbF8WvYOjp7tzRETijcKdYMs9P8z+dvjTcEgt/Ssi8Srpw905R+/QaFgjZcaMhbu6ZkQkXiV9uHefGsEfcGGNcR9TpYlMIhLnkj7cW3qDm3RMJdzL8jNJSzGFu4jEraQP99ZQuE/lhmpqijGrIEtj3UUkbiV9uLf0BgM6nEXDxqvSWHcRiWNJH+7n03KH4I5MuqEqIvEq6cO9pWeI9FQjM21qfxQVvmxaeoYIBFyUKhMROX9JH+6tfUPkZ6VjFt7SA2Nm+7IY9gfoGBiOUmUiIucv6cO9pWdoShOYxlT4sgBo0kQmEYlDCvfewSkNgxwzOxTumqUqIvEo6cO9tXeIvCnMTh0zO7RpR5PWdReROJTU4T444qdncJSC82i5l+RmkJ5qnFDLXUTiUFKH++lhkOfR554SmsikPncRiUdJHe5/Wnpg6t0yEOx313Z7IhKPkjrcW89jXZnxKnzZarmLSFxK8nAPBvP5hnuw5T6Ic5rIJCLxJanDvaV3iBSD3PPocweoKMhiaDRA14B2ZBKR+BJWqpnZGuA/gFTgp865O85y3l8A9wGXO+e2RKzKKGntHaIkL5OUKcxOvfvlY6cf17f0AcGx7kW5GRGvT0TkfE3acjezVOBO4J3AUuBWM1t6hvPygc8BL0e6yGhp6R2iPD/zvL/flx28EdvUo5uqIhJfwumWWQXUO+cOOeeGgXuAm89w3r8C3wYS5g5ja+8QZdMI94JQuGuWqojEm3DCvQo4Pu55Q+jYaWZ2KVDjnHvkXG9kZreb2RYz29La2jrlYiOtpXdwWi33/Kw0UgxOatMOEYkz076hamYpwPeAL0x2rnPuLufcSufcyrKysuleeloCAUdb3/C0Wu4pZuRnpavlLiJxJ5xwbwRqxj2vDh0bkw8sB54xsyPAlcBaM1sZqSKjob1/GH/AUZ6fNa338WWnq89dROJOOOG+GVhgZnPNLAP4ALB27EXnXLdzrtQ5V+ecqwM2AjfF+2iZse31ZhWcf8sdgv3uarmLSLyZNNydc6PAp4H1wB7gXufcLjP7ppndFO0Co6WlJzg7tbxgmi33rDSaNJFJROJMWOPcnXPrgHUTjn31LOeunn5Z0TfWci/Pz2Tvyd7zfh9fdjoDw8HVJceGRoqIxFrSzlBtDrXcp3NDFf40HFJrzIhIPEnacG/pHaQoJ53MtNRpvY/v9Fh33VQVkfiRtOHe3DPErGn2t8O4WapquYtIHEnacG+Z5uzUMflZ6ZihHZlEJK6c33KIHtDSM8iC8tJpv09qilGWl6m9VEU8YPzCgON98IraGa5k+pIy3AMBR2vv0LTHuI+ZXZitse4iCeZsQe4VSRnuHQPDjEZgduqY2QVZHGzti8h7iUhkBAKOE92nGPE71r12ktRUIy8zbUpLfCeypAz35p7IzE4dU+HL4vkDrTjnsCT5iyMST5xzHGztZ+vRDrYd7WJvUw8HWvoYGPa/7ryS3AyuXVjGJTWFpKV6+5ZjUob72MbYZRFqudcW59A/7KdzYIRibdohEnXOOfY397HxUDsbD7Xz8uEOOvqHAcjJSKXSl82KmkLK87PISDP8AcfQaIBtxzp5cHsjT+5p5t0XVbK8yhfjTxI9yRnuEW651xbnAHCsY0DhLhIlLb2DPLuvlRfr23ihvp22vmAjrTAnnQtKc1m9sIw5JbmU5mWc9Tfoqy4o4WBrP+t3NfHbLcfxZadTE/r36zVJGu6RmZ06prYk+JfjaHs/K2oKI/KeIsnOOceuEz08vruZ+7c20NgVHJGWm5HKvPI8rl1QyryyvCltcWlmzC/Po9JXxw+fqefuTcf41Fvnk3ee+yjHM+99ojA0R2h26piaomC4H+8YiMj7iSSrQMDxncf2svNED7tOdNM5MIIBNcU5vGPpLBbOyqfClzXtm6I5mWl86Io5/OTZg/x28zFuu3ouqSneul+WlOHe0jMUsZEyANkZqZTnZ3JM4S4yZc45th/vYt1rJ1m34yQnugdJTTHml+Xx1kXlLJ5dEJWWdVVhNjevqOT+bY08tbeF65fOivg1Yikpw725d4jyCPW3j6ktzuFou8JdJByBgGP78U4e3dHEozubaOw6RUZqCtcuLOWa+aUsmV1AVnpkfrM+l8vmFLO/uY8X69t484LSGbnmTEnKcI/U7NTxaotz2HioPaLvKeIlgyN+Nh5q5/HdzTyxu5nW3iFSU4wF5Xncclk1SyoKyM6Y+XB984JSdjR2s+1YJ1fPi2wuxFLShfvY7NTpbIx9JrUlOTz4SiNDo/6I9eWLJLrjHQM8u7+VZ0KjXE6N+MnJSGX1ojLyMtNZXJEf89ZydVEONUXZbDzUzpUXlHhmklPShfvY7NRIrAg5Xm1xDs5BQ+cp5pXlRfS9RRJF18AwGw628+LBNl440MaRUFdlUU46F9f4WFxRwNzSXNLjbALRVfNKuHdLAwdb+lgwKz/W5URE0oX76e31It1yHzfWXeEuyWJwxM+WI528eLCNF+vb2NHYjXOQkZbCBaW5vOei2Swoz6fkHGPP48HySh+PZDax4VC7wj1RNY9trxfplnuJhkOK9znn2HOyl+cPtPJCfRsbDrYzGnCkWHC44lsXlbOgPI/qopyEGlqYlprCqrointnXSkf/sCcmIyZduLdGqeVelpdJVnqKRsyI53T0D/P8gVae3d/K8wfaaA0t37GgPI9Vc4tZUJ5HXWluwt9rWjW3hGf3t7LxUDs3Xjg71uVMW9KF+9iiYZEeCmlm1BbnaKy7JLxAwLGjsZun9rbwzP5WXmvowjnITk9lfmhm6PzyfM9tCO/LTmdxRQGvHu9izfKKhL+xmnTh3tI7RGEEZ6eOV1ucq24ZSUiDI35erG9j/a4m1u1oom9oFAOqi7K5bnE5C8vzqSrKTvjAm8yyygJ2n+zhRNcpqosSe82ZpAv35p5BZkVwdup4tcU5vHSwTUv/SkIYGvXzzL5WHn7tJE/vbaFvaJT8zDTmluayuCKfhbPyyfXgmivnsnBWPgbsa+pVuCeaaMxOHVNbnM3AsJ+2vuGILUomEkmBgGPTkQ4e3NbIup0n6R0cJScjlWWVBSyr9HFBWS5pKfE1THEm5WamUVOcw96mXt62JLGXI0i6cG/tGWR+WXRmoc0pyQWCwyEV7hJPfvhUPduPdbLtWCedAyNkpKWwbHYBF9cUMq8sL6FGtkTb4op8Ht/dTO/gCPlZiXtfIanCPRBwtERw79SJxtaFPt4xwGVziqJyDZFw9Q+N8ujOJu7bepyNhzowYF5ZHtcvncXS2T4y0pK3hX4ui0Lhvq+pl5V1xbEu57wlVbi394/tnRqdcK8uygbQcEiJmVF/gBcPtvP77Y08trOJUyN+6kpyuH7pLC6pKaQwJ/HHb0dbRUEWvux09ircE8fYMMWxCUeRlpWeSkVBloZDyowa9QfYdLiDR3ac5LGdTbT3D5OVnsKFVYWsqCmkriRHN/inwMxYVJHPK8e7GPUHEnav1bDC3czWAP8BpAI/dc7dMeH1zwN/BYwCrcD/cM4djXCt03asox/4U994NNSW5Gg4pETd+KGLf9zTQkf/MNnpqVy3pBxfVjqLKvLjbv2WRLJ4Vj6bDndwuL2fBeWJuRzBpOFuZqnAncD1QAOw2czWOud2jzttO7DSOTdgZn8LfAd4fzQKno4jbQOY/an7JBpqi3N4/kBr1N5fklf3qRGe2dfC+l1NPLOvlYFhP5lpKSyqyOeGZRUsmpWvfvQIuaAsj7QUY29Tr3fDHVgF1DvnDgGY2T3AzcDpcHfOPT3u/I3AhyNZZKQc6xig0pcd1WnSdSU53Ld1iL6hUU/uyygzq7N/mCd2N7Nu50me39+G3znyM9NYXuljaWVB0g9djJaMtBTmleWxr6mX91wU62rOTzjpUwUcH/e8AbjiHOd/Anh0OkVFy5H2fuZEqb99zNLKAgD2nOzh8gS+GSOx031qhMd3NfHwayd5ob4Nf8BRU5zN1fNKWFZZQHVxjudnisaDBbPy2NfcS+fAcKxLOS8RbVqa2YeBlcBbzvL67cDtALW1tZG8dFiOtQ/wjmXRnZiwvNIHwM7GboW7hG1wxM9Te1t46JVG/rinBX/AUZSTzpvml7K8ykelL0s3RWfYBaGluw+19sW4kvMTTrg3AjXjnleHjr2Omb0d+DLwFufc0JneyDl3F3AXwMqVK92Uq52G3sER2vuHo3ozFYJLCZflZ7KzsSeq15HE5w84Xj7Uzu9faeTRHU30Do1Slp/JlXOLuai6kOqibAV6DM3KzyQ3M42Drf2xLuW8hBPum4EFZjaXYKh/APjg+BPM7BLgJ8Aa51xLxKuMgLGx53OKo79exPLKAnad6I76dSQx7TnZw++3N/LQKydo6hkkMy2FZZUFrKgp4oKyXHW5xAkzY15ZLoda+xJyvahJw905N2pmnwbWExwK+XPn3C4z+yawxTm3FvgukAf8LvQHcMw5d1MU656y0+Ee5ZY7wPIqH88daGNwxB/z/SElPjR2neKhVxp5aPsJ9jX3kpZivGVhGasXlbG4okCjXOLUvNI8Xmvo5mBrP/PLE2uHtbD63J1z64B1E459ddzjt0e4rog7GhrjHq0JTOMtq/ThDzj2NvWyoqYw6teT+NQ1MMwjO07y0PYTbDrSAQSHyt50cSUXVvmSbsXFRHRBWbAxuOFgmzfD3QuOtg1Qmpc5I8MTl4VGzOxs7Fa4J5nBET9/3NPM77ef4Nn9LYz4HfPKcvnC9QsxM09s35ZMinMzKMxJ56WD7XzkqrpYlzMlyRPuHdEfBjmmuigbX3a6+t2TRCDgePlwBw9sa+DRncGNLgqy0rhibgkragqZrZEuCcvMmFeax4ZD7QQCjpQEWj0zecK9fYCr5pXMyLXMjOVVBRox43GHWvv45sO7eeVYF12nRkI3Rn1cUlvI3FLdGPWKeeW5bD3Wye6TPSyv8sW6nLAlRbgPjvg52T3InOLo30wds7zSx3++eIQRf0BrfHhI39Aoj7x2gt9taWDL0U6M4GSXG5ZVsGS2box60QWlwb72DQfbFe7xZmwhr7rSmds2a1mVj2F/gAPNfadnrUpics6x9Wgn31q3lx2N3Qz7A5TmZXLDsgouqSmkwGMbRcvrFWSnM68slxcPtvHJay+IdTlhS4pwHxsGWTsDY9zHLB+7qXqiW+GeoNr6hnhgWwO/3Xycg639ZKSlcFG1j8vmFFFbrGV0k8k180u5b2sDw6OBhPntLCnC/Uh79Jf6naiuJJfcjFR2NXbDyprJv0Higj/geP5AK7/dfJwndjczGnBcNqeI7/zFPPqHR6O66JzEr2sXlPHLDUfZcrSDq+dFZ5vOSEuKcD/WMUB+VhpFOdH59fnul4+94dgHr6hlWaWPnSd0UzURNHad4ndbjvO7LQ00dp0iJyOVK+YWs7KumFkFWYwGnII9iV01r4T0VOPZfa0K93hypH2AOTHYjWZZVQH3bDqOP+C0AXEcGvEH+NpDu9hytIMDzX04YH55HreuqmVJRX7C7sAjkZebmcbldcU8u7+VL924JNblhCUpwv1Yez/LYnCX+5LaIv7zxSO8cryTy+Zohch4caStn3s2H+e+rQ209Q1RkJXG6kXlXDanSJOM5KxWLyrj39bt5WT3KWb7orfhT6R4PtxH/QEaOk9x44WzZ/zab11URkZqCo/tbFK4x9jwaIDHdzfxm03HeLG+ndQU47rF5cz2ZbFwVr7GpMuk3rKwnH9bt5fn9rfy/stnfsnyqfJ8uDd0nmI04GZsdup4+VnpXDO/hMd2NfE/b1yi0RUxcLitn3s2HeO+rQ209w9TmJPO9UtncVltkYYwypQsnJXHbF8Wz+xTuMeFbcc6AWI2+WDN8gr+5f4d7D7Zw7LKxJkAkcgGR/ys39XEPZuOs+FQsJX+9iXlzPZlM788T610OS9mwZU8H3ntZEJMTvR8uL98qIOCrDQWV8RmrPnbl8wixXawfmeTwj3K9pzs4d4tx3lweyNdAyMU5aTzjqWzuHROEQVZaqXL9L1lYRn3bD7O9mNdrJob312tng/3TUc6WDW3OGajVUryMlk1t5jHdjXx+XcsikkNXtY1MMzaV4PLAexo7CYjNYV3LJtFeX6WNr6QiLtmQSmpKcaz+1sU7rHU0jPI4bZ+bl0V20lEa5ZV8PU/7OZgax/zyhJrTeh4NOIP8Nz+Vu7f1sD6Xc34A47ZvizefdFsVlQXkqN10iVKCrLSuay2iGf3t/JPNyyOdTnn5Ol/BRsPBzdIuGLuzKwGeTY3LA+G+/pdTfzd6vkxrSVROefY2djDA9sbWPvKCdr7hynOzeCKucVcWltEZWH8D00Tb1i9uIzvPLaP4x0D1MzgkiZT5elw33S4nbzMtNObZ8TKbF82K2oKeWynwn2qGjoHeOiVEzy4vZH6lj5SU4zFFfm8c/lsFlbkkZYS3ze1xHtuXlHFd9fv476tDfzD9QtjXc5ZeTrcXz7UwWVziuJipuGa5RXc8ehe6lv6Em67rpl2enu6V06wKfTb1+V1Rdy8opKLqgrJztAyABI7VYXZvCm0kNjn3rYgbjfw8Gy4t/cNcaClj/deUhXrUgC45bJqfvhUPd9at4ef3XZ5rMuJO31Do/xxdzN/ePUEzx1oZcTvKMvL5O1LZrGiplAzRyWuvG9lDZ/5zXZeOtjOmxbE51ozng33zaENia+8ID7uaJfmZfKZ6+bzrUeDM9yuXVgW65Jirn9olCf3trDutZM8va+FodEAlb4sbru6jsy0VG1PJ3HrHctmUZiTzm+3HFe4z7SNhzrISk/hwqr42aD6tmvquHvTMf714d08+rk3x0V30UzrGhjmyT0trN/VxLP7WxkaDZCfmcYltYVcXF1ITXGOhi9K3MtMS+W9K6q4e9MxugaGKcyJv98sPRvumw53cGltUcwW1j/TMsAAX75xCbf/aiu/fvkYH7u6bmaLipHjHQP8cU8z/73xKIfb+gk48GWnc2ltEcurfMwpUaBL4vnLldX84qUjrH31BB+9qi7W5byBJ8O9e2CEPU09/P3b4u9O9vVLZ3HN/BK+98R+blhWQYUvK9YlRdyoP8DWo508va+Vp/e2sK+5F4Dy/EzevKCMZZUFVBVmq8tFEtqySh/LKgu4d8txhftMuX9bA84Rl31hZsbX3rOMP7vzRf7yJy/x35+4YkZ3iIqWhs4Bnj/QxnP7W3mhvo3ewVFSDOpKc7lxeXDz6JK8zFiXKRJRH7i8hv/10C6e2tvMdYtnxbqc1/FcuPcMjvCDpw5wzfwSLq2Nn/728RbOyufuT17Jbf+5iVt+vIFffWJVzNa+OV+NXafYcqSDDQfb2XCo/fQ+tbN9WbzrwtmkmDG/PI+sdA1bFO963+U1/HLDUb7y4E4e/3wJeXE0Ozp+KomQnzx7kM6BEb64Jr6X2L24ppB7//oqPvKzTbz/Jxv55zWLuOWy6rjcyq1ncISdjd3sbOzm1YZuth3t5GT3IAD5WWlUF+XwrgtnM788j/L8zLj+cxeJpMy0VO74i4u45ccv8d3H9vKNm5fHuqTTPBXuTd2D/OyFw9y8opILq+N/BcYFs/L53d9cxWfv2c6XH9zJD5+q5/ZrL+A9F1dSOsNdGIGAo7l3kCNtAxxt7+dwWz/7m3vZ39xHY9ep0+cV5qRTW5zDyjlF1JbkMtuXpZuhktQum1PEx66q4782HOGmFZVxszGPp8L9/zyxn0AA/jGOV1880yiaB/72al6ob+MHT9bzjT/s5ht/2M2C8jyuvKCEhbPyqC7Koboom6LcDPIy08hMSzln63jEH2BwxM+pYT99Q6P0D/npHRyh+9QIXadG6Ogfpq1viNbeIVp6hzjRdYrmnkFG/O70e6SmGOX5mZTnZ7KssoDKwmyqCrPJjaNfO0XixT/dsIgndjfzL/fv4IG/uzoulpgO61+qma0B/gNIBX7qnLtjwuuZwC+By4B24P3OuSNsoNDfAAAIn0lEQVSRLfXcntjdzO+2Hue2q+fG9WI+Z/KbTccBeO8lVVw+t5iDLX2cGvHzwLYG+of9bzg/PdXISE0hJcVITTGcA3/AMRoIMOJ3+APuDd8zUWZaCnmZaeRnpVGal8m8sjx82emU5mVSkpuBLyddLXKRMOVmpvGtP7+Qj/9iM+/+/gv86EOXxmyDoDGThruZpQJ3AtcDDcBmM1vrnNs97rRPAJ3Ouflm9gHg28D7o1HwRN0DI3zj4V08sK2RxRX5fOa6xF6YqyrUQobgsMm+oVG6+ofpHBhhYMTP0IifwZEA/kCAAMHVEg0jxSDFgmGflppCeqqRnppCVnoKmWmpZKalkJORRnZGKjkZqXG/i4xIorl2YRm/vf1KPvOb7fz5j17iy+9awq2ramM21yaclvsqoN45dwjAzO4BbgbGh/vNwNdDj+8Dfmhm5pybvAk5RSP+APUtfexs7GbXiR7W7ThJe/8wn71uPp++bkHM/iCjIcWMgqx0CrLSqY3tqsUiEoaVdcU88tk384V7X+Fra3fx3fX7ePOCUlYvKqOuJJfS/ExK8zIpyEqL+sCDcMK9Cjg+7nkDcMXZznHOjZpZN1ACtEWiyPHufLqef//jAQByMlK5pLaQn79zScx/BRIRASjOzeBnH7ucp/a28OTeZp7e28qjO5ted87X37OU266ZG9U6ZvTumJndDtweetpnZvum+557gLun+yZQShR+EMWYPlNi0GdKAB+K8Pt9/Nvw8fP/9jnhnBROuDcC4/epqw4dO9M5DWaWBvgI3lh9HefcXcBd4RQ2k8xsi3NuZazriCR9psSgzyTREk4H9WZggZnNNbMM4APA2gnnrAU+Fnp8C/BUNPrbRUQkPJO23EN96J8G1hMcCvlz59wuM/smsMU5txb4GfArM6sHOgj+ABARkRgJq8/dObcOWDfh2FfHPR4E/jKypc2ouOsqigB9psSgzyRRYeo9ERHxHu8MChcRkdOSPtzNbI2Z7TOzejP7YqzrmS4z+7mZtZjZzljXEilmVmNmT5vZbjPbZWafi3VN02VmWWa2ycxeDX2mb8S6pkgws1Qz225mD8e6lmSX1OE+bmmFdwJLgVvNbGlsq5q2XwBrYl1EhI0CX3DOLQWuBD7lgf9PQ8B1zrmLgRXAGjO7MsY1RcLnCE4/kRhL6nBn3NIKzrlhYGxphYTlnHuO4Iglz3DOnXTObQs97iUYHlWxrWp6XFBf6Gl66Cuhb4CZWTXwLuCnsa5FFO5nWlohoUPD68ysDrgEeDm2lUxfqAvjFaAFeMI5l+if6d+BfwYCsS5EFO6SQMwsD7gf+HvnXE+s65ku55zfObeC4KzvVWYWP9v4TJGZvRtocc5tjXUtEpTs4R7O0goSB8wsnWCw/9o590Cs64kk51wX8DSJfa/kGuAmMztCsHvzOjP779iWlNySPdzDWVpBYsyCa6P+DNjjnPterOuJBDMrM7PC0ONsgvsl7I1tVefPOfcl51y1c66O4L+jp5xzH45xWUktqcPdOTcKjC2tsAe41zm3K7ZVTY+Z/QbYACwyswYz+0Ssa4qAa4CPEGwNvhL6ujHWRU3TbOBpM3uNYCPjCeechg9KxGiGqoiIByV1y11ExKsU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKd5kxZuYPjVHfFVrq9gtmlhJ6baWZff8c31tnZh+cuWrfcO1ToXVg4oKZvT+0TLXGxssZKdxlJp1yzq1wzi0jOCPzncDXAJxzW5xznz3H99YBMQn3kIOhdWDCFlpSOiqcc78F/ipa7y+JT+EuMeGcawFuBz5tQavHWqFm9pZxM1G3m1k+cAfw5tCxfwi1pp83s22hr6tD37vazJ4xs/vMbK+Z/Tq0fAFmdrmZvRT6rWGTmeWHVmb8rpltNrPXzOyvw6nfzH5vZltDv4XcPu54n5n9bzN7FbjqLNdcFnr8SuiaC0Lf++Fxx38y9sMhtKHMttB7PBnB/w3iZc45felrRr6AvjMc6wJmAauBh0PH/gBcE3qcR3Aj99Ovh47nAFmhxwuALaHHq4FugovApRBciuFNQAZwCLg8dF5B6H1vB74SOpYJbAHmTqixDtg54Vhx6L/ZwE6gJPTcAe8LPT7bNX8AfGjcOdnAktDnTg8d/xHwUaCM4LLUc8dfd9xnffhMf9b60lfaFH8WiMyEF4HvmdmvgQeccw2hxvd46cAPzWwF4AcWjnttk3OuASDUT15HMPBPOuc2A7jQksFm9g7gIjO7JfS9PoI/LA5PUuNnzezPQo9rQt/THqrl/tDxRWe55gbgy6HNLR5wzh0ws7cBlwGbQ581m+A671cCzznnDofew1MbsUj0KNwlZszsAoJh2EKw5QqAc+4OM3sEuBF40cxuOMO3/wPQDFxMsIU+OO61oXGP/Zz777kBn3HOrZ9C3auBtwNXOecGzOwZICv08qBzzn+u73fO3W1mLxPctWhdqCvIgP9yzn1pwrXeE25dIuOpz11iwszKgB8DP3TOuQmvzXPO7XDOfZvgiomLgV4gf9xpPoKt4gDBFSMnu3m5D5htZpeHrpFvZmkEVwT929B68ZjZQjPLneS9fEBnKNgXE2xdh33N0A+1Q8657wMPARcBTwK3mFl56NxiM5sDbASuNbO5Y8cnqU0EUMtdZlZ2qJskneCm178CzrQ++9+b2VsJbte2C3g09NgfulH5C4J90veb2UeBx4D+c13YOTdsZu8HfhBaP/0Uwdb3Twl222wL3XhtBd47yed4DPgbM9tDMMA3TvGa7wM+YmYjQBPwb865DjP7CvB4aHjoCPAp59zG0A3bB0LHWwiONBI5Jy35KzIJC+7b+rBzLq62wQt1D/2jc+7dsa5F4o+6ZUQm5wd88TaJieBvL52xrkXik1ruIiIepJa7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h40P8HSJDZlXB9PAcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(decals['decals_ra'], decals['decals_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, decals, \"decals_ra\", \"decals_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add HSC-UDEEP" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl0m9d95vHvj9i4ACTFTStlShRlWZK3RLZjO40dZ1PcjN1O08RZmmmb1DM9zdIm7UzSdtKMc840mZzmpE2TM3WTTNK0qevEaaJ6iXfLuy3Jm3aJWkkt3CXuAAHc+QOATMuSCFEAAbx4PufwGHjxEu+FJT28vO+9v2vOOURExFsqCt0AERHJPYW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SB/oS7c1NTk2traCnV5EZGStGXLln7nXPNM5xUs3Nva2ti8eXOhLi8iUpLM7FA252lYRkTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMKtkK1WPzkhcNvOvbRa5YWoCUiIrmjnruIiAcp3EVEPEjhLiLiQWUz5n6msXUREa9Sz11ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDwoq3A3s/VmttvMOs3si2d4famZPW5mL5vZa2Z2c+6bKiIi2Zox3M3MB3wHeD+wGviIma0+7bS/BO52zl0J3AZ8N9cNFRGR7GXTc78a6HTO7XfOxYC7gFtPO8cBtenHdcDR3DVRRETOVzaLmBYDXdOedwPXnHbOV4CHzOwzQA3w7py0TkREZiVXN1Q/AvzQObcEuBn4sZm96b3N7HYz22xmm/v6+nJ0aREROV024X4EaJ32fEn62HSfBO4GcM49B1QCTae/kXPuTufcOufcuubm5tm1WEREZpRNuG8COsxsmZkFSd0w3XDaOYeBdwGY2SWkwl1dcxGRApkx3J1zceDTwIPATlKzYrab2R1mdkv6tC8Af2BmrwL/Cvyuc87lq9EiInJuWVWFdM7dD9x/2rEvT3u8A7g+t00TEZHZ0gpVEREPUriLiHiQwl1ExIPKOtyf6eynbyRa6GaIiORc2YZ7NJ7gvq3HeKazv9BNERHJubIN97FoAoCDA2MFbomISO6VcbjHAegdiTIeixe4NSIiuVW+4T4t0A8PjBewJSIiuVe+4Z4elgE4NKhwFxFvKeNwT/XcWyIhjbuLiOeUb7jH4vgqjJXzI3QPTTCVSBa6SSIiOVO+4R5NUBP00dZYQyLpOHpiotBNEhHJmbIN9/FYnJqQn6WN1QAc1E1VEfGQsg33sWgq3MMhP83hEIc07i4iHlK+4R5LDcsAXNRYzaGBcZIqQS8iHlG+4Z7uuQNc1FjDxFRCdWZExDPKMtzjiSTRePJUuLelx90PadxdRDyiLMN9LJZawFQTTIV7Q02QykAFx4c1Y0ZEvKE8wz29gKkmlBpzNzOqg34mYolzfZuISMko73APvr6FbFXAx+SUFjKJiDeUZ7jHMj3318O9MlDBxJR67iLiDeUZ7umiYZlhGUj13BXuIuIVZRrucSoMKgOvh3tlwMekxtxFxCPKM9xjcaqDfirMTh2rCqrnLiLeUZ7hHk28YUgGUsMy8aRTdUgR8YQyDfdUz326zBDNpHrvIuIB5RnuscQbZspAqucOaGhGRDyhPMM9Gj9VNCyjKv1cN1VFxAvKLtwTScfE1Jt77pWneu4acxeR0ld24T5+hgVMoGEZEfGWsgv314uGvXFYpjKQ+l+hG6oi4gXlF+5R9dxFxPsU7ml+XwUBn+mGqoh4QvmF+1mGZUD1ZUTEO8ov3NM999MXMUFqxozCXUS8oCzDvSrgw1dhb3pNPXcR8YryC/czrE7NqAz4NFtGRDyh/MI9Gn9T0bCMqqBPW+2JiCeUZ7ifYbwdMj13rVAVkdKXVbib2Xoz221mnWb2xbOc8yEz22Fm283sJ7ltZu6ca1imKlDB5FSCZNLNcatERHLrzCk3jZn5gO8A7wG6gU1mtsE5t2PaOR3Al4DrnXNDZtaSrwZfiKRzTMTOMSwT8OGA0Vic2srA3DZORCSHsum5Xw10Ouf2O+diwF3Araed8wfAd5xzQwDOud7cNjM3JqcSJB3nHJYBGJ6YmstmiYjkXDbhvhjomva8O31supXASjN7xsyeN7P1uWpgLkXT4+mZOjKny5T9PalwF5ESN+OwzHm8TwdwI7AEeNLMLnXOnZh+kpndDtwOsHTp0hxdOnvR9BZ6Qf+Zh2Ve77nH56xNIiL5kE3P/QjQOu35kvSx6bqBDc65KefcAWAPqbB/A+fcnc65dc65dc3NzbNt86zF0nPYQ/6z9NwD6rmLiDdkE+6bgA4zW2ZmQeA2YMNp5/yCVK8dM2siNUyzP4ftzIlTPXffucN9eFLhLiKlbcZwd87FgU8DDwI7gbudc9vN7A4zuyV92oPAgJntAB4H/sw5N5CvRs9WLJ4K99AMY+66oSoipS6rMXfn3P3A/acd+/K0xw74fPqraEXj5+65B/0VGAp3ESl9ZbVCNdNzD55lzL3CjMqAT2PuIlLyyjLcQ2eZLQOpaZLDk5otIyKlrazCPRpPYEDA9+ZyvxlVQfXcRaT0lVW4x+LJ1Li6nT3cKwM+jbmLSMkrq3CPxpNnneOeUaUxdxHxgLIL97PdTM2oCvg0z11ESl5ZhXssy3BXz11ESl15hXsiec6ZMgCVwdSGHdG4dmQSkdJVVuEejSfOuoApo0rFw0TEA8oq3LMZlqlUfRkR8YCyC/eZZ8ukXtd0SBEpZWUV7tlOhQSV/RWR0lY24e6cO89hGY25i0jpKptwn0o4HOeuKwPaak9EvKFswj2WOHdFyAxtki0iXlA24R5Nb7E3U7gHfBWE/BUKdxEpaWUT7pme+0w3VAFqqwKaCikiJa18wn2GjTqmq6sKaMxdREpa2YR7Zou90AwrVAEilX5GNFtGREpY2YV7MHDu2TIAtZUBjbmLSEkrm3CPqecuImWkbMI9U+UxmzF33VAVkVJXNuH++ubYWYR7ZUBVIUWkpJVVuFcY+CrOvn9qRqTSTyyRZHJKNd1FpDSVTbhHs9gcO6O2KgCo7K+IlK6yCfdUud+ZZ8oA1Fb6AW3YISKlq2zCPZqYuSJkRm1lquc+op67iJSosgn3WDyR1c1UgNqqdM9d0yFFpESVTbhHs6jlnpHpuWshk4iUqrIJ91g8mdUCJoDIqWEZ9dxFpDSVTbifV8/91LCMeu4iUprKJtzPZ7ZMVcCHv8I0LCMiJauswj3bnruZqb6MiJS0sgj3ZNIRO4+pkKD6MiJS2soi3MfTZQSynQoJKvsrIqWtPMI9mhpeOZ+eu4ZlRKSUlUW4j6bD/bx77hqWEZESVRbhPh7LDMtkN1sGUtMhVVtGREpVWYT72KyGZQKqLSMiJas8wj2WDvcsV6hCalhmLJYgnkjmq1kiInmTVdqZ2Xoz221mnWb2xXOc91tm5sxsXe6aeOHGorOYLZNepaqbqiJSimZMOzPzAd8B3g+sBj5iZqvPcF4E+BzwQq4beaHGY7MblgGFu4iUpmzS7mqg0zm33zkXA+4Cbj3DeV8Fvg5M5rB9OTEancUN1UrVlxGR0pVNuC8GuqY9704fO8XM3gK0OufuO9cbmdntZrbZzDb39fWdd2Nnazbz3E9ttaeFTCJSgi74hqqZVQDfBL4w07nOuTudc+ucc+uam5sv9NJZG4sl8FdYVptjZ0QqtWGHiJSubML9CNA67fmS9LGMCLAWeMLMDgJvAzYU003VsWj8vHrtMG3DDg3LiEgJyibxNgEdZrbMzILAbcCGzIvOuZPOuSbnXJtzrg14HrjFObc5Ly2ehbFY/LxmyoCGZUSktM2YeM65OPBp4EFgJ3C3c267md1hZrfku4G5MB5NnHfPPRzSVEgRKV3+bE5yzt0P3H/asS+f5dwbL7xZuTUWi5/XAiYAX4URCfk1LCMiJak8VqhG44QC2U+DzKitCqi+jIiUpLII9/FY4rx77pAp+6ueu4iUnrII99Ho+d9QBZX9FZHSVRbhPh47/xuqoLK/IlK6yiLcx2bZc49UBhiJqucuIqXH8+EeTySJxs9vc+yM2kr13EWkNHk+3MdmsQtTRm1VasMO51yumyUikleeD/fZlPvNiFT6SbrXf0CIiJQKz4f7bLbYyzhVX0YlCESkxHg+3DNVHatmuYgp9R4KdxEpLVmVHyhlmV535SyHZUD1ZUQEfvLC4TMe/+g1S+e4JdnxfLhngrlyNj13DcuIlJXhySmSScf9W48XuikXzPPhnhlSmVW4a1hGxLOccxzoH+PZfQO8dHiIV7pOsL9vDIDmSIi2xmoub61neVO4wC2dHc+H+4X03DUsI+Itx09O8kxnP8/s6+e5fQMcO5na8jkc8tM6r4r3rJ6PAYcGxtl65CQvHz7B59+zkvrqYGEbPgueD/fhiSn8FUbAl/0WexmnttrTsIxISYrFk2w+OMh3n9jH7p4R+kaiAFQHfSxvDnP1sgbam8M01gQxe2NGnBiP8c2H9/Dwjh5+e13rmd6+qHk/3CenqK0KvOkPLhshv4/KQIX2URUpIScnpnhidy8P7ehh4+4+RqNxfBXGsqYa1l00j/bmMAvqKqmYIRPqq4Nc197IU3v7eXtHEwvrquboE+SG58N9ZDJ+qgc+G5HKgMr+ihS5rsFxHtnZwyM7e3hu3wBJlxpquWRhhFULalneXDOrVeo3rGxh08EhfrXtOL93/bI8tDx/PB/uwxNTp2a9zIbqy4gUn7FonBcODPDknn6e3NPH/v7UjdCOljBvX9HM6oURljRUz9g7n0lV0Mc7V7Vw/9Zj7O0doaMlkovmzwnPh/vIZJzaqtl/zLqqACcmYjlskYicr2TSse3oSR7f1ccznf28dHiIeNIR8KWGW3790oVcvCBCUziU82u/bVkDz+3r56HtPQr3YjI8OcXy8OynMjWGQ3QNjuewRSKSjVg8yTOd/fxq23Hu33qMkWgcAxbVV3H9iibam8Nc1FhNYBa7rJ0Pv6+Cty1v5IFtxxmZnCJyASMBc8nz4X6hPfemcIiXDw/lsEUicjbReIKn9/Zz32vHeHhnT+qeWchPW1MNqxZE6JgfIRya+9hqnVcNQPfQBJcsVLgXheGJC/tJ2xQOMjgWI5F0+CoubPxORN4sGk/wbOcA9209xr2vHWVyKklloILVC+u4dHEt7c1h/Hnunc9kUX0VFZYJ99qCtiVbng73eCLJWCxxQTdUm8Ihkg6GxmN5Gc8TKUd9I1Ge6ezn0V29PL6rl9Foqod+yYJaLltSR3tLGH9F8dQ1DPoraIlU0j1UOkO0ng730XS53wuZCtkYTq1M6x+NKtxFZql/NMrmg0NsPjjIs/sG2HFsGICaoI9LFtayZlEd7c01Be+hn8uSeVVsPzqMc25W62bmmqfDPTOFsbYqQCyenNV7ZAJ9YFQzZkSy4Zyjs3eUzYeG2HJoiCd299Kf/vfjrzBaG6p57+r5dLREWFg/82KiYtE6r5rNh4YYHIvRWAIdPW+He3rxUW2l/9RfrvOVCff+0WjO2iXiJZkCXE/tTdVrefHgIINjqX9vDTVB5kdCvPWiBtoaq1lcX1XUvfNzWTwvtUK1e2hC4V5omXCPVAYuINwzwzLquYtkTE4leG7fAA/vTC3xP3JiAoD66gDLGmu4cWUzbY01NIbfXLOlVM2vrSTgM7qHxrm8tb7QzZmRp8M9U83xQhcxBXymnruUvZMTUzy2q4eHtvfw6M5eYokkQX8FK5rDrGubR0dLhIaa0quemC1fhbGororuoYlCNyUrng73TDXHC5ktY2Y01oToH1G4S/k5emKCR3f28NCOVM2WeNLREglxxdJ6Vi+sZXlTcd8EzbUl86p48eBgSUyN9na4Z3ru5xnup2+nVWHwWvfJnLVLpFglk47XjpzksZ09PLKz99SslsaaINe2N7JmUR1L5lWVzE3QXFsyr5pn9g3QOzJZ9FUiPR3umWqO4QuYCpn5/sy0ShGvmZxKrQp9JB3o/aNRKgzeetE81q9ZwCULa2mOFP8NxLmwJHNTdXBC4V5IwxNxwiH/Bf/6VBP00zOsYRnxjpHJKR7b1cuvth3nid19TEwlCPkrWDk/wk2rmlnZEqG6AMv8i11DTZCqgI+uoXGuWtZQ6Oack6f/9EYmp6i9wF47pHruY9F4ySxeEDmTkckpHtnZw50b97O3d5R40hEJ+blsSR2rF9ayrLmmqFaFFiMzY8m8qlOzg4qZp8N9OEcV3MIhP/GkYyQav6CbsyJz7eT4FA/v7OFX247x5J5+YokkdVUBrlnWwNrFdbTmoOZ5uVkyr4qNe/qYSiTzXpHyQng63C+0ImRGpgrdwGhM4S5Fr3tonEd39vLIzh6e6ewn6VJTeq9qm8eli+tysolFOWuOVJJ0MDgWY35tZaGbc1aeDvfhySlaIhf+Pz8T7v2jUZY11Vzw+4nkUjSeYMvBITbu6WPjnj52HR8BoL25hrevaDo1w0VDirnRmJ7Lr3AvoOGJOCuaczPmDmiuuxQF5xy7e0Z4em8/T+3t58UDg0xMJfCZ0dZUzfvXLuCSBbU0aYZLXmSKCQ4U+cJGT4d7rnZNqcn03MdUgkAK48R4jI17+vjhMwfp7Bs9tfq6KRzi8tZ6OlrCs94EWs5PddBPVcDHQJHngWfD3TnHcI7G3GuCfgz13GVudQ2O86ttx3l4Zw9bDg2RSDqqgz7am8N0tIRZ0RKmvtq7y/2LWWM46I1wN7P1wN8CPuB7zrmvnfb654FPAXGgD/h959yhHLf1vExMJUgkXU5ugPoqjKqgj4ExhbvkV9fgOPdvPcZ9W4+dWhW9sK6Sd3Q0sWpBLYvLeHVoMWmoCRb93sozhruZ+YDvAO8BuoFNZrbBObdj2mkvA+ucc+Nm9ofA/wE+nI8GZytTyz1Xm9mGQ376R4r7J7WUpu6hVA/93teO8UrXCQAuW1LH+jULWLu4ztPFuEpVY02Ird0niSdnt0/EXMim53410Omc2w9gZncBtwKnwt059/i0858HPp7LRs5GpvRALoZlIB3uRX4DRUqDc46dx0Z4dGcPD+44zrYjqfotC+sqed/q+Vy6pF6BXuSawkEccGJsqtBNOatskm8x0DXteTdwzTnO/yTwwJleMLPbgdsBli5dmmUTZ2d6LfdcqAn5i36MTYrXeCzOs50DPLY7tWfosZOTAFy5tJ71axawZlFtSWwAISmZ6ZDFPFSb0xuqZvZxYB1ww5led87dCdwJsG7dOpfLa5/u9YqQOeq5V/o52D+Wk/eS8tA1OM6jO3t4dFcvL+wfPFX/vKMlzLXLG1m5IKJFcSWqIbP9ZhF3+LJJviNA67TnS9LH3sDM3g38BXCDc67gP84ytdxz1XOPhPyMRONMTiWoDGi6mbxZplzuwzuO87Mt3aeKzTWFg1y9rIGLF0S4qLFa9Vs8oCboI+SvKOq9lbMJ901Ah5ktIxXqtwEfnX6CmV0J/AOw3jnXm/NWzsJwDnZhmi4z131gLMbi+uIu9SlzJxZP8vz+AR7cfpxHdvbQMxzFV2Esbajm5rXzWLWw9tQ+vOIdZpaeDlnwfuxZzZh8zrm4mX0aeJDUVMgfOOe2m9kdwGbn3AbgG0AY+Gl6ifNh59wteWz3jE7dUM3hbBlIzXVXuJe3yakET+7p44FtqUAfmYwT9FXQMT/MOzqauXhBhOqgZ5eQSFpjTYijRVwdMqu/gc65+4H7Tzv25WmP353jdl2w4YnUP7iQPze/Ap8qHlbEP6klfyZiCZ7Y3ct9W4/x2K5exmMJ6qsDvG/NAqoCPla0hIu6QqDkXmNNkO1HTxJPJItyq0HPdi9GJqeorfLnrFjS6z334h1jk9wanpzi8V29PLS9h8d3pwK9OuhjzaJa1i6uY3lTuOj30ZT8aQwHSTo4emKSpY3VhW7Om3g23Icn4zm7mQqvj7n3aa67p2U2hH5kZy/P7utnKuFoCof4jSsXU+n3saypRoEuADTUpO6lHBwYU7jPpVztwpQR9FdQE/QV9d1xOX/OOfb2jvLgtuNvWFDUWBPkmmWNrFlUqw0t5Iwy1SEPDYwBzYVtzBl4NtyHJ3JTEXK6pkhIq1Q9Yn/fKBtePco/P3/41J/p0oZq1q9ZwKqFEZrDIdU/l3OKhPwEfMaB/uKsMePdcJ+Ms6Aut4X0m8IK91I2MBplw6tH+feXj/Ba90nMoK2xhuvaG1m9qFYLiuS8mBmNNaF0z734eDbcRyaniIRy+491YV3lqUp9UhrGY3Ee2dnLdx/vZE/PCEkHi+oquXntAi5dUk9dlQJdZq8xHOSgwn1uDU/kppb7dCtawty39ZhWqRa5yakEG/f08cDWYzy0o4fxWILaSj/Xr2jiyqXzWFDEW6NJaWmsCfL8/kESSVd0N9o9Ge5TiSQTU4mc/5rd0RLBOdjXN8qaRXU5fW+5MCcnpnhid2ra4sM7eoglklQFfKxdXMvlS+ppa6rRTVHJucaaELFEkqMnJmhtKK4ZM54M98wWZJEczpYB6JgfBqCzV+FeDHpHJnloew8Pbj/Oc/sGiCdT0xavWFrP2kV1mrYoeZfZp3Z//5jCfS68Xss9tz33tsZUWOztGc3p+0r2Bsdi3Lf1GP/xylE2HRzEkfrV+Lr2JlYvjLBE0xZlDjWnw31f7yg3rCyu6ZCeDPdc78KUEfRX0NZYzd7ekZy+r5xbNJ7g0Z293LOlm417+ognHR0tYd65qoW1i+uYH9G0RSmMmqCPuqoA+/qKr8PnyXDPTFfMx242HS0R9ijc58S2Iyf52ZZufvHKEU6MpxalXdveyBWt9SyorVSgS8GZGe3NNQr3uXI4vXFta0Puqzd2zA/z8M4eYvHUxguSW4NjMX7x8hF+uqWbnceGCforeO/q+TSFQ6xoCWvIRYpOe3OYJ/b0FboZb+LJcO8aHKcyUEFzHupor2gJk0g6Dg6MsXJ+JOfvX46mEkme2N3Hz7Z08ciOXhLOsbi+ilsuX8RlS+pUPleKWntLmJ9u6WZ4cqqoFsJ58l/N4cFxWudV5+XX9hUtqRkze3tGFe4XqGtwnLs2Hebuzd30jURpCge5tr2Rtyydl/PVxSL5srypBoD9fWNc0Vpf4Na8zpPh3jWUvzmn7c1hzEjfVF2Yl2t4WTLp2Linjx8+e5CNe/ow4OIFEdavWcDK+RFNXZSS057u8O3rHVW455Nzjq7Bca5Z1pCX968M+FjaUM3e3uK7gVLMRqNxfra5ix89d4gD/WO0REK8a1UL69oaVAJAStrShmr8FVZ0N1U9F+4nxqcYjcZZMi9/W+F1tITp1Fz3rHQPjfPFe7ay+dAgk1NJWudV8eGrWlmzqFYbRYsnBHwVXNRYrXDPt66h1EyZpXlcLbaiJZKab12k22sVmnOOzYeG+MHTB3hw+3EA1i6u4/r2pqJbxSeSC+3NYfb1FVcBMc+F++vTIPMXIh0tYaYSjkOD47Q3h/N2nVITiye5b+tRfvD0QbYeOUldVYDb39FObaWf+urcrzkQKRbtLWEe393LVCJZNHvpei7cuwZTu5HnNdyn1ZhRuKfmpv/z84f4xyf3MxKN0xwJcesVi7iydZ7WAkhZaG9Odfi6BsdZXiSZ4LlwPzw4TkNN8NSG1vmQCfTO3lHetyZvlyl6+/pG+f7TB7hnSzfReJKV88N8sL2JFS1hrR6VsrK8OTUdcl/fmMI9X7qHxmnN481USG2Wvbi+ir095VmG4NWuE/z5v29lx9FhfBXGFa31XL+iifmqky5lqr0pFej7+0aB+YVtTJrnwv3w4DhrF+e/HO+KljC7jpdXuD+3b4BvP7aXZ/cNUBmo4IaLm7l2eWPOC7SJlJq66gBN4VBRzZjxVLgnko6jJya4+dL8Ly66elkD33hwN91D4yyZ590ZIM45nts3wLce3cuLBwZpjoT485tXEaioIKTdqEROSRUQK54ZM56623V8eJKphKN1DsL2lssXAfAfrx7L+7UKZdPBQW76m4189HsvsOvYMB+4bCGffucKwqGAgl3kNO0tYTp7R3HOFbopgMd67ocH8j/HPaO1oZorl9az4dWj/OGN7Xm/3lza2n2Sbzy0myf39BEO+fnAZQu5qq2haKZ4iRSj9uYwJyemGByL0ZiHooXny1PhnlnAlI9SvwA/eeHwG54vrq/i3teOsbdnhA4PFBHr7B3lbx7azQPbjlNfHeBL719FyO/TdEaRLFyyIJUBr3Sd4F2XFP6mqqf+1XYNjlNhsKg+v7NlMi5dXIcBG149OifXy5fuoXH+7Kev8p5vbuTRXb3ctKqFz97UQaQyoGAXydJbLppHVcDHk0VS291bPffBcRbWVc3Z8EGkMsDy5ho2vHqUz79nZcnN7e4dmeQ7j3XykxcPY2Zc197IDRe35HWNgIhXVQZ8XNveyEaFe+4dHhzP25DM2Vy+pJ6fv3yE17pPcnkRlfs8l8GxGP+wcR8/eu4gUwnHh9a18tl3reDxXcXxl1KkVN2wspnHdvVysH+MtnSd90LxVLh3DU1w4xzvQL5mUR33vnaMX75ytOjD/cR4jO89dYA7n9rPVDzJ5a31vGtVC43hkIJdJAfekc6fJ/f2KdxzZSKWoG8kOiczZaarCvq44eJmfvnKEf7one1FcZf8dCcnpvj+0wf4f08fYCQaZ+3iOt69qoUWrSgVyam2xmqWNlSzcXcfn7i2raBt8Uy4dw/lvxrk2fzxuzv4ze8+y+fueoUf/f7VRbOb0MBolM/f/SrP7x8gGk+yZlEt71o1X1vYieSJmXHDymbueambaDxByF+49SCemQqxO13npRDhvmZRHV+9dQ1Pd/bzrUf2zPn1T3egf4y/+uU2rv/6Yzy5p4+V8yN85qYVfOyaixTsInl2w8pmxmMJthwcKmg7PNNz/6fnDrGorpLLluS/rsyZfPiqpWw5NMS3H+vkyqX13LRqbue5xhNJnurs58fPHeKxXb0EfMYtly+mtaGKlogCXWSuXNveSMBnbNzTx3UrmgrWDk+E+ytdJ3jxwCB/+euXFHQV5R23rmXbkWE+85OX+cJ7L+YT116U152anHPOoxroAAAJmUlEQVRsPzrML185wl0vdjESjVMT8nPTqhauWdaggl4iBVAT8nNVWwMb9/TxpZsvKVg7PBHu//jUfiKVfm67emlBrj995eoHLlvIv798hDvu3cHdm7v4yi1ruGZZQ87mwPeNRNlyaIiNe/p4fFcvx4cn8VcYHfMjXNlaz6oFEW39J1Jg71jZzNce2MWRExMsnqNFlacr+XA/PDDOA1uPcfs72oti8U19dZDfva6NeTVBvnrvDm6783kW1lVy48Ut3LCymRUtYVobqs55o8U5x/BEnOPDk+zvG6Wzd5S9vaO82n2CQ+n6OUF/BR0tYa5f0cSqBRFqiuCzi0jK+jUL+ObDe/jTu1/lnz55dUFGFLJKBDNbD/wt4AO+55z72mmvh4B/At4KDAAfds4dzG1Tz+wHzxzAV2H83vVtc3G5rJgZJ8anuP0dy9nafZJdx0e456Vu/vXFw+nXoSUSIhzyUxX0EfL7iMWTTE4lmJhK0D8aZXIq+Yb3rK8KsHheFe9fu4ClDdUsrq9SD12kSLU11fDXv3kpX/jpq3z13h3ccevaOW/DjOFuZj7gO8B7gG5gk5ltcM7tmHbaJ4Eh59wKM7sN+Drw4Xw0eLq+kSj/tqmLW69YXJS7AIX8Pta1NbCurYF4IsnRExMMjMUYHItxYnyKWCLJVCLJRCyGv6KCoL+CcMjPssYaIlUBIpV+mmpCNEWCBZ1SJSLn77feuoTdPSPc+eR+Ll4Q4WPXXDSn18+m53410Omc2w9gZncBtwLTw/1W4Cvpxz8D/t7MzOWhsLFzjs2HhrjrxS7u23qUeMLxB7+2PNeXyTm/r4KljTUsbSzsqjURmTv/Y/0q9vSM8Fe/3M6mA4Nc197Ete2NczJlO5twXwx0TXveDVxztnOcc3EzOwk0Av25aOR033pkL3/76F7CIT//+S1L+Ng1S7l4QemX2xUR7/FVGH/3kSv5yobtPLmnj1+8kqog+z8/sJpPvn1ZXq89p3fhzOx24Pb001Ez230h77cd+OvsT28iDz9siog+X+ny8mcDj3++j83iez71dfjU7C+Z1fhONuF+BGid9nxJ+tiZzuk2Mz9QR+rG6hs45+4E7symYblmZpudc+sKce25oM9Xurz82cD7n69YZTPdYhPQYWbLzCwI3AZsOO2cDcB/ST/+IPBYPsbbRUQkOzP23NNj6J8GHiQ1FfIHzrntZnYHsNk5twH4PvBjM+sEBkn9ABARkQLJaszdOXc/cP9px7487fEk8Nu5bVrOFWQ4aA7p85UuL3828P7nK0qm0RMREe/REkcREQ8qi3A3s/VmttvMOs3si4VuTy6Z2Q/MrNfMthW6LblmZq1m9riZ7TCz7Wb2uUK3KZfMrNLMXjSzV9Of738Vuk25ZmY+M3vZzO4tdFvKjefDfVr5hPcDq4GPmNnqwrYqp34IrC90I/IkDnzBObcaeBvwRx77s4sCNznnLgeuANab2dsK3KZc+xyws9CNKEeeD3emlU9wzsWATPkET3DOPUlqhpLnOOeOOedeSj8eIRUSiwvbqtxxKaPpp4H0l2dugpnZEuDXge8Vui3lqBzC/UzlEzwTEOXCzNqAK4EXCtuS3EoPW7wC9AIPO+e89Pm+Bfx3IDnTiZJ75RDuUuLMLAzcA/yxc2640O3JJedcwjl3BamV31eb2dzXhs0DM/sA0Ouc21LotpSrcgj3bMonSJEyswCpYP8X59zPC92efHHOnQAexzv3T64HbjGzg6SGQm8ys38ubJPKSzmEezblE6QIWWpvwu8DO51z3yx0e3LNzJrNrD79uIrUngm7Ctuq3HDOfck5t8Q510bq39xjzrmPF7hZZcXz4e6ciwOZ8gk7gbudc9sL26rcMbN/BZ4DLjazbjP7ZKHblEPXA79Dqtf3Svrr5kI3KocWAo+b2WukOiEPO+c0ZVByQitURUQ8yPM9dxGRcqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4y5wxs0R6rvr2dJnbL5hZRfq1dWb2d+f43jYz++jctfZN155I14ApCmb24XQJa82LlzNSuMtcmnDOXeGcW0NqNeb7gb8CcM5tds599hzf2wYUJNzT9qVrwGQtXW46L5xz/wZ8Kl/vL6VP4S4F4ZzrBW4HPm0pN2Z6oWZ2w7QVqS+bWQT4GvBr6WN/ku5NP2VmL6W/rkt/741m9oSZ/czMdpnZv6TLGGBmV5nZs+nfGl40s0i6KuM3zGyTmb1mZv81m/ab2S/MbEv6t5Dbpx0fNbO/MbNXgWvPcs016cevpK/Zkf7ej087/g+ZHw7pzWZeSr/Hozn8YxAvc87pS19z8gWMnuHYCWA+cCNwb/rYfwDXpx+HSW3kfur19PFqoDL9uAPYnH58I3CSVIG4ClKlGd4OBIH9wFXp82rT73s78JfpYyFgM7DstDa2AdtOO9aQ/m8VsA1oTD93wIfSj892zW8DH5t2ThVwSfpzB9LHvwt8AmgmVbJ62fTrTvus957p/7W+9OU/z58FInPhGeCbZvYvwM+dc93pzvd0AeDvzewKIAGsnPbai865boD0OHkbqcA/5pzbBODSpYPN7L3AZWb2wfT31pH6YXFghjZ+1sx+M/24Nf09A+m23JM+fvFZrvkc8BfpzSx+7pzba2bvAt4KbEp/1ipSNd7fBjzpnDuQfg9Pbswiuadwl4Ixs+WkwrCXVM8VAOfc18zsPuBm4Bkze98Zvv1PgB7gclI99Mlpr0WnPU5w7r/nBnzGOffgebT7RuDdwLXOuXEzewKoTL886ZxLnOv7nXM/MbMXSO1SdH96KMiAHznnvnTatf5Ttu0SmU5j7lIQZtYM/F/g751z7rTX2p1zW51zXydVLXEVMAJEpp1WR6pXnCRVOXKmm5e7gYVmdlX6GhEz85OqFvqH6brxmNlKM6uZ4b3qgKF0sK8i1bvO+prpH2r7nXN/B/wSuAx4FPigmbWkz20ws4uA54F3mNmyzPEZ2iYCqOcuc6sqPUwSILX59Y+BM9Vp/2Mzeyep7dm2Aw+kHyfSNyp/SGpM+h4z+wTwK2DsXBd2zsXM7MPAt9O10ydI9b6/R2rY5qX0jdc+4Ddm+By/Av6bme0kFeDPn+c1PwT8jplNAceB/+2cGzSzvwQeSk8PnQL+yDn3fPqG7c/Tx3tJzTQSOSeV/BWZgaX2b73XOVdUW+Clh4f+1Dn3gUK3RYqPhmVEZpYA6optEROp316GCt0WKU7quYuIeJB67iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kH/HzeoCz+D46vCAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(hsc_udeep['hsc-udeep_ra'], hsc_udeep['hsc-udeep_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, hsc_udeep, \"hsc-udeep_ra\", \"hsc-udeep_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add HSC-DEEP" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl0nHd97/H3d0Yzkma0b7ZsWba8JLazJyYJhJYACTgBkt42BUIpt4WSC6d0g7YXSi/00nPugfbc3pZCb5tSoEBCoCxtAEPghqQhiXcnjmMnTmx5keRN1r6NNMvv/jHPyIpjW2NrpJl55vM6Ryczzzya5zdgffTV7/kt5pxDRET8JZDvBoiISO4p3EVEfEjhLiLiQwp3EREfUriLiPiQwl1ExIcU7iIiPqRwFxHxIYW7iIgPleXrwk1NTW7FihX5uryISFHauXPnaedc82zn5S3cV6xYwY4dO/J1eRGRomRmR7I5T90yIiI+pHAXEfEhhbuIiA8p3EVEfEjhLiLiQwp3EREfmjXczezLZnbKzJ4/z+tmZp83swNm9pyZXZ/7ZoqIyMXIpnL/KrDxAq/fAazxvu4D/u/cmyUiInMxa7g7554A+i9wyt3A11zaFqDOzFpz1UAREbl4uZihuhTomvG82zt2/OwTzew+0tU97e3tObh09h7cevScx99z08K2Q0RkISzoDVXn3P3OuQ3OuQ3NzbMujSAiIpcoF+HeAyyb8bzNOyYiInmSi3B/GHifN2rmZmDIOfeqLhkREVk4s/a5m9k3gVuBJjPrBj4NhACcc/8IbALuBA4A48Bvz1djRUQkO7OGu3Pu3lled8Dv5qxFIiIyZ5qhKiLiQwp3EREfUriLiPiQwl1ExIcU7iIiPqRwFxHxIYW7iIgPKdxFRHxI4S4i4kMKdxERH1K4i4j4kMJdRMSHFO4iIj6kcBcR8SGFu4iIDyncRUR8SOEuIuJDCncRER9SuIuI+JDCXUTEhxTuIiI+pHAXEfEhhbuIiA8p3EVEfEjhLiLiQwp3EREfUriLiPiQwl1ExIcU7iIiPqRwFxHxIYW7iIgPKdxFRHwoq3A3s41mtt/MDpjZx8/xeruZPWZmz5jZc2Z2Z+6bKiIi2Zo13M0sCHwRuANYD9xrZuvPOu3PgW87564D3g38Q64bOh+O9I0xNBHPdzNERHIum8r9RuCAc67TOTcFPATcfdY5DqjxHtcCx3LXxPkxlUjxz7/o5MtPHsp3U0REcq4si3OWAl0znncDN511zl8APzWz3wOiwG05ad08GhifIuXg5y+eYlFNxStee89N7XlqlYhIbuTqhuq9wFedc23AncDXzexV721m95nZDjPb0dvbm6NLX5qBsSkA+r3/ioj4STbh3gMsm/G8zTs20weAbwM45zYDFUDT2W/knLvfObfBObehubn50lqcI/3j6VDvG5vEOZfXtoiI5Fo24b4dWGNmHWYWJn3D9OGzzjkKvBnAzNaRDvf8luazyFTusXiK8alknlsjIpJbs4a7cy4BfAR4BHiB9KiYvWb2GTO7yzvtY8AHzWw38E3gt1yBl8P942dGyfSpa0ZEfCabG6o45zYBm8469qkZj/cBt+S2afNrYGyKpqowp0en6BudpL0hku8miYjkTEnOUHXOMTA+xcrmKgxV7iLiPyUZ7uNTSSYTKZqryqmLhOgbncx3k0REcqokw33AGylTHwnTGC1X5S4ivlOS4Z4Z214fDdFQFaZvVOEuIv5SkuE+4I2UaYiEaYyGmYgnGZ9K5LlVIiK5U5Lh3j82RSQcpDwUpKmqfPqYiIhflGS4D4xP0RANA0z/97S6ZkTER0oz3MemqI+cCff0cEiNmBER/yi5cE85x+B4fDrcQ8EANZUh+lW5i4iPlFy4D0/ESTpHfTQ0fawxGtZwSBHxlZIL98xqkJm+doDGqrAmMomIr5RcuA+MnRkGmdEYLWdsKkksrtUhRcQfSi/cx6cwoDYyo1umKh30mswkIn5ReuE+NkVNZYiywJmP3hhNj3XXiBkR8YuSC/f+GcMgMzL977qpKiJ+UXLhnp7AFHrFsXBZgEg4yNBE/DzfJSJSXEoq3OPJFMOxBPXR8Ktei4SDTGi7PRHxiZIK97HJ9OJgNeWhV71WGQoyodEyIuITJRXuk4kUAOWhV3/sSlXuIuIjpRXuXmVeEQq+6rVIuEyVu4j4RkmFeyxTuZe9+mNXhFS5i4h/lFS4n+mWOVflHiQWT5JybqGbJSKSc6UV7plumXNU7pWhIA6YjKcWuFUiIrlXUuF+plvm1ZV7ZTh9TNvtiYgflFS4Zyr3c46W8bpqdFNVRPygtMI9kSIcDBAwe9VrEa9y101VEfGDkgr3WDx5zqodzgyPHFflLiI+UFLhPplInbO/HVS5i4i/lFi4J6k4T+WuPncR8ZPSCvd46pwTmADKggFCQVPlLiK+UFrhfoFuGfCWIFC4i4gPlFS4xy7QLQNaGVJE/COrcDezjWa238wOmNnHz3POO81sn5ntNbMHc9vM3Eh3y5y/cq8MBxlX5S4iPlA22wlmFgS+CNwOdAPbzexh59y+GeesAT4B3OKcGzCzlvlq8KVyzjGZOP9QSEhX7v3aak9EfCCbyv1G4IBzrtM5NwU8BNx91jkfBL7onBsAcM6dym0z5y6edKQcVMxauWv5AREpftmE+1Kga8bzbu/YTJcBl5nZU2a2xcw25qqBuTKZOP/SAxnqcxcRv5i1W+Yi3mcNcCvQBjxhZlc55wZnnmRm9wH3AbS3t+fo0tnJrPZ44dEyQeJJRyyePOeGHiIixSKbyr0HWDbjeZt3bKZu4GHnXNw5dwh4iXTYv4Jz7n7n3Abn3Ibm5uZLbfMliSXOv9xvRibQhyfiC9ImEZH5kk24bwfWmFmHmYWBdwMPn3XOv5Ou2jGzJtLdNJ05bOecXWijjozMEgRDCncRKXKzhrtzLgF8BHgEeAH4tnNur5l9xszu8k57BOgzs33AY8CfOOf65qvRl2J6ud8LVO6ZJQgGFe4iUuSy6nN3zm0CNp117FMzHjvgo95XQcps1HGhvvTMhh1D4wp3ESluJTNDNVO5hy9QuUfC6d91qtxFpNiVTrhnKvcsumXU5y4ixa5kwj0WTxEMGGXB83/k8lAAA4bGNUtVRIpbyYT7ZCJ5wZupAAEzKkJBVe4iUvRKKNxTWU1MqgwH1ecuIkWvZMI9Fp+9cod0v/ugRsuISJErmXCfbaOOjEhY3TIiUvxKJ9zjF96oI0N97iLiByUT7rHE+fdPnUmVu4j4QcmE+2Q8ecF1ZTIqvco9PelWRKQ4lU64J1IXnMCUURkOkkw5Rie1aYeIFK+SCPfJRJJEymVduQMaMSMiRa0kwn1scvYVITO07K+I+EFJhPtoLN3FcqH9UzMqvcXDFO4iUsxKItxHJtNBfaH9UzO0eJiI+EFJhHumcs9mElNmTXf1uYtIMSuNcPdGvmQzienMbkxaGVJEildJhXs2lXsoaITLAuqWEZGiVhLhPpLplsmicjczaitD2mpPRIpaSYT7dLdMFpU7QF1lSH3uIlLUSiPcYwmMdJdLNuojYQa0G5OIFLHSCPfJRHoLPcsu3OsiqtxFpLiVRLiPxBJZd8mAKncRKX4lEe5jXuWerbpoiIHxKa0MKSJFqyTCfXQykdUwyIyGSJh40jE2lZzHVomIzJ+SCPeRyURWE5gy6iNhAAbG1DUjIsWpJMJ9NBa/qMq9LhICtASBiBSv0gj3yURWy/1m1Ee9yl03VUWkSJVGuMcSVGSxUUdGvVe5K9xFpFj5PtyTqfSN0Yup3Ou8Pnd1y4hIsfJ9uI9NZdaVuYg+90pV7iJS3Hwf7md2Ycr+o5YFA1RXlKlyF5Gi5ftwP7MiZPaVO2iWqogUt6zC3cw2mtl+MztgZh+/wHm/ZmbOzDbkrolzMxJLV98XU7lD+qbqgCp3ESlSsyaemQWBLwJ3AOuBe81s/TnOqwb+ANia60bOxXAm3C+ycq+LhBlU5S4iRSqbcvZG4IBzrtM5NwU8BNx9jvP+EvgcEMth++Ys0y1zseGertwV7iJSnLIJ96VA14zn3d6xaWZ2PbDMOfejC72Rmd1nZjvMbEdvb+9FN/ZSDMey3z91prpImMExdcuISHGa8w1VMwsAfwN8bLZznXP3O+c2OOc2NDc3z/XSWRmeuLRumfpImJHJBFOJ1Hw0S0RkXmUT7j3AshnP27xjGdXAlcDjZnYYuBl4uFBuqo7EEoSDAULBi7yhGvXWl5lQ14yIFJ9sEm87sMbMOswsDLwbeDjzonNuyDnX5Jxb4ZxbAWwB7nLO7ZiXFl+k4Vicmsqyi/4+zVIVkWI2a7g75xLAR4BHgBeAbzvn9prZZ8zsrvlu4FyNxBJUV4Qu+vum15fRsr8iUoSyKmmdc5uATWcd+9R5zr117s3KneGJODUVF1+5T6/prspdRIpQCcxQjV9a5R7NdMuocheR4lMC4Z64pD73M8v+qnIXkeLj+3AfjsWpLr/4yr0yFCRcFlDlLiJFyffhnr6hevGVu5lplqqIFC1fh3s8mWJ8KklN5cVX7pBZGVLdMiJSfHwd7pm13C+lcof0RtnqlhGRYuTrcM+sCFlzCaNlQJW7iBQvX4f7yJwrdy37KyLFydfhPl25X3Kfe3rDDudcLpslIjLv/B3uE3Or3OsjYZIpN71ssIhIsbi01CsSI3Psc6/zJjINjk9Re4nVv4j4w4Nbj57z+Htual/glmTH1+GeqbjnckMV0rNUlzfmrFkiUoCccxwfijGVSPGLl08TDFi+mzQnvg73TOVedandMtHMEgS6qSriJ845jvSN82zXIM8cHWDvsWH2nxyZHoQRDBiN0TDrW2u4ff0izIov6H0e7gmqyssu+TfwmTXdFe4ixezUcIxnuwZ5rnuI3d2D7OkZmt6rIRwM0FpbwfrWGhbVVBAKGr0jk3QPTPD4S73URcLc2NGQ509w8Xwd7sMT8Uu+mQozumW0l6pI0YgnU+w7Nsz2w/3sPDLAs12DHB+KARAwWFRTwermKtrqIyxrqKSluuKcBWDKOb769GF+tOcYyxsjLKqpWOiPMie+DveRWOKS+9sBaitDmKlyFylk8WSK53uG2NzZx5bOfrYc7GMqmd77uD4SYllDhOvb62mrr6S1tpJwWXaDBANm3HNDG59/9GW+tb2LD9+66qK368wnX4f7cGxulXswYNRWhjRLVaSATEwlebZrkB2H+9nmVefjU0kA1rRUcV17HR1NUZY3Ruc8yq2mIsQ9N7Txtc1H+MneE7zj6iW5+AgLwtfhPhJL0FQVntN7pJcgUOUuki9D43F2HOln26F+th7q5/meIRIph5HuYrm6rY4VjRE6mqKXtDHPbNYuruE1KxrY2tnHbWsXURkO5vwa88HX4T4ci7OyOTqn92iIhukbVbiLLJThWJxtnf1s7uxj88E+XjgxjHPpv6Tb6iq5ZXUTyxsjLG+ILljQXtNWy/bD/Rw6Pcb6JTULcs258nW4X+pa7jMtrq1gb89QjlokImcbm0yw88gAmzv7+MHuY/QMTOCAsoDR3hDhTWtb6GiKsqw+krc+7/aGCKGgcbB3VOGeb845RmLxOd1QBVhSW8H/23cS51xRjnUVKTS9I5PsOjrAriMDbDvcz57udDdLWcBYWlfJrZe3sLI56gVqYdzALAsGWNEY5UDvaL6bkjXfhnssniKedHPug1tSV8lkIkX/2BSNVeU5ap1IaYjFk+w9NsSzXUM82zXI7q5BjvaPA+lulqV1lbx+dRMdTVHaGyOUlxVuf/bqlip+/PwJhibiRbEciW/DPTM7da7dMq21lQAcG4wp3EUuIJVydJ4em571ubt7kBePj5BIpVdVra0M0VZfycYrFrO8McKSusqCqcyzsaq5CoDO3lGua6/Pc2tm59twn+tyvxlL6tITF44NTXBVW+2c2yXiF7H4mSGJO48MsOvoIEMT6Z+78rIAbfXpqrytPkJbfeWcfxbzbXFtBZFwkAOnFO55NTzHjToyMpX78cGJObdJpJjF4kl2eTc+H959jO6BCZJeVd5SXc6aliraGyIsa4jQXF1OwGf3qAJmrGqu4mDvaFHcg/NvuE9c+nK/M5f2TLn0jZ5HXzzFb93SkbP2iRS6WDzJrqMDbO3sZ+uhPnYdHWQqkSJg6XtRr1vZOD1ZqFjGfs/VquYq9vQM0Ts6SUt1YS9H4NtwH5le7nduHzFgRk1laPrPTRG/GhibYueRAbYf6WfH4QH2dA8xlUxhQGttBTeuaGBlU5QVTVEqQqUR5mdb3ZLudz94alThni/T4Z6Dfr7ayhBDWoJAfKZncIJth/rYdmiAHYf7eflUephf0Iyl9ZXctLKBjsbSqsxn0xANUx8JcaB3jNeuasp3cy7It+E+nKPRMgB1lSE6T4/N+X1E8unY4ASbD/bxwNajdJ4enV7ytiIUoL0hwlvWL6K9MZLXyULFINM1k3KuoO8r+DbcR2JxggGjMgd/PtZWhhiJxUmmXNHvziKlY2Bsii2dfTx54DRPH+zjkFegVIaCrGyO8vrVTaxojLK4tqKgQ6rQLG+MsOPIAP1jUzQV8PBo34b78ESCmoqynNzRro2ESDk4NRKbHj0jUmj6RifZeWSArYf6X7EmS7gsQEdjlDuvamVVc5RFNQrzucis635yOKZwz4eRWDxnK8TVef32xwYV7lIYphIp9p8Y4dnu9KzPXUcH6OxNV+bhsgAbltfz0dsuY3QyQVt9RH9x5lDmRurJ4RhXLCncuS9ZhbuZbQT+DggCX3LOffas1z8K/A6QAHqB9zvnjuS4rRdlJJagpjI3v7tqK9PLBh8fmgAKf/KC+E/P4AQ7Dvfz0PYuuvvHOT4Um575GQ0HWdYQ4a1XLGZ5Q4Sl9WdmfmpWde6FywI0RMOcHJ7Md1MuaNb0M7Mg8EXgdqAb2G5mDzvn9s047Rlgg3Nu3Mw+DPwV8K75aHC2hmNxqstzU7ln1pE4PhjLyfuJXIhzjsN942w+2MeWzj52HO7nmLdNXCiYXo/ltSsbWVpfybL6CHWRUMFPqPGblupyTg4Xdh5kU9reCBxwznUCmNlDwN3AdLg75x6bcf4W4L25bOSlGIklWN4Yycl7VYQChMsC9GiWqswD5xzdA+mRLE8fPM3mzr7pqrC6oowVjVGuX17PisZ0f7m6WPJvUU0FL50cIZFK5bsp55VNuC8FumY87wZuusD5HwB+PJdG5UJ6c+zcVO5mRl1lyOuWEZkb5xwHe8fYfrifrZ19PLa/d3qSXLS8jJVNUW5e2ciqpioaq8KqygvQopoKUg5OF/BGPjm9oWpm7wU2AG84z+v3AfcBtLe35/LSr5KLjTpmqq0MTe+gLnIxkinHC8eH2Xqon+2H+tl+uJ++sXQoNFWV094QYUVTlJVNUVqqyxXmRWBRTfpeRiF3zWSTfj3AshnP27xjr2BmtwGfBN7gnDvnnQbn3P3A/QAbNmxwF93aLCVTjpHJxJw36piptjLE4b7xnL2f+Fc8mWJPz9D0miw7Dw8wMpmeMV0fCbGiMcobLmtmRWNUlXmRaq4qJ2DFH+7bgTVm1kE61N8NvGfmCWZ2HfBPwEbn3Kmct/IijU7mZkXImWojIU4fmWQykSzoDQVk4SVTjj09Qzx98DRbOvvZcbif8akkAM3V5axrraHDW5OlGDZ5kNmVBQM0VpVzqoBHzMyafs65hJl9BHiE9FDILzvn9prZZ4AdzrmHgb8GqoB/86qQo865u+ax3Rc0kqO13GfKjHU/OTRJe45u1EpxyvSZP3XgNE8eOM0vXu4lFk/fWGupLufqtjo6mqJ0NEWpKvftVJKSt6i6vKC7arP6l+ec2wRsOuvYp2Y8vi3H7ZqT4YncrAg5U2ase8/ghMK9xEyPZulMD03cfLBv+od6WUMlVy6pZVVLFSubojm7iS+Fb1FNBXuPDTMxlSzIhdV8WVYMjqdvVs1H5a4RM/6XSjkO9I6yzbv5uf3QmXHm0XCQjuYqbu5oZFVLFQ3RcJ5bK/myqKYCBxw4NVqQu7T5MtwzP4hLcrhUQM10uBfun2FyaVIpx/6TIzx9sI+t3kJbmT7z6vIyljdFuWF5PSubqzSaRaZl1pjZf3JE4b5QjnmTjVrrcreYfrgsQH0kNP3eUty6+sd58sDp9PK3vaPTYd4QDbN2cQ0dTRFWNEZpiGo0i5xbQzRMWcB4+eRIvptyTr4M956BCZqry3M+qqW1tlKVe5EaGo+zufM0v3g5fRP0iDestaaijMsXVU/3mddF1M0i2QkGjObqcvYr3BfOsaEJltTlfvXG9oYIL54Yzvn7Su6NTyXYeWSApw6kp/Tv6R7Ckf4LbGVTlLdf3crq5iqa1c0ic7CopoKXTijcF0zPwATrWmty/r5XL6vlJ3tPMDg+pQqvwAyNx9l1dIBt3pT+57qHSKTSm5tf117HG9e2sLq5imUNWv5WcmdRdTnPdg0yNBEvuDkMvgt35xw9gxO8eV1Lzt/72rY6AHZ3D/GGy5pz/v6SvWODE+mRLIfTmznvPzmCc1AWMJbUVXLL6iY6mqIsb4xo0pnMm8W13k3VEyPc2NGQ59a8ku/CvX9sislEal66Za5qq8UMdncNKtwXWO/IJE8dOJ1eObHzNF396Rvb4bIAyxsivHntIlY0RmirjxAu0/6fsjAWeyPyXjg+rHCfb5lleZfOQ7hXV4RY3VzF7q7BnL+3vFI8mWLH4QH+86Vennipl33H0/c6KkIBOpqqeNtV6VmgWgJX8qmmooz6SIgXjhfevTjfhXtmqOJ8VO4A1yyr4/H9p3DO6UZcjh0fmuA/9/fy+P5enjxwmtHJBGUB4/rl9bxl/SLWtFTTWqf9P6VwmBnrWmumi49C4rtw7x5Ih3tb/fyF+3d2dtM9MMGyBi1DMBeZ6vzx/ad4fH/v9JCy2soQ61qruWxRNauaq6gIqc9cCtf61hq+vuUIiWSKsmDhdAn6LtyPDcaIhIPzduf6umWZm6qDCvdL0D82xWMvnuIrTx3i5VOjTCZSBM1Y3hThjisXc9mias0ClaKyrrWGyUSKw31jrG6pzndzpvkw3NNj3OcrHC5fXE24LMDurkHefvWSebmG3xw6PcbP9p3gZ/tOsvPIACmX7qu8uq2WyxfVsKo5SrmqcylSmWHX+46PKNznU8/gxLzcTM0IBQNcuaSG3V1D83aNYpfy1jf/6b4T/HTvSV4+NQpAa20Ft17ewtrF1Sypq1TfufjC6pYqQkFj37Fh7rqmcAo+34X7scEJrlw6v4v4XLOsjoe2dRVcH1s+JZIpth3u55HnT/DI3pOcGI4RDBg3dTRw+eJq1i2uoV4rKIoPhcsCrG6pLrgRM74K94mpJH1jUyzN4YJh53Ltsjq+8tRhXjo5yvoluZ8JWywSyRSbO/vYtOc4j+w9Sf/YFKGgsaalmtevaWLt4moiYV/9ExM5p3Wt1Tz58ul8N+MVfPWTd8xba33pPI2Uybh2xk3VUgt35xy7jg7y14+8yJ7uIcamkoTLAqxdXM3GK9I3RDWJSErN+tYavrerh9OjkzRVlee7OYDfwj0zxj2H67ifS3tDhLpIiN1dg9x7Y/u8XqtQdA+M892dPXzvmW6O9I1TFkiP7726rZbLFlUTUveUlLD13k3VF44P80trCmP2uq/CvWdgficwZZgZ17TVse1wv68nM8XiST79H3vZfqSfzt4xAFY2Rfm169u4YkmNxp+LeNYp3OfXscEJAnZmMZ/5tPHKxXzie3vYdqifm1Y2zvv1FtLLJ0d4YOtRvv9MD0MTceojId68roXr2+up12qYIq9SHw2zuKaCF44XzvK/vgr3nsEYi2oq5q2L4MGtR6cfTyVSVIaCfOWpw74I93gyxU+eP8E3thxh66F+wsEAb71yMc1V5axsjmrYosgs1i+pYd+xwhkx47NwH5/3LpmMcFmAGzsa+Om+E3T1jxftbNXB8Ske3HaUrz19hBPDMeojITZesZjrl9dTVe6rfx4i82pdazVPvNTLZCJZEMtM++qn99hgbHoky0K4qaOBJw+c5utbjvBnd65bsOvmQs/gBP/8RCff2t7FRDzJ61c38ZYrFnHZompV6SKX4IoltSRSjud7hrhhef6X//VNuKdSjuNDE9x5VeuCXbMuEmbjlYt5aNtR/vC2NUUxpvvAqVH+9Du7edZbtvjaZfXcsrqR1nkeYSTid69f00QoaPzk+RMFEe6+Gb/WOzpJPOnmfQLT2d5/ywqGYwm+u6tnQa97sfafGOEjD+7i9v/zn+zpGeLmlY388Vsu554b2hTsIjlQUxHil9Y0s2nPCZxz+W6Ofyr36U065nkC09mub6/nqqW1fOkXnfzKtUuoriisfRT3HhviCz8/wI+fP0E0HORDb1hFfSSs/nSReXDnVa38/MVT7OkZ4uq2hesiPhffVO67jgwAsLKpakGva2Z84o619AxM8KFv7GQqkVrQ65/P7q5B7vi7X/C2zz/Jz188xRsvb+aPbruMZfURBbvIPLl93SLKAsaP9hzPd1P8Ee7OOb69o4trl9Wxoim64Nd/3eom/uqeq3nqQB9//G+7SaXy8yeZc47H9p/i3fdv5u4vPsWh06O8eV0Lf/rWtdy+fjERhbrIvKqNhLhldRM/LoCuGV/8tO86OshLJ0f57K9elbc2/Or1bZwcnuRzP3mRhmiYT75t3YJNyR8Ym+K7u7r55rajHOwdo7W2gk/euY5gwDSLVGSB3XnVYv77d/ew99jwvK9QeyG+CPdvbT9KJBzk7XlYS3nmxKaaijJet6qRrz59mCde7uWTd67jTWtb5mV5gpFYnMf29/LI8+lNMKaSKZbVV3LPDW1c3VZLWcAXf5SJFJ3b1y/mz77/PJv2HFe4z8VILM4Pdh/nrmuW5L0v2cx421WtrG6u4smDp/nAv+7gxo4G7r52CW9a2zKnUSkTU0me7Rpkx+F+th3uZ2tnP1PJFE1VYe69cRk1lSGNehEpAA3RMK9b1cimPcf5k7denre1p4o+3H/43HEm4knedeOyfDcFSAf82tYa/sc71vPAliP8y1OH+OT3nwfg8kXVXL64mo6mKMsbI9RWhoiWlxENl5E+Ly2mAAAIsklEQVRIpZhKpJhMpOgfm6J3ZJKTwzEOnR7jQO8oR/vHcQ4MWFRTwY0dDaxvraG9MaJJRyIF5o4rW/mz7+/hiZdP84bL8rOQWFbhbmYbgb8DgsCXnHOfPev1cuBrwA1AH/Au59zh3Db13B7a3sVli6qmN64uFP+2o5twWZAP/fIqekcmefHECJ2nR3mma4AfPHeMbO61lAWMxqowLdUVvPHyFtrqK1neEKUyrH50kUL2jmta+cpTh/jwN3by9Q/cxA3L6xe8DbOGu5kFgS8CtwPdwHYze9g5t2/GaR8ABpxzq83s3cDngHfNR4MznHM8+sIpdncN8j/evr5gl901M1pqKmipqeCXvd/g8WSKwfE4sXiSyUSKeDJFwCAYCBAMGNHyIDUVIcrLAgX7uUTk/KorQjzwOzfxzn/azG99eRsPfvBmrmpb2P73bCr3G4EDzrlOADN7CLgbmBnudwN/4T3+DvAFMzM3D2OBUinHoy+e4h8eP8AzRwdZUlvBr163NNeXmVehYIDm6sLYrUVE5kdLTQUPfPBm3vmPm/nNL2/l3hvbuW5ZHde219FSPf8z6bMJ96VA14zn3cBN5zvHOZcwsyGgEcj5poJ/++jLfP7Rl2mrr+Qv776CX9+wTMP9RKQgLa2r5JsfvJmPfvtZ/vmJThLeHJhPv2M9v31Lx7xee0FvqJrZfcB93tNRM9t/qe91BHgKeF/239LEPPyyKSD6fMXLz58NfP75fuMSvuf9n4P3X/oll2dzUjbh3gPMHIrS5h071zndZlYG1JK+sfoKzrn7gfuzaViumdkO59yGfFx7IejzFS8/fzbw/+crVNnMdNkOrDGzDjMLA+8GHj7rnIeB/+o9vgf4+Xz0t4uISHZmrdy9PvSPAI+QHgr5ZefcXjP7DLDDOfcw8C/A183sANBP+heAiIjkSVZ97s65TcCms459asbjGPDruW1azuWlO2gB6fMVLz9/NvD/5ytIpt4TERH/0epSIiI+VBLhbmYbzWy/mR0ws4/nuz25ZGZfNrNTZvZ8vtuSa2a2zMweM7N9ZrbXzP4g323KJTOrMLNtZrbb+3z/M99tyjUzC5rZM2b2w3y3pdT4PtxnLJ9wB7AeuNfM1ue3VTn1VWBjvhsxTxLAx5xz64Gbgd/12f93k8CbnHPXANcCG83s5jy3Kdf+AHgh340oRb4Pd2Ysn+CcmwIyyyf4gnPuCdIjlHzHOXfcObfLezxCOiSKa62JC3Bpo97TkPflm5tgZtYGvA34Ur7bUopKIdzPtXyCbwKiVJjZCuA6YGt+W5JbXrfFs8Ap4GfOOT99vr8F/hQojI2FS0wphLsUOTOrAr4L/KFzbjjf7ckl51zSOXct6ZnfN5rZlfluUy6Y2duBU865nfluS6kqhXDPZvkEKVBmFiId7A84576X7/bMF+fcIPAY/rl/cgtwl5kdJt0V+iYz+0Z+m1RaSiHcs1k+QQqQpRez/xfgBefc3+S7PblmZs1mVuc9riS9Z8KL+W1VbjjnPuGca3POrSD9M/dz59x789yskuL7cHfOJYDM8gkvAN92zu3Nb6tyx8y+CWwGLjezbjP7QL7blEO3AL9Juup71vu6M9+NyqFW4DEze450EfIz55yGDEpOaIaqiIgP+b5yFxEpRQp3EREfUriLiPiQwl1ExIcU7iIiPqRwFxHxIYW7LBgzS3pj1fd6y9x+zMwC3msbzOzzF/jeFWb2noVr7auuPeGtAVMQzOxd3hLWGhcv56Rwl4U04Zy71jl3BenZmHcAnwZwzu1wzv3+Bb53BZCXcPcc9NaAyZq33PS8cM59C/id+Xp/KX4Kd8kL59wp4D7gI5Z2a6YKNbM3zJiR+oyZVQOfBX7JO/ZHXjX9CzPb5X29zvveW83scTP7jpm9aGYPeMsYYGavMbOnvb8atplZtbcq41+b2XYze87M/ls27Tezfzeznd5fIffNOD5qZv/bzHYDrz3PNa/wHj/rXXON973vnXH8nzK/HLzNZnZ57/FoDv9vED9zzulLXwvyBYye49ggsAi4Ffihd+wHwC3e4yrSG7lPv+4djwAV3uM1wA7v8a3AEOkF4gKkl2Z4PRAGOoHXeOfVeO97H/Dn3rFyYAfQcVYbVwDPn3WswftvJfA80Og9d8A7vcfnu+bfA78x45xKYJ33uUPe8X8A3gc0k16yumPmdWd81h+e639rfemr7CJ/F4gshKeAvzGzB4DvOee6veJ7phDwBTO7FkgCl814bZtzrhvA6ydfQTrwjzvntgM4b+lgM3sLcLWZ3eN9by3pXxaHZmnj75vZf/EeL/O+p89ry3e945ef55qbgU96m1l8zzn3spm9GbgB2O591krSa7zfDDzhnDvkvYcvN2aR3FO4S96Y2UrSYXiKdOUKgHPus2b2I+BO4Ckze+s5vv2PgJPANaQr9NiM1yZnPE5y4X/nBvyec+6Ri2j3rcBtwGudc+Nm9jhQ4b0cc84lL/T9zrkHzWwr6V2KNnldQQb8q3PuE2dd6x3ZtktkJvW5S16YWTPwj8AXnHPurNdWOef2OOc+R3q1xLXACFA947Ra0lVxivTKkbPdvNwPtJrZa7xrVJtZGenVQj/srRuPmV1mZtFZ3qsWGPCCfS3p6jrra3q/1Dqdc58H/gO4GngUuMfMWrxzG8xsObAF+GUz68gcn6VtIoAqd1lYlV43SYj05tdfB861TvsfmtkbSW/Pthf4sfc46d2o/CrpPunvmtn7gJ8AYxe6sHNuyszeBfy9t3b6BOnq+0uku212eTdee4FfmeVz/AT4kJm9QDrAt1zkNd8J/KaZxYETwP9yzvWb2Z8DP/WGh8aB33XObfFu2H7PO36K9EgjkQvSkr8is7D0/q0/dM4V1BZ4XvfQHzvn3p7vtkjhUbeMyOySQG2hTWIi/dfLQL7bIoVJlbuIiA+pchcR8SGFu4iIDyncRUR8SOEuIuJDCncRER/6/1oYhFxKHcEAAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(hsc_deep['hsc-deep_ra'], hsc_deep['hsc-deep_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, hsc_deep, \"hsc-deep_ra\", \"hsc-deep_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add KIDS" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl023eZ7/H3403yIm/xGtuJszlpkmaBpC1daIG2hFLaYVhaOszAzEDuMJR1NjjD7cwt98yFYaDA0GGmlMKwtGUrNFMC6Q5taNM4S9M6iRPH2ewkluMltmxLsqTn/iE5GNeJZVuytud1jk+kn36WHjv2x199t5+oKsYYY9JLVqILMMYYE3sW7sYYk4Ys3I0xJg1ZuBtjTBqycDfGmDRk4W6MMWnIwt0YY9KQhbsxxqQhC3djjElDOYl64YqKCm1sbEzUyxtjTEratWvXWVWtnOq8hIV7Y2Mjzc3NiXp5Y4xJSSJyPJrzrFvGGGPSkIW7McakIQt3Y4xJQxbuxhiThizcjTEmDVm4G2NMGrJwN8aYNGThbowxacjC3Rhj0lDCVqgmqwd3nHjNsTsuX5CASowxZuas5W6MMWkoqnAXkU0i0ioibSLymUkev0dE9kY+DolIf+xLNcYYE60pu2VEJBu4F7gB6AB2isgWVd0/do6qfmrc+R8D1sehVmOMMVGKpuV+GdCmqu2q6gceBm69yPnvAx6KRXHGGGNmJppwrwNOjrvfETn2GiKyEFgEPD370owxxsxUrAdUbwd+qqrByR4Ukc0i0iwizd3d3TF+aWOMMWOiCfdOoGHc/frIscnczkW6ZFT1PlXdoKobKiunvJCIMcaYGYom3HcCy0RkkYjkEQ7wLRNPEpEVQBnwQmxLNMYYM11ThruqBoA7gW3AAeDHqtoiIneLyC3jTr0deFhVNT6lGmOMiVZUK1RVdSuwdcKxuybc/+fYlWWMMWY2bIWqMcakIQt3Y4xJQxbuxhiThizcjTEmDVm4G2NMGrJwN8aYNGThbowxacjC3Rhj0pCFuzHGpCELd2OMSUMW7sYYk4Ys3I0xJg1ZuBtjTBqycDfGmDRk4W6MMWnIwt0YY9KQhbsxxqQhC3djjElDFu7GGJOGLNyNMSYNRRXuIrJJRFpFpE1EPnOBc94rIvtFpEVEHoxtmcYYY6YjZ6oTRCQbuBe4AegAdorIFlXdP+6cZcBngatUtU9EquJVsDHGmKlF03K/DGhT1XZV9QMPA7dOOOfDwL2q2gegqu7YlmmMMWY6ogn3OuDkuPsdkWPjNQFNIrJdRF4UkU2TPZGIbBaRZhFp7u7unlnFxhhjphSrAdUcYBlwHfA+4FsiUjrxJFW9T1U3qOqGysrKGL20McaYiaIJ906gYdz9+six8TqALao6qqpHgUOEw94YY0wCRBPuO4FlIrJIRPKA24EtE875BeFWOyJSQbibpj2GdRpjjJmGKWfLqGpARO4EtgHZwAOq2iIidwPNqrol8tiNIrIfCAJ/p6o98Sx8th7ccSLRJRhjTNxMGe4AqroV2Drh2F3jbivw6ciHMcaYBLMVqsYYk4Ys3I0xJg1ZuBtjTBqycDfGmDRk4W6MMWnIwt0YY9KQhbsxxqQhC3djjElDFu7GGJOGLNyNMSYNWbgbY0wasnA3xpg0ZOFujDFpyMLdGGPSkIW7McakIQt3Y4xJQxbuxhiThizcjTEmDVm4T6L1zCCnz40kugxjjJkxC/cJAqEQD+08wbaWM4kuxRhjZiyqcBeRTSLSKiJtIvKZSR7/oIh0i8jeyMeHYl/q3DjRM4w/EOJk7wgh1USXY4wxM5Iz1Qkikg3cC9wAdAA7RWSLqu6fcOqPVPXOONQ4pw51eQAYGQ3S4/FT6XIkuCJjjJm+aFrulwFtqtquqn7gYeDW+JaVOIfdg5Tk5wJwsnc4wdUYY8zMRBPudcDJcfc7IscmepeI7BORn4pIw2RPJCKbRaRZRJq7u7tnUG58DYyMcvqclysWlePIyeJEn4W7MSY1xWpA9X+ARlVdAzwB/PdkJ6nqfaq6QVU3VFZWxuilY+ewexCAphoXDeUF1nI3xqSsaMK9ExjfEq+PHDtPVXtU1Re5ez/w+tiUN7cOdXlwOXOoKXbSUFbAmXNe/IFQossyxphpiybcdwLLRGSRiOQBtwNbxp8gIrXj7t4CHIhdiXMjGFLa3B6aqlyICAvK81Ggo99a78aY1DPlbBlVDYjIncA2IBt4QFVbRORuoFlVtwAfF5FbgADQC3wwjjXHRWffMCOjQZZVFwHQUFYAwMleW8xkjEk9U4Y7gKpuBbZOOHbXuNufBT4b29Lm1iG3BwGWVoXDvcCRw7zCPOt3N8akJFuhGnGoa5CG8gIK8n7/925BZFBVbTGTMSbFWLgDqsrpc14Wlhf8wfGG8gIGfQFOnfMmqDJjjJkZC3fCq1GDIaU4snhpTEMk7Pec6EtEWcYYM2MW7sCgNwBAkfMPhyBqip3kZgt7TvQnoixjjJkxC3fA4wuHu8vxh+GenSXUFDs5cHogEWUZY8yMWbhz4ZY7QEl+Ll0D1udujEktFu6AxzsKgMuR+5rHivNz6Rrwvea4McYkMwt3YNAXIDtLcOa+9ttR7MzF4wuc77oxxphUYOEOeLwBXI4cROQ1jxXnh7tqrGvGGJNKLNwJD6hO1t8O4HKGu2q6bK67MSaFWLgTHlCdOFNmTMlYuA9auBtjUoeFO+E+9yLnawdTAVyRbpkz52xQ1RiTOjI+3IMhZdgXwHWBbhlHTjYuR471uRtjUkrGh/uQP4ACRRfolgGoLnFauBtjUkrGh7snsoDpQi13gOpiB2cs3I0xKSTjw31sdeqFBlQBqouduG0hkzEmhWR8uHt84dWpFxpQhXC4dw14CYVsX3djTGrI+HA/v6/MRVruNcVOAiGlZ8g/V2UZY8ysWLj7AjhyssjLufC3orrYCdgqVWNM6ogq3EVkk4i0ikibiHzmIue9S0RURDbErsT48ngvPA1yTHWxA7BwN8akjinDXUSygXuBtwErgfeJyMpJznMBnwB2xLrIeBr0BiiaZDfI8WpKwi13mzFjjEkV0bTcLwPaVLVdVf3Aw8Ctk5z3eeCLQEoloMc3OmXLvaLIgQi29a8xJmVEE+51wMlx9zsix84TkdcBDar6yxjWNicGvRfeNGxMbnYWFUUO2zzMGJMyZj2gKiJZwFeAv4ni3M0i0iwizd3d3bN96VnzB0L4AqGLznEfU1PstG4ZY0zKiCbcO4GGcffrI8fGuIDVwLMicgy4Atgy2aCqqt6nqhtUdUNlZeXMq46R89dOnaLlDuFBVRtQNcakimjCfSewTEQWiUgecDuwZexBVT2nqhWq2qiqjcCLwC2q2hyXimNo7PJ6Uw2owu8XMhljTCqYMtxVNQDcCWwDDgA/VtUWEblbRG6Jd4HxNOi78IWxJ6oudtI3PIovEIx3WcYYM2tTpxqgqluBrROO3XWBc6+bfVlz43y3TJR97gDuAR8N5QVxrcsYY2Yro1eoDnoDCFAYRbhXRRYy2aCqMSYVZHS4e7wBCvKyyc567YWxJxpbyGT97saYVJDR4T7oC5y/APZUxrplzthcd2NMCsjocPd4R6MaTAUoyc8lLyfLWu7GmJSQ0eE+6AtENZgKICLUFDttCwJjTErI2HBXVTxRbD0wnl1uzxiTKjI23H2BEIGQUpgXfbhXFTvpHrSWuzEm+WVsuA/7w4uRCh3ZUX9OZZEDt7XcjTEpIIPDPbyAqWBaLXcHQ/4gQ5HFT8YYk6wyNtyHfJGWe170LfcqV3g6pHXNGGOSXfTN1jQzo5a7K7xK1T3oo7GiMC51GWOSw4M7Tkx6/I7LF8xxJTOTweEebrkXTKfPPRLu1nI3Jr1cKMhTWcZ2ywz7w/vKOHOn0y0z1nK3QVVjTHLL2HAf8gfJz8smS6beV2ZMWUEeOVmC21ruxqQsVaVrwMuIP723787obpnp9LcDZGUJFUUO65YxJoWMBkO8dLSXx1vO8PRBN+5BH75ACEdOFusXlHLZonnn945KJ5kb7r7AtGbKjKkqdljL3Zgk5w+E2H7kLFv3neaJA130D4+Sn5tNTYmTdQ2lVLkcdPSN0Hysjxfbe7l8UTm3rqtLdNkxlbnh7g9SVpg37c8b+6EwxiSXEX+Q3x7u5vGWLp7Yf4YBbwBHThaX1Baz6tJillW5yMv5w57omy6tZVvLGXYc7WVtfWlazYLL4HAPUFeWP+3Pq3Q52HuyPw4VGWOmyz3g5emDbp484Ob5tm68oyGKnTlcv7KaorwcllYVkZN94aHFQkcON6+Zz6GuQR575RR/fd3SaY3DJbOMDHdVZcgfnFG3TKXLSc+Qn0AwdNEfGmNM7KkqbW4P21rO8Pj+LvZ1nAOgND+X9Q1lrJxfTOO8wqguwDMmLyeLTatr+XHzSXYf72NDY3m8yp9TGRnuw/4gwZBGPaA6fg7s8Z4hVOFbzx3lI9ctiVeJxphx2rs9/GLvKR7ccYKznvCYV0NZPjeurGZFTTHVxQ5kFi3utfUlvNjew+P7u1hdVzKtKdLJKqp0E5FNwNeAbOB+Vf3ChMf/CvgoEAQ8wGZV3R/jWmOmd8gPQMEMWu4uR/jKTR6v7S9jTDwNeEd5dE8nP27u4JXOc4jAoopCrlwyj0tqiynJj+4qatEQEW5eU8t/PHuEZ1u72bS6JmbPnShThruIZAP3AjcAHcBOEdkyIbwfVNX/jJx/C/AVYFMc6o2J/uFRYHpbD4xxRfZ/H/SOxrQmY0zY3pP9/ODF4zy6t5PRoFJb4uSmS2tZU1dCcQwDfaL6sgJWzS9m1/FeblxVnfJ979Gk22VAm6q2A4jIw8CtwPlwV9WBcecXAhrLImOtdzjccp/Odr9jfh/u1nI3Jlb8gRBbXznNd353jJdP9lOYl836hjI2NpbPaOLDTK2oKabl1ABdA15qS+budeMhmnCvA06Ou98BXD7xJBH5KPBpIA94c0yqi5O+890y02+5F0Uuyzfos5a7MbPVO+Tn73+6jx3tPQz6AlQUOXjHmlpet6AMRwL6vZdUhqdCtncPZUS4R0VV7wXuFZE7gM8BH5h4johsBjYDLFiQuJ3V+oZn3ueek51Ffm62tdyNmYXDXYM8sP0oj+zuxBcIsayqiHctrWBpVVFCu0NKC/KYV5jHkW4PVy2tSFgdsRBNuHcCDePu10eOXcjDwDcne0BV7wPuA9iwYUPCum76hvwIkD+DcIdw14yFuzHTEwopdz+2n+1tZzns9pCTJaxfUMqVSyqoTqLl/4sri9jX0U8wpNOaUplsogn3ncAyEVlEONRvB+4Yf4KILFPVw5G7bwcOk8T6hkdx5k5v07Dxip25NqBqTJQGvaP8bFcH33vhOO1nh3A5crj+kmouX1ROoSP5ZmMvqSxk57FeOvtHWFBekOhyZmzK76yqBkTkTmAb4amQD6hqi4jcDTSr6hbgThG5HhgF+pikSyaZ9A77ZzSYOsblzOFsj+0vY8yFqCqvdJ7jwR0n2PLyKYb9QdY1lPLeDQ2srismJyt5FwAuriwCwnPr0zrcAVR1K7B1wrG7xt3+RIzriqv+Yf+MBlPHFDlz8HgDqOqsFk4Yk266B308ureTbz9/lNPnvORmC2vqS7mssZyGFAnKIkcONcVO2ro9XLe8KtHlzFjyvSeaA71DozMaTB3jcuYSCCkDIwFKCuI379aYVDDgHeWJli4e23eK3x4+SzCk1JXm846181nfUJqSqz2XVBay42gvo8EQuSm6zUhGhnvfkJ+60plPcxqb6+4e9Fq4m4zU4/Hx1EE3j7d08Uyrm2BIKc3P5aolFaxfUJpUA6QzsaSyiO1HejjRO8ySSDdNqsm4cFdV+ob9LKua+X+YKzII1D3oY1m1K1alGZPUjnR7eOpAF0/ud9N8vJeQwvwSJ1csKufS+lIayvLTppuysaKQLIEjbo+Fe6oYGQ3iC4QomMUovcsZbq3bRTtMOlNVWk4NsPWV0/z61TO0nx0CoLbEyXXLq1hZW0xtiTNtAn08Z2429WUFHOn2JLqUGcu4cO87v6/M7GbLgF0o26Qn94CXz/3iVXYd76NnyE+WwOKKIm5ZO58VNS5KC6Z/kZtUtKC8gBfbewippuQ+M5kX7pGtB2ayl/sYR04Wudli11I1aaX5WC/feq6dJw+E+9AXVRTyxqZKVtYWJ+V89HirLnYQCCm9Hj8VLkeiy5m2jPsfG9t6IH8WUyFFBJcz17plTMpTVf55SwvPHurmeM8wBXnZXLlkHhsXlqdkoMVSlSs8KNw16E3J70XGhXtvDFruEB5UdQ9YuJvUpKo8dcDNV586xKudA5Tk53Lzmlo2LCx/zXVGM1VVcTjQuwZ8rJqf4GJmIOPC/fyOkLN8m+ly5lifu0k5oZDyxIEuvvF0G690nmNBeQHvel0d6xrKUnoflXhw5GRTWpCbsr/nmRfukQHV/FkurCjJz6X97JCtUjUpYTQY4n9ePsU3nz3CYbeHhfMK+NK71/BH6+v4SXNHostLWtUuZ8q+Q8/AcPdTkp8761ZKaUEew/4g/cOjlBVmxuwBk3q6Brw89NIJHnrpBF0DPmqKndy2oYHVdSWMBtWCfQpVxQ7auj0puUNkBob7KGUxWFVaGnmOzv4RC3eTVEaDIX7T2s1Pdp3kqQNugqpc21TJplUFNFW77J3mNFS7nARDSs+Q7/wAa6rIvHAf8sckjEvzw8/R2T/C6rqSWT+fMbMxtuDo53s6eXRvJ2c9fgodOVyxeB6XLypnXlHqzfZIBmODqu4BC/ek1zfsj8m+F+db7n0js34uY2bqVP8Id//Pfvac7KNrwEe2CMtrXLxtdS1N1a6U60pINuOnQ64mtRpxmRfuQ35W1BTP+nkK8rLJz82ms9/C3cytc8Oj/OrV0/x8TycvHetFNbya8pa181lTVzLrmWDm9/JysigryE3JQdWM+ynoHfZTXjj7PncRoa4sn1MW7mYOeEeDPHPQzc/3dPJsazf+YIjFFYV86vomBKzbJY6qi510DaTedMiMCvcRfxDvaChme2PML823lruJG1Wl+Xgfj+zu4LF9pxn0BnA5ctjYWMbahlLqStNnF8ZkVuVycrgr9WbMZFS490a2HigvzENjcHnuutJ8WjrPzf6JjBnHPejlf/+ihV3Heznr8ZOXncWq+cWsayhlSVVRSm5ilcqqix0EVTnr8aXUPvUZFe5jG31VuRx0xaAPrb4sn54hPyP+IPmz3M7AZDZV5YUjPfxgx3Eeb+kiEFIWzivg2qYqVtcV48ixn69EqYoEunvQwj1pjYV7ZYzCfX5p+D+6s3+EpbO4+IfJXB5fgJ/t6uB7LxzjSPcQJfm5/PlVjRQ5cqlMwc2q0lFlkQMhvCDs0hSa9hxVuIvIJuBrQDZwv6p+YcLjnwY+BASAbuAvVPV4jGudtbE9ImL1S1NXGr7g7ykLdzNN7d0evvfCcR566QS+QIi60nze/bp6Lq0vSdlrdqarvJwsygrzcKfYoOqU4S4i2cC9wA1AB7BTRLao6v5xp+0BNqjqsIh8BPhX4LZ4FDwbYy33ihjNLKgrC1+H1QZVTTRCIeU3h7r57u+O8ZtD3eRmC6vml/CGxfNoKC9IdHnmIqpdDrpSbIvvaFrulwFtqtoOICIPA7cC58NdVZ8Zd/6LwPtjWWSsdA/6KC/Mi1nLqNrlIDtLbCGTuagB7yg/ae7gP55po2fIj8uZw/WXVLGxsfz8JRtNcqsqdtLaNUgwFIOZGHMkmnCvA06Ou98BXH6R8/8S+NVkD4jIZmAzwIIFC6IsMXa6B31UxnA+cE52FjXFTmu5m0kdOD3A9188zi/2dDLsD7KgvIDrL6lmVV0xOVnW9ZJKKoochPT3F/tJBTEdUBWR9wMbgGsne1xV7wPuA9iwYcOc/wns9vhiPkhVZ3PdzTje0SC/fvUMP9xxnJ3H+nDkZPGOtfP54JWN7OuwabOpqqIovDbmrCd1umaiCfdOoGHc/frIsT8gItcD/whcq6pJ+R3oHvTR2FgY0+esK8vnpaO9MX1Ok3ra3B4eeukEP9vdQf/wKPMK87hpdQ2vW1hGQV6OBXuKG1sB3ONJr5b7TmCZiCwiHOq3A3eMP0FE1gP/BWxSVXfMq4wBVQ13y8Sh5X5mwEsgGCLHZjlkFO9okP/9i1fZeayXYz3DZAmsnF/CH68vZ3FloS02SiOFedk4c7PSq+WuqgERuRPYRngq5AOq2iIidwPNqroF+BJQBPwkshz6hKreEse6p23QF8AXCMW0zx3CWxAEQ0rXoI+60vyYPrdJTm1uDw/uCLfSz42EW+mbVtWwfkGpDZCmKRGhosiRXuEOoKpbga0Tjt017vb1Ma4r5sZ2dRvbnzlWxqZDnuofsXBPY4FgiH/a0sILR3poPztEtggr5xdz2aJyFlVYKz0TVBQ5OHZ2KNFlRC1jVqieX50a45b7WKB39o2wsTGmT22SwLnhUR7aeYLvv3Cczv4RSvNzeevKal7fWE6Rba2bUeYV5bH3ZD/e0SDOWV6DeS5kzE9nt+f3Ww/E0vgtCEz6OHZ2iO9sP8pPdnUw7A/yhsXzuG55JStqilNqZ0ATOxWF4ew41jMUk2tCxFvmhPtgfMK9IC+H8sI8OmwhU1rYdbyPux59lf2nBsgSYW1DCVctraC2xLrcMt3YyvZjZy3ck0r3oI/cbKEkP/YDXnWldtGOVBYKKU8ddPNfvzlC8/E+nLlZvLGpkjcsnkdxHH5eTGqaF5nr3p4i/e4ZFe6VRY64XNygrjSftm5PzJ/XxJcvEOSzP3uF5w6fpdvjo7Qgl7dfWsuGxjLbYte8hjM3myJHDke7LdyTSrfHR2Wc9mKuL8vnmVZ3yl2pJVMNekd5cMcJHth+lK4BH/NLnNy2oYHVdSX2/2cuqqIoj2M9Fu5JxT3gpb4sPjvvLa9x4QuEON4zxOJK2/o3WZ31+PjO9qN874XjDHoDXLV0HjddWsvSyiK7XJ2JSkWRg6PWLZNcznp8rF9QFpfnHhtcOXhm0MI9CXX2j/Ct37bzwx3HCQSVlfOLubapMm5/7E36mlfkoPl4HwPeUYqTfMFaRoR7IBiiZ8gftyvbLKsuIkvg4OkBbrq0Ni6vYabvcNcg3/zNEbbsPQXAmvpS3thUQZUrdS6VZpLL2AZix84Osaa+NMHVXFxGhHvvkB/V2E+DHOPMzWZRRSEHzwzG5flN9FSVF9p7uP+5ozx90E1+bjZ/+oaFfPiaxTzb2p3o8kyKG5sOedTCPTm447Q6dbwVtcW8Yjv/JYwvEOSxl0/zwPajtJwaoDAvm7esqOKKxfModORYsJuYKC/MQ4SU6HfPiHCP1+rU8S6pcfHLfafx+AK2LH0OdQ14+eGLx3nwpROc9fhZWlXEO9fVsW5BqV2L1MRcbnYW80vyLdyTxdjq1Ko4hvvyyKBq65lBXr8wPgO3JkxV2X2in+/+7hi/3HcK1fCMpVvW1rGkstBmvpi4WlxZaOGeLOK19cB4K2pcABw8M2DhHif+QIitr4S7XvZ1nMPlzOHKJRVcvqj8/MUUjIm3xnmF/GJvJ6qa1A2JjAl3lzMnrju51ZflU+TIodUGVWOub8jPP/xsHy+09zDoDVBR5OCWtfNZv6DUVpKaObe4spBBbwD3oI/qOC2MjIWMCfd4ttohvJn/ihoXB09buMfKsbNDfPv5o/xk10m8oyGWVhXxx+srIlNPk7fFZNLb8urwu/RDXYMW7ok2tq9MvK2odfHo3lNJ/3Yt2X3xVwf57eHu8M6MWcK6+lKuWlpBTUny/iKZzNEU6YJtPTPINcsqE1zNhWVGuHt8rJof/y06V9QU8wPvCU6d89pVmaZJVdne1sM3njnMi+29v9+Zccm8pF8JaDJLRZGDiqI8DnUl97v0zAj3OHXLPLjjxB/cP9k7DIRXqlq4R0dVeWJ/F/c+08bLHeeoLnZw0+oaNjaW40iBq92YzNRU7aK1K7l3go1qIrCIbBKRVhFpE5HPTPL4G0Vkt4gEROTdsS9z5ob9ATy+wJwsOR/rf7OVqlNTVba1nOHKLzzN5u/v4mTfCO9cV8dHr1vK1csqLdhNUmuqdnG4a5BQSBNdygVN2XIXkWzgXuAGoAPYKSJbVHX/uNNOAB8E/jYeRc7G2DTIsT0h4smZm019Wb6F+0WoKs+0uvny44doOTXAvMI83v36etbWl9p2uyZlLK9xMewP0tk/QkN5cm5AF023zGVAm6q2A4jIw8CtwPlwV9VjkcdCcahxVsYWGyycVzgnr7eippiDpwfm5LVSzYvtPXxpWyu7jvexoLyAL79nLcP+oIW6STlN1b8fVE3lcK8DTo673wFcHp9yYq/NHe4XW1o1N1vxrqx18Uyr27YhGOfA6QE++fBeWrsGKXbmcOu6+WxYWI4vELJgNympqTqcJ61dg1y/sjrB1UxuTtNHRDYDmwEWLFgwJ6/Z5vZQXphHeWH8u2UArlpawdefbuP5w91sWp3Z2/+e6h/h3x5v5ed7OnHkZLFpVQ1vWDLP9nwxKc/lzKWuND+pZ8xEE+6dQMO4+/WRY9OmqvcB9wFs2LBhTkYi2twels7hBTRev7CMYmcOTx1wZ2y4D3pH+c/fHOH+546iwIevWUyVy0FBnr2TMemjqbooqVekR/PbthNYJiKLCIf67cAdca0qRlSVtm7PnF5AIyc7i+uWV/FMq5tQSMnKoG6HYEj5SfNJPv/LAwz5AqytL+HGlTWUzdG7JmPmUlONi+1tPYwGQ0n5bnTKilQ1ANwJbAMOAD9W1RYRuVtEbgEQkY0i0gG8B/gvEWmJZ9HR6hny0z88Oqctd4C3XFLFWY+ffZ2Zs7/7jvYe3vHvz/OZR15hXmEeH7l2CbdtXGDBbtLW8moX/mD42snJKKr3yaq6Fdg64dhd427vJNxdk1QOd83tYOqYa5sqyRJ4+kAX6xqS+2ots9U14OVfth7g0b2nmF/i5OvvW8/gyKhtv2DS3vLz2xB4WFrlSnA1r5XWnaBt3YkJ99KCPDYsLOepg24+fePyOX3tuRIIhvj4w3t56kAXwZDypuVVXNtUiccbsGA3GWFJZfjaya1dg7yd5BtfS+twP+JfolZtAAANlElEQVT2UJiXTW0CNpx68yVVfOFXBzl9boTakvTaiuCVjnN85pF9tJwaoKm6iHesmW/7qZuM48zNprGikNYzybmuJflGAWKoze1haVVRQlqSb1lRBcDTB91z/trxMuwP8H8f28+t9z6Pe9DHHZct4ANvaLRgNxlrebWLQ0m6x0xat9zb3B6uXDovIa+9tKqIhvJ8nj7g5k8uX5iQGmLp84/t5+d7Oukd8rOxsZxNq2rIz7P9X0xma6p28euWM4z4g0n3+5C2LfcB7yhnBrxz3t8+RkR4y4pqnm87i8cXSEgNsTDgHeWzj7zCt58/igAfumYR71xfl3Q/yMYkwqV1JajC3pP9iS7lNdI23I+MbTswx9Mgx3vn+jp8gRDfef5owmqYjSf3d3HjV37Lj3ae4JqlFXzszctYXJG476cxyebyxeVkZwnPt3UnupTXSNtwn+s9ZSaztqGU6y+p5r7n2jk3PJqwOqare9DHxx7aw4e+10xpQS4//+ureNulteTlpO2PizEz4nLmsr6hlOcPn010Ka+Rtr+tbd0e8rKzWJDgHds+fUMTg94A33quPaF1RCMYUr7/4nGu+den2frKaa6/pJo7Ll9Ay6nknA1gTDK4elkF+zrPJV0DLm0HVI+4PSyqKCRnjpcFT7w6E8DNa2p5YPtR/vyq5J1Z8vLJfu569FVe7jjHkspCbl1bR0WcLypuTDq4emkFX33yML87cpa3zeFWJ1NJ25b74cg0yGTwyeub8I4G+eazRxJdymucPjfCp3+0l1vv3U5nv5ev3b6Ov7hqkQW7MVFa21BKkSOH59uSq2smLVvu3tEgJ3uHuXVdXaJLAcL9/u9cX8/3XjzOezc2nN/oP5HOjYzyiYf3sL3tLKrhLROua6pkyBe0FabGTENudhZXLC5PunBPy5b7kW4PIU3sYOpEf/vWJkryc/nAAy9xqn8kYXUM+QLc+0wb13zxaZ5t7WZFTTGfvL6Jt66qseuWGjNDVy+t4HjPMCd7hxNdynlpGe7bWroQgY2NZYku5bzakny+++cbGfQG+MADL8354EvfkJ97njjEVV98mi9ta2VjYzl3vmkp77tswZxdyMSYdHX1skqApGq9p124h0LKI7s7uHppRdLt6bJqfgn3/dnrOd4zzF/+9845Cfg29yD/9OirXP4vT/G1pw5TW+zkr65dwlsuqWZ+aXJ9f4xJVUsqC6kpdibVlMi063PfeayXjr4R/ubGpkSXMqkrl1Rwz23r+PjDe7j+nt9w9y2r2LS6Jqb93MP+AE8ecPPQjhO80N5DXnYWq+YXc01TJTXFc7+JmjHpTkS4elkFTx7oSpqL9KRduD+yu5PCvGzeuqom0aWcN9n0yL+6dgnPtrr5yA93c8PKaj76pqWsrS+ZccgPeEf5XVsPv371NI/v72LYH6SuNJ+/e+tybtvYwOMtXbP9MowxF3HNsgp+uquD59rOcm1TZaLLSa9w944G+eUrp3nbpbVJf73OutJ8Hv3oVXz7+aPc8+QhntjfxeKKQt65vo6Ni8pZUeOitGDyvvBQSDnRO8z+0wPsPzXAjqM97D7RTzCk5Odms7quhLUNJTTOKyRLxILdmDmwaXUN9WX5/L+tB7h6aQXZCW69J3cCTtO2ljN4fAHe9bqkuyjUpH7c3IHLmcvf3biCV0+dY8+Jfr78xKHzj1e5HJQX5uHIzcaRnYXHF6BnyEfvkJ/RYPj64lkSHqy9ZlkFy6pcLCgvSPgPlTGZyJGTzT9sWsHHHtrDI7s7eM+GhoTWk1bh/sjuTupK87l8UXmiS5mW/LxsNjaWs7GxnEHvKKfPeTlzzot70It3NMSIP8BAUHHkZFFfVsDy6mIqivKoLcmnqtiRlBfnNSYT3bymlm8/f5R/e7yVm9fMT+juqWkT7qf6R3jucDcffdPSpBjMmCmXMxeXMzcpFjoZY6ZHRPjHt1/Ce/7zBe5/rp2PvWVZwmqJqsknIptEpFVE2kTkM5M87hCRH0Ue3yEijbEu9GJO9AzzJ/fvIDc7i3e/PjW6ZIwx6WnsYjbf/M0R9idw070pw11EsoF7gbcBK4H3icjKCaf9JdCnqkuBe4AvxrrQC3ml4xx//M3t9A75+eGHLmfhvMK5emljjJnUZ29aQUFeDrd843nueeIQ/kBozmuIplvmMqBNVdsBRORh4FZg/7hzbgX+OXL7p8A3RERUVWNYKxCeKXKk28OeE/3sPtHHlpdPUVaQx8ObN7K0yroyjDGJt3BeIU986o3c/dh+vvbUYX796hnevqaWFTUuLqktpr4sP+57OEUT7nXAyXH3O4DLL3SOqgZE5BwwD4j5cq2vP32Yrz55GICS/FyuWVbB529dTZUtzjHGJJGywjzuuW0dN6+p5Qu/Osg9Tx5irLn7ubdfwoeuWRzX15/TAVUR2Qxsjtz1iEjrbJ9zH3DfzD61gjj88UkC9nWlFvu6UsyfxOA5PvxF+PDMP31hNCdFE+6dwPgJm/WRY5Od0yEiOUAJ0DPxiVT1PmacxbElIs2quiHRdcSafV2pxb4uEy/RzJbZCSwTkUUikgfcDmyZcM4W4AOR2+8Gno5Hf7sxxpjoTNlyj/Sh3wlsA7KBB1S1RUTuBppVdQvwbeD7ItIG9BL+A2CMMSZBoupzV9WtwNYJx+4ad9sLvCe2pcVdUnQPxYF9XanFvi4TF2K9J8YYk35sUxJjjElDGRnuU22nkIpE5AERcYvIq4muJZZEpEFEnhGR/SLSIiKfSHRNsSAiThF5SURejnxd/yfRNcWSiGSLyB4ReSzRtWSqjAv3KLdTSEXfBTYluog4CAB/o6orgSuAj6bJ/5cPeLOqrgXWAZtE5IoE1xRLnwAOJLqITJZx4c647RRU1Q+MbaeQ0lT1t4RnKqUVVT2tqrsjtwcJB0ZdYquaPQ3zRO7mRj7SYgBMROqBtwP3J7qWTJaJ4T7ZdgopHxaZILLb6HpgR2IriY1I18VewA08oapp8XUBXwX+Hpj73bLMeZkY7iYFiUgR8DPgk6qauH1UY0hVg6q6jvCq78tEZHWia5otEbkZcKvqrkTXkukyMdyj2U7BJBERySUc7D9U1UcSXU+sqWo/8AzpMWZyFXCLiBwj3OX5ZhH5QWJLykyZGO7RbKdgkoSE90X9NnBAVb+S6HpiRUQqRaQ0cjsfuAE4mNiqZk9VP6uq9araSPh362lVfX+Cy8pIGRfuqhoAxrZTOAD8WFVbElvV7InIQ8ALwHIR6RCRv0x0TTFyFfCnhFuAeyMfNyW6qBioBZ4RkX2EGxxPqKpNGzQxYytUjTEmDWVcy90YYzKBhbsxxqQhC3djjElDFu7GGJOGLNyNMSYNWbgbY0wasnA3c0ZEgpF56i2RrW7/RkSyIo9tEJGvX+RzG0Xkjrmr9jWvPRLZByYpiMhtkS2rbW68mZSFu5lLI6q6TlVXEV6R+TbgnwBUtVlVP36Rz20EEhLuEUci+8BELbK9dFyo6o+AD8Xr+U3qs3A3CaGqbmAzcKeEXTfWChWRa8etRt0jIi7gC8A1kWOfirSmnxOR3ZGPKyOfe52IPCsiPxWRgyLyw8gWBojIRhH5XeRdw0si4orszPglEdkpIvtE5H9FU7+I/EJEdkXehWwed9wjIl8WkZeBN1zgNVdFbu+NvOayyOe+f9zx/xr74xC5uMzuyHM8FcP/BpPOVNU+7GNOPgDPJMf6gWrgOuCxyLH/Aa6K3C4ifCH3849HjhcAzsjtZUBz5PZ1wDnCG8JlEd6S4WogD2gHNkbOK44872bgc5FjDqAZWDShxkbg1QnHyiP/5gOvAvMi9xV4b+T2hV7z34E/GXdOPnBJ5OvOjRz/D+DPgErCW1QvGv+6477Wxyb7XtuHfeRM82+BMXNhO/AVEfkh8IiqdkQa3+PlAt8QkXVAEGga99hLqtoBEOknbyQc+KdVdSeARrYNFpEbgTUi8u7I55YQ/mNxdIoaPy4i74zcboh8Tk+klp9Fji+/wGu+APxj5KIWj6jqYRF5C/B6YGfka80nvM/7FcBvVfVo5DnS7oIsJj4s3E3CiMhiwmHoJtxyBUBVvyAivwRuAraLyFsn+fRPAV3AWsItdO+4x3zjbge5+M+5AB9T1W3TqPs64HrgDao6LCLPAs7Iw15VDV7s81X1QRHZQfhqRVsjXUEC/LeqfnbCa70j2rqMGc/63E1CiEgl8J/AN1RVJzy2RFVfUdUvEt4xcQUwCLjGnVZCuFUcIrxr5FSDl61ArYhsjLyGS0RyCO8O+pHInvGISJOIFE7xXCVAXyTYVxBuXUf9mpE/au2q+nXgUWAN8BTwbhGpipxbLiILgReBN4rIorHjU9RmDGAtdzO38iPdJLmEL3z9fWCyPdo/KSJvInyZthbgV5HbwchA5XcJ90n/TET+DPg1MHSxF1ZVv4jcBvx7ZP/0EcKt7/sJd9vsjgy8dgN/NMXX8Wvgr0TkAOEAf3Gar/le4E9FZBQ4A/yLqvaKyOeAxyPTQ0eBj6rqi5EB20cix92EZxoZc1G25a8xU5DwtVsfU9WkugxepHvob1X15kTXYpKPdcsYM7UgUJJsi5gIv3vpS3QtJjlZy90YY9KQtdyNMSYNWbgbY0wasnA3xpg0ZOFujDFpyMLdGGPS0P8HdTv4fbTjBqwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(kids['kids_ra'], kids['kids_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, kids, \"kids_ra\", \"kids_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add UKIDSS LAS" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl0XHd99/H3d0b7vsvWZnmR7ThO7CSKneAATiCJ2RxaEghpSheoW54EKFCeA8/DCSU9bUNpaYGkLYam4YGEkIQ0mOBgTByyETteYju2vMmyrc3a912j+T5/zMiZCNkaSTOamavv6xydzNy5uvc7jvTRb373d38/UVWMMcY4iyvSBRhjjAk9C3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHGguEidOC8vT8vLyyN1emOMiUn79+9vU9X8qfaLWLiXl5ezb9++SJ3eGGNikoicC2Y/65YxxhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHsnA3xhgHCuoOVRHZBHwbcAM/UNUHJrxeBvwQyPLv82VV3R7iWsPusT21v7ftrvVlEajEGGNmZ8pwFxE38BBwM1AP7BWRbapaFbDbV4EnVPU/RGQVsB0oD0O9c84C3xgTi4LpllkHVKtqjaqOAI8Dt03YR4EM/+NMoDF0JRpjjJmuYMK9GKgLeF7v3xbob4G7RaQeX6v9M5MdSES2iMg+EdnX2to6g3KNMcYEI1QXVD8OPKKqJcD7gR+JyO8dW1W3qmqlqlbm5085Y6UxxpgZCibcG4DSgOcl/m2BPgk8AaCqrwFJQF4oCjTGGDN9wYT7XqBCRBaLSAJwJ7Btwj61wHsAROQyfOFu/S7GGBMhU4a7qnqAe4EdwDF8o2KOisj9IrLZv9sXgb8QkUPAT4A/VVUNV9HGGGMuLahx7v4x69snbLsv4HEVsCG0pRljjJkpu0PVGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcKKhwF5FNInJCRKpF5MuTvP6vInLQ/3VSRLpCX6oxxphgTbkSk4i4gYeAm4F6YK+IbPOvvgSAqn4+YP/PAFeFoVZjjDFBCqblvg6oVtUaVR0BHgduu8T+H8e3jqoxxpgICSbci4G6gOf1/m2/R0QWAYuBXbMvzRhjzEyF+oLqncBTqjo22YsiskVE9onIvtbW1hCf2hhjzLhgwr0BKA14XuLfNpk7uUSXjKpuVdVKVa3Mz88PvkpjjDHTEky47wUqRGSxiCTgC/BtE3cSkZVANvBaaEs0xhgzXVOGu6p6gHuBHcAx4AlVPSoi94vI5oBd7wQeV1UNT6nGGGOCNeVQSABV3Q5sn7DtvgnP/zZ0ZRljjJkNu0PVGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcyMLdGGMcKKhwF5FNInJCRKpF5MsX2eejIlIlIkdF5LHQlmmMMWY6plyJSUTcwEPAzUA9sFdEtqlqVcA+FcBXgA2q2ikiBeEq2BhjzNSCabmvA6pVtUZVR4DHgdsm7PMXwEOq2gmgqi2hLdMYY8x0BBPuxUBdwPN6/7ZAy4HlIvKqiOwWkU2hKtAYY8z0BbVAdpDHqQA2AiXASyJyhap2Be4kIluALQBlZWUhOrUxxpiJgmm5NwClAc9L/NsC1QPbVHVUVc8AJ/GF/duo6lZVrVTVyvz8/JnWbIwxZgrBhPteoEJEFotIAnAnsG3CPs/ga7UjInn4umlqQlinMcaYaZgy3FXVA9wL7ACOAU+o6lERuV9ENvt32wG0i0gV8ALwJVVtD1fRxhhjLi2oPndV3Q5sn7DtvoDHCnzB/2WMMSbC7A5VY4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxIAv3KQyMeBgeHYt0GcYYMy2hWkPVsX702jna+0f4xPWLKMlOiXQ5xhgTFGu5X8KwZ4zajgH6hz18/+UajjR0R7okY4wJSlDhLiKbROSEiFSLyJcnef1PRaRVRA76vz4V+lLnXn3nIAp85JoSFmQk8djrtew5Y6sHGmOi35TdMiLiBh4Cbgbqgb0isk1Vqybs+lNVvTcMNUbMufYBAC5bkMEVxZk8/MoZXjrZGuGqjDFmasG03NcB1apao6ojwOPAbeEtKzrUdvRTkJ5IcoKbeLeLFQvS6RwYpWdoNNKlGWPMJQUT7sVAXcDzev+2iT4iIodF5CkRKQ1JdRHkVaWuY5CynLcuoi7MTALg+PneSJVljDFBCdUF1V8A5ap6JbAT+OFkO4nIFhHZJyL7Wluju3ujrXeYwdExFuUGhnsyAFWNdmHVGBPdggn3BiCwJV7i33aBqrar6rD/6Q+AayY7kKpuVdVKVa3Mz8+fSb1zprbD199elpN6YVt6UhypCW6qzvdEqixjjAlKMOG+F6gQkcUikgDcCWwL3EFEFgY83QwcC12JkXGuY4DkeDd5aQkXtokIC7OSOWbdMsaYKDflaBlV9YjIvcAOwA08rKpHReR+YJ+qbgM+KyKbAQ/QAfxpGGueE7UdA5TlpCAib9u+MCOJPWc7GB3zEu+22wSMMdEpqDtUVXU7sH3CtvsCHn8F+EpoS4ucgREPrb3DXFWa9XuvLcxKYsTjpaa1nxUL0iNQnTHGTM2anpOou9Df/vvTDYxfVD1m/e7GmChm4T6Jcx0DuIRJ55LJS0skIc5lF1WNMVHNwn0Ste0DLMhMIiHu9/953C5hRWE6VY0W7saY6GXhPonm3mGK/N0vk1m1MINj53tQ1TmsyhhjgmfhPsHomJf+YQ/ZqQkX3WdVUQbt/SO09A5fdB9jjIkkC/cJugd888ZkJcdfdJ/LFmYAWNeMMSZqWbhP0DXoC/fMlIuH+8qFviGQdlHVGBOtLNwn6BoYASA7+eLdMhlJ8ZTlpFi4G2OiloX7BF2DowiQcYluGYDLFqbbWHdjTNSycJ+ga2CU9KQ43C655H7leanUdwzi9dqIGWNM9LFwn6BrYISslIt3yYwrzU5hZMxLc+/QHFRljDHTY+E+QdfgKFmXuJg6rtQ/NUFdx2C4SzLGmGmzcA/gVaV7cPSSwyDHlWb7bnIan4fGGGOiiYV7gL5hD2NeDapbpjg7GRGo67RwN8ZEHwv3AMHcwDQuMc5NYXqSdcsYY6KShXuAYG5gClSak2wtd2NMVAoq3EVkk4icEJFqEfnyJfb7iIioiFSGrsS5c+EGpiC6ZcA3Yqbe+tyNMVFoynAXETfwEPA+YBXwcRFZNcl+6cDngD2hLnKudA2MkhjnIineHdT+JTkpnO8ZYsTjDXNlxhgzPcG03NcB1apao6ojwOPAbZPs93fAN4CYHfgd7DDIcaXZyahCY5f1uxtjoksw4V4M1AU8r/dvu0BErgZKVfWXIaxtznUNjJB1iTllJrow1t363Y0xUWbWF1RFxAV8C/hiEPtuEZF9IrKvtbV1tqcOua6Babbc7UYmY0yUCibcG4DSgOcl/m3j0oHVwG9F5CxwHbBtsouqqrpVVStVtTI/P3/mVYdB/7CHwdGxoIZBjluQkUS8W6zlboyJOsGE+16gQkQWi0gCcCewbfxFVe1W1TxVLVfVcmA3sFlV94Wl4jAZ7zfPDHKkDPjWUy3KSra7VI0xUWfKcFdVD3AvsAM4BjyhqkdF5H4R2RzuAudKgz/cs6fRLQO+4ZAW7saYaBMXzE6quh3YPmHbfRfZd+Psy5p7jV2+QT6Z0+iWAd+NTDuO2rzuxpjoYneo+jV0DeASSE+abrin0NE/Qv+wJ0yVGWPM9Fm4+zV2DZGRHD/lIh0TlWbbcEhjTPQJqltmPmjoGgx6pMxje2ovPB7vb390dy1/9+HVYanNGGOmy1rufg2dg0FN9TtRdqrvezr6R0JdkjHGzJiFO+D1Ks09Q9O+mAqQmuAmwe2ic8DC3RgTPSzcgY6BETxeJSNp+r1UIkJ2ajyd1nI3xkQRC3egucc3DHK6I2XGZack0Olf6MMYY6KBhTvQ0jMMQMYMumXA1+/eMTCCqoayLGOMmTELd95quc+kWwYgJyWBEY+XLmu9G2OihA2FBJr9Lfe0GYb7+JQFdZ0DF0bPGGNiS+AQ53F3rS+LQCWhYS13oKlniNzUBOJcM/vnGA/0+k6b+tcYEx0s3IGWniEKMpJm/P3ja67aBGLGmGhh4Q409w5RmJE44+9PineTHO+2KQiMMVHDwh1fn/uCWbTcwdfvbt0yxphoMe8vqHrGvLT1Dc+qWwZ8/e7WLWNMdJnsIul8Me/Dva1vBFVm1S0Dvn73vWc7UFVEpjezpDFmZvqHPRxt7KGqsZvz3UO09A7T1jdMelIchRlJNHUPsWphBrlps/v9jkXzPtzHx7gXpifR0js84+Nkp8Qz7PHS2jdMQfrsPgUYYyY3MOJhT00HW1+u4XRLH629w4zfOhjnEtKT4khNjGN41Ev34CgjY152HG1i/ZJcblpRQGri/Im8oN6piGwCvg24gR+o6gMTXv8r4B5gDOgDtqhqVYhrDYum8XDPmG24vzUc0sLdmNB55NWzHGvq4c36bk429+LxKvFuoTw3lSuKMynOTqYoK5n0xLi3fWpWVXqGPLxwvIXdp9t5o7aTP7iqhCuKMyP4bubOlOEuIm7gIeBmoB7YKyLbJoT3Y6r6n/79NwPfAjaFod6Qa7kQ7om82TDz44yPda/rGODqsuxQlGbMvKWq7D3byU/31rHtUAOjY0p6UhzXLs5h5YJ0ynNTiXdfejyIiJCZHM+Hryrm+qW5/OxAPU/tr6MwPXHW19hiQTAt93VAtarWAIjI48BtwIVwV9XARURTgZiZZKW5ZxiXMOs+uSz/Xao2YsaYmesaGOGp/fU89notNa39pCXGsbY0izWlWZTnpuKa4fWswowk7l6/iO/uOsXje+v49MalU/5xiHXBhHsxUBfwvB5YP3EnEbkH+AKQANw02YFEZAuwBaCsLDpu623uGSI/PXHay+tNlBjnJjc1gXob627MtKgqB+u6+Ltnqzhc343Hq5TlpPCRq31dKAlxoQnhjOR47qgs5ZHfneWXb57nw2uLQ3LcaBWyqwuq+hDwkIjcBXwV+JNJ9tkKbAWorKyMitZ9c+/sx7iPK8lOtpa7MUHqHRpl26FGHt1dS9X5HhLcLq4uy2b9khwWZiaH5ZzLC9N5Z0UeL59qY1l+Gqsd3P8eTLg3AKUBz0v82y7mceA/ZlPUXGrpGaI0JyUkxyrJSeFoQ3dIjmWME3m9yp4zHfzTr45zpLGb0TFlYWYSt60tYk1JFknx7rDXcMuqBVS39PHrqmYuL8pw7NDlYMJ9L1AhIovxhfqdwF2BO4hIhaqe8j/9AHCKGNHcM0RleWgugJZkJ/Pro014vYprlt08xjiFqlJ1vodthxp59tB5GroGSYxzsbY0m2sWZVOanTynAet2Ce9YmsfPDtRztn2AxXmpc3buuTRluKuqR0TuBXbgGwr5sKoeFZH7gX2qug24V0TeC4wCnUzSJRONhj1jdA6MUhiioYul2SmMjinNvUNh+1hpTCxQVY409PDckfP86kgTNW39uF3COyvy+NKtK+gaGA1ZX/pMXFGcyS/fbOT1M+3zN9wBVHU7sH3CtvsCHn8uxHXNifEVmApD2OcOvhEzFu5mvhkd87KnpoOdVU385lgLDV2DuF1CeW4Kt60tYnVRJqmJcQyMjEU02AES/J8c9p7t4IPDHkfe3OS8dzQN43enFsxy6oFx4333dR0DXFueE5JjGhPNOvpH+O2JFp4/3sJLJ1vpHfIQ7xaW5aex/qpiLluYEbXBua48h901vpubbqjIj3Q5IRed/+pzpDnELffirLda7sY4kWfMy6H6Ll482caLJ1s5XN+FKuSnJ/KBKxYS53KxrCAt4i3zYCzITKIsJ4XXz3ayYVme4y6szvNw97XcQzUUMineTUF6os0OaRzD61VONPfy2ul2fne6jd01HfQNe3AJlGSncNPKAlYUplOUlTzjG4wiaV15Dk8dqOdMWz9L8tMiXU5Ize9w7x0iwe26cHdpKJRkJ9uiHSZmPbr7HO19I1S39lHT2kdNWz8DI2MALMpNYfPaIjYszWPDsly2v9kU4Wpnb3VxJs++2cjesx0W7k7S0jNMQUZiSD+OleaksP9cZ8iOZ0y49Q17eOVUGy+ebGH7m010D44CkJkcz4rCdJbkp7EkP/XC5Hjdg6OOCHbwXVhdtTCTY+d78KrG5KePi5nX4d7cMxSy/vZxpdkpPHv4PKNjXsfPXWFiV1vfMDurmnnuSBOvnW7zTcyVGEdZbgobV+SzND+N3NQEx/VDT6aiII0DtZ00dg1Skh2aGxqjwbwP9xUL0kN6zPK8VMa8Sm3HAEsd9jHPxLaeoVF+9WYTPz/UwGun2/Eq5KQmcN2SXFYsSGdRTuqs51iKRUsLfL+np1r6LNydorlnmHeGeAjUknzfDRE1rf0W7ibiPGNeXjrVyrd2nuL4+R48XiUnNYF3Ly9gdXEGCzKS5kXr/FLSEuMoykyiuqWPG1cURLqckJm34d437KFv2BPybpmleb5Ar2ntAwpDemxjgnWiqZen9tfxzMFGWnuHSUlwc215DmtLsyiZ49v9Y8GygjRerW5n2DNGYlz457eZC/M23Bu7fGPRi7NDeydpZko8uakJ1LT2h/S4xkylvW+YbYcaefpAA282dBPnEm5aWcDt15TQ1DNEnMuuAV3MsoJ0XjrVxpm2flYuyIh0OSExb8O9YTzcs0K/IsuS/FRq2vpCflxjJhoaHeM3x5p55o0GfnuiFY/XN8viB69cyJUlWaQlxtHWN2LBPoVFuSnEuYRTLX0W7rFuvOVelBX6OWCW5KXxm2PNIT+uMeDrR3/1dDs/P9jAjiNN9I+MUZiRyCdvWExinJsFmc5fQi7U4t0uFuelUt3inEbZvA53t0vCspj1kvxU2veN0D0wSmYIb5Ay89eju89R3znIwbouDjd00z/sISnexeqiTNaUZrE4b+ZL0BmfZQVpPHfEN84/Mzn2f2/ncbgPsSAjKSxDv8bvdDvd1meLZZtZaega5Jk3GvjvV8/S1jdMnEtYuSCdNaVZrChMJ87upQiZioJ0nqOJ6pZerlkU+xP/zdtwb+gavDDRV6gFDoe0cDfTNTrmZdfxFn7yei0vnmxFFcpzU3lXRR6rizPnZLWi+agwI5H0xDhOtfRZuMeyxq5BKheFJ3jLcnwXZ3zDIY0JTmvvMD95vZYf7z5HS+8whRmJfObGZdx+TSmvVLdFujzHExGWFqRxuqUPVY354aJBhbuIbAK+jW8lph+o6gMTXv8C8CnAA7QCf66q50Jca8iMeZWm7qGwXEwF38WZspwUGw5pgnLsfA/ff7mGZw+dZ2TMy/LCNG69fAHLC9Nxu8SCfQ6V5qRwsK6LroFRslMTIl3OrEwZ7iLiBh4Cbgbqgb0isk1VqwJ2ewOoVNUBEfk08E/Ax8JRcCi09g7j8WrYwh1sOKS5NFXltdPtfG3bUU619JHgdnH1omyuX5JLfnpoFo8x07fIv+BObceA88MdWAdUq2oNgIg8DtwGXAh3VX0hYP/dwN2hLDLUGrvHx7iHM9zTeOlUG2NenZfzdZjJeb3KzmPN/PsL1Ryq7yYtMY5bVhWyfnEuyQnWlx5phRlJJLhd1HYMsKY0K9LlzEow4V4M1AU8rwfWX2L/TwLPzaaocAvnGPdxS/JSGfF4aegcpCzXOZMRmZkZHfPyi0ON/MdvT3OqpY9FuSn8/R+sxjOmNntoFHG7hOLsZGodsOBOSC+oisjdQCXw7ou8vgXYAlBWVhbKU0/LW+Eevps9AodDWrjPX0OjYzy5r45/2XmSroFRFmQk8bFrS1ldlIkgxLvtU120WZSTwkunWhnxeCNdyqwEE+4NQGnA8xL/trcRkfcC/xd4t6oOT3YgVd0KbAWorKzUaVcbIo1dQ6QnxZGeFL4bFZYGDIe8cUXYTmOiVM/QKD967Rz//eoZ2vpGKMtJYfOaIlYUpsf8KAynK8tJwatvTVESq4IJ971AhYgsxhfqdwJ3Be4gIlcB3wM2qWpLyKsMsXCOcR+Xk5pAZnK8DYecZ1p6h3j4lbM8uvscvcMe3r08n79691JqWvss1GNE6fhF1fbYHu02ZbirqkdE7gV24BsK+bCqHhWR+4F9qroN+CaQBjzp/wGuVdXNYax7Vhq7BsPa3w6+MbNL8lNtOOQ8Uds+wPdeOs2T++sZ9XhZXZzJu5fnU5SVzJm2fgv2GJKaGEdeWkLM97sH1eeuqtuB7RO23Rfw+L0hriusGrsGWTsHV8KX5KXxSnVr2M9jIqe6pZd/f+E0Pz/UiFuE2ytLWJiRRG6aDWeMZWU5KZxo6o3pm5nm3R2qAyMeOgdGw95yB99Y958dqKd3aDSs/ftm7lW39PHt50/x7KFG4tzC9UtyuWFZHhkOmHDK+LpmDtR2ca59gPK81EiXMyPzLtwbu4aA8I5xH7dqoW9e6KONPVy3JDfs5zPh9dieWtr7htl1vIWDdV3Eu128a3k+G5blkZY4736VHK3M3+9+oLbTwj1WzMUY93FXlmQCcLi+y8I9xrX2DrPtUAOvn+nA7RJuWJbHO5fnW6g7VGFGEolxLg7UdvKHV5dEupwZmXc/mXMxxn1cbloiJdnJHKrrDvu5THj0DXvY+lINP3i5hqHRMSrLc7hpZQEZ1s3maC4RSrNT2H+uK9KlzNi8DHeXEPKFscH3sX2iNaVZHKyN3R+Q+Wp0zMvjr9fy7edP0dY3wgeuXMiKwnTy7ELpvFGak8KLJ1voG/bE5Ce02Kt4lhq6hijMSJqzW77XlGTyy8PnaesbtmCIAarKV55+k51VzbT3j7A4L5U7rim9MPbZzB/jNzMdruviHcvyIl3OtM27SS3mYox7oDUlviGXh+ut9R7NVJVXTrVx20Ov8vjeOuLcwieuW8SnblhswT5PBV5UjUXzruXe2D3IlSVzN9vb6uJMXAKH6rq5aWXhnJ3XBG//uQ6+ueMEu2s6KM5K5vZrSlhbmmVrks5zyQluluanciBGu1XnVbh7vcr5riE2rZ671eFTE+OoKEjnkLXco87h+i6+9ORhTjT3kpoYxwevXMi15Tk2S6O54OqybH5zrDkmb2aaV+He2jfMyJh3Tsa4B1pTmslvjrXE5A+IEx1p6OZfd57k+eMtJMe7uXVVIdcvzSMhzkLdvN3Vi7J5cn89Z9sHWBxj493nVbifavZN4rXMPx3vXLmyJIsn9tVT3zlo/bcRdLSxm3/7zSl2VjWTkRTH39yynJSEOFtw2lzU+AL3B851WrhHs5PNvQBUFKbP6XnH57E5WNdl4R4Bp5p7+dbOkzx3pImkeBfvuayADUvzLNTNlCoK0khPjONAbScfuSa2bmaaV+F+qqWX7JR48tLmdm3EFQvSSYhzcbi+iw+tKZrTc89Xj+2ppaN/hOePNXOwrouEOBc3rfSFui1nZ4Llcglry7Ji8qLqvAr3k819VERgsYR4t4vLizLsTtU50tk/wrOHG9lT04EI3FCRx7sr8kmJwRtRTORdVZbNg7tOxdzNTLFT6SypKiebe7ltbWRazmtKsvjp3jo8Y17ibDRGWAx7xnjk1bM8+EI1fUMeKsuzec/KQpup0czK1WVZMXkz07wJ9+aeYXqHPCyf4/72cVeVZfHI785Sdb5nTsfZzweqyq+rmvn7Xx6jtmOAG1fkc2VJVlimmDDzz1Wl/ouqtZ0W7tHowsXUgsiE+zsr8nEJ7KxqtnAPoeNNPdzz6AFOt/ZTkJ7In20oj9j/Y+NMmSnxLCtIi7l+96D6B0Rkk4icEJFqEfnyJK+/S0QOiIhHRG4PfZmzNx7uywvndhjkuJzUBNYtzmHH0aaInN9pugZG+NrPj/CB77xCY9cQH1pTxGduqrBgN2FxdVkWB2o78Xo10qUEbcpwFxE38BDwPmAV8HERWTVht1rgT4HHQl1gqJxq7iM3NSGiy5/devkCTjb3cabN1lWdKc+Ylx/vPseN//xbfrT7HHetK+OLNy/n+iW5uF12g5gJj+uW5NI1MMqxpp5IlxK0YFru64BqVa1R1RHgceC2wB1U9ayqHga8YagxJE629FIRoVb7uFsuXwBgrfcZ+t3pNj743Vf46jNHWF6Yzi8/+07+7sOrbRSMCbsN/r72V6vbIlxJ8IIJ92KgLuB5vX/btInIFhHZJyL7WlvnbuFoVaW6uS9iF1PHFWcls7o4w8J9mk639vEX/28fd31/D809Q9y1rozNa4p4o7Zr0jn0jQm1wowkKgrSeKW6PdKlBG1OmzyquhXYClBZWTlnnVfnu4foHfbM+Z2pk7l11QL+ZedJmnuGbDTHFNr7hvn286d4dE8tSXEubllVyIZleTaxl4mIDcvyeHxvLcOeMRLjov9GuGB+SxqA0oDnJf5tMePCxdSCyHbLANy62tc1s7OqOcKVRK++YQ+ffGQv1z+wix/vPsc1i7L57Hsq2LiiwILdRMwNy/IYGvVyIEaW3gum5b4XqBCRxfhC/U7grrBWFWJvjZSJfMu9oiCNxXmp7DjaxN3XLYp0OVFlaHSMn7xey4O7qmnvH+HyogxuXlVIQbp9wjGRt35JDm6X8Gp1G9cvjf4F76cMd1X1iMi9wA7ADTysqkdF5H5gn6puE5Frgf8BsoEPicjXVfXysFY+DSeb+8hLSyQ7dW7nlJmMiHDL5YX818tn6B4cJdPunmR0zMtT++v57vOnaOwe4voluawtzbJJ1kxUSU+KZ21pFq9Ut/E3t66IdDlTCqrPXVW3A9snbLsv4PFefN01UelUc2/ExrdP5kNXFvG9F2t4bE8tn964NNLlRIxnzMszBxuouWIoAAANiElEQVT5h+3H6OgfoTQ7mU/esJilczwlszHB2rAsjwd3naJ7YJTMlOhumDl+DJnXq5xq6eOjlaVT7xwGk43muGt9GRtX5PO9l05z93VlpCdF9w9JqHnGvPzicCPfeb6aM239FGUm8YnrFrFiwdxP6mbMdNywLI/vPH+K12ra2eS/fhatHH91qr5zkIGRsYiPcZ/o8+9dTtfAKD/83dlIlzJnRse8fOGnB1n3D8/z+Z8eYnBkjLvXl3HPjctYuTDDgt1EvbWlWaQkuGNivLvjW+4vV/vG068rz4lwJW+3pjSL915WyNaXavjj68sd3fc+MOLh8dfr+K9XztDQNUhRVhJ3ry9j5cIMW4TaxJSEOBfrF+fERLg7vuW+61gLZTkpLIuCYZATff7mCnqGPDz8yplIlxIWTd1D/MuvT/COB3Zx/7NVFGcl84nrF3HPxmWsKsq0YDcx6V3L86lp6+eUfxRetHJ0uA+NjvHq6TZuWlkQlR/5Ly/K5H2rF/DwK2fo7B+JdDkhoaq8drqdex49wIZv7OLBF6q5tjyHn336HTzxV9ezcoF1v5jY9sEri4hzCU/ur490KZfk6G6Z1063MzTq5aaVBZEu5aI+f/NyfnOsmXt/coBH/mxdzN6k09g1yNMH6nlyfz3n2gfITI7nHUtzWb84l5zUBE409XKiKbpbOsYEIz89kRtXFvD0gQa+dOuKqP2ddXS4P3+8mZQEN+uXRFd/e6Dlhen8wx9cwZeeOsxX/+cID3zkiphp2bb3DbP9SBP/9fIZzrX3o8CSvFTuuKaEy4sySYiLzh96Y2bro5Wl7Kxq5rcnWrl5VWGky5mUY8NdVdl1rIUbluVF/TwQd1SWcq59gAdfqKY8LzWqx77XdQzw66pmfn20ib1nO/CqryXznssKWFuaTU4U3ChmTLhtXJFPXloCT+6rs3Cfayeae2nsHuJz762IdClB+cLNyznXMcA3fnUcryp/+a4lUbHW6sCIh71nO3nxRCsvnmzhdKtvLvrCjETetTyfK4ozWZCRFDOfNowJhXi3iz+8uoSHXzlDW98weRFcJ+JiHBvuzx9rAeDGFdHX336xG5u+efuVeL3KN3ecYGdVM/98x5o5H+XT3jfMwbou9p/rZHdNO4fru/F49cIQsBWF6Vy2MCOii54YEw3uuKaErS/V8MwbDXzqnUsiXc7vcWy47zrewpUlmRTE0LS6SfFuHrzrKm49vID7fn6ED3znZe68tpQ7KktZXZwZ0nOpKk09Q5xo6uVoYw9V53s40tDNufYBAOJcwsLMJDYsy2NxXirluanWh25MgIrCdNaWZvHkvno+ecPiqPv06shwb+8b5kBtJ5+9KTa6ZAKJCJvXFHHd4hz+8bnj/GRvHT987RyrFmZw40pfN8jq4kyKs5Kn/GEaGh2juWeIpu4hGrsHOdc+QG37ADVt/VS39NE37Lmwb3ZKPAszk9l0+QJKc1Iozkq2MDdmCndeW8qXn36T54408f4rFka6nLdxZLh/d1c1QNT9Y1/KZF0115bn8LUPrWLboUZ+dqCB/3yxhjH/Ar1xLiE7NYHc1AQS492gigLDo156hkbpHfK8LbwBRCAjKZ7c1ARWF2dQkJ5EQUYiCzOSSU6I7ovOxkSj268p4cd7znHfz4/yjqW5ZKVEz4ACx4X7G7Wd/PC1sxcmoop1299sIs7l4mOVpfzhVcU0dQ9RlJ3M+a5BOvpHaO8fYcTj5Xz3IABxLhdFmckk5blISYwjIymejOQ4MpPjyU5JiNoxucbEoji3i3/6yBo2P/gK9z9bxbc+ujbSJV3gqHAfHfPylaffpDA9KSbmW56ueLfrwhznJdkplGTbfOfGRNqqogw+vXEp391VzeY1RWyMkkEcjmrG/eDlMxxv6uVvN18+76bRNcZEzr03LWNZQRr/5+k3L3yKjrSgwl1ENonICRGpFpEvT/J6ooj81P/6HhEpD3WhU3ntdDvffv4kt6wqjPp5lo0xzpIY5+af71hD9+Ao7//2y7xwoiXSJU0d7iLiBh4C3gesAj4uIqsm7PZJoFNVlwH/Cnwj1IVeTEf/CF984hAf//5u8tMT+fptUbO6nzFmHllbmsW2z9xAYUYSf/bfe/nH53wrjEVKMH3u64BqVa0BEJHHgduAqoB9bgP+1v/4KeBBERFV1RDWCsDgyBhV57t5s76bww3d7DreQt+Qh/+1cSmfuanCRn0YYyJmaX4az9yzga//oorvvVjD91+qoXJRDjddVsCy/DQKM5IozEwkLzURlyu84+KDCfdioC7geT2w/mL7+BfU7gZygZDPaP/9l2v41s6TAOSlJbJ+cQ5fvGUFywtjf2SMMSb2JcW7+cc/vII/Wl/Gr6ua2VnVzAPPHX/bPl/70Cr+bMPisNYxp6NlRGQLsMX/tE9ETszmeOeA/cDW2Rb2ljzC8Acpguz9RD+nvSdHvZ8/CtNx//wb8Ocz//ZFwewUTLg3AIGrS5f4t022T72IxAGZQPvEA6nqVkKaxaElIvtUtTLSdYSKvZ/o57T35LT3E8uCGS2zF6gQkcUikgDcCWybsM824E/8j28HdoWjv90YY0xwpmy5+/vQ7wV2AG7gYVU9KiL3A/tUdRvwX8CPRKQa6MD3B8AYY0yEBNXnrqrbge0Ttt0X8HgIuCO0pUVE1HYZzZC9n+jntPfktPcTs8R6T4wxxnkcNf2AMcYYHwt3pp5eIdaIyMMi0iIiRyJdSyiISKmIvCAiVSJyVEQ+F+maZkNEkkTkdRE55H8/X490TaEgIm4ReUNEno10LcbCPdjpFWLNI8CmSBcRQh7gi6q6CrgOuCfG/x8NAzep6hpgLbBJRK6LcE2h8DngWKSLMD7zPtwJmF5BVUeA8ekVYpaqvoRv1JIjqOp5VT3gf9yLL0CKI1vVzKlPn/9pvP8rpi9+iUgJ8AHgB5GuxfhYuE8+vULMBofT+WccvQrYE9lKZsffhXEQaAF2qmpMvx/g34D/DXgjXYjxsXA3MUNE0oCfAX+tqj2Rrmc2VHVMVdfiu+N7nYisjnRNMyUiHwRaVHV/pGsxb7FwD256BRNhIhKPL9gfVdWnI11PqKhqF/ACsX2NZAOwWUTO4uvWvElEfhzZkoyFe3DTK5gIEhHBdxf0MVX9VqTrmS0RyReRLP/jZOBm4Pilvyt6qepXVLVEVcvx/f7sUtW7I1zWvDfvw11VPcD49ArHgCdU9Whkq5odEfkJ8BqwQkTqReSTka5pljYAf4yvRXjQ//X+SBc1CwuBF0TkML7GxU5VteGDJqTsDlVjjHGged9yN8YYJ7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN3NGRMb8Y9SP+qe7/aKIuPyvVYrIdy7xveUictfcVft75x70zwUTFUTkY/4pqm18vJmUhbuZS4OqulZVL8d3V+b7gK8BqOo+Vf3sJb63HIhIuPud9s8FEzT/dNJhoao/BT4VruOb2GfhbiJCVVuALcC94rNxvBUqIu8OuBP1DRFJBx4A3unf9nl/a/plETng/3qH/3s3ishvReQpETkuIo/6py9ARK4Vkd/5PzW8LiLp/tkZvykie0XksIj8ZTD1i8gzIrLf/ylkS8D2PhH5FxE5BFx/kXNe7n980H/OCv/33h2w/Xvjfxz8i8kc8B/j+RD+bzBOpqr2ZV9z8gX0TbKtCygENgLP+rf9Atjgf5yGbyH3C6/7t6cASf7HFcA+/+ONQDe+CeBc+KZhuAFIAGqAa/37ZfiPuwX4qn9bIrAPWDyhxnLgyIRtOf7/JgNHgFz/cwU+6n98sXN+F/ijgH2Sgcv87zvev/3fgU8A+fimpF4ceN6A9/rsZP/W9mVfcdP8W2DMXHgV+JaIPAo8rar1/sZ3oHjgQRFZC4wBywNee11V6wH8/eTl+AL/vKruBVD/lMEicgtwpYjc7v/eTHx/LM5MUeNnReQP/I9L/d/T7q/lZ/7tKy5yzteA/+tf4OJpVT0lIu8BrgH2+t9rMr653q8DXlLVM/5jOGYRFhNeFu4mYkRkCb4wbMHXcgVAVR8QkV8C7wdeFZFbJ/n2zwPNwBp8LfShgNeGAx6PcemfcwE+o6o7plH3RuC9wPWqOiAivwWS/C8PqerYpb5fVR8TkT34Vi7a7u8KEuCHqvqVCef6ULB1GRPI+txNRIhIPvCfwIOqqhNeW6qqb6rqN/DNmrgS6AXSA3bLxNcq9uKbMXKqi5cngIUicq3/HOkiEodvNtBP++eLR0SWi0jqFMfKBDr9wb4SX+s66HP6/6jVqOp3gJ8DVwLPA7eLSIF/3xwRWQTsBt4lIovHt09RmzGAtdzN3Er2d5PE41v0+kfAZPOz/7WI3IhvybajwHP+x2P+C5WP4OuT/pmIfAL4FdB/qROr6oiIfAz4rn8O9UF8re8f4Ou2OeC/8NoKfHiK9/Er4K9E5Bi+AN89zXN+FPhjERkFmoB/UNUOEfkq8Gv/8NBR4B5V3e2/YPu0f3sLvpFGxlySTflrzBTEt27rs6oaVUvh+buH/kZVPxjpWkz0sW4ZY6Y2BmRG201M+D69dEa6FhOdrOVujDEOZC13Y4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxIAt3Y4xxoP8P5JiuJiH8qV0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(las['las_ra'], las['las_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, las, \"las_ra\", \"las_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add CFHT-WIRDS" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8XHd57/HPo9E22hdLsq3dSxzbWZxEsQMhIWQB00LSC5QGSqG3gFsuaUsp7Qt627Tl9vbC5V5uSRNa0jQXShOy92LAYJLYSchmS3Ycg+zYljdJXiRZ+z7bc/+YI2eiyNZImtHMnHner5demTlzZuZRZH3np9/5neeIqmKMMcZdMhJdgDHGmNizcDfGGBeycDfGGBeycDfGGBeycDfGGBeycDfGGBeycDfGGBeycDfGGBeycDfGGBfKTNQbL1myRBsaGhL19sYYk5L27NlzTlUrZtsvYeHe0NBAS0tLot7eGGNSkoicjGY/m5YxxhgXsnA3xhgXsnA3xhgXsnA3xhgXsnA3xhgXsnA3xhgXsnA3xhgXiircRWSziBwSkTYR+fIMj/8fEdnnfB0WkYHYl2qMMSZas57EJCIe4D7gNqATaBaRrap6YGofVf2TiP3/ELgqDrUaY4yJUjRnqG4E2lT1GICIPALcARy4wP4fA/46NuUtrod3tc+4/eOb6ha5EmOMWZhopmWqgY6I+53OtrcRkXqgEdix8NKMMcbMV6wPqN4JPKGqwZkeFJEtItIiIi09PT0xfmtjjDFTogn3U0BtxP0aZ9tM7gR+cKEXUtX7VbVJVZsqKmZtamaMMWaeogn3ZmC1iDSKSDbhAN86fScRuRQoBV6JbYnGGGPmatZwV9UAcBewHTgIPKaqrSLyVRG5PWLXO4FHVFXjU6oxxphoRdXPXVW3Adumbbt72v2/iV1Z8XehlTHGGOMGdoaqMca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4kIW7Mca4UFThLiKbReSQiLSJyJcvsM9HReSAiLSKyMOxLdMYY8xcZM62g4h4gPuA24BOoFlEtqrqgYh9VgNfAa5X1X4RqYxXwcYYY2YXzch9I9CmqsdU1Qc8AtwxbZ/PAvepaj+AqnbHtkxjjDFzEU24VwMdEfc7nW2RLgEuEZGXRORVEdkcqwKNMcbM3azTMnN4ndXATUAN8IKIXK6qA5E7icgWYAtAXV1djN7aGGPMdNGM3E8BtRH3a5xtkTqBrarqV9XjwGHCYf8Wqnq/qjapalNFRcV8azbGGDOLaMK9GVgtIo0ikg3cCWydts//IzxqR0SWEJ6mORbDOo0xxszBrOGuqgHgLmA7cBB4TFVbReSrInK7s9t2oFdEDgA7gT9T1d54FW2MMebioppzV9VtwLZp2+6OuK3AF50vY4wxCWZnqBpjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuBtjjAtZuDtUlfAFpYwxJvVFdZm9dPDt547SNTRBfk4m+TkeblxdwRU1JYkuyxhj5sVG7kAgGOLUwDjVpV5WVuTTP+pnX8dAossyxph5s3AHhicCAFxTV8pHrqmlvjyPwXF/gqsyxpj5iyrcRWSziBwSkTYR+fIMj/+uiPSIyD7n6zOxLzV+hibCQV7kzQKg2JvFwJiFuzEmdc065y4iHuA+4DagE2gWka2qemDaro+q6l1xqDHuhpyRe1Hum+E+7g/iC4TIzrQ/bowxqSea5NoItKnqMVX1AY8Ad8S3rMU15EzBFOWGP+uKnRG8Tc0YY1JVNOFeDXRE3O90tk33YRHZLyJPiEjtTC8kIltEpEVEWnp6euZRbnwMTfjJzBC82R4AivMs3I0xqS1Wcw4/AhpU9QrgaeB7M+2kqverapOqNlVUVMTorRduaNxPYW4mIgJAiTcbgMFxXyLLMsaYeYsm3E8BkSPxGmfbearaq6qTzt0HgGtiU97iGJoInJ9vhzenZwZs5G6MSVHRhHszsFpEGkUkG7gT2Bq5g4gsi7h7O3AwdiXG3/CE//xKGYBMTwYFOZkM2ooZY0yKmnW1jKoGROQuYDvgAR5U1VYR+SrQoqpbgT8SkduBANAH/G4ca44pVWVoPMCaqrf+ryj2ZtmcuzEmZUXVfkBVtwHbpm27O+L2V4CvxLa0xTEZCOELhiiMmJaBcLifG5m8wLOMMSa5pf0i7vPLIL3Twj3PRu7GmNRl4X7+BKa3/hFT4s1iMhBiwh9MRFnGGLMgaR/uwxMXGLk7960NgTEmFaV9uL95durM4W5r3Y0xqcjCfSJAblbG23rInB+527y7MSYFWbhP+N+2UgagMDcLwVoQGGNSk4X7uP9tB1MBPBlCYa6dyGSMSU0W7tNaD0SyE5mMMakqrcM9pPq21gORivOyLdyNMSkprcN9zBckpG9f4z6lxBm5q+oiV2aMMQuT1uE+tQxypgOqEJ6WCYSUvlFbDmmMSS3pHe4XOIFpytRyyDODE4tWkzHGxEJ6h/v4zK0HpkyF++mB8UWryRhjYiG9w33Cj3CRaZk8G7kbY1JTWof78ISf/JxMPBky4+MFOZl4RDg9aCN3Y0xqSetwHxoPXHBKBiBDhCJvJmcGbORujEkt6R3uF2g9EKkoN4vuYQt3Y0xqSe9wH7/wCUxT8nMybSmkMSblpG24B0PKqC9I4UWmZQDyczwW7saYlJO24T7uXGEpP9tz0f3yszPpH/MTCtlZqsaY1BFVuIvIZhE5JCJtIvLli+z3YRFREWmKXYnxMe4Lh7t3tnDPySQYUusxY4xJKbOGu4h4gPuA9wPrgI+JyLoZ9isE/hjYFesi42HcFz6ByZs1+7QMQK9NzRhjUkg0I/eNQJuqHlNVH/AIcMcM+/034OtASiwtmZqWyYtiWgaweXdjTEqJJtyrgY6I+53OtvNE5GqgVlV/EsPa4mpsaloma/ZpGYC+0cm412SMMbGy4AOqIpIBfBP40yj23SIiLSLS0tPTs9C3XpCpkXs0c+5g0zLGmNQSTbifAmoj7tc426YUApcBz4nICeA6YOtMB1VV9X5VbVLVpoqKivlXHQNTB1RzZxu5O+HfN2LhboxJHdGEezOwWkQaRSQbuBPYOvWgqg6q6hJVbVDVBuBV4HZVbYlLxTEy5g+Sk5lxwb4yUzI9GRTkZNrI3RiTUmYNd1UNAHcB24GDwGOq2ioiXxWR2+NdYLxM+IKzHkydUpafbQdUjTEp5eLrAB2qug3YNm3b3RfY96aFlxV/Y77grAdTp1i4G2NSTVqfoTrbwdQpSwqybVrGGJNS0jfcfUG82VH94UJZfja9I7YU0hiTOtI23Mf8c5mWyaF/zIeq9ZcxxqSGtAx3VZ3TAdXy/Gz8QWVoIhDnyowxJjbSMtzHfEGCqnM6oArWgsAYkzrSMtwHnA6P0R5QLSuYCnebdzfGpIa0DPfBMSfcoxy5lzsj9147S9UYkyLSMtwHxsMhHfXI3aZljDEpJi3DfciZlon+gGoOYM3DjDGpIy3DfWCO0zLebA/eLLuWqjEmdUR3Fo/LzPWAKlgLAmPS0cO72t+27eOb6hJQydylZbgPjvvxiJDtif4Pl3JrQWCMa80U4qkubadlcrM9iFy83W+k8MjdlkIaY1JDmo7cfeRFOd8+pSw/m8Nnh+NUkTEmnlSV1tNDvNYxwI/2nebs0ATeLA+rKgtYXVlARWHOnAZ7qSBNw90/p/l2CK917x0N95dx2z8CY9zooVdP0t43xq9ODdJ6euj8sbbcrAyWFuVybmSSQ13hAdvaZUV8YlOdq3630zLcB8b8Ua+UmVKWn8NkIMSYL3j+uqrGmOTT0TfGU3tP8b1XTtA36iMzQ1hVWcAta6tYUZFPiTfrfIj3j/rYfaKP5w/3sOt4H9etKE9s8TGUlik1OO6noiBnTs8pjziRycLdmOQyGQjy9IEuHm3u4MW2c6jCiop8br60kvXLisi5wGCuND+b966r4vTAOD/91RlWVRawZI7ZkKzSMqUGx/zUleXN6TlTZ6n2jvqoneNzjTHx0dY9wqPN7Ty0q50xX5ASbxY3r6nk6vpSSvOyo3oNEeFDV9dwz7NHeLylgy03rpz12sqpIO3CPRAMMTwZmPu0jDUPMyYpjPkC/GT/GR5r6aD5RD+ZGcKapYVc21DGqsoCMuYxb17szeL2Dct5tLmDXxzp4aY1lXGofHGlXbhP9WSfzwFVsOZhxiSCqrK3fYD/se0g+08N4guEWFKQzeb1S7m6vpSCGEyVXllTwusdA7zYdo4bL6mY14dEMonq/4iIbAa+BXiAB1T1a9Me/wPg80AQGAG2qOqBGNcaEwNj4XCOtq/MFGseZsziOzs4wVOvdfLEnk6O9YyS5REury6hqb6U+vK8mK9uuby6mDfODnN6YJya0tSefp013EXEA9wH3AZ0As0isnVaeD+sqv/s7H878E1gcxzqXbDzrQfmOC1TkJNJtifDwt2YOBv3Bfn5gbPcu6ONtu4RFKgvz+NDV1VzeXXxBQ+OxsLqqkIAjnSPuD/cgY1Am6oeAxCRR4A7gPPhrqpDEfvnA0l7sdHB831l5vZnnIiEL5Rt4W5MzIVCSvOJPp7c28m2X55lZDJASV4WN62p5Kq6kkVbwVKQk0l1iZfDXcO8J8Xn3aNJuGqgI+J+J7Bp+k4i8nngi0A2cHNMqouDuV6oI5I1DzMmtk72jvLk3lN8/5UT9I/5yc7M4PLlxVxVV0LDkvyEzHuvrirghcM9jPuCcz42l0xidkBVVe8D7hORjwN/CXxq+j4isgXYAlBXl5jOaoPz6Ag5pbwgm94RWy1jzEKMTgbY9sszPL6nk93H+xCBlUsKuHVtFeuXF5OdmdiWV5dUFvLcoR6O9oxwWXVxQmtZiGjC/RRQG3G/xtl2IY8A/zTTA6p6P3A/QFNTU0Kmbubayz1SRUEOx3pGY12SMa6nquzrGOC//+TN1S7lzglEG2pLKIlyTfpiqC3LIzcrg8Ndw64P92ZgtYg0Eg71O4GPR+4gIqtV9Yhz99eBIySpgXEfBTmZ8zpJoaIoh57hSesvY0yU+kd9/Mdrp3i0uYNDXcNkeYQrqku4Jk6rXWLBkyGsrCjgSPdISv+uzxruqhoQkbuA7YSXQj6oqq0i8lWgRVW3AneJyK2AH+hnhimZZDE47qfYmzWv51YU5OALhhgaD1CcN7/XMMbtQiHl5aO9/M/tb9B6eohgSKku8fIbG6q5oqaY3DiudomVSyoLaT09RPfwJFVFuYkuZ16imnNX1W3Atmnb7o64/ccxrituBsf8lMwzmCsKw0fse0YmLNyNmeb4uVGe3NPJU3s7OT0Ybqm7sbGMpvpSlhV7E13enKyuKgDgcNewu8PdTQYWMnJ3wr17aJJVlYWxLMuYlNQ36uPH+0/z1N5T7OsYIEPgxksq+ItfX0vviI+sOVztLJmU5GVTWZjDka4Rblhdkehy5iXtwn1w3M8lzqfyXFUWhj/Be2zFjElj/mCI5w/18PieDna80Y0/qCwtymXz+qVsqC2hyJvF0HggZYN9yoqKfPa2D6TsvHvahfvA2MJH7j3DFu4m/ZwZHOcvnvolzSf6GZkMkJ+TyabGcq6qK0m5aZdoVBXl4guEGBj3R91hMpmkVbirKkPjfoq98/tBFeVmkp2ZYeFu0sqek/088Itj/PxAF6GQnu/AeElVoSta415IlfOXevfQhIV7shv3B/EFQ/M+oCoiVBTkWLgb1wuFlL/Z2srzR3o42TuGN8vD9SvL2dhYfr6JnttNHUjtGppkzdIEFzMPaRXuUycwFXuz0HmeQlVRmGNz7sa1AsEQP9p/mn9+7hiHuoYpycviA1cs45r6UnIyk38JYyx5sz0U5mbSPTyR6FLmJa3CfaovTFl+9rz7slcW5nCydyyWZRmTcCOTAR5v6eBfXzxOZ/84a6oK+WhTDZdXl7h66mU2VYW5dA2l5mDOwn2OKgpzaDnZH8uyjEmYjr4xvv/qSX6wu53hiQDX1Jfy1x9czy2XVvJIc8fsL+BylUU5NJ/oI6SachfvSKtw73cu1LGQgyMVhTn0jfrwB0Mpv9TLpKdAMMSON7p5aFc7LxzpQYD1y4t516ol1Jbl0TM8acHuqCrMxR9UBsb8KXesIa3CfWrkXr6AH9LUcsjeER9Li1PzzDWTno6fG+Wxlg6e3NPpnFafwx/dvJqczIykatyVTCqLwr/vXUMTFu7JrH/UR4ZA0TzXuUO4vwyE17pbuJtkN+EPsr31LD/Y3c6rx/oQYM3SQt67roo1S4vSej49GlMrZrqHJli7rCjB1cxNWoV735iPkrzsBf2DriyaOkt1AkjddqDG3dq6h3loVztP7T3F4LifurI8vvTeS/BkZMz7JL50lJvlodibRVcKLn9Oq3DvH/VTusCGX5H9ZYxJJhP+ID/71Vke3tXO7hN9eERYt7yIjY1lNCboqkZuUFmYQ/dQ6i2HTKtw7xv1LXjebElB+Pl2IpNJFvc8e4Tm433sae9nzBekLD+bzeuXcnV9KQU5afUrHhdVRbm8eqw35VbMpNVPvn/MR13Zwq5onpMZ/jPNTmQyiTQZCPLz1i4e3tXOK8d6yRBYt6yIjY3lrKiwUXosVRbmEAgpfaO+RbtQdyykVbj3jfrYUFuy4NepKLQWBCYxjnQN82hzB0+9doq+UR81pV7eu66Kq+tLKcq1ufR4iDyoauGehFSV/jEfpTFYzlRp4W4W0ehkgJ/sP8O9O9to7xvDI8LaZYXcfuVyVlUW2Cg9ziqd42xdw5OsS3Atc5E24T48GcAfVMpisJ63ojCH19oHYlCVMRe2v3OAh3e186PXTzPqC1JRkMP7L1vKVXU2l76YcrI8lHiz6Eqxg6pp8y+k3zmBaT4j94d3tb/lfu+Izy6UbeJizBfgh/tO8487jnB6YOL8BaWbGkqpK0vOC0qng8qinJRbIZc24R6Ls1OnFORkMu4PMuoL2gjKxMTJ3lH+7ZWTPNbSwfBEgKVFudx+5XI21JakxAWl3a6qMJejPeEVM6kibZLpfF+ZGIR7YW74f1vP8KSFu5m3UEh5/kgPX9v2Boe7hhGBy6qLeceKchulJ5nyghyCofDFflJFVMkkIpuBbwEe4AFV/dq0x78IfAYIAD3A76nqyRjXuiB9o+EfSizm3AudVQk9w5M0Lslf8OuZ9DIw5uOJPZ08tKud4+dGKczJ5D2XVrKxscxWvCSpcuf8lt7R+XWTTYRZw11EPMB9wG1AJ9AsIltV9UDEbq8BTao6JiKfA/4n8FvxKHi+3pxzX/gvT0HEyN2YaKgqr3W8eYB0MhDimvpSvnDragbH/WRmWIfRZDY1nTvfVuGJEM3IfSPQpqrHAETkEeAO4Hy4q+rOiP1fBT4RyyJjoW/MR5ZHYjKNUui8RqpeocUsnsFxPz/cd4qHd7Xzxtlhsj0ZbKgtYdOKMpYVexmdDFqwp4AibxaeDKF3NHUGdNEkXTUQ2dy5E9h0kf0/Dfx0pgdEZAuwBaCuri7KEmOjf9RHaV52TOYxvdkeMjPERu5mRqrKvqlR+v7TTPhDXFZdxG9sqObKmmJy7ABpyskQoSwv+/zCjFQQ06OBIvIJoAl490yPq+r9wP0ATU1Ni3rYORZ9ZaZkiLDELpRtphmdDC9j/PdXT3LgzBDZngyurC3m2oYyakoX1vbCJF55wfyv4JYI0YT7KaA24n6Ns+0tRORW4L8C71bVpEu9/jHfgq7ANF1lkV0o24Qd6xnh3145yZN7OhmeDHDp0kLu2LCcDTUlNkp3kfL8bI72jKTM+S3RhHszsFpEGgmH+p3AxyN3EJGrgO8Am1W1O+ZVxkDvqI+1S2PXbL+iIIezKXbGmomdUEh5/nAPf7/tIEe6R/CIcFl1EdfZMkbXKsvPxh9UeoYnz1/XIZnNGu6qGhCRu4DthJdCPqiqrSLyVaBFVbcC3wAKgMedf9Ttqnp7HOues/5RX0xWykxZWpzLnna7UHa6GZ0M8MSeTr738gmOnRulMDeTW9ZWsrGh7PwSWeNO5U7TsBO9Y+4IdwBV3QZsm7bt7ojbt8a4rpgKhpSBcX9M1rhPaSjPZ2DMz+CYn+IFXgDEJL+OvjG+8tQvaTnZx4Q/RE2pl99qqmV9dZGtdkkTU8shT/aOsrGxLMHVzC4tTq8cHPejSkwvcFtfHj5AdrJvlCvyFt5G2CQfVeXVY3189+XjPH2gC4D1y4u5fmU5deV28lq6KcnLJkPgZO9YokuJSlqEe98CmoZdSL3zy32id4wraizc3WSqedf3Xj7BG2eHKc3L4g/evZLC3Cy7/mga82QIJXnZnOgdTXQpUUmLcJ/qKxPLkfvUFZ1OnkuNH7SZXXvvGP/2ygn+fddJJvwhlhbl8qGrqrmytoQsj029mPDUjI3ck8j5kXsM59y92R6WFuVyIkV+0GZmoZDyi7ZzfO/lE+w81O1cCKOId6wop77cVr2YtyrLz+bAmaGUWA6ZFuE+1VcmliN3CM+7n0yRP9HMW435Ajy59xTfeuYI50bC3T3fsya86qXIpl7MBZQX5DA8EWBgzB/Tad54SItw7xuL/cgdwitmdhxKymX95gK6hyf47ksneGhXO4PjfqpLvHy0qYbLlheTaVMvZhZTK2ZO9I5auCeD/lEf3iwP3uzYni1YvySPnpZJRicD5Ftf96R24twof/7Efva29xMMKeuWF3HntbV2wpGZkzeXQ45xVV1pgqu5uLRIpL5Rf8ynZCA8cofwD3rd8tid/Wpi50jXMPfubONHr59GRLi6rpQbVi9JqavYm+RRmp+NCCmxYiZNwn0ypmenTjm/YqZ31MI9yRw4PcS9O4/w01+dxZvl4TM3rKAsP9suhmEWJMuTwbKiXNpTYCFFeoT7mD/m8+3w5olMtmImefyyc5A/f3I/B88MkZOZwbsvqeD6lUts2szETH15vo3ck0X/qI+G8ti3XC3MzWJJQbatmEkCu4/3ce/ONl443IM3y8Mtayt554olMT/OYkzDkjx+3tqV6DJmlTbhHo85d0idT3E3Ug13Zvz2zqPsPtFHeX42f/a+NXizPORaq10TJ/Xl+fSO+hgc9yf1GcuuD3dfIMTwZCCmTcMi1Zfn8crR3ri8tplZMKRs++UZ/um5oxw4M0SxN4sPXLGMpvoysjNtOaOJr5UVBUC4j38yr5hxfbgPjMW+r0ykhvJ8ntp7igl/0EaLcTbhD/Lk3k7uf+EYJ3vHWFmRz4evruHK2mLrzGgWzcqK8Cq5oz2jFu6J1O1cCq88btMy4bn8jr4xVlcVxuU90t3IZIAvPfY6L7WdY3gyQE2pl9/eVMfaZUVk2Bp1s8jqyvLI8ght3SOJLuWiXB/unf3hlSy1ZfG5hmVkd0gL99gaHPfz3ZdO8OBLxxkc97OyIp+PrqllxZJ8O/HIJEymJ4OG8nyO9li4J1RH3zgAtXG6QPHUKhxbMRM7g+N+HnzxOA++dJzhiQC3rq1idWVB3D6gjZmrlRUFHO4eTnQZF+X+cO8fozA3M25XSyrJy6bYm2UrZmJgaCIc6v/8/FEm/CHWLy/i5ksrWVbsTXRpxrzFqsoCnj7YhS8QStqD+O4P976xuI3apzSU56VMj+dkNOYL8N2XT/Cd548xOO5n3bIibllroW6S18rKfIIhpb1vlFWVyTkd6/5w7x8/f3Q7XurL89lrF8ueswl/kC8+9jrPH+5hdDLAmqpCPnFdPdUlFuomua2qCAd6W/dI0oZ7VH9PiMhmETkkIm0i8uUZHr9RRPaKSEBEPhL7MudHVensj//Ifc3SQjr7x89fFMRc3GQgyPdfPcm7v7GTbb88w7KiXP7gxhV86p0NFuwmJayIWA6ZrGYduYuIB7gPuA3oBJpFZKuqHojYrR34XeBL8ShyvnpGJpnwh+J+IG6TcyX05hN9vG/90ri+VyrzBUI8saeTe3cc4fTgBE31pXzwiuWscE4KMSZV5Odksrw4l6NJvBwymmmZjUCbqh4DEJFHgDuA8+Guqiecx0JxqHHeOvqmlkHGdzR4eU0xOZkZ7D5u4T4TfzDEk3s6uXdnG53941xVV8LXPnwFN6xewg92dyS6PGPmZWVlAW1JvBwymnCvBiJ/AzuBTfN5MxHZAmwBqKurm89LzMnUMsi6OI/cczI9XFVXwu7jfXF9n1QTCIb4j9dOcc+OI3T0jVNT6uVT72jgkqoCOvvHLdhNSltZUcDjLR1Jez3VRT2gqqr3A/cDNDU1abzfb2rkXhPnOXeAjY3l3LvjCMMTfgrTvGf4v796ktbTQzxzoIuekUmqS7x88h31rKkqTMpfAmPmY2VlAaO+IF1Dkywtzk10OW8TTbifAmoj7tc425JeR/8YFYU5i9LzZVNjGfco7DnZz01rKuP+fsnq5aPn+KfnjnJqYJzKwhx+e1Md65YVWagb15lahdfWPZKy4d4MrBaRRsKhfifw8bhWFSMdfePUli7O6our6krIzBB2H+9Ly3Bv6x7haz89yDMHuyn2ZvGRa2rYUFtivV+Ma62qDC8EONozwrtWL0lwNW83a7irakBE7gK2Ax7gQVVtFZGvAi2qulVErgX+AygFPigif6uq6+NaeRQ6+se4pn5xurblZWdyeU1x2s27D477+dYzR/jeKyfwZnn4881ryM/OJMuTnGftGRMrFQU5FOZmJm0Dsajm3FV1G7Bt2ra7I243E56uSRr+YIgzgxNxX+MeaWNjGQ++eDwt2v+GQsqXHn+d7a1nGfMFaWoo5bZ1Symwy9mZNCEirKosSNoGYq79TTwzMEEwpHFbBvnwrva3bRv3BfEHldfaB3jHyvK4vG8y2N85wF/9sJXXOwaoL8vjA1cut5OPTFpaWVHAL470JLqMGbk23Dvi3Op3JvVl+YiEr+fpxnDvH/XxjZ8f4ge721lSkMNvOvPqdrDUpKulET1dAAANXklEQVSVFQU8saeToQk/RUm2Ss694T51AtMiTst4sz2sXVrE7hO9wOpFe994C4aUP30sPAUzGQjyzhXl3LK2yvVTT8bM5vLqYgD2tQ9w4yUVCa7mrdwb7v1jeDKEZYu8RGljYxmPNLczOhkg3wXzz3vb+/mbra3s7xykoTyf269cnpTLvoxJhKvqSvA4q+SSLdxdu6Sho2+c5SW5ZC7yqo3bNyxnwh/isZbUPvuye2iCLz62jw99+2XODk7w0aZaPntDowW7MRHyczK5rDo5V8m5N9wXoRvkTK6uK+Wa+lIefOk4gWBStdqJyoQ/yH0723jP/3qOH79+hs/dtJIdX7rJ5taNuYBNjWXs6xhgwh9MdClv4d5w7xtPSLgDfPaGRjr6xtne2pWQ95+PUEh5am8nm/7+Wb6x/RB15fn84c2rqC3NY+u+04kuz5ikdW1DGb5giP2dg4ku5S1Sf1J4BmO+AOdGJuPeDfJCblu3lPryPP7lF8f4tcuXJvWIV1XZeaibb2w/zMEzQ1SXePnNphpWLLE2vMZE49qG8ImSu4/3stFp/50MXBnunf3ORbETdEFlT4bw6Xc1cvcPW9lzsp+mhuT5gU9RVV452ss3nz5My8l+6svz+NadGxieCFjLAGPmoCQvm0uXFrLreB93JbqYCK6cltl7MnzJu0uXFiWsho9cU0OxN4t/+cWxhNUwk6mR+of/6WU+/sAuDncNc8eG5XzmXSsYnQxasBszD9c2lLH3ZH9SHWdz5cj92Te6qS7xcklV4qYW8rIz+Z3r6rnvuTaeO9Sd8GZivkCIH71+mgdePH5++uX2K5dzTX2p9YExZoE2Npbx/VdPcuDMEFfUlCS6HMCF4T7hD/JS2zk+fHVNwue6P3fTSna80c1dD7/Gk597J2uWLv6FdM8OTvBocwcPvHiM4YkAlYU5fOiqajbUlZCZYaFuTCxMzbXvPt5n4R4vu473MeYLcvPaxIyUp/ec+eCVy/m/Lx3n977bzH98/p1UFsZ/nbgvEOKFwz080tzBjje6CCmsrizgI1cvYVVlQcI/9Ixxm6qiXOrL89h1vI/P3LAi0eUALgz3HQe78GZ5eMeK5OjtUuzN4l8/dS0f/c4rfPZ7LfzLJ5uoLIp9wAdDyt72frbuO82P95+mf8zPkoJsfv/dK/nYtXW82HYu5u9pjHnTxoYynj7YRSikZGQkfgDlqnBXVXYc6ub6VeVJ1ffk8ppi7vnYVXz+ob3c8r+f50vvW8MnrqvHs8B/ACOTAXYd6+WZg108faCLcyM+MjOEdcuL+OCVJayuLMSTIRbsxiyCjY1lPL6nk32dA1xdtzjXkbgYV4V7W/cIHX3jfO7dqxJdytvctq6Kn33hBu7+YSt/vbWVx1o6uPPaWm5ZW8XyKNvl9o36eL1zgH3tA7xytJeWk32EFLIzM1hTVcita6tYU1VIThJ9sBmTLjZftpS/+8lBvr2zjQc+dW2iy3FXuD/7RjcAN1+aXJe5i5yHf/9lS6kp9fLMwS7+6oet/NUPW7l0aSErKwtYVpRLVVEuIjAZCDEZCHF2cJz2vjHae8c4PTgBgAisW1bEu1ZVsKqygPryPFvxYkyCFeZm8el3NfLNpw/zq1ODXOZ0jEwUV4X7jje6WbesKKmbW4kIV9SUcEVNCZtWlPHMgS5ebDvHwdNDPHuwiwn/W9fJVjoX+K4syuWKmhJqSr1Ul3htdG5MEvrd6xt44BfH+NazR/iXTzYltBbXhPvAmI89J/v5LzetTHQpUdt1rI/C3Czef9kyIHzMYDIQDvfMDMGTIbayxZgUUpSbxe+9q5F/eOYIracHWb88caN3V/wtr6p8/WeHCIaUW9dWJbqceRMRcrM85GZ5yPRkWLAbk4L+8/WNFOZmcs+zRxJaR1ThLiKbReSQiLSJyJdneDxHRB51Ht8lIg2xLvRivvn0YX6wu53/ctNKrqxNjhMIjDHpqdibxe9d38j21i4eb+lAVRNSx6zhLiIe4D7g/cA64GMism7abp8G+lV1FfB/gK/HutAL+b8vHecfd7Rx57W1/Nn71izW2xpjzAV95oZGNjWW8WdP7OcLj+5jeMK/6DVEM+e+EWhT1WMAIvIIcAdwIGKfO4C/cW4/AdwrIqJx+MgKhpQDp4d4+eg5XjraywuHe3jf+ir+7jcus2kMY0xSKMzN4uHPXse3d7bxD88eYW97P7dfuZz1y4u5bHkxtWXeuOdVNOFeDUReM64T2HShfVQ1ICKDQDkQ87Nn7nn2CN9y5rJWVxbw+zeu4E9uu2TRL6dnjDEX48kQ/vCW1bxzVTl/+6MDfOf5YwRC4fHuX/762ri3KVjU1TIisgXY4twdEZFDC3m9k8AzwF/M7+lLiMOHTxKw7yv1uPV7c+X39dsxeI3Pfh0+O/+n10ezUzThfgqojbhf42ybaZ9OEckEioHe6S+kqvcD90dTWLyJSIuqJnYhahzY95V63Pq9ufX7ShXRzGU0A6tFpFFEsoE7ga3T9tkKfMq5/RFgRzzm240xxkRn1pG7M4d+F7Ad8AAPqmqriHwVaFHVrcC/At8XkTagj/AHgDHGmASJas5dVbcB26Ztuzvi9gTwm7EtLe6SYnooDuz7Sj1u/d7c+n2lBLHZE2OMcR9bP2iMMS6UduE+WyuFVCUiD4pIt4j8KtG1xJKI1IrIThE5ICKtIvLHia4pFkQkV0R2i8jrzvf1t4muKZZExCMir4nIjxNdS7pKq3CPspVCqvousDnRRcRBAPhTVV0HXAd83iU/s0ngZlW9EtgAbBaR6xJcUyz9MXAw0UWks7QKdyJaKaiqD5hqpZDyVPUFwiuVXEVVz6jqXuf2MOHAqE5sVQunYSPO3SznyxUHwESkBvh14IFE15LO0i3cZ2qlkPJBkS6cbqNXAbsSW0lsOFMX+4Bu4GlVdcX3BfwD8OdAaLYdTfykW7ibFCUiBcCTwBdUdSjR9cSCqgZVdQPhs743ishlia5poUTkA0C3qu5JdC3pLt3CPZpWCibJiEgW4WB/SFWfSnQ9saaqA8BO3HHM5HrgdhE5QXja82YR+ffElpSe0i3co2mlYJKIhPui/itwUFW/meh6YkVEKkSkxLntBW4D3khsVQunql9R1RpVbSD8+7VDVT+R4LLSUlqFu6oGgKlWCgeBx1S1NbFVxYaI/AB4BVgjIp0i8ulE1xQj1wO/Q3gEuM/5+rVEFxUDy4CdIrKf8KDjaVW1ZYMmZuwMVWOMcaG0GrkbY0y6sHA3xhgXsnA3xhgXsnA3xhgXsnA3xhgXsnA3xhgXsnA3i0ZEgs469Van1e2fikiG81iTiNxzkec2iMjHF6/at733uNMHJimIyG85battbbyZkYW7WUzjqrpBVdcTPiPz/cBfA6hqi6r+0UWe2wAkJNwdR50+MFFzWkzHhao+CnwmXq9vUp+Fu0kIVe0GtgB3SdhNU6NQEXl3xNmor4lIIfA14AZn2584o+lfiMhe5+udznNvEpHnROQJEXlDRB5yWhggIteKyMvOXw27RaTQ6cz4DRFpFpH9IvL70dQvIv9PRPY4f4Vsidg+IiL/W0ReB95xgfdc79ze57znaue5n4jY/p2pDwfnAjN7ndd4NoY/BuNmqmpf9rUoX8DIDNsGgCrgJuDHzrYfAdc7twsIX8j9/OPO9jwg17m9Gmhxbt8EDBJuCpdBuCXDu4Bs4BhwrbNfkfO6W4C/dLblAC1A47QaG4BfTdtW5vzXC/wKKHfuK/BR5/aF3vMfgd+O2McLrHW+7yxn+7eBTwIVhNtUN0a+b8T3+uOZ/l/bl31lzvGzwJjF8BLwTRF5CHhKVTudwXekLOBeEdkABIFLIh7braqdAM48eQPhwD+jqs0A6rQNFpH3AleIyEec5xYT/rA4PkuNfyQi/8m5Xes8p9ep5Uln+5oLvOcrwH91LmrxlKoeEZFbgGuAZud79RLu834d8IKqHndew3UXZDHxYeFuEkZEVhAOw27CI1cAVPVrIvIT4NeAl0TkfTM8/U+ALuBKwiP0iYjHJiNuB7n4v3MB/lBVt8+h7puAW4F3qOqYiDwH5DoPT6hq8GLPV9WHRWQX4asVbXOmggT4nqp+Zdp7fTDauoyJZHPuJiFEpAL4Z+BeVdVpj61U1V+q6tcJd0y8FBgGCiN2KyY8Kg4R7ho528HLQ8AyEbnWeY9CEckk3CH0c07PeETkEhHJn+W1ioF+J9gvJTy6jvo9nQ+1Y6p6D/BD4ArgWeAjIlLp7FsmIvXAq8CNItI4tX2W2owBbORuFpfXmSbJInzh6+8DM/Vo/4KIvIfwZdpagZ86t4POgcrvEp6TflJEPgn8DBi92Burqk9Efgv4R6d/+jjh0fcDhKdt9joHXnuA35jl+/gZ8AcicpBwgL86x/f8KPA7IuIHzgJ/r6p9IvKXwM+d5aF+4POq+qpzwPYpZ3s34ZVGxlyUtfw1ZhYSvnbrj1U1qS6D50wPfUlVP5DoWkzysWkZY2YXBIqT7SQmwn+99Ce6FpOcbORujDEuZCN3Y4xxIQt3Y4xxIQt3Y4xxIQt3Y4xxIQt3Y4xxof8PK+ocftj0keEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(wirds['wirds_ra'], wirds['wirds_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, wirds, \"wirds_ra\", \"wirds_dec\", radius=1.*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Add PanSTARRS" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4XFd9//H3d7SPltFu7ZZ3x7ETh9hZIXECAYclLoWShLU0NJRfU2gLpfCQ0jb8SkP7AD+g0JKyFghpgJAEcEggOASSOLbixJu8xJYlW5K1WLu1L+f3x4yM7NjWyJrRzFx9Xs+jJzN37tz7HUf66Ojcc8415xwiIuItvlgXICIikadwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h40LThbmbfMrM2M9tzjtffZWa7zGy3mT1rZpdGvkwREZmJcFru3wE2nuf1I8D1zrk1wGeA+yJQl4iIzELydDs45542s+rzvP7slKdbgYpwTlxYWOiqq895WBEROYsXXnjhhHOuaLr9pg33GboDeOxcL5rZncCdAFVVVdTU1ET49CIi3mZmDeHsF7ELqmZ2A8Fw//tz7eOcu885t845t66oaNpfPCIicoEi0nI3s0uAbwA3O+c6InFMERG5cLNuuZtZFfAQ8B7n3MHZlyQiIrM1bcvdzH4IbAAKzawR+EcgBcA591/Ap4EC4GtmBjDmnFsXrYJFRGR64YyWuX2a1z8AfCBiFYmIyKxphqqIiAcp3EVEPEjhLiLiQQp3EREPivQM1YR0//NHX7HtnVdWxaASEZHIUMtdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kHThruZfcvM2sxszzleNzP7spkdMrNdZvaqyJcpIiIzEU7L/TvAxvO8fjOwLPR1J/Cfsy9LRERmY9pwd849DXSeZ5dNwP+4oK1ArpmVRqpAERGZuUj0uZcDx6Y8bwxtewUzu9PMasyspr29PQKnFhGRs5nTC6rOufucc+ucc+uKiorm8tQiIvNKJMK9Caic8rwitE1ERGIkEuH+KPDe0KiZq4Ae59zxCBxXREQuUPJ0O5jZD4ENQKGZNQL/CKQAOOf+C9gMvBE4BAwA749WsSIiEp5pw905d/s0rzvgLyNWkYiIzJpmqIqIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIeFFa4m9lGMztgZofM7BNneb3KzLaY2YtmtsvM3hj5UkVEJFzThruZJQFfBW4GVgG3m9mqM3a7G3jQOXcZcBvwtUgXKiIi4Qun5X4FcMg5V+ecGwEeADadsY8DckKPA0Bz5EoUEZGZCifcy4FjU543hrZN9U/Au82sEdgM/NXZDmRmd5pZjZnVtLe3X0C5IiISjkhdUL0d+I5zrgJ4I/A9M3vFsZ1z9znn1jnn1hUVFUXo1CIicqZwwr0JqJzyvCK0bao7gAcBnHPPAelAYSQKFBGRmQsn3LcDy8xskZmlErxg+ugZ+xwFXgtgZhcRDHf1u4iIxMi04e6cGwPuAh4H9hEcFbPXzO4xs1tCu30U+HMz2wn8EPhT55yLVtEiInJ+yeHs5JzbTPBC6dRtn57yuBa4NrKliYjIhdIMVRERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBYU1imo/uf/7oWbe/88qqOa5ERGTm1HIXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIB4UV7ma20cwOmNkhM/vEOfZ5h5nVmtleM7s/smXOrZ2N3Tx/pCPWZYiIXLBp76FqZknAV4GbgEZgu5k96pyrnbLPMuCTwLXOuS4zK45WwXPhV7WtdPaP4MNYvyg/1uWIiMxYOC33K4BDzrk659wI8ACw6Yx9/hz4qnOuC8A51xbZMudO79Aonf0jpKf4eGRnE/tbemNdkojIjIUT7uXAsSnPG0PbploOLDezZ8xsq5ltjFSBc62hYwCAd16xkJJAOj/cdpTGroEYVyUiMjORuqCaDCwDNgC3A/9tZrln7mRmd5pZjZnVtLe3R+jUkdXQ0U+yz6gu9PO+q6vJTEvmoR1NsS5LRGRGwgn3JqByyvOK0LapGoFHnXOjzrkjwEGCYX8a59x9zrl1zrl1RUVFF1pzVDV0DFCZ7yfZ5yM7PYVXVeXR2jvEyNhErEsTEQlbOOG+HVhmZovMLBW4DXj0jH0eJthqx8wKCXbT1EWwzjkxPDbO8Z5BFhb4T20ryUnHAa29Q7ErTERkhqYNd+fcGHAX8DiwD3jQObfXzO4xs1tCuz0OdJhZLbAF+DvnXMKNJTzWOciEg+qCzFPbSgPpALT0KNxFJHFMOxQSwDm3Gdh8xrZPT3nsgL8NfSWsho5+DKjK/0PLPS8zlbRkH8d7B2NXmIjIDGmG6hQNHQOUBNJJT0k6tc1nRklOOsfVcheRBKJwDxmfcBztHDit1T6pJJBOS88QE87FoDIRkZlTuIe09AwxMj5xWn/7pLJABsNjE3QPjMagMhGRmVO4h9R39AOcNlJmUknoourxHvW7i0hiULiHNHQOkJuRQq4/9RWvLchJx0D97iKSMBTuIce7BynPyzjra6nJPgqy0hTuIpIwFO7AhHP0DI6Sn/nKVvuk0kA6LeqWEZEEoXAHTg6PMTbhztolM6k0kE7XwCi9Q7qoKiLxT+EOp0bB5GWknHOfyZmq+4/3zUlNIiKzoXAHugdGAM7bci8JBPvja5t75qQmEZHZULjzh5Z7rv/cLfec9GT8qUnsU8tdRBKAwh3oGhghIyXptGUHzmRmlAbS2ac7M4lIAlC4E2y5n6/VPqkkJ52XW0/itAyBiMQ5hTvBlvv5+tsnFWSlMTg6Tnvf8BxUJSJy4eZ9uDvn6B4Mr+VeEBoHX9+he6qKSHyb9+HeMzjKyNjEeYdBTirISgP+sA6NiEi8mvfh3tgVnHUaTrdMICOFZJ/RoHAXkTg378O9qTsY7nlhhHuSz6jM96tbRkTinsL9VMt9+m4ZCC4JrJa7iMS7eR/ujV2DpCQZ/tRzj3Gfqrogk4YTAxoOKSJxbd6He1P3ALn+VMwsrP0XFvjpGx6js38kypWJiFw4hXv3IHlhdskAp27Dp353EYlnCveuwbBGykyavA2f+t1FJJ7N63DvHx6ja2A0rDHukyry/PhMLXcRiW/zOtwnh0HOpOWemuyjPC9DLXcRiWvzO9xnOAxyUnVBplruIhLX5nW4N85gAtNUCwv81J9Qy11E4ldY4W5mG83sgJkdMrNPnGe/t5mZM7N1kSsxepq6BklN8pGVnjyj91UXZNIzOHrqDk4iIvFm2nA3syTgq8DNwCrgdjNbdZb9soGPAM9HushoaeoepDQ3HV+YY9wnLdRwSBGJc+G03K8ADjnn6pxzI8ADwKaz7PcZ4HPAUATri6qmrgHKczNm/L5qDYcUkTgXTriXA8emPG8MbTvFzF4FVDrnfhHB2qKuqXvwgsK9Mt+PGdSfUMtdROLTrC+ompkP+ALw0TD2vdPMasyspr29fbannpXR8Qna+oYpvYBwT09Joiyg4ZAiEr/CCfcmoHLK84rQtknZwGrgKTOrB64CHj3bRVXn3H3OuXXOuXVFRUUXXnUEtPUN4xyUBtIv6P0LC/y6aYeIxK1wwn07sMzMFplZKnAb8Ojki865HudcoXOu2jlXDWwFbnHO1USl4ghp6QkOg7zwcNdYdxGJX9OGu3NuDLgLeBzYBzzonNtrZveY2S3RLjBamruD131LAzPvloHgRdXO/hF6BkcjWZaISESENcDbObcZ2HzGtk+fY98Nsy8r+lp6QuGemw4NM3//kqIsAOraT3JZVV4kSxMRmbV5O0O1uWeQzNQkstNmNoFp0uKi4Fj3w+3qdxeR+DNvw72lZ4jS3Iywb9Jxpsp8P8k+o679ZIQrExGZvXkb7s09Qxd8MRUgJcnHwgI/dWq5i0gcmrfh3tIzSEnOhYc7wOKiLA6r5S4icWhehvtsJjBNtbgok4aOAcYndLNsEYkv8zLcZzuBadKSwixGxido7NJ4dxGJL/My3Gc7gWnSkuLJETPqmhGR+DIvw322E5gmLS6cHOuui6oiEl8ubJB3gjttAtMs5GWmkudP0Vh3kQR0//NHw973nVdWRbGS6JifLfdZTmCaSiNmRCQezduWe0kg/YInME21pCiT3+yP7fLFIhLUcXKYw+39HOscoLl7kOaeIUbGJkhNNlKSfCxfkM1bLi0jkJES61Kjbl6G+/GeIcpmOQxy0uKiLB6saaRncHRefMOIxIPhsXH2H++j9ngv+473sv94Hy+39dE1cPpCfpmpSaQk+xifcIyOTzA0OsE/PbqX1eUBXr20MGI5EI/mabgPsqz4wtaTP7OfrrEzOPJGC4iJRIdzjroT/exo6OLFY93sauzmQEsfo+PB+SVpyT5KctJZWpxNcXYaRdlpFGSmkpORQkqS77TjNHcPUdPQyUvHutnb3MMdr15MVb4/Vh8tquZduEdqAtOkwuxUIDhiRuEuMnuDI+PsauzmhaNdvFDfxY6jXada5OkpPipy/VyzJNjqLs/NINefEtZN7s2M8rwMyvPKuXFlMV9/uo7vPlvPndctZsEsZ6vHo3kX7pGawDSpIDMtuIDYCV1UFZkp5xyNXYPsONrFjoYudhztZt/xXsZCs76XFGVy06oFjI07KvP9FGWnhRXk08lOT+HPrl3E158+zLefOcIHr1tCXmbqrI8bT+ZduEdqAtOkJJ9Rle/ncJuGQ4pMZ2h0nF2NPaeF+YmTwwBkpCRxaWWwL7wq309Vvh9/BEa0nUt+Zirvv2YR9/3uMN/b2sBdNy6NyC+OeDHvwj1SE5imWlyUqZa7yFn0DI7yQkMn33mmgfqOfpq6B0+txVSQmUpVvp9rlxZQmednQU46Sb65DdeSQDqbLi3nf2uOsbe5lzXlgTk9fzTNu3CfnMBUEqGWOwTvyvT0wROMT7g5/+YUiSdtfUNsP9LF9vpOth3pZF9LL85BUqi/+5olBVQXZFKZ7ycriq3ymVhTEeDJ/a08daCN1WU5ERkiHQ/i4193Dk1OYMpJj9xHX7Ygm5HxCeraT7JsQXbEjisSz8YnHIfaTrLjaBc19V280NB56qbxKUlGZZ6fG1cUU12YSWWen9Tk+Jwz6TNjw/JifryjkQMtfawszYl1SREx78I9khOYJl1SEfxTbldjj8JdPMk5R1P3ILsbe9jV1MPOY93sauzh5PAYEBxPXlWQycaLS6guzKQsN51kX3yG+dlcWpnLk/tb2XKgjRUl2Z5ovc+7cI/kBKZJS4qy8Kcmsbuph7ddXhHRY4vMtbHxCY6c6Kf2eC+1zb3sbe5lx9EuBkbGAfBZ8JrVxWU5VOX7qcz3U5CZmtCBmOQzrltexCMvNXO4vZ+lxVmxLmnW5mG4X/gEpnNJ8hmrywLsbOyO6HFFom1gZIx9x4MBXtvcS+3xXg609DE8NgFAapKP5SVZrCrNoSw3g4q8DBbkpJ82OcgrLq/KY8v+NrYcaFO4J5rhsXHa+oajMuV4TUWA729tYHR8wpPf+JL4RscnONDSx4vHunnpaDd7mno42NrH5H3EMlKSKM1NZ311PqWBdEoC6RRnz/0IllhJTvJx9ZJCHt/bQmf/CPkJPu59XoX7sc5BnINFhZkRP/YlFQGGxyZ4ufUkq8q8cUFGElvPwCgvHO2kpr6LmoYuXjzadWrKfmZqEhV5fm5YWUx5bgalgXQCGSkJ3bUSCWvKAzy+t4U9TT1ctzyyf+HPtXkV7g0dwYlGCwsiv5bE5PjY3U3dCneJidbeIZ4/0skPtjbQ0DFAa+8QjmAfeVluBuur86nM91OV5yfXryA/m/zMVMpzM9jTrHBPKEdOBMO9uiDyLffqgkyy05PZ1djDresjfniRV2jsGuD5uk6eP9LB80c6aQgNQ0xN9lGV72d1eTHVBZlUxPEwxHi0pjzAL/e20NU/ktBLEsyrcG/oGCAnPZlcf+SX5vX5jDXlAXY19kT82CIQDPOtdZ1sretga10HjV3BpTQyUpKoLvDzxtXBYYilgYx5008eDatD4b6nuYfXLEvc1ntY4W5mG4EvAUnAN5xz957x+t8CHwDGgHbgz5xzDRGuddbqO/qpLsyM2p+jayoCfOv3RxgeGyctOSkq55D5YXJBra11wVb51DD3pyaxqDCTtZW5LCrMZEFOuqfWRIm1/MxUynLT2d3k8XA3syTgq8BNQCOw3cwedc7VTtntRWCdc27AzD4E/BtwazQKno2GjgEurcyN2vEvKc9ldNxxoKWPSyqidx7xnokJx6H2k2w70klNaOp+c2ipjDx/ClcuKlCYz6E1ZQEer22la2CEPH9ids2E03K/AjjknKsDMLMHgE3AqXB3zm2Zsv9W4N2RLDISRsYmaOwaYNPasqidY+pMVYW7nM/o+AS7m3rYfqST7fWd1DR00R1aszw7LZmFhZlcXp3PosJMiiO0zK2Eb3V5MNz3JHDrPZxwLweOTXneCFx5nv3vAB6bTVHR0NQ9yISDhVG4mDqpIi+DPH8Kuxq7gYVRO48knokJR+3xXn738gmeq+ugpr7z1IzPwqxUlhZlUV2QycICP/kJPtvTCwqy0igLpHs+3MNmZu8G1gHXn+P1O4E7AaqqqiJ56mnVd0yOlIneLbXMjDUVubqoKgB0D4zw24Pt/GZ/G79/+QQd/SMAFGencUlFgEWFWVQX+MlO171349Hq8gBP1LbSOzQ6/c5xKJxwbwIqpzyvCG07jZm9DvgUcL1zbvhsB3LO3QfcB7Bu3Tp3tn2ipeHE5Bj36LXcAS4pD/Cfh04wODJORqouqs43xzoH+NfH9lPb3MvRzn4mXHDC0LIF2dy4spilxVkK8wSxoiSbJ2pbebm1L9alXJBwwn07sMzMFhEM9duAd07dwcwuA74ObHTOtUW8ygio7xggMzWJwqzoXhy5vDqP8S2ObfWdXJ/gkyAkPIfa+nhsdwuP7Wmh9ngvACU56Vy3vIiLSnIoz8tQn3kCKslJJyc9mQMtHg1359yYmd0FPE5wKOS3nHN7zeweoMY59yjw70AW8KNQX+FR59wtUax7xho6+llYEL1hkJOuXlxARkoSv65tVbh7lHOOA619bN7dwgPbjtLWF/xDtSrfz82rS1hVmkNBVlqMq5TZMjOWL8hmd1NPQq4ZFVafu3NuM7D5jG2fnvL4dRGuK+IaOgZYWRr9tdbTU5J4zbJCntzXyj2bLtaFMY9wzrG3uZfNu4/zyz0t1J3ox2fBbr63LMpnVVmAQIa6W7xmRUk2NQ1dvNDQxVWLC2JdzozMixmqY+MTHOsa4A2rS+bkfK9btYAnalupPd7LxWXeuSfjfOOcY2djD4/tPs7mPcc51jmIz2BxYRab1paxqjRH/ecet6QoC5/BUwfaFe7x6HjPEKPjLqojZaa6cWUxZvDr2jaFe4KZDPRf7Gpm8+4WmroHSUkyrllSyPqF+awqzcEfJ/f+lOhLT0miuiCTpw608YmbV8a6nBmZF9+l9R1zM1JmUmFWGpeFbtv1kdctm5NzyoVzLjgG/dGdzfx853GaugdJMmNpcRZvf1UFF5XmaOTTPLaiJJvH9rTQ3D0YlXtBRMs8CffgannRWA0S4P7nj75i22svWsC/P36A1t4hFuSkR+W8MjvHOgf455/tZeexHtpPDuMzFOjyCssXBMP9twfbuf2KuZ2fMxvzItwbTvSTnuKjOHvuRjDctCoY7k/ua+OdVybON4TXnRwe4xe7mvnJjia2HekEgr/0r1lawOqyAJnqcpEzFGenUZ6bwZb9bQr3eFPfMcDC/Ex8c7gM6rLiLKry/fx6X6vCPcacc2yv7+Lex/azu6mb0XFHYVYqN61awNrK3IRdGErmhpmxYUURP32xKaFWfJ0X4d7Q0R+VW+udj5nx2ouK+cHzRxkYGcOfOi/+qeNKZ/8ID+1o5IfbjnK4vZ+0ZB9rK3O5vCqPyny/hqlK2CZ/lrfWJc7kRM8nzsSEo6FzgBtWFs/5uTdeXMK3n6nnkZeaE+rPuUTmnKOmoYt/+cU+djf1MD7hqMr387ZXlbOmPFd3JJILcs2SQvypSTyxt0XhHi9ebjvJyNgEyxdEfwLTma5YlM8lFQG+/tvDvGNdpe6OE0X9w2M89GIT33+ugQOtfaQl+7iiOp/1i/Ip0QVtmaX0lCSuX17Er/e18plNq+e0i/dCeT7caxqCF83WV+fN+bnNjA9dv4QP/WAHj+05zpsvid5a8vPVl598mefqOtjR0MXw2ARlgXT++LJyLqlQK10i6/UXL+CxPS3sauphbRRv+hMp3g/3+i4Ks9Koyp+bCUxnesPFJSwuyuRrWw7zpjWl6ueNAOccvz90gm8/U8+W/W34zFhTEeCqxQVU5mXo31ii4sYVC0jyGU/sbVG4x4Oahk7WV+fF7Afe5zP+4rolfPwnu/jtwXY2rJj7vn+vGB4b55GXmvnm745woLWPwqxUblhZzJWL8rUMgERdwJ/CVYvzeaK2lY9vjP/Zqp7+u7WlZ4hjnYNcvnDuu2Sm+qPLyikNpPO1pw7HtI5E1dU/wleefJnLP/NrPv7jXfQMjvK2V5Xz4RuX8bqLFijYZc68flUJh9pOUtd+MtalTMvT4f6H/vb8mNaRmuzjA69ZzLYjnTx9sD2mtSSSuvaT3P3wbq6+90k+/6uDlAbSef+11fzVjUu5fGE+yQm2BKskvptWLQDgV7WtMa5kep7ulqmp7yIjJYlVZTlzfu4zlyRIMqMoK42P/Wgnj33kNVrv+xycc2yt6+Sff7aXAy19+HzG2opcrl1WqFEvEnNluRmsLs/hidpWPnj9kliXc17eDveGTtZW5sbFIvupyT5uu6KSrz9dx8d+tJNvvm99QgynmiuDI+M8/FIT3322nv0tffhTk9SfLnHp9atK+OKvD8b9ulGxT70oOTk8Rm1zL+tiMATyXEoDGdz9povYcqCdbz1zJNblxIW69pP8yy9quepfn+STD+0G4N4/XsPfb1yp/nSJS7dcWoZz8MC2Y7Eu5bw823J/6Wg3Ew7Wxbi//UzvuWohv3/5BJ/75X4uLgtw9ZLEugFAJAyNjvNEbSsPbDvKs4c78BmsKs3hHesqqS7wM+GIi7+2RM6mujCT65cXcf+2Bv7PDUvi9nvVs+Fe09CJGVxWFV/jUc2Mf3v7JbztP5/lfd/expdvW8vG1aWxLivqJm+C8ZMXGnnkpSZ6h8Yoz83g796wgmSfqYUuCeW9Vy/kju/W8MTeVt50SXz+/Ho33Ou7WFmSQ04chkauP5Uf/8U1/Nl3t/OhH+zgnk2rec9VC2NdVlQcauvj0ZeaeWRnMw0dAyT7jIvLcrh8YT6LizLxacKRJKANK4qpzM/gu8/VK9zn0tj4BC8e7eJtl1fEupRXmDqKZtOl5QyOjPMPD+9h17FuPnHzyoQfRTN5I+nH97bw2J4WDrWdxAyuWVLAuoV5XFwWID0lMZZMFTmXJJ/xnqsW8tnN+9nf0svKkrkfkTcdT4b7E7Wt9I+Mc82SwliXcl6pyT7edeVCmnsG+e+n60Iz31Zw2/qqhFpkrHdolK2HO9hyoJ0t+9to6R3CgEWFmbzl0jIuLovPv6BEZuMd6yr5/BMH+Z/nGvjsW9fEupxX8Fy4T0w4vvzkyywuzDw14SCeJfmMv9+4krdeVs4/PLyHT/10D1//bR3vurKKd6yrJC8z/m4k0TM4yo6jXdTUd/Ls4Q52HgtevM5KS+a65YXcuHIBnf0jZOmuRuJhuf5UNq0t46c7mvj4G1aQG2c3ffHcT9+v97Wyv6WPz//JpQnT+p3sqrnl0jKWFGXx7OEO/vWx/Xz+VwfZsLyIDSuK2bCiKCY35+0ZHOXl1j72NPWwu6mXPU09HGzrw7ngL6ZLKwJcv7yYJcWZVOX7Sfb5GBmbULDLvPD+axfxkx1N3POzWr5w69pYl3MaT/0EOuf4ym8OUZXvZ9PaxFte18xYXR5gdXmAyxfmcf/zDfyqtpUnQlOdK/MzWFMe4OKyACsWZFNV4Kcyzz+rGzk75+geGKW5Z5Dm7iEaOvpp6BigvqOfg619tPYOn9o3Ky2Zstx0XruymIUFmVTm+bWsrsxrF5XmcNcNS/nSky9zw8pi3nJp/OSOp8L9qQPt7G7q4XNvW5Pw64680NDFipIcli/Ipq1vmIOtfRzrGmRvcy+bd7ectm+eP4XCrDQKslIJZKTgT00mIzWJtGQfRvCvl/GJCQZGxhkYHad/eIzO/hE6To7Q0T/M0OjEacfLTk8mJz2FskAGayvzWJCdRmluBjnpyVpOV+QMd924lN8ebOdTP93Nuuo8SgNz/xf22Xgm3J1zfOnJlynPzeCtl8XfKJkLZWYsyEk/bZrz4Mg4J04O0zkwQmf/CL2Do5wcHqOlZ4i69n5GxydI8hnDU0LbLHislCQfack+MtOSKM5OY1FhJjkZKQQyUsjNSKEgM5WM1CSFuEiYUpJ8fPHWtbzpy7/jow/u5Pt3XBkXS4uEFe5mthH4EpAEfMM5d+8Zr6cB/wNcDnQAtzrn6iNb6rkNjoxz98N7eOlYN//y1tWe7yrISE2iMt9PZYxuQCIip1tUmMmn37yKTzy0m/d9exv/9vZLYt6CnzYFzSwJ+CpwM7AKuN3MVp2x2x1Al3NuKfBF4HORLvRcjpzo561fe4aHXmzkw69dxu3rdSNqEZl7t66v5P/+0Wpq6rt4wxef5qcvNuKci1k94bTcrwArfFLVAAAHW0lEQVQOOefqAMzsAWATUDtln03AP4Ue/xj4DzMzF4VPNjY+Qe3xXrbXd/FCQye/PdBOSrKPb//pet3lSERixsx491ULefXSQj76o538zf/u5LOb9/PqpYVcu7SQRYV+CjLTyM9KJTst+tevwgn3cmDq8meNwJXn2sc5N2ZmPUABcCISRU718EvNfOxHO4Mnzc3gDatL+NubllORpy4KEYm96sJMHvzg1TzyUhNbDrTz9MF2fvpi02n7/PlrFvGpN53ZARJZc3pB1czuBO4MPT1pZgdmc7wG4FmC/UCzVEgUfhHFmD5TYtBnSgDvivDx7v4c3H3hbw9rIapwwr0JqJzyvCK07Wz7NJpZMhAgeGH1NM65+4D7wilsLplZjXNuXazriCR9psSgzyTREs6wku3AMjNbZGapwG3Ao2fs8yjwvtDjtwO/iUZ/u4iIhGfalnuoD/0u4HGCQyG/5Zzba2b3ADXOuUeBbwLfM7NDQCfBXwAiIhIjYfW5O+c2A5vP2PbpKY+HgD+JbGlzKu66iiJAnykx6DNJVJh6T0REvMfbUzlFROapeR/uZrbRzA6Y2SEz+0Ss65ktM/uWmbWZ2Z5Y1xIpZlZpZlvMrNbM9prZR2Jd02yZWbqZbTOznaHP9M+xrikSzCzJzF40s5/Hupb5bl6He5hLKySa7wAbY11EhI0BH3XOrQKuAv7SA/+fhoEbnXOXAmuBjWZ2VYxrioSPAPtiXYTM83BnytIKzrkRYHJphYTlnHua4Iglz3DOHXfO7Qg97iMYHuWxrWp2XNDJ0NOU0FdCXwAzswrgTcA3Yl2LKNzPtrRCQoeG15lZNXAZ8HxsK5m9UBfGS0Ab8CvnXKJ/pv8HfByYmG5Hib75Hu6SQMwsC/gJ8NfOud5Y1zNbzrlx59xagrO+rzCz1bGu6UKZ2ZuBNufcC7GuRYLme7iHs7SCxAEzSyEY7D9wzj0U63oiyTnXDWwhsa+VXAvcYmb1BLs3bzSz78e2pPltvod7OEsrSIxZcG3UbwL7nHNfiHU9kWBmRWaWG3qcAdwE7I9tVRfOOfdJ51yFc66a4M/Rb5xz745xWfPavA5359wYMLm0wj7gQefc3thWNTtm9kPgOWCFmTWa2R2xrikCrgXeQ7A1+FLo642xLmqWSoEtZraLYCPjV845DR+UiNEMVRERD5rXLXcREa9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3GXOmNl4aIz63tBStx81M1/otXVm9uXzvLfazN45d9W+4tyDoXVg4oKZ3Rpaplpj4+WsFO4ylwadc2udcxcTnJF5M/CPAM65Gufch8/z3mogJuEecji0DkzYQktKR4Vz7n+BD0Tr+JL4FO4SE865NuBO4C4L2jDZCjWz66fMRH3RzLKBe4HXhLb9Tag1/Tsz2xH6uib03g1m9pSZ/djM9pvZD0LLF2Bm683s2dBfDdvMLDu0MuO/m9l2M9tlZh8Mp34ze9jMXgj9FXLnlO0nzezzZrYTuPoc57w49Pil0DmXhd777inbvz75yyF0Q5kdoWM8GcH/DeJlzjl96WtOvoCTZ9nWDSwANgA/D237GXBt6HEWwRu5n3o9tN0PpIceLwNqQo83AD0EF4HzEVyK4dVAKlAHrA/tlxM67p3A3aFtaUANsOiMGquBPWdsyw/9NwPYAxSEnjvgHaHH5zrnV4B3TdknA7go9LlTQtu/BrwXKCK4LPWiqeed8ll/frZ/a33pK3mGvwtE5sIzwBfM7AfAQ865xlDje6oU4D/MbC0wDiyf8to251wjQKifvJpg4B93zm0HcKElg83s9cAlZvb20HsDBH9ZHJmmxg+b2VtDjytD7+kI1fKT0PYV5zjnc8CnQje3eMg597KZvRa4HNge+qwZBNd5vwp42jl3JHQMT92IRaJH4S4xY2aLCYZhG8GWKwDOuXvN7BfAG4FnzOwNZ3n73wCtwKUEW+hDU14bnvJ4nPN/nxvwV865x2dQ9wbgdcDVzrkBM3sKSA+9POScGz/f+51z95vZ8wTvWrQ51BVkwHedc58841xvCbcukanU5y4xYWZFwH8B/+Gcc2e8tsQ5t9s59zmCKyauBPqA7Cm7BQi2iicIrhg53cXLA0Cpma0PnSPbzJIJrgj6odB68ZjZcjPLnOZYAaArFOwrCbauwz5n6JdanXPuy8AjwCXAk8Dbzaw4tG++mS0EtgLXmdmiye3T1CYCqOUucysj1E2SQvCm198DzrY++1+b2Q0Eb9e2F3gs9Hg8dKHyOwT7pH9iZu8Ffgn0n+/EzrkRM7sV+Epo/fRBgq3vbxDsttkRuvDaDvzRNJ/jl8BfmNk+ggG+dYbnfAfwHjMbBVqAzzrnOs3sbuCJ0PDQUeAvnXNbQxdsHwptbyM40kjkvLTkr8g0LHjf1p875+LqNnih7qGPOefeHOtaJP6oW0ZkeuNAIN4mMRH866Ur1rVIfFLLXUTEg9RyFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD/r/IOJIfEle2lcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(ps1['ps1_ra'], ps1['ps1_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, ps1, \"ps1_ra\", \"ps1_dec\", radius=1.*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Cleaning\n", "\n", "When we merge the catalogues, astropy masks the non-existent values (e.g. when a row comes only from a catalogue and has no counterparts in the other, the columns from the latest are masked for that row). We indicate to use NaN for masked values for floats columns, False for flag columns and -1 for ID columns." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "for col in master_catalogue.colnames:\n", " #print(col)\n", " if (col.startswith(\"m_\") \n", " or col.startswith(\"merr_\") \n", " or col.startswith(\"f_\") \n", " or col.startswith(\"ferr_\") \n", " or \"stellarity\" in col):\n", " master_catalogue[col] = master_catalogue[col].astype(float)\n", " master_catalogue[col].fill_value = np.nan\n", " elif \"flag\" in col:\n", " master_catalogue[col].fill_value = 0\n", " elif \"id\" in col:\n", " master_catalogue[col].fill_value = -1\n", " \n", "master_catalogue = master_catalogue.filled()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhelp_idcosmos_idradeccosmos_stellaritym_cosmos-vista_ksmerr_cosmos-vista_ksf_ap_cosmos-vista_ksferr_ap_cosmos-vista_ksm_cosmos-vista_ymerr_cosmos-vista_yf_ap_cosmos-vista_yferr_ap_cosmos-vista_ym_cosmos-vista_hmerr_cosmos-vista_hf_ap_cosmos-vista_hferr_ap_cosmos-vista_hm_cosmos-vista_jmerr_cosmos-vista_jf_ap_cosmos-vista_jferr_ap_cosmos-vista_jm_cosmos-megacam_umerr_cosmos-megacam_uf_ap_cosmos-megacam_uferr_ap_cosmos-megacam_um_cosmos-suprime_bmerr_cosmos-suprime_bf_ap_cosmos-suprime_bferr_ap_cosmos-suprime_bm_cosmos-suprime_vmerr_cosmos-suprime_vf_ap_cosmos-suprime_vferr_ap_cosmos-suprime_vm_cosmos-suprime_ipmerr_cosmos-suprime_ipf_ap_cosmos-suprime_ipferr_ap_cosmos-suprime_ipm_cosmos-suprime_rcmerr_cosmos-suprime_rcf_ap_cosmos-suprime_rcferr_ap_cosmos-suprime_rcm_cosmos-suprime_zpmerr_cosmos-suprime_zpf_ap_cosmos-suprime_zpferr_ap_cosmos-suprime_zpm_cosmos-suprime_zppmerr_cosmos-suprime_zppf_ap_cosmos-suprime_zppferr_ap_cosmos-suprime_zppm_cosmos-suprime_ia484merr_cosmos-suprime_ia484f_ap_cosmos-suprime_ia484ferr_ap_cosmos-suprime_ia484m_cosmos-suprime_ia527merr_cosmos-suprime_ia527f_ap_cosmos-suprime_ia527ferr_ap_cosmos-suprime_ia527m_cosmos-suprime_ia624merr_cosmos-suprime_ia624f_ap_cosmos-suprime_ia624ferr_ap_cosmos-suprime_ia624m_cosmos-suprime_ia679merr_cosmos-suprime_ia679f_ap_cosmos-suprime_ia679ferr_ap_cosmos-suprime_ia679m_cosmos-suprime_ia738merr_cosmos-suprime_ia738f_ap_cosmos-suprime_ia738ferr_ap_cosmos-suprime_ia738m_cosmos-suprime_ia767merr_cosmos-suprime_ia767f_ap_cosmos-suprime_ia767ferr_ap_cosmos-suprime_ia767m_cosmos-suprime_ib427merr_cosmos-suprime_ib427f_ap_cosmos-suprime_ib427ferr_ap_cosmos-suprime_ib427m_cosmos-suprime_ib464merr_cosmos-suprime_ib464f_ap_cosmos-suprime_ib464ferr_ap_cosmos-suprime_ib464m_cosmos-suprime_ib505merr_cosmos-suprime_ib505f_ap_cosmos-suprime_ib505ferr_ap_cosmos-suprime_ib505m_cosmos-suprime_ib574merr_cosmos-suprime_ib574f_ap_cosmos-suprime_ib574ferr_ap_cosmos-suprime_ib574m_cosmos-suprime_ib709merr_cosmos-suprime_ib709f_ap_cosmos-suprime_ib709ferr_ap_cosmos-suprime_ib709m_cosmos-suprime_ib827merr_cosmos-suprime_ib827f_ap_cosmos-suprime_ib827ferr_ap_cosmos-suprime_ib827m_cosmos-suprime_nb711merr_cosmos-suprime_nb711f_ap_cosmos-suprime_nb711ferr_ap_cosmos-suprime_nb711m_cosmos-suprime_nb816merr_cosmos-suprime_nb816f_ap_cosmos-suprime_nb816ferr_ap_cosmos-suprime_nb816m_cosmos-wircam_hmerr_cosmos-wircam_hf_ap_cosmos-wircam_hferr_ap_cosmos-wircam_hm_cosmos-wircam_ksmerr_cosmos-wircam_ksf_ap_cosmos-wircam_ksferr_ap_cosmos-wircam_ksm_cosmos-suprime_ymerr_cosmos-suprime_yf_ap_cosmos-suprime_yferr_ap_cosmos-suprime_yf_cosmos-irac_i1ferr_cosmos-irac_i1m_cosmos-irac_i1merr_cosmos-irac_i1f_cosmos-irac_i2ferr_cosmos-irac_i2m_cosmos-irac_i2merr_cosmos-irac_i2f_cosmos-irac_i3ferr_cosmos-irac_i3m_cosmos-irac_i3merr_cosmos-irac_i3f_cosmos-irac_i4ferr_cosmos-irac_i4m_cosmos-irac_i4merr_cosmos-irac_i4f_cosmos-vista_ksferr_cosmos-vista_ksflag_cosmos-vista_ksm_ap_cosmos-vista_ksmerr_ap_cosmos-vista_ksf_cosmos-vista_yferr_cosmos-vista_yflag_cosmos-vista_ym_ap_cosmos-vista_ymerr_ap_cosmos-vista_yf_cosmos-vista_hferr_cosmos-vista_hflag_cosmos-vista_hm_ap_cosmos-vista_hmerr_ap_cosmos-vista_hf_cosmos-vista_jferr_cosmos-vista_jflag_cosmos-vista_jm_ap_cosmos-vista_jmerr_ap_cosmos-vista_jf_cosmos-megacam_uferr_cosmos-megacam_uflag_cosmos-megacam_um_ap_cosmos-megacam_umerr_ap_cosmos-megacam_uf_cosmos-suprime_bferr_cosmos-suprime_bflag_cosmos-suprime_bm_ap_cosmos-suprime_bmerr_ap_cosmos-suprime_bf_cosmos-suprime_vferr_cosmos-suprime_vflag_cosmos-suprime_vm_ap_cosmos-suprime_vmerr_ap_cosmos-suprime_vf_cosmos-suprime_ipferr_cosmos-suprime_ipflag_cosmos-suprime_ipm_ap_cosmos-suprime_ipmerr_ap_cosmos-suprime_ipf_cosmos-suprime_rcferr_cosmos-suprime_rcflag_cosmos-suprime_rcm_ap_cosmos-suprime_rcmerr_ap_cosmos-suprime_rcf_cosmos-suprime_zpferr_cosmos-suprime_zpflag_cosmos-suprime_zpm_ap_cosmos-suprime_zpmerr_ap_cosmos-suprime_zpf_cosmos-suprime_zppferr_cosmos-suprime_zppflag_cosmos-suprime_zppm_ap_cosmos-suprime_zppmerr_ap_cosmos-suprime_zppf_cosmos-suprime_ia484ferr_cosmos-suprime_ia484flag_cosmos-suprime_ia484m_ap_cosmos-suprime_ia484merr_ap_cosmos-suprime_ia484f_cosmos-suprime_ia527ferr_cosmos-suprime_ia527flag_cosmos-suprime_ia527m_ap_cosmos-suprime_ia527merr_ap_cosmos-suprime_ia527f_cosmos-suprime_ia624ferr_cosmos-suprime_ia624flag_cosmos-suprime_ia624m_ap_cosmos-suprime_ia624merr_ap_cosmos-suprime_ia624f_cosmos-suprime_ia679ferr_cosmos-suprime_ia679flag_cosmos-suprime_ia679m_ap_cosmos-suprime_ia679merr_ap_cosmos-suprime_ia679f_cosmos-suprime_ia738ferr_cosmos-suprime_ia738flag_cosmos-suprime_ia738m_ap_cosmos-suprime_ia738merr_ap_cosmos-suprime_ia738f_cosmos-suprime_ia767ferr_cosmos-suprime_ia767flag_cosmos-suprime_ia767m_ap_cosmos-suprime_ia767merr_ap_cosmos-suprime_ia767f_cosmos-suprime_ib427ferr_cosmos-suprime_ib427flag_cosmos-suprime_ib427m_ap_cosmos-suprime_ib427merr_ap_cosmos-suprime_ib427f_cosmos-suprime_ib464ferr_cosmos-suprime_ib464flag_cosmos-suprime_ib464m_ap_cosmos-suprime_ib464merr_ap_cosmos-suprime_ib464f_cosmos-suprime_ib505ferr_cosmos-suprime_ib505flag_cosmos-suprime_ib505m_ap_cosmos-suprime_ib505merr_ap_cosmos-suprime_ib505f_cosmos-suprime_ib574ferr_cosmos-suprime_ib574flag_cosmos-suprime_ib574m_ap_cosmos-suprime_ib574merr_ap_cosmos-suprime_ib574f_cosmos-suprime_ib709ferr_cosmos-suprime_ib709flag_cosmos-suprime_ib709m_ap_cosmos-suprime_ib709merr_ap_cosmos-suprime_ib709f_cosmos-suprime_ib827ferr_cosmos-suprime_ib827flag_cosmos-suprime_ib827m_ap_cosmos-suprime_ib827merr_ap_cosmos-suprime_ib827f_cosmos-suprime_nb711ferr_cosmos-suprime_nb711flag_cosmos-suprime_nb711m_ap_cosmos-suprime_nb711merr_ap_cosmos-suprime_nb711f_cosmos-suprime_nb816ferr_cosmos-suprime_nb816flag_cosmos-suprime_nb816m_ap_cosmos-suprime_nb816merr_ap_cosmos-suprime_nb816f_cosmos-wircam_hferr_cosmos-wircam_hflag_cosmos-wircam_hm_ap_cosmos-wircam_hmerr_ap_cosmos-wircam_hf_cosmos-wircam_ksferr_cosmos-wircam_ksflag_cosmos-wircam_ksm_ap_cosmos-wircam_ksmerr_ap_cosmos-wircam_ksf_cosmos-suprime_yferr_cosmos-suprime_yflag_cosmos-suprime_ym_ap_cosmos-suprime_ymerr_ap_cosmos-suprime_yflag_cosmos-irac_i1flag_cosmos-irac_i2flag_cosmos-irac_i3flag_cosmos-irac_i4ps1_flag_cleanedcosmos_flag_gaiaflag_mergedcandels_idcandels_stellarityf_ap_candels_f140wferr_ap_candels_f140wf_candels_f140wferr_candels_f140wf_ap_candels_f160wferr_ap_candels_f160wf_candels_f160wferr_candels_f160wf_candels_f606wferr_candels_f606wf_candels_f814wferr_candels_f814wf_candels_f125wferr_candels_f125wm_ap_candels_f140wmerr_ap_candels_f140wm_candels_f140wmerr_candels_f140wflag_candels_f140wm_ap_candels_f160wmerr_ap_candels_f160wm_candels_f160wmerr_candels_f160wflag_candels_f160wm_candels_f606wmerr_candels_f606wflag_candels_f606wm_candels_f814wmerr_candels_f814wflag_candels_f814wm_candels_f125wmerr_candels_f125wflag_candels_f125wcandels_flag_cleanedcandels_flag_gaiacfhtls_idcfhtls_stellaritym_megacam_umerr_megacam_um_megacam_gmerr_megacam_gm_megacam_rmerr_megacam_rm_megacam_imerr_megacam_im_megacam_zmerr_megacam_zm_ap_megacam_umerr_ap_megacam_um_ap_megacam_gmerr_ap_megacam_gm_ap_megacam_rmerr_ap_megacam_rm_ap_megacam_imerr_ap_megacam_im_ap_megacam_zmerr_ap_megacam_zf_megacam_uferr_megacam_uflag_megacam_uf_megacam_gferr_megacam_gflag_megacam_gf_megacam_rferr_megacam_rflag_megacam_rf_megacam_iferr_megacam_iflag_megacam_if_megacam_zferr_megacam_zflag_megacam_zf_ap_megacam_uferr_ap_megacam_uf_ap_megacam_gferr_ap_megacam_gf_ap_megacam_rferr_ap_megacam_rf_ap_megacam_iferr_ap_megacam_if_ap_megacam_zferr_ap_megacam_zcfhtls_flag_cleanedcfhtls_flag_gaiadecals_idf_decam_gf_decam_rf_decam_zferr_decam_gferr_decam_rferr_decam_zf_ap_decam_gf_ap_decam_rf_ap_decam_zferr_ap_decam_gferr_ap_decam_rferr_ap_decam_zm_decam_gmerr_decam_gflag_decam_gm_decam_rmerr_decam_rflag_decam_rm_decam_zmerr_decam_zflag_decam_zm_ap_decam_gmerr_ap_decam_gm_ap_decam_rmerr_ap_decam_rm_ap_decam_zmerr_ap_decam_zdecals_stellaritydecals_flag_cleaneddecals_flag_gaiahsc-udeep_idm_ap_hsc-udeep_gmerr_ap_hsc-udeep_gm_hsc-udeep_gmerr_hsc-udeep_gm_ap_hsc-udeep_rmerr_ap_hsc-udeep_rm_hsc-udeep_rmerr_hsc-udeep_rm_ap_hsc-udeep_imerr_ap_hsc-udeep_im_hsc-udeep_imerr_hsc-udeep_im_ap_hsc-udeep_zmerr_ap_hsc-udeep_zm_hsc-udeep_zmerr_hsc-udeep_zm_ap_hsc-udeep_ymerr_ap_hsc-udeep_ym_hsc-udeep_ymerr_hsc-udeep_ym_ap_hsc-udeep_n921merr_ap_hsc-udeep_n921m_hsc-udeep_n921merr_hsc-udeep_n921hsc-udeep_stellarityf_ap_hsc-udeep_gferr_ap_hsc-udeep_gf_hsc-udeep_gferr_hsc-udeep_gflag_hsc-udeep_gf_ap_hsc-udeep_rferr_ap_hsc-udeep_rf_hsc-udeep_rferr_hsc-udeep_rflag_hsc-udeep_rf_ap_hsc-udeep_iferr_ap_hsc-udeep_if_hsc-udeep_iferr_hsc-udeep_iflag_hsc-udeep_if_ap_hsc-udeep_zferr_ap_hsc-udeep_zf_hsc-udeep_zferr_hsc-udeep_zflag_hsc-udeep_zf_ap_hsc-udeep_yferr_ap_hsc-udeep_yf_hsc-udeep_yferr_hsc-udeep_yflag_hsc-udeep_yf_ap_hsc-udeep_n921ferr_ap_hsc-udeep_n921f_hsc-udeep_n921ferr_hsc-udeep_n921flag_hsc-udeep_n921hsc-udeep_flag_cleanedhsc-udeep_flag_gaiahsc-deep_idm_ap_hsc-deep_gmerr_ap_hsc-deep_gm_hsc-deep_gmerr_hsc-deep_gm_ap_hsc-deep_rmerr_ap_hsc-deep_rm_hsc-deep_rmerr_hsc-deep_rm_ap_hsc-deep_imerr_ap_hsc-deep_im_hsc-deep_imerr_hsc-deep_im_ap_hsc-deep_zmerr_ap_hsc-deep_zm_hsc-deep_zmerr_hsc-deep_zm_ap_hsc-deep_ymerr_ap_hsc-deep_ym_hsc-deep_ymerr_hsc-deep_ym_ap_hsc-deep_n921merr_ap_hsc-deep_n921m_hsc-deep_n921merr_hsc-deep_n921hsc-deep_stellarityf_ap_hsc-deep_gferr_ap_hsc-deep_gf_hsc-deep_gferr_hsc-deep_gflag_hsc-deep_gf_ap_hsc-deep_rferr_ap_hsc-deep_rf_hsc-deep_rferr_hsc-deep_rflag_hsc-deep_rf_ap_hsc-deep_iferr_ap_hsc-deep_if_hsc-deep_iferr_hsc-deep_iflag_hsc-deep_if_ap_hsc-deep_zferr_ap_hsc-deep_zf_hsc-deep_zferr_hsc-deep_zflag_hsc-deep_zf_ap_hsc-deep_yferr_ap_hsc-deep_yf_hsc-deep_yferr_hsc-deep_yflag_hsc-deep_yf_ap_hsc-deep_n921ferr_ap_hsc-deep_n921f_hsc-deep_n921ferr_hsc-deep_n921flag_hsc-deep_n921hsc-deep_flag_cleanedhsc-deep_flag_gaiakids_idkids_stellaritym_kids_umerr_kids_um_kids_gmerr_kids_gm_kids_rmerr_kids_rm_kids_imerr_kids_if_ap_kids_uferr_ap_kids_uf_ap_kids_gferr_ap_kids_gf_ap_kids_rferr_ap_kids_rf_ap_kids_iferr_ap_kids_if_kids_uferr_kids_uflag_kids_uf_kids_gferr_kids_gflag_kids_gf_kids_rferr_kids_rflag_kids_rf_kids_iferr_kids_iflag_kids_im_ap_kids_umerr_ap_kids_um_ap_kids_gmerr_ap_kids_gm_ap_kids_rmerr_ap_kids_rm_ap_kids_imerr_ap_kids_ikids_flag_cleanedkids_flag_gaialas_idm_ukidss_ymerr_ukidss_ym_ap_ukidss_ymerr_ap_ukidss_ym_ukidss_jmerr_ukidss_jm_ap_ukidss_jmerr_ap_ukidss_jm_ap_ukidss_hmerr_ap_ukidss_hm_ukidss_hmerr_ukidss_hm_ap_ukidss_kmerr_ap_ukidss_km_ukidss_kmerr_ukidss_klas_stellarityf_ukidss_yferr_ukidss_yflag_ukidss_yf_ap_ukidss_yferr_ap_ukidss_yf_ukidss_jferr_ukidss_jflag_ukidss_jf_ap_ukidss_jferr_ap_ukidss_jf_ap_ukidss_hferr_ap_ukidss_hf_ukidss_hferr_ukidss_hflag_ukidss_hf_ap_ukidss_kferr_ap_ukidss_kf_ukidss_kferr_ukidss_kflag_ukidss_klas_flag_cleanedlas_flag_gaiawirds_idm_wirds_umerr_wirds_um_ap_wirds_umerr_ap_wirds_um_wirds_gmerr_wirds_gm_ap_wirds_gmerr_ap_wirds_gm_wirds_rmerr_wirds_rm_ap_wirds_rmerr_ap_wirds_rm_wirds_imerr_wirds_im_ap_wirds_imerr_ap_wirds_im_wirds_zmerr_wirds_zm_ap_wirds_zmerr_ap_wirds_zm_wirds_jmerr_wirds_jm_ap_wirds_jmerr_ap_wirds_jm_wirds_hmerr_wirds_hm_ap_wirds_hmerr_ap_wirds_hm_wirds_kmerr_wirds_km_ap_wirds_kmerr_ap_wirds_kf_wirds_uferr_wirds_uflag_wirds_uf_ap_wirds_uferr_ap_wirds_uf_wirds_gferr_wirds_gflag_wirds_gf_ap_wirds_gferr_ap_wirds_gf_wirds_rferr_wirds_rflag_wirds_rf_ap_wirds_rferr_ap_wirds_rf_wirds_iferr_wirds_iflag_wirds_if_ap_wirds_iferr_ap_wirds_if_wirds_zferr_wirds_zflag_wirds_zf_ap_wirds_zferr_ap_wirds_zf_wirds_jferr_wirds_jflag_wirds_jf_ap_wirds_jferr_ap_wirds_jf_wirds_hferr_wirds_hflag_wirds_hf_ap_wirds_hferr_ap_wirds_hf_wirds_kferr_wirds_kflag_wirds_kf_ap_wirds_kferr_ap_wirds_kwirds_flag_cleanedcfht-wirds_flag_gaiaps1_flag_cleaned_1ps1_idm_ap_gpc1_gmerr_ap_gpc1_gm_gpc1_gmerr_gpc1_gm_ap_gpc1_rmerr_ap_gpc1_rm_gpc1_rmerr_gpc1_rm_ap_gpc1_imerr_ap_gpc1_im_gpc1_imerr_gpc1_im_ap_gpc1_zmerr_ap_gpc1_zm_gpc1_zmerr_gpc1_zm_ap_gpc1_ymerr_ap_gpc1_ym_gpc1_ymerr_gpc1_yf_ap_gpc1_gferr_ap_gpc1_gf_gpc1_gferr_gpc1_gflag_gpc1_gf_ap_gpc1_rferr_ap_gpc1_rf_gpc1_rferr_gpc1_rflag_gpc1_rf_ap_gpc1_iferr_ap_gpc1_if_gpc1_iferr_gpc1_iflag_gpc1_if_ap_gpc1_zferr_ap_gpc1_zf_gpc1_zferr_gpc1_zflag_gpc1_zf_ap_gpc1_yferr_ap_gpc1_yf_gpc1_yferr_gpc1_yflag_gpc1_yps1_flag_cleaned_2ps1_flag_gaia
degdegmagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJyuJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJymagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmaguJyuJyuJyuJyuJyuJyuJyuJy
0HELP_J095914.43+021600.80COSMOS2015_J095914.43+021600.80149.8101136050912.266885839857861.0nannan-2.224829950137064e-050.032126300036907196nannan0.030790200456976890.04474860057234764nannannannan26.3257007598876950.33314099907875060.081713400781154630.0697752013802528427.7229003906250.3792949914932251-0.00163483002688735720.01653309911489486729.336799621582031.41305005550384520.006685560103505850.00960237998515367527.5137004852294920.47072899341583250.0135164000093936920.01833429932594299327.7040996551513670.86540198326110840.018800400197505950.02164250053465366427.515800476074220.450976997613906860.0247978009283542630.014752100221812725nannan-0.018039500340819360.1482660025358227.113199234008790.52871799468994140.0212169997394084930.03574170172214508nannannannan31.63899993896484438.73860168457031-0.0027778199873864650.0303927008062601127.1289997100830080.84937500953674320.0426197983324527740.0390538983047008525.6261005401611330.20462399721145630.074680000543594360.05422620102763176nannan-0.040158800780773160.04943649843335152nannan-0.0329038985073566440.06257860362529755nannan-0.0176042001694440840.033940400928258896nannannannannannan-0.035689800977706910.0410397015511989632.57509994506836129.85099792480470.0323950983583927150.054776500910520554nannan-0.036338798701763150.04105839878320694nannan-0.0239991005510091780.06253539770841599nannan0.037306498736143110.07784759998321533nannan-0.0076738600619137290.0644085034728050225.4703998565673830.91333502531051640.090472899377346040.2874850034713745nannannannannannan0.0302143990993499760.127738997340202330.186370998620986940.0950023978948593125.724100112915040.5534539818763733nannannannan0.02.30679988861084nannan0.02.6868700981140137nannannannanFalsenan-1567.791259765625nannanFalse27.6789703369140621.5779427289962769nannanFalsenannan0.107082709670066830.03285663574934006False26.619270324707030.92711186408996580.0295691955834627150.010329809039831161Falsenan-10.9800910949707030.0066877524368464950.008703891187906265False29.3371582031251.55942821502685550.035852514207363130.015544123947620392False28.5728454589843751.47274518013000490.030085705220699310.02398025244474411False28.2145843505859381.2498694658279420.035783223807811740.01486310362815857False27.9139709472656250.6458995938301086nannanFalsenan-8.9236259460449220.051846597343683240.025247598066926003False28.0832901000976561.829007863998413nannanFalsenannan0.00080241652904078360.028629876673221588Falsenan-11.8792629241943360.051097515970468520.039973750710487366False27.3259735107421880.99489504098892210.203966960310935970.0384407714009285False26.7169952392578120.788368284702301nannanFalsenan-1.3365685939788818nannanFalsenan-2.064918041229248nannanFalsenan-2.093268871307373nannanFalsenannannannanFalsenan-1.2484879493713380.00033881270792335270.0405210442841053False27.6238021850585941.835858702659607nannanFalsenan-1.2267491817474365nannanFalsenan-2.8291451930999756nannanFalse27.4705429077148442.2656095027923584nannanFalsenan-9.1128377914428710.23541818559169770.19803674519062042False26.5087051391601563.450014591217041nannanFalsenannannannanFalse27.699470520019534.590223789215088FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
1HELP_J095802.73+023603.69COSMOS2015_J095802.73+023603.69149.5113469493762.601021760206721.026.02269935607910.8689280152320862-0.000109344997326843440.0930308029055595428.2310009002685552.4898500442504883-0.0336701013147830960.03489290177822113nannannannannannannannannannan-0.0084078898653388020.02373839914798736630.484300613403323.697730064392090.0023726099170744420.01010040007531643nannan-0.007114380132406950.018665099516510963nannannannan29.2800006866455082.0281701087951660.0074343900196254250.015311299823224545nannan-0.069111600518226620.1535560041666031nannan-0.0190398003906011580.03563160076737404nannan-0.0276903007179498670.033716801553964615nannannannan27.1798992156982420.63642400503158570.0292974002659320830.0328896008431911527.9263000488281251.3717499971389770.00819857046008110.05163799971342087nannannannannannan-0.052322100847959520.0608161985874176nannannannannannannannan27.3505001068115230.86830902099609380.035273298621177670.04411020129919052nannan-0.0173962004482746120.05302980169653892526.6252002716064450.43753701448440550.0619481988251209260.04597400128841426.5417995452880860.475531995296478270.061882000416517260.07123749703168869nannan-0.021684600040316580.07832779735326767nannan-0.0157574992626905440.0644380003213882424.9981994628906250.493488997220993040.358429998159408570.282492995262146nannan-0.121949002146720890.3480919897556305nannan-0.0614776015281677250.1790809929370880.056795299053192140.0419224016368389127.014200210571290.8014150261878967nannannannan0.02.706209897994995nannan0.03.593820095062256nannan0.141553267836570740.1132868230342865Falsenan-923.74511718750.01851823367178440.042466696351766586Falsenan-1.1251670122146606nannanFalsenannannannanFalsenannannannanFalsenan-3.0654113292694090.00232423259876668450.007915721274912357False30.4619369506835944.622069835662842nannanFalsenan-2.848508596420288nannanFalsenannan0.0070469239726662640.013163750059902668False29.2218856811523442.2360990047454834nannanFalsenan-2.412349224090576nannanFalsenan-2.0318763256073nannanFalsenan-1.3220350742340088nannanFalsenannan0.0487573668360710140.028580019250512123False27.7329254150390621.21886003017425540.0245176944881677630.030976351350545883False29.115653991699226.838416576385498nannanFalsenannannannanFalsenan-1.2619972229003906nannanFalsenannannannanFalsenannan0.041667707264423370.03332342207431793False27.531379699707031.3577420711517334nannanFalsenan-3.30970978736877440.081268027424812320.03274991735816002False26.919929504394530.80576407909393310.08775668591260910.03843577951192856False26.921089172363281.2498807907104492nannanFalsenan-3.92182993888855nannanFalsenan-4.4399604797363280.36368045210838320.16530010104179382False25.013984680175780.8557121157646179nannanFalsenan-3.0991320610046387nannanFalsenan-3.162692070007324FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
2HELP_J095901.32+013751.84COSMOS2015_J095901.32+013751.84149.7554853951011.63106399148120021.0nannan-6.758159724995494e-050.0515539981424808524.6923999786376950.13274200260639190.14251899719238280.060148000717163086nannan0.064904198050498960.1332270056009292625.9407997131347660.70533698797225950.184148997068405150.09476310014724731nannannannan27.5902004241943360.50796598196029660.0162078998982906340.0092782899737358130.99780082702636721.499399185180664-0.0124703003093600270.01731259934604168nannan0.040855798870325090.021752899512648582nannan-0.0064005199819803240.013447700068354607nannan0.0094907199963927270.1475369930267334nannan-0.034908700734376910.0355607010424137126.941799163818360.94508600234985350.0136617003008723260.03253659978508949nannan0.008082809858024120.02702159993350506nannannannannannan0.0107546998187899590.05200650170445442nannan0.037243198603391650.044126201421022415nannan-0.027933100238442420.05926689878106117nannan0.0110777001827955250.03365220129489899nannannannan26.0104999542236330.48765799403190613-0.0244522001594305040.037741899490356445nannannannan26.3598003387451170.64717900753021240.087774299085140230.03883260115981102nannan0.00138230994343757630.064678601920604725.9932003021240231.1401100158691406-0.035288099199533460.0687372013926506nannan-0.049423899501562120.0650350004434585623.7922000885009770.4724769890308380.061178401112556460.35899001359939575nannannannan27.5501003265380867.7991700172424320.069221802055835720.19529700279235840.52536600828170780.0650418028235435524.5988006591796880.134416997432708740.76998001337051390.0724262967705726624.1837997436523440.102127000689506530.02.0552799701690674nannan0.03.1570699214935303nannannannanFalsenan-828.24377441406250.481991827487945560.05892827361822128False26.015319824218750.45821863412857056nannanFalse26.869316101074222.22865986824035640.15264411270618440.09916362166404724False25.7370758056640620.5587199926376343nannanFalsenannan0.033413313329219820.015632551163434982False28.3756866455078120.62153488397598270.0014483687700703740.02868013270199299Falsenan-1.5073344707489014nannanFalse27.3718643188476560.5780797600746155nannanFalsenan-2.2811667919158936nannanFalse28.95675659179687516.878196716308594nannanFalsenan-1.10601472854614260.060712814331054690.05284785479307175False28.5612411499023442.5857808589935303nannanFalse29.131095886230473.629718780517578nannanFalsenannannannanFalse28.8210067749023445.2502946853637695nannanFalse27.4723815917968751.286393642425537nannanFalsenan-2.303654670715332nannanFalse28.788879394531253.2982850074768066nannanFalsenannan0.143152803182601930.06429702788591385Falsenan-1.6758304834365845nannanFalsenannan0.103771932423114780.0618557445704937False26.5415878295898440.4803451597690582nannanFalse31.04848480224609450.801845550537110.145452007651329040.15273626148700714Falsenan-2.1148903369903564nannanFalsenan-1.4286782741546631.10438346862792970.48059165477752686False26.9335098266601566.371013641357422nannanFalsenannan0.034670483320951460.24904853105545044False26.7993927001953123.06321120262146FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
3HELP_J095824.46+014508.83COSMOS2015_J095824.46+014508.83149.6019007093481.752450148966771.027.626199722290044.17363977432251-0.0002073579962598160.0952583998441696225.2341003417968750.169237002730369570.180306002497673030.0981604978442192125.9004001617431640.51400202512741090.2125679999589920.1391460001468658428.437099456787113.981489896774292-0.01265219971537590.04302110150456428526.3362007141113280.139533996582031250.080348297953605650.0240091998130083126.2574005126953120.094910196959972380.082754999399185180.01246479991823434826.4137001037597660.17815800011157990.079299703240394590.02201450057327747327.0146999359130860.55979502201080320.0517462007701396940.0291440002620220226.1040000915527340.150810003280639650.102058000862598420.02020199969410896327.8973007202148442.30044007301330570.057190600782632830.1498609930276870725.5529003143310550.117623001337051390.187386006116867070.0368454009294509926.7392005920410160.36309400200843810.036930501461029050.0315768010914325726.9512004852294920.42545598745346070.054470099508762360.0273189004510641126.3057003021240230.322894006967544560.08837430179119110.03488390147686004626.036199569702150.257685005664825440.117931999266147610.0517279990017414126.244499206542970.36762198805809020.086797498166561130.0447417981922626525.8362998962402340.306928992271423340.10839699953794480.0650826990604400626.6317996978759770.347876012325286870.048564899712800980.0331768989562988326.06640052795410.22457399964332580.104328997433185580.0377836003899574326.4678993225097660.35052201151847840.099261201918125150.03753510117530823nannan0.0554000996053218840.0439070984721183827.7637004852294921.0969099998474120.0174307990819215770.03761989995837211626.08460044860840.304396986961364750.158902004361152650.065850399434566527.0361003875732421.379870057106018-0.0022858800366520880.0668881013989448527.3286991119384770.8559470176696777-0.00245652999728918080.0647568032145500226.969400405883793.401870012283325-0.121726997196674350.2945109903812408424.6884994506835940.60143500566482540.207607001066207890.4273020029067993nannan-0.031763099133968350.18942500650882720.112595997750759120.01516500022262334826.271200180053710.146233007311820980.146381005644798280.03570180013775825525.9862995147705080.26480799913406370.03.1667299270629883nannan0.03.084350109100342nannan0.0323236249387264250.12425410002470016Falsenan-498.77746582031250.29265749454498290.04561741277575493False25.7599792480468750.59108626842498780.15843079984188080.0750032588839531False25.5812606811523440.71071767807006840.0153165217489004140.05616702511906624Falsenan-3.69181394577026370.106052130460739140.013629348948597908False26.637565612792970.324433207511901860.114035412669181820.009968465194106102False26.605522155761720.163536742329597470.098746038973331450.016203196719288826False26.6518249511718750.30141270160675050.056770127266645430.029270125553011894False27.115303039550780.61149793863296510.131340786814689640.01824338547885418False26.3778839111328120.214917421340942380.025181388482451440.05335390940308571False27.0066909790039062.8450391292572020.218192353844642640.023637821897864342False25.7181549072265620.213486507534980770.073167771100997920.024468906223773956False27.4815368652343750.92834031581878660.060189336538314820.023585759103298187False27.0596084594726560.54453945159912110.109073616564273830.03243809938430786False26.534187316894530.428571581840515140.13980419933795930.033180661499500275False26.2209243774414060.476231724023818970.115398481488227840.03907304257154465False26.5537338256835940.55966806411743160.16806608438491820.04751094430685043False26.3124618530273440.65188747644424440.080775558948516850.02588094398379326False27.184196472167970.74171590805053710.13596889376640320.028123846277594566False26.3539886474609380.393208235502243040.093937784433364870.03032713010907173False26.4080505371093750.41056543588638306nannanFalse27.0412216186523440.86049526929855350.0284786727279424670.028771759942173958False28.2967071533203122.34328222274780270.133708700537681580.037486568093299866False25.8971786499023440.449938714504241940.0556621141731739040.07074138522148132Falsenan-31.7701835632324220.042512830346822740.03351525962352753Falsenan-28.6211833953857420.059188820421695710.1854526698589325Falsenan-2.62687182426452640.483726531267166140.2679564952850342False25.6068954467773442.234689712524414nannanFalsenan-6.474984645843506FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
4HELP_J095836.75+014228.42COSMOS2015_J095836.75+014228.42149.6530973935671.707891841783471.0nannan-0.00024657999165356160.1032200008630752626.0520000457763670.31101500988006590.080666400492191310.1029630005359649725.232599258422850.24635000526905060.258816987276077270.1493889987468719527.068399429321290.98993200063705440.039819899946451190.11974799633026123nannannannan28.2203998565673830.397868007421493530.019885299727320670.01007289998233318327.354099273681640.321458995342254640.039210598915815350.01954719983041286527.7285995483398440.68450701236724850.034021601080894470.02213389985263347626.8106994628906250.248740002512931820.069639302790164950.0201882999390363726.1644992828369140.386931985616683960.12373399734497070.1536000072956085225.9248008728027340.1442289948463440.140121996402740480.0390227995812892927.0694007873535160.405708998441696170.048084400594234470.0315652005374431628.7667999267578121.92421996593475340.0076959501020610330.02808579988777637526.656799316406250.388253986835479740.065365597605705260.03659019991755485526.6417999267578120.405050009489059450.129982993006706240.05677539855241775526.0825996398925780.295464009046554570.11857800185680390.0502335987985134127.0438003540039060.78370499610900880.075368702411651610.06467989832162857nannan-0.00613234983757138250.03316750004887581nannan0.0137437004595994950.0432870984077453626.924600601196290.6061459779739380.0325868017971515660.05147830024361610427.1798992156982420.56678301095962520.043145701289176940.0456913001835346226.411199569702150.27815300226211550.089159600436687470.03999470174312591625.8218002319335940.194416001439094540.143153995275497440.0636655986309051526.0065002441406250.459255993366241460.15666200220584870.0694921016693115226.8216991424560550.442831993103027340.06510320305824280.0643173009157180825.3099994659423830.56201499700546260.33180600404739380.272588998079299928.4985008239746116.348699569702150.0366594009101390840.423794001340866125.9675006866455080.63278698921203610.125418007373809810.17618800699710846nannannannan0.13589599728584290.0644180998206138626.0669994354248050.51466500759124760.02.4667201042175293nannan0.02.7172698974609375nannannannanFalsenan-454.49630737304690.137784302234649660.03946905583143234False26.6332702636718751.38583910465240480.2930622994899750.06649487465620041False25.3675231933593750.62668621540069580.0540306568145751950.04926304891705513False27.3997497558593753.2650692462921143nannanFalsenannan0.018699936568737030.006852590944617987False28.1536712646484380.54997968673706050.04152981936931610.012295927852392197False27.416496276855470.54125934839248660.029414415359497070.01854444481432438False27.570617675781250.70636230707168580.068504653871059420.015694279223680496False26.7928695678710940.314752817153930660.124222464859485630.044270094484090805False26.1687774658203121.34780323505401610.154910087585449220.020578227937221527False26.0337295532226560.30236840248107910.053980853408575060.020171120762825012False27.1949920654296880.71273589134216310.0113052418455481530.020035963505506516False29.1843490600585943.96231412887573240.078936927020549770.028227463364601135False26.861625671386720.60777086019515990.080034963786602020.02985823154449463False26.115287780761720.47423973679542540.133955270051956180.036453571170568466False26.2149887084960940.459954053163528440.0552687719464302060.03989404812455177False26.707023620605470.9317567348480225nannanFalsenan-5.8723249435424805nannanFalse28.554740905761723.41962981224060060.061682179570198060.03443599492311478False27.6173934936523441.71516835689544680.0487573668360710140.025452636182308197False27.3126602172851561.14979469776153560.098973773419857030.025355931371450424False26.5245819091796880.487033307552337650.170325562357902530.030499134212732315False26.010490417480470.48286491632461550.14368110895156860.06077572703361511False25.912590026855470.481610655784606930.067814141511917110.027658900246024132False26.8659973144531251.0726294517517090.27289769053459170.14126138389110565False25.0977935791015620.89196622371673580.0144743714481592180.21795086562633514False27.48954010009765612.5514450073242190.148935899138450620.08680257946252823False26.1540985107421881.5252490043640137FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
5HELP_J095739.74+020106.13COSMOS2015_J095739.74+020106.13149.4155819995462.01836706220767061.026.762899398803710.7536249756813049-0.00011338000331306830.04120229929685592725.632499694824220.113378003239631650.17138600349426270.0564917996525764528.5618000030517584.187200069427490.0126599995419383050.1257430016994476325.299499511718750.139348000288009640.24788700044155120.0894107967615127627.4813995361328120.32021701335906980.0309725999832153320.02080079913139343326.9248008728027340.14636500179767610.049031700938940050.0109968995675444626.7891006469726560.221683993935585020.052832201123237610.0204211995005607626.5202007293701170.2569899857044220.075331702828407290.0228457003831863426.7376995086669920.200891003012657170.068857498466968540.01630499958992004425.491399765014650.251448988914489750.201304003596305850.165234997868537926.1494998931884770.18573799729347230.089832201600074770.0362550988793373131.03650093078613318.676900863647460.0221161004155874250.033686801791191126.681999206542970.329160004854202270.065473899245262150.02928929962217807826.3227996826171880.304084986448287960.086694300174713130.03493760153651237525.9986991882324220.254842013120651250.136864006519317630.0572271011769771626.0603008270263670.334156990051269530.124164000153541560.0522492006421089226.68359947204590.59201598167419430.097731396555900570.06200340017676353526.8917999267578120.43047299981117250.067216597497463230.03499919921159744nannan-0.0067922398447990420.04121949896216392526.550699234008790.42015200853347780.077911101281642910.044979799538850784nannan0.0030647700186818840.0530688017606735226.4974002838134770.371378004550933840.097169198095798490.0443970002233982126.5650005340576170.468791007995605470.0366749018430709840.0691251009702682527.024000167846681.50836002826690670.0367432981729507450.079844400286674527.5359992980957030.96148800849914550.041330698877573010.06483989953994751nannan-0.313125014305114750.3614830076694488525.4489994049072270.96949797868728640.18642899394035340.37154000997543335nannan0.037697400897741320.20017500221729279-0.018635800108313560.035283301025629044nannannannannannan0.02.1613199710845947nannan0.03.475680112838745nannan0.071588002145290370.049690257757902145Falsenan-394.556579589843750.202768340706825260.021174084395170212False25.81506347656250.35787749290466310.0136546213179826740.0526597835123539False28.6439132690429710.7838649749755860.275549650192260740.03536521643400192False25.414367675781250.39161610603332520.036935161799192430.010893316008150578False27.672554016113280.72916638851165770.0616708025336265560.00831366516649723False27.1738052368164060.2435104399919510.069881044328212740.014268208295106888False27.0927581787109380.419668942689895630.089519895613193510.021189047023653984False26.7075576782226560.329269081354141240.073268979787826540.013556771911680698False26.805122375488280.25709515810012820.23090857267379760.05347682535648346False25.640373229980470.89119744300842290.125950440764427190.021546470001339912False26.516418457031250.43818888068199160.00139765220228582620.02404250018298626False28.0382308959960941.65377163887023930.07712591439485550.023382076993584633False26.8598327636718750.485696613788604740.107369258999824520.030071191489696503False26.5550231933593750.43754917383193970.144717171788215640.0339677520096302False26.0592803955078120.453980088233947750.136734932661056520.042082905769348145False26.1650085449218750.45688638091087340.077012270689010620.04199223965406418False26.424919128417970.6888199448585510.063574045896530150.025205856189131737False26.831306457519530.5653350353240967nannanFalsenan-6.5889163017272950.08704025298357010.03368234261870384False26.6710052490234380.6268194317817688nannanFalse30.1840133666992218.8003387451171880.091419652104377750.03127025440335274False26.4311752319335940.49607723951339720.085901260375976560.03708980232477188False27.489082336425782.0464029312133790.056285899132490160.0781952440738678False27.487052917480472.35934042930603030.035123672336339950.031104231253266335False27.359321594238281.7033108472824097nannanFalsenan-1.25341367721557620.240104436874389650.21439900994300842False25.7237167358398442.1637966632843018nannanFalse27.459220886230475.765310764312744FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
6HELP_J100054.82+014728.67COSMOS2015_J100054.82+014728.67150.2283919445121.79129408282547021.029.2465991973876956.053830146789551-0.000237561005633324380.0405572988092899327.1159992218017580.336439996957778930.050231501460075380.04507419839501381nannan-0.0048027201555669310.0361643992364406626.9808998107910160.451631993055343630.0548005998134613040.0638862028717994729.4596996307373051.33456003665924070.0062260199338197710.01684710010886192327.9899005889892580.324928998947143550.0230085998773574830.01075590029358863827.9109992980957030.54449200630187990.025089399889111520.0213009994477033626.85729980468750.241903007030487060.065406300127506260.01889799907803535528.4127998352050780.72209501266479490.0156159000471234320.01467860024422407227.157600402832030.8167690038681030.0513276010751724240.1392720043659210226.3866004943847660.180571004748344420.102343000471591950.034286998212337494nannan-0.0124096004292368890.0351153016090393127.685499191284180.63876301050186160.0292589999735355380.0272396001964807527.417100906372070.64819800853729250.039563901722431180.03278509899973869nannan-0.037285000085830690.0510088987648487127.3796005249023440.83325499296188350.041234698146581650.04651889950037002627.7444000244140621.26174998283386230.0302250999957323070.0599373988807201429.228000640869142.89006996154785160.0054146200418472290.0329351983964443226.9734992980957030.380688011646270750.061633899807929990.036066800355911255nannan-0.0075924601405858990.0388716012239456226.769199371337890.365110993385314940.068810999393463130.0464650988578796427.3020992279052730.59178501367568970.0455163009464740750.04058580100536346425.7651004791259770.164149001240730290.174545004963874820.0610189996659755725.9951000213623050.45431900024414060.144473001360893250.0750107988715171826.326999664306640.25951498746871950.106601998209953310.06433620303869247nannan-0.113889001309871670.35783401131629944nannan-0.186820998787879940.3752770125865936325.8616008758544920.368202000856399540.163532003760337830.121230997145175930.100625999271869660.02308820001780986826.3931999206542970.24911700189113617nannannannan0.02.324389934539795nannan0.02.1613199710845947nannan0.0072670900262892250.04051971808075905Falsenan-185.36091613769530.051713053137063980.016024461016058922False27.1475601196289060.9742628931999207nannanFalsenan-8.175574302673340.058565266430377960.024361303076148033False27.053039550781251.26574456691741940.005972004961222410.007340640760958195False29.4144744873046882.9379131793975830.0231227464973926540.006919959560036659False27.9952774047851560.50755238533020020.0248656794428825380.012470030225813389False27.9012756347656250.92179429531097410.06562661379575730.014621670357882977False26.860954284667970.313704371452331540.0156631823629140850.01041717641055584False28.416084289550781.02056801319122310.049769066274166110.03743987902998924False27.1241226196289062.94602990150451660.101241752505302430.016837721690535545False26.3748550415039060.3637438118457794nannanFalsenan-3.07229495048522950.0306055545806884770.018005935475230217False27.7343521118164061.01080071926116940.039188593626022340.023396076634526253False27.4067535400390620.8997082114219666nannanFalsenan-1.4853749275207520.040565751492977140.03113243728876114False27.3618469238281251.22487246990203860.0289894342422485350.033689048141241074False27.6990814208984382.15305161476135250.007392634171992540.019678104668855667False29.5660781860351566.604144573211670.058965817093849180.02067498490214348False26.9254531860351560.635348916053772nannanFalsenan-5.5587124824523930.071173809468746190.02393430285155773False26.805854797363280.7331508398056030.043567251414060590.023746510967612267False27.254585266113280.96812498569488530.17945669591426850.02713148668408394False25.795234680175780.379561334848403930.145197674632072450.06075698882341385False26.0005340576171880.56371730566024780.106954753398895260.02556455135345459False26.3305892944335940.6552610993385315nannanFalsenan-3.4113330841064453nannanFalsenan-2.18097448348999020.164194911718368530.05568285658955574False25.8659973144531250.8048875331878662FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
7HELP_J100148.56+015305.15COSMOS2015_J100148.56+015305.15150.4523315115011.884759897274831.023.8195991516113280.09215229749679565-0.0002521039859857410.032368499785661723.3584003448486330.026990400627255440.41519701480865480.04673109948635101nannannannan25.238700866699220.23682799935340880.065836697816848750.0685736984014511126.08460044860840.178726002573966980.0036736899055540560.0177814997732639327.503099441528320.62487202882766720.00124364998191595080.01127250026911497126.2672004699707030.3021009862422943-0.0181316994130611420.01939750090241432225.8335990905761720.3169400095939636-0.0135044995695352550.02236559987068176325.72789955139160.17303599417209625-0.0136021999642252920.01409410033375024824.746900558471680.271941989660263060.053591899573802950.1489239931106567426.9836006164550780.8955249786376953-0.0219509005546569820.03457880020141601626.1476001739501950.4824160039424896-0.0140969995409250260.0334184989333152826.1597995758056640.47944799065589905-0.00156860996503382920.029427299275994327.0347003936767581.34309005737304690.0252924002707004550.0343060009181499525.5088005065917970.35839399695396423-0.0303502995520830150.0537494011223316226.482700347900391.1038299798965454nannannannannannan26.91589927673340.96992397308349610.0095060104504227640.03287509828805923526.408800125122070.69447201490402220.085619300603866580.0393217988312244425.034999847412110.24133299291133880.03350659832358360.04432880133390426624.7001991271972660.16254200041294098-0.0242353007197380070.0489732995629310625.9818000793457030.50678700208663940.0119542004540562630.04141040146350860626.4953994750976560.9835749864578247nannan24.3694000244140620.2797969877719879-0.0150197995826601980.0730174034833908125.3043994903564450.285836994647979740.046468198299407960.06416960060596466nannannannan24.4470996856689450.73172599077224730.185175001621246340.307033985853195224.717800140380860.36961999535560610.036297600716352460.123525999486446380.143239006400108340.0625796020030975326.009799957275390.47434699535369873nannannannan0.00.34989601373672485nannan0.01.0869799852371216nannan1.07686257362365720.09139914065599442Falsenan-139.401428222656251.64679491519927980.04093780368566513False24.85437011718750.12220136821269989nannanFalsenannan0.29142010211944580.06356649100780487False26.853828430175781.13087296485900880.133708700537681580.02201015315949917False29.987251281738285.2552113533020020.0362043008208274840.02083660289645195False31.1632537841796889.8411617279052730.113010726869106290.03144470229744911Falsenan-1.16153311729431150.168484568595886230.04918275400996208Falsenan-1.79815173149108890.185711935162544250.029597291722893715Falsenan-1.12499988079071040.458394736051559450.11481313407421112False27.0772552490234383.01710057258605960.0584197379648685460.04818512499332428Falsenan-1.71033787727355960.12617106735706330.05606052652001381Falsenan-2.57385802268981930.124761283397674560.05509307608008385Falsenan-20.3685321807861330.055733907967805860.06894461065530777False27.892524719238281.47266626358032230.227237313985824580.07500945776700974Falsenan-1.92280364036560060.09266588836908340.09421015530824661FalsenannannannanFalsenannan0.0621784850955009460.05554609373211861False28.9550018310546883.7548544406890870.099192760884761810.06344689428806305False26.5685729980468750.498638749122619630.351560473442077640.07814342528581619False27.5871734619140621.43641495704650880.478542178869247440.0716409757733345Falsenan-2.1939930915832520.146987274289131160.06860896944999695False28.7061996459960943.76108574867248540.09158833324909210.08297042548656464Falsenannan0.64899247884750370.167247012257576Falsenan-5.27820873260498050.27430900931358340.07221612334251404False27.232109069824221.4993319511413574nannanFalsenannan0.60417103767395020.40717774629592896False25.7310485839843751.8002316951751710.470846891403198240.1602916270494461False27.500305175781253.6949174404144287FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
8HELP_J095825.28+024722.91COSMOS2015_J095825.28+024722.91149.6053239919032.78969543945151.024.8917999267578120.4804820120334625-0.00125734996981918810.14371000230312347nannannannan25.0116004943847660.28790700435638430.29436498880386350.18665100634098053nannan0.0108300000429153440.13997900485992432nannan-0.0177820008248090740.0252989009022712728.565299987792970.61930900812149050.0139325000345706940.01000660005956888231.79260063171386720.2787990570068360.00307240011170506480.0181124992668628727.5018005371093750.59676498174667360.0331011004745960240.02097509987652301827.6758995056152340.42621800303459170.0306991003453731540.014130700379610062nannan0.00648852996528148650.1466380059719085725.8094997406005860.140628993511199950.150001004338264470.0368462987244129229.931600570678717.3344697952270510.0078800404444336890.035682499408721924nannan-0.0120665999129414560.030326999723911285nannan-0.018389599397778510.03392979875206947nannan0.0292734000831842420.0532453991472721127.2714004516601561.053089976310730.0466811992228031160.0525940991938114226.650600433349610.53700697422027590.032867599278688430.05656509846448898nannan-0.0241027008742094040.03714479878544807427.8416996002197271.10362994670867920.0051591098308563230.0379700995981693326.8213996887207030.55145102739334110.0497836992144584660.044806499034166336nannan0.0122240995988249780.0479318983852863329.6933002471923836.50205993652343750.0095456298440694810.0397778004407882726.110500335693360.287932008504867550.120894998311996460.0628973990678787228.1147003173828123.69744992256164550.026454599574208260.069537200033664727.317199707031250.80938601493835450.0293275993317365650.06490059942007065nannannannan24.5543994903564450.42044600844383240.4526889920234680.356633007526397725.0270004272460940.44296899437904360.22500999271869660.253668993711471560.00.1383489966392517nannan0.444795012474060060.1092789992690086424.7796001434326170.26674899458885193-0.45606699585914610.7383729815483093nannan0.04.197509765625nannan0.401125311851501460.17751410603523254Falsenan-124.09523010253906nannanFalsenannan0.35921946167945860.09525499492883682False25.2277832031250.6884438395500183nannanFalse28.81343078613281214.033266067504883nannanFalsenan-1.54470419883728030.0136106749996542930.007763592526316643False28.539924621582030.77979743480682370.00069656135747209190.013009999878704548False30.1813125610351566.4006624221801760.03624761477112770.019923171028494835False27.600395202636720.68799602985382080.030877366662025450.012121258303523064False27.682189941406250.4997609555721283nannanFalse29.3696365356445324.537170410156250.172266110777854920.02231261134147644False25.959770202636720.26670059561729430.0038668685592710970.026121841743588448False29.158683776855474.916444301605225nannanFalsenan-2.7287821769714355nannanFalsenan-2.003241539001465nannanFalse27.733818054199221.97484588623046880.044816680252552030.04346911981701851False27.2271499633789061.22326159477233890.079388894140720370.03926588594913483False27.608085632324221.8685505390167236nannanFalsenan-1.67323362827301030.02650451287627220.02694132551550865False29.6185684204101567.9908185005187990.06783283501863480.0344526506960392False27.157287597656250.9771880507469177nannanFalse28.6819610595703124.2572779655456540.0048159295693039890.028840765357017517False28.950492858886724.5243945121765140.130556926131248470.03462307155132294False26.193977355957030.56487017869949340.020611984655261040.07019364088773727False27.843752.8539102077484130.0429655164480209350.032029591500759125False27.731803894042972.4026830196380615nannanFalsenannan0.54731863737106320.21194645762443542False24.760505676269530.85535395145416260.35416007041931150.14449359476566315False25.5195007324218751.2240238189697266FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
9HELP_J100154.84+020628.04COSMOS2015_J100154.84+020628.04150.4784586916862.10778545260481031.025.0359992980957030.23545700311660767-0.000308199989376589660.03476019948720932nannan0.085089996457099910.0486276000738143926.2490997314453120.7630349993705750.066525697708129880.10621599853038788nannan0.0193163994699716570.07231739908456802nannan-0.0049238097853958610.016114600002765656nannan-0.00734747992828488350.00969650037586689nannannannannannan-0.0065111601725220680.02108230069279670728.9533996582031252.4843399524688720.0045104399323463440.013834999874234225.5673999786376950.46671599149703980.032854698598384860.1550550013780594nannan0.031782001256942750.0360142998397350326.419000625610350.45194301009178160.010831500403583050.031428299844264984nannannannannannan0.0124145997688174250.0344319008290767725.2262992858886720.218173995614051820.100950002670288090.05498350039124489nannan0.0052764299325644970.045866601169109344nannan-0.0181246008723974230.05750240013003349nannannannannannan0.0134757999330759050.03852749988436699nannan-0.0404996983706951140.0419806987047195430.24379920959472719.240999221801758-0.0188413001596927640.045609500259160995nannan-0.029883200302720070.04068180173635483nannan-0.0178236998617649080.066022597253322627.5821990966796884.1489601135253910.034166898578405380.07164239883422852nannan0.016389999538660050.0641952008008956923.7045993804931640.25114199519157410.094476401805877690.262015014886856123.7250995635986330.2842470109462738-0.085783496499061580.291734993457794225.22730064392090.43815198540687560.102124996483325960.11827000230550766nannannannan0.104681000113487240.04345989972352981626.3502998352050780.4507620036602020.02.6039299964904785nannan0.02.4087400436401367nannan0.35123673081398010.07617057114839554Falsenan-122.45426177978516nannanFalse26.575309753417970.62048125267028810.11491056531667710.08075698465108871False26.842521667480471.7335036993026733nannanFalse28.185188293457034.064816474914551nannanFalsenan-3.553387403488159nannanFalsenan-1.4328505992889404nannanFalsenannannannanFalsenan-3.5154743194580080.0095200575888156890.021783430129289627False29.764457702636723.33030915260314940.21529789268970490.09254823625087738False27.6085052490234385.1240410804748535nannanFalse27.6445465087890621.2303198575973510.098265193402767180.04090336710214615False28.8132781982421883.150333881378174nannanFalsenannannannanFalse28.665168762207033.01128983497619630.29476779699325560.05923231691122055False26.3897323608398440.5913577675819397nannanFalse29.5941543579101569.43801498413086nannanFalsenan-3.4446239471435547nannanFalsenannannannanFalse28.576118469238283.1041347980499268nannanFalsenan-1.12543952465057370.00290055130608379840.05140245705842972Falsenan-2.628262519836426nannanFalsenan-1.4780781269073486nannanFalsenan-4.0217866897583010.0336604677140712740.12862788140773773False27.565986633300782.276611089706421nannanFalse28.3635559082031254.2525353431701661.1971822977066040.2769206464290619False26.4616928100585943.01111364364624021.17478966712951660.30756130814552307Falsenan-3.69240307807922360.29449605941772460.11884474009275436False26.3771743774414061.2573809623718262FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse00.0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "master_catalogue[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## III - Merging flags and stellarity\n", "\n", "Each pristine catalogue contains a flag indicating if the source was associated to a another nearby source that was removed during the cleaning process. We merge these flags in a single one." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "flag_cleaned_columns = [column for column in master_catalogue.colnames\n", " if 'flag_cleaned' in column]\n", "\n", "flag_column = np.zeros(len(master_catalogue), dtype=bool)\n", "for column in flag_cleaned_columns:\n", " flag_column |= master_catalogue[column]\n", " \n", "master_catalogue.add_column(Column(data=flag_column, name=\"flag_cleaned\"))\n", "master_catalogue.remove_columns(flag_cleaned_columns)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Wirds was created with a merge so contains a flag to be merged with the merg flag produced here" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# master_catalogue['flag_merged'] |= master_catalogue['wirds_flag_merged']\n", "# master_catalogue.remove_columns('wirds_flag_merged')" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Each pristine catalogue contains a flag indicating the probability of a source being a Gaia object (0: not a Gaia object, 1: possibly, 2: probably, 3: definitely). We merge these flags taking the highest value." ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "flag_gaia_columns = [column for column in master_catalogue.colnames\n", " if 'flag_gaia' in column]\n", "\n", "master_catalogue.add_column(Column(\n", " data=np.max([master_catalogue[column] for column in flag_gaia_columns], axis=0),\n", " name=\"flag_gaia\"\n", "))\n", "master_catalogue.remove_columns(flag_gaia_columns)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Each prisitine catalogue may contain one or several stellarity columns indicating the probability (0 to 1) of each source being a star. We merge these columns taking the highest value." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cosmos_stellarity, candels_stellarity, cfhtls_stellarity, decals_stellarity, hsc-udeep_stellarity, hsc-deep_stellarity, kids_stellarity, las_stellarity\n" ] } ], "source": [ "stellarity_columns = [column for column in master_catalogue.colnames\n", " if 'stellarity' in column]\n", "\n", "print(\", \".join(stellarity_columns))" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "\n", "# We create an masked array with all the stellarities and get the maximum value, as well as its\n", "# origin. Some sources may not have an associated stellarity.\n", "stellarity_array = np.array([master_catalogue[column] for column in stellarity_columns])\n", "stellarity_array = np.ma.masked_array(stellarity_array, np.isnan(stellarity_array))\n", "\n", "max_stellarity = np.max(stellarity_array, axis=0)\n", "max_stellarity.fill_value = np.nan\n", "\n", "no_stellarity_mask = max_stellarity.mask\n", "\n", "master_catalogue.add_column(Column(data=max_stellarity.filled(), name=\"stellarity\"))\n", "\n", "stellarity_origin = np.full(len(master_catalogue), \"NO_INFORMATION\", dtype=\"S20\")\n", "stellarity_origin[~no_stellarity_mask] = np.array(stellarity_columns)[np.argmax(stellarity_array, axis=0)[~no_stellarity_mask]]\n", "\n", "master_catalogue.add_column(Column(data=stellarity_origin, name=\"stellarity_origin\"))\n", "\n", "master_catalogue.remove_columns(stellarity_columns)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## IV - Adding E(B-V) column" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " ebv(master_catalogue['ra'], master_catalogue['dec'])\n", ")" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## V a - Adding HELP unique identifiers and field columns\n", "\n", "First we make a help_id column using the old values where we have them" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#master_catalogue.add_column(Column(gen_help_id(master_catalogue['ra'], master_catalogue['dec']),\n", "# name=\"help_id\"))\n", "#Use HELP ids from original cat to make sure they are identical\n", "\n", "master_catalogue['help_id'] = master_catalogue['help_id'].astype('S27')\n", "master_catalogue.add_column(Column(gen_help_id(master_catalogue['ra'], master_catalogue['dec']),\n", " name=\"help_id_temp\"))\n", "mask = (master_catalogue['help_id'] == '-1') | (master_catalogue['help_id'] == '')\n", "master_catalogue['help_id'][mask] = master_catalogue['help_id_temp'][mask]\n", "master_catalogue.remove_column('help_id_temp')\n", "\n", "master_catalogue.add_column(Column(np.full(len(master_catalogue), \"COSMOS\", dtype='" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(specz['ra'] * u.deg, specz['dec'] * u.deg)\n", ")" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue = specz_merge(master_catalogue, specz, radius=1. * u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VI - Choosing between multiple values for the same filter\n", "\n", "### VI.a HSC-DEEP and HSC-UDEEP and COSMOS\n", "\n", "On COSMOS2015 we have early HSC y band photometry. To ensure values are the same as for the original run, we take fluxes in this order: COSMOS, HSC-DEEP, HSC-UDEEP." ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "suprime_origin = Table()\n", "suprime_origin.add_column(master_catalogue['help_id'])" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "suprime_stats = Table()\n", "suprime_stats.add_column(Column(data=['g','r','i','z','y', 'n921'], name=\"Band\"))\n", "for col in [\"HSC-UDEEP\", \"HSC-DEEP\", \"COSMOS2015\"]:\n", " suprime_stats.add_column(Column(data=np.full(6, 0), name=\"{}\".format(col)))\n", " suprime_stats.add_column(Column(data=np.full(6, 0), name=\"use {}\".format(col)))\n", " suprime_stats.add_column(Column(data=np.full(6, 0), name=\"{} ap\".format(col)))\n", " suprime_stats.add_column(Column(data=np.full(6, 0), name=\"use {} ap\".format(col)))\n", " " ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "suprime_bands = ['g','r','i','z','y', 'n921'] \n", "for band in suprime_bands:\n", "\n", " # Suprime total flux \n", " has_hsc_udeep = ~np.isnan(master_catalogue['f_hsc-udeep_' + band])\n", " has_hsc_deep = ~np.isnan(master_catalogue['f_hsc-deep_' + band])\n", " if band == 'y':\n", " has_cosmos = ~np.isnan(master_catalogue['f_cosmos-suprime_y'])\n", " elif band != 'y':\n", " has_cosmos = np.full(len(master_catalogue), False, dtype=bool)\n", " \n", " use_cosmos = has_cosmos\n", " use_hsc_udeep = has_hsc_udeep & ~has_cosmos\n", " use_hsc_deep = has_hsc_deep & ~has_hsc_udeep & ~has_cosmos\n", " \n", " \n", " f_suprime = np.full(len(master_catalogue), np.nan)\n", " if band == 'y':\n", " f_suprime[use_cosmos] = master_catalogue['f_cosmos-suprime_y'][use_cosmos]\n", " f_suprime[use_hsc_udeep] = master_catalogue['f_hsc-udeep_' + band][use_hsc_udeep]\n", " f_suprime[use_hsc_deep] = master_catalogue['f_hsc-deep_' + band][use_hsc_deep]\n", " \n", "\n", " ferr_suprime = np.full(len(master_catalogue), np.nan)\n", " if band == 'y':\n", " ferr_suprime[use_cosmos] = master_catalogue['ferr_cosmos-suprime_y'][use_cosmos]\n", " ferr_suprime[use_hsc_udeep] = master_catalogue['ferr_hsc-udeep_' + band][use_hsc_udeep]\n", " ferr_suprime[use_hsc_deep] = master_catalogue['ferr_hsc-deep_' + band][use_hsc_deep]\n", "\n", " \n", " m_suprime = np.full(len(master_catalogue), np.nan)\n", " if band == 'y':\n", " m_suprime[use_cosmos] = master_catalogue['m_cosmos-suprime_y'][use_cosmos]\n", " m_suprime[use_hsc_udeep] = master_catalogue['m_hsc-udeep_' + band][use_hsc_udeep]\n", " m_suprime[use_hsc_deep] = master_catalogue['m_hsc-deep_' + band][use_hsc_deep]\n", "\n", "\n", " merr_suprime = np.full(len(master_catalogue), np.nan)\n", " if band == 'y':\n", " merr_suprime[use_cosmos] = master_catalogue['merr_cosmos-suprime_y'][use_cosmos]\n", " merr_suprime[use_hsc_udeep] = master_catalogue['merr_hsc-udeep_' + band][use_hsc_udeep]\n", " merr_suprime[use_hsc_deep] = master_catalogue['merr_hsc-deep_' + band][use_hsc_deep]\n", "\n", "\n", " flag_suprime = np.full(len(master_catalogue), False, dtype=bool)\n", " if band == 'y':\n", " flag_suprime[use_cosmos] = master_catalogue['flag_cosmos-suprime_y'][use_cosmos]\n", " flag_suprime[use_hsc_udeep] = master_catalogue['flag_hsc-udeep_' + band][use_hsc_udeep]\n", " flag_suprime[use_hsc_deep] = master_catalogue['flag_hsc-deep_' + band][use_hsc_deep]\n", "\n", "\n", " master_catalogue.add_column(Column(data=f_suprime, name=\"f_suprime_\" + band))\n", " master_catalogue.add_column(Column(data=ferr_suprime, name=\"ferr_suprime_\" + band))\n", " master_catalogue.add_column(Column(data=m_suprime, name=\"m_suprime_\" + band))\n", " master_catalogue.add_column(Column(data=merr_suprime, name=\"merr_suprime_\" + band))\n", " master_catalogue.add_column(Column(data=flag_suprime, name=\"flag_suprime_\" + band))\n", "\n", " old_hsc_udeep_columns = ['f_hsc-udeep_' + band,\n", " 'ferr_hsc-udeep_' + band,\n", " 'm_hsc-udeep_' + band, \n", " 'merr_hsc-udeep_' + band,\n", " 'flag_hsc-udeep_' + band]\n", " old_hsc_deep_columns = ['f_hsc-deep_' + band,\n", " 'ferr_hsc-deep_' + band,\n", " 'm_hsc-deep_' + band, \n", " 'merr_hsc-deep_' + band,\n", " 'flag_hsc-deep_' + band]\n", " old_cosmos_columns = ['f_cosmos-suprime_' + band,\n", " 'ferr_cosmos-suprime_' + band,\n", " 'm_cosmos-suprime_' + band, \n", " 'merr_cosmos-suprime_' + band,\n", " 'flag_cosmos-suprime_' + band]\n", " \n", " old_columns = old_hsc_udeep_columns + old_hsc_deep_columns\n", " if band == 'y':\n", " old_columns += old_cosmos_columns\n", " master_catalogue.remove_columns(old_columns)\n", "\n", " origin = np.full(len(master_catalogue), ' ', dtype='Table length=6\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxBandHSC-UDEEPuse HSC-UDEEPHSC-UDEEP apuse HSC-UDEEP apHSC-DEEPuse HSC-DEEPHSC-DEEP apuse HSC-DEEP apCOSMOS2015use COSMOS2015COSMOS2015 apuse COSMOS2015 ap
0g11461311146131125741412574141643773956277183822210447050000
1r11567221156722126888312688831679055989440190324011026070000
2i11603561160356129188312918831714230987298195373710865350000
3z11328421132842126072912607291701530984971193353410813490000
4y1035328500551115787857416114679857989951669840893700661669661669693726693726
5n92110881531088153120724312072438791664949889962965463260000
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "suprime_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "suprime_origin.write(\"{}/cosmos_suprime_fluxes_origins{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VII.b Megacam\n", "\n", "### COSMOS vs CFHT-WIRDS vs CFHTLS\n", "\n", "We take COSMOS over CFHTLS over CFHT-WIRDS" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "megacam_origin = Table()\n", "megacam_origin.add_column(master_catalogue['help_id'])" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "megacam_stats = Table()\n", "megacam_stats.add_column(Column(data=['u','g','r','i','z'], name=\"Band\"))\n", "for col in [\"COSMOS2015\", \"CFHTLS\", \"CFHT-WIRDS\"]:\n", " megacam_stats.add_column(Column(data=np.full(5, 0), name=\"{}\".format(col)))\n", " megacam_stats.add_column(Column(data=np.full(5, 0), name=\"use {}\".format(col)))\n", " megacam_stats.add_column(Column(data=np.full(5, 0), name=\"{} ap\".format(col)))\n", " megacam_stats.add_column(Column(data=np.full(5, 0), name=\"use {} ap\".format(col)))" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "megacam_bands = ['u','g','r','i','z'] \n", "for band in megacam_bands:\n", "\n", " # megacam total flux \n", " has_cfhtls = ~np.isnan(master_catalogue['f_megacam_' + band])\n", " has_wirds = ~np.isnan(master_catalogue['f_wirds_' + band])\n", " if band == 'u':\n", " has_cosmos = ~np.isnan(master_catalogue['f_cosmos-megacam_' + band])\n", " elif band != 'u':\n", " has_cosmos = np.full(len(master_catalogue), False, dtype=bool)\n", " \n", " \n", " use_cosmos = has_cosmos\n", " use_cfhtls = has_cfhtls & ~has_cosmos\n", " use_wirds = has_wirds & ~has_cfhtls & ~has_cosmos\n", " \n", " master_catalogue['f_megacam_' + band][use_wirds] = master_catalogue['f_wirds_' + band][use_wirds]\n", " master_catalogue['ferr_megacam_' + band][use_wirds] = master_catalogue['ferr_wirds_' + band][use_wirds]\n", " master_catalogue['m_megacam_' + band][use_wirds] = master_catalogue['m_wirds_' + band][use_wirds]\n", " master_catalogue['merr_megacam_' + band][use_wirds] = master_catalogue['merr_wirds_' + band][use_wirds]\n", " master_catalogue['flag_megacam_' + band][use_wirds] = master_catalogue['flag_wirds_' + band][use_wirds]\n", "\n", "\n", " master_catalogue.remove_columns(['f_wirds_' + band,\n", " 'ferr_wirds_' + band,\n", " 'm_wirds_' + band, \n", " 'merr_wirds_' + band,\n", " 'flag_wirds_' + band])\n", " \n", " if band == 'u':\n", " master_catalogue['f_megacam_' + band][use_cosmos] = master_catalogue['f_cosmos-megacam_' + band][use_cosmos]\n", " master_catalogue['ferr_megacam_' + band][use_cosmos] = master_catalogue['ferr_cosmos-megacam_' + band][use_cosmos]\n", " master_catalogue['m_megacam_' + band][use_cosmos] = master_catalogue['m_cosmos-megacam_' + band][use_cosmos]\n", " master_catalogue['merr_megacam_' + band][use_cosmos] = master_catalogue['merr_cosmos-megacam_' + band][use_cosmos]\n", " master_catalogue['flag_megacam_' + band][use_cosmos] = master_catalogue['flag_cosmos-megacam_' + band][use_cosmos]\n", " \n", " master_catalogue.remove_columns(['f_cosmos-megacam_' + band,\n", " 'ferr_cosmos-megacam_' + band,\n", " 'm_cosmos-megacam_' + band, \n", " 'merr_cosmos-megacam_' + band,\n", " 'flag_cosmos-megacam_' + band])\n", " \n", " origin = np.full(len(master_catalogue), ' ', dtype='Table length=5\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxBandCOSMOS2015use COSMOS2015COSMOS2015 apuse COSMOS2015 apCFHTLSuse CFHTLSCFHTLS apuse CFHTLS apCFHT-WIRDSuse CFHT-WIRDSCFHT-WIRDS apuse CFHT-WIRDS ap
0u6408256408256881876881874554961832264593281820381563471715215733116078
1g00005165735165735185495185491641073136516397830985
2r00005263365263365291605291601652173152416501031136
3i00005206685206685239485239481656483173716531631298
4z00004747664747664805814805811642343099616435930824
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "megacam_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "megacam_origin.write(\"{}/cosmos_megacam_fluxes_origins{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## WIRcam\n", "\n", "### COSMOS vs WIRDS\n", "\n", "We take COSMOS over WIRDS to ensure values are the same as for the original run" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "wircam_origin = Table()\n", "wircam_origin.add_column(master_catalogue['help_id'])" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "wircam_stats = Table()\n", "wircam_stats.add_column(Column(data=['h','ks'], name=\"Band\"))\n", "for col in [\"CFHT-WIRDS\", \"COSMOS2015\"]:\n", " wircam_stats.add_column(Column(data=np.full(2, 0), name=\"{}\".format(col)))\n", " wircam_stats.add_column(Column(data=np.full(2, 0), name=\"use {}\".format(col)))\n", " wircam_stats.add_column(Column(data=np.full(2, 0), name=\"{} ap\".format(col)))\n", " wircam_stats.add_column(Column(data=np.full(2, 0), name=\"use {} ap\".format(col)))\n", " " ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "wircam_bands = ['h','ks'] \n", "for band in wircam_bands:\n", "\n", " # wircam total flux \n", " has_wirds = ~np.isnan(master_catalogue['f_wirds_' + band.rstrip('s')])\n", "\n", " has_cosmos = ~np.isnan(master_catalogue['f_cosmos-wircam_' + band])\n", "\n", " \n", " use_cosmos = has_cosmos\n", " use_wirds = has_wirds & ~has_cosmos\n", "\n", " \n", " \n", " f_wircam = np.full(len(master_catalogue), np.nan)\n", " f_wircam[use_cosmos] = master_catalogue['f_cosmos-wircam_' + band][use_cosmos]\n", " f_wircam[use_wirds] = master_catalogue['f_wirds_' + band.rstrip('s').rstrip('s')][use_wirds]\n", "\n", " \n", "\n", " ferr_wircam = np.full(len(master_catalogue), np.nan)\n", " ferr_wircam[use_cosmos] = master_catalogue['ferr_cosmos-wircam_' + band][use_cosmos]\n", " ferr_wircam[use_wirds] = master_catalogue['ferr_wirds_' + band.rstrip('s')][use_wirds]\n", "\n", "\n", " \n", " m_wircam = np.full(len(master_catalogue), np.nan)\n", " m_wircam[use_cosmos] = master_catalogue['m_cosmos-wircam_' + band][use_cosmos]\n", " m_wircam[use_wirds] = master_catalogue['m_wirds_' + band.rstrip('s')][use_wirds]\n", "\n", "\n", " merr_wircam = np.full(len(master_catalogue), np.nan)\n", " merr_wircam[use_cosmos] = master_catalogue['merr_cosmos-wircam_' + band][use_cosmos]\n", " merr_wircam[use_wirds] = master_catalogue['merr_wirds_' + band.rstrip('s')][use_wirds]\n", "\n", "\n", "\n", " flag_wircam = np.full(len(master_catalogue), False, dtype=bool)\n", " flag_wircam[use_cosmos] = master_catalogue['flag_cosmos-wircam_' + band][use_cosmos]\n", " flag_wircam[use_wirds] = master_catalogue['flag_wirds_' + band.rstrip('s')][use_wirds]\n", "\n", "\n", "\n", " master_catalogue.add_column(Column(data=f_wircam, name=\"f_wircam_\" + band))\n", " master_catalogue.add_column(Column(data=ferr_wircam, name=\"ferr_wircam_\" + band))\n", " master_catalogue.add_column(Column(data=m_wircam, name=\"m_wircam_\" + band))\n", " master_catalogue.add_column(Column(data=merr_wircam, name=\"merr_wircam_\" + band))\n", " master_catalogue.add_column(Column(data=flag_wircam, name=\"flag_wircam_\" + band))\n", "\n", " old_wirds_columns = ['f_wirds_' + band.rstrip('s'),\n", " 'ferr_wirds_' + band.rstrip('s'),\n", " 'm_wirds_' + band.rstrip('s'), \n", " 'merr_wirds_' + band.rstrip('s'),\n", " 'flag_wirds_' + band.rstrip('s')]\n", "\n", " old_cosmos_columns = ['f_cosmos-wircam_' + band,\n", " 'ferr_cosmos-wircam_' + band,\n", " 'm_cosmos-wircam_' + band, \n", " 'merr_cosmos-wircam_' + band,\n", " 'flag_cosmos-wircam_' + band]\n", " \n", " old_columns = old_wirds_columns + old_cosmos_columns\n", " master_catalogue.remove_columns(old_columns)\n", "\n", " origin = np.full(len(master_catalogue), ' ', dtype='Table length=2\n", "\n", "\n", "\n", "\n", "
idxBandCFHT-WIRDSuse CFHT-WIRDSCFHT-WIRDS apuse CFHT-WIRDS apCOSMOS2015use COSMOS2015COSMOS2015 apuse COSMOS2015 ap
0h1641753262016522833198589027589027684053684053
1ks1691033550417007736333594551594551681987681987
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wircam_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "wircam_origin.write(\"{}/cosmos_wircam_fluxes_origins{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Final renaming\n", "\n", "We rename some columns in line with HELP filter naming standards" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "renaming = OrderedDict({\n", " '_wirds_j':'_wircam_j',\n", " #'_wirds_h': '_wircam_h', #These two now merged with COSMOS\n", " #'_wirds_k': '_wircam_ks',\n", " '_kids_': '_omegacam_',\n", " '_cosmos-suprime_': '_suprime_',\n", " '_cosmos-vista_':'_vista_',\n", " '_cosmos-irac_':'_irac_',\n", " '_candels_f140w':'_wfc3_f140w',\n", " '_candels_f160w':'_wfc3_f160w',\n", " '_candels_f125w':'_wfc3_f125w',\n", " '_candels_f606w': '_acs_f606w',\n", " '_candels_f814w':'_acs_f814w',\n", "})\n", "\n", "\n", "for col in master_catalogue.colnames:\n", " for rename_col in list(renaming):\n", " if rename_col in col:\n", " master_catalogue.rename_column(col, col.replace(rename_col, renaming[rename_col])) " ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VII.a Wavelength domain coverage\n", "\n", "We add a binary `flag_optnir_obs` indicating that a source was observed in a given wavelength domain:\n", "\n", "- 1 for observation in optical;\n", "- 2 for observation in near-infrared;\n", "- 4 for observation in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source observed both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: The observation flag is based on the creation of multi-order coverage maps from the catalogues, this may not be accurate, especially on the edges of the coverage.*\n", "\n", "*Note 2: Being on the observation coverage does not mean having fluxes in that wavelength domain. For sources observed in one domain but having no flux in it, one must take into consideration de different depths in the catalogue we are using.*" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "candels_moc = MOC(filename=\"../../dmu0/dmu0_CANDELS-3D-HST/data/CANDELS-3D-HST_COSMOS_MOC.fits\")\n", "cfhtls_moc = MOC(filename=\"../../dmu0/dmu0_CFHTLS/data/CFHTLS-DEEP_COSMOS_MOC.fits\")\n", "decals_moc = MOC(filename=\"../../dmu0/dmu0_DECaLS/data/DECaLS_COSMOS_MOC.fits\")\n", "hsc_udeep_moc = MOC(filename=\"../../dmu0/dmu0_HSC/data/HSC-PDR1_deep_COSMOS_MOC.fits\")\n", "hsc_deep_moc = MOC(filename=\"../../dmu0/dmu0_HSC/data/HSC-PDR1_uDeep_COSMOS_MOC.fits\")\n", "kids_moc = MOC(filename=\"../../dmu0/dmu0_KIDS/data/KIDS-DR3_COSMOS_MOC.fits\")\n", "ps1_moc = MOC(filename=\"../../dmu0/dmu0_PanSTARRS1-3SS/data/PanSTARRS1-3SS_COSMOS_MOC.fits\")\n", "las_moc = MOC(filename=\"../../dmu0/dmu0_UKIDSS-LAS/data/UKIDSS-LAS_COSMOS_MOC.fits\")\n", "wirds_moc = MOC(filename=\"../../dmu0/dmu0_CFHT-WIRDS/data/COSMOS_Ks-priors_MOC.fits\")\n", "\n" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "was_observed_optical = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " candels_moc + \n", " cfhtls_moc + \n", " decals_moc + \n", " hsc_udeep_moc + \n", " hsc_deep_moc + \n", " kids_moc +\n", " ps1_moc) \n", "\n", "was_observed_nir = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " las_moc + wirds_moc\n", ")\n", "\n", "was_observed_mir = np.zeros(len(master_catalogue), dtype=bool)\n", "\n", "#was_observed_mir = inMoc(\n", "# master_catalogue['ra'], master_catalogue['dec'], \n", "#)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " Column(\n", " 1 * was_observed_optical + 2 * was_observed_nir + 4 * was_observed_mir,\n", " name=\"flag_optnir_obs\")\n", ")" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VII.b Wavelength domain detection\n", "\n", "We add a binary `flag_optnir_det` indicating that a source was detected in a given wavelength domain:\n", "\n", "- 1 for detection in optical;\n", "- 2 for detection in near-infrared;\n", "- 4 for detection in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source detected both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: We use the total flux columns to know if the source has flux, in some catalogues, we may have aperture flux and no total flux.*\n", "\n", "To get rid of artefacts (chip edges, star flares, etc.) we consider that a source is detected in one wavelength domain when it has a flux value in **at least two bands**. That means that good sources will be excluded from this flag when they are on the coverage of only one band." ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "nb_optical_flux = (\n", " 1 * ~np.isnan(master_catalogue['f_megacam_u']) +\n", " 1 * ~np.isnan(master_catalogue['f_megacam_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_megacam_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_megacam_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_megacam_z']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_suprime_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_z']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_y']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_n921']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_gpc1_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_z']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_y']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_decam_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_decam_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_decam_z']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_omegacam_u']) +\n", " 1 * ~np.isnan(master_catalogue['f_omegacam_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_omegacam_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_omegacam_i']) \n", ")\n", "\n", "nb_nir_flux = (\n", " \n", " 1 * ~np.isnan(master_catalogue['f_vista_j']) +\n", " 1 * ~np.isnan(master_catalogue['f_vista_h']) +\n", " 1 * ~np.isnan(master_catalogue['f_vista_ks']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_wircam_j']) +\n", " 1 * ~np.isnan(master_catalogue['f_wircam_h']) +\n", " 1 * ~np.isnan(master_catalogue['f_wircam_ks']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_ukidss_y']) +\n", " 1 * ~np.isnan(master_catalogue['f_ukidss_j']) +\n", " 1 * ~np.isnan(master_catalogue['f_ukidss_h']) +\n", " 1 * ~np.isnan(master_catalogue['f_ukidss_k'])\n", ")\n", "\n", "nb_mir_flux = np.zeros(len(master_catalogue), dtype=bool)" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "has_optical_flux = nb_optical_flux >= 2\n", "has_nir_flux = nb_nir_flux >= 2\n", "has_mir_flux = nb_mir_flux >= 2\n", "\n", "master_catalogue.add_column(\n", " Column(\n", " 1 * has_optical_flux + 2 * has_nir_flux + 4 * has_mir_flux,\n", " name=\"flag_optnir_det\")\n", ")" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VIII - Cross-identification table\n", "\n", "We are producing a table associating to each HELP identifier, the identifiers of the sources in the pristine catalogue. This can be used to easily get additional information from them." ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "64 master list rows had multiple associations.\n" ] } ], "source": [ "\n", "#\n", "# Addind SDSS ids\n", "#\n", "sdss = Table.read(\"../../dmu0/dmu0_SDSS-DR13/data/SDSS-DR13_COSMOS.fits\")['objID', 'ra', 'dec']\n", "sdss_coords = SkyCoord(sdss['ra'] * u.deg, sdss['dec'] * u.deg)\n", "idx_ml, d2d, _ = sdss_coords.match_to_catalog_sky(SkyCoord(master_catalogue['ra'], master_catalogue['dec']))\n", "idx_sdss = np.arange(len(sdss))\n", "\n", "# Limit the cross-match to 1 arcsec\n", "mask = d2d <= 1. * u.arcsec\n", "idx_ml = idx_ml[mask]\n", "idx_sdss = idx_sdss[mask]\n", "d2d = d2d[mask]\n", "nb_orig_matches = len(idx_ml)\n", "\n", "# In case of multiple associations of one master list object to an SDSS object, we keep only the\n", "# association to the nearest one.\n", "sort_idx = np.argsort(d2d)\n", "idx_ml = idx_ml[sort_idx]\n", "idx_sdss = idx_sdss[sort_idx]\n", "_, unique_idx = np.unique(idx_ml, return_index=True)\n", "idx_ml = idx_ml[unique_idx]\n", "idx_sdss = idx_sdss[unique_idx]\n", "print(\"{} master list rows had multiple associations.\".format(nb_orig_matches - len(idx_ml)))\n", "\n", "# Adding the ObjID to the master list\n", "master_catalogue.add_column(Column(data=np.full(len(master_catalogue), -1, dtype='>i8'), name=\"sdss_id\"))\n", "master_catalogue['sdss_id'][idx_ml] = sdss['objID'][idx_sdss]" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['old_help_id', 'cosmos_id', 'candels_id', 'cfhtls_id', 'decals_id', 'hsc-udeep_id', 'hsc-deep_id', 'kids_id', 'las_id', 'wirds_id', 'ps1_id', 'help_id', 'specz_id', 'sdss_id']\n" ] } ], "source": [ "id_names = []\n", "for col in master_catalogue.colnames:\n", " if '_id' in col:\n", " id_names += [col]\n", " if '_intid' in col:\n", " id_names += [col]\n", " \n", "print(id_names)" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue[id_names].write(\n", " \"{}/master_list_cross_ident_cosmos{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)\n", "id_names.remove('help_id')\n", "id_names.remove('old_help_id')\n", "master_catalogue.remove_columns(id_names)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## IX - Adding HEALPix index\n", "\n", "We are adding a column with a HEALPix index at order 13 associated with each source." ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(\n", " data=coords_to_hpidx(master_catalogue['ra'], master_catalogue['dec'], order=13),\n", " name=\"hp_idx\"\n", "))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## IX - Saving the catalogue" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "columns = [\"help_id\", \"old_help_id\", \"field\", \"ra\", \"dec\", \"hp_idx\"]\n", "\n", "bands = [column[5:] for column in master_catalogue.colnames if 'f_ap' in column]\n", "for band in bands:\n", " columns += [\"f_ap_{}\".format(band), \"ferr_ap_{}\".format(band),\n", " \"m_ap_{}\".format(band), \"merr_ap_{}\".format(band),\n", " \"f_{}\".format(band), \"ferr_{}\".format(band),\n", " \"m_{}\".format(band), \"merr_{}\".format(band),\n", " \"flag_{}\".format(band)] \n", " \n", "# columns += ['f_wfc3_f125w', 'ferr_wfc3_f125w', 'm_wfc3_f125w', 'merr_wfc3_f125w', 'flag_wfc3_f125w',\n", "# 'f_acs_f606w', 'ferr_acs_f606w', 'm_acs_f606w', 'merr_acs_f606w', 'flag_acs_f606w',\n", "# 'f_acs_f814w', 'ferr_acs_f814w', 'm_acs_f814w', 'merr_acs_f814w', 'flag_acs_f814w'\n", "# ]\n", "\n", "for tot_band in ['wfc3_f125w', 'acs_f606w', 'acs_f814w', 'irac_i1', 'irac_i2', 'irac_i3', 'irac_i4']:\n", " columns += ['f_' + tot_band,'ferr_' + tot_band,'m_' + tot_band,'merr_' + tot_band,'flag_' + tot_band,]\n", " \n", "columns += [\"stellarity\", \"stellarity_origin\", \"flag_cleaned\", \n", " \"flag_merged\", \"flag_gaia\", \"flag_optnir_obs\", \"flag_optnir_det\", \"ebv\",'zspec_association_flag', 'zspec_qual', 'zspec']" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Missing columns: set()\n" ] } ], "source": [ "# We check for columns in the master catalogue that we will not save to disk.\n", "print(\"Missing columns: {}\".format(set(master_catalogue.colnames) - set(columns)))" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue[columns].write(\"{}/master_catalogue_cosmos{}.fits\".format(OUT_DIR, SUFFIX), overwrite = True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2" } }, "nbformat": 4, "nbformat_minor": 2 }