{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# COSMOS master catalogue\n", "\n", "This notebook presents the merge of the various pristine catalogues to produce HELP mater catalogue on COSMOS." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "017bb1e (Mon Jun 18 14:58:59 2018 +0100)\n", "This notebook was executed on: \n", "2018-06-19 17:18:58.720242\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n", "import datetime\n", "print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/seaborn/apionly.py:6: UserWarning: As seaborn no longer sets a default style on import, the seaborn.apionly module is deprecated. It will be removed in a future version.\n", " warnings.warn(msg, UserWarning)\n" ] } ], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "from collections import OrderedDict\n", "import os\n", "import time\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table\n", "import numpy as np\n", "from pymoc import MOC\n", "\n", "from herschelhelp_internal.masterlist import merge_catalogues, nb_merge_dist_plot, specz_merge\n", "from herschelhelp_internal.utils import coords_to_hpidx, ebv, gen_help_id, inMoc" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "SUFFIX = os.environ.get('SUFFIX', time.strftime(\"_%Y%m%d\"))\n", "\n", "try:\n", " os.makedirs(OUT_DIR)\n", "except FileExistsError:\n", " pass" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## I - Reading the prepared pristine catalogues" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#COSMOS was originally run with the official LAigle et al 2015 catalogue \n", "#so all those ids and photometry values must be preserved\n", "cosmos2015 = Table.read(\"{}/COSMOS2015_HELP.fits\".format(TMP_DIR))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "candels = Table.read(\"{}/CANDELS.fits\".format(TMP_DIR))\n", "cfhtls = Table.read(\"{}/CFHTLS.fits\".format(TMP_DIR))\n", "decals = Table.read(\"{}/DECaLS.fits\".format(TMP_DIR))\n", "hsc_deep = Table.read(\"{}/HSC-DEEP.fits\".format(TMP_DIR))\n", "hsc_udeep = Table.read(\"{}/HSC-UDEEP.fits\".format(TMP_DIR))\n", "kids = Table.read(\"{}/KIDS.fits\".format(TMP_DIR))\n", "ps1 = Table.read(\"{}/PS1.fits\".format(TMP_DIR))\n", "las = Table.read(\"{}/UKIDSS-LAS.fits\".format(TMP_DIR))\n", "wirds = Table.read(\"{}/CFHT-WIRDS.fits\".format(TMP_DIR))\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## II - Merging tables\n", "\n", "We first merge the optical catalogues and then add the infrared ones: CANDELS, CFHTLS, DECaLS, HSC, KIDS, PanSTARRS, UKIDSS-LAS, and CFHT-WIRDS.\n", "\n", "At every step, we look at the distribution of the distances to the nearest source in the merged catalogue to determine the best crossmatching radius." ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### COSMOS 2015" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue = cosmos2015\n", "master_catalogue['cosmos_ra'].name = 'ra'\n", "master_catalogue['cosmos_dec'].name = 'dec'" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add CANDELS" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl4XdV97vHvT/M8y4NmybPxCDI2GIIhIQHCcHMvCWNCKMSZaJomt71Jk0sa+vS2SfskbQppQiGhJCGEJtCYISXMkyfJI56tWfKkWZYsS9aw7h/n2BW2ZB1ZRzrS1vt5nvNwzt5bZ/8OiFfrrL3XWuacQ0REvCUs1AWIiEjwKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIB0WE6sQZGRmuoKAgVKcXEZmUtmzZ0uicyxzuuJCFe0FBAaWlpaE6vYjIpGRm1YEcN2y3jJn9zMzqzWzXEPvvMrOd/sd6M1s60mJFRCS4AulzfwK47jz7K4GrnHNLgL8BHg1CXSIiMgrDdss45942s4Lz7F8/4OVGIGf0ZYmIyGgE+26Z+4A/DLXTzNaaWamZlTY0NAT51CIiclrQwt3MrsYX7v9nqGOcc48654qdc8WZmcNe7BURkQsUlLtlzGwJ8BhwvXOuKRjvKSIiF27ULXczywOeBT7tnDsw+pJERGS0hm25m9mvgTVAhpnVAd8BIgGccz8BHgTSgR+bGUCvc654rAoWEZHhBXK3zB3D7L8fuD9oFYmIyKiFbITqZPHUpppBt9+5Mm+cKxERCZwmDhMR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8aBhw93MfmZm9Wa2a4j9ZmY/MrMyM9tpZhcHv0wRERmJQFruTwDXnWf/9cAc/2Mt8K+jL0tEREZj2HB3zr0NNJ/nkFuAJ53PRiDFzGYGq0ARERm5YPS5ZwO1A17X+beJiEiIBCPcbZBtbtADzdaaWamZlTY0NATh1CIiMphghHsdkDvgdQ5weLADnXOPOueKnXPFmZmZQTi1iIgMJhjhvg74jP+umVVAm3PuSBDeV0RELlDEcAeY2a+BNUCGmdUB3wEiAZxzPwFeAm4AyoBO4N6xKlZERAIzbLg75+4YZr8Dvhy0ikREZNQ0QlVExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHhRQuJvZdWa238zKzOwbg+zPM7M3zGybme00sxuCX6qIiARq2HA3s3DgEeB6YCFwh5ktPOuwbwPPOOeWA7cDPw52oSIiErhAWu6XAmXOuQrn3CngaeCWs45xQJL/eTJwOHgliojISEUEcEw2UDvgdR2w8qxj/hr4o5n9KRAPfCQo1YmIyAUJpOVug2xzZ72+A3jCOZcD3AD8wszOeW8zW2tmpWZW2tDQMPJqRUQkIIGEex2QO+B1Dud2u9wHPAPgnNsAxAAZZ7+Rc+5R51yxc644MzPzwioWEZFhBRLuJcAcMys0syh8F0zXnXVMDfBhADNbgC/c1TQXEQmRYcPdOdcLPAC8DOzFd1fMbjN7yMxu9h/2deBzZrYD+DXwWefc2V03IiIyTgK5oIpz7iXgpbO2PTjg+R5gdXBLExGRC6URqiIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHBRTuZnadme03szIz+8YQx3zKzPaY2W4zeyq4ZYqIyEhEDHeAmYUDjwDXAnVAiZmtc87tGXDMHOCbwGrnXIuZTRurgkVEZHiBtNwvBcqccxXOuVPA08AtZx3zOeAR51wLgHOuPrhliojISAQS7tlA7YDXdf5tA80F5prZe2a20cyuC1aBIiIycsN2ywA2yDY3yPvMAdYAOcA7ZrbIOdf6gTcyWwusBcjLyxtxsSIiEphAWu51QO6A1znA4UGO+b1zrsc5Vwnsxxf2H+Cce9Q5V+ycK87MzLzQmkVEZBiBhHsJMMfMCs0sCrgdWHfWMf8JXA1gZhn4umkqglmoiIgEbthwd871Ag8ALwN7gWecc7vN7CEzu9l/2MtAk5ntAd4A/sI51zRWRYuIyPkF0ueOc+4l4KWztj044LkDvuZ/iIhIiGmEqoiIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEBraEq53pqU82g2+9cmTfOlYiInEstdxERD1K4i4h4kMJ9hE719uOcC3UZIiLnpT73EahpOsGj71SQGhfFgplJrCpKJy0+KtRliYicQy33APX1O36/4zDx0RGkxUexobyJJ9ZX0a9WvIhMQAr3AG2ubOJIWxc3Lsni3tWF3FqcQ2NHN/uOtIe6NBGRcwQU7mZ2nZntN7MyM/vGeY671cycmRUHr8TQa+/q4ZW9x5g9LYFFWUkALMpKJjUukrcPNoS4OhGRcw0b7mYWDjwCXA8sBO4ws4WDHJcIfAXYFOwiQ+3tAw309DpuWpKFmQEQHmZcMTuDmuZOqptOhLhCEZEPCqTlfilQ5pyrcM6dAp4GbhnkuL8Bvg90BbG+kHPOsefIceZMTyAzMfoD+y7JTyMuKpy3Dqj1LiITSyDhng3UDnhd5992hpktB3Kdcy8EsbYJob69m5bOHubPSDpnX1REGKuK0tl3tJ2WzlMhqE5EZHCBhLsNsu3MLSJmFgb8EPj6sG9kttbMSs2stKFhcrR29x/1XTCdNyNx0P1LcpIBOHBMF1ZFZOIIJNzrgNwBr3OAwwNeJwKLgDfNrApYBawb7KKqc+5R51yxc644MzPzwqseR/uOHicrOYbk2MhB92cmRJMSG8nBYx3jXJmIyNACCfcSYI6ZFZpZFHA7sO70Tudcm3MuwzlX4JwrADYCNzvnSsek4nHU2nmK6qZO5g3SJXOamTFneiLlDR309euedxGZGIYNd+dcL/AA8DKwF3jGObfbzB4ys5vHusBQeutAAw6YP0SXzGlzpyfQ3dtPTXPn+BQmIjKMgKYfcM69BLx01rYHhzh2zejLmhhe21tPfHQE2amx5z1uVmYCYQYH1e8uIhOERqgOob/f8daBBuZNTyTMBrum/N9iIsPJS4vjQL3CXUQmBoX7ECoaT9B2sofCjPiAjp8zPZHDrV00dnSPcWUiIsNTuA9hR20rADnDdMmcNnear1/+bQ1oEpEJQOE+hB11rSRER5wzKnUoM1NiiI0MZ2NF0xhXJiIyPIX7EHbUtrI4O3nY/vbTwszIT4+jtKpljCsTERmewn0Q3b197D3SztLclBH9XEF6PBWNJ2hSv7uIhJjCfRD7jrRzqq+fpf6pBQKVnx4HQGm1Wu8iElpaZm8QO+p8F1OX5qbw5v7AL5Bmp8QSFRHGluoWPnbRjLEqT0RG4alNNYNuv3Nl3jhXMrbUch/E9tpWMhOjmZkcM6KfiwgPY0l2MiVVzWNUmYhIYBTug9hR28rSnJQzC3OMRHFBGrsOtdHV0zcGlYmIBEbdMmc53tVDecMJPrE8e/iDB1Gcn8pP3nLsqG1lZVF6kKsTkUAN1f0yVSjcz/J+XRvAiO+UOe2S/FTAd1FV4S4yej19/dQ2d/Lkhmo6T/Vy8pTvW3FkeBhxURF8YU0R2SmxF/RN28sU7mfZ7h+ZuiT7wsI9NT6K2dMSKFW/u8iI9fc7fvjqASobT1DXcpJDrSdp6ujmfLNp/3JTNfFR4SzOSeHyonQyAhx46HUK97PsqG2lKCOe5LjBF+cIxIqCVF7ceYT+fkdYmFoTIkNxzlHecIL3yhrZUN7EpsomWjp7AEiKiSArJZaLspLISIgmPT6K+KgIYqLCMXwt+vauXg61nqSy8QQllc1srGhicXYytyzLIi5qasfb1P70g9hR18rlszJG9R6X5Kfx6821HKzvGHJ5PpGp6lRvPyVVzby69xiv7a0/sw5CdkosH14wHYCijHhS4qKGfa+UuChy0+JYVZROe1cPGyuaePtAI7XNndy2Ipf89MAm/vMihfsAR9u6OHa8e8SDl862osDX715S1axwFwGaT5zijX31vL6vnrcPNNDe3UtEmDErM4FblmUxZ1oiafHDh/n5JMZEcu3CGSyYmcTTJbX82zsV3LUynwUzh15JzcsU7gOcHry05AIvpp6WlxZHRkI0W6pbuHtVfjBKE5lU+vsduw638ca+Bn67pZa6lpM4IDEmgvkzE5k/I4lZmQlERQT/buyc1DgeuHo2j79bydMlNdx3RRF5aXFBP89Ep3AfYEdtKxFhxsJR/qU3M1YUpGowk0wprZ2nePtgI2/u97XOGztOYQY5KbFcM38a82ckMTMlJuDJ+EYjJjKcey4v4KdvlfPkhio+/6FZAc/w6hUK9wF21LWyYGYSMZHho36vS/JT+cOuoxxt62LGCEe6ikwGrZ2n2FzZzKbKZjZVNrH70HEcEBsZztzpCVwzfxqzpyWSEB2amEmIjuCzlxfwk7fKebqkhi+tmU34FLrBQeHu19/v2Fnbxi3Ls4LyfisK0gAorW7mxiXBeU+RUOnrd5TVd7C9toXtta1sq2ll/7F2nIOoiDCW56Zw9fxpzJ2eSE5q7Li0zgORnhDNLcuyeWpzDe8cbGDNvGmhLmncKNz9KhpP0N7dy9Kc0fW3n7YwK4nYyHBKq1oU7jLp1B/v4kevHaS25SS1zZ0caj1Jd28/4LtFcWluCjcsnsnKwjSW5qYQExk+YUeELspOZlFWEq/vq2dhVhLTEqfGN2mFu9/pZfWWjfJi6mmR4WEsy02htFr97jKxnTzVx67DbWyr8bXKt9e0critC4Awg5nJsSzPSyEnNY7c1DjSE6LOtMzLG05Q3nAilOUH5KalWZQ3HOS5rYdY+6GiKTGaVeHud3pZvaLMhKC954qCVB5+o4yO7t6Q9TuKDNTf76hsOsG2mla217awraaVfUfb6fMPAc1Ni+WSgjTuy02h4XgXM1NiiQyf/PMLJsZEcv2iGTy77RB7jxxnYdbobneeDJQ4fqeX1QvmBZdLCtLod7C9ppUr5oxuYJTIhWjtPMW2mla21bbyh/ePUNvSSVePr3slOiKMnNRYrpydQW5aHLlpcR9ohOR5bADQ8rxU3j7YwKt765k/M2nCXBcYKwp3fMvq7TlynPuuKArq+16cl0KY+QYzKdxlrDnnqGs5SUlVMyVVLZRWNXOwvgPwda9MS4xhcXYyuam+IM9MjPZ8wA0UHmZ8eP50flNay65DbSwJ0vW1iUrhDuw90k5Pn2NZbnC/qiXGRDJvRhJbtOyejIHevn72HW2npKqZ0qoWSqqaqW/3rd8bHRFGfnoc1y6cTl5aHDmpsURHjP4W38lucU4ybx6o59W99VyUFdxv6hONwh3YeXpk6hj8JV9RkMpvt9TR29dPhAf6LiV0unv72FrdyqbKJkqrWthW08IJ//S32SmxXDYrneL8VOrbu5meND6DhSabMPO13p/aXMPOulaW56WGuqQxE1C4m9l1wD8D4cBjzrm/P2v/14D7gV6gAfgT51x1kGsdMxe6rF4gLslP5ckN1ew72s6ibO9fxJHg6e937DlynIdfL6O8oYOqphP09DkMmJEcw6LsZArS48lPj/vAJFszk2NDV/QkcFFWEpmJ0bxX1siy3AtbcW0yGDbczSwceAS4FqgDSsxsnXNuz4DDtgHFzrlOM/si8H3gtrEoeCyMZlm94ZwezFRS1axwl/NyzlHd1Mm7ZY2sL29kfXkTrf7pb6clRlOcn8bsaQkUpMcTG6UulgtlZqyelcF/bj9EVVMnhRneunB8WiAt90uBMudcBYCZPQ3cApwJd+fcGwOO3wjcHcwix9Jol9UbTlZKLFnJMZRWt3Dv6sIxOYdMXvXtXWwob+K9skb+uPsYrSd9YZ4cG8mszARmZcYzKzOBpNgLX19AzrUsN4WXdx/lvbLGKR3u2UDtgNd1wMrzHH8f8IfBdpjZWmAtQF5eXoAljq3RLqsXiOKCNDZVNuGc8+xXQAnM8a4eNlc08155I+vLmth/rB3wjfrMTYvjQ3MzmZ2ZQHpClH5XxlBURBgrC9N460ADTR3dpCd4b1KxQMJ9sN+wQRe9MrO7gWLgqsH2O+ceBR4FKC4uPs/CWeNntMvqBaK4IJV1Ow5T13KS3Ck49ehU1tXTR2lVC+vLG3mvvIn361rpdxARZhSkx/Oxi2YwKzOerJSJMx/LVLGqKJ13DjayvqKJmzw4RUgg4V4H5A54nQMcPvsgM/sI8C3gKudcd3DKG3vBWFZvOMX5/z2JmMLd23r6+tlZ18r6sibeK2+kpKqFvn5HmPnmGb9qbiazMhPITYvzxMjPySwpNpLFOclsrW7howunh7qcoAsk3EuAOWZWCBwCbgfuHHiAmS0Hfgpc55yrD3qVYygYy+oNZ96MRBKjIyipauETy3PG9Fwyvvr7HXuPHmd9WRPryxvZXNl85vbEhTOTuKwonVmZ8RSkxxMdhKmkJbhWFqaxvbaVnf7uWS8ZNtydc71m9gDwMr5bIX/mnNttZg8Bpc65dcA/AAnAf/j7CWucczePYd1BEaxl9YYTHmasKEzjnYMN6nef5E4v6LyhookN5b5FnU8v6JyREMWi7GSKMhMoyognXvMJTXh5aXFMT4pmc6X3JvgL6LfPOfcS8NJZ2x4c8PwjQa5rXGz2r5R0cf7YD2S4Zv40Xt9XT3lDB7OnaV3VyaK/37HvaDubK5vYXNXM5spmGjtOATAzOYZr5k9n9ex0jh3vJll3tEw6Zsalhek8v+MwO+taPTUlwZRuWmyubCIhOmLUy+oF4pr5vkUCXt9Xr3CfwHr6+tl9+DibK5vYVNFMSVUzx7t6Ad8o0NzUOK6ck0lhRjzp8b47Wrp6+hXsk9jy3BRe3nWUX26s5vu3Ktw9YVNFM8UFqeMyLUBWSizzZyTy2t561n5o1pifTwLT3dvHjto2X5hXNrOluoVOf595RkIUc6cnUpgRT0FGPKkDRoGKd8REhrM0N5l1Ow7zrY8v9Mwf6ikb7k0d3Rys7+ATF4/N4KXBfHjBNH7yVgVtnT1jeneODO3kqT621rT41v2saGJLdQu9/rnMZyTFsCQnmcKMBArS40iM0X+jqeLSgnRKqlp4bmsdn/XIYMMpG+4l/v72lYXp43bOa+ZP55E3ynn7YAM3LfXefbUTUUd3L6VVzfz8vSoqG09wqOUkfc43P0tWSiyritIpSI+nID2OOF0AnbKyU2NZmpPMrzbVcM/lBZ646WHK/jZvrGgmJjKMxeM438uy3BTS4qN4fV+9wn2MHO/qoaSy+UzLfNfh42fuM89OiWX17AwKM+LIT48nRrcmygB3rcrnL3+7k82VzawsGr9G31iZsuG+ubKZS/JTiYoYv4Ek4WHGmrmZvL6/nr5+5+m5pMdLe1cPpVUtbKhoYmNFE+/XteHw/bvOTY3lyjkZFGbEk5cWp/nM5bxuWpLF37ywh19tqlG4T1ZtnT3sPXqcr3547rif+6MXTefZbYd452ADa+ZNG/fzT3Yd3b2UVDXz83crqfB3szgg3IzctFiunj/tTJhrBKiMRGxUOP/r4hx+tamaxo6FZEzy+WamZLiXVjfjHKwsShv3c18zfzpp8VE8U1qrcA/Aie5eSqtb2FDub5kfavN96zEjJy2WNfMyKcxIIC8tbly/hYk33bUyjyfWV/EfpXV8cc3kvqttSob7hvImosLDWDaGM0EOJSoijE8sz+bJDVWenY1uNLp6+thS7Ztoa0N5Ezvr2ujtd0SEGUtzU/jCVUVcVpRBWX2HwlyCbs70RC4rSucXG6r43JWFk3r1tCkX7s45Xtl7jMtmpYfsgtptK3J5/N1Kntt2iPuvDO6i3JPNqd5+dvgn2tpQ0cjW6lZO9fUTHmYszk5m9ewMijLiyUv/7z7zmuZOBbuMmT+5opDPPVnKy7uP8fElM0NdzgWbcuF+4FgH1U2dfD6EA4nmTk9kWW4Kvymp5b4rCj1x21WgntpUQ9vJHg4cbWff0eOUN5zgVF8/hm84/6WFaczKjNfdLBIy18yfRl5aHD9/r1LhPpm8vPsoZvCRhaHt775tRS7ffPZ9ttW2crGHF+k9bf/Rdl7ceZjfbqnjcFsXAClxkSzPS2H2tAQKM+KJi5pyv44yAYWHGZ+9vICHXtjjW4IzBN23wTDl/m/6456jLM9NYVpi8BfDHomblmbxty/u5advlfPTTxeHtJaxUtHQwQs7j/D8jsMcrO8gzHyz8H3sohnMn5HItMToKfWtRSaPTxbn8INXDvDz9yr5p9uXh7qcCzKlwv1Q60l2HTrON6+fP2bneGpTzaDb71z5wWUFE6IjWPuhIn7wygG2VDdzSf7437kzFmqbO3nx/SM8ub6Kw21dGJCfHsfNS7O4KCtJQ/plUkiMieRTxbk8uaGKr3903qRcZGdKhfsfdx8F4KMXzQhxJT73X1nILzZW83cv7eM/vnDZpG3FHjvexYs7j/D8zsNsq/EtW5ibGssNi2eyODvZMxMxydTy+auK+OWmah5+vYzv3bok1OWM2BQL92PMnZ4wYVY7j4uK4KsfmcO3ntvFK3uOTZg/OoFo6ujmD7uO8vi7lVQ1nsDhuyD6sYtmsDg7mbR4zaAok9v0pBjuvDSPX2ys5stXzyYvfXK13qdMuNc2d7KpsokHrp4d6lI+4LZi322Rf/vSXlbNSidpAndbtHae4o+7j/H8zsOsL2+ir9+RmRDNNQumsSQ7hcxE3bMv3vKlNbP49eYa/uX1g/zDJ5eGupwRmTLh/vP3qggz486V+aEu5QMiwsP4f59YzF2PbeKrT2/n3z5TPKHmnGnr7OHlPUd57J0Kyuo76HeQFh/FlbMzWJyTzIykmEnbnSQynGlJMdy1Mp9/31DFl6+eTcEE+dYfiCkR7u1dPTxTWsvHl8xkRnJo75IZzKqidL5z00Ie/P1ufvDKfv7iY2N3wTcQbZ09vLL3GC/uPMy7ZY309DlS4yK5YnYmi3OSyUpWoMvU8YU1RfympIbvrNvNE/eumDS/+1Mi3J8praOju5f7rpi4k/B/elU+e48c55E3yokKD+dPr5lN2Di14J1zVDSe4LW9x3htbz2l1S309TuyU2L5k9WFfHzJTN6va5s0v9QiwTQtMYavf3QeD72whxffP8KNSybHdN2eD/e+fscT6ytZUZA6oRe/NTO+e/Miunr6+eGrB9he28IPb1tGyhgt7dbY0c2mimY2VjTxblkjlY0nAN9qRFfOyWDBjCRyUmMxM3YdOq5glyntnssLeG7bIb77/B6unJM5Ke4A83y4/377IWqbT/KtGxaEtI5A7n+PigjjB59aysV5KTz0wh4+9P03+PRl+dy7unBU04929fRx8FgHe460sbOujc2VzRys7zhzzsL0eG5emsX8GYlj9sdEZDILDzP+7n8u5uaH3+VvX9zD92+d+BdXPR3u9ce7+O7ze1iel8K1CyfHbYZmxqcvK+Di/FQefr2MH79Zzk/eqmBpjm8SrXkzEslJjSMjIYqYyHAiw8M41dtPV08fzSdOcaStiyNtJzna1sWh1pMcONZOecMJ+vzrhCZER1BckMqsTN8toVkpsRPqAq7IRLUoO5kvrpnFI2+Usyg7mc9cVhDqks7Ls+HunOOvnnufrp4+/vGTSydsgJ2vRf+vd19CeUMHz26t472yJh55owx/Rg8rKiKMGUkxxEWF86E5GcxMjmVmcgyp8VGEqYtF5IJ87dp57D/aznef30NhRjxXzskMdUlD8my4/27rIV7dW8+3P76AWZkJoS5nxAaGfnZKHJ8qjuOWZVlcNiuduuaTNJ3opru3n1O9/URHhLG9tpW4qAiSYyNJio0kPipc/eQiQRYeZvzT7cu59V/X86VfbeXxe1ZwaeHEnDrEk5NiP7u1jm/8bieXFqZx7+qJe4fMSEVHhLO1upX69m76+iEiLIy4qAjCw8K4JD+NBTOTyEqJJSE6QsEuMkYSoiN47J5iMhOiueuxjTxTWhvqkgYVULib2XVmtt/MyszsG4Psjzaz3/j3bzKzgmAXGoj+fseP3yzja8/sYGVRGo/fM7EGBImIN+SkxvHcl1azsjCdv/ztTr72m+0caj0Z6rI+YNhuGTMLBx4BrgXqgBIzW+ec2zPgsPuAFufcbDO7HfgecNtYFDyYvn7Hf+06yj+/doADxzq4aWkW//jJJVrtXkTGTHJcJE/cu4IfvnqAf3unkhfeP8IdK3K5ZXk2y3JSxm2cylAC6XO/FChzzlUAmNnTwC3AwHC/Bfhr//PfAg+bmTnnArz8F7jjXT0cPNbB4daTHGo9yZbqFjZVNHG8q5fZ0xL40R3LuXHxzJD/ixUR74sID+MvPjafu1bm84NXDvDU5hr+fUM1M5JiWJ6XwvwZSRRkxJGREE1KXCTREeFEhYeRHBc55vfKBxLu2cDATqU6YOVQxzjnes2sDUgHGoNR5EBv7m/gK7/eduZ1Xloc1y+aydXzM7l24Qx1w4jIuMtKieUfP7mU/3vjQl7fd4xX99az5/Bx/mv3UQZr4n7+qiK+ef3Yjr0JJNwHS8uzyw3kGMxsLbDW/7LDzPYHcP7zqgbeAb4/2jcaWgZj8EcqBPQ5Jh6vfBZPfI67xvFcf/U9+KsL//GAZj/yk8AWAAAGfklEQVQMJNzrgNwBr3OAw0McU2dmEUAy0Hz2GznnHgUeDaSwicLMSp1zk34dPH2Oiccrn8Urn8NrArlbpgSYY2aFZhYF3A6sO+uYdcA9/ue3Aq+PRX+7iIgEZtiWu78P/QHgZSAc+JlzbreZPQSUOufWAY8DvzCzMnwt9tvHsmgRETm/gEaoOudeAl46a9uDA553AZ8MbmkTxqTqRjoPfY6JxyufxSufw1NMvSciIt7jyekHRESmOoX7eQw37cJkYGY/M7N6M9sV6lpGw8xyzewNM9trZrvN7M9CXdOFMLMYM9tsZjv8n+O7oa5pNMws3My2mdkLoa5FPkjhPoQB0y5cDywE7jCzhaGt6oI8AVwX6iKCoBf4unNuAbAK+PIk/e/RDVzjnFsKLAOuM7NVIa5pNP4M2BvqIuRcCvehnZl2wTl3Cjg97cKk4px7m0HGHEw2zrkjzrmt/uft+AIlO7RVjZzz6fC/jPQ/JuWFLzPLAT4OPBbqWuRcCvehDTbtwqQLEy/yzzq6HNgU2koujL8rYztQD7zinJuUnwP4J+Avgf5QFyLnUrgPLaApFWR8mVkC8Dvgq86546Gu50I45/qcc8vwjfa+1MwWhbqmkTKzG4F659yWUNcig1O4Dy2QaRdkHJlZJL5g/5Vz7tlQ1zNazrlW4E0m5zWR1cDNZlaFr8vyGjP7ZWhLkoEU7kMLZNoFGSfmW1rqcWCvc+4Hoa7nQplZppml+J/HAh8B9oW2qpFzzn3TOZfjnCvA9//G6865u0NclgygcB+Cc64XOD3twl7gGefc7tBWNXJm9mtgAzDPzOrM7L5Q13SBVgOfxtdC3O5/3BDqoi7ATOANM9uJrwHxinNOtxFK0GmEqoiIB6nlLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7jBsz6/Pfn77bP+Xt18wszL+v2Mx+dJ6fLTCzO8ev2nPOfdI/H8yEYGa3+aei1j3yMiiFu4ynk865Zc65i4BrgRuA7wA450qdc185z88WACEJd79y/3wwAfNPGz0mnHO/Ae4fq/eXyU/hLiHhnKsH1gIPmM+a061QM7tqwCjUbWaWCPw9cKV/25/7W9PvmNlW/+Ny/8+uMbM3zey3ZrbPzH7ln7oAM1thZuv93xo2m1mif4bGfzCzEjPbaWafD6R+M/tPM9vi/xaydsD2DjN7yMw2AZcNcc6L/M+3+885x/+zdw/Y/tPTfxz8i8Zs9b/Ha0H8zyBe5pzTQ49xeQAdg2xrAaYDa4AX/NueB1b7nyfgW8j9zH7/9jggxv98DlDqf74GaMM30VsYvqkXrgCigApghf+4JP/7rgW+7d8WDZQChWfVWADsOmtbmv+fscAuIN3/2gGf8j8f6pz/Atw14JhYYIH/c0f6t/8Y+AyQiW/q6cKB5x3wWV8Y7N+1HnpEjPBvgUiwDTa18nvAD8zsV8Czzrk6f+N7oEjgYTNbBvQBcwfs2+ycqwPw95MX4Av8I865EgDnny7YzD4KLDGzW/0/m4zvj0XlMHV/xcw+4X+e6/+ZJn8tv/NvnzfEOTcA3/IvdvGsc+6gmX0YuAQo8X/WWHzzva8C3nbOVfrfY9IvvCLjQ+EuIWNmRfjCsB5fyxUA59zfm9mL+PrkN5rZRwb58T8HjgFL8bXQuwbs6x7wvA/f77kx+Hz8Bvypc+7lEdS9Bt9sjpc55zrN7E0gxr+7yznXN+C9zzmnc+4pf7fNx4GXzex+/7H/7pz75lnnunmIukXOS33uEhJmlgn8BHjYOefO2jfLOfe+c+57+LpJ5gPtQOKAw5LxtYr78c0WOdzFy31Alpmt8J8j0cwi8M36+UX/XPGY2Vwzix/mvZKBFn+wz8fXug74nP4/ahXOuR/hm0Z6CfAacKuZTfMfm2Zm+fi6la4ys8LT24epTQRQy13GV6y/myQS34LXvwAGm5v9q2Z2Nb5W9x7gD/iWcus1sx34Fv3+MfA7M/sk8AZw4nwnds6dMrPbgH/xz6N+El/r+zF83TZb/RdeG4D/Mczn+C/gC/5pe/cDG0d4ztuAu82sBzgKPOScazazbwN/9N8e2gN82Tm30X/B9ln/9np8dxqJnJem/BUZhvnWbH3BOTehlsPzdw/9b+fcjaGuRSYedcuIDK8PSJ5og5jwfXtpCXUtMjGp5S4i4kFquYuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAf9f++hmN9/Cr30AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(candels['candels_ra'], candels['candels_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, candels, \"candels_ra\", \"candels_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add CFHTLS" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl4nGd57/HvPVpG22jfLFmyvDu2kziJsxMSGhYH2qQcKFlKaQs03SiU9rSFQw8taXsKdKGlbE2BUiiBppBCAnacECeQhNjYjpN43zdZlrVY+zbSzHP+mJFRFNkaSTOamXd+n+vSlVlezdwT2z89et7nuV9zziEiIt7iS3YBIiISfwp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHTRvuZvZVM2szsz0Xed7M7LNmdsTMXjGzq+NfpoiIzEQsI/evARsu8fwdwPLo1/3AF+deloiIzEX2dAc4535iZk2XOOQu4OsustV1q5mVmtkC59zZS71uZWWla2q61MuKiMhkO3fu7HDOVU133LThHoN64PSE+83Rx14T7mZ2P5HRPY2NjezYsSMOby8ikjnM7GQsx8XjhKpN8diUDWuccw8659Y759ZXVU37g0dERGYpHuHeDDRMuL8QaInD64qIyCzFI9wfBd4TXTVzA9Az3Xy7iIgk1rRz7mb2LeA2oNLMmoG/AHIAnHNfAjYCbwWOAIPAbyaqWBERiU0sq2XuneZ5B/x+3CoSEZE50w5VEREPUriLiHiQwl1ExIMU7iIiHhSPHaqe8dC2U1M+ft/1jfNciYjI3GjkLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHhRTuJvZBjM7aGZHzOwjUzzfaGZPm9kuM3vFzN4a/1JFRCRW04a7mWUBnwfuAFYD95rZ6kmH/TnwsHPuKuAe4AvxLlRERGIXy8j9OuCIc+6Ycy4IfBu4a9IxDiiO3i4BWuJXooiIzFR2DMfUA6cn3G8Grp90zF8CT5jZHwCFwBvjUp2IiMxKLCN3m+IxN+n+vcDXnHMLgbcC3zCz17y2md1vZjvMbEd7e/vMqxURkZjEEu7NQMOE+wt57bTL+4CHAZxzLwB5QOXkF3LOPeicW++cW19VVTW7ikVEZFqxhPt2YLmZLTazXCInTB+ddMwp4HYAM7uMSLhraC4ikiTThrtzbgz4ALAZ2E9kVcxeM3vAzO6MHvbHwG+Z2cvAt4DfcM5NnroREZF5EssJVZxzG4GNkx77+ITb+4Cb41taYj207VSySxARSRjtUBUR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCF+wTOOZ7Y28pnnjxE2LlklyMiMmvZyS4glWw52MYzh9oB6BoIUlHkT3JFIiKzo5F71PNHOnhqfxsNZfkAtPeNJLkiEZHZU7hHPX2wjWVVRbznxiYA2hTuIpLGFO7AyFiIwWCIpVWFFPqzKfJna+QuImlN4Q50D44CUFKQC0BVwE9b33AySxIRmROFOz8P97KCHACqA37a+0dwWjEjImlK4Q50DwUBKJ0wch8eDdM3MpbMskREZk3hTmTk7jMI5EVWhlYH8gCtmBGR9BVTuJvZBjM7aGZHzOwjFznmXWa2z8z2mtlD8S0zsboHg5Tk5+AzAyIjd9CKGRFJX9NuYjKzLODzwJuAZmC7mT3qnNs34ZjlwEeBm51zXWZWnaiCE6F7cPTClAxAcV42/myfRu4ikrZiGblfBxxxzh1zzgWBbwN3TTrmt4DPO+e6AJxzbfEtM7G6h0Ypzc+5cN/MqAr4adeKGRFJU7GEez1wesL95uhjE60AVpjZ82a21cw2xKvARAuFHb1Drx65Q3TFjEbuIpKmYgl3m+KxyWsEs4HlwG3AvcCXzaz0NS9kdr+Z7TCzHe3t7TOtNSF6h0ZxQGlBzqserwrk0Ts8xvBoKDmFiYjMQSzh3gw0TLi/EGiZ4pjvO+dGnXPHgYNEwv5VnHMPOufWO+fWV1VVzbbmuOq6sAzy1eFeHT2pqtG7iKSjWMJ9O7DczBabWS5wD/DopGO+B7wBwMwqiUzTHItnoYnSM76BKf/V0zJVRQp3EUlf04a7c24M+ACwGdgPPOyc22tmD5jZndHDNgOdZrYPeBr4E+dcZ6KKjqeuC60HXj1yH7/fOzw67zWJiMxVTP3cnXMbgY2THvv4hNsO+KPoV1rpHgxS6M8mJ+vVP+dysnz4s33apSoiaSnjd6j2DI1e6CkzWSAvm/5hhbuIpJ+MD/euwVevcZ+oyJ9Nv0buIpKGMjrcnXP0DAVfs8Z9XJFfI3cRSU8ZHe4DwRCjIfeaZZDjivJy6BvRCVURST8ZHe7dg9E17vkXH7kPj4YZGdNGJhFJLxkd7r1DkSmXkovMuQf8kcVEHf3BeatJRCQeMjrcB4ORcC/0Z035fFG0v3uHNjKJSJrJ8HCPTLcU5E693L/owshd4S4i6SWjw30gOEa2z8jJmqo32s+vzKQWBCKSbjI63AdHQhTkZmE2dbgXauQuImkqs8M9OHYhwKeSk+UjL0dXZBKR9JPR4T4QjIzcL6XIn6PVMiKSdjI63AeDoYueTB1X5M+mXdMyIpJmMjzcx6YduQfysrUUUkTSTsaGe9g5hjRyFxGPythwHw6GcFx8A9O4orxs+nQtVRFJMxkb7gPTbGAaF9BySBFJQxkb7uOtB6ZfLaONTCKSfjI43CMj98Lp5tzz1DxMRNJPxob7wMjMRu6alhGRdJKx4X6hadh0J1Q1LSMiaSiDwz3SNCw369L/C7KzfJTk52jkLiJpJYPD/dJNwyaqLMrVyF1E0krGhvtADBuYxlUW+TVyF5G0krHhPjgyfeuBcZUBP51aLSMiaSRzwz0YouAS7X4nqijMpXNA4S4i6SNjw30gOEZhjCP38sJceoZGGQ2FE1yViEh8ZGS4h8PjTcNiC/eKwlwAujR6F5E0kZHh3js8imP6vjLjKor8AJqaEZG0kZHhfj4a0rGO3MujI/fzCncRSRMZGe5dg6MAl7x+6kTj0zIauYtIusjMcJ/lyL1Ta91FJE1kZrgPjod7bCP30oJcfKZpGRFJHxkd7rEuhczyGWUFWusuIukjI8P9/MAoWWbkZsf+8csLczmvXaoikiZiSjcz22BmB83siJl95BLHvdPMnJmtj1+J8dc9GKTAH1vTsHHlhbl0DmjOXUTSw7ThbmZZwOeBO4DVwL1mtnqK4wLAB4Ft8S4y3s4PBKe9AtNklUV+TcuISNqIZeR+HXDEOXfMORcEvg3cNcVxfwV8GhiOY30J0T04Sn6M8+3jygtzdUJVRNJGLOFeD5yecL85+tgFZnYV0OCc+8GlXsjM7jezHWa2o729fcbFxsv5wWDMJ1PHlRfm0j04ypj6y4hIGogl3KeamHYXnjTzAZ8B/ni6F3LOPeicW++cW19VVRV7lXHWNRCMeRnkuIqiaH+Z6AYoEZFUFku4NwMNE+4vBFom3A8Aa4FnzOwEcAPwaKqeVA2HHd1Do9NeO3WyisLx/jI6qSoiqS+WcN8OLDezxWaWC9wDPDr+pHOuxzlX6Zxrcs41AVuBO51zOxJS8Rz1DY8RCrsZn1C90F9GyyFFJA1MG+7OuTHgA8BmYD/wsHNur5k9YGZ3JrrAePv57tQZjtyL1F9GRNJHTMNX59xGYOOkxz5+kWNvm3tZiXN+hq0HxqkzpIikk4zboTrTpmHjygpyMdPIXUTSQ+aF+wzb/Y670F9GnSFFJA1kXrjPcuQO2sgkIukj88J9MEi2z/DPoGnYuEh/GYW7iKS+jAz3ssLcGTUNG1ehkbuIpImZTTx7wPmBIOUFubP63oqiXLYdV7iLZIqHtp16zWP3Xd+YhEpmLgNH7qOUFuTM6nvLC/10DQYJhd30B4uIJFHGjdy7BoIsqy6a1fdWFObiXGRqp7LIH+fKRCRZphqhp7vMC/fBUUpnOS0zcSOTwl0kfQwFQ+w82cWuU108vreVjv4RDCPLZyyqKODWFVUE8mb3G32qyqhwd87RNRikvHB2f4jjgd7RN8KKmkA8SxOROBoLhdl9pofnDnfw3JEOdp3qJhht111RmEt1wI+ZEQyF2Xqsk+0nznPL8ipuX1U9q8UWqSijwr032jSsbJYj9+riSLi39Wkjk0gqcc5xonOQ5w6389yRDn56tJO+4TEAFpTkcf3icpZUFbGoooC8nFfvcenoH+GJfefYcqCNIn82NyypSMZHiLuMCvfuaF+ZsoJcRsZmftGN6sB4uKf8xaZEPK97MMizhzt47nAHm/e10h3dfV6an8PKmgDLqotYUlVE0TS70SuL/Nx7bQP/MRZi4+6zLKkqpDqQNx8fIaEyKtzH16iXF+ZytmfmAV3kzyYvx0e7Ru4iSXGqc5An9rXy5L5z7DjZRSjsCORl01BWwOuXV7GsuoiKWexjMTP+19UL+exTh3l4x2l+59alZPvSezFhRoX7hZ/sBTmzCnczozqQp2kZkXkSDjteOdPDk/ta+dG+Ng6e6wOgptjPLcsrWVVbTH1pPlm+uc+TF+fl8Par6vnmtlNsO3aem5dVzvk1kymjwn3iyH22qgN+2noV7iKJMjwa4oVjnTy57xw/2neOtr4RsnzGtU1l/N9fXM1QMDSnf8OXsqauhIVl+bx4qkvhnk7GL9RRNoe/GFUBP4fb+uNVkogAZ3uGePZwB08faOMnh9oZCIbIzfKxvKaIW1dUsbImQEF07jw/Z+ZN/2biqoZSHnvlLGd7hlhQkp/Q90qkjAv3bJ8RmGG734mqA36eP9IRx6pEMs/AyBjbjnfyk0ORpYpHogOmQF42a+pKuGxBMUuqCsnJmv957ysWlvLD3WfZdaqbBZcr3NPC+YHIBqa5rGOtCvjpHR5jeDT0miVVIjK1UNix50wPzx5u59nDHbx4qovRkMOf7eP6JRUsry5iWXURtcV5SV9nXujPZmVtMS+f7uYta2rjMp+fDBkV7t2DQcpm2Vdm3PgSqfa+ERrKC+JRlognnT4/yHNHOi5sJOoZiixoqCvJ48YlFSyrDrCooiApo/PpXNVQyv6zvRxt70/bDYsZFe7nB4Jzmm8HqJqwkUnhLvJzfcOjvHC0k+eOdPDs4Q6OdwwAUJyXzfLqyLrzpdXTrztPBatqA+TnZPHiqS6FezroGgyypHJ2TcPGVUVbEGitu2Q65xxH2/v5hycOcaC1j5OdA4Qd5Gb5WFxZyNsuX8Dy6iKqolv900l2lo81dcXsaekh7By+NKsfMi7cRymbZV+ZceMtCNq1S1Uy0MhYiG3HzrPlQBtbDrRx6vwgENnif8vyKpbXFNFYXpD2G4AAFlcWsuNkF609w9SVpt+J1YwJd+ccXQPBWfeVGVdR6Mdn6i8jmeNc7zBPR8P8mYPtBENhcrKMpVVF3LWujpU1gVl3Wk1liysLATjROaBwT2X9I2OMzaFp2Lgsn1FR5Ne0jHhWOOzYfaaHpw608fSBNnaf6QGgvjSfqxpLWVUbYElVUUqeCI2n0oJcSgtyON4xwE1L029DU8aEe0d/ZANTZWDuI4zqgF8jd/GUgZExnj3cwZYD59hyoD3a7xwaywt4y+oaVtYWU1OcfnPnc7W4opBD5/pwzqXdZ8+YcB8faVcVzb3bW3VAI3dJf6fPD/LU/nN8c9spjnUMEAo78nJ8LK8O8IaVVayoCVCYBitbEmlxZSG7TnfT3jdCdXF6dYrMmD+5C+EemPsVlKoCfvad7Z3z64jMp7FQmF2nu3lqfxtP7T93oY1GZZGfG5dUsKo2wKKKwrTdtJMITdF59+OdAwr3VDW+uiUe4V4dyKOjP3KhbP1DkFTWMzjKjw+3s2X/OZ451E734Cg+48JSxZW1AV0y8hIqCnMJ+LM50THA9YvT6yIemRPu/SNk+4zS/JkvhZx88dyTnZFfYXWhbEk1kbXnA2w5cI6n9rdd6HleXpjL7atqyM32sby6SK0zYmRmNFUWcrxjIO3m3TMn3PtGqCzy44vDSHv8QrptvSMKd0m6cNix63QXm3a38uT+c5zsjKw9ry3O45ZllayqDbCwvCAtN+KkgqbKQnaf6aFrcDRhrYYTIaPCPR5TMhDpXAeRy+2tpjgurykyE6Gw42fHz/P4nrP8z64z9A6PkWXG0upC7ryyjlW13lx7ngyLom1GTncNKtxTUXv/SNyuizg+cteKGZlPo6EwPz3ayeN7zvLE3nN0DgTxZ/tYWlXE2vpiVtUWa7olAaqL/WSZcbZ7iCsXlia7nJhlTrj3jbBmQUlcXuvnI3eFuyTW8GiIZw93sGnPWTbuPsvwaJjcbB8rawK8eU0tK2qK8Gcr0BMp2+ejpsRPS3d6tRzJiHAPhx0d/cG4TcvkZPkI5GVr5C4JMRgc45mD7Wza08qW/ecYCIYozsvmstpi1taXsKza+7tDU01dST77zvbinEt2KTGLKdzNbAPwz0AW8GXn3CcnPf9HwPuBMaAdeK9z7mSca521rsHIssV4hTtEtmI3dw3F7fUks/UOj7Jlfxub9pzlx4faGR4NU5ibxeq6YtbUlbCkqtATzbjSVV1pPjtOdl3oSZ8Opg13M8sCPg+8CWgGtpvZo865fRMO2wWsd84NmtnvAp8G7k5EwbPR3h+/DUzjGsoLOBVdlSAyG10DQZ7cf45Nu8/y/JFOgqEw1QE/71rfQE6WjyZtKEoZdSWR83Ut3ekzoItl5H4dcMQ5dwzAzL4N3AVcCHfn3NMTjt8KvDueRc5VPHenjmssL+C5wx1pt/ZVkqu9b4TNe1t5fE8rLxzrJBR2lBbkcN3ictbUFdOgJYspqbYkHwNaetJn3j2WcK8HTk+43wxcf4nj3wdsmktR8fbzvjLxDfeh0VBc5/LFm1q6h3h8Tytff+EEJzsHcUR2Pr5uWSVr60qoK03+dUPl0nKzfVQF/J4buU/1t27Kswpm9m5gPXDrRZ6/H7gfoLGxMcYS5y5RI3eAU+cHFe7yGqc6B9m05yyb9rTy0uluAGqK/bxhVTVr60oyssNiuqsrzedYe3+yy4hZLOHeDDRMuL8QaJl8kJm9EfgYcKtzbsplJM65B4EHAdavXz9vp53b+0YoyM2Ka4e78eunnj4/yDWLyuL2upK+jrT1sWl3K5v2tF5oLFdfms+bV9ewtq6ESg0C0lpdSR4vRTtEpsOALpa02w4sN7PFwBngHuC+iQeY2VXAvwIbnHNtca9yjtr74/+HsbAscmWW8cuMSeZxznGgtY9Ne1rZtPvshS6LVzeWcsfaWtbUlaTVjka5tAXRqzHtbenhtpXVSa5metOGu3NuzMw+AGwmshTyq865vWb2ALDDOfco8HdAEfDf0V81Tznn7kxg3TPS3jcS1/l2gLycLGqL8xTuGcY5x96WXjbujky5HO8YwIj0H/mlKxawuq6Eklk0p5PUV1cyHu693gh3AOfcRmDjpMc+PuH2G+NcV1y1942wrLoo7q/bWF6gcM8AzjleOt3Npj2tbNx9luauIbJ8xk1LK7hyYSmr64opyvCLWmSC/Nwsygtz2dvSk+xSYpIRfyPb+0e4cWn8ezE3lBfw06MdcX9dSb5w2LHzVBcbd59l855WWnqGyTJjWXUR77i6nstqiylQoGecBSV57G1Jjwv1eP5v58hYiO7B0bhPywA0lOfTumuY4dGQGjZ5xJG2Ph54bB8vne6md3iMbJ+xvLqIm5dVsqq2mPxc/TlnsvrSfJ7Yd47e4VGK81J7+s3z4d4ZvTB2Is5uN5YX4Byc6R5iaVX8p31kfvQMjfLYyy18Z2czL53uxmewoibAHQ2lrKoJ4NcPbolaEJ1339fSyw1LUvvKTJ4P90SscR83ca27wj29hMKO54508A9PHGRfSy9jYUdNsZ+3rq3lyobSC22dRSaqK420IdhzpkfhnmzzEe6ndVI1bRxt7+e7O5t55MUztPYOk5+Txfqmcq5ZVEZdiXaKyqUF8nKoKfanxby798M9AU3DxlUF/PizfWogluJ6h0f5wctn+dKPj3Lq/CA+g+XVAX5hVTWragNkq32uzMCaupK0WDHj+XBv7RnGDCoK4x/uZqblkCkqFHb89GgH39nZzON7WhkZi3RcvCM67ZLqJ8Mkda2tK+aZg20MBUMpfYLd8+F+onOAupJ8crMTMzpTuKeW4x0D0WmXZlp6hinOy+Zd6xt45zUL2XOmR9MuMmdr6ksIOzjQ2stVjanbesT74d4xwOLKwoS9fkN5AVuPdar1bxL1DY+ycfdZ/ntHMztOdmHA8poi7lnRwGULisnJ8rG3pVd/PhIXa+qKAdjTonBPGuccxzsGuHNdXcLeY2VtgIFgiJOdgzQl8IeIvFo47Nh6rJNPbz7I3pYeRkOOqiI/b1lTy7qGUrUAkISpL82ntCCHvWdSe97d0+HeNThK7/AYTRWJC90rFkYuuv1yc7fCfR609Q7z8I7TfOtnpznTPURejo+rGsq4ZlEZC8vyNTqXhDMz1tQVp/yKGU+H+/GOAYCETsusqAngz/bx8uke7lpXn7D3yWThsOOvf7ifbcc72X+2l7CDJVWF3L2+gdV1xbpYtMy7tXUl/PvzJwiOhRN2Pm+uPB3uJ6LhnsgRdU6Wj7X1JbzS3J2w98hUnf0jfGdnMw/97BQnOwcpyM3i5qWVXLu4nMoEtJMQidWVDaUEQ2H2ne1lXUNpssuZkrfDvXMAn0FDWUFC3+eKhSV862enGAuFtWY6Dg609vKVZ4/z/ZdaCIbCXNdUzvWLK1ijUbqkiPEL9Ow82aVwT4bjHQMsLCtI+K9N6xpK+ffnT3DoXD+ro2fSZWbCYcePD7XzleeO89yRDnKyjKsby7hhSQU1xXnJLk/kVWqK86gvzefFk12873WLk13OlDwd7ic6B+blJOcVCyM/uV9u7la4z9BQMMQju5r56nPHOdo+QG1xHm9ZU8u1TWUU5Hr6r6ekuasXlbH9+Plkl3FRnv3X45zjRMcg18zDOtSmigKK87J5pbmbe6+bvwt/p7O23mG+/sJJvvr8cQaDIepL83nX+gYury8hy6cVL5L6rmks5bGXW2jpHqIuegm+VOLZcO/oD9I/MjYvI3cz48qGUl4+ndrrXlPB0fZ+vvjMUb7/0hnGwo7Laou5eVklTRUFWsYoaeWaReVAZN5d4T6PTnQmfqXMRFcsLOFLPz6W8v0mkuXvNx/kmUPt7D3TQ3aWcc2icm5eWkGFVr1Imlq1IEBejo+dJ7v4pSsTt1Fytjwb7hfWuCdwA9NEVy4sJRR27Dvbc+EnusDOk+f53JYjPH2wHX+2j1tXVHHTskpdc1TSXk6WjysXlrLrVFeyS5mSZ/+FnegYINtnLCybn1+X1jWWYgbPHe7M+HB3zvH8kU4+9/Rhth47T3lhLm9aXcMNiyv0W414yjWLynjwJ6n5G7t3w71zgIbygnlbd14dyOP6xeV8/6UzfPD2ZRk5fxwOO5460MYnHttLc9cQxXnZvO3yBVzbVJ6yu/hE5uLqxjLGwo5Xmru5PsWuzOTZcD/eMUhTRWI3L0329qvq+bPv7uaV5h6uTNGNDYkwFgrz2CstfPGZoxw61095YS6/vK6eqxtLtalLPO3qRWWYwQvHOlMu3D35L693eJRD5/pYU1cyr++7Ye0CcrN9/M+uM/P6vskyPBriGy+c4La/f4YP/9fLGMY/3b2OD79xBdctLlewi+eVF+ayflEZm/eeS3Ypr+HJkfsLRzsJhR23LK9M2Hs8tO3UlI+/8bJqHnu5hY+97TLPbpXvHR7lP7ee5AtPH6V/ZIzG8gJ+7YZFrKwNMBgMaZ26ZJS3rKnlr3+4n1OdgzTO82zBpXgyfZ473EFBblZSGunfta6ezoEgzx3pmPf3TrTmrkH+duN+bv7bLXz68YMsKMnj/bcs5rdfv4TLFhTjy8DzDCJvWVMLwOa9rUmu5NU8OXJ/9nA7NyypSMpJvNtWVlGSn8N3djbzhpXV8/7+8eacY/uJLj7x2F72tfRiBqvrSrh1eRX187QSSSSVNZQXsHpBMY/vbeW3Xr8k2eVc4LlwP31+kBOdg/z6TU1JeX9/dhb3XtfIl358lHdf38mNS1PrJEusBkbGeOzlFr6x9SR7W3rJz8niluVV3LCknNKC3GSXJ5JSNqyt5R+fPERb7zDVKdLoznPTMuPTIYmcb5/Oh25fTmN5AR955BWGgqGk1TEbu5t7+Ogju7nub37ERx7ZzVjI8f/efjl/tmEVG9bWKthFpjA+NfPEvtQ5seq5kfuzh9upLc5jaVVR0mrIz83ik++4nPv+bRuf+dEh/s9bL0taLbFo6xvmsZfP8siLzext6SUny7iivpRrF5fTEJ160Tp1kYtbUVPE4spCfvBKC+++YVGyywE8Fu6hcGRn5JtX1yR9E9FNSyu597oGvvzsMZZVFfGuaxuSWs9k/SNjbN7TyvdeOsPzRzoIO1hbX8ydV9axrqGUvJzU2m0nksrMjHetb+BTjx9gW4qsefdUuG8/cZ6eoVFel8QpmYk+9rbVNHcN8afffYWj7f386YZVSV0mePr8IFsOtPHUgTa2Hu0kGApTVpDDrSuquLKhlOpAaswViqSj37ipif/46Qn+dtMB/uf3bkr6ANMz4R4KO/76h/uoDvi5/bKapNUxef37m1fXsqiigH/9yTF+erST37ttKW9ZU4svwSHvnKOlZ5hdp7p48WQ3zx5u53BbPwBLKgt5z42LyPIZjeVqtSsSD/m5WXz4Tcv5s+/u5vE9rdxx+YKk1uOZcP/PrSfZc6aXz913VUp1HMzyGX9111qubizjs08d5ne/+SIN5fm8YWUsqp5oAAAJPUlEQVQ1r1tWydr6EhaU5M0pYHuHRznRMcDxjgFOdAxyoLWXF091ca53BIC8HB/1pfm87fIFrKwN6OLSIgnyjqsX8uVnj/PpzQe5/bKapJ6rMufc9AeZbQD+GcgCvuyc++Sk5/3A14FrgE7gbufciUu95vr1692OHTtmWfartfUNc/vf/5h1jaV8/b3XxRSUF9thmkhh59hzpoddp7o5dX6QodHISprC3Czqy/IpLcilND+HkvwcSgtyyM7y4VxkFO6I/HbSNzxK92D0ayhIR3+Q8wPBV71PeWEuDWX5NJYX0FBewIKSfO0aFYmT+66/9NXWnj7Qxm9+bTuvX1HFF3/1agrjPNg0s53OufXTHTftu5pZFvB54E1AM7DdzB51zu2bcNj7gC7n3DIzuwf4FHD37Eqfmb0tkaV7I2NhPnHnmpSeYvCZccXCUq5YWMpYKExz1xDn+oZp6x2hd3iU9r4RTnVGQn8wOEY4DOMfxyxy0iYv20dBbjb5uVkU5GaxtKqI65pyqSjKpaLIT0VhrmfbHoikgzesquZT77icjz6ym/v+bSsPvmd9Ui7yHsuPlOuAI865YwBm9m3gLmBiuN8F/GX09neAz5mZuVh+LZih0VCYY+0DHGjt5YWjnTy84zRlBbn80z3rWJLE5Y8zlZ3lo6mycN6uFCUi8+fuaxspL/TzgYde5OZPbuG2lVVsWLuApooCFpTmUxPwJ7yxXizhXg+cnnC/Gbj+Ysc458bMrAeoAOLeYOULTx/lMz86BEBulo/7rm/kT968ipKCnHi/lYjIrL1pdQ2bPnQL/7X9NN976Qw/2t924bm/+KXV/ObNixP6/rGE+1TzHJNH5LEcg5ndD9wfvdtvZgdjeP9L+pvo1yxUkoAfPilAnyv9ePWzefJz/WocXuO9n4L3zv7bY9olFUu4NwMTd+AsBFouckyzmWUDJcD5yS/knHsQeDCWwhLNzHbEclIi3ehzpR+vfjavfq50Ecukz3ZguZktNrNc4B7g0UnHPAr8evT2O4EtiZhvFxGR2Ew7co/OoX8A2ExkKeRXnXN7zewBYIdz7lHgK8A3zOwIkRH7PYksWkRELi2mBZjOuY3AxkmPfXzC7WHgV+JbWsKlxPRQAuhzpR+vfjavfq60ENMmJhERSS/a7SIi4kEZF+5mtsHMDprZETP7SLLriRcz+6qZtZnZnmTXEk9m1mBmT5vZfjPba2YfSnZN8WBmeWb2MzN7Ofq5PpHsmuLJzLLMbJeZ/SDZtWSqjAr3Ca0U7gBWA/ea2erkVhU3XwM2JLuIBBgD/tg5dxlwA/D7HvkzGwF+wTl3JbAO2GBmNyS5pnj6ELA/2UVksowKdya0UnDOBYHxVgppzzn3E6bYW5DunHNnnXMvRm/3EQmM+uRWNXcuoj96Nyf65YkTYGa2EHgb8OVk15LJMi3cp2qlkPZBkSnMrAm4CtiW3EriIzp18RLQBjzpnPPE5wL+CfhTIJzsQjJZpoV7TG0SJPWYWRHwXeAPnXO9ya4nHpxzIefcOiK7vq8zs7XJrmmuzOwXgTbn3M5k15LpMi3cY2mlICnGzHKIBPs3nXOPJLueeHPOdQPP4I1zJjcDd5rZCSLTnr9gZv+Z3JIyU6aFeyytFCSFWKRB/1eA/c65f0x2PfFiZlVmVhq9nQ+8ETiQ3Krmzjn3UefcQudcE5F/X1ucc+9OclkZKaPC3Tk3Boy3UtgPPOyc25vcquLDzL4FvACsNLNmM3tfsmuKk5uBXyMyAnwp+vXWZBcVBwuAp83sFSKDjiedc1o2KHGjHaoiIh6UUSN3EZFMoXAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUrjLvDGzUHSd+t5oq9s/MjNf9Ln1ZvbZS3xvk5ndN3/Vvua9h6J9YFKCmd0dbVuttfEyJYW7zKch59w659wa4E3AW4G/AHDO7XDOffAS39sEJCXco45G+8DELNpiOiGcc/8FvD9Rry/pT+EuSeGcawPuBz5gEbeNj0LN7NYJu1F3mVkA+CRwS/SxD0dH08+a2YvRr5ui33ubmT1jZt8xswNm9s1oCwPM7Foz+2n0t4afmVkg2pnx78xsu5m9Yma/HUv9ZvY9M9sZ/S3k/gmP95vZA2a2DbjxIu+5Jnr7peh7Lo9+77snPP6v4z8coheYeTH6Gk/F8Y9BvMw5py99zcsX0D/FY11ADXAb8IPoY48BN0dvFxG5kPuF56OPFwB50dvLgR3R27cBPUSawvmItGR4HZALHAOujR5XHH3d+4E/jz7mB3YAiyfV2ATsmfRYefS/+cAeoCJ63wHvit6+2Hv+C/CrE47JBy6Lfu6c6ONfAN4DVBFpU7144vtO+Kw/mOr/tb70lT3DnwUi8TZVG+bngX80s28CjzjnmqOD74lygM+Z2TogBKyY8NzPnHPNANF58iYigX/WObcdwEXbBpvZm4ErzOyd0e8tIfLD4vg0dX/QzN4evd0Q/Z7OaC3fjT6+8iLv+QLwsehFLR5xzh02s9uBa4Dt0c+aT6TP+w3AT5xzx6Ov4bkLskhiKNwlacxsCZEwbCMycgXAOfdJM/shkTn5rWb2xim+/cPAOeBKIiP04QnPjUy4HSLy99yYune/AX/gnNs8g7pvI9LF8Ubn3KCZPQPkRZ8eds6FJrz2a97TOfdQdNrmbcBmM3t/9Nj/cM59dNJ73XmRukUuSXPukhRmVgV8Cficc85Nem6pc263c+5TRKZJVgF9QGDCYSVERsVhIl0jpzt5eQCoM7Nro+8RMLNsIh1CfzfaMx4zW2FmhdO8VgnQFQ32VURG1zG/Z/SH2jHn3GeJtJy+AngKeKeZVUePLTezRUSmlW41s8Xjj09TmwigkbvMr/zoNEkOkQtffwOYqkf7H5rZG4iMuvcBm4hcsm3MzF4mcjHwLwDfNbNfAZ4GBi71xs65oJndDfxLtH/6EJHR95eJTNu8GD3x2g788jSf43Hgd6Lteg8CW2f4nncD7zazUaAVeMA5d97M/hx4Iro8dBT4fefc1ugJ20eij7cRWWkkcklq+SsyDYtcu/UHzrmUugxedHrofzvnfjHZtUjq0bSMyPRCQEmqbWIi8ttLV7JrkdSkkbuIiAdp5C4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh70/wGDqFB5Ho3x2wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(cfhtls['cfhtls_ra'], cfhtls['cfhtls_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, cfhtls, \"cfhtls_ra\", \"cfhtls_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add DECaLS" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl0nHd97/H3d0b7vlurLe+OncUmihNIQ5ywNAmQwC2QBCilBdJym9IWLvfAhcuS254D7TltWVtSApStISGbk5gkJGQhJE7sxI5j2ZatyIv2fd+l+d0/ZmQURbZG1oxm9OjzOkeHmWeeeZ7vEPkzP/2e3+/3mHMOERHxFl+sCxARkchTuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPSojViQsKClxlZWWsTi8isiS99NJLHc65wrn2i1m4V1ZWsnfv3lidXkRkSTKzk+Hsp24ZEREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD4rZDNWl4BcvnJp1+4cuXbnIlYiIzI9a7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBCncREQ+aM9zN7Idm1mZmB8/wupnZt8ys1swOmNmbIl+miIjMRzgt9x8D15zl9WuB9aGfW4B/X3hZIiKyEHOGu3PuGaDrLLvcAPzEBe0GcsysJFIFiojI/EWiz70MqJ/2vCG07Q3M7BYz22tme9vb2yNwahERmU0kwt1m2eZm29E5d7tzrso5V1VYWBiBU4uIyGwiEe4NQMW05+VAUwSOKyIi5ygS4b4T+Gho1MxlQK9zrjkCxxURkXOUMNcOZvbfwA6gwMwagK8AiQDOuf8AdgHXAbXAEPDn0SpWRETCM2e4O+dunuN1B/x1xCoSEZEFmzPcl4tfvHAq1iWIiESMlh8QEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPCiscDeza8ysxsxqzezzs7y+0syeNLN9ZnbAzK6LfKkiIhKuOcPdzPzAd4Frgc3AzWa2ecZuXwLucs5tA24CvhfpQkVEJHzhtNy3A7XOuTrn3BhwJ3DDjH0ckBV6nA00Ra5EERGZr4Qw9ikD6qc9bwAunbHPV4HHzOxvgHTg7RGpTkREzkk4LXebZZub8fxm4MfOuXLgOuCnZvaGY5vZLWa218z2tre3z79aEREJSzjh3gBUTHtezhu7XT4O3AXgnHseSAEKZh7IOXe7c67KOVdVWFh4bhWLiMicwgn3PcB6M1ttZkkEL5junLHPKeBtAGZ2HsFwV9NcRCRG5gx359wEcCvwKHCY4KiYajO7zcyuD+32WeCTZvYK8N/Ax5xzM7tuRERkkYRzQRXn3C5g14xtX572+BBweWRLExGRc6UZqiIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIepHAXEfEghbuIiAeFdQ/V5Wp8MkBd+yBH2/pZkZnC9tV5sS5JRCQsCvczGBmf5JtPHKN3eByA1EQ/VZW5+MxiXJmIyNzULXMGp7qG6B0e5/qLSnnftjKGxydp6R2JdVkiImFRy/0M6ruHMGBrRQ6jEwEA6toHKM1JjW1hIiJhUMv9DBq6hinMTCYl0U92aiL56UnUdQzGuiwRkbAo3GfhnKO+e4iK3LTT29YUZnC8Y5DJgIthZSIi4VG4z6J7aJyhsUnK8/7QBbOmMJ3RiQDNvcMxrExEJDwK91nUdw0BvK7lvrogHYC6dnXNiEj8U7jPor57iES/sSIr5fS2rJRECjOSqesYiGFlIiLhUbjPoqF7mNKcVPy+149pX1OYzonOIcYnAzGqTEQkPGGFu5ldY2Y1ZlZrZp8/wz4fNLNDZlZtZr+IbJmLZyIQoKln+HVdMlNWF6QzNhHgSHN/DCoTEQnfnOFuZn7gu8C1wGbgZjPbPGOf9cAXgMudc1uAv4tCrYuipXeEiYCjIu+N4V4U6qZR14yIxLtwWu7bgVrnXJ1zbgy4E7hhxj6fBL7rnOsGcM61RbbMxdPQHRwNU577xslKeWlJAJzsHFrUmkRE5iuccC8D6qc9bwhtm24DsMHMfm9mu83smkgVuNjaB0ZJTvCRk5r4hteSEnxkpyZyQpOZRCTOhbP8wGwrZc2cyZMArAd2AOXA78zsfOdcz+sOZHYLcAvAypUr513sYugZHCM3LQk7wwJheelJnOhUuItIfAun5d4AVEx7Xg40zbLPA865cefccaCGYNi/jnPududclXOuqrCw8FxrjqruoXFy0t7Yap9SkJGkbhkRiXvhhPseYL2ZrTazJOAmYOeMfe4HrgIwswKC3TR1kSx0MTjn6B4KttzPJD89mc7BMfpGxhexMhGR+Zkz3J1zE8CtwKPAYeAu51y1md1mZteHdnsU6DSzQ8CTwOecc53RKjpaRsYDjE4EyD1Lyz0/I3RRtUOtdxGJX2Et+euc2wXsmrHty9MeO+AzoZ8lq3toDICcOVruAMc7B7mgPHtR6hIRmS/NUJ2mJxTuZ+uWyUufarnroqqIxC+F+zTdQ8F+9LN1yyQl+CjOSuG4RsyISBxTuE/TPTRGUoKP1CT/WferLEjTiBkRiWsK92m6h8bJTUs84xj3KZX56ZrIJCJxTeE+Tc8cwyCnVBakazikiMQ1hfs03UNjZ53ANKUyP7iomIZDiki8UriHDI9NMjIeCKvlvio/eFcmLUMgIvFK4R7SMzz3GPcpq0Itd/W7i0i8UriHdA/OPQxySlpSAkWZyZzsUreMiMQnhXvIVMs9nG4ZCK733tQzHM2SRETOmcI9pHtwjCS/j7Q5xrhPKc1JpVHhLiJxSuEeMrXU71xj3KeU5abS3DNCIDBzaXsRkdhTuIeEO8Z9SllOKmOTAToGRqNYlYjIuVG4h/QMj5MdxsXUKWU5wXusqmtGROKRwh0YGZ9kaGyS7Fnum3ompQp3EYljCnegrS/YtZKVMo+We24w3DViRkTikcIdaOkbASArJax7l4T2TSQzOYHGboW7iMQfhTvTwn0e3TIQbL039oxEoyQRkQVRuAOtvVMt9/mFu8a6i0i8UrgTbLkn+o2UxPn931GWo1mqIhKfFO5Aa98IWSnhT2CaUpabSu/wOAOjE1GqTETk3CjcCYX7PPvbYdpwSF1UFZE4o3An2C0znzHuU6YmMqlrRkTizbIPd+ccrX2j8xoGOWUq3BsU7iISZ5Z9uHcPjTM2ETinbpmizGQS/aaWu4jEnWUf7i2hYZCZ8xwGCeDzGcXZKepzF5G4s+zDvTU0gSn7HLplQMMhRSQ+LftwP9fZqVM0kUlE4pHCvXcEs3PrlgEoz0mltW+E8clAhCsTETl3YfVFmNk1wDcBP/AD59zXz7Df+4G7gUucc3sjVmUUtfWPkJ+ejN8X/gSmX7xw6vTj+u5hAi74JVGRlxaNEkVE5m3OlruZ+YHvAtcCm4GbzWzzLPtlAp8GXoh0kdHU0jtCcXbyOb8/J3SDD/W7i0g8CadbZjtQ65yrc86NAXcCN8yy3/8D/glYUssktvSNUpyVcs7vz0kN3ppP/e4iEk/CCfcyoH7a84bQttPMbBtQ4Zx76GwHMrNbzGyvme1tb2+fd7HR0No3woqFhHuo5a7hkCIST8IJ99k6o93pF818wL8Cn53rQM65251zVc65qsLCwvCrjJLRiUm6BscWFO6Jfh/pyQk09SrcRSR+hBPuDUDFtOflQNO055nA+cBTZnYCuAzYaWZVkSoyWqZur7eQbhmAnNREGtRyF5E4Ek647wHWm9lqM0sCbgJ2Tr3onOt1zhU45yqdc5XAbuD6pTBaZmqM+4rsBYZ7WqIuqIpIXJkz3J1zE8CtwKPAYeAu51y1md1mZtdHu8Bomlp6IBIt98aeYZxzc+8sIrIIwhrn7pzbBeyase3LZ9h3x8LLWhxTSw8sONzTkhgZD9A9NE5eelIkShMRWZBlPUO1tW+ElEQfWanntq7MFI2YEZF4s6zDfWqM+3xvrzdTTprGuotIfFnW4d7au7Ax7lNyQouOKdxFJF4s63Bv6RuheIEjZQDSkvykJvo1YkZE4sbCOpuXMOccLQucnTrFzCjN0U07RJa66YsCTvnQpStjUMnCLdtw7wndXi8S4Q5QlpumWaoiS8RsIe41yzbcWyI0DHJKWU4K1Y29ETmWiETOcgjy2SjcF7Dc73RlOal0Do4xPDZJapI/IscUkfC09Y/wSn0vr9T3UNs2wInOQdr6R/EZjE0EKMtJZVNJFueVZJGRvDxib3l8ylm0hmanRq5bJhWApt5h1hZmROSYIjK7tr4Rdh/v4vnXOnmhrpO6jkEAfAb56cnkZySxrigDHIxPBjjeMcjhln5+fbCZD1xcwXklWTH+BNG3fMM9tGhYUWZkwr00Oxjujd0Kd5FICwQcBxp7eay6hd8cauVY2wAAyQk+Vhekc+35xazMS6MkO5WkhDcOAnTO0dw7wn37Gvnp7pO8dX0B79xSjG+Bc1zi2bIN95a+EQoykmb9RTgXUy13rQ4pEhljEwFeON7Jd35by+HmPvpGJvAZp8N8dUE6pTmpYQV0cERbKre8dQ0Pv9rMM8c6SEn0s2Nj0SJ8kthYtuG+0Jt0zFSSnUqi3zjVNRSxY4osNz/6/XGOtg5wqKmXmtZ+RsYDJPqNDSsy2VySxabirAVd00r0+7jholJGxid5/HAr64oyKM/15r2Pl224B++dGrlw9/uMirw0TnYORuyYIstBx8AoTxxu5dHqVp452s5EwJGW5GdLaTabS7JYV5RBoj9y8y3NjBsuKuNk5xB37a3n1qvWR+wv+HiybMO9tW+EiypyInrMyvx0TnSq5S4yl1OdQzxa3cJjh1rYe7Ib56A8N5VLV+exuTSblXlp+H3R6w9PTfLz/ovLuePZ4zx+uJXrLiiJ2rliZVmG++jEJJ2DYxEb4z5lZV4au+s6cc4teDEyES8Znwywv76Hp2vaefxwK0da+gEoyU7hqo1FbCnNisgifvOxtjCDbRU5vHC8kx0bCknz2BBJb32aMJ2+vV6ExrhPqcxPY2hskvaB0YiNwhFZqhq6h3jmaAdPH23judpO+keDF0SrVuXxpXedx8h4IOb3P7hiQyH76nvYfbyLqzd56+Lqsgz3qZt0RPKCKsCqgnQg+Cenwl2Wm+GxSXYf7+SZo+08fbSduvbg9afS7BQ2FmeyYUUmawszTl8QTYuD+9oUZ6WwYUUGz9d1csX6goj27cfasgz3P8xOjWwAV+YHw/1E5xBVlXkRPbZIvHHOcaxtgKdr2nnmWDsvHO9ibCJAgs9YXZDOdReUsKEog8LM5LjuprxifSF3PHuc/fU9XOKhf7fLMtynJjBFus+9LCcVv880YkY8q3donGdrg10tjxxsoW9kAoCizGQuWZXL+hWZrC5IX1It4DUF6ZRmp/DssQ6qVuXG9RfRfCzTcB8hOcFHdugmG5GSlOCjNCdFI2bEM5xzVDf18VRNG0/WtLPvVDcBB1kpCazMS2P9ikzWF2WcvhvZUmRmvGVtAb96uYH67mFW5nlj3PuyDPeW0B2YovENXZmfrpa7LGn9I+P8vraDJ4+082RNG239wb90y3JSuXJDERtWBCf+RHOo4mLbXJpFwn7j1YYehftS1tgzTFlOalSOvSo/jZ37m6JybJFoaesf4dHqVh492MJzr3UQcJCS6GN9USZvXV/I+hUZZKZE9i/deJKS6Gf9ikxebezl2gtKPLHmzLIM9/quIXZsLIzKsSvz0+kbmaBnaGxJ/6kq3tfSO8LDrzbzyMHm0xOJ1hSm80frCtlYnBn1iUTx5sKybA4393Gqc4jK0Mi3pWzZhfvI+CRt/aNURGk9iVXTRsxsVbhLnBkam+DR6hbufbmRZ4914AgOLLh6YxHnl2VTFOcjW6JpU3EmCT7j1cZehftS1NAdvNhZEaV+tVX5weOe7Bxka4SXNxA5F5MBxz8+fJj99d0cbOxjbDJAbloiV20qYmt5DgWZkZ3Mt1QlJ/rZWJzJwcZe3nXh0u+aWXbhXt8VXJK3Ii86fe5TF2NOdGjEjMTO1CiXBw80sXN/E829wRFiF5Zns21lLqvy05Z8eEXDBWXZVDf1caJjkDVL/L4Myy/cp1ruUeqWSUn0U5KdohEzsuiccxxu7uehA008/GozJzuHSPAZb91QyJUbCjmvJGtJjT+PhU3FWST4jMPNfQr3paa+a4jkBB+FUfxTdFV+GscV7rIInHMcbR0IBvqBZuo6BvFZcFGs/7GtjM2lWaQlLbt/5ucsKcHHmsJ0aloHeFesi1mgsP6rm9k1wDcBP/AD59zXZ7z+GeATwATQDvyFc+5khGuNiPquYcpzU6N60WjDikzueamBQMDhW0ajDWTx1Lb189CBZh460Ext2wA+g8vW5POJK9YwMDqxbG4CHQ3rizJ5+NVmugbHYr6w2ULM+RtgZn7gu8A7gAZgj5ntdM4dmrbbPqDKOTdkZp8C/gm4MRoFL1R991DULqZOOa8ki8GxSRq6h1mZ740JERJ7de0DPBwK9JrWfgyoLEjn+otK2VKadXocuoJ9YTauCIb70dZ+LluTH+tyzlk4vwXbgVrnXB2Amd0J3ACcDnfn3JPT9t8NfCSSRUZSfdcQ21ZGdxTLpuJMAA639CncZUFOdg7y0IFmfrb7JM29wQXvVuWn8Z4LS9hSlk2WhycWxUp+RhJ56UnLItzLgPppzxuAS8+y/8eBXy+kqGjpHR6nb2QiahdTp2wszsQMjjT388dbiqN6LvGetv4RHnylmZ37G3mloRcIjsJ61wUlnF+WHfE1keT1zIwNKzJ46WQ345OBWJdzzsIJ99k6jd2sO5p9BKgCrjzD67cAtwCsXLkyzBIjp74rumPcp6QlJVCZn86Rlr6onke8o39knEerW3lg/x8mF5Vmp3Dt+cVcUJat2c6LbMOKTHbXdXFyCS8CGE64NwAV056XA29YPMXM3g58EbjSOTc624Gcc7cDtwNUVVXN+gURTQ1RHgY53abiTA43K9zlzMYmAjxV08YD+5t4/HAroxMBKvJS2bGxkIvKcyiK8JLUEr41BRkk+Iyjrf2xLuWchRPue4D1ZrYaaARuAj40fQcz2wZ8H7jGOdcW8SojJNoTmKbbVJzFI9UtDI5OkK4LXBISCDj2nOji/v1N7Hq1md7hcdKS/GxbmcPW8hwq8tKW7fT/eJKU4GN1QTo1Xg5359yEmd0KPEpwKOQPnXPVZnYbsNc5txP4ZyADuDv0i3nKOXd9FOs+J/XdQ2QmJyxKn+Wmkkycg6Ot/WxbmRv180l8O9raz70vN7JzfyNNvSOkJfl55+YVZKcmsa4oY1kt0LVUbAiNmmnoHqJ8Ef7aj7SwmpTOuV3Arhnbvjzt8dsjXFdU1HcNUb5ILaPNJVkAHGlRuC9Xbf0j7NzfxH37Gqlu6sNnwTHUH1xfyOaSLJISNFs0nk2F+1M17XzkslWxLmfellV/QX33MGsWabW3spxUMpITOKJ+92VleGySxw6FVl2s7WAy4LiwPJt3X1jCheU5GoO+hBRkJJGblqhwj3fOORq6h7hyQ3TWcZ/J5zM2FmdyuHnp9tlJeCYDjt11ndz7ciOPHGxmcGySnNRErlhXwNYKXRhdqoJDIjN57rUORicmSU7wx7qkeVk24d7WP8rIeGBRb6F1XkkmD+xvwjmni2QeVNs2wG0PVrO/voe+kQmSE3xcUJbN1pU5VOana9VFD9i4IpMXjnex90Q3l68riHU587Jswv1IS7AFvTE0e3QxbCrO4mcjp2jsGV6SF2TkjYbHJnn41WZ+uecUe05047Ng3+x1FTladdGD1hRmkOT38VRNm8I9Xk31fW9axHCfulnHSye7Fe5LXHVTL7c9eIhXGnoYGQ9QkJHENVuKedOqXPWje1hSgo/tq/N4qqadLy6xZSKXzW/lkZZ+SrJTFnWm33klWWSlJPD8a53csLVs0c4rkdE/Ms7OV5r45Z56DjT0kuAzzi/Lpqoyl9X56epqWyZ2bCzkHx4+TGPPMGU50Z8jEynLJtwPN/ctaqsdwO8zLl2Tz/N1nYt6Xjl3zjn21fdw54uneOhAM0Njk2wqzuSr79nMZABSk5bWRTVZuKlwf6qmjQ9funRGzSyLcB+bCPBa+wBXbSqK2jl+8cKpN2z70KUruWxNPr851EpTzzClS+hbf7npGRrjvn2N3PliPTWt/ST5g7eku6QyL+rr/0t8W1uYQVlOKk/XtCvc401dxwDjk27RW+4Abw4tGfr8a538ycXli35+OTPngjeO3nOii+qmPiYCjvLcVN67tYyLyrNJTlQrXYJDIndsLOT+fY2MTQSWzOSzZRHuR0JjzTcVZy36uTcVZ5KblsjuOoV7vGjvH+Welxv45Z56jncMkpLoo6oyl0sq8yjJ1l9X8kY7Nhbx8xdOsfdkF29ZuzRGzSyLcD/c0kei31hTuDizU6fz+YxLV6vfPdYmA47fHWvnzhfrefxwKxMBx/bKPC5elcv5pdlLpjUmsfGWtfkk+X08XdOucI8nR5r7WVeUGbMxyG9em88j1S3Ud0X/Fn/yes29w9y1p4G79tbT2DNMWpKfy9bkU1WZS1GmZo5KeNKTE7hkdS5P1bTzhevOi3U5YVke4d7Sx+Ux/LadulXX83WdCvdFMDEZ4LdH2rhzTz1P1bQRcPBH6wq4Yn0Bm0uySNBEIzkHOzYU8Y+7Di+ZwRGeD/euwTFa+0bZVLL4F1OnbFiRQWFmMk8cbuWDVRVzv0HOSW1bP3fvbeDefY2094+SmZLAW9cXUlWZt6TvYi/xYcfGQv5x12GePtrOzdsX/05y8+X5cJ+61V0sLqZOMTOuv6iUnzx/gq7BMQVNBPWNjPPgK03cvbeB/fU9+H3GVRuLKM5KYWNxptZJl4hZVxQcEvmbQ60K93hwqGnxlx2YzQeqyrnj2eM8sL+RP798dUxrWeoCAcfzdZ3cvbeehw40MxFwFGUmc+35xWytyCEzRTeQlsgzM959UQl3/O74kmikeT7cf1/bwar8tJgvu7qpOIsLyrK5e2+Dwv0cnewc5J6XG7nnpQYae4bJTEngTatyqVqVS1mOJhpJ9L1vWxnff7qOhw808advrox1OWfl6XAfGZ/k+bpOboyTfu4PVJXz5QeqqW7qZUtpdqzLWRI6BkZ5+EAz9+1rZH99DwasLcrgxqoKNpdqFUZZXJuKs9hUnMl9+xoV7rH04vEuRsYD7NgYvWUH5uP6i0r5h4cOc/feBrZcr3A/k6GxCR6rbuX+/Y387ljwbkabijO5ZksxF5ZnL+ribyIzvXdbGV//9RFOdg6yKn/x586Ey9Ph/lRNO0kJvtNDEWMtJy2Jd2xZwf37G/nMOzeQpb7h08YnAzx7rIP79zfyWHUrw+OTZKcmcvna4N2MirM1Jl3iw/UXlfKNR47wwP4mPv229bEu54y8He5H27hsTX5creT3qSvXsuvVZv7tN8f48ns2x7qcmBqbCPDcax08crCFxw610jU4RnZqIu/dVkZGcgKr8tN0NyOJO6U5qVy6Oo/79zXyN1evi9trPZ4N9/quIeraB/lInK3idn5ZNjdvX8l/PX+Cm7ZXsGFFbEfxLLaR8Ul+d6yDXx9s5vFDrfSNTJCU4GNTcSbXnV/ChhUZmmQkce8DF1fw2btf4cmaNq7etCLW5czKs+H+VE0bEJx4ECtnWgb4c+/cyMMHmvnqzmp+/olL4/abP1K6B8d4+mg7dzx7nJrWfsYmAqQk+thcksWW0mzWFWXowqgsKddvLeVfHz/Kt56o5aqNRXH5b9jD4d7Oyrw0VhfE3wWP3PQk/tc7N/B/H6jmp7tP8tE4v+o+X845alr7+e2RNn57uI2XT3UTcJCe5Oei8my2lGazpjCdBJ8CXZamRL+PT+1YyxfvO8iztR1csT52jcgz8WS4n+oc4umj7XzsLZVx+Y0K8KFLV/FkTTtf2VlNZkoC79u2tJcD7h0aZ/fxTn53rJ0nj7TT2DMMQGlOClduKGJTcSZluanqQxfPeP/F5Xz7iVq+/UStwn2xfPOJY/h9xiffuibWpZyR32d878Nv4i9+vIfP3vUKPrMldZ/V3uFx9p3q5vm6Tp6r7eRgUy/OQVqSn8vXFbB9dR4bV2SSlaoRQeJNyQl+/vLKNXztwUP8vraDy9fF11LAngv319oHuG9fA39x+WpWxHhW6lxSEv3850er+NiPXuRv79zPY9WtfOU9m2M+m3amkfFJatsGeKWhh32nethf30Nt2wAAiX6jLCeVqzcWsaYwg4q8VHW3yLJx8/aV/Oj3J/jc3a/w8KevIDeOliTwXLj/2+PHSEn081c71sa6lLCkJyfw809cxu3PvMa3flvL00fbee+2Uj5YVcEFZdmL1q3knKNjYIyG7iHqu4d5rW2Ao6391LT2c6JjkIAL7peW5GdlXhpvP28FK/PSWJmXphtdyLKVkujnOx/axp/8+3N87lev8J8frYqbrmBPhftzr3Xw0IEmPnXlWgoykmNdzqxmG0EDcOvV67nughK+9cQx7t7bwM92n2JFVjIXr8rlgrIcVualUZ6bSnZqIunJCaQn+0lJ8OObZdXD8ckAg6MTDI5NMjg6wcDoRPD56CT9I+N0Do7R0T9Kx8AonYNjtPSO0NA9zPD45OljGJCXnsSKrBR2bCyiKDOZ8tw0ctMS4+aXVyQeXFiew/+57jy+9uAh/v3p1/ifO9bFuiQgzHA3s2uAbwJ+4AfOua/PeD0Z+AlwMdAJ3OicOxHZUs/umaPtfPIne1lbmMFfvnVptNqnmwr97avzuaC7uGDRAAAInklEQVQsh4ONvQRwvHyqm12vtsz6HjNITvARcMGW92TAnW5hzyXRb2QkJ5CRnEBmSiIXr8olJy2RvLQkctKTyEtLUotcJEwfe0sle09080+P1NDYPcyX37OZ5ITYTp6cM9zNzA98F3gH0ADsMbOdzrlD03b7ONDtnFtnZjcB3wBujEbBM42MT3LPyw18bech1hZl8LOPbyc7bWlfxEtN8nPJ6jwALl2dz8j4JN1DY/QMjTMyPsnoRICxiQCjEwHGJwOYgc8MMzAMv89ITvCRnOAjKcFHcoL/9OOURD/pyf6Y/+KJeImZ8c2btlKRl8Z/PP0aBxt7+ft3bOCK9YUxu6dAOC337UCtc64OwMzuBG4Apof7DcBXQ49/BXzHzMw5F2Y7Mnz9I+McaxvgtbYBDjX3cf++RrqHxqlalcsdf3bJkg/22aQk+inJTqUkO/5v7SWyXCX4fXz+2k1sW5nDF+97lY/9aA9lOam87bwizivJYk1BOtlpiWSmJJKfnkRKYnQbWOGEexlQP+15A3DpmfZxzk2YWS+QD3REosjpfvL8Sf750Rog2LXwtk0r+OibV/HmtfnqCxaRmPvjLcVctbGI3xxq5c49p7jnpQYGxyZft89tN2yJ+uTFcMJ9tsSc2SIPZx/M7BbgltDTATOrCeP8Z1ULfH+hBwkqIApfRjHmtc/ktc8D3vtMXvs8fDgKx/yzb8Cfnfvbw1owK5xwbwCm3+2iHGg6wz4NZpYAZANdMw/knLsduD2cwhabme11zlXFuo5I8tpn8trnAe99Jq99nqUsnOEQe4D1ZrbazJKAm4CdM/bZyR++iN4P/DYa/e0iIhKeOVvuoT70W4FHCQ6F/KFzrtrMbgP2Oud2AncAPzWzWoIt9puiWbSIiJxdWOPcnXO7gF0ztn152uMR4AORLW3RxWV30QJ57TN57fOA9z6T1z7PkmXqPRER8R5NQRQR8SCFO8HlFcysxsxqzezzsa5noczsh2bWZmYHY11LJJhZhZk9aWaHzazazP421jUthJmlmNmLZvZK6PN8LdY1RYqZ+c1sn5k9FOtalrtlH+7Tlle4FtgM3GxmS/3O1T8Grol1ERE0AXzWOXcecBnw10v8v9EocLVz7iJgK3CNmV0W45oi5W+Bw7EuQhTuMG15BefcGDC1vMKS5Zx7hlnmGSxVzrlm59zLocf9BMNj6dzZZAYXNBB6mhj6WfIXv8ysHHgX8INY1yIKd5h9eYUlGxxeZ2aVwDbghdhWsjCh7ov9QBvwG+fckv48If8G/G8gEOtCROEOYS6dILFnZhnAPcDfOef6Yl3PQjjnJp1zWwnO+N5uZufHuqaFMLN3A23OuZdiXYsEKdzDW15BYszMEgkG+8+dc/fGup5Icc71AE+x9K+RXA5cb2YnCHZtXm1mP4ttScubwj285RUkhiy43OcdwGHn3L/Eup6FMrNCM8sJPU4F3g4ciW1VC+Oc+4Jzrtw5V0nw39BvnXMfiXFZy9qyD3fn3AQwtbzCYeAu51x1bKtaGDP7b+B5YKOZNZjZx2Nd0wJdDvwpwdbg/tDPdbEuagFKgCfN7ADBxsVvnHMaOigRpRmqIiIetOxb7iIiXqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4y6Ixs8nQGPXq0HK3nzEzX+i1KjP71lneW2lmH1q8at9w7uHQWjBxwcxuDC1RrfHxMiuFuyymYefcVufcFuAdwHXAVwCcc3udc58+y3srgZiEe8hrobVgwhZaTjoqnHO/BD4RrePL0qdwl5hwzrUBtwC3WtCOqVaomV05bSbqPjPLBL4OXBHa9veh1vTvzOzl0M9bQu/dYWZPmdmvzOyImf08tHwBZnaJmT0X+qvhRTPLDK3O+M9mtsfMDpjZX4ZTv5ndb2Yvhf4KuWXa9gEzu83MXgDefIZzbgk93h865/rQez8ybfv3p74cQjeTeTl0jCci+J9BvMw5px/9LMoPMDDLtm5gBbADeCi07UHg8tDjDII3cj/9emh7GpASerwe2Bt6vAPoJbgAnI/gMgx/BCQBdcAlof2yQse9BfhSaFsysBdYPaPGSuDgjG15of9NBQ4C+aHnDvhg6PGZzvlt4MPT9kkFzgt97sTQ9u8BHwUKCS5JvXr6ead91odm+/9aP/pJmOd3gUikzbbk8u+BfzGznwP3OucaQo3v6RKB75jZVmAS2DDttRedcw0AoX7ySoKB3+yc2wPgQksGm9k7gQvN7P2h92YT/LI4Pkfdnzaz94UeV4Te0xmq5Z7Q9o1nOOfzwBdDN7e41zl3zMzeBlwM7Al91lSCa71fBjzjnDseOoZnbsIi0aVwl5gxszUEw7CNYMsVAOfc183sYYJ98rvN7O2zvP3vgVbgIoIt9JFpr41OezxJ8PfcmH2dfgP+xjn36Dzq3kFwJcc3O+eGzOwpICX08ohzbnLasd9wTufcL0LdNu8CHjWzT4T2/S/n3BdmnOv6M9Qtclbqc5eYMLNC4D+A7zjn3IzX1jrnXnXOfYNgN8kmoB/InLZbNsFWcYDgipFzXbw8ApSa2SWhc2SaWQLB1UA/FVovHjPbYGbpcxwrG+gOBfsmgq3rsM8Z+lKrc859i+Dy0hcCTwDvN7Oi0L55ZraKYLfSlWa2emr7HLWJAGq5y+JKDXWTJBK86fVPgdnWZ/87M7uKYKv7EPBrgrdumzCzVwjeAPx7wD1m9gHgSWDwbCd2zo2Z2Y3At0NrqA8TbH3/gGC3zcuhC6/twHvn+ByPAH8VWrK3Btg9z3PeCHzEzMaBFuA251yXmX0JeCw0PHQc+Gvn3O7QBdt7Q9vbCI40EjkrLfkrMgcL3rf1IedcXN0KL9Q99L+cc++OdS0Sf9QtIzK3SSA73iYxEfzrpTvWtUh8UstdRMSD1HIXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREP+v/rVKbbVpOSEgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(decals['decals_ra'], decals['decals_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, decals, \"decals_ra\", \"decals_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add HSC-UDEEP" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl0nPV97/H3d2Y0o31fLMuWZRuvbAbMFsIWspCEC+1p0kBKe9Mm4SZt2qTpctLTNPfe9Nx7k7a3S5qkDYempElTAoSbkJQ1gIFgDLbBBq/g3bIta7F2aaRZfvePGcnClq2xPKOZeebzOkeHmUeP5vkOtj/6ze/5Pd/HnHOIiIi3+LJdgIiIpJ/CXUTEgxTuIiIepHAXEfEghbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHhQIFsHrq+vd21tbdk6vIhIXtq8eXO3c65hpv2yFu5tbW1s2rQpW4cXEclLZnYwlf00LSMi4kEKdxERD1K4i4h4kMJdRMSDFO4iIh6kcBcR8SCFu4iIByncRUQ8SOEuIuJBWbtCNZf88JVDp237+NWtWahERCQ9NHIXEfEghbuIiAcp3EVEPKig5tynm1sXEfEijdxFRDxI4S4i4kEKdxERD1K4i4h4kMJdRMSDUgp3M7vVzHab2R4z+9I03281s+fM7HUze8PMPpT+UkVEJFUzhruZ+YFvAR8EVgN3mdnqU3b7MvCgc+4y4E7g2+kuVEREUpfKyP0qYI9zbp9zbhx4ALjjlH0cUJl8XAUcTV+JIiJyrlK5iKkFODzleTtw9Sn7/A/gKTP7faAMeG9aqhMRkVlJZeRu02xzpzy/C7jfObcA+BDwfTM77bXN7B4z22Rmm7q6us69WhERSUkq4d4OLJzyfAGnT7t8EngQwDn3MlAM1J/6Qs65e51za51zaxsaGmZXsYiIzCiVcN8ILDOzxWYWJHHC9NFT9jkE3AJgZqtIhLuG5iIiWTJjuDvnosDngCeBnSRWxWw3s6+a2e3J3f4I+LSZbQX+A/iEc+7UqRsREZkjKXWFdM49Bjx2yravTHm8A7guvaWJiMhs6QpVEREPUriLiHiQwl1ExIMU7iIiHqRwFxHxIIW7iIgHKdxFRDxI4S4i4kEKdxERD1K4i4h4UEGH+2A4woObDjM8Fs12KSIiaVXQ4b6ve5gth/t4eV9PtksREUmrgg73gdEIAK/sP0E0Fs9yNSIi6aNwB4bHorxxpD/L1YiIpE9hh3s4Sl1ZkIaKEOv3dqMW9CLiFQUe7hEqS4p419I6jvaFOdgzku2SRETSorDDfTRCZXGAyxbWEAr42NLel+2SRETSomDD3TnHYDhKZUkRwYCP2rLg5By8iEi+K9hwHxmPEY07KouLACgLBrTeXUQ8o2DDfSCcGKVXliTDPeRneDyWzZJERNKmcMN9NDFKryxO3CO8LKSRu4h4R+GG+2kj9wBj0TgRXcwkIh5QuOGePHlakRy5lwcT/9XoXUS8oHDDPRyhLBQg4Ev8LygL+QE07y4inlC44T4anZxvh8S0DGjkLiLeULjhHo5MLoMEhbuIeEvhhvtoZPJkKiTWuYPCXUS8oSDDPRqLMzweo7Lk5LRMcZEPv5nm3EXEEwoy3AfHJta4nxy5mxllIT9DGrmLiAcUZLhPLIOcGu6gC5lExDsKM9zDyZH7lGkZUH8ZEfGOwgz35Mi96rSRu/rLiIg3FGa4hyMEfEZJ0P+O7ZqWERGvKMxwH41QURzAzN6xXf1lRMQrCjLcR8ZjkxctTaX+MiLiFQUZ7mPROMUB/2nb1V9GRLyiIMM9HIkRKjr9rasFgYh4RUGG+5lH7gp3EfGGggz3M47cNecuIh6RUrib2a1mttvM9pjZl86wz6+b2Q4z225mP0xvmekTd47xaJzQNCN39ZcREa84fcnIKczMD3wLeB/QDmw0s0edczum7LMM+DPgOudcr5k1Zqrg8zUejeNIBPmp1F9GRLwilZH7VcAe59w+59w48ABwxyn7fBr4lnOuF8A515neMtNnLJpYwz7dnDvoQiYR8YZUwr0FODzleXty21TLgeVm9pKZbTCzW9NVYLqFI4kpl+nm3EH9ZUTEG2aclgFsmm1umtdZBtwELABeNLOLnHN973ghs3uAewBaW1vPudh0GEuGe3HRmUbufk6MjM9lSSIiaZfKyL0dWDjl+QLg6DT7/NQ5F3HO7Qd2kwj7d3DO3eucW+ucW9vQ0DDbms9LODktEwqcYeSuaRkR8YBUwn0jsMzMFptZELgTePSUfX4C3AxgZvUkpmn2pbPQdDk5LTP9yL00mOgvMxbVihkRyV8zhrtzLgp8DngS2Ak86JzbbmZfNbPbk7s9CfSY2Q7gOeBPnHM9mSr6fJw8oTr9W5/oFDkY1uhdRPJXKnPuOOceAx47ZdtXpjx2wBeTXzltpjn3kuSJ1oHRCPXloTmrS0QknQruCtWJOffgGUbuE6GvkbuI5LOCC/exSIxQwIfPplsEBCXJcB8IR+ayLBGRtCq4cA9H42dcKQMnR+4Doxq5i0j+Krxwj8TOuFIGpoS7Ru4ikscKLtwT7X7PNnI/eUJVRCRfFV64R2JnXCkDEPT78JlG7iKS3wou3MORs8+5mxnFRX7NuYtIXiu4cB+Lnn3kDol5d43cRSSfFVy4z7RaBhLLITXnLiL5rKDCffIuTDOO3H0M6CImEcljBRXuY5FkX5lUpmU0cheRPFZY4Z7s9Hi2pZCQnJbRnLuI5LGCCvdwcuQ+87SMVsuISH4rqHBPdeReXORnNBIjEovPRVkiImlXUOGe6sh9ou2vOkOKSL4qrHBPjtxnWgp5snmY5t1FJD8VVLinulpGbX9FJN8VVLhP3D81lTl3UNtfEclfBRXuY9EYBhTNFO5BjdxFJL8VVLiHo3FCRWe+C9OEiZG95txFJF8VVLgnbrF39vl20Jy7iOS/ggr3mdr9TggGkj3dNecuInmqoMI9lXa/kOjpXllSpJG7iOStggr3cCQ+eRu9mVQWF2nOXUTyVkGF+1g0tTl3gMqSgNr+ikjeKqxw18hdRApEQYV7+FxG7sWacxeR/FUw4R6JxYnEHKFUR+4lAa2WEZG8VTDhPjyWCOpijdxFpAAUTLhPtO9NZZ07QGVJESPjMaLq6S4ieahgwn0oOXKfqZf7hMriAKCe7iKSnwom3CemZc5l5A5qQSAi+algwn1ocs499aWQoBYEIpKfCi7cg6lOy2jkLiJ5rGDCffgcR+4VyTl3XcgkIvmoYML95GqZcxu59yvcRSQPFUy4D48lbrEXTHHkXqVpGRHJYwUT7kNjEYr8ht939rswTSgL+vH7jL4RhbuI5J8CCvfU+8pAoqd7VUmRpmVEJC8VULhHU17jPkHhLiL5KqW0M7NbzWy3me0xsy+dZb+PmJkzs7XpKzE9hseiKTcNm6BwF5F8NWPamZkf+BbwQWA1cJeZrZ5mvwrgD4BX0l1kOgyFo+c0LQOJcNdSSBHJR6kMZa8C9jjn9jnnxoEHgDum2e8vgb8CwmmsL21mOy3Tp3AXkTyUStq1AIenPG9PbptkZpcBC51zPz/bC5nZPWa2ycw2dXV1nXOx50Nz7iJSSFJJu+nWDrrJb5r5gL8D/mimF3LO3eucW+ucW9vQ0JB6lWmQmHOf3bRMPO5m3llEJIekEu7twMIpzxcAR6c8rwAuAtaZ2QHgGuDRXDupOjiLkXt1aRFxB0Pjah4mIvkllbTbCCwzs8VmFgTuBB6d+KZzrt85V++ca3POtQEbgNudc5syUvEsjEfjjEfj53xCdbIFgS5kEpE8M2O4O+eiwOeAJ4GdwIPOue1m9lUzuz3TBabDufZyn1Cl/jIikqcCqezknHsMeOyUbV85w743nX9Z6TXZy30W69xB4S4i+acgrlCd7OU+i3XuoHAXkfxTEOF+rr3cJ1SXKtxFJD8VRLgPas5dRApMQYT75AnVc1znXlLkp8ivtr8ikn8KItyHwrMbuavtr4jkq8II97Fzu8XeVJVqHiYieaigwj3VW+xNVa2Ru4jkoYII9+GxKCVF/pRvsTeVpmVEJB8VRLgPjUUpC6V0vdZpEm1/x9NckYhIZhVIuMeoKJ59uKu3jIjkm9klXp4ZCkcoC537yVRIhPvgWJR43OGbxbSOiOS/H75yaNrtH7+6dY4rSV1BhPvwWIzy2U7LlAZxDgbDUaqSV6yKiHedKcjzTUGE+9BYlPnVxbP62YmrVPtGxxXuIh4yNBZl4/4TvHaoly2H+zh0YoSAzwhH4ly9uJYrFtVglr+f1gsm3Gc9clcLAhFPGIvG2Hywl/V7eli/t5sth/uIO/AZNFYU01ARwjnHaCTGI68fYU/XEL+ypoXic7yyPVcURLgPn+dqGVC4i+SjzoEwz+3u5HvrD7Knc4jxWByfQUt1CTcsa2BpYzkLa0rfcQ1M3Dmef6uLX+w4Tu/wOJ+5cWlejuALItwHx6KUn8dqGVC4i+SDeNyx7Wg/z+zs5Nldnbx5pB9I/Du+rLWa5U0VLK4vO+to3GfGzSsaKQ36+emWo+ztGuaCxvK5egtp4/lwn7jFXnlwdm9VbX9Fclv/SIQX3u5i3e4untzewdBYFAMW1pby/tVNrJxXSVNl6JxH35e31vCLnZ38ck+Xwj0XTXSEPN+RuzpDiuSGeNyx/egA63Z3su6tLl4/1EvcJf6tLmkoY3lTBcubKmZ9nm1Ckd/HtUtq+cXOTo4PhGmqnN2ijGzxfLhP9JUpCwWIxtw5/3xxkZ9gwKfmYSJZ1D8a4fm3uli3u5MX3uqieyhx1XhLdQk3Lm9kRVM5C2pL8aV5bvzqxXU8/1YXv9zTza9dviCtr51pBRPuFaEAvbMcfau/jMjc6xka4+kdx/nuS/vZ2zlMzDlKg36WNZZz84pGlqVhdD6TslCAy1tr2HSwl/evbqKiOH+WQ3s+3IenjNwV7iK57fhAmCe3d/D4mx28sr+HuIOa0iLetbSOC+dXZmR0PpMr22p5Zf8J9nQOcVlrzZwe+3x4PtwHz3POHdT2VySTDp8YSQT6tg5eO9iLAxrKQ9ywvIGL5lfRXFWc1aWI86qKCQV8HDwxonDPJZMnVM/j41t1aRFH+sLpKkmkoHUOhnl5bw8v7+1h/d4eDp0YAWB1cyW3rGriovmVNObQyUufGa21pRzqGcl2KefE8+E+cYu98wn3urIQb7T3p6skkYLSNzLOhn2JIF+/t4c9nUMAFBf5WFJfzm2XNLOiqYK68lCWKz2z1tpSnt3VSTgSy5srVr0f7lPm3GerviJIz/C4OkOKpGCiZ8v6vd2s39vDjqMDOKDIbyyuL+PWC+extKGc5uriOZ8/n61FdWU44NCJEZY3VWS7nJR4PtwH0zByry8PEYs7+kYj1JYF01WaiCfE4o7XD/WybncX6/d2s7W9n1jcEfT7uHxRNbesamRpQzktNSUEfPl5C4mFNSUYcLBH4Z4z+kcjVBYHZnWLvQn1yY+L3UNjCncREqPzF9/q4umdx1m3u4sTw+OTPVuuv6CeJQ3lLKorpcifn2F+qlCRn+aqYg6eGM52KSnzfLj3jYxTXXp+gTwZ7oNjefNbWyTd2ntHeGZnJz/YcJB93cPE4o6SIj8r5lXw/tVNLGusoCSYH/PRs9FaV8ZrB3uJxd15DRbnivfDfTQy2R9mthoqEr8cuobG0lGSSF6Ixx1b2/t4Zmcnv9h5nF0dgwDUlwe5dkkdK5srWFRblhdBlw6L6krZsK+HjoEwLdUl2S5nRt4P95HIZH+YczH1biwj44l5+6e2H+eONS1pq00k14yOx3jx7S6e2dnJM7s66R4aw0icUPzgRfNYOa+ShorcXdWSSYtqSwE42DOscM8F/aMRFib/UGarpMiP32xy5Y2IlwyEIzy7s5PHtx3j+be6CEfiVIQC3LCigbKgn+VNFZTOsquql1SXBqksDtDeO5rtUlLi+T+xvpFxqmcxcp/KzCgL+SfXzIvku4m+LU9s7+ClPd1EYo7K4gBrFlazurmKtvrSvF3ZkklNlcV0DubHBY2eDvd43NGfhjl3SLQv0Mhd8llHf6Jvy/fWH2B/9zCORN+WaxZnr29LvmmsCPHqgWHizuX8/ytPh/vQeHSyz/P5Kg8p3CX/HOge5qkdib4trx/qA6ChIsRNKxq4MAf6tuSb+ooQkVhi0FhznqvwMs3T4d6f7AKZnnAv4viAVstIbgtHYryy/wTrdnfy6Jaj9Awn+p7Pry7m/aubWN2cW31b8k1jReL/XdfgmMI9mybunnS+69zh5MjdOaeRjuSUwydGWPdWF+t2dbJ+bw+jkRihgI+2ujLetbSOFfMqdfFdmkysFOrKg2tevB3uo4lRS7rm3GNxx8BolKo0vJ7IbI1H42w6cILndnfy3O6uyUZctWVBLl1YzYqmCpY0lHnm6tBcUh4KUBr00zmY+5/ivR3uEyP3NM25Q+JCJoW7zLVj/aOs293F918+yJ6uIcajcfy+RCOuD1880VUxqE+Vc6ChPERXHqyY8Xa4J2+wkY4wngj37qGxvLwTuuSffV1DPLG9gye3dbA12XK6uqSINVNG56GAdy/3z1UNFSF2HBvIdhkzSinczexW4B8AP3Cfc+5rp3z/i8CngCjQBfyOc+5gmms9Z/0jiWmZtJxQLT4Z7iKZ4Jxj57FBnth2jCe2d/DW8cR0y4KaEj6wuomVzZU0VoQ0Os+yxooQmw7GJm8ElKtmDHcz8wPfAt4HtAMbzexR59yOKbu9Dqx1zo2Y2WeBvwI+lomCz0XfSITSoD8to5vJkXsezLVJ/nDO8UZ7P49v6+Dxbcc42DOCz+CqxbXcdkkzq5sr07IgQNJn6knVXJbKyP0qYI9zbh+AmT0A3AFMhrtz7rkp+28A7k5nkbPVNxpJy3w7QGnQj8+ge2g8La8nhSsed7x2qJfHt3XwxLYOjvSN4jNY2lDOr65pYdX8yvO6/4BkVsOU5ZC5LJW/QS3A4SnP24Grz7L/J4HHp/uGmd0D3APQ2tqaYomz1z8aoSpNox6fGWXBQM7/gUpuCkdivLy3h6d2dPD0jkRDrqDfx/XL6ic7LKp/S36oLi2iyG8534Yglb9N003wuWl3NLsbWAvcON33nXP3AvcCrF27dtrXSKf+kfSN3CEx7645d0lV/2iEdbs7eWr7cdbt7mR4PEYw4GNFUwXvWdnIynkVeXM/TjnJZ0Z9eSjnW4CnEu7twMIpzxcAR0/dyczeC/w5cKNzLifedd/oOEvq07eypTykcJez6+gP8/SODr738kH2dQ0Rd4m/N6vnV7G6uZKlDWUEtP487zVUhDh8YiTbZZxVKuG+EVhmZouBI8CdwMen7mBmlwHfAW51znWmvcpZ6htJT9OwCeWhQF5cvCBzxznH3q4hntx+nKd2HGfr4UT/lrqyIO++oJ7VzWrI5UUNFSHebO9ndDyWs3efmjHcnXNRM/sc8CSJpZDfdc5tN7OvApucc48Cfw2UAw8ll2kdcs7dnsG6Z+Rc4obW6bzgqDwUYPuxAbUgKHDxuOP1w32J+fPtx9nXnbiv5oKaksn+LQ1asuhp9eUhHHDwxDAr51Vmu5xppXQGxzn3GPDYKdu+MuXxe9Nc13kLR+KMR+NUl6RvGVl5cYDxaJzBsSiVxbpKtZCMRWOs39vDU9uP8/SO43QPjRHwGdcureOilipWNVem5XoKyQ/1ZYnlkAe68zzc81E6+8pMmLrWXeHufQPhCM/t6uSpHcdZt+udJ0RvWdnI8iZv3xBazqyuPDFo3N+du/Pu3g33NPaVmVCZfK1j/WGWNKgFgRd19Id5eudxntrewYZ9PURijvryILevmU/Q79cJUQGguMhPeSjA/u6hbJdyRp4P93TOudcl26Ye7BnhugvS9rKSZXu7hnhiW8dpJ0SvWVLH6uZKFuqEqEyjrjzIAY3c517/6MTIPX1z7pUlRQT9Pg72DKftNSU7jvSN8rOtR/ne+gMc609cjDJxQnSVerhICurLQuzP4SzwcLinf87dZ8bC2hIO9uTub2s5s86BMI9v6+BnW4+y6WAvkAj0D1/czEUtVTohKuekrjzI5kO9DI1Fc7JdRO5VlCYn78KU3n+wbXVlHMjh39byTl2DYzyxvYPv/nI/B5I3hW6sCPG+1U1c0lJFXXko2yVKnqovP7li5qKWqixXczrvhvtohCK/UZLmy7sX1ZWxfm+P1rrnsJ6hRKD/5xvH2LCvh7hL3GDh5pWNXNxSRZPuISppcHLFjMJ9TvWNRKgqSf+daRbVlTIaidE1OKYbDeeQ3uFxntzewc/fOMb6vd3EHdSXB7lxeSMXL6iiSXPokmZ1U9a65yLPhnv/6Hjap2QgEe4AB0+MKNyzrH8kkgj0N4/x0p5uYnFHW10pNyxv4OKWKuZVFivQJWOCAR/NVcU5e1LVs+Hel+aOkBPa6sqAxG/rK9tq0/76cnaj4zGe2tHBT7cc5fndXcScozbZx+XiliqaqxToMnfa6srYr5H73OobiTC/Ov0j65aaEvw+04qZORSLOzbs6+GR147wxLZjDI/HmF9VzHUX1HFxSzXzqxXokh1t9WU8se1YtsuYlmfD/cTwOKvnp7/nQ5Hfx4KaEq2YmQOHekZ4aPNhHt7czrH+MKGAj4tbqljTWk1bXZkuLJKsW1xfSu9IhP6R9DYpTAdPhvt4NE7nYJj51SUZef3W2lIO5Xgv53wVjsR4fNsxfrTxMBv2ncBncMPyBm5c3sCq5kqKdOm/5JDFyftF7O8ZZk1pdZareSdPhntHf5i4S1ygkgltdWX8ZMsRLYdMk4mbRD+46TA/fq2dcCRObVmQ961u4vLWGl1cJDlrcX1igcX+7iHWLFS4Z1x7X2JUnalwX1RXymA4St9IhJoy3Zl+tvpHIjz8WjsPbTrMro5Biot8rJpXyRWLamir17SL5L7W2jICPuPt47nXQMyb4d47CsCC6tKMvP7kipmeYYX7LLx1fJD71x/goU2HicQcC2pK+JU1LVyyoEr3FJW8Egz4WNJQxlvHB7Ndymk8G+4+g3lVmVmHPrnWvWeEy1prMnIMr4nFHc/u6uT+9ft5aU8PoYCPSxdUc+3SOpqrMvMJS2QurJhXyeuHerNdxmk8Gu4jzKssJhjIzMm3hbWlmKHlkCkYCEf40sNv8PK+HnpHIlSVFPGBC+dx5aIaSnOw2ZLIuVrRVM7Pth7NuQZiuVNJGh3pHaUlQ/PtkGjUv7CmlJ3HBjJ2jHx3qGeEf12/nwc3HmZ4PEZbXSm3XtTM6uZK/D7NpYt3rEjeZm93xyBXLMqdT/KeDPf23lGuWpzZq0fXttXw/O4urZiZwjnH5oO93Pfifp7a0YHPjNsvnU9zdQktGVqWKpJtK+dVAAr3jIvG4nQMhDO2UmbCVW21PPLaEfZ1D7O0wG+5F43FeXxbB/f9cj9bD/dRUuTn+mUNXLOkTssYxfNaqksoC/pz7qSq58K9YyBMLO4yPlKc+GTw6v4TBRvuA+EIP3r1MPevP8CRvlEW15dx+6Xzuby1JmPnO0Ryjc9nLJ9Xwa6O3Jqm9Vy4Ty6DrMnMMsgJi+vLqC8P8ur+E9x1VWtGj5Vr+kcifOFHr7N+bw9j0TiL68v4zWsWsWJehdamS0Fa0VTBk9s7cmqa1sPhntmRu5lx1eJaXt1/IqPHySUD4Qj/+ssD3PfLfQyGo1zcUsWNyxsy1uZBJF+smFfBAxsP59R9HjwX7kd6RzGD5gx0hDzVVW21PPZmB+29Ixn/pJBNw2NR7l9/gHtf2Ef/aIQPXNjEiqbKjF1HIJJvViRPqu7qGFS4Z0p77wiNFSFCgcxf6Xhlct5944ETngz30fEY399wgL//xduMjMdYOa+Cu69ZpJUvIqdY0XRyxcwNyxuyXE2CB8N9dM6CduW8SiqKA7y6/wS/etmCOTnmXAhHYvzwlUN8e91euofGWNZYzntXNbGw1nu/wETSoa48RH15iN05tGLGe+HeN8LlGWwJ8MNXDr3j+fyqEl7xyLz7WDTGgxsP883n9nB8YIx3La3jn+6+PCebIonkmlXNFew4mjsrZjy1Xi0WdxzrC8/ptMEFjeXs6xpm25H+OTtmukVicR549RBX/69n+Iufbqe4yM+n3r2Y2y6Zr2AXSdHaRbXs7BjgxPB4tksBPBbuxwfCRONuTue/L2+toTTo57sv7Z+zY6ZLNBbn4c3t3PJ/n+dLj7xJRXGA335XG/dcv4QlBbp2X2S2blhej3Pwyz3d2S4F8Fi4T9wdKZN9ZU5VEvTz0SsW8LOtR+kcDM/Zcc9HLO746ZYjvP/vXuCPH9pKZUmA735iLZ+5cSnLmipyZp2uSD65ZEE1lcUBXnyrK9ulAB4L95f39mAGl7RUzelxP3HdYqJxxw9ePjinxz1X8bjjP984xrX/5xk+/8AWRsZj3H11K3dd2UpH/5hCXeQ8+H3Gu5fV8+Lb3Tjnsl2Ot06ornurizULq+f8BhqL68u4ZWUjP3jlEL978wU5d8OJWNzx2JvH+Oaze9h9fJCGihB3XdXKhfMrdUWpSBrdsKyBx97sYE/nEMuSyyOzxTMj956hMd5o7+PmFY1ZOf7vvHsxJ4bH+c7z+7Jy/OlEY3H+5KGtXP2/n+H3/+N1ToyM8+trF/L5W5ZxcUuVgl0kza5PrnF/PgemZjwzcn/h7S6cg5tWZOcCgmuX1HHHmvn8/TNvceH8St67uikrdQD0j0Z4eHM7//byAQ72JG5copG6SOa1VJewtKGMF9/u5lPXL8lqLZ4J9+d2dVFfHuSi+XM73z7BzPj6r13Cvq5hvvCjLfy/333XnH8s23F0gO9vOMBPXj/KaCTG5a3VXH9BAyub1dBLZK5cv6yBBzYeIhyJZXWK1hPTMrG444W3u7hheQO+LN7lp7jIz72/dQXFRX7uvHcDT2zryPgxOwfDfG/9AW74q+f40Dde5OHN7Vw4v5LP3XwBH7liIas1WheZUzevbCQcifPo1qNZrcMTI/cth/voG4lkbb791KtWf+PqVh7afJjP/GAz/+XS+XzmxiVcmKZPFOFIjDeP9PPSnm7W7e5ia3sfzsG8ymI+eNE81i6qpSSYWyd0RQrJDcvqWbOwmr9jGOEOAAAJO0lEQVR5cjcfvriZsizdV9UT4f7MzuP4DK5fVp/tUgBoqizmszdeQO/ION98bg8/23qU1c2V3LKqkUsXVLN6fiWNFSEC/jN/cApHYhzrD9PeO8L+7mF2Hhtk57EBdhwdYDwWx0i0NX7PykYuml9FU450ohMpdGbGX9y2il/7p5f5zgv7+OL7lmeljpTC3cxuBf4B8AP3Oee+dsr3Q8C/AVcAPcDHnHMH0lvq9F7df4L7XtzPe1Y2Ul06t0sgz8bvM+rLQ/zpB1awtb2f1w/18s1n9zCx+tVnUF8eojwUIFTkx0i0AQhHY/QORxgai77j9UqK/MyrKuaaJbW01pbRVldKaQ7daV1ETrpiUS23XdLMvS/s5a6rFtJcNfedVGdMBzPzA98C3ge0AxvN7FHn3I4pu30S6HXOXWBmdwJfBz6WiYKn2tc1xD3f38SC2hL+5qOXZvpws1IaDHDtkjquXVLHeDTO0b5Rjg+GGRiNMDAaZTwWJxqLEweCAR9loQCtNaWUBANUlxRRUxaktixIZXFAFxmJ5JEvfXAlT+04zm//60b+5qOXctEcX1yZytDvKmCPc24fgJk9ANwBTA33O4D/kXz8MPBNMzOXgcu0YnHHlsO9PLeri4c3t+M34/5PXJVTo/YzCQZ8tNWX0VZflu1SRCTDFtSU8s93X86fPvwmd3zrJX7zmkVcs6SOVc0VLKwpzfjij1TCvQU4POV5O3D1mfZxzkXNrB+oA9LeQecfnnmbbzzzNn6fcUVrDV++bRWtdeozLiK55z0rm/jFF2v4y5/v5HsvH+D+9QcA+PKHV2V8HXwq4T7dr5dTR+Sp7IOZ3QPck3w6ZGa7Uzj+Ge0DHvrsOf1IPRn4hZMjvPzewNvvz8vvDTz8/n5jlj/36a/Dp2d/2EWp7JRKuLcDC6c8XwCcuoBzYp92MwsAVcBpd7Bwzt0L3JtKYZlgZpucc2uzdfxM8vJ7A2+/Py+/N/D++8tVqVzEtBFYZmaLzSwI3Ak8eso+jwL/Nfn4I8CzmZhvFxGR1Mw4ck/OoX8OeJLEUsjvOue2m9lXgU3OuUeBfwG+b2Z7SIzY78xk0SIicnYpLZR2zj0GPHbKtq9MeRwGPpre0jIia1NCc8DL7w28/f68/N7A++8vJ5lmT0REvMcTjcNEROSdCiLczexWM9ttZnvM7EvZriedzOy7ZtZpZtuyXUu6mdlCM3vOzHaa2XYz+3y2a0onMys2s1fNbGvy/f3PbNeUbmbmN7PXzezn2a6l0Hg+3Ke0T/ggsBq4y8xWZ7eqtLofuDXbRWRIFPgj59wq4Brg9zz2ZzcGvMc5dymwBrjVzK7Jck3p9nlgZ7aLKESeD3emtE9wzo0DE+0TPME59wLTXFPgBc65Y86515KPB0mEREt2q0oflzCUfFqU/PLMSTAzWwB8GLgv27UUokII9+naJ3gmIAqFmbUBlwGvZLeS9EpOW2wBOoGnnXNeen9/D/wpEM92IYWoEMI9pdYIkrvMrBz4MfAF59xAtutJJ+dczDm3hsSV31eZ2UXZrikdzOw2oNM5tznbtRSqQgj3VNonSI4ysyISwf7vzrlHsl1Ppjjn+oB1eOf8yXXA7WZ2gMRU6HvM7AfZLamwFEK4p9I+QXKQJRrY/wuw0zn3t9muJ93MrMHMqpOPS4D3AruyW1V6OOf+zDm3wDnXRuLf3LPOubuzXFZB8Xy4O+eiwET7hJ3Ag8657dmtKn3M7D+Al4EVZtZuZp/Mdk1pdB3wmyRGfVuSXx/KdlFp1Aw8Z2ZvkBiEPO2c05JBSQtdoSoi4kGeH7mLiBQihbuIiAcp3EVEPEjhLiLiQQp3EREPUriLiHiQwl3mjJnFkmvVtyfb3H7RzHzJ7601s2+c5WfbzOzjc1ftacceTfaAyQlm9rFkC2uti5dpKdxlLo0659Y45y4E3gd8CPjvAM65Tc65PzjLz7YBWQn3pL3JHjApS7abzgjn3I+AT2Xq9SX/KdwlK5xzncA9wOcs4aaJUaiZ3TjlitTXzawC+BpwfXLbHyZH0y+a2WvJr3clf/YmM1tnZg+b2S4z+/dkGwPM7EozW5/81PCqmVUkuzL+tZltNLM3zOy/pVK/mf3EzDYnP4XcM2X7kJl91cxeAa49wzEvTD7ekjzmsuTP3j1l+3cmfjkkbzbzWvI1nknjH4N4mXNOX/qaky9gaJptvUATcBPw8+S2nwHXJR+Xk7iR++T3k9tLgeLk42XApuTjm4B+Eg3ifCRaM7wbCAL7gCuT+1UmX/ce4MvJbSFgE7D4lBrbgG2nbKtN/rcE2AbUJZ874NeTj890zH8EfmPKPiXAquT7Lkpu/zbwW0ADiZbVi6ced8p7/fl0/6/1pa/AOf4uEEm36VoyvwT8rZn9O/CIc649Ofieqgj4ppmtAWLA8infe9U51w6QnCdvIxH4x5xzGwFcsnWwmb0fuMTMPpL82SoSvyz2z1D3H5jZryYfL0z+TE+ylh8nt684wzFfBv48eTOLR5xzb5vZLcAVwMbkey0h0eP9GuAF59z+5Gt48sYskn4Kd8kaM1tCIgw7SYxcAXDOfc3M/pPEnPwGM3vvND/+h8Bx4FISI/TwlO+NTXkcI/H33Ji+j78Bv++ce/Ic6r6JRAfHa51zI2a2DihOfjvsnItNee3Tjumc+2Fy2ubDwJNm9qnkvt9zzv3ZKce6/Qx1i5yV5twlK8ysAfhn4JvOOXfK95Y65950zn2dxDTJSmAQqJiyWxWJUXGcROfImU5e7gLmm9mVyWNUmFmARLfQzyb7xmNmy82sbIbXqgJ6k8G+ksToOuVjJn+p7XPOfYNE++lLgGeAj5hZY3LfWjNbRGJa6UYzWzyxfYbaRACN3GVulSSnSYpI3Pz6+8B0fdq/YGY3kxh17wAeJ3GrtqiZbSVxU/BvAz82s48CzwHDZzuwc27czD4G/GOyd/ooidH3fSSmbV5LnnjtAn5lhvfxBPCZZKve3cCGczzmx4C7zSwCdABfdc6dMLMvA08ll4dGgN9zzm1InrB9JLm9k8RKI5GzUstfkRlY4v6tP3fO5dQt8JLTQ3/snLst27VI7tG0jMjMYkBVrl3EROLTS2+2a5HcpJG7iIgHaeQuIuJBCncREQ9SuIuIeJDCXUTEgxTuIiIe9P8BAd/+Hz8a9g4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(hsc_udeep['hsc-udeep_ra'], hsc_udeep['hsc-udeep_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, hsc_udeep, \"hsc-udeep_ra\", \"hsc-udeep_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add HSC-DEEP" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xt03Gd95/H3d2Z0GY1u1sW6WLYlJb7G5ALOjQAJkIADadLuUgiU0m2h6faQ0pZ2W3pK6TbtOQtly25pYWkKHCgthCywENKEJCUXArEdO4njxI6d2PJNkeSL7rI00mj07B/zG0WRZWskzWhmfvN5naOTufw0853Y/ujR83ue78+cc4iIiL8Esl2AiIikn8JdRMSHFO4iIj6kcBcR8SGFu4iIDyncRUR8SOEuIuJDCncRER9SuIuI+FAoW29cV1fnWltbs/X2IiJ56ZlnnjnjnKuf77ishXtrayu7d+/O1tuLiOQlMzuWynGalhER8SGFu4iIDyncRUR8SOEuIuJDCncRER9SuIuI+NC84W5mXzezU2b24nmeNzP7opkdMrO9ZvbG9JcpIiILkcrI/RvAtgs8fzOwzvu6A/g/Sy9LRESWYt5wd879DOi7wCG3Af/iEnYA1WbWlK4CRURk4dKxQ3UVcGLG/U7vse7ZB5rZHSRG96xZsyYNb70w3955/JzHPnT18tchIpJp6TihanM85uY60Dl3t3Nuq3Nua339vK0RRERkkdIR7p3A6hn3W4CuNLyuiIgsUjrC/T7gI96qmWuAQefcOVMyIiKyfOadczez7wA3AHVm1gn8JVAE4Jz7CvAA8B7gEDAK/GamihURkdTMG+7OuQ/O87wDPp62ikREZMm0Q1VExIcU7iIiPqRwFxHxIYW7iIgPKdxFRHxI4S4i4kMKdxERH1K4i4j4kMJdRMSHFO4iIj6kcBcR8SGFu4iIDyncRUR8SOEuIuJDCncRER9SuIuI+JDCXUTEhxTuIiI+pHAXEfEhhbuIiA8p3EVEfEjhLiLiQwp3EREfUriLiPiQwl1ExIcU7iIiPqRwFxHxIYW7iIgPKdxFRHxI4S4i4kMKdxERH1K4i4j4UErhbmbbzOygmR0ys0/N8fwaM3vMzJ4zs71m9p70lyoiIqmaN9zNLAh8CbgZ2Ax80Mw2zzrs08C9zrkrgNuBL6e7UBERSV0qI/ergEPOuQ7n3ARwD3DbrGMcUOndrgK60leiiIgsVCiFY1YBJ2bc7wSunnXMfwceNrPfAyLAjWmpbhl8e+fxOR//0NVrlrkSEZH0SWXkbnM85mbd/yDwDedcC/Ae4Ftmds5rm9kdZrbbzHafPn164dWKiEhKUgn3TmD1jPstnDvt8lHgXgDn3HagFKib/ULOubudc1udc1vr6+sXV7GIiMwrlXDfBawzszYzKyZxwvS+WcccB94JYGabSIS7huYiIlkyb7g75yaBO4GHgJdIrIrZZ2Z3mdmt3mF/BPy2mT0PfAf4L8652VM3OWk4Gst2CSIiaZfKCVWccw8AD8x67DMzbu8HrktvaZl35MxZvvpkB3e+42KaqsLZLkdEJG0Keofqsd6zOOBY72i2SxERSauCDvfuwSgAXQNjWa5ERCS9Cjrce7xwT4a8iIhfFGy4x+JTnBkZJxgweoaixKfy4vyviEhKCjbcTw5FccCmxgriU45Twxq9i4h/FGy4J6di3rh2BQBdAwp3EfGPgg33nsEoxaEA61ZWUBwM6KSqiPhKwYZ792CUxspSggGjsaqUrkGFu4j4R0GGu3OOnqExGqtKAWiuLqV7MMpUfmyqFRGZV0GG+8BYjGhsisZKL9yrwkxMTtE3MpHlykRE0qMgwz25vr1peuSeaD2gqRkR8YuCDPduL8STI/eVlSUEzbRiRkR8oyDD/eTQODWRYkqKggCEAgGqy4roH9W0jIj4Q0GG+8j4JBWlr2+IGSkJcXZiMksViYikV0GGezQWJ+yN2pMixUFGx+NZqkhEJL0KMtzHJuKUFc8Kd43cRcRHCjLcR+cauZeEGB2PkycXkBIRuaCCC/f4lGNicorS2SP34iBx54jGprJUmYhI+hRcuI/FEvPqZXOM3AFNzYiILxReuE8kwj08a+ReVuyF+7jCXUTyXwGGeyK8w0Wzl0Imwn50QitmRCT/FV64x+YeuU9Py2jkLiI+UHDhnhyZnzPnrmkZEfGRggv35Mh99mqZ4lCAoqBxVtMyIuIDhRfuyROqs0bukBi9a+QuIn5QeOEei1MSChAM2DnPaZeqiPhF4YX7RPyck6lJkZIgZ9VfRkR8oPDCfY7WA0mRYo3cRcQfCi7cRy84ctecu4j4Q8GF+4VH7kFi8UTvGRGRfFZ44T5Hu9+kMvWXERGfKKhwd87NO+cO6KIdIpL3Ugp3M9tmZgfN7JCZfeo8x7zfzPab2T4z+3Z6y0yPWNwRn3KEi0NzPp/sL6ORu4jku7lTbgYzCwJfAm4COoFdZnafc27/jGPWAX8GXOec6zezlZkqeCmm+8qcb+Su/jIi4hOpjNyvAg455zqccxPAPcBts475beBLzrl+AOfcqfSWmR7na/ebpP4yIuIXqYT7KuDEjPud3mMzrQfWm9kvzGyHmW1LV4HpNBpLtvudO9xLiwIEDPWXEZG8N++0DHDuPn2YfaHRELAOuAFoAZ40sy3OuYHXvZDZHcAdAGvWrFlwsUsVTXaEPM/I3czUX0ZEfCGVkXsnsHrG/Raga45jfuSciznnjgAHSYT96zjn7nbObXXOba2vr19szYs2eoGmYUmJ/jIauYtIfksl3HcB68yszcyKgduB+2Yd80Pg7QBmVkdimqYjnYWmw/ku1DFTWUlQI3cRyXvzhrtzbhK4E3gIeAm41zm3z8zuMrNbvcMeAnrNbD/wGPDfnHO9mSp6scYm4gQMSkLn/9ialhERP0hlzh3n3APAA7Me+8yM2w74pPeVs8ZicUqLgpjNdRohIVIS1Dp3Ecl7BbVDdXTi/LtTkyLFIaKxKWJx9ZcRkfxVUOEejZ2/r0xS8vmhsdhylCQikhEFFe4XaveblGxNMKBwF5E8VlDhfqGmYUnJkfvAqMJdRPJXYYV7KiN3L/wHxyaWoyQRkYwomHCfmnJEY3HCRRdeIKSRu4j4QcGE+3B0EseFNzAx43mFu4jks4IJ96FoIqzDRRf+yKVFQQydUBWR/FYw4T7i7TotCV145B4wo7QoyOCo5txFJH8VXLiXzrNaBhJTM/2alhGRPFYw4T7sTctcqK9MUllxUNMyIpLXCijcvWmZeebcIRHumpYRkXxWcOGe0rRMkUbuIpLfCibcp+fc5zmhCokWBFoKKSL5rGDCfTgaI2BQFDx/u9+ksuIgQ9EY8anZVxMUEckPBRPuI9FJSkIX7uWeFC4K4txrJ2FFRPJNwYT78PgkpSmcTAW1IBCR/Fc44e6N3FMx3YJAJ1VFJE8VTLiPRBcwci9Kjty1HFJE8lPBhPvweGwBI/dE58hBjdxFJE8VTLiPRCdT2sAE6gwpIvmvYMJ9ODqZ0gYmeO2CHQp3EclXhRPu45OUptBXBiAYMCpKQvRrzl1E8lRBhPv4ZJyJyamUR+4A1ZEizbmLSN4qiHAfSTYNS3HkDlAdLtZqGRHJW4UR7gvo5Z5UXVakde4ikrcKItyn2/2muBQSoCpcxKBOqIpIniqscE9xKSRo5C4i+a1Awj0R0gualvHm3KfUGVJE8lBBhPtrvdwXNnKfcjAyMZmpskREMqYgwv21aZmFzbkDmncXkbxUEOG+uJF7MaBdqiKSnwoi3IejkxSHAoSCC5uWARgY01p3Eck/KaWdmW0zs4NmdsjMPnWB495nZs7MtqavxKUbjsaoKAkt6HuqvWkZjdxFJB/NG+5mFgS+BNwMbAY+aGab5ziuAvgEsDPdRS7VyPgk5aULDHdvWkb9ZUQkH6Uycr8KOOSc63DOTQD3ALfNcdxfA38LRNNYX1oMRyepWHC4J0buvSMKdxHJP6mE+yrgxIz7nd5j08zsCmC1c+7+C72Qmd1hZrvNbPfp06cXXOxijUQnKV/gtExRMEBVuIi+swp3Eck/qYS7zfHY9M4eMwsA/wv4o/leyDl3t3Nuq3Nua319fepVLtFQNEZFadGCv682UqxwF5G8lEq4dwKrZ9xvAbpm3K8AtgCPm9lR4Brgvlw6qToyPrngE6oAteXF9J4dz0BFIiKZlUq47wLWmVmbmRUDtwP3JZ90zg065+qcc63OuVZgB3Crc253RipehJHxhc+5A9Ro5C4ieWrecHfOTQJ3Ag8BLwH3Ouf2mdldZnZrpgtcKuccw9GFr5YBqImUKNxFJC+llHjOuQeAB2Y99pnzHHvD0stKn2hsiviUW/Sce/9ojKkpRyAw16kHEZHc5PsdqsmOkAtdLQOJaZn4lNPl9kQk7/g/3L2+MouZc68tT2xk6tXUjIjkGf+He3Tx4V4TSYS75t1FJN/4PtyTF8cuL1n4nPtr4a7lkCKSX3wf7sk590VNy0RKADijFgQikmf8H+7jyZG7pmVEpHD4PtyT0zKVi1gKWRwKUFEaUriLSN7xfbgPedMykZLUL7E3U22kWKtlRCTv+D7cB8cSF+pYyFWYZkq0INAJVRHJL/4P99EYVWULn5JJqomUqKe7iOSdhZ9lzDODYzGqwosP99pIMXs7B9JYkYjko2/vPH7OYx+6ek0WKkmN78N9YCw2fVWlxagpL6Z/dALnHGbqLyPid3OFeD7yf7iPTrCxsXLR318bKSYWdwxFJ5f0G4CI5I5oLM7+7iFe6Bxkb+cgL746yNHeszgSnWQvaa7ixk0N08uh85Hvw31wbJLKJYTyzLXuCneR/BONxTnQM8wLnQO88GoizF85NUJ8KnFBuUhJiJbqMFe21hAwYywW57nj/bzQOcg7Nq3k7RtWZvkTLI6vw905x+DYxNKmZbxw7x0Zp60ukq7SRCRDBsdiPHusn51H+th1tI+9nQPE4okgLysO0rIizNvW1bGqOsyqFWVUlobOmXJ9x8aV3L+3i0f2n+SiughravPv376vw30sFicWd0sacdeVJ1oQaK27SG46NRTl6aN97DrSx8P7T9IzGMUBAYNV1WGuaa9l9YoyWlaEqQoXpXTurCpcxPve1MKJvpf58d5ufveGiwjk2Tk3X4f7wGhiA1N1mqZlRCT7Xh0YY2dHLzs6enn6SB9He0cBCBcFaa4u5R2bVtJaG2H1ijKKQ4tf7V0SCrJtSxP37j7BM8f6ubK1Jl0fYVkURrinYVpG4S6SHSf6Rtl5pI8dHb3sPNLLib4xIBHmrbVl3LylkdbaCM3VYYJpvmLaZS1VPH2kl4f29bCluYpw8eJ2umeDr8M9eQWlpZxQLS0KEikOaiOTyDJwznGib4wdHb3sONLLzo4+Xh1IhHlZcZDW2gi3XFpNW12EhsrSjE+VmBnbtjTxlScO81L3EG9cuyKj75dOPg/3RCBXh5e2nKmmXC0IRDLBOcfR3lF2dvSy80gfjx44NT0oKysO0lYX4Y1rqmmrK2dlZUlW5r1XrwhTURri4MlhhXuuSP4lWUr7AfBaEGhaRmTJzo5P8nznAM8dH+DZY/08d2JgesqzrryY1TVlXF8Xoa0uwsqKkpzYOGhmrG+oYF/XIPEpl/apn0zxdbin44QqQF2kmK7BaDpKEikYzjmO943y7PF+nj02wLPH+znQMzy9vryuvITW2ghvW1dPa10Z9eW5EeZz2dBQwTPH+jneN5o3S6J9He6DYzFCAaNsiSdBmqpLefZ4f5qqEvGnsYk4z3cOTIf5nhP901cxKw4FWO2tL19TU8bqmjLKivMnfi5eWU7A4GDPsMI9FyT7yix1NNBUFaZ/NMbYRDyvzpaLZNLA6AS7j/bz9NE+dh7p44XOAbxBOXXlxaypKeO6ixNhvhwnPzOptChxMvflk8Ns29KY7XJS4utwHxxdWkfIpFXVYQC6Bse4qL58ya8nko9ODUWnd30+vO8kPUOJqcpgwFi9Isxb19Wz1huVRxZxWctct6Gxggdf7GFgdILqstzvOeO/P4EZltLud2ZnuCNnzgLQNaBwl8LR2T/Kzo4+nj7Sx9NH+6b/HZQVB1lVHeYNLQ201kZoWRGmaJEXw8knGxoS4X7w5DBXt9Vmu5x5+TrcB8YmWFlRuuTXSZ6Q7R7QSVXxJ+ccR86c5ekjiSmWp4+8tr585mahtroITVXp3yyUD+orSqgOF3H49FmFe7YNjsVYt7Jiya9TGS7CYPovu0i+S4b59o5ednT08fiBUwyPJy4mHykJ0VZbxhvXVNO6TJuF8oGZ0bIiTFee5ICvw30gTXPuwYBRURqiezA//lBFZksuS9x+uJfvPH2cI2fOMhRNhHlFaYi2+gjtdeU5vyQx25qrw7zYNZQXiyt8G+7xKcdwdHJJfWVmqgoX0aVpGckjJ/pGEyPzw4kmW8m9GuUlIdrqIrR7gV5XXqwwT1Gzt7iie3CM9hw//+bbcB9K7k5N0wU2qsJFdGnkLjlqMj7FgZ5hnj3ezzPH+tl9tP91PVna6yJsba2hvS5CfY7s/MxHyXDvGlC4Z83A2NI7Qs5UXVbMoWN9upaq5ISB0QmeOz7AM8f6efZ4P3tODDA6EQdgZUUJb1q7givWVNNeX87Kiuz0ZPGj8pKQN9DL/d/iUwp3M9sG/D0QBL7qnPvsrOc/CXwMmAROA7/lnDuW5loXZDADI/dobIqB0Rgr8vi6ipJ/nHMcPn2WZ4/1c+/uExzrG+X0cKKRXcCgsaqUS1uqWVtTxpraMqpTvCCFLE5zVWleLK6YN9zNLAh8CbgJ6AR2mdl9zrn9Mw57DtjqnBs1s98F/hb4QCYKTtXAaGLbc9USO0ImJX9IvDowpnCXjEqG+Q7vghQ7Ovo4M5II83BRkDU1ZVyxupo1NWW0LPGCFLJwzdVhDvQMMzE5le1SLiiVkftVwCHnXAeAmd0D3AZMh7tz7rEZx+8APpzOIhdjMO3TMt5a98EoW1ZVpeU1ReDcZYk7OnqnR+aVpSHa68t568V1rK0ro65cUyzZ1lwdxkHOr55LJdxXASdm3O8Err7A8R8FHlxKUemQiWkZIG/WuEruSvYw39HRy/bDvTx28BTDM5YlttdFeMtFdbTVR6iNaCVLrpl5UjWXpRLuc/3NcnMeaPZhYCtw/XmevwO4A2DNmjUplrg4yXa/6Qr3SEmI4mBAK2ZkwWauMU9OsyT7stRXlCSWJdaV014XoVbLEnNeZWmISEko55dGpxLuncDqGfdbgK7ZB5nZjcCfA9c75+a8bJFz7m7gboCtW7fO+QMiXQbHYkSKg2nreREwo6m6NOf/QCX7Zl4qbrs3b949a4351e01WmOep8yMVdWlOT/QSyXcdwHrzKwNeBW4HfjQzAPM7Argn4BtzrlTaa9yEQZGY2nv3NZUVUp3jv8qJtkxvWHI2zSUXCoXKUlMs1ypNea+0lQV5tCp00RjcUqLcnOn6rzh7pybNLM7gYdILIX8unNun5ndBex2zt0HfB4oB/6v9xf3uHPu1gzWPa/BsdiSLow9l+bqMDsO96b1NSU/dfYnp1n6+OmBk9PTgDM3DOXSpeIkvZqqSply0HH6LJubK7NdzpxSWufunHsAeGDWY5+ZcfvGNNe1ZINjE0u+vN5szVVhTg6PMxmfIlQALU7lNa8OjLHj8GvTLJ39id/gVpQVsao6zFsvrpveMKQw97+GykS32YMnh/I73PPR4Fgs7b3Xm6vDxKccp4bHp8+Yiz91DYy9bp358b5RILHOvK0uwi2XVtNeV87KSi1NLER15SUEzTjQM5ztUs7Lt+F+ZmSCra3pnXNfXZMI9KO9ZxXuPtMzGJ1emvjISyfpO5vYBJcM8/e+oYn2erW/lYRgwKivKOGgwn15RWNx+s5OTF8eL102NCZ6wx/sGebNF9Wl9bVleZ0cSoT5v+44Rsfps/R6YV5aFKCtrpxr22tpq4vQWKUwl7k1VpXyssJ9eSU3FzRVLf0qTDPVl5dQGynmpe6htL6uZN6poej0DtCdHb10eJeMKy0K0Fob4er2WtoV5rIADZWl7DkxsKTLeWaSL8M9uaa4qSq9I3czY2NTRU7Ps0nCqeEoOzv6pk+AdpxOhHlJKEBbXYSbtzTSXl9Ok8JcFqmhsgSAl08Oc2VrTZarOZcvwz05ck/3tAzApsZKvrXjGPEpV5DXkcxVp4fH2Xmkd3re/LAX5uUlIa5qq2FDQwVtdRGaq8MKc0mLRm/FzIEehfuySe4ibagqSftrb2yqZHxyiiNnznLxytxu1u9nvSPj7DzSN72l/5VTIwBEioOsWhFm2yWNtNcX7sWcJfOqwkVUlIZydt7dl+HePThGXXkJJaH07xzb6J1UPdAzpHBfRmfHJ3nqcC8/f+U02zt6eflkIsyLgwFa68p49yWNtHsjc4W5LAczY0NDRc6umPFluHcNRmmuTu/J1KR1DeUEA8ZL3UPccmlzRt5DEv1ZDp4c5omDp3ni5dPs7Ogj7hxFQaO1NsK7NzfQVl/OKoW5ZNH6xgruf74rJ6/Q5s9wHxjj4gxd37AkFOSi+ggHunPzp3U+GxyL8dShMzzuBXqyc+LGxgrefHEt6xsqWFtbRiig3cGSGzY2VvDtnZP0DEXTvoBjqXwX7s45ugfGeOu6zK1D39RUye6j/Rl7/ULhnGNf1xBPvHyaJw6e5pnj/cSnHKVFAS6uL+fNF9WyrqEiJ5eZiQBsaHht74vCPcOGopOcnYjTnMH/0RsbK/nRni4GR2NUpelKT4ViYnKK7R29PLK/h/v2dDHkXaSiubqUt66rY/3KClbXlGmqRfLCxsZEX5n93UPcsGFllqt5Pd+Fe3IZZCbbA2xseu2k6tXttRl7H78YHIvx+MFTPLz/JE8cPM3I+CThoiDt9RE2NVayrqGcilL9kJT8U1VWxNraMl7oHMx2KefwXbgnr2vYlKETqgCbmxI/rV/qVrifz6sDY/zH/pM8sv8kTx0+w5RLrDnf2FjB5qZKLlpZnrYLqYhk06Ut1TxztC/bZZzDd+GeXOOeyWmZlRWJNgTP5+BP62x65eQwD7zQw8P7e9jXlWjRcFF9hLdcXM/mpgpaasq0gUh857KWKn78fBenh8epr0j/3prF8l24dw+OEfI6tmWKmXH9+noePXiq4Hu7Hz1zlvv3dnH/3m4O9AxjwOqaMrZd0simpsqc+ssukgmXtlQDsLdzgHduashyNa/xXbh3DURpqCzN+Am5Gzc38IPnXmX3sX6uKbCpma6BMf76/v3s7RzkVe8cx9qaMn7p0ia2rKrS/LkUlEuaKwkYPN85qHDPpK6BsYxtYJrpbevrKQ4GeGT/yYII92gszoMvdvPdXSfY0ZGYX1xVHebmLY28YVVV2q9XK5IvIiUhLl5Zzt7OgWyX8jq+C/fuwSiXr67O+PuUl4R488W1/MdLJ/n0ezfl3O60dPn8QwfZfbSP5zsHiMamqIkUc+OmlVzWUk1tuaZcRCAxNfPogVM5tVPVV+E+NeXoHhzjPW9oWpb3u3FTA5/+4Yu8cmqE9d5mBj8YHI3xwz2v8t1dJ9jfPUQoYGxZVcWb1q6grS6ik6Iis1zWUsX3numks3+M1TVl2S4H8Fm4nzk7TizuMjYt8+2dx193f8TbgPPI/pO+CPeXTw7zjaeO8oNnO4nGprikuZJbL2vmspZqwsXpb8Im4hevnVQdVLhnQvdAZi7ScT6V4SJaVoR5eP9JPv72i5flPdMtPuV49MApvvHUEX5xqJdQwLh8dTVXt9dmpB++iB9tbKqgKGjs7RzgvZcuz8zBfHwV7sm11e31kWV7zy3NVfxkXw/PHe/nijUrlu19lyoWn+JHe7r48mOH6DhzlqaqUt69uYGtrTVESnz110Ik40pCQTY1VbLnRO6cVPXVv+LtHb3UV5TQXrd84X51Ww27j/Xx2QcPcM8d1+TMyZTzicbi/On39/Kzl0/TPxqjqaqU269czSXNVernIrIE17bX8vVfHMmZa6r6ZveNc47th3u5tr12WQO2pCjIJ965jp1H+nj84Olle9+FGp2Y5KtPdnD95x/jR3u6KC8J8ZFr1nLn2y/m0pZqBbvIEr17SyOxuOPRAyezXQrgo5H74dMjnBkZ59qLln/N+e1XruFrPz/C535ygLetr8+poByKxvjW9mN87edH6Ds7wbXttbz3Dc1cVB/J+d8yRPLJ5S3VNFSW8OALPfzKFS3ZLsc/4b79cC+Q+NVouRWHAvzxuzbwe995jq88cTgnTq6eHh7nX7Yf5Z+f7CAam2J9Qzm/+qYW1tYu35SVSCEJBIxtlzRyz64TjE5MUlac3Xj1T7h39NJcVcra2uwsQ7rl0iYe2X+Szz90kMrSEL9+bWtW6jjYM8zXft7BD/d0MTGZWM54w4aVWvkisgy2bWnim9uP8fjB08u23+Z8fBHuU1OOHR193LChPmtTDWbG373/MkYnJvmLH+0jEDA+dNWaZalnMj7Fk6+c4eu/OMKTr5yhtCjA+7e28JvXtbGzI/dakYr41VVtNdRGinnwxR6Fezq8fGp4ej45G2ZubnrrunqO9Y7y5//vRR58oYe//uUttGVg9U58yrHnRD8PvtDDj7x2oxUlId61uYGrWmsoKwkp2EWWWTBg3LS5gR8/30U0Fqe0KHub/3wR7tPz7Vk4mTpbUTDAb7y5NbF65sApbvrCE7xj40r+0xtbuGFD/aL/sCfjU3ScOcuuo33sOtLHk6+coffsBEVB44YNK6kvL2FjY0VBtx8WyQW/dFkz9+w6wTefOsrvXH9R1urI+3Afn4xz7+5O1taW0bIiN7b9Bsy4tr2Wv7hlE3c/kZj/fnj/SUIBY3NzJZc0V7G6JkxzVZiqcBHh4iChgDE55ZiYnGJwLMbA6ATdg1E6+8foODPCyydHmJicAqCiJER7fYQbNzewfmWFWgOI5JA3X1TLuzY38HePvMyNmxu4qL48K3WkFO5mtg34eyAIfNU599lZz5cA/wK8CegFPuCcO5reUuf2Px44wEvdQ/zzR7Yux9styH/sP0V7fTm//851HD49wpEzZ5mYnOInL3bTPxqb9/sDBtVlxdREirmqtYbGqlLW1pSIF4NxAAAIKklEQVRREynWMkaRHGVm/M2vbOGmL/yMP/neXu79nWuzsjx63nA3syDwJeAmoBPYZWb3Oef2zzjso0C/c+5iM7sd+BzwgUwUPNND+3r4xlNH+a3r2rhpc+40yZ8tGDDWN1RMNxf7pcuaGZ+MMzgaY3xyion4FFNTjkDACJoRLg5SVhwkUhJSB0aRPLSyopS/uvUS/uC7e/jL+17kT7dtXPaL2KQycr8KOOSc6wAws3uA24CZ4X4b8N+9298D/tHMzDnn0lgrkOiJ8tThXu7b08UDL3RzaUsVn7p5Y7rfJuNKQkFWVmo6RcSvbru8meeO9/PN7cd48IUefvtt7Vy6qorWugiNlaUEMjyaTyXcVwEnZtzvBK4+3zHOuUkzGwRqgTPpKHKmf/jpK3zx0UNUlIa45dImPvmu9RSHdBJRRHKLmfFXt23hP7+phb/595f47IMHpp/7i1s289G3tGX0/VMJ97l+vMwekadyDGZ2B3CHd3fEzA6m8P7n9SLwPxf2LXVk4AdOjvDzZwN/fz4/fzbw8ef7tUV+38c+Bx9b/NuuTeWgVMK9E1g9434L0HWeYzrNLARUAecssnbO3Q3cnUphmWBmu51zuXfmNQ38/NnA35/Pz58N/P/5clUq8xm7gHVm1mZmxcDtwH2zjrkP+A3v9vuARzMx3y4iIqmZd+TuzaHfCTxEYink151z+8zsLmC3c+4+4GvAt8zsEIkR++2ZLFpERC4spXXuzrkHgAdmPfaZGbejwK+mt7SMyNqU0DLw82cDf38+P3828P/ny0mm2RMREf/RGkIRER8qiHA3s21mdtDMDpnZp7JdTzqZ2dfN7JSZvZjtWtLNzFab2WNm9pKZ7TOz3892TelkZqVm9rSZPe99vr/Kdk3pZmZBM3vOzO7Pdi2FxvfhPqN9ws3AZuCDZrY5u1Wl1TeAbdkuIkMmgT9yzm0CrgE+7rM/u3HgHc65y4DLgW1mdk2Wa0q33wdeynYRhcj34c6M9gnOuQkg2T7BF5xzP2OOPQV+4Jzrds49690eJhESq7JbVfq4hBHvbpH35ZuTYGbWArwX+Gq2aylEhRDuc7VP8E1AFAozawWuAHZmt5L08qYt9gCngEecc376fP8b+BNgKtuFFKJCCPeUWiNI7jKzcuD7wB8454ayXU86OefizrnLSez8vsrMtmS7pnQws1uAU865Z7JdS6EqhHBPpX2C5CgzKyIR7P/mnPtBtuvJFOfcAPA4/jl/ch1wq5kdJTEV+g4z+9fsllRYCiHcU2mfIDnIElck+RrwknPuC9muJ93MrN7Mqr3bYeBG4MCFvys/OOf+zDnX4pxrJfFv7lHn3IezXFZB8X24O+cmgWT7hJeAe51z+7JbVfqY2XeA7cAGM+s0s49mu6Y0ug74dRKjvj3e13uyXVQaNQGPmdleEoOQR5xzWjIoaaEdqiIiPuT7kbuISCFSuIuI+JDCXUTEhxTuIiI+pHAXEfEhhbuIiA8p3GXZmFncW6u+z2tz+0kzC3jPbTWzL17ge1vN7EPLV+057z3m9YDJCWb2Aa+FtdbFy5wU7rKcxpxzlzvnLgFuAt4D/CWAc263c+4TF/jeViAr4e457PWASZnXbjojnHPfBT6WqdeX/Kdwl6xwzp0C7gDutIQbkqNQM7t+xo7U58ysAvgs8FbvsT/0RtNPmtmz3tebve+9wcweN7PvmdkBM/s3r40BZnalmT3l/dbwtJlVeF0ZP29mu8xsr5n9Tir1m9kPzewZ77eQO2Y8PmJmd5nZTuDa87znJd7tPd57rvO+98MzHv+n5A8H72Izz3qv8dM0/jGInznn9KWvZfkCRuZ4rB9oAG4A7vce+zFwnXe7nMSF3Kef9x4vA0q92+uA3d7tG4BBEg3iAiRaM7wFKAY6gCu94yq9170D+LT3WAmwG2ibVWMr8OKsx2q8/4aBF4Fa774D3u/dPt97/gPwazOOCQObvM9d5D3+ZeAjQD2JltVtM993xme9f67/1/rSV2iBPwtE0m2ulsy/AL5gZv8G/MA51+kNvmcqAv7RzC4H4sD6Gc897ZzrBPDmyVtJBH63c24XgPNaB5vZu4BLzex93vdWkfhhcWSeuj9hZr/i3V7tfU+vV8v3vcc3nOc9twN/7l3M4gfOuVfM7J3Am4Bd3mcNk+jxfg3wM+fcEe81fHlhFkk/hbtkjZm1kwjDUyRGrgA45z5rZv9OYk5+h5ndOMe3/yFwEriMxAg9OuO58Rm34yT+nhtz9/E34Peccw8toO4bSHRwvNY5N2pmjwOl3tNR51x8xmuf857OuW970zbvBR4ys495x37TOfdns97r1vPULXJBmnOXrDCzeuArwD8659ys5y5yzr3gnPsciWmSjcAwUDHjsCoSo+IpEp0j5zt5eQBoNrMrvfeoMLMQiW6hv+v1jcfM1ptZZJ7XqgL6vWDfSGJ0nfJ7ej/UOpxzXyTRfvpS4KfA+8xspXdsjZmtJTGtdL2ZtSUfn6c2EUAjd1leYW+apIjExa+/BczVp/0PzOztJEbd+4EHSVyqbdLMnidxUfAvA983s18FHgPOXuiNnXMTZvYB4B+83uljJEbfXyUxbfOsd+L1NPDL83yOnwD/1WvVexDYscD3/ADwYTOLAT3AXc65PjP7NPCwtzw0BnzcObfDO2H7A+/xUyRWGolckFr+iszDEtdvvd85l1OXwPOmh/7YOXdLtmuR3KNpGZH5xYGqXNvEROK3l/5s1yK5SSN3EREf0shdRMSHFO4iIj6kcBcR8SGFu4iIDyncRUR86P8D6OhVKsOQLKUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(hsc_deep['hsc-deep_ra'], hsc_deep['hsc-deep_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, hsc_deep, \"hsc-deep_ra\", \"hsc-deep_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add KIDS" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl43Hd57/33PVpmtIz2XZZs2Za3OLFNFDsrSSChhkJCOSwhhR4KOe5CWAqnzwVtn7TN6XlKD09ZCqEQAgVCQgghgAETh2wkJLFjxY6xZcexLS/arH1fRpqZ+/wxIzMosjWSZjTb/bouXZn5zU/zu8eRP/7q+/suoqoYY4xJLo5YF2CMMSbyLNyNMSYJWbgbY0wSsnA3xpgkZOFujDFJyMLdGGOSkIW7McYkIQt3Y4xJQhbuxhiThNJjdeGSkhJdsWJFrC5vjDEJ6eWXX+5R1dK5zotZuK9YsYLGxsZYXd4YYxKSiJwJ5zzrljHGmCRk4W6MMUnIwt0YY5KQhbsxxiQhC3djjElCFu7GGJOELNyNMSYJWbgbY0wSsnA3xpgkFLMZqvHswb1nX3fs9m21MajEGGMWxlruxhiThMIKdxHZLiLHROSEiHxmlte/KCKvBL9eE5GByJdqjDEmXHN2y4hIGnAPcDPQCuwTkZ2qemT6HFX9m5DzPwZsiUKtxhhjwhROy30rcEJVm1V1EngIuPUi578f+EEkijPGGLMw4YR7NdAS8rw1eOx1RGQ5UAc8tfjSjDHGLFQ44S6zHNMLnHsb8Iiq+mZ9I5EdItIoIo3d3d3h1miMMWaewgn3VqAm5PkyoP0C597GRbpkVPVeVW1Q1YbS0jk3EjHGGLNA4YT7PqBeROpEJJNAgO+ceZKIrAUKgRcjW6Ixxpj5mjPcVdUL3AnsBo4CD6tqk4jcLSK3hJz6fuAhVb1Ql40xxpglEtYMVVXdBeyaceyuGc//KXJlGWOMWQyboWqMMUnIwt0YY5KQhbsxxiQhC3djjElCFu7GGJOELNyNMSYJWbgbY0wSsnA3xpgkZOFujDFJyMLdGGOSkIW7McYkIQt3Y4xJQhbuxhiThCzcjTEmCVm4G2NMErJwN8aYJGThbowxScjC3RhjkpCFuzHGJCELd2OMSUJhhbuIbBeRYyJyQkQ+c4Fz3isiR0SkSUQejGyZxhhj5iN9rhNEJA24B7gZaAX2ichOVT0Sck498FngGlXtF5GyaBVsjDFmbuG03LcCJ1S1WVUngYeAW2ec8z+Ae1S1H0BVuyJbpjHGmPkIJ9yrgZaQ563BY6HWAGtE5HkR2SMi22d7IxHZISKNItLY3d29sIqNMcbMKZxwl1mO6Yzn6UA9cAPwfuA+ESl43Tep3quqDaraUFpaOt9ajTHGhCmccG8FakKeLwPaZznnZ6o6paqngGMEwt4YY0wMhBPu+4B6EakTkUzgNmDnjHN+CtwIICIlBLppmiNZqDHGmPDNOVpGVb0iciewG0gDvq2qTSJyN9CoqjuDr71FRI4APuBvVbU3moVHwoN7z8a6BGOMiYo5wx1AVXcBu2YcuyvksQKfCn4ZY4yJMZuhaowxScjC3RhjkpCFuzHGJCELd2OMSUIW7sYYk4Qs3I0xJglZuBtjTBKycDfGmCRk4W6MMUnIwt0YY5KQhbsxxiQhC3djjElCFu7GGJOELNyNMSYJWbgbY0wSsnA3xpgkZOFujDFJyMLdGGOSkIW7McYkIQt3Y4xJQmGFu4hsF5FjInJCRD4zy+sfEpFuEXkl+HVH5Es1xhgTrvS5ThCRNOAe4GagFdgnIjtV9ciMU3+oqndGoUZjjDHzFE7LfStwQlWbVXUSeAi4NbplGWOMWYxwwr0aaAl53ho8NtN/E5HficgjIlIz2xuJyA4RaRSRxu7u7gWUa4wxJhzhhLvMckxnPP85sEJVLwOeAL472xup6r2q2qCqDaWlpfOr1BhjTNjCCfdWILQlvgxoDz1BVXtV1RN8+k3g8siUFzuqysDYJH6d+e+YMcbEvzlvqAL7gHoRqQPagNuA20NPEJFKVe0IPr0FOBrRKpdQ97CHJ4520tw9wuikj/dcvowttYWxLssYY+Zlzpa7qnqBO4HdBEL7YVVtEpG7ReSW4GkfF5EmETkIfBz4ULQKjraXTvXS1D7ImnI3znQHp3vHYl2SMcbMWzgtd1R1F7BrxrG7Qh5/FvhsZEuLja5hD5X5WbynoYZv/baZ9oHxWJdkjDHzZjNUZ+ga9lDmdgJQVZDFuaEJfH7rdzfGJBYL9xATUz4Gx6d+H+75Wfj8StfwRIwrM8aY+bFwD9E1HBjwU5bnAgItd8C6ZowxCcfCPUTXUKCFPt1yL87NJDPdQfuAtdyNMYnFwj1E17CHdIdQmJMJgEOEynyXtdyNMQnHwj1E1/AEZW4nDvn9pNyq/Cw6Bu2mqjEmsVi4h+ga8pzvb59WVZDFpM/PqZ7RGFVljDHzZ+Ee5JnyMRAyUmZaVUEg7JvaB2NRljHGLIiFe9D5kTLuP2y5l7ldpDuEpvahWJRljDELYuEeND2WvSzvD1vuaQ6hIt/F4TZruRtjEoeFe1DXUGCkTFFwpEyoklwnZ2yNGWNMArFwD+oa9lA6Y6TMtIKsDFuGwBiTUCzcg7qGJyidcTN1Wn52Bj6/0j3smfV1Y4yJNxbuBDbmGJrwUpCVMevr08fbbDKTMSZBWLgD41M+fH7F7Zo93POzAv3wHYMW7saYxGDhDgxPeAFwu2Zf3r4gOxD6tgyBMSZRWLjz+3DPvUC4uzLSyHWm2wJixpiEYeEODE9MAZDnnL1bBgIzVa3lboxJFBbuzN1yB6jMz6Ld+tyNMQkirHAXke0ickxETojIZy5y3rtFREWkIXIlRt+Ix0tGmuBMv/AfR1VBFh3WLWOMSRBzhruIpAH3AG8FNgDvF5ENs5znBj4O7I10kdE2NDGF25WBzDKBaVpVvove0UkmpnxLWJkxxixMOC33rcAJVW1W1UngIeDWWc77X8D/ARKueTsy4cXtvHCXDPx+y72OwYT7eMaYFBROuFcDLSHPW4PHzhORLUCNqv4igrUtmeEJ7wWHQU6rDC79azdVjTGJIJxwn62v4vwiKyLiAL4IfHrONxLZISKNItLY3d0dfpVRNuyZuuAEpmnVtlm2MSaBhBPurUBNyPNlQHvIczewEXhGRE4DVwI7Z7upqqr3qmqDqjaUlpYuvOoImvL5mZjyz9lyr8ifbrlbt4wxJv6FE+77gHoRqRORTOA2YOf0i6o6qKolqrpCVVcAe4BbVLUxKhVH2FyzU6c509MoyXXaEgTGmIQwZ7irqhe4E9gNHAUeVtUmEblbRG6JdoHRNj2BKfciE5imVRe4bPEwY0xCuHhzNUhVdwG7Zhy76wLn3rD4spZOuC13CExkOtE9Eu2SjDFm0VJ+huqwJ/xwryrIon1gHFXbtMMYE99SPtxHJqYQIGeOce4QWF9mbNLH0Lg3+oUZY8wipHy4D094yXWlz7q93kzTE5ms390YE+8s3MOYwDStPC8wHLJz2IZDGmPim4W7Zwp3GCNlAMrzAnusdg1ZuBtj4puF+zxa7tMbaHcO2UbZxpj4ltLh7ldl1OO96DruoZzpaRTlZNJpLXdjTJxL6XAf9XjxK3OuKxOqzO20lrsxJu6ldLifn8AUxjDIaWV5LrrshqoxJs6ldLiPzGMC07Ryt9O6ZYwxcS/8VEtC0+GeO4+We3mei+5hDz6/kuaYe2y8MSbxPLj37KzHb99Wu8SVLFxKh/toMNzDmZ06rTzPiV+hd9RDmdsVrdKMMUvkQkGe6FK6W2bU4yNNLr4x9kxlwYlMXXZT1RgTx1I73Ce95DjTLrox9kznZ6lav7sxJo6lfLfMfLpk4PezVG04pDGJ4XTPKC+d7mP/mX72n+0n3eHAlZHG1auKz68XlYws3OcZ7iW5TkSs5W5MvFJVDrcNsbvpHI81neNEV2APhvysDHKd6fj8XgbGJzlwtp9tK4u4eX0FWZlpMa468lI73Cd9FOVkzut7MtIcFOc4bay7MXHE51caT/fxWNM5Hm/qpG1gHAHqSnJ4+2WVrC7NpcTtPL/66/ikj18f7WRvcy/nBj3ccV1dWCvDJpLUDvcFtNwh0DVj3TLGxJbH6+P5Ez3sPtzJE0c76R2dJDPdwXWrS7hyZRHrKvIu+Pc7KzONWzZVUZnv4icH2th/pp+GFUVL/AmiK2XD3eP14fH6FxjuLuuWMSYGhiemePpYN7ubzvHMq12MTvpwpjtYW+HmLZdUsKYsF2dG+F0sly8v5MDZfn51+BzrKvPmNecl3iXPJ5mnvtFJAHIyw/sjCB0LOzwxxZnesajUZYz5Q+OTPh5r6uDrzzRzonsEn1/JcaazoSqPDZX5rCrNIT1tYQP/HCLcurmarz51gl8d6uA9DTURrj52wko2EdkOfBlIA+5T1c/NeP0vgY8CPmAE2KGqRyJca0T1jgTCPdc5/xspblcGox4vUz4/GQv8oTLGXJiq0nimn0caW/nloQ5GPF4KsjO4sq6IS6ryqS3OjlgfeXmei2tWl/Ds8W7evL583vfh4tWc4S4iacA9wM1AK7BPRHbOCO8HVfXrwfNvAb4AbI9CvRHTO91yX8CvYXmuDBToGfFQmZ+8Q6mMWWqD41P8qLGF/3zmZKAPPc3Bxup83rC8gBXFOVG76bm1rohnj3dzuG2QN64pjco1llo4ybYVOKGqzQAi8hBwK3A+3FV1KOT8HEAjWWQ09I0GboiG2y0Tanqhsc4hC3djIuFE1wjffeE0P97fytikj+VF2dy4toxLqvNwpkd/mGJRTibVBVkcbk+tcK8GWkKetwLbZp4kIh8FPgVkAm+KSHVRNN0ts9CWO9hYd2MWw+9Xnnmti3/d9SrHu0ZIcwiblhVw1apiqmMwuWhjdT67m87RPzZJYXbid82Ek2yz/R70upa5qt4D3CMitwP/APz3172RyA5gB0BtbWxXV+sbncQh4MqYf5+5Oyvwx9Y1bMMhjZmv4YkpHnm5le++cJrTvWPkudK5eUM5V6woiulolY1VeexuOsfhtkGuq0/81ns4f5KtQOgt5GVA+0XOfwj4z9leUNV7gXsBGhoaYtp10zsySY4zfV7rykzLdaYj2EbZxszHfzxxnBebe3n5bD+TXj81hVm874oaNlblx8Xy2cW5TqryXSkV7vuAehGpA9qA24DbQ08QkXpVPR58+sfAceJc7+jkgvrbITB8yu1Kp2PQwt2Yi/H7lWePd/OdF07zzLFu0kS4bFk+V60qZllhdqzLe52N1fk8fqSTgbFJChK8a2bOdFNVr4jcCewmMBTy26raJCJ3A42quhO4U0RuAqaAfmbpkok3faMechYwDHJaXlaG9bkbcwG9Ix5++ko7D+w9Q3P3KKVuJ29eX8bWFUXz2rN4qU2H+9GOIa5aVRLrchYlrKarqu4Cds04dlfI409EuK6o6xudJC9r4T9k+VkZ1nI3JoTX5+c3r3XzcGMLTxzpwqdKTWEW722oYWN1HumO+J8TUpLrJM+Vzpm+Ma5aFetqFidlZ6j2jkwuahhjXlYGh1oHI1iRMYnH51f2ne7jscPn+OWhDrqHPRTnZHLVqmIuX154fv+DRFJTlE1r/3isy1i0lAx3j9fHsMe7qG6ZfFcGIx4vwxNTcf1rpjGRNuXz88LJXh473MHjTYEFu9IdwppyN3+0oYK1Fe64uEG6UDWF2TS1DzHi8Sb0WjOJW/ki9I9OAQsb4z4tP9ilc25wwsLdJL2JKR/PHe/hV4c7eOJIJ0MTXnIy07hxXRluVwZrynOXZLLRUqgpCtzobe0bY11lXoyrWbiUDPfeRcxOnTbdX98xOEF9uTsidRkTT7w+P88d7+HRA208dbST0UkfrgwHGyrzuKQqn9VluUm5tlJ1QRYOgZZ+C/eE07eIdWWmhbbcjUkWqkpT+xD/uusor7QOMurxkp2ZxiVV+WysymNlaW5Cd7mEIzPdQXmei5a+xO53T8lw//3SA4sYChlcX8ZGzJhk4PMrvzrcwdd/c5LDbUOkOYR1FW621BSypiI3IUa6RFJNYTYHWwfwqybsDk2pGe7BlnvuIrpl0tMclORmcs7GupsE9r0XTnPg7ADPHu+md3SSklwnt2yq4rJl+WQv4u9Hoqspyual0330DHsoS8ARP5Ci4d436iHNIbgWuSluRb6Lc4OJ/aubSU0jHi8/2HuWrzx1nKEJL9UFWdy+tZYNVXkJ21KNpJrCwDDplv4xC/dE0jcaWPVtsT/EFXlZtPbbjkwmcfSNTvKd50/x3RfPMDg+xcrSHN59eQ2rSnMWtM5SsipxO3FlOGjpG+fy5bGuZmFSMtx7RiYpjsBuK5X5LhrP9EWgImOiq6VvjG8/f4qHXmphfMrHWzaU81c3rOJox3CsS4tLDhGWFWYndOMtRcPdQ4l78eFeke9iYGyK8UkfWYvs4jEm0qYX7frei2d4+lgXAmxaVsAb15RSnueyYJ9DZZ6LF5t7E/amasqG+xtqCxf9PpX5gb64c0MT1JXkLPr9jImEnhEPPz3Qxvf3nOF07xgluU4+duNqsjLTzw/hNXMry3Ph9St9I5OUuJ2xLmfeUjPchwOjAharIhjuHYPjFu4mpiamfDxxtJOf7G/jmde68fmV5UXZvK+hhksSZNGueFOeF8iIc0MTFu6JYNTjZXzKF5Fwn154zCYymVhQVf5116scaOnnUNsgE1N+8lzpXLOqhC21BQm5aFc8KXMH/vy6hieA/NgWswApF+49I4GlB0pyM5nyLW4zqIq86Za7hbtZOqd7Rnn0QBs/OdBKS984mWkOLqnKY0ttIStLcxKyfzgeZaY7KMzOoHMoMbfTTNlwL3U7aR9YXChnZaZRkJ1hLXcTdUMTU/zydx088nIrL5/pRwSuXV3ClXXFXFKVT2a6dbtEQ3meK9hyTzwpF+7dw9Mt98WHOwRa79ZyN9Hg8ysvnOzhkZdbeezwOTxeP6VuJ390SQWbawrs5ugSKHO7ON45gs+vCbemTuqFe3BdmdII3SCpzHdxbshmqZrIOdUzyj/vbOJAywCD41O4Mhxsring8uWFVBdk2WSjJVSe58SnSs+IJ+HuYaRcuPcEW+5FEZjEBFCRn8WhNtuRySyOz6889WoX33vxNM8d70GANeVu3nZpJesq3Em5tG4imF56oGvYwj3u9Yx4KMzOiNhflqp8Fz0jk0xM+XBl2EQmMz+9Ix5+2NjCA3vO0jYwTkWei0/dvIbMNMei9vg1kVHmdiJA59AEl1Yn1oiZsMJdRLYDXwbSgPtU9XMzXv8UcAfgBbqBD6vqmQjXGhE9I56IDIOcVlsc2LWlpW/MNu0wYVFVXmkZ4P4Xz/Czg+34/MrKkhxu31rL+sq8hOvbTWYZaQ6KcjLpTMDVX+cMdxFJA+4BbgZagX0islNVj4ScdgBoUNUxEfkr4P8A74tGwYvVMzIZsf52gNrgllxnei3czcWNT/r4+cF27t9zhkNtg+RkpnHFikK21RUn3K/8qaQsz0VXAg6HDKflvhU4oarNACLyEHArcD7cVfXpkPP3AB+IZJGR1DPiYdOygoi933S4n+1L3AWGTHQ1d4/wwN6zPLD3DBNTfsrcTt6xqYotNQXWlZcAyt1Ojp0bwuvzx7qUeQkn3KuBlpDnrcC2i5z/EeBXs70gIjuAHQC1tbVhlhhZ3cOR7ZYpyskk15lu4W7+gNfn58lXu/j+njM8d7yHdIewvjKPK1cWs6I420a8JJCyPBd+he6RxGq9hxPus/0Uzjq1U0Q+ADQA18/2uqreC9wL0NDQsLjpoQswNullbNIXkRUhp4kINUXZFu4GCDQefrjvLA/uPUv74ASV+S4+ffMa3re1hieOdMW6PLMAZcFu3Ok5MokinHBvBWpCni8D2meeJCI3AX8PXK+qcfmn0DMcGOMeyZY7wPKibI532fKpqUpV2Xe6n/v3nOGxwx1M+ZTVZbl8YFstaysCN0gt2BPXdF4kY8t9H1AvInVAG3AbcHvoCSKyBfgGsF1V4/anePp/TmmEw722OJunjnXh9ysOG+mQMkY8Xv7u0UPsPdVL55AHV4aDrSuK2FZXnJCrCJrZZaY7KMjOOD9HJlHMGe6q6hWRO4HdBIZCfltVm0TkbqBRVXcCnwdygR8F+xLPquotUax7QULXlYmk2qJsJr1+Oocnzq8UaZLX8c5h7t9zhkf3tzHi8VKV7+JdW6q5bFmBrfGSpEpznUnZckdVdwG7Zhy7K+TxTRGuKyp+vyJkhLtlgmPdz/aOWbgnKb9f+aedTbxwspcT3SOkO4RLq/O5cmUxywptSYBkV+J2cub0GKqaMP+vU2qG6nSfe3Fu5G6oQshY974xtq0sjuh7m9ga8Xh5pLGF7754hlM9o+S50nnLhnKuWFFEjjOl/vqktNJcJ5M+P+eGEue385T66ewemaAggksPTKsqyCLNIZzttREzyaKlb4zvvHCah/e1MOzxsqW2gNuuqOGSqnybQZqCprtyT3aNWrjHo0htrzdTRpqDqgKXDYdMAodaB/m7nxzicNsgInBpdT5XryqhJvjbmUlN58O9e4Rr60tiXE14UivcRzyURLhLZtryohzOWLgnJFXltyd6+PpvTvL8iV6c6Q6uqy/lqlXFtma6AcDtTMeZ7uBk90isSwlbyoX7pRFceiBUTVE2u5vOReW9TXR4fX7+/qeHee61btoHJ3C70tl+SQVb64psWQDzB0SEUreT5u7RWJcSthQL98notdyLs+kbnWR4Ygq3y1p78Wx80sePXm7hm88109I3Tkmuk3dtqWZzTQHptm66uYDSXKe13OPRxJSPEY83Kn3uEJilCoEFxC6pSqx1n1NF74iH+/ec4XsvnqFvdJIttQVcX1/Kuso821TazKnU7eRAywAjHi+5CTBSKv4rjJDpTayjtbTq9A23s70W7vHmZPcI9z13ih81tuD1K2vL3fy3NyyzBbzMvEw3DE91j3Lpsvj/O54y4d42ENjntLogOsOY6kpyEIHjXSO8NSpXMPOhquw91cd9zzXzxNEuMtMdbKkt4JpVJee3TjNmPqZHzDT3jFi4x5O2/uiGe44zneVF2RztGIrK+5vweH1+dh0+xzefbeZQ2yBFOZl8/M31fPDK5fz6SGesyzMJrDgnE4fAya7E6HdPnXAfGEcEKvKj12pbX5ln4R4jwxNT/HBfC//1/GnaBsYpyc3k1s1VvKG2kIw0hwW7WbT0NAe1RdmcSJCbqikV7mVuZ1QXdlpfmcdjTecY9XhtavoSaR8Y5zsvnOYHe88y7PGyta6IN60rY22F226SmoirL3fzWqeFe1xpHxiPWpfMtPWVeajCq+eGuXx5YVSvleoOtw3yzeea+fnBwNYCG6vzuXZ1CcsKbSapiZ76slyefrWLSa8/7lcATZlwbxsY57IoTWCatr4ysEH20Y4hC/co8PuVZ17r4pvPnuLF5l5yMtO4amUxV68uoTA7OvMXjAm1ptyN16+c6hllbYU71uVcVEqEu9+vdAxMsH1jdEdJVBdkkedKt373CJuY8vGTA2184fHX6B7xkJ+VwVs3VnDFCptJapZWfXkuAMe7hi3c40HPiIdJn59lUe6WERHW2U3ViBkcn+L7e87wX8+fomdkkqp8F+9tWMal1QW2MqOJiVWluTiEhOh3T4lwbw2Oca+KcrgDbKjM4+HGFttybxG+/sxJnj/Zw0un+vB4/dSX5XLr5mpWluTYpCMTU66MNJYX53C8M/73TE6JcD8/xr0w+uG+vtLN2KSPs31jrCjJifr1kklz9wj3PtvMj15uxe9XLl2WzxvrS5fkH2VjwlVflstrFu7xoT1Ks1Mf3Hv2dcda+wPL/h7tGLJwD9Oxc8N8+cnX+NXhc2SkOWhYXsh19aUU5dhNUhN/1pS7efLVLjxeH870+L3nE1a4i8h24MsENsi+T1U/N+P1NwJfAi4DblPVRyJd6GK0DYzjdqUvyWqN5XkuHBII97deWhn16yWy5u4RPvnDVzjUOkhmuoM31pdy9apiW1XTxLX68lx8wREz6yryYl3OBc0Z7iKSBtwD3Ay0AvtEZKeqHgk57SzwIeB/RqPIxVqKMe7TMtIc1JXkcKQj/n9ti5WWvjG+/ORxHt3fSppDeOOaUq5bXUK2TfwyCaC+LDBK5rXOkcQOd2ArcEJVmwFE5CHgVuB8uKvq6eBr/ijUuGit/UsX7gCbagp45li33VSdoX1gnK88dYIfNbbgcAh/fk0dZW6ntdRNQllZmoNDiPubquGEezXQEvK8FdgWnXKio21gnK11RUt2vWtXl/Do/jaOnhuy5X8JDGn82tMn+NZvT6EKDSsKuWFtmW1hZxKSKyONFcU5cX9TNZxwn63pqQu5mIjsAHYA1NbWLuQt5m1oYorhCe+SttyvWR3YQPe3x3tSOtynfH4e3HuWLz3xGgPjU2xeVsBNG8ptNqlJePXluRyP87Hu4SyO0ArUhDxfBrQv5GKqeq+qNqhqQ2lp6ULeYt7al3CM+7TyPBf1Zbn89kTPkl0znqgqvz7SyR996Vn+cWcTayvc/PzOa3lPQ40Fu0kKa8rdnO4dZWLKF+tSLiiclvs+oF5E6oA24Dbg9qhWFUHnh0EuwRj3UNfWl/Dg3rNMTPlSaor84bZBPv6DAzT3jFKS6+SDVy5nXYWb37UOxro0YyJmY3U+foWm9vhdR2rOlruqeoE7gd3AUeBhVW0SkbtF5BYAEblCRFqB9wDfEJGmaBY9H9HepONCrl1dgsfrZ/+Z/iW9bqwMjk/xdz85xDu++lvODU3wjk1VfOLN9ayvzLNZpSbpbK4JLEJ4sGUgxpVcWFhjz1R1F7BrxrG7Qh7vI9BdE3dOdo+SnZlGaZQ2xr6QbSuLSXcIz53o4epgH3wyUlV+eaiDf/75EXpHPPz51XUsK8xKqd9WTOopz3NRkefiYGuCh3siO9I+xPrKvCUfkpjrTGdLbQHPJ3G/e2v/GB/5TiPHOoepKnDxV9evXvLuL2NiZVNNPq/Eccs9vlebXyS/XznSMcSGythMNLh2dSmH2gbpH52MyfWjxevzc99zzdz8hWc51TPK2y6ttGBw6H4bAAANhElEQVQ3KWdzTSFnesfi9u93Uod7a/84Ix4vG6piE+5vXl+GKuw8uKDBRXHpUOsg7/za8/zLL49y9apiPnlTPdeuLrEleE3K2VQTGOYcr10zSd0tc6QjMEIjVi33jdX5XFqdz4N7z/JnVy1P6BuL//X8KZ440skLJ3vJdaXz/q21bKyym6UmdV1anY8IHGwZ5Ia1ZbEu53WSuuXe1D5EmkNiumPKn26r5VjnMC8n8KiZJ4508qUnjvPCyV621hXxNzetCf5gW7Cb1OV2ZbC6NDduW+5JHe5H2odYVZoT05Eb79hUhduZzgOzLA8c7zqHJvjrB17mju814kx3sOONK7l1c7WNhDEmaFNNAQdbBlBd0KT9qErucI/hzdRpOc503rmlml8e6ojbGy8z+f3K/XvOcNO//4Ynjnbxt3+0ljvftJrlxbY+vTGhNtcU0Ds6SWtwPk08Sdpw7xudpGNwImY3U0Pdvq2WSa+fHza2zH1yjP2udYDrP/80/+9PD1OW5+RjN66mMDuTdEfS/qgYs2DTk5kOxOGQyKS9oTq9SfWGyqVfuGu2HZquqy/hnqdO8K4t1ZTluZa8prn0jU7y+d2v8tC+FnIy03nP5cvYXFNg/erGXMTaCjduVzrPvtbNLZuqYl3OH0ja5tiR9kC4r6+M3c3UUHffuhGPz88//+LI3CcvIa/Pz/dePM2N//8zPNzYyoevqeNTN69hS22hBbsxc8hIc/CmdWU8ebQTry++trNI3nDvGKIiz0XxEi87cCF1JTnceeNqfvm7Dp4+1hXrcvD7lV2HOrjqc09x18+aKMnN5M4bV7OqNNdumBozD2/ZUEH/2FTcjYhL2nA/1DYYN632aX9x/UpWlubwDz85TNfQRExqUFWePNrJ27/yW/76gf0IcPvWWj58TR3lcdhdZEy8u35tKZlpDh4/0hnrUv5AUob7ye4RTnSNnN80I14409P44ns3MzA2yZ/et5feEc+SXdvnVx5vOse7/vMFPvLdRkY8Xr74vk18/M31bLQx68YsWK4znWtWF/P4kXNxNSQyKcN95yvtiATGmMebTTUFfOtDV9DSP8YHv/VS1AN+aGKK+55rpuFffs2O+1/mVPcof7K5mv9x3UrGJ/04LNSNWbS3XFJBS984x+Jo672kGy2jqvz8YDvb6oritpvhypXF3PvBBu74XiNv+eKz/O8/2cj2jZURe39V5VDbID9qbOXH+1sZm/SxvDib7Rsr2VCZZ+vAGBNhb15fhgg83tTJuorYD7+GJAz3pvYhmntGueO6lbEu5Q/MNjzyL69fxVOvdvKX39/PTevLuOO6lWyrK1pQF4nfrxxsHeDJo13sOtxBc/comWkO3r6pkj+/uo5DbbYTkjHRUuZ28YbaQnYebOejN66OiwZU0oX7zw+2k+4Q3rqxItalzKkiz8VP/voa7n22mfuea+aJo3tYW+7mhnWlXL2qhPWVbkpzna8Le79f6Ria4ETXCK92DNF4pp/G0330j02R5hBqi7L5ky3VbKzKJyszzYLdmCXwoatX8LEfHOBnr7TxrjfEfu+ipAp3vz/QJfPGNaUU5iTGRsw/amylMDuTT960hoMtA+w/28+3f3uKb/ymGQBnuoOSXCcZaYJDhKGJKfrHpvD5f3/jpjgnk7qSXG4uy2VNeS7ZmUn1v9WYhPDHl1byjWdP8u+Pv8bbLq2M+ZDipEqBXx/tpH1wgr/dvjbWpcxbRpqDhhVFNKwoYtLr52zfGN0jHgZGJxnxePGpogoluU6ynWnkZ2VQ6nZS5naR60yq/43GJCSHQ/jM9vV84Ft7+f6eMzHvGk6aVGgfGOczP/4d6yvzeGsEb07GQma6g9Vluawuy411KcaYebi2voRrV5dwz9MneOeWakpiOIkyrKGQIrJdRI6JyAkR+cwsrztF5IfB1/eKyIpIF3oxUz4/H/vBASa9fu65fUvMfx0yxqSuz75tHeNTPt779RdpG4jdapFzhruIpAH3AG8FNgDvF5ENM077CNCvqquBLwL/FulCL6RtYJxPPvQKL5/p5/9716WsLLXWrjEmdi6pyuf+j2yje8TDu//zBfaf7Y/J5KZwumW2AidUtRlARB4CbgVCV8C6Ffin4ONHgK+KiGgUPtH4pI/jXcO81jnC/rP9PNLYCsCnb17DrZurI305Y4yZtytWFPHwX1zFn337Jd71tRfYUJnHrZurWF2WS21RNjVF2VHvYQgn3KuB0IXIW4FtFzpHVb0iMggUAz2RKDLUfc818++/fg0I9E2/c0sVn7hpDdUFWZG+lDHGLNj6yjye/PT1/OyVdh566Sz/+qtXz7/2j+/YwJ9fUxfV64cT7rONxp/ZIg/nHERkB7Aj+HRERI6Fcf2L+nzwa4FKiMI/QHHAPlfiSMbPBEn6uf40Qu/z4X+DDy/825eHc1I44d4K1IQ8Xwa0X+CcVhFJB/KBvplvpKr3AveGU9hSEJFGVW2IdR2RZp8rcSTjZ4Lk/VyJJJzRMvuAehGpE5FM4DZg54xzdgL/Pfj43cBT0ehvN8YYE545W+7BPvQ7gd1AGvBtVW0SkbuBRlXdCXwLuF9EThBosd8WzaKNMcZcXFiTmFR1F7BrxrG7Qh5PAO+JbGlLIm66iCLMPlfiSMbPBMn7uRKGWO+JMcYkn6TcrMMYY1Jdyob7XEsqJCIR+baIdInI4VjXEikiUiMiT4vIURFpEpFPxLqmSBARl4i8JCIHg5/rn2NdU6SISJqIHBCRX8S6llSWkuEe5pIKieg7wPZYFxFhXuDTqroeuBL4aJL8v/IAb1LVTcBmYLuIXBnjmiLlE8DRWBeR6lIy3AlZUkFVJ4HpJRUSmqo+yyzzCxKZqnao6v7g42ECoZHw60xowEjwaUbwK+FvgInIMuCPgftiXUuqS9Vwn21JhYQPjGQXXG10C7A3tpVERrD74hWgC/i1qibD5/oS8P8A/lgXkupSNdzDWi7BxA8RyQV+DHxSVYdiXU8kqKpPVTcTmPW9VUQ2xrqmxRCRtwNdqvpyrGsxqRvu4SypYOKEiGQQCPYHVPXRWNcTaao6ADxD4t8vuQa4RUROE+jqfJOIfD+2JaWuVA33cJZUMHFAAruDfws4qqpfiHU9kSIipSJSEHycBdwEvHrx74pvqvpZVV2mqisI/J16SlU/EOOyUlZKhruqeoHpJRWOAg+ralNsq1o8EfkB8CKwVkRaReQjsa4pAq4BPkigFfhK8OttsS4qAiqBp0XkdwQaG79WVRs6aCLGZqgaY0wSSsmWuzHGJDsLd2OMSUIW7sYYk4Qs3I0xJglZuBtjTBKycDfGmCRk4W6WjIj4guPUm4JL3X5KRBzB1xpE5D8u8r0rROT2pav2ddceD64DExdE5H3B5aptbLyZlYW7WUrjqrpZVS8BbgbeBvwjgKo2qurHL/K9K4CYhHvQyeA6MGELLi0dFar6Q+COaL2/SXwW7iYmVLUL2AHcKQE3TLdCReT6kNmoB0TEDXwOuC547G+CrennRGR/8Ovq4PfeICLPiMgjIvKqiDwQXMIAEblCRF4I/tbwkoi4gyszfl5E9onI70TkL8KpX0R+KiIvB38L2RFyfERE7haRvcBVF7jmJcHHrwSvWR/83g+EHP/G9D8OwY1l9gff48kI/m8wyUxV7cu+luQLGJnlWD9QDtwA/CJ47OfANcHHuQQ2cj//evB4NuAKPq4HGoOPbwAGCSwG5yCwHMO1QCbQDFwRPC8v+L47gH8IHnMCjUDdjBpXAIdnHCsK/jcLOAwUB58r8N7g4wtd8yvAn4ackwWsD37ujODxrwF/BpQSWJ66LvS6IZ/1F7P9WduXfaXP898CYyJttuWXnwe+ICIPAI+qamuw8R0qA/iqiGwGfMCakNdeUtVWgGA/+QoCgd+hqvsANLhssIi8BbhMRN4d/N58Av9YnJqj7o+LyJ8EH9cEv6c3WMuPg8fXXuCaLwJ/H9zY4lFVPS4ibwYuB/YFP2sWgXXerwSeVdVTwfdIqs1YTPRYuJuYEZGVBMKwi0DLFQBV/ZyI/JJAn/weEblplm//G6AT2ESghT4R8pon5LGPwM+5MPua/QJ8TFV3z6PuGwis4niVqo6JyDOAK/jyhKr6Qt77dddU1QeD3TZ/DOwWkTuC535XVT8741q3XKBuYy7K+txNTIhIKfB14KuqqjNeW6Wqh1T13wh0k6wDhgF3yGn5BFrFfgKrRs518/JVoEpErghewy0i6QRWBv2r4JrxiMgaEcmZ473ygf5gsK8j0LoO+5rBf9SaVfU/CCw1fRnwJPBuESkLnlskIssJdCtdLyJ108fnqM0YwFruZmllBbtJMghsfH0/MNsa7Z8UkRsJtLqPAL8isG2bV0QOEtgI/GvAj0XkPcDTwOjFLqyqkyLyPuArwfXTxwm0vu8j0G2zP3jjtRt45xyf4zHgL4PL9R4D9szzmu8DPiAiU8A54G5V7RORfwAeDw4PnQI+qqp7gjdsHw0e7yIw0siYi7Ilf42ZgwT2bv2FqsbVNnjB7qH/qapvj3UtJv5Yt4wxc/MB+fE2iYnAby/9sa7FxCdruRtjTBKylrsxxiQhC3djjElCFu7GGJOELNyNMSYJWbgbY0wS+r9PGNs/mCxV0QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(kids['kids_ra'], kids['kids_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, kids, \"kids_ra\", \"kids_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add UKIDSS LAS" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd8XFeZ//HPM+q9N6vblnscJ5GdhCSkQIITgrNACCH0BUwLsMAuL+DHL8tmy49ddikLpmTZ0NOAJDjB4IQ0p9mW4xZbbrItyypW7708vz9m5EwU2RpJM5qZq+f9eumVmTt37jzjaL46c+6554iqYowxxllcwS7AGGOM/1m4G2OMA1m4G2OMA1m4G2OMA1m4G2OMA1m4G2OMA1m4G2OMA1m4G2OMA1m4G2OMA0UG64UzMzO1pKQkWC9vjDFh6ZVXXmlR1ayp9gtauJeUlLBr165gvbwxxoQlETnly37WLWOMMQ5k4W6MMQ5k4W6MMQ5k4W6MMQ5k4W6MMQ5k4W6MMQ5k4W6MMQ5k4W6MMQ5k4W6MMQ7k0xWqIrIe+D4QAfxMVb814fEi4JdAqmefr6rqFj/XOifu21Hzhm13XFoUhEqMMWbmpgx3EYkANgHXA7VAhYhsVtVKr92+ATykqj8WkRXAFqAkAPUGhQW+MSbc+NItsw6oUtUTqjoEPADcMmEfBZI9t1OAev+VaIwxZrp8Cfd84LTX/VrPNm/fBD4gIrW4W+2fm+xAIrJRRHaJyK7m5uYZlGuMMcYXvoS7TLJNJ9x/H/ALVS0AbgJ+LSJvOLaq3qOq5apanpU15YyVxhhjZsiXcK8FCr3uF/DGbpePAQ8BqOrLQCyQ6Y8CjTHGTJ8v4V4BlIlIqYhEA7cDmyfsUwO8BUBEluMOd+t3McaYIJky3FV1BLgT2Aocwj0q5qCI3C0iGzy7fRn4hIjsA+4HPqKqE7tujDHGzBGfxrl7xqxvmbDtLq/blcAV/i3NGGPMTNkVqsYY40AW7sYY40AW7sYY40AW7sYY40AW7sYY40AW7sYY40AW7sYY40AW7sYY40AW7sYY40AW7sYY40AW7sYY40AW7sYY40AW7sYY40AW7sYY40AW7sYY40AW7sYY40A+hbuIrBeRIyJSJSJfneTx74rIXs/PURHp8H+pxhhjfDXlSkwiEgFsAq7HvVh2hYhs9qy+BICqftFr/88BFwWgVmOMMT7ypeW+DqhS1ROqOgQ8ANxynv3fh3sdVWOMMUHiS7jnA6e97td6tr2BiBQDpcDTsy/NGGPMTPkS7jLJNj3HvrcDv1fV0UkPJLJRRHaJyK7m5mZfazTGGDNNvoR7LVDodb8AqD/Hvrdzni4ZVb1HVctVtTwrK8v3Ko0xxkyLL+FeAZSJSKmIROMO8M0TdxKRpUAa8LJ/SzTGGDNdU4a7qo4AdwJbgUPAQ6p6UETuFpENXru+D3hAVc/VZWOMMWaOTDkUEkBVtwBbJmy7a8L9b/qvLGOMMbNhV6gaY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wD+RTuIrJeRI6ISJWIfPUc+9wmIpUiclBE7vNvmcYYY6ZjypWYRCQC2ARcj3ux7AoR2ayqlV77lAFfA65Q1XYRyQ5UwcYYY6bmS8t9HVClqidUdQh4ALhlwj6fADapajuAqjb5t0xjjDHT4Uu45wOnve7XerZ5WwIsEZEXRWS7iKz3V4HGGGOmz5cFsmWSbTrJccqAa4AC4HkRWaWqHa87kMhGYCNAUVHRtIs1xhjjG19a7rVAodf9AqB+kn3+qKrDqnoSOII77F9HVe9R1XJVLc/KypppzcYYY6bgS7hXAGUiUioi0cDtwOYJ+zwKXAsgIpm4u2lO+LNQY4wxvpsy3FV1BLgT2AocAh5S1YMicreIbPDsthVoFZFK4BngH1S1NVBFG2OMOT9f+txR1S3Algnb7vK6rcCXPD/GGGOCzK5QNcYYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB7JwN8YYB/Ip3EVkvYgcEZEqEfnqJI9/RESaRWSv5+fj/i/VGGOMr6ZcZk9EIoBNwPVALVAhIptVtXLCrg+q6p0BqNEYY8w0+dJyXwdUqeoJVR0CHgBuCWxZxhhjZsOXcM8HTnvdr/Vsm+jdIrJfRH4vIoV+qS5EdA0Mc6Klh77BkWCXYowxPpmyWwaQSbbphPuPAfer6qCIfAr4JXDdGw4kshHYCFBUVDTNUoPnoV2nOdHcC0B6QjQbr1oY5IqMMeb8fGm51wLeLfECoN57B1VtVdVBz93/AS6Z7ECqeo+qlqtqeVZW1kzqnXMDw6NUt/SyuiCFtyzLpq13iENnuoJdljHGnJcv4V4BlIlIqYhEA7cDm713EJE8r7sbgEP+KzG4qpp6GFO4tDSD65ZlkxofxdHGnmCXZYwx5zVlt4yqjojIncBWIAK4V1UPisjdwC5V3Qx8XkQ2ACNAG/CRANY8p440dhMb5aIoPR4RYUl2EvtqOxgaGSM60i4TMMaEJl/63FHVLcCWCdvu8rr9NeBr/i0t+FSVo43dLM5OIsLlPvVQlpPIzuo2dte0c9nCjCBXaIwxk7Om53k0dA7QPTDC0pyks9sWZSXiEth2tDmIlRljzPlZuJ/H0cZuAJbkJJ7dFhsVQVF6As9ZuBtjQpiF+3kcOdPNgtRYkmKjXrd9SU4iB+u7aO4ePMczjTEmuCzcz2FgeJSatj6WeHXJjBvf9vwxa70bY0KThfs5NHUPokBhWvwbHstNiSU9IZqXj7fOfWHGGOMDC/dzaPF0uWQmxrzhMZcIy3KTONpk492NMaHJwv0cmnsGcYl7uoHJLMlJoqqxG9WJMzEYY0zwWbifQ0vPIOkJ0WfHt0+0ODuR3qFRGjoH5rgyY4yZmoX7ObT0DE7aJTOuLNs9PHJ8uKQxxoQSC/dJjKnS2jNE1nnCfXzETJX1uxtjQpCF+yQ6+oYZGdPzttzTEqLJTIy2lrsxJiRZuE+ipcczUibp3OEO7n73Y9ZyN8aEIAv3STSfHQY5+UiZce4RMz02YsYYE3Is3CfR0jNIbJSLxJjzT5pZlp1I9+AIZ7psxIwxJrRYuE9ifKSMyOTDIMctznafVD1mi3cYY0KMhfskWqYYKTNufLZI63c3xoQan8JdRNaLyBERqRKRr55nv1tFREWk3H8lzq2hkTE6+4enPJkKkJEYQ3pCNMdsxIwxJsRMGe4iEgFsAm4EVgDvE5EVk+yXBHwe2OHvIufS2ZEyPrTcwUbMGGNCky8t93VAlaqeUNUh4AHglkn2+2fgP4CwPrvY3OPbSJlxS3ISOWpzzBhjQowv4Z4PnPa6X+vZdpaIXAQUqurjfqwtKFqn2XIvzUyke2CEtt6hQJZljDHT4ku4TzZk5GwzVURcwHeBL095IJGNIrJLRHY1N4fmQhcdfcMkxUQSFeHbuebidPd876fa+gJZljHGTIsvCVYLFHrdLwDqve4nAauAZ0WkGrgM2DzZSVVVvUdVy1W1PCsra+ZVB1BH/zAp8VFT7+hRnOEO95pWC3djTOjwJdwrgDIRKRWRaOB2YPP4g6raqaqZqlqiqiXAdmCDqu4KSMUB1tE3TGqc7+FeON5yt3A3xoSQKcNdVUeAO4GtwCHgIVU9KCJ3i8iGQBc4l1SVzv4hUuN9O5kKEBsVQW5yLDXWLWOMCSHnv77eQ1W3AFsmbLvrHPteM/uygqOtd4jhUSV1Gt0yAEUZ8dS09QaoKmOMmT67QtVLfYd7FOd0umXAfVLVumWMMaHEwt1LXUc/ACnT6JYB90nVpu5B+odGA1GWMcZMm0/dMvNFvSfcfWm537ej5uzt023u5/34ueN86folgSnOGGOmwVruXuo7+omKEOKjI6b1vPQEd0u/rccuZDLGhAYLdy/1nf2kxkVPOdXvRBnj4d47GIiyjDFm2izcvdR1DEx7pAxAXHQEsVEuWm0KAmNMiLBw91LX3k/KNEfKAIgI6QnRNr+MMSZkWLh7DAyP0tIzOKOWO0B6QoyFuzEmZFi4e5zpHB/jPr1hkOMyEqJp7xtidMym/jXGBJ8NhfSoPzvGfaYt92jG1H2c8flmjDHhwXto87g7Li0KQiX+Yy13j/ELmNKmeQHTuPHhkDbHjDEmFFi4e9R3DCACybEz+zIzPhzSpiEwxoQCC3eP+o5+shJjiPRxkY6JkuOiiBDhlE0gZowJARbuHvWd/SxIjZvx810ipCVE2aIdxpiQYCdUPera+1melzyrY6QnRFu3jDEhYrKTpPOJhTvuRTrqO/u5bln2rI6TnhDDgbpOVHXaUxgYY6ZnbExp6BrgRHMPNW199A+NMjQ6RkZCNMtykxkaGSM6cv52Tli4415ab2B4jLxZdMuA+6Rqz+AIbb1DZCTG+Kk6Ywy4G2GHz3Tz/b8e42RLrzvQh889zXZUhPCmRZm8uSyLuGlOBugEPoW7iKwHvg9EAD9T1W9NePxTwGeBUaAH2KiqlX6uNWAaPBcwLUiJpb1veMbH8R4OaeFuzOz9Zvspalr7eLWuk8qGLjr73Z/PrMQYVixIpiAtjqzEGNIToomJjCAyQujqH+ZM1wCv1nWy7WgzO062cuvFhaxYMLtu13AzZbiLSASwCbgeqAUqRGTzhPC+T1V/4tl/A/AdYH0A6g2Ihk73GPdcP4b7RUVpfqnNmPmotr2P3+2q5ZcvV9PRN0ykS1iSk8RblmWzJCeJ5PPMAZWRGENGYgwrF6Rw9ZJ+HtlTx/07a/jQ5cWU5STN3ZsIMl9a7uuAKlU9ASAiDwC3AGfDXVW7vPZPAMLqGvyzLffUOA41dM/4OOk21t2YGRscGeWJg408tOs0L1S1ALAoK5EbVuSwPDeZmKjpd63kpcTx0TeV8rMXTvCbHaf46JtKKclM8HfpIcmXcM8HTnvdrwUunbiTiHwW+BIQDVw32YFEZCOwEaCoKHQu7W3o7CfSJWTOsislKsJFbnKshbsx01DV1MMDO2u4b2cNfUOjpMZFce3SbC4pTpvxFePe4qIj+OgVpdyz7QS/3VnDl69fQuwM/lCEG1/CfbJhH29omavqJmCTiNwBfAP48CT73APcA1BeXh4yrfuGjgFykmOJcM1+hEtRRjw1diGTMec1MDzKllcbuH9nDRXV7US6hGW5SZSXpLM4OxGXn0ebJcZEclt5AT969jjPHW3mbStz/Xr8UORLuNcChV73C4D68+z/APDj2RQ11xo6B8hLifXLsYrS49l2tNkvxzLGSVSVyoYu/uXxQ+w53c7AsHvY4vqVuVxUlEpS7Mwm7fNVQVo8awpTebGqhXWl6X75VhDKfAn3CqBMREqBOuB24A7vHUSkTFWPee6+HThGGGno7GdVfopfjlWcHk9T9yD9Q6PzcviVMRPVtPaxeV8df9xbz7GmHiJcwsoFyawtSWdhZsKcXhNyw4ocDtR1svXgGW5fGzpdw4EwZbir6oiI3AlsxT0U8l5VPSgidwO7VHUzcKeIvBUYBtqZpEsmVKkqDZ0D3OCnr2lFGe7pfmva+liaO3/OzBvj7VRrL09WNvL4/gb2nu4AYF1JOv/yN6sYGBolPiY4l9ikxkdzVVkmzxxp5s1ls5tyJNT59C+sqluALRO23eV1+wt+rmvOtPcNMzgy5rdumeIM95n4U629Fu5m3lBVDtR18UTlGZ442MiRRveos7yUWNavzGV1QQqpnm6QYAX7uCsXZ/H8sRYqqtu4ZU1+UGsJpHl/her4Ih1+C/f011ruxjhZ/9AoO6vbeOpQI09WNtLQOYAAJZkJvP2CPFbkJZOWEHr92nHREaxckMy+2g5uuiCPqBnOBBvq5n24j49xz0vxz9ez1PgokmIjLdyN44yNuS//f/5YM88fa2FndRtDI2PERrl4c1kWVyzKZGluEglBbpn74pLidPbVuq96vbAgNdjlBETo/18IsDOeq1PzUv3TchcRijPibay7cYSmrgGeP9bC88eaeaGqhZYe9yLwOckxrC1OoywniZKMhLCboGthVgKp8VHsPtVu4e5U9Z0DREUImQn+mwumOCOBA3WdfjueMXPlly9Vc7Kll6qmHqqaejjT5f5mm5EQzZVlmVxVlsWVizN5+nBTkCudHZcIFxel8czhJjr6hs6eD3CSeR/uZzrdFzC5/HAB07hFmQn8+dUGBkdGiYm04ZAmtJ1u6+OZI008c7iJ54+1MDKmRLiEkox41q/MZXF2IrkpsbhEGBoZC/tgH3dxURpPH25id03HrKf7DkXzPtzrO/r9djJ1XGlWAmPq/tAszrYRMyb0HG/u4dE9dfzlwBmONfUAUJwRz9rSdJZkJ1GaGX5dLdOVnhBNcUY8lfWdFu5O1NA5wJpC//a5LcxMBOB4c6+FuwkZzd2DPLavnkf31rG/thMBSjMTuOmCPJblJJGRGD3vFplZlpPE1spGuvqHzzvTZDia1+GuqpzpHCDvAv+33AFOttgcMya4+oZG+ObmSvaebqeqqYcxda9bcNOqXFYXpDou0KZraW4yWysbOdrYTXlJerDL8at5He6tvUMMjY6Rl+zfcE+OjSIzMYYTzT1+Pa4xvhgZHeOl463ubpeDZ87OtHhVWRZrClPJ8fPvezjLSY4hJS6KIxbuztLQ4RnjHoBLkBdmJljL3cwZVeVgfReP7Klj8756mrsHSYqN5JY1C0iMiaI4I97vMy06gYh7EZD9tR2MjI0R6XLOeYZ5He71njHuC/x0AZO3hVkJPFnZ6PfjGuPtdFsfm/fV88ieOqqaeogQYWluEtcvz2FpbpJjr770p6U5SVRUt3GqtY9FWYnBLsdv5nW417W7w70gzf/hXpqZQGvvEJ19w6TEz+9+TeNfXQPDbNnfwMO769hZ3Qa4J+X6t3deQN/QCPHR8/pjPW2LshOIEOHomW4Ld6eobe8nPjqC1ACE70LPL8mJlh5bT9XM2q9fPkVVUze7azo41NDFyJiSlRjDDStyuLAg9ewcLhbs0xcTGUFpZgJHGru58YK8YJfjN/P6N6G2vY+CtLiADP8qzXxtxIyFu5mpQw1d/OGVWh6oOE3P4AhxURGUl6RxcVEa+amB+d2dj5bkJLLlwBk6+4dJccgIonkd7nUd/RSkxQfk2EXp8US4hBPNdlLVTE//0CiP7a/nN9tPsb+2k6gIoSw7iYuLUlmSm+Sok36hotTzTftkSw9rCp3RGJvX4V7b3s/FAWpVR0e6KEyLsxEzxmcnmnv47Y4afrfrNF0DI5RlJ/LNd6xgw5p8/nLgTLDLc7S8lFhio1ycbOmdX+EuIuuB7+NeielnqvqtCY9/Cfg4MAI0A3+rqqf8XKtfdQ8M09k/HJCTqeMWZiVy3Ma6mynsqm7jJ88d56+Hmoh0Ccvzkrl0YTqlGe4l6CzYA88lQnG6s4YvTxnuIhIBbAKux71YdoWIbFbVSq/d9gDlqtonIp8G/gN4byAK9pe6jvGRMoHplgH3WPeXjrcwNqZ+nZjMhL+xMeWbmw/y3LFmTrX2ERcVwXXLsllXmk5ygBeKNpMbP6naPTAc8MW654IvLfd1QJWqngAQkQeAW4Cz4a6qz3jtvx34gD+LDITaNne45wew5V6alcDA8Bj1nYHr2zfhZXh0jM176/nptuMcbewhNS6Km1fnUV6c7viJukKd9yCI1Q6Y492XcM8HTnvdrwUuPc/+HwP+PJui5kJtu3sxjUB2y5R5Jg071thj4T7P9Q2N8MDO0/zvCyep6+hnaU4S77mkgNUFqUTYt7qQsCA1jugI17wK98l+83TSHUU+AJQDV5/j8Y3ARoCioiIfSwyMuo5+YqNcZARwjcdlee5wr2zo4loHTilqptbRN8QvXqrmp8+doH94lJKMeD50eTFLc5JsGGOIiXC5V1FzSr+7L+FeCxR63S8A6ifuJCJvBf4PcLWqDk52IFW9B7gHoLy8fNI/EHOltr0/4OOEk2OjyE+N41BDV8Bew4Sm5u5BfvbCCX7z8il6h0ZZlpvE1UuyKM5ICHZp5jxKMxN4orKR3sGRYJcya76EewVQJiKlQB1wO3CH9w4ichHwU2C9qobFMi217XPTD748L5nDZ7oD/jomNNR39HPPthPcv7OG4dExbl69gM9cu4jdpzqCXZrxgXe/e7ibMtxVdURE7gS24h4Kea+qHhSRu4FdqroZ+DaQCPzO0xKuUdUNAax71uo6+lldkBLw11mRl8TThxsZGB4lNsqW3HOq6pZefvzscR7eU8vomHJRURpXL8kiMzHGgj2M5KfFEekSTrXOg3AHUNUtwJYJ2+7yuv1WP9cVUL2DI7T1DgV0pMy45XnJjCkcbex2xEka83pHG7vZ9EwVj+2rJzLCxR3rishJjnXkgsvzQaTLRWF6PNWtfcEuZdbm5RWqczHGfdyyvGTAPUeIhbtznGzp5b+eOMLj+xuIjnRxxeJMrlyc6Yjx0fNdcUY824420zs4QkJM+EZk+FY+C4Gc6nei4vR44qMjONRg/e7h7r4dNXT2D/P04SZeOdVGpMvFNUuzuHJRJvFhHALm9UoyEnhWm9l7uoMrFmcGu5wZm5e/kWfHuAdgBaaJXC734gk2Yia8dfQN8ZcDDbx0vBVVuHRhBtcsybKWugMVpccjwM6TbRbu4aa2vZ/oSBeZiTFz8nrL85J5fF89qmpjm8NM39AIP3+xmp88d5yegRHWFKby1uU5Z+dPN84TGxVBbkosu061BbuUWZm34Z6fGheQ+V7u21Hzhm3L85K5b0cN9Z0D5M/BtwUze0MjYzxYUcP3n6qipWeQty7PYcWCZHJtcel5oTgjgT01HQyPjoXtUoXzMtxPtPSeHc86F5bnuq9UPVTfZeEe4kbHlK/+YT9PHW6irXeIkowE3n1xvl18NM+UZMSz/URrWA+ECM8/SbMwNqacaO5hUdbcfVi9R8yY0KSqbD14hhu/v43fvVJLTKSLD19ewieuKrVgn4fG/59XVLcHuZKZm3ct97qOfgZHxs6ucToXEmMiWZiZwL5au5gl1KgqL1S18J9bj7CvtpOFWQm8b10RKxck47LzI/NWSlwUhelxVJxs42NXlga7nBmZd+E+vnjGXK9yXl6SxtaDjTa3ewh55VQbf/+7/Zxs6SU1Lop3X5zPmsI0m6XRALC2OJ1tx5rDdiDEvOuWOe5Z03Quu2UA1pak09k/zLEmW5kp2Crru/jYLyp4949fpql7kJtX5/Gl65dwSXG6Bbs5q7wknZaeobC9WnXetdxPNPeQGh9F+hwPZVtXmg5ARXUbSz0nWM3cOtHcw3eePMrj+xtIjo3kK+uXEh8VaYtkmEmtLXGvpVpR3TanAzD8Zd6F+/HmHhZmJsz516yi9Hiyk2KoqG7jA5cVz+lrz3eNXQN854mj/O6V02evKr1qcRZx0TaRmzm3RVmJpMZHsau6jdvKC6d+QoiZh+HeyzVLsub8dUWEtaXpVJwM7wsjwsV9O2oYGhnjhapmth1tYXRM7apSMy0ul1BenM6uMB0xM6/CvWtgmObuQRZlz+3J1HFri9P40/4Gatv7bNm9ABobU/bUtPNEZSOd/cOsXJDM+pW5ZMzRFcnGOdaWpPHXQ400dw+SlRRevz/zKtxPeE6mLgxS/9lar353C/fAqKhu418er2RfbSf5qXHcVl4Ylv2lJjSUl7g/s6+camP9qrwgVzM98+pM0nHPSJVgtdyX5SaTFBMZ1hdGhKqa1j4+89tXeM9PXuZM1wC3XlLAp69ZZMFuZuWC/BRiIl1h+ZmdVy334809RLqEovTgtJojXMIlJWnW7+5HXQPDfPa3u3npeCsugbcsy+aqsiwbAWP8IjrSxZrCVHZVh99n1qdPgIisF5EjIlIlIl+d5PE3i8huERkRkVv9X6Z/HG/uoTgjPqgTAV2+MINjTT1npx02MzMyOsavt5/imm8/y/PHWriwIIUvXb+UtyzPsWA3frW2JJ0D9V30DYXXotlTfgpEJALYBNwIrADeJyIrJuxWA3wEuM/fBfrT8ebeOZ12YDJvW5kLwF8OnAlqHeHs2SNN3Pj95/m/jx5gcXYin71mMbdeUkhKnI2CMf63tjSd0TENu1EzvjRx1gFVqnpCVYeAB4BbvHdQ1WpV3Q+MBaBGvxgZHeNUa++cTzswUUlmAsvzkvmzhfu0HW3s5sP37uQjP69gaHSMn3zgEh7ceNmcrIVr5q+1JWlER7h4oaol2KVMiy/hng+c9rpf69k2bSKyUUR2iciu5ubmmRxixqqaexgeVZbmBjfcAW5alcsrp9o50zkQ7FLCQmvPIN949FVu/P7z7DjZyo2rcvnYFaW09Q5x/87TUx/AmFmIj46kvCSNbUfnNrNmy5dwn+xSTp3Ji6nqPaparqrlWVlzeyHRnhr3jIxrCtPm9HUnc+MF7q6ZrQet9X4+fUMj/OCpY1z97We5f+dp3n9pEV++filXlWURGaYLKJjw9OYlWRw+001TV/g0yHz5hNQC3tfeFgD1gSkncPbUtJMaH0VJRvDHly/OTqIsO5EtrzYEu5SQNDw6xufv38O6f32K/3ryKIXp8Xzu2sUsy00O69XoTfi6qsy9luq2Y+HTNeNLuFcAZSJSKiLRwO3A5sCW5X97ajq4qDA1ZKbuvHFVLhXVbTR3Dwa7lJChqjy+v57rv/Mcm/fVk5EYzSffvJAPXlZMti1vZ4JoeW4ymYkxYdU1M2W4q+oIcCewFTgEPKSqB0XkbhHZACAia0WkFngP8FMRORjIoqdrfKrdi4qC3yUz7qbVeYwp/HFvXbBLCTpV5cWqFm7Z9CJ33reHmMgIPnRZMRuvWmirIJmQ4HIJV5Vl8kJVC2NjM+qVnnM+fcdV1S3Algnb7vK6XYG7uyYk7fesgHRRUeishbgsN5l1penc+8JJPnR5ybwcm62qvHy8la8/8irVrX2kxEVx68UFrClKtVWQTMh585JMHtlTx8EcZ2slAAANu0lEQVT6Li4oSAl2OVOaFx2Ye2o6EIELC4MT7vftqHnDtjsuLeLT1yzioz+vYPO+em69JGT/NvqdqvLS8Va+99ejVFS3kxwbyTtW51Fekh62K80b57tysXsQyLZjzRbuoWJPTTuLsxJJDrGpXq9ZksWy3CR++txx3nVRvuOX31NV7n68kqcPNXGqrc8d6hcuoLw4zULdhLyspBguyE/hiYNn+Oy1i4NdzpQc/4lSVfac7gipLplxIsKnrl7EsaYenjrcFOxyAmZ0TNl68Ay3/uRlfv5iNe19Q2y4cAFfvmEply/MsGA3YeMdF+axr7aT6pbeYJcyJcd/qqpb++joGw6pk6nebl6dR0FaHN998ijDoyF7ge+M9A6O8IsXT3Ldfz3LJ3/9Cmc6B9hw4QL+/oalXGahbsLQOy5cgAhs3hf6o8Ed/+naU+OeDyIUW+4AkREuvvH2FVQ2dPGDp6uCXY5fVDX18G9bDnHZ/3uKbz5WSUZCNJvuuJjn/uEaLluYYRcgmbCVlxLH2pJ0/ri3DtXQHjXj+D73Z440k54QTVl26C5KvX5VLu+6OJ9Nz1Rx3bJs1gTpxO9sdA8M86f9DTy06zS7azqIcAnL85K5cnEmRenxdPYP89Cu2mCXacysbbhwAd949ACVDV2sXBC6J1YdHe59QyP8tbKRd12cT0SIn6z8x3esZPvxVr700F4e/ewVIXfydzIDw6NsO9rMllcb+NOrDQyPKllJMdy4Kpc1ham2VqlxpJsuyOObmw+yeV+9hXuwPHWoif7hUd5x4YJglzKllLgo/vO2C/nwvTt5///s4Fd/u460hOhgl/UGPYMjZwP96cNN9A2NkhofxZrCNMqL0yhIiwuZq4CNCYT0hGiuKsvksb31fOVty0K24ejocH9sXz3ZSTGs9ayDGOretCiTn37wEj71m92873+286uPrSM7KbiX3Y+NKQfqO3n+WAvbjjazu6ad4VElISaSVQtSWJmfzMLMxJD9BTcmEG4rL+TTv93NllcbQrbx6Nhw7xoY5tkjzbz/sqKQDJ5zXdh03bIc7v3wWj7+qwpu+O42vn7Tct5zScGctYYHhkc5UNfJK6faeeVUOxXVbbT3DQOwckEyH79qIcOjY5RkJNhVpGbeetvKXBZnJ/LDp6t4+wV5IXmNimPD/cmDjQyNjoXsX9XzubIsk8fuvJKvPfwqX/n9fh7YWcOH31TC+lW5xERG+O11egZHOHKmi8qGbg43dFHZ0MXBui6GPEMyMxKiKc1M4PrsRBZlJVofujEeLpdw57WL+bsH9/JEZSPrV+UGu6Q3cGy4/3FfPfmpcVwUhiNPAMpyknjok5fz0K7T/PCZKr7wwF5S46O4YnEml5amsyo/hcK0eDIToydt1asq3YMjtPcO0dY7REPnAKda+6hp66WmrY/qlj7qOvrP7h8b5SI3OY7LFqZTlJ5AUUY8iTa9rjHndPPqPL7316P84OljvG1lTsida3Lkp3f7iVa2HW3mi29dEnL/4Odzrq6a28oLefF4Cw/vruPl4638af9r88BHR7pIiokkPiYClwijY8rA8BgdfUOMTDJ7XXpCNAnREWQmRrNiQTJ5ybHkpsSSEhcVVv9WxgRbZISLz1y7mK/8fj9/OXCGGy/IC3ZJr+O4cB8eHeMf/3iQ/NQ4Nr55YbDLmTXvwF9bkk55cRrtfcMsz0vidFsfDZ0D9AyO0Dc0yonmHlwiREa4iI9OJiE6gviYSOKjI0iOjSI9IZrYKP916xgz373zonx+/mI1X3vkVVYXppKfGjrr+Tou3H/18imONHbz0w9eQly084JMREhPiKaxa5DoyIjXzXceLqOCjHGKqAgXm+64iA0/fJHP3bebBz95echMqxEaVfjJqdZevvfkUa5eksUNK3KCXY4xZh5YmJXIt959AbtrOvinxw4yGiKLefgU7iKyXkSOiEiViHx1ksdjRORBz+M7RKTE34VOZU9NO+/60Uu4XMI/bVhp/cfGmDlz8+oFfOKqUn6zvYaP/qKC9t6hYJc0dbiLSASwCbgRWAG8T0RWTNjtY0C7qi4Gvgv8u78LPZcez8yDt9+zncTYSB75zJsoybSl2Ywxc+vrNy3nX9+5iu3HW7n5By/wm+2n6BkcCVo9vvS5rwOqVPUEgIg8ANwCVHrtcwvwTc/t3wM/FBHRAEyb1tIzyIG6Tqqaeqhs6OIvB87QNzTKpaXp/Oj9F5ORGOPvlzTGmCmJCO+/tJhVC1L4+iOv8o1HD/CtPx/mqrJMVuWnUJadSGp8NClxUeSlxgZ8/ihfwj0fOO11vxa49Fz7qOqIiHQCGUCLP4r09mDFab699QgAqfFRvP2CPO64tIg1hanWFWOMCboLC1N5/HNXsvd0B/ftqKGiuo0/Hzjzun3++ZaVfPDykoDW4Uu4T5aYE1vkvuyDiGwENnru9ojIER9e/5xOAfuA/5zNQd4okwD8UQoiez+hy0nvBRz2ft4fwGN/6N/hQzN/erEvO/kS7rVAodf9AmDiMiTj+9SKSCSQArRNPJCq3gPc40thwSIiu1S1PNh1+Iu9n9DlpPcCzns/4c6X0TIVQJmIlIpINHA7sHnCPpuBD3tu3wo8HYj+dmOMMb6ZsuXu6UO/E9gKRAD3qupBEbkb2KWqm4H/BX4tIlW4W+y3B7JoY4wx5+fTFaqqugXYMmHbXV63B4D3+Le0oAnpbqMZsPcTupz0XsB57yesifWeGGOM8zhq+gFjjDFuFu5epppmIZyIyL0i0iQiB4Jdy2yJSKGIPCMih0TkoIh8Idg1zYaIxIrIThHZ53k//xTsmmZLRCJEZI+IPB7sWoybhbuHj9MshJNfAOuDXYSfjABfVtXlwGXAZ8P8/80gcJ2qXgisAdaLyGVBrmm2vgAcCnYR5jUW7q85O82Cqg4B49MshCVV3cYk1xqEI1VtUNXdntvduEMkP7hVzZy69XjuRnl+wvbkl4gUAG8HfhbsWsxrLNxfM9k0C2EbIE7lmXH0ImBHcCuZHU83xl6gCXhSVcP5/XwP+AowFuxCzGss3F/j0xQKJnhEJBH4A/B3qtoV7HpmQ1VHVXUN7iu+14nIqmDXNBMicjPQpKqvBLsW83oW7q/xZZoFEyQiEoU72H+rqg8Hux5/UdUO4FnC9/zIFcAGEanG3ZV5nYj8JrglGbBw9+bLNAsmCMQ93ef/AodU9TvBrme2RCRLRFI9t+OAtwKHg1vVzKjq11S1QFVLcH9mnlbVDwS5LIOF+1mqOgKMT7NwCHhIVQ8Gt6qZE5H7gZeBpSJSKyIfC3ZNs3AF8EHcrcK9np+bgl3ULOQBz4jIftyNiidV1YYQGr+yK1SNMcaBrOVujDEOZOFujDEOZOFujDEOZOFujDEOZOFujDEOZOFujDEOZOFu5oyIjHrGqB/0THf7JRFxeR4rF5H/Ps9zS0Tkjrmr9g2v3e+ZCyYkiMh7PVNT2/h4MykLdzOX+lV1jaquBK4HbgL+EUBVd6nq58/z3BIgKOHucdwzF4zPPNNIB4SqPgh8PFDHN+HPwt0Ehao2ARuBO8XtmvFWqIhc7XUl6h4RSQK+BVzl2fZFT2v6eRHZ7fl5k+e514jIsyLyexE5LCK/9UxfgIisFZGXPN8adopIkmd2xm+LSIWI7BeRT/pSv4g8KiKveL6FbPTa3iMid4vIDuDyc7zmSs/tvZ7XLPM89wNe2386/sfBs4jMbs8xnvLj/wbjZKpqP/YzJz9AzyTb2oEc4Brgcc+2x4ArPLcTcS/kfvZxz/Z4INZzuwzY5bl9DdCJe+I3F+4pGK4EooETwFrPfsme424EvuHZFgPsAkon1FgCHJiwLd3z3zjgAJDhua/AbZ7b53rNHwDv99onDljued9Rnu0/Aj4EZOGeirrU+3W93uvjk/1b24/9RE7zb4Ex/jbZVMsvAt8Rkd8CD6tqrafx7S0K+KGIrAFGgSVej+1U1VoATz95Ce7Ab1DVCgD1TBksIjcAq0XkVs9zU3D/sTg5Rd2fF5F3em4Xep7T6qnlD57tS8/xmi8D/8ezyMXDqnpMRN4CXAJUeN5rHO653i8DtqnqSc8xHLEAiwk8C3cTNCKyEHcYNuFuuQKgqt8SkT/h7pPfLiJvneTpXwQagQtxt9AHvB4b9Lo9ivv3XJh8fn4BPqeqW6dR9zW4Z3K8XFX7RORZINbz8ICqjnod+w2vqar3ebpt3g5sFZGPe/b9pap+bcJrbThH3cacl/W5m6AQkSzgJ8APVVUnPLZIVV9V1X/H3U2yDOgGkrx2S8HdKh7DPWPkVCcvDwMLRGSt5zWSRCQS9yygn/bMF4+ILBGRhCmOlQK0e4J9Ge7Wtc+v6fmjdkJV/xv3tNKrgaeAW0Uk27NvuogU4+5WulpESse3T1GbMYC13M3civN0k0ThXvT618Bk87P/nYhci7vVXQn8GfcSbiMisg/34t8/Av4gIu8BngF6z/fCqjokIu8FfuCZQ70fd+v7Z7i7bXZ7Trw2A38zxfv4C/Apz5S9R4Dt03zN9wIfEJFh4Axwt6q2icg3gCc8w0OHgc+q6nbPCduHPdubcI80Mua8bMpfY6Yg7nVbH1fVkFoKz9M99PeqenOwazGhx7pljJnaKJASahcx4f720h7sWkxospa7McY4kLXcjTHGgSzcjTHGgSzcjTHGgSzcjTHGgSzcjTHGgf4/WtyB0I5JAeoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(las['las_ra'], las['las_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, las, \"las_ra\", \"las_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Add CFHT-WIRDS" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8XPV57/HPo9G+b2NJ1mLJWAZsbDAIm4QtC7QmtJC0SSEpSdOGOs0NzdL29iZtX2lK+rppeu9N0jSkqUtoEgiFQDZDTFkSdrDxBsa7ZdnWZktja19HM/PcP2ZGEUK2RtKMZubM83699GLm6GjOM9j+6je/8zvPEVXFGGOMs6TFuwBjjDHRZ+FujDEOZOFujDEOZOFujDEOZOFujDEOZOFujDEOZOFujDEOZOFujDEOZOFujDEOlB6vA5eXl2t9fX28Dm+MMUlp165dZ1TVPdt+cQv3+vp6du7cGa/DG2NMUhKRk5HsZ9MyxhjjQBbuxhjjQBbuxhjjQBbuxhjjQBbuxhjjQBbuxhjjQBbuxhjjQBGFu4hsFJHDItIsIl+Y4fvfEJHXQ19HRKQv+qUaY4yJ1KwXMYmIC7gHuBFoB3aIyBZVPRDeR1U/P2X/PwfWxaBWY4wxEYrkCtX1QLOqtgCIyEPArcCBc+z/YeDvo1Pe4ntwe+uM2z+yoW6RKzHGmPmLZFqmGmib8rw9tO1tRGQZ0AD8euGlGWOMma9Iwl1m2Kbn2Pd24FFV9c/4QiKbRGSniOz0eDyR1miMMWaOIgn3dqB2yvMaoPMc+94O/Ne5XkhVN6tqk6o2ud2zNjUzxhgzT5GE+w6gUUQaRCSTYIBvmb6TiFwIlACvRrdEY4wxczVruKuqD7gLeBI4CPxYVfeLyN0icsuUXT8MPKSq55qyMcYYs0gi6ueuqluBrdO2fWna8y9Hr6zFca6VMcYYk+zsClVjjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHEgC3djjHGgiMJdRDaKyGERaRaRL5xjnz8QkQMisl9EHoxumcYYY+YifbYdRMQF3APcCLQDO0Rki6oemLJPI/BF4GpV7RWRJbEq2BhjzOwiGbmvB5pVtUVVvcBDwK3T9vlT4B5V7QVQ1e7olmmMMWYuIgn3aqBtyvP20LapVgIrReRlEdkmIhujVaAxxpi5m3VaBpAZtukMr9MIvAuoAV4UkUtUte8tLySyCdgEUFdXN+dijTHGRCaSkXs7UDvleQ3QOcM+v1DVCVU9DhwmGPZvoaqbVbVJVZvcbvd8azbGGDOLSMJ9B9AoIg0ikgncDmyZts/PgXcDiEg5wWmalmgWaowxJnKzhruq+oC7gCeBg8CPVXW/iNwtIreEdnsSOCsiB4Bngf+pqmdjVbQxxpjzi2TOHVXdCmydtu1LUx4r8BehL2OMMXFmV6gaY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDWbgbY4wDRRTuIrJRRA6LSLOIfGGG739cRDwi8nro687ol7o4dp/s5ZvPHMEXCMS7FGOMmbdZw11EXMA9wE3AKuDDIrJqhl0fVtXLQl/3RrnORbO7tZfuwXFaz47EuxRjjJm3SEbu64FmVW1RVS/wEHBrbMuKj7EJPydDoX6kazDO1RhjzPxFEu7VQNuU5+2hbdP9vojsFZFHRaR2phcSkU0islNEdno8nnmUG1vHPEP4VcnJcHGkayje5RhjzLxFEu4ywzad9vwxoF5V1wLPAD+Y6YVUdbOqNqlqk9vtnluli+Dw6UGy0tO4prGc0wNjDIxOxLskY4yZl0jCvR2YOhKvATqn7qCqZ1V1PPT0P4ArolPe4lFVjnQNsmJJPhdVFgA2NWOMSV6RhPsOoFFEGkQkE7gd2DJ1BxGpmvL0FuBg9EpcHKcHxhgY83FhRQGVhdkUZqdzpNumZowxySl9th1U1ScidwFPAi7gPlXdLyJ3AztVdQvwGRG5BfABPcDHY1hzTBw5HRylr6woQERorChgf2c//oDiSptpZsoYYxLXrOEOoKpbga3Ttn1pyuMvAl+MbmmL63DXIFVF2RTmZADBkN91spf23hGWleXFuTpjjJkbu0I15PTAGMvKciefN5QHA72tdzReJRljzLxZuANeX4CxiQBF2RmT2/IyXWS4hP4RbxwrM8aY+bFwBwbHgkseC3J+E+4iQlFOBv22HNIYk4Qs3IGBMR8AhVNG7oCFuzEmaVm4w+TFSoXZbz2/XJSTaeFujElKFu7AQGhapjDn7SP3wTEf/sD0C3KNMSaxWbgDg2M+MlxCVvpb/3cU52Sg/GZO3hhjkoWFO8GRe2F2BiJvvVgpPJK3qRljTLKxcCc45z59SgagKDe4rc/C3RiTZCzcCa6WKch++8W6xaHAt+6Qxphkk/LhrqoMhqZlpsvOcJGVnmYjd2NM0kn5cB+bCDDh1xmnZSC01n3Ewt0Yk1xSPtwnl0HOMC0DdiGTMSY5WbiHWw/MMC0DFu7GmOSU8uE+OBpuPXDukfvQuA+vL7CYZRljzIKkfLif6+rUsKLQ9q6BsUWryRhjFsrCfWyCnAwXGa6Z/1eE17p39llfd2NM8rBwH515jXtYeOR+qt9G7saY5JHy4T44NvPVqWHhcO/st5G7MSZ5pHy4D4z5ZryAKSwr3UV2Rhqn+mzkboxJHhGFu4hsFJHDItIsIl84z34fFBEVkabolRg7gcmrU89/n/DinEybljHGJJVZw11EXMA9wE3AKuDDIrJqhv0KgM8A26NdZKwMj/sI6FtvrzeTopwMTtm0jDEmiUQycl8PNKtqi6p6gYeAW2fY7yvAPwNJM8QdHDv/Gvew/Ox0zgyNL0ZJxhgTFZGEezXQNuV5e2jbJBFZB9Sq6uNRrC3mBme5OjUsPyuds0NeAnZHJmNMkogk3GWGbZMpJyJpwDeAv5z1hUQ2ichOEdnp8XgirzJGhr1+APIyXefdLz8rHV9ArTukMSZpRBLu7UDtlOc1QOeU5wXAJcBzInICuArYMtNJVVXdrKpNqtrkdrvnX3WUjIwHp2Xyss4/LRNeB29TM8aYZBFJuO8AGkWkQUQygduBLeFvqmq/qparar2q1gPbgFtUdWdMKo6iYa+fNOFt906dLj8U/mcGLdyNMclh1nBXVR9wF/AkcBD4saruF5G7ReSWWBcYSyNeP7mZ6W+7d+p04XD32MjdGJMkzj8fEaKqW4Gt07Z96Rz7vmvhZS2OEa+P3Fnm2+E3J1w9NnI3xiSJlL5CdXjcP+t8O0B2RhqZrjTODHkXoSpjjFm4lA73SEfuIkJZfqaN3I0xSSPFwz045x4Jd0GWrZYxxiSNlA13VWXE65t1jXtYeb6FuzEmeaRsuA+G+spEMi0DUG7TMsaYJJKy4d47HDw5mhvBCVUITsucHbYWBMaY5JCy4d4TCve5TMv4rQWBMSZJpGy4940EQzrSE6rl+VmArXU3xiSHlA338Mg90jl3d0Ew3O2kqjEmGaRsuPeOhKZlIpxzD4/cLdyNMckgsmRzoN4Rb0RNw8LcNi1jTEp5cHvr27Z9ZENdHCqZn5QN957hiYiahoUV5qST6Uqz5mHGOMxMIe4EqTstM+yNeL4dgi0IyvMzOTNo/WWMMYkvZUfuvSPeiFfKhJUXZNnI3ZgkNOr1s6e1l4d3tuHzB69VWb20kOLczDhXFjspHe55WZGP3CE4736qP2nu/21MSvu3546xr6Of/Z0DtPWM4Ne3XoD4xL5TrKoq5IaLK1hSmB2nKmMnZcO9Z3iChvK8Of1MeX4Wb3b0x6giY8xCjU34eXL/aR7e0cYrx84CUFmYzdUrymgoz6OyKIdMVxqjE35eO97DayfO0tozwp+/pzHilXPJwlnvJkKqSt+Il9zMwjn9XHlB5mQLgrS0yE7EGmNib19HPw/vaOMXr3cwMOajtjSH9168hLXVxZPXqEyVk+li4yWVrK0p4t+eP8aju9r56DuWkRbhAotkkJLhPjjuwxfQiFsPhLlDLQh6R7yU5b/9L4wxZvH0jXj5+Z4O/v2FFk71j5GeJlxSXcQVy0poKM+LKKiXFudw85oqtrzRyUtHz3DdSvciVL44UjLc59o0LKx88ipVC3dj4sEfUF5qPsOPd7bx9P4uvP4A1cU53HLpUi6tKSZnjgM2gA0NpbR4hnjqwGkuqyumMHRbzWSXmuE+2Vdmbn8RpvaXubCyIOp1GWNmdvLsMI/sbOf+bSfpH50gN9PFFfUlXFFXwtLinAW9tohww6oK9nUOsLetj2sanTF6jyjcRWQj8C+AC7hXVf9p2vf/DPg04AeGgE2qeiDKtUZN72RHyLn9brP+MsYsnhGvj61vnuaRnW1sP95DmsCKJfm8b00VF1cWkO6K3mU6SwqyqSnJYU8qhbuIuIB7gBuBdmCHiGyZFt4Pqup3Q/vfAnwd2BiDeqNirk3Dwqy/jDGxparsbu3lq1sPsbejH68vQFleJr+1qoJ1dSUU5cRuyuSy2mIe33uK0/1jVBYl/9LISIau64FmVW0BEJGHgFuByXBX1YEp++cBCX1Hi3DTsLlexFSYbS0IjImF7oExfrK7g0d2tdHiGSbTlcaa0MnRZWW5EbcJWYi1NcVsffMUe9p6uamoKubHi7VI0q0aaJvyvB3YMH0nEfk08BdAJvCeqFQXI70jXlxpQnbG3D7WiQjugixrHmZMFHh9AX51sItvPnOUo92DBBSWlebye+uqWVNdRFbG3E+OLkR+VjorKwp4o62P315dmfTLIiMJ95ne4dtG5qp6D3CPiHwE+Dvgj972QiKbgE0AdXXx667WMzxBSW7mvEYD5fmZnBmy/jLGzNfBUwP8eGcbv3i9k55hL4XZ6Vzb6OaKupLJFWnxsq6uhEOnB2nxDLNiSX5ca1moSMK9Haid8rwG6DzP/g8B/zbTN1R1M7AZoKmpKW5TN30jXkpy5zd3V24tCIyZs74RL1ve6OS7zx+js28MV5pwcVUhv7t2KY0V+QkzSr6osoD0NOFI12BKhPsOoFFEGoAO4HbgI1N3EJFGVT0aenozcJQE1jPspSRvfg2D3AVZ7LUWBMbMyh9QXg6tSX8qtCZ9aVE2v7O2istqiud8ncliyHClsbQ4h9aekXiXsmCz/t9VVZ+I3AU8SXAp5H2qul9E7gZ2quoW4C4RuQGYAHqZYUomkfSOeFlePr/fyuX5WfRYCwJjzunk2WG+vGU/u1v76B+dICfDxRXLSrhi2cLXpC+GZaW5vNJyFp8/ENXllostol+dqroV2Dpt25emPP5slOuKqd6RCUry5jstk2ktCIyZZtTr54l9p/jxzja2tfQgQGNFbNakx1ptaS7+5jN09o9RV5ob73LmLfE+F8WYqtI77KVknn2c3QXB9a+eoXELd5PSVJU9bX08srONx944xdC4j/qyXP7nb19ImkhM16THUl1ZMNBbzw5buCeTcNOw0nnOuZfnB3/uzKAXKqNZmTHJ4ezQOD/b08HDO9o42j1EpittsmFX/SKtSY+lwuwMSnIzkn7ePeXCvW842FemODcTry8w558vtxYEJgWpKv/4y4NsaznLoVOD+FWpLcnhA+uqWRuHNemxVleay/Ezw6hq0v6ySrlw7wldnVqal8Hp/rkH9NTmYcY43YQ/wNY3T7H5hRb2dw6Qm+niquWlNNWXUuHAuxeF1ZXm8kZ7P/2jE0l7K76UC/dw07CS3Mx5hXthdjqZ6Wk2cjeOdt9Lx9l5ooeXj52lf3QCd34WH1hXzWW1xWQk0cnR+aorC96l7WTPiIV7sgj3lZnvCVURwZ1vN8o2znSqf5Tvv3yC779ygnFfgIbyPG69dCkrKwsS5kKjxVBZmE2GS2jtGeHSmuJ4lzMvKRfu4Y6Q872ICYInVW1axjjJm+393PtSC7/cewoFVi8t5JoV5dSUJO9qkYVwpQk1Jbm0JfFJ1ZQL93DTsMLs+b91d0EWHX3WgsAkN39A+dXBLu596TivHe8hPyudP3pnPR9/Zz0vHj0T7/LibmlRNq+d6CGgmpSfWlIw3Ccoyc1Y0Bnw8vws3mi3FgQmOXUNjPHjHW08tKONjr5RinMzeN+aKpqWlZCd4bJgD1lSmM2EX+kbmZj30ul4Sr1wX8AFTGHl+VmcHRrHH1Bc1oLAJAF/QHnhqIf/2t7Krw514w8oV68o42/edzE9w177ezyDitCy566BMQv3ZLCQpmFh7oIsAhqc4im3q1RNAps+Ss/LdHH1BWU01ZdSnp9F/+iEBfs5LAkt9eweGOPiqsI4VzN3KRfufSMT1Jcv7CTR1NvtWbibRHOuUfp1K91cXFVAeprzlzJGQ3aGi8LsdLqSdPFEyoV7z4iXy/MWtrQp3ILAMzjORdaCwCSIt43Ss9K5+oJyrqwvsT5I81RRmE33YHIunkipcFfV0I06Fj4tA9aCwMSfP6Dc/dgBdpzo4dDpAQIKK9z5fHh9nY3So2BJQRavnRhOyhUzKRXuQ+M+Jvy68BOq4XAftNvtmfiYaZR+zQq3jdKjrCK0YqZ3OPlafKdUuPeGmoYt9IRqQVawBYFdpWoWU3gu/cHtrfw6NJd+zYpym0uPoSWhgVz3YPK1+E6tcJ/SNGwhRISKwiy6BpJzLs4kl66BMR7e0cZ9Lx2nb3QiNEovp2mZjdJjLZlXzKRUuIc7QkajEVBVUQ6n7CpVEyOB0Cj9R1NG6Svc+dy0pspG6YsoO8NFUU5GUq6YSalwD3eELJ1HuD+4vfUtz72+gPWXMVHXO+zlkV1tfPf5FnqGvTZKTwBLCrLoTsJP6akV7iPRmXMHKM7JYF9Hv12lahZMVXm9rY/7t53k8b2n8PoC1Jfl8VurKli1tNBG6XG2pCCL7WeCK2aSSWqF+/DCm4aFFeVm4AsonsFxKouce9MCEzujXj9/+7M32Xb8LJ19Y2Smp7GutpgNy8uodPCNMJJNRWE2voBOfvJPFhGlnIhsBP4FcAH3quo/Tfv+XwB3Aj7AA/yJqp6Mcq0L1jPiXXDTsLDi0M1/O/pGLdzNnLR4hnhgWyuP7mpjYMxHRWEWt1y6lHW1xY67XZ0TuKesmEkms4a7iLiAe4AbgXZgh4hsUdUDU3bbAzSp6oiIfAr4Z+C2WBS8EH0j3qjdVaUoJ/g6p/pHgZKovKZxLp8/wDMHu3lg20leaj5DhkvYeEkVlYXZjriptJO585PzosVIRu7rgWZVbQEQkYeAW4HJcFfVZ6fsvw24I5pFRkvPsHdeJ1NnUpwbHLl39o1G5fWMM3UPjPHQjjYe3N7K6YExinIyuHFVBU3LSijIXtiSXLM4crPSyc10OTLcq4G2Kc/bgQ3n2f8TwBMzfUNENgGbAOrq6iIsMXp6hxfeNCwsO8NFflY6nbYc0kyjqmxr6eGBbSd5cv9pfAHlupVubri4ggsrC+wEfBIqz8/Ck2RXpEcS7jP9TZzxtLGI3AE0AdfP9H1V3QxsBmhqalr0U8+9I17W5UbvfohLi7Nt5G4mDYxN8LPdHdy/7STN3UPkZLi4ankZ6xtKrXtoknPnZ3GkazDeZcxJJOHeDtROeV4DdE7fSURuAP4WuF5VE+7zi6rSO7LwXu5TVRXlcKrfRu6p7kjXIN9/5QQ/39PBiNfPpTVF/P7lNaytKSLDZcsYnaA8P5NdrT4GxyaSZjotknDfATSKSAPQAdwOfGTqDiKyDvh3YKOqdke9yij4TdOw6P3BLC3OYV+H3W4vFfkDyrOHuvnqEwc55hkmPU24tKaYDctLU/am0k4WbhbY4hnm0troffqPpVnDXVV9InIX8CTBpZD3qep+Ebkb2KmqW4D/A+QDj4TO+req6i0xrHvOwleTRvPj8dKibM4Oexmb8JNtS9hSwsDYBI/sbOcHr5ygtWeEwux0fmtVBVfWl5KXlVKXjaSUcG60nBlyTrgDqOpWYOu0bV+a8viGKNcVdeE1qhVRvDhkaXEOAKf6x2goz4va65rE0+IZ4m9+to/drb14fQHqSnO5/cpaVi8tshOkKaAsLxMBjnuG411KxFJmqBEO93ALz2iYDPe+UQt3B1JVXjx6hv98+TjPHvbgEmFtTRHvuKDMpl5STLorjZK8TI6dsXBPOOHGP0sKojlyD75Wh62YcZQRr4+f7O7g+y8f55hnmPL8TD773kZyM11JczLNRF95fiYtNnJPPJ7BcTLT0yjMid5bDrcdsBUzztDWM8IPXz3B/dtOMjYRoLo4hw9dUcOa6iLSbdVLynPnZ7GrtZdAQElLgqm4lAn3roExlhRkRfUy76x0F+X5WbbWPYmFLzj6/ivHefpAFyLCqqpC3nlBGXWl1hbA/EZ5QRZjEwFOD4xNTskmspQJ9+7B8aieTA2rLs6m00buSWfc5+cXezr5xjNHONU/Rm6mi2sb3WxoKI1a/yHjLJMrZjzDFu6JpHtwnMYl+VF/3aqiHJo9Q1F/XRMbI14fD25v5T9ebKFrYJyKwiw+sK6ay2qL7YIjc17uKcshr2ksj3M1s0udcB8Y4+oLyqL+ukuLc3jhqAdVtY/wCax/ZIK/fOR1Xjl2lhGvn4byPP746ipWuPPtz81EpCA7nbxMV9KcVE2JcB+b8DMw5pu82W00LSvLZcTrxzM4HpPXNwvjGRzney8d54FtJxka93FRZQHXr3SzrMyWrpq5EREa3Hm0JMlyyJQI9+6B4Bp3dxTXuIetCE31HO0esnBPIB19o2x+/hgP7WjD6w9w85oqGsrzqCpK/LlSk7iWl+ezu7U33mVEJDXCfTC8xj364R6ex2/uHuLqFYk/D+d0xzxD/PUje9nTFvwHuK6uhOsb3ZO9QYxZiOXuPB7b25kULUdSJNyj33ogzF2QRUF2Os3ddlI1nvZ39vOdZ4+xdd8p0tOEDcvLuHZFua18MVG13J2PKpw4O8xFlYXxLue8UiPcB2I3chcRVizJ52h3cvV6dopdJ3v49q+befawh4KsdD51/QUU52aSb028TAwsD7UZOe6xcE8I3YPjpKcJJTEaxa1w5/PsYU9MXtu8Xbjnyz3PNrP9eA+5mS5uXFXBVQ1l5GQm9kdlk9zCPaSS4aRqSoR718A47oKsmF0y3FiRzyO72ukfmaAoiv3izVsFAspTB7r4znPN7G3vp7Iwm5vXVHFlfSmZ6bZG3cReXlY6lYXZHEuCa1tSIty7B8diMiUTFl4x0+wZ5IplpTE7Tqry+QM8treTr249RPfgOKV5mXxgXTXraout54tZdMvdeUmx1j0lwt0zOE5taexatK5wFwBwtGvIwj2KfP4AP3+9k2/96iitPSNUFGZxW1Mtl1RbD3UTP8vdeWx5vTPhL1xMiXDvHhznimUlMXv96pIcstLTbMVMlPgDyuN7O/mXZ47ScmaY1UsL+Y+PNdE1MEZaAv9jMqmhoTyfgTEfPcNeyhL4xueOD3evL0DPsDeqfdync6UJy9351mNmgQIBZeu+U/zDYwfwDI5TWZjNHRvquLiqEM/guAW7SQjL3b85qWrhHkeeodAdmApj+4fQuCR5rlxLNKrKk/u7+OYzRzh0ehB3QRYfXl/H6qWFFugm4VxQHjzH1uIZ4sr6xJ2GdXy4x3KN+1QrluSz5Y1ORrw+cjMd/781KlSVv//Ffp452EVn/xhleZn8QVMta2uKLNRNwqouySEzPS3hT6pGtNRARDaKyGERaRaRL8zw/etEZLeI+ETkg9Evc/5ieXXqVOEVM4n+B54IVJXnj3h4/3de4YfbTjLmC/DBy2v43A0ruay22ILdJDRXmlBflpvwa91nHWKKiAu4B7gRaAd2iMgWVT0wZbdW4OPAX8WiyIWIxY2xZxLuMXOka5BLqotieqxkpaq8cuwsX3/6CLtO9lJdnMMH1lVzeV2JrX4xSaWhPC/hF1BEMnJfDzSraouqeoGHgFun7qCqJ1R1LxCIQY0L0tk3SoZLYn7io6E8j/ysdHadtHn3mWxvOcttm7fxh/dup6N3lK+8/xKe/at3cWV9qQW7STrL3fm09oww4U+4yJsUyeRwNdA25Xk7sGE+BxORTcAmgLq6uvm8xJy1eIaoK82NeYCku9Joqi9h+/GemB4n2exp7eX/PXWEl5rPUJCVzu+sDV5R6hLh0V3t8S7PmHm5qLKACb9yzDOUsD1mIgn3mVJR53MwVd0MbAZoamqa12vMVYtnmOXu6N9ebyYbGsp47vAhzgyNT95vMRU9uL0Vz+A4Tx04zf7OAfIyXdx0SSUbGsqsTYBxhNVLg4G+r2MgqcO9Haid8rwG6IxNOdHlDygnz47wnouXLMrx1jcEl0XtON7DTWuqFuWYiaZ7YIyf7+lg58ke0l1pvPeiJVyzopysBO99bcxcNJTnk5PhYn9nPx+8oibe5cwoknDfATSKSAPQAdwOfCSmVUVJe+8IXn9gcl1qrK2pLiInw8X2FAz3sQk///58C999/hheX4ANDWW8+6Il1nrXOJIrTbi4qoD9nQPxLuWcZv2Xp6o+EbkLeBJwAfep6n4RuRvYqapbRORK4GdACfC7IvIPqro6ppVHILwsMXxFWaxlpqdx+bLilJp3D16AdJqvPH6Qjr5Rbl5TxUWVBQl95Z4x0bB6aRE/39NBIKAx6zi7EBENq1R1K7B12rYvTXm8g+B0TUIJr0MN92BeDBsayvjGM0dSov3v0a5BPvXAbpo9Q1QWZnPnNQ2Ldn7DmHhbvbSQ+7edpLVnhPpFzJhIOfozc4tniKKcDErzYnOTjge3t75t24aGUlRhx4keblhVEZPjxtvA2ATffPooP3j1BBku4XfXVrG+ocyWNJqUsnpp8HqW/Z0DFu6LLbhSJm9R23JeWltMZnoa24+fdVy4BwLKo7va+ecnD3F22MvtV9ZNru83JtWsrMwnPU3Y39nPzWsT7xybo/9VtpyPFfhYAAANXklEQVQZ4poV7kU9ZnaGi3W1xTx/xMPfvC+x+z3PxdeeOMRjeztp7x2lrjSX266so7o4J95lGRM3WekuGisS96SqYxcdD4376BoYX7STqVPdctlSjnQNsbe9f9GPHW1nhsb560ff4N+eP0b/yAQfuqKGT1633ILdGILz7vs7+1FdlMt25sSx4X48vFImDnNht1y6lJwMFw/taJt95wQ14Q9w30vHeff/fY6f7u7g2hXlfP7GlayrK3HMpxFjFmr10kLODHkne1glEseGe8uZYFOfeKzeKMjO4Oa1VWx5vYPhcd+iH3+hXm4+w83fepG7Hz/AuroS/vtz13HTmiqy7UIkY94i3CRwf2fifUp3brh7hhGBZWWxu3fq+dx+ZS3DXj+/fPNUXI4/Hwc6B/jYfa/xh/duxzM4zh0blvHbqyp4LYXW7RszF6uqCklPE3aeSLyGgc4N9zPD1JTkxG20ecWyEi5w5/FwEkzNtPeO8PmHX+fmf32RN9r6uOmSSj53w0pWLS20KRhjziMvK53L60p44agn3qW8jXPD3TPE8kVqOzATEeH2K+vYdbKXPQl6+73OvlG+vGU/7/m/z7P1zVN88roLeOGv3821jW4yXI79q2FMVF1/oZt9HQN4Emze3ZH/ggfGJjh8enCyc1u83L6+lsrCbL740zcTqu9z69kRvvjTvVz7tWf54asnWFtTxGff20hdaS6/3Js800jGJILrVwaXW7+YYKN3R65zf6X5LL6Act3KxV3jPl1BdgZfef8l/OkPd7L5hRY+/e4Vca1nf2c/33vxOL94oxNXmtBUX8J1K92U5MbmCl5jUsGqqkLK8jJ54YiH37s8cbqwODLcXzjqIT80FxZvN66q4OY1VfzLr46y8ZJKLljk1TvjPj9PvHmarz99hNaeETJcwjuWl3HNinIKc5zd+8aYxZCWJly30s3zRzwJ1UTMceGuqrxwxMM7LojPjSFm6jeztqaIl5rP8Cff38EDn9hAbWnsV/A0dw/y090dPLyjjbPDXsryMrl5TRWX15WQk2lLGo2JputXuvnZng72dfaztqY43uUADgz3ljPDtPeO8snrL4h3KZMKsjP4/h9fycf/cwcf+u6rPHDnBlYsif4IvqNvlMfe6OQXr3dy8NQAaQLvuaiCj71jGa09I6TZyhdjYuLaxnJE4IUjHgv3WHnhSPCkxvWN8Z1vn25dXQkPbbqKj37vNX7vOy/z2RtW8tGrli3o04U/oOxt7+OFI2d4/kg3u1v7AKgtyeHmNVWsqSmiMDuD9t5RC3ZjYqgsP4tLlhbx9MFu7npPY7zLARwa7g3ledTF6eKl87m4qpCffOod/N3P9/GVxw9w/6sn+PD6On57dWVELUPHfX4Onx7kjfZ+th07y68PdTM64UeA6pIcblxVwdrqIrtRhjFx8PuXV/Plxw7w2vGeyVtuxpOjwn1sws+rLWe5ral29p0X2dS5+I2rK1lens/rbb189YlDfPWJQ1QX57DcnceyslxyM9PJdKUxOuFnYHQCz9A4J0LTTb5AsEFRRWEWq6oKaazI5wJ3PnnWdteYuLrtyjq+/Wwz3362mR82rI93Oc4K96cOdDE2EeD6CxNrSmY6EeHCygL+4dbVtPWM8NSBLva299HiGWZfxynGJgKM+/xkZ7gmbzaSn53BNSvyqCrOoaY4h+LcDLt61JgEkpPp4hPXLOdr/32IN9r6uLQ2vnPvjgn3oXEf//uXB7m4qpDrEmy+/VzCo/mcDBcbGsrY0FAW54qMMQtxx1V1fPf5Y9zzbDObP9YU11occ4Xqt351lNMDY/zj+y8h3S6dN8bEQUF2Bh9/Zz1PHejiucPdca0lohQUkY0iclhEmkXkCzN8P0tEHg59f7uI1Ee70PM5fHqQ+146zm1NtVyxLP4XLhljUted1zawqqqQT96/i1eaz8StjlnDXURcwD3ATcAq4MMismrabp8AelV1BfAN4GvRLvRc/nvfaT76ve3kZ6fzv266aLEOa4wxMyrIzuCBOzewrCyXT/xgJ7/cewp/YPHv1BTJnPt6oFlVWwBE5CHgVuDAlH1uBb4cevwo8G0REY3BvadGvD72dw7wZns/zx/x8PwRD6uqCvnnD66lNM96pBhj4q80L5Mf3XkVd9y7nU8/uJva0hw+dEUtKysKqC/Ppb4sL+btyCMJ92pgalPydmDDufZRVZ+I9ANlQNQ/k9z74nG+/vQRILgc8H9tvIg7r22wFrXGmITiLsjil5+5hqcPdPGfL5+YzC2Av//dVfzx1Q0xPX4k4T7TervpI/JI9kFENgGbQk+HRORwBMc/p5PAa8D/mP9LlBODX0AJwN5X8nDiewKHvq8/jNLr/MnX4E/m/+PLItkpknBvB6ZeFVQDdJ5jn3YRSQeKgLfdm01VNwObIylsMYjITlWN73qlGLD3lTyc+J7Aue8rmUQyl7EDaBSRBhHJBG4HtkzbZwvwR6HHHwR+HYv5dmOMMZGZdeQemkO/C3gScAH3qep+Ebkb2KmqW4DvAfeLSDPBEfvtsSzaGGPM+UV0haqqbgW2Ttv2pSmPx4APRbe0RZEwU0RRZu8reTjxPYFz31fSEJs9McYY57H1g8YY40ApGe6ztVNIViJyn4h0i8i+eNcSLSJSKyLPishBEdkvIp+Nd03RICLZIvKaiLwRel//EO+aoklEXCKyR0Qej3ctqSrlwj3CdgrJ6vvAxngXEWU+4C9V9WLgKuDTDvnzGgfeo6qXApcBG0XkqjjXFE2fBQ7Gu4hUlnLhzpR2CqrqBcLtFJKeqr7ADNcXJDNVPaWqu0OPBwkGRnV8q1o4DRoKPc0IfTniBJiI1AA3A/fGu5ZUlorhPlM7haQPi1QQ6ja6Dtge30qiIzR18TrQDTytqo54X8A3gb8GAvEuJJWlYrhH1CrBJBYRyQd+AnxOVQfiXU80qKpfVS8jeNX3ehG5JN41LZSI/A7Qraq74l1LqkvFcI+knYJJICKSQTDYf6SqP413PdGmqn3AczjjfMnVwC0icoLglOd7ROSB+JaUmlIx3CNpp2AShARvFPs94KCqfj3e9USLiLhFpDj0OAe4ATgU36oWTlW/qKo1qlpP8N/Wr1X1jjiXlZJSLtxV1QeE2ykcBH6sqvvjW1V0iMh/Aa8CF4pIu4h8It41RcHVwEcJjgBfD329L95FRUEV8KyI7CU44HhaVW3ZoIkau0LVGGMcKOVG7sYYkwos3I0xxoEs3I0xxoEs3I0xxoEs3I0xxoEs3I0xxoEs3M2iERF/aJ36/lCr278QkbTQ95pE5Fvn+dl6EfnI4lX7tmOPhvrAJAQRuS3UstrWxpsZWbibxTSqqpep6mrgRuB9wN8DqOpOVf3MeX62HohLuIccC/WBiViovXRMqOrDwJ2xen2T/CzcTVyoajewCbhLgt4VHoWKyPVTrkbdIyIFwD8B14a2fT40mn5RRHaHvt4Z+tl3ichzIvKoiBwSkR+FWhggIleKyCuhTw2viUhBqDPj/xGRHSKyV0Q+GUn9IvJzEdkV+hSyacr2IRG5W0S2A+84xzFXhx6/HjpmY+hn75iy/d/DvxxCN5fZHXqNX0Xxj8E4maral30tyhcwNMO2XqACeBfweGjbY8DVocf5BG/kPvn90PZcIDv0uBHYGXr8LqCfYEO4NILtGK4BMoEW4MrQfoWh190E/F1oWxawE2iYVmM9sG/attLQf3OAfUBZ6LkCfxB6fK5j/ivwh1P2yQEuDr3vjND27wAfA9wEW1Q3TD3ulPf6+Ez/r+3LvtLn+LvAmGibqQXzy8DXReRHwE9VtT00+J4qA/i2iFwG+IGVU773mqq2A4TmyesJBv4pVd0BoKG2wSLyW8BaEflg6GeLCP6yOD5L3Z8RkQ+EHteGfuZsqJafhLZfeI5jvgr8beimFj9V1aMi8l7gCmBH6L3mEOzzfhXwgqoeD72Go27GYmLHwt3EjYgsJxiG3QRHrgCo6j+JyC8JzslvE5EbZvjxzwNdwKUER+hjU743PuWxn+Dfc2Hmvv0C/LmqPjmHut9FsIvjO1R1RESeA7JD3x5TVf+U137bMVX1wdC0zc3AkyJyZ2jfH6jqF6cd65Zz1G3Medmcu4kLEXED3wW+rao67XsXqOqbqvo1gtMkFwGDQMGU3YoIjooDBLtGznby8hCwVESuDB2jQETSCXYH/VSoZzwislJE8mZ5rSKgNxTsFxEcXUd8zNAvtRZV/RbBdtNrgV8BHxSRJaF9S0VkGcFppetFpCG8fZbajAFs5G4WV05omiSD4I2v7wdm6tH+ORF5N8FR9wHgCYK3bPOJyBsEbwT+HeAnIvIh4Flg+HwHVlWviNwG/Guof/oowdH3vQSnbXaHTrx6gPfP8j7+G/izULvew8C2OR7zNuAOEZkATgN3q2qPiPwd8FRoeegE8GlV3RY6YfvT0PZugiuNjDkva/lrzCwkeO/Wx1U1oW6DF5oe+itV/Z1412ISj03LGDM7P1CUaBcxEfz00hvvWkxispG7McY4kI3cjTHGgSzcjTHGgSzcjTHGgSzcjTHGgSzcjTHGgf4/94UaiUMFamIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(wirds['wirds_ra'], wirds['wirds_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, wirds, \"wirds_ra\", \"wirds_dec\", radius=1.*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Add PanSTARRS" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8XGd97/HPT/u+r7Yky/uWxUmcOAtkIyROoElpAwkhULjQtBS6AWUpbShpb1naS1tKWHLTNLdASFnSEBInAUJCdm9xvC/xqt2WtduSbC2/+8eMjFBka2SNNKOj7/v1mhczZ54585tYfOeZ5zznOebuiIhIsCTEugAREYk+hbuISAAp3EVEAkjhLiISQAp3EZEAUriLiASQwl1EJIDGDHcze8DMjpjZttM8/z4z2xK+vWxm50e/TBERGY9Ieu4PAqvP8PwB4Cp3Pw/4e+C+KNQlIiITkDRWA3d/3syqz/D8y8MevgpURPLGRUVFXl192t2KiMgoNm7ceNTdi8dqN2a4j9OHgSdP96SZ3QXcBVBVVcWGDRui/PYiIsFmZociaRe1A6pmdg2hcP/M6dq4+33uvtLdVxYXj/nFIyIiZykqPXczOw+4H7jR3VuisU8RETl7E+65m1kV8AjwfnffM/GSRERkosbsuZvZD4CrgSIzqwO+ACQDuPu3gbuBQuCbZgbQ7+4rJ6tgEREZWySzZd47xvMfAT4StYpERGTCdIaqiEgAKdxFRAJI4S4iEkAKdxGRAIr2GarT1kNra9607Y5VVTGoRERk4tRzFxEJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAFK4i4gEkMJdRCSAFO4iIgGkcBcRCSCFu4hIACncRUQCSOEuIhJACncRkQBSuIuIBJDCXUQkgBTuIiIBpHAXEQkghbuISAAp3EVEAkjhLiISQAp3EZEAUriLiATQmOFuZg+Y2REz23aa583Mvm5me81si5ldGP0yRURkPCLpuT8IrD7D8zcCC8O3u4BvTbwsERGZiDHD3d2fB1rP0OQW4L885FUgz8zKo1WgiIiMXzTG3GcDtcMe14W3vYmZ3WVmG8xsQ3NzcxTeWkRERhONcLdRtvloDd39Pndf6e4ri4uLo/DWIiIymmiEex1QOexxBdAQhf2KiMhZika4PwZ8IDxr5lKgw90bo7BfERE5S0ljNTCzHwBXA0VmVgd8AUgGcPdvA2uAm4C9QDfwockqVkREIjNmuLv7e8d43oGPRa0iERGZMJ2hKiISQAp3EZEAUriLiASQwl1EJIAU7iIiAaRwFxEJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAFK4i4gEkMJdRCSAFO4iIgGkcBcRCSCFu4hIACncRUQCSOEuIhJACncRkQBSuIuIBJDCXUQkgBTuIiIBpHAXEQkghbuISAAp3EVEAkjhLiISQAp3EZEAUriLiARQROFuZqvNbLeZ7TWzz47yfJWZPWtmm8xsi5ndFP1SRUQkUmOGu5klAvcCNwLLgPea2bIRzf4G+KG7XwDcDnwz2oWKiEjkIum5XwLsdff97n4SeBi4ZUQbB3LC93OBhuiVKCIi4xVJuM8Gaoc9rgtvG+7vgDvNrA5YA/zpaDsys7vMbIOZbWhubj6LckVEJBKRhLuNss1HPH4v8KC7VwA3Ad81szft293vc/eV7r6yuLh4/NWKiEhEIgn3OqBy2OMK3jzs8mHghwDu/gqQBhRFo0ARERm/SMJ9PbDQzOaaWQqhA6aPjWhTA7wNwMyWEgp3jbuIiMTImOHu7v3Ax4GngZ2EZsVsN7N7zOzmcLNPAn9oZpuBHwAfdPeRQzciIjJFkiJp5O5rCB0oHb7t7mH3dwBXRLc0ERE5WzpDVUQkgBTuIiIBpHAXEQkghbuISAAp3EVEAkjhLiISQAp3EZEAUriLiARQRCcxzVQPra0Zdfsdq6qmuBIRkfFRz11EJIAU7iIiAaRwFxEJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAFK4i4gEkMJdRCSAFO4iIgGkcBcRCSCFu4hIACncRUQCSOEuIhJACncRkQBSuIuIBJDCXUQkgBTuIiIBFFG4m9lqM9ttZnvN7LOnafMeM9thZtvN7KHolikiIuMx5jVUzSwRuBd4O1AHrDezx9x9x7A2C4HPAVe4e5uZlUxWwSIiMrZIeu6XAHvdfb+7nwQeBm4Z0eYPgXvdvQ3A3Y9Et0wRERmPSMJ9NlA77HFdeNtwi4BFZvaSmb1qZqujVaCIiIzfmMMygI2yzUfZz0LgaqACeMHMznH39t/akdldwF0AVVVV4y52qrUeP0lOWhJJiTruLCLTSySpVQdUDntcATSM0uan7t7n7geA3YTC/re4+33uvtLdVxYXF59tzVOis6ePf/3lHr639hDuI7/LRETiWyThvh5YaGZzzSwFuB14bESbR4FrAMysiNAwzf5oFjrVXt7XQv+gs+fwMTbVtI/9AhGRODJmuLt7P/Bx4GlgJ/BDd99uZveY2c3hZk8DLWa2A3gW+Ct3b5msoidbb98A6w62sHxWDnMKMnh8awOdvX2xLktEJGKRjLnj7muANSO23T3svgOfCN+mvfUHW+ntG+SqRcWkJSXy9V+9wc82N/C+VXNiXZqISER0pHCEgUHn5X0tzC3KpCI/g6LsVC6bX8iOhk5O9A3EujwRkYgo3EfY2dhJR08fVy4sOrVtXlEWDtS198SuMBGRcVC4j1DX1kOiGfNLsk5tqyxIB6C2tTtWZYmIjIvCfYTDnb0UZ6eSlPCb/zQZKUkUZaVSo3AXkWlC4T5CU2cvZblpb9peVZBBTWu35ryLyLSgcB+m+2Q/HT19lOWMHu7dJwdoPX4yBpWJiIyPwn2Yps5egFF77kPj7hqaEZHpQOE+TFNHONxH6bmX5qSRkpSgcBeRaUHhPszhzl4yUhLJTnvzuV0JZlTkp1PbpnAXkfincB+mqaOX0pw0zEZbCDM07t7U0Uv3yf4prkxEZHwU7mGD7qedKTOkqiCDQYetdR1TWJmIyPgp3MPajp+kb8ApH2W8fcisvNBB1V1NXVNVlojIWVG4hzV2nH6mzJDs1CTSkhPYe+TYVJUlInJWFO5hhzt7MaAk+/ThbmYUZ6Uq3EUk7incw5o6eynITCEl6cz/SUqy03hD4S4icU7hHtbcdYKS7NQx2xVnp3L02Ak6unXxDhGJXwp3wN1p6z5JQWbKmG1LckJfAHubdVBVROKXwh1oCc+UyY8k3MNj8hp3F5F4pnDnN+u052eMHe55GcmkJmnGjIjEN4U7UNsWusJSJD33BDPmFWcp3EUkrincGd5zT46o/YKSLM2YEZG4pnAH6tq6yUxJJDUpMaL2C0uyqG/voeekLpgtIvFJ4Q7UtvZENCQzZEFJFu6wr1m9dxGJTwp3oLatO6KDqUMWhC+erXAXkXg148N9YNBpaO8ZV7hXF2aSmGA6qCoicWvGh3tTZ294jntkB1MBUpISmFOQwRuHFe4iEp9mfLgPzZQpGEfPHWBecRb7jyrcRSQ+RRTuZrbazHab2V4z++wZ2t1qZm5mK6NX4uQ6NQ1yHAdUAeYXZ3KwpZuBQZ+MskREJmTMcDezROBe4EZgGfBeM1s2Srts4M+AtdEucjLVtfVgBnnpkQ/LAMwrzuRk/yD14ROgRETiSSQ990uAve6+391PAg8Dt4zS7u+BrwK9Uaxv0tW2dVOWk0ZS4vhGqOYVh2fMaGhGROJQJIk2G6gd9rguvO0UM7sAqHT3x6NY25Soa+2hMj9j3K+bV5QJwP7m49EuSURkwiIJdxtl26mBZjNLAP4F+OSYOzK7y8w2mNmG5ubmyKucRLVt3VQUpI/7dQWZKeSmJ7Nfc91FJA5FEu51QOWwxxVAw7DH2cA5wHNmdhC4FHhstIOq7n6fu69095XFxcVnX3WUnOgfoKmz96x67mbGvOJM9dxFJC5FEu7rgYVmNtfMUoDbgceGnnT3Dncvcvdqd68GXgVudvcNk1JxFDW09+IOlQXjD3eAeUWaDiki8WnMcHf3fuDjwNPATuCH7r7dzO4xs5snu8DJNDTTpSJ//MMyEJoxc7jzBMdO9EezLBGRCUuKpJG7rwHWjNh292naXj3xsqZGfXtojvvsvPSzGl6ZXxw6qHqg+TjnVuRGtTYRkYmY0Weo1rf1kGBQlpt2Vq8fmg6poRkRiTczOtzr2nsozUkjeZxz3IfMKcwgwWCfDqqKSJyZ0eFe39bD7LyzG28HSE1KpCI/Q9MhRSTuzOxwb+9h9lkeTB2i6ZAiEo9mbLgPDDpNHb0T6rlDaDrkgaPHGdQCYiISR2ZsuB/u7KV/0KPSc+/pG6Cxc1otqSMiATdjw72+PTTHfaI994XhS+69cbhrwjWJiETLzA33CZ7ANGRRaTaArsokInElopOYgmio5z5rgj33/MwUirNT2a2eu8i08tDamoja3bGqapIrmRwzt+fe3kNBZgoZKRP/fltUmqVhGRGJKzO35z7BOe7DLSzJ5ocbahkcdBISRlshWUQmW2/fAIdaumlo7+FIVy9t3X0kJRjJiQnMK87kojn5UenMTRcz55OOUN/ec2ptmIlaXJZN98kB6tt7znqFSRGJzOCgU9Pazc7GTnY2drKjsZOdjV00dPTgZ5iRnGAwvziLm84tpzTn7JYcmU5mZLi7O/VtPVy58OzWlB85VneoJXQS057DXQp3kShr7z7Jptp2NtW0s6mmjddr2ukKr8RqQFF2KuW5aSwpz6YoK5X89GSy05LJSEnEgf5Bp6G9h/3Nx1l/sJVvPLuXaxYXc9WiEhID/Et7RoZ7W3cfPX0DE57jPqQkO9QL2HP4GG9bWhqVfYrMRAODzp7DXbxW08ammnZeq2k7dQa4EVrkb+msHCry0inLTYt4bahFpdksKs3mLQuL+NnmBn658wjt3X2864LZmAUz4GdkuA9Ng4zWmHt6SiJlOWk6qCoyTl29fWyqaWfDoTY2Hmrl9Zp2jp8cAEKXsrywKo8FxVlUFmRQkZ9OalLihN4vKzWJ915SReH2Jp7b00x5XjqXzSuMxkeJOzMz3MPruE90jvtwi8qyNR1S5Azcnfr2HjYeamPDwTY2HGpjd1Mngx4aD19clsM5s3OpKsigqiCDgsyUSetVX7eslMOdvTyxpYGS7FTmh5fvDpIZGe51Ue65AywqyeK7+1sYGPRAj+OJRKp/YJCdjV1sONTKI6/Vc6jlOJ29obHylKQEqvIzuHpxCXMKM6jMzyAteWK98vFIMOPdKyv59q/38eONdXzy7YtIOsulv+PVjAz3+vYeMlISyctIjto+F5Vmc6J/kNrWbqqLojMLR2Q6OXain9dr2ll/sJUNh1rZVNNOd3iIJTc9meqiTOYUZDCnMJPSnLSYd4LSkhN553mzeOClA6w72Mrl84tiWk+0zchwr2nppqogI6o/+RaVhZYh2HO4S+EuM0JTRy8bDrWGh1ha2dEQGmIZOvB5XkUecwozmFOQQV5GSqzLHdWCkizmFWXy7O5mVs4pICUpOL33GRnuh1q7mRflAB5aQGx3UxfXLy+L6r5FYq2ju49tDR1sqetga307m2s7Ti3hkZxoVBZkcNWiEqoLM6gsmNohlom6flkp335+P6/sO8pVi0tiXU7UzLhwHzoB4prFZzfH/XQyU5OYW5TJ1vqOqO5XZKp19PSxvaGDbfVDYd7BoZbuU88XZKYwKy+dFZWhnnl5bnrMh1gmoqowk8Wl2Tz/xlFWzSucVl9MZzLjwv1wVy8n+wepKoz+0Ml5Fbms3d8a9f2KTJaWYyfY1tDJtvqOcKB3UtP6myCfnZfOubNzWVyazez8dGbnpQfyFP5rl5TwrV/vY3NdO6vmBmNqZPD+lcZQE+6BzJmEM0nPr8jjp683cLizd0ac3izTS2/fAJtr21l3oJXNdR2sP9hKR0/fqeeHeuQ3LCtlVl465XnpZKXOjIioyE+nNCeVjYfaFO7T1aFwr2RO4SSEe2UuAJtr2zXuLjHX1dvHxkNtrDvQyhNbG6lr62Fg0EOn7GelMrcok1m5aaEgz00nPSUYwxFnw8y4aE4Ba7Y2BqZzNuPCvaalm8QEm/A67qNZVp5LYoKxpa5D4S5TruXYCdYfbOW7rxziQMtxGtt7cUInCM3OS+fy+YVUF2YypzAjkEMrE7WiMo+ntjWy8VAbN51bHutyJmzG/Qsfau1mVl5k61GMV3pKIotKs9lc1x71fYuMVN/ew/oDraw90Mr6g63sPRK6GlhSglFVkME1S0qoLsykqiAjUFP8JktWahJLy3PYVNvODcvLpvVBYpiB4V7Tcpw5BZM3D31FZS5rtjbh7oFdkEimnruz/+hx1h1oPRXoQ1MR05ITmFOQyQ3Ly6guzGB2fjpJCQrzs3HRnHy2N3Syu6mLZbNyYl3OhEQU7ma2Gvg3IBG4392/POL5TwAfAfqBZuB/ufuhKNcaFYdauyf1J9d5FXn8YF0th1p0pqqcvYFBZ2djJ+sPtrLuQCvPv3GU4+FlbjNTk5hbmMEFVXlUF2ZSlptGgjoSUbGwJJus1CRer20LfribWSJwL/B2oA5Yb2aPufuOYc02ASvdvdvMPgp8FbhtMgqeiI6ePtq7+yZlpsyQ8yrCB1Xr2hXuErG+gUG21Xew9kAra/e3sOFg26k1yyvy01lUkkV1USZzCzMpzJq8BbVmusQEY9msHF6vaadvYHBShm+nSiQ990uAve6+H8DMHgZuAU6Fu7s/O6z9q8Cd0SwyWk5Ng5yEmTJDFpVmk5acwObaDm5ZMXvS3kemt5P9g2ypa2ftgVZe3d/CxkNtp9ZhKc5KZUl5DnOLMqkujN9T94Nq+awc1h0IHcNYWj59e++RhPtsoHbY4zpg1Rnafxh4ciJFTZZDraFF/6smccw9OTGB5bNy2aKDqjLMwKCzua6dF984yqv7W3itpo3evkEASnNSOa8il7lFWVQXZpCdFr0F7WT85hVlkZacwPaGjsCH+2i//0a9UqGZ3QmsBK46zfN3AXcBVFVVRVhi9AydQl01iT13gAsq8/ivVw/R2zcQmFOZZfyOHjvB83uaeW53My+80Uxbd9+pRbUuqMpnbmEmc4syyZwhJwpNF4kJxtKyHHY2djEweIaLssa5SP6q6oDKYY8rgIaRjczsOuDzwFXufmK0Hbn7fcB9ACtXrpzy/2q1rd0UZqZM+ll3b1lYxP0vHmDtgVauWhTdNWwkvtW1dfOPa3axvaGDmpZuHMgMT5G9flk2C0uyyFCYx73ls0JTIg8cPR7rUs5aJH9l64GFZjYXqAduB+4Y3sDMLgC+A6x29yNRrzJKDrV0T3qvHWDV3EJSkhJ4YU+zwn0G2N98jCe3NfH09ia21IUWjivLSeOaJSUsLcuhPE+zWaabBSXZJCca2xum70KAY4a7u/eb2ceBpwlNhXzA3beb2T3ABnd/DPgnIAv4Ufgofo273zyJdZ+VmtZuLq7On/T3SU9J5JLqAp5/o3nS30umnruzq6mLJ7c18d/razjcGfqhWpGfzg3Ly1g+K4eirNQYVykTkZKUwKLS7NAa9YNOwjQ8oSmi34fuvgZYM2Lb3cPuXxfluqLu+Il+Gjp6mFtUOXbjKHjrwiK+9OQumjp6Kcud/utUzHTuzua6Dp7c1sjT25o42NKNWWgBunecW87yWTma1RIwy8pz2N7QyZb6DlZU5sW6nHGbMYN/ew534Q5LyrOn5P2uXFTMl57cxfNvNPOelVPzhSLR5e5sb+jkZ1saeGJLaOGtBIP5xVncsmIWy8pzNLMlwBaXZZNg8MsdhxXu8WxXUxcAS8umZmrTkrJsirNTeeGNowr3aWRoyOXxcKAfbOkmKcG4YkERq+YWsLQ8R4tuzRAZKUlUFWTyy52H+dQNi2NdzrjNmL/SXY2dZKYkUpEf/dUgR2NmvHVhEc/uOsLAoE/7RYiC7o3DXfxsSyNPbGlgX/NxjFAP/V0XzGZ5eY5muMxQS8uzeXJbE7Wt3VRO4pntk2HG/MXubOoK/cyapJB9aG3Nm7ZdubCYR16rZ+s0HbMLuqPHTvCFn27ntZo2Gjt6MaC6KJNbVsxi+azcGXOhCjm9peU5PLmtiWd2HuaDV8yNdTnjMiP+et2dXY2dvPP8WVP6vlcvLiYlMYGfvl6vcI8TJ/sH+dWuI/x4Yx3P7T5C/6BTkZ/OO88r55zZueRoDF2GKcpKZX5xJs/sOqJwj0eNHb109vaztGxqDqYOyctI4e3LSnl0Uz2fu3Gp1tSOoe0NHfzDEzvZXNtO98kBslOTuGx+IRdW5Qfiqjsyea5bWsoDLx2gs7dvWn35z4hw39XUCcCSGKwTcevKCp7Y2sgzOw9zYwCu7jKd9Jwc4GdbGvj+2ho217aHVvwrz+HCqnwWlGTpOIhE5LplpXzn+f38enczvzPFv/4nYkaE+87G0EyZxVPcc4fQuHtpTio/2lincJ8ie490cXd4LL23b5Di7FTeeV45KyrzNNNFxu3CqnyKslJ4anuTwj3e7GrqYnZeekx+UiUmGL9/YQXf/vW+wFx4Nx71DQzy1LYmvr/2EK/ubyXRjOWzc1g1t5Dqwgytfy5nLTHBuH55GY9uqp9WiwHOjHBv7Izp0p23XlTBN5/bxyOv1fPRq+fHrI4gau8+yWd+spVX97fQ0dNHfkYyNywr5aLqAs12kai56ZxyHlpbw6/3NHPD8rJYlxORwP/19/YNsP/ocVafE7t/kHnFWayaW8CDLx/gg5dXk54yPb7549m+5mP850sH+MnGenr6BphXnMkt589iUVm2FumSqFs1r4C8jGSe2takcI8Xe48cY2DQWTJFZ6aezievX8x7vvMKD758UL33s+TuvLyvhf948QC/2nWElMQEblkxi7LcNMpzp+bkNJmZkhMTePvSUp7a3sSJ/gFSk+K/gxb4cN9aH1qyc+kUrSlzOpfMLeDaJSV867m93HFJFbkZ02dKVaz19g3w2OsNfO0Xe2jq7CUzJZFrl5Swam6B1naRKXPTueX8aGMdL+9t4ZolJbEuZ0yBn3j94t6jlOakMjcOLlb9VzcsputEP9/69b5YlzItHOnq5Wu/2MMVX/4Vn/7JFgB+/8LZfHr1Eq5bWqpglyl1+YJCslOTWLO1MdalRCTQPfeBQeelvUe5bmlpTGZLjLYkwe+umM1/vnSAd6+sYH5x1pTXNB1sb+jgbx/dxua6jvCQWja3rJjN/OJMzXqRmElNSuSGc8p4clsTX7xledxPqw10z31bfQft3X28dWFRrEs55TOrl5CRksjHvv8avX0DsS4nbgwMOj/f3sTt973CO77+IlvrO7i4Op9PXLeID1xWzYKSLAW7xNxtF1dy7EQ/j2+J/957fH/1TNAL4SshXbEgfsK9LDeNr922gg/953q++LPtfOn3zot1STHV3HWCH22s5eF1tdS0djMrN43P3biEpIQEzSqSuLNyTj7zizN5eF1N3C/lHfBwPxqXlzy7ZnEJH716Pt96bh/nzM7lfavmxLqkKTU46Lyyv4WH1tbw8x1N9A04c4syuf3iSpbPytWyABK3zIzbL67if6/ZyZ7DXSwqje1EjTMJbLgfO9HPazVtfPgt82Jdyqg++fZF7Gjo5PP/s43+AecPLq+OdUmTbn/zMR7dVM+jrzdQ09pNXkYyH7ismuy0JEqydeauTA+/d+Fsvvr0Lh5eV8vdv7Ms1uWcVmDDfe3+FvoGnCvjaLx9uKTEBO77wEV8/KFNfOGx7XT19vEnVy+YlhfiPZMjXb08ubWJRzbVs7m2PXQRjJIs3n1RBefMziU5MdCHfSSACrNSuX5ZGY9squPTqxfH7XIEgQ33F944SlpyAhdV58e6lN8ycgbNlQuLOdLZyz//fA9rD7TyT7eeP+0vqF3T0s3T25t4ensTG2vacA9d9OCvb1rC4CDkpGsKo0xvd146hye2NvK9Vw/xkbfG5+hAIMO9t2+Ax7c08pYFRXF/JlligvGelZXcdnEVf//4Dm741+f502sXcOelc+K2RzBSb98AGw+18cIbR/n1nmZ2NoaWWC7PTePaxSUsn51LmRZMkwC5bH4hb1lQxL3P7uU9F1fG5TrvgQz3H22s4+ixE3E73j6SmXHHqioum1/I3z66jX94Yif/94X9fPgtc3nXBRUUZ8fXAeHevgG2N3Sw8VAbL+5tYd2BFnr7BklKMC6syufzNy3lRP8gBZkpsS5VZNJ8ZvUSfucbL3L/8/v5xPXxdwHtwIV7/8Ag9z2/jwuq8rh0XkGsy4nY0HDNTeeWs6Q8m2d2HuEf1+ziq0/t5qpFxbxtaSlXLiqiIn9qL9Lb2zfA3iPH2N3Uxdb6DjbVtLGjsZO+AQdgfnEmF1SGLn4xryiT1PCvjcz4+j4SibpzK3J5x3nl3P/iAd5/WXXcdcICF+5PbG2ktrWHv33Hsml70su8oizmvTWLS+bm86MNdTy+pZFndh0BYHZeOisq81g2K4eqgoxTt7yM5LP+vN0n+6lv66GurYe6tm7q2nrYf/Q4ew53UdPajYdynIyUREpz0rh8fhGV+RlUFqRrCQCZ0T51/WKe2tbE3z22nW/ccUFcZU6gwn1w0PnWc/tYWJLFdUtLY13OhK070Macwkz+5Or5HOk6wRtHjmEGm2vbeWLE+hbZaUkUZ6eSnZpEdloyWalJZKUlkWAwMAiD7gwMOv2Dg3T09NF2vI/27pO09/TRffK3z5RNSUqgqiCD7NQkrl1cQklOGqXZqRRmpWoOusgwc4sy+dT1i/nKU7tY9lwOH7tmQaxLOiUw4e7u/MMTO9nV1MW/3b4iUFMKzYzSnLRTV3G6Yn4RJ/oHaDveR+vxk7R2n6T1+EmOn+inp2+Atu4+evsGSEww3EMHbRMSINGM4ycGSE9JJCMlkbLcNOYVZ5GZkkheRgr5GcnkZaaQlZqkNdFFIvTHV81jV1Mn//zz3Swuzea6ZfHRsYwo3M1sNfBvQCJwv7t/ecTzqcB/ARcBLcBt7n4wuqWe2Td+tZcHXjrAh66o5uZpdJ3Ds5WalEhZbuK0nzYpMt2ZGV/5/fPY33ycP3noNT67egkfvLw65h3MMc8gMbNE4F7gRmAZ8F4zG3mXYbcPAAAHwklEQVRa1oeBNndfAPwL8JVoF3o6TR29fOGn2/g/v9jD710we1qPtYvI9JSWnMiDH7qYty4o4p7Hd/DBB9ezubYdHzpgFQOR9NwvAfa6+34AM3sYuAXYMazNLcDfhe//GPiGmZlPwic7dqKf7fUd7GjsZHNtO2u2NjHgzh2rqvjizctj/m0pIjNTYVYq9//BSr63toZ/fGInt9z7EvOLM3nb0lIWlGQxtyiTnLRkMlISyQ8Pf06mSPY+G6gd9rgOWHW6Nu7eb2YdQCFwNBpFDvfMzsP8+cOvA1CQmcKtKyv46FXzqSyY2imCIiIjmRnvv3QON58/izVbG/mfTfU8+NJBTg4M/la7P7pyHp+7aemk1hJJuI/WFR7ZI4+kDWZ2F3BX+OExM9sdwfuf1iFgE/CliezkN4qYhC+jGAvaZwra54HgfaagfR7eNwn7/OuvwF+f/csjWkY2knCvA4YvXFwBNJymTZ2ZJQG5QOvIHbn7fcB9kRQ21cxsg7uvjHUd0RS0zxS0zwPB+0xB+zzTWSRL8q0HFprZXDNLAW4HHhvR5jHgD8L3bwV+NRnj7SIiEpkxe+7hMfSPA08Tmgr5gLtvN7N7gA3u/hjwH8B3zWwvoR777ZNZtIiInFlEh2vdfQ2wZsS2u4fd7wXeHd3SplxcDhdNUNA+U9A+DwTvMwXt80xbptETEZHg0WVwREQCSOFOaHkFM9ttZnvN7LOxrmeizOwBMztiZttiXUs0mFmlmT1rZjvNbLuZ/Xmsa5oIM0szs3Vmtjn8eb4Y65qixcwSzWyTmT0e61pmuhkf7hEurzDdPAisjnURUdQPfNLdlwKXAh+b5v9GJ4Br3f18YAWw2swujXFN0fLnwM5YFyEKdxi2vIK7nwSGlleYttz9eUY5z2C6cvdGd38tfL+LUHjMjm1VZ89DjoUfJodv0/7gl5lVAO8A7o91LaJwh9GXV5i2wRF0ZlYNXACsjW0lExMevngdOAL8wt2n9ecJ+1fg08DgWA1l8incI1w6QWLPzLKAnwB/4e6dsa5nItx9wN1XEDrj+xIzOyfWNU2Emb0TOOLuG2Ndi4Qo3CNbXkFizMySCQX79939kVjXEy3u3g48x/Q/RnIFcLOZHSQ0tHmtmX0vtiXNbAr3yJZXkBiy0AL9/wHsdPevxbqeiTKzYjPLC99PB64DdsW2qolx98+5e4W7VxP6/9Cv3P3OGJc1o834cHf3fmBoeYWdwA/dfXtsq5oYM/sB8Aqw2MzqzOzDsa5pgq4A3k+oN/h6+HZTrIuagHLgWTPbQqhz8Qt319RBiSqdoSoiEkAzvucuIhJECncRkQBSuIuIBJDCXUQkgBTuIiIBpHAXEQkghbtMGTMbCM9R3x5e7vYTZpYQfm6lmX39DK+tNrM7pq7aN713T3gtmLhgZreFl6jW/HgZlcJdplKPu69w9+XA24GbgC8AuPsGd/+zM7y2GohJuIftC68FE7HwctKTwt3/G/jIZO1fpj+Fu8SEux8B7gI+biFXD/VCzeyqYWeibjKzbODLwFvD2/4y3Jt+wcxeC98uD7/2ajN7zsx+bGa7zOz74eULMLOLzezl8K+GdWaWHV6d8Z/MbL2ZbTGzP4qkfjN71Mw2hn+F3DVs+zEzu8fM1gKXneY9l4fvvx5+z4Xh1945bPt3hr4cwheTeS28j2ei+M8gQebuuuk2JTfg2Cjb2oBS4Grg8fC2nwFXhO9nEbqQ+6nnw9szgLTw/YXAhvD9q4EOQgvAJRBahuEtQAqwH7g43C4nvN+7gL8Jb0sFNgBzR9RYDWwbsa0g/L/pwDagMPzYgfeE75/uPf8deN+wNunA0vDnTg5v/ybwAaCY0JLUc4e/77DP+vho/6110y1pnN8FItE22pLLLwFfM7PvA4+4e1248z1cMvANM1sBDACLhj23zt3rAMLj5NWEAr/R3dcDeHjJYDO7HjjPzG4NvzaX0JfFgTHq/jMze1f4fmX4NS3hWn4S3r74NO/5CvD58MUtHnH3N8zsbcBFwPrwZ00ntNb7pcDz7n4gvI/AXIRFJpfCXWLGzOYRCsMjhHquALj7l83sCUJj8q+a2XWjvPwvgcPA+YR66L3Dnjsx7P4Aob9zY/R1+g34U3d/ehx1X01oJcfL3L3bzJ4D0sJP97r7wLB9v+k93f2h8LDNO4Cnzewj4bb/z90/N+K9bj5N3SJnpDF3iQkzKwa+DXzD3X3Ec/Pdfau7f4XQMMkSoAvIHtYsl1CveJDQipFjHbzcBcwys4vD75FtZkmEVgP9aHi9eMxskZlljrGvXKAtHOxLCPWuI37P8Jfafnf/OqHlpc8DngFuNbOScNsCM5tDaFjpKjObO7R9jNpEAPXcZWqlh4dJkgld9Pq7wGjrs/+FmV1DqNe9A3iS0KXb+s1sM6ELgH8T+ImZvRt4Fjh+pjd295Nmdhvw7+E11HsI9b7vJzRs81r4wGsz8LtjfI6ngD8OL9m7G3h1nO95G3CnmfUBTcA97t5qZn8D/Dw8PbQP+Ji7vxo+YPtIePsRQjONRM5IS/6KjMFC12193N3j6lJ44eGhT7n7O2Ndi8QfDcuIjG0AyI23k5gI/Xppi3UtEp/UcxcRCSD13EVEAkjhLiISQAp3EZEAUriLiASQwl1EJID+PzupOirvt+k4AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(ps1['ps1_ra'], ps1['ps1_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, ps1, \"ps1_ra\", \"ps1_dec\", radius=1.*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Cleaning\n", "\n", "When we merge the catalogues, astropy masks the non-existent values (e.g. when a row comes only from a catalogue and has no counterparts in the other, the columns from the latest are masked for that row). We indicate to use NaN for masked values for floats columns, False for flag columns and -1 for ID columns." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "for col in master_catalogue.colnames:\n", " #print(col)\n", " if (col.startswith(\"m_\") \n", " or col.startswith(\"merr_\") \n", " or col.startswith(\"f_\") \n", " or col.startswith(\"ferr_\") \n", " or \"stellarity\" in col):\n", " master_catalogue[col] = master_catalogue[col].astype(float)\n", " master_catalogue[col].fill_value = np.nan\n", " elif \"flag\" in col:\n", " master_catalogue[col].fill_value = 0\n", " elif \"id\" in col:\n", " master_catalogue[col].fill_value = -1\n", " \n", "master_catalogue = master_catalogue.filled()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxhelp_idcosmos_idradeccosmos_stellaritym_cosmos-vista_ksmerr_cosmos-vista_ksf_ap_cosmos-vista_ksferr_ap_cosmos-vista_ksm_cosmos-vista_ymerr_cosmos-vista_yf_ap_cosmos-vista_yferr_ap_cosmos-vista_ym_cosmos-vista_hmerr_cosmos-vista_hf_ap_cosmos-vista_hferr_ap_cosmos-vista_hm_cosmos-vista_jmerr_cosmos-vista_jf_ap_cosmos-vista_jferr_ap_cosmos-vista_jm_cosmos-megacam_umerr_cosmos-megacam_uf_ap_cosmos-megacam_uferr_ap_cosmos-megacam_um_cosmos-suprime_bmerr_cosmos-suprime_bf_ap_cosmos-suprime_bferr_ap_cosmos-suprime_bm_cosmos-suprime_vmerr_cosmos-suprime_vf_ap_cosmos-suprime_vferr_ap_cosmos-suprime_vm_cosmos-suprime_ipmerr_cosmos-suprime_ipf_ap_cosmos-suprime_ipferr_ap_cosmos-suprime_ipm_cosmos-suprime_rcmerr_cosmos-suprime_rcf_ap_cosmos-suprime_rcferr_ap_cosmos-suprime_rcm_cosmos-suprime_zpmerr_cosmos-suprime_zpf_ap_cosmos-suprime_zpferr_ap_cosmos-suprime_zpm_cosmos-suprime_zppmerr_cosmos-suprime_zppf_ap_cosmos-suprime_zppferr_ap_cosmos-suprime_zppm_cosmos-suprime_ia484merr_cosmos-suprime_ia484f_ap_cosmos-suprime_ia484ferr_ap_cosmos-suprime_ia484m_cosmos-suprime_ia527merr_cosmos-suprime_ia527f_ap_cosmos-suprime_ia527ferr_ap_cosmos-suprime_ia527m_cosmos-suprime_ia624merr_cosmos-suprime_ia624f_ap_cosmos-suprime_ia624ferr_ap_cosmos-suprime_ia624m_cosmos-suprime_ia679merr_cosmos-suprime_ia679f_ap_cosmos-suprime_ia679ferr_ap_cosmos-suprime_ia679m_cosmos-suprime_ia738merr_cosmos-suprime_ia738f_ap_cosmos-suprime_ia738ferr_ap_cosmos-suprime_ia738m_cosmos-suprime_ia767merr_cosmos-suprime_ia767f_ap_cosmos-suprime_ia767ferr_ap_cosmos-suprime_ia767m_cosmos-suprime_ib427merr_cosmos-suprime_ib427f_ap_cosmos-suprime_ib427ferr_ap_cosmos-suprime_ib427m_cosmos-suprime_ib464merr_cosmos-suprime_ib464f_ap_cosmos-suprime_ib464ferr_ap_cosmos-suprime_ib464m_cosmos-suprime_ib505merr_cosmos-suprime_ib505f_ap_cosmos-suprime_ib505ferr_ap_cosmos-suprime_ib505m_cosmos-suprime_ib574merr_cosmos-suprime_ib574f_ap_cosmos-suprime_ib574ferr_ap_cosmos-suprime_ib574m_cosmos-suprime_ib709merr_cosmos-suprime_ib709f_ap_cosmos-suprime_ib709ferr_ap_cosmos-suprime_ib709m_cosmos-suprime_ib827merr_cosmos-suprime_ib827f_ap_cosmos-suprime_ib827ferr_ap_cosmos-suprime_ib827m_cosmos-suprime_nb711merr_cosmos-suprime_nb711f_ap_cosmos-suprime_nb711ferr_ap_cosmos-suprime_nb711m_cosmos-suprime_nb816merr_cosmos-suprime_nb816f_ap_cosmos-suprime_nb816ferr_ap_cosmos-suprime_nb816m_cosmos-wircam_hmerr_cosmos-wircam_hf_ap_cosmos-wircam_hferr_ap_cosmos-wircam_hm_cosmos-wircam_ksmerr_cosmos-wircam_ksf_ap_cosmos-wircam_ksferr_ap_cosmos-wircam_ksm_cosmos-suprime_ymerr_cosmos-suprime_yf_ap_cosmos-suprime_yferr_ap_cosmos-suprime_yf_cosmos-irac_i1ferr_cosmos-irac_i1m_cosmos-irac_i1merr_cosmos-irac_i1f_cosmos-irac_i2ferr_cosmos-irac_i2m_cosmos-irac_i2merr_cosmos-irac_i2f_cosmos-irac_i3ferr_cosmos-irac_i3m_cosmos-irac_i3merr_cosmos-irac_i3f_cosmos-irac_i4ferr_cosmos-irac_i4m_cosmos-irac_i4merr_cosmos-irac_i4f_cosmos-vista_ksferr_cosmos-vista_ksflag_cosmos-vista_ksm_ap_cosmos-vista_ksmerr_ap_cosmos-vista_ksf_cosmos-vista_yferr_cosmos-vista_yflag_cosmos-vista_ym_ap_cosmos-vista_ymerr_ap_cosmos-vista_yf_cosmos-vista_hferr_cosmos-vista_hflag_cosmos-vista_hm_ap_cosmos-vista_hmerr_ap_cosmos-vista_hf_cosmos-vista_jferr_cosmos-vista_jflag_cosmos-vista_jm_ap_cosmos-vista_jmerr_ap_cosmos-vista_jf_cosmos-megacam_uferr_cosmos-megacam_uflag_cosmos-megacam_um_ap_cosmos-megacam_umerr_ap_cosmos-megacam_uf_cosmos-suprime_bferr_cosmos-suprime_bflag_cosmos-suprime_bm_ap_cosmos-suprime_bmerr_ap_cosmos-suprime_bf_cosmos-suprime_vferr_cosmos-suprime_vflag_cosmos-suprime_vm_ap_cosmos-suprime_vmerr_ap_cosmos-suprime_vf_cosmos-suprime_ipferr_cosmos-suprime_ipflag_cosmos-suprime_ipm_ap_cosmos-suprime_ipmerr_ap_cosmos-suprime_ipf_cosmos-suprime_rcferr_cosmos-suprime_rcflag_cosmos-suprime_rcm_ap_cosmos-suprime_rcmerr_ap_cosmos-suprime_rcf_cosmos-suprime_zpferr_cosmos-suprime_zpflag_cosmos-suprime_zpm_ap_cosmos-suprime_zpmerr_ap_cosmos-suprime_zpf_cosmos-suprime_zppferr_cosmos-suprime_zppflag_cosmos-suprime_zppm_ap_cosmos-suprime_zppmerr_ap_cosmos-suprime_zppf_cosmos-suprime_ia484ferr_cosmos-suprime_ia484flag_cosmos-suprime_ia484m_ap_cosmos-suprime_ia484merr_ap_cosmos-suprime_ia484f_cosmos-suprime_ia527ferr_cosmos-suprime_ia527flag_cosmos-suprime_ia527m_ap_cosmos-suprime_ia527merr_ap_cosmos-suprime_ia527f_cosmos-suprime_ia624ferr_cosmos-suprime_ia624flag_cosmos-suprime_ia624m_ap_cosmos-suprime_ia624merr_ap_cosmos-suprime_ia624f_cosmos-suprime_ia679ferr_cosmos-suprime_ia679flag_cosmos-suprime_ia679m_ap_cosmos-suprime_ia679merr_ap_cosmos-suprime_ia679f_cosmos-suprime_ia738ferr_cosmos-suprime_ia738flag_cosmos-suprime_ia738m_ap_cosmos-suprime_ia738merr_ap_cosmos-suprime_ia738f_cosmos-suprime_ia767ferr_cosmos-suprime_ia767flag_cosmos-suprime_ia767m_ap_cosmos-suprime_ia767merr_ap_cosmos-suprime_ia767f_cosmos-suprime_ib427ferr_cosmos-suprime_ib427flag_cosmos-suprime_ib427m_ap_cosmos-suprime_ib427merr_ap_cosmos-suprime_ib427f_cosmos-suprime_ib464ferr_cosmos-suprime_ib464flag_cosmos-suprime_ib464m_ap_cosmos-suprime_ib464merr_ap_cosmos-suprime_ib464f_cosmos-suprime_ib505ferr_cosmos-suprime_ib505flag_cosmos-suprime_ib505m_ap_cosmos-suprime_ib505merr_ap_cosmos-suprime_ib505f_cosmos-suprime_ib574ferr_cosmos-suprime_ib574flag_cosmos-suprime_ib574m_ap_cosmos-suprime_ib574merr_ap_cosmos-suprime_ib574f_cosmos-suprime_ib709ferr_cosmos-suprime_ib709flag_cosmos-suprime_ib709m_ap_cosmos-suprime_ib709merr_ap_cosmos-suprime_ib709f_cosmos-suprime_ib827ferr_cosmos-suprime_ib827flag_cosmos-suprime_ib827m_ap_cosmos-suprime_ib827merr_ap_cosmos-suprime_ib827f_cosmos-suprime_nb711ferr_cosmos-suprime_nb711flag_cosmos-suprime_nb711m_ap_cosmos-suprime_nb711merr_ap_cosmos-suprime_nb711f_cosmos-suprime_nb816ferr_cosmos-suprime_nb816flag_cosmos-suprime_nb816m_ap_cosmos-suprime_nb816merr_ap_cosmos-suprime_nb816f_cosmos-wircam_hferr_cosmos-wircam_hflag_cosmos-wircam_hm_ap_cosmos-wircam_hmerr_ap_cosmos-wircam_hf_cosmos-wircam_ksferr_cosmos-wircam_ksflag_cosmos-wircam_ksm_ap_cosmos-wircam_ksmerr_ap_cosmos-wircam_ksf_cosmos-suprime_yferr_cosmos-suprime_yflag_cosmos-suprime_ym_ap_cosmos-suprime_ymerr_ap_cosmos-suprime_yflag_cosmos-irac_i1flag_cosmos-irac_i2flag_cosmos-irac_i3flag_cosmos-irac_i4ps1_flag_cleanedcosmos_flag_gaiaflag_mergedcandels_idcandels_stellarityf_ap_candels_f140wferr_ap_candels_f140wf_candels_f140wferr_candels_f140wf_ap_candels_f160wferr_ap_candels_f160wf_candels_f160wferr_candels_f160wf_candels_f606wferr_candels_f606wf_candels_f814wferr_candels_f814wf_candels_f125wferr_candels_f125wm_ap_candels_f140wmerr_ap_candels_f140wm_candels_f140wmerr_candels_f140wflag_candels_f140wm_ap_candels_f160wmerr_ap_candels_f160wm_candels_f160wmerr_candels_f160wflag_candels_f160wm_candels_f606wmerr_candels_f606wflag_candels_f606wm_candels_f814wmerr_candels_f814wflag_candels_f814wm_candels_f125wmerr_candels_f125wflag_candels_f125wcandels_flag_cleanedcandels_flag_gaiacfhtls_idcfhtls_stellaritym_megacam_umerr_megacam_um_megacam_gmerr_megacam_gm_megacam_rmerr_megacam_rm_megacam_imerr_megacam_im_megacam_zmerr_megacam_zm_ap_megacam_umerr_ap_megacam_um_ap_megacam_gmerr_ap_megacam_gm_ap_megacam_rmerr_ap_megacam_rm_ap_megacam_imerr_ap_megacam_im_ap_megacam_zmerr_ap_megacam_zf_megacam_uferr_megacam_uflag_megacam_uf_megacam_gferr_megacam_gflag_megacam_gf_megacam_rferr_megacam_rflag_megacam_rf_megacam_iferr_megacam_iflag_megacam_if_megacam_zferr_megacam_zflag_megacam_zf_ap_megacam_uferr_ap_megacam_uf_ap_megacam_gferr_ap_megacam_gf_ap_megacam_rferr_ap_megacam_rf_ap_megacam_iferr_ap_megacam_if_ap_megacam_zferr_ap_megacam_zcfhtls_flag_cleanedcfhtls_flag_gaiadecals_idf_decam_gf_decam_rf_decam_zferr_decam_gferr_decam_rferr_decam_zf_ap_decam_gf_ap_decam_rf_ap_decam_zferr_ap_decam_gferr_ap_decam_rferr_ap_decam_zm_decam_gmerr_decam_gflag_decam_gm_decam_rmerr_decam_rflag_decam_rm_decam_zmerr_decam_zflag_decam_zm_ap_decam_gmerr_ap_decam_gm_ap_decam_rmerr_ap_decam_rm_ap_decam_zmerr_ap_decam_zdecals_stellaritydecals_flag_cleaneddecals_flag_gaiahsc-udeep_idm_ap_hsc-udeep_gmerr_ap_hsc-udeep_gm_hsc-udeep_gmerr_hsc-udeep_gm_ap_hsc-udeep_rmerr_ap_hsc-udeep_rm_hsc-udeep_rmerr_hsc-udeep_rm_ap_hsc-udeep_imerr_ap_hsc-udeep_im_hsc-udeep_imerr_hsc-udeep_im_ap_hsc-udeep_zmerr_ap_hsc-udeep_zm_hsc-udeep_zmerr_hsc-udeep_zm_ap_hsc-udeep_ymerr_ap_hsc-udeep_ym_hsc-udeep_ymerr_hsc-udeep_ym_ap_hsc-udeep_n921merr_ap_hsc-udeep_n921m_hsc-udeep_n921merr_hsc-udeep_n921hsc-udeep_stellarityf_ap_hsc-udeep_gferr_ap_hsc-udeep_gf_hsc-udeep_gferr_hsc-udeep_gflag_hsc-udeep_gf_ap_hsc-udeep_rferr_ap_hsc-udeep_rf_hsc-udeep_rferr_hsc-udeep_rflag_hsc-udeep_rf_ap_hsc-udeep_iferr_ap_hsc-udeep_if_hsc-udeep_iferr_hsc-udeep_iflag_hsc-udeep_if_ap_hsc-udeep_zferr_ap_hsc-udeep_zf_hsc-udeep_zferr_hsc-udeep_zflag_hsc-udeep_zf_ap_hsc-udeep_yferr_ap_hsc-udeep_yf_hsc-udeep_yferr_hsc-udeep_yflag_hsc-udeep_yf_ap_hsc-udeep_n921ferr_ap_hsc-udeep_n921f_hsc-udeep_n921ferr_hsc-udeep_n921flag_hsc-udeep_n921hsc-udeep_flag_cleanedhsc-udeep_flag_gaiahsc-deep_idm_ap_hsc-deep_gmerr_ap_hsc-deep_gm_hsc-deep_gmerr_hsc-deep_gm_ap_hsc-deep_rmerr_ap_hsc-deep_rm_hsc-deep_rmerr_hsc-deep_rm_ap_hsc-deep_imerr_ap_hsc-deep_im_hsc-deep_imerr_hsc-deep_im_ap_hsc-deep_zmerr_ap_hsc-deep_zm_hsc-deep_zmerr_hsc-deep_zm_ap_hsc-deep_ymerr_ap_hsc-deep_ym_hsc-deep_ymerr_hsc-deep_ym_ap_hsc-deep_n921merr_ap_hsc-deep_n921m_hsc-deep_n921merr_hsc-deep_n921hsc-deep_stellarityf_ap_hsc-deep_gferr_ap_hsc-deep_gf_hsc-deep_gferr_hsc-deep_gflag_hsc-deep_gf_ap_hsc-deep_rferr_ap_hsc-deep_rf_hsc-deep_rferr_hsc-deep_rflag_hsc-deep_rf_ap_hsc-deep_iferr_ap_hsc-deep_if_hsc-deep_iferr_hsc-deep_iflag_hsc-deep_if_ap_hsc-deep_zferr_ap_hsc-deep_zf_hsc-deep_zferr_hsc-deep_zflag_hsc-deep_zf_ap_hsc-deep_yferr_ap_hsc-deep_yf_hsc-deep_yferr_hsc-deep_yflag_hsc-deep_yf_ap_hsc-deep_n921ferr_ap_hsc-deep_n921f_hsc-deep_n921ferr_hsc-deep_n921flag_hsc-deep_n921hsc-deep_flag_cleanedhsc-deep_flag_gaiakids_idkids_stellaritym_kids_umerr_kids_um_kids_gmerr_kids_gm_kids_rmerr_kids_rm_kids_imerr_kids_if_ap_kids_uferr_ap_kids_uf_ap_kids_gferr_ap_kids_gf_ap_kids_rferr_ap_kids_rf_ap_kids_iferr_ap_kids_if_kids_uferr_kids_uflag_kids_uf_kids_gferr_kids_gflag_kids_gf_kids_rferr_kids_rflag_kids_rf_kids_iferr_kids_iflag_kids_im_ap_kids_umerr_ap_kids_um_ap_kids_gmerr_ap_kids_gm_ap_kids_rmerr_ap_kids_rm_ap_kids_imerr_ap_kids_ikids_flag_cleanedkids_flag_gaialas_idm_ukidss_ymerr_ukidss_ym_ap_ukidss_ymerr_ap_ukidss_ym_ukidss_jmerr_ukidss_jm_ap_ukidss_jmerr_ap_ukidss_jm_ap_ukidss_hmerr_ap_ukidss_hm_ukidss_hmerr_ukidss_hm_ap_ukidss_kmerr_ap_ukidss_km_ukidss_kmerr_ukidss_klas_stellarityf_ukidss_yferr_ukidss_yflag_ukidss_yf_ap_ukidss_yferr_ap_ukidss_yf_ukidss_jferr_ukidss_jflag_ukidss_jf_ap_ukidss_jferr_ap_ukidss_jf_ap_ukidss_hferr_ap_ukidss_hf_ukidss_hferr_ukidss_hflag_ukidss_hf_ap_ukidss_kferr_ap_ukidss_kf_ukidss_kferr_ukidss_kflag_ukidss_klas_flag_cleanedlas_flag_gaiawirds_idm_wirds_umerr_wirds_um_ap_wirds_umerr_ap_wirds_um_wirds_gmerr_wirds_gm_ap_wirds_gmerr_ap_wirds_gm_wirds_rmerr_wirds_rm_ap_wirds_rmerr_ap_wirds_rm_wirds_imerr_wirds_im_ap_wirds_imerr_ap_wirds_im_wirds_zmerr_wirds_zm_ap_wirds_zmerr_ap_wirds_zm_wirds_jmerr_wirds_jm_ap_wirds_jmerr_ap_wirds_jm_wirds_hmerr_wirds_hm_ap_wirds_hmerr_ap_wirds_hm_wirds_kmerr_wirds_km_ap_wirds_kmerr_ap_wirds_kf_wirds_uferr_wirds_uflag_wirds_uf_ap_wirds_uferr_ap_wirds_uf_wirds_gferr_wirds_gflag_wirds_gf_ap_wirds_gferr_ap_wirds_gf_wirds_rferr_wirds_rflag_wirds_rf_ap_wirds_rferr_ap_wirds_rf_wirds_iferr_wirds_iflag_wirds_if_ap_wirds_iferr_ap_wirds_if_wirds_zferr_wirds_zflag_wirds_zf_ap_wirds_zferr_ap_wirds_zf_wirds_jferr_wirds_jflag_wirds_jf_ap_wirds_jferr_ap_wirds_jf_wirds_hferr_wirds_hflag_wirds_hf_ap_wirds_hferr_ap_wirds_hf_wirds_kferr_wirds_kflag_wirds_kf_ap_wirds_kferr_ap_wirds_kwirds_flag_cleanedcfht-wirds_flag_gaiaps1_flag_cleaned_1ps1_idm_ap_gpc1_gmerr_ap_gpc1_gm_gpc1_gmerr_gpc1_gm_ap_gpc1_rmerr_ap_gpc1_rm_gpc1_rmerr_gpc1_rm_ap_gpc1_imerr_ap_gpc1_im_gpc1_imerr_gpc1_im_ap_gpc1_zmerr_ap_gpc1_zm_gpc1_zmerr_gpc1_zm_ap_gpc1_ymerr_ap_gpc1_ym_gpc1_ymerr_gpc1_yf_ap_gpc1_gferr_ap_gpc1_gf_gpc1_gferr_gpc1_gflag_gpc1_gf_ap_gpc1_rferr_ap_gpc1_rf_gpc1_rferr_gpc1_rflag_gpc1_rf_ap_gpc1_iferr_ap_gpc1_if_gpc1_iferr_gpc1_iflag_gpc1_if_ap_gpc1_zferr_ap_gpc1_zf_gpc1_zferr_gpc1_zflag_gpc1_zf_ap_gpc1_yferr_ap_gpc1_yf_gpc1_yferr_gpc1_yflag_gpc1_yps1_flag_cleaned_2ps1_flag_gaia
degdegmagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJyuJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJymagmaguJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJymagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmaguJyuJyuJyuJyuJyuJyuJyuJy
0HELP_J095914.43+021600.80COSMOS2015_J095914.43+021600.80149.8101136050912.266885839857861.0nannan-2.224829950137064e-050.032126300036907196nannan0.030790200456976890.04474860057234764nannannannan26.3257007598876950.33314099907875060.081713400781154630.0697752013802528427.7229003906250.3792949914932251-0.00163483002688735720.01653309911489486729.336799621582031.41305005550384520.006685560103505850.00960237998515367527.5137004852294920.47072899341583250.0135164000093936920.01833429932594299327.7040996551513670.86540198326110840.018800400197505950.02164250053465366427.515800476074220.450976997613906860.0247978009283542630.014752100221812725nannan-0.018039500340819360.1482660025358227.113199234008790.52871799468994140.0212169997394084930.03574170172214508nannannannan31.63899993896484438.73860168457031-0.0027778199873864650.0303927008062601127.1289997100830080.84937500953674320.0426197983324527740.0390538983047008525.6261005401611330.20462399721145630.074680000543594360.05422620102763176nannan-0.040158800780773160.04943649843335152nannan-0.0329038985073566440.06257860362529755nannan-0.0176042001694440840.033940400928258896nannannannannannan-0.035689800977706910.0410397015511989632.57509994506836129.85099792480470.0323950983583927150.054776500910520554nannan-0.036338798701763150.04105839878320694nannan-0.0239991005510091780.06253539770841599nannan0.037306498736143110.07784759998321533nannan-0.0076738600619137290.0644085034728050225.4703998565673830.91333502531051640.090472899377346040.2874850034713745nannannannannannan0.0302143990993499760.12773899734020233nannannannannannannannannannannannannannannannannannanFalsenan-1567.791259765625nannanFalse27.6789703369140621.5779427289962769nannanFalsenannan0.107082709670066830.03285663574934006False26.619270324707030.92711186408996580.0295691955834627150.010329809039831161Falsenan-10.9800910949707030.0066877524368464950.008703891187906265False29.3371582031251.55942821502685550.035852514207363130.015544123947620392False28.5728454589843751.47274518013000490.030085705220699310.02398025244474411False28.2145843505859381.2498694658279420.035783223807811740.01486310362815857False27.9139709472656250.6458995938301086nannanFalsenan-8.9236259460449220.051846597343683240.025247598066926003False28.0832901000976561.829007863998413nannanFalsenannan0.00080241652904078360.028629876673221588Falsenan-11.8792629241943360.051097515970468520.039973750710487366False27.3259735107421880.99489504098892210.203966960310935970.0384407714009285False26.7169952392578120.788368284702301nannanFalsenan-1.3365685939788818nannanFalsenan-2.064918041229248nannanFalsenan-2.093268871307373nannanFalsenannannannanFalsenan-1.2484879493713380.00033881270792335270.0405210442841053False27.6238021850585941.835858702659607nannanFalsenan-1.2267491817474365nannanFalsenan-2.8291451930999756nannanFalse27.4705429077148442.2656095027923584nannanFalsenan-9.1128377914428710.23541818559169770.19803674519062042False26.5087051391601563.450014591217041nannanFalsenannannannanFalse27.699470520019534.590223789215088FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
1HELP_J095802.73+023603.69COSMOS2015_J095802.73+023603.69149.5113469493762.601021760206721.026.02269935607910.8689280152320862-0.000109344997326843440.0930308029055595428.2310009002685552.4898500442504883-0.0336701013147830960.03489290177822113nannannannannannannannannannan-0.0084078898653388020.02373839914798736630.484300613403323.697730064392090.0023726099170744420.01010040007531643nannan-0.007114380132406950.018665099516510963nannannannan29.2800006866455082.0281701087951660.0074343900196254250.015311299823224545nannan-0.069111600518226620.1535560041666031nannan-0.0190398003906011580.03563160076737404nannan-0.0276903007179498670.033716801553964615nannannannan27.1798992156982420.63642400503158570.0292974002659320830.0328896008431911527.9263000488281251.3717499971389770.00819857046008110.05163799971342087nannannannannannan-0.052322100847959520.0608161985874176nannannannannannannannan27.3505001068115230.86830902099609380.035273298621177670.04411020129919052nannan-0.0173962004482746120.05302980169653892526.6252002716064450.43753701448440550.0619481988251209260.04597400128841426.5417995452880860.475531995296478270.061882000416517260.07123749703168869nannan-0.021684600040316580.07832779735326767nannan-0.0157574992626905440.0644380003213882424.9981994628906250.493488997220993040.358429998159408570.282492995262146nannan-0.121949002146720890.3480919897556305nannan-0.0614776015281677250.179080992937088nannannannannannannannannannannannannannannannan0.141553267836570740.1132868230342865Falsenan-923.74511718750.01851823367178440.042466696351766586Falsenan-1.1251670122146606nannanFalsenannannannanFalsenannannannanFalsenan-3.0654113292694090.00232423259876668450.007915721274912357False30.4619369506835944.622069835662842nannanFalsenan-2.848508596420288nannanFalsenannan0.0070469239726662640.013163750059902668False29.2218856811523442.2360990047454834nannanFalsenan-2.412349224090576nannanFalsenan-2.0318763256073nannanFalsenan-1.3220350742340088nannanFalsenannan0.0487573668360710140.028580019250512123False27.7329254150390621.21886003017425540.0245176944881677630.030976351350545883False29.115653991699226.838416576385498nannanFalsenannannannanFalsenan-1.2619972229003906nannanFalsenannannannanFalsenannan0.041667707264423370.03332342207431793False27.531379699707031.3577420711517334nannanFalsenan-3.30970978736877440.081268027424812320.03274991735816002False26.919929504394530.80576407909393310.08775668591260910.03843577951192856False26.921089172363281.2498807907104492nannanFalsenan-3.92182993888855nannanFalsenan-4.4399604797363280.36368045210838320.16530010104179382False25.013984680175780.8557121157646179nannanFalsenan-3.0991320610046387nannanFalsenan-3.162692070007324FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
2HELP_J095901.32+013751.84COSMOS2015_J095901.32+013751.84149.7554853951011.63106399148120021.0nannan-6.758159724995494e-050.0515539981424808524.6923999786376950.13274200260639190.14251899719238280.060148000717163086nannan0.064904198050498960.1332270056009292625.9407997131347660.70533698797225950.184148997068405150.09476310014724731nannannannan27.5902004241943360.50796598196029660.0162078998982906340.0092782899737358130.99780082702636721.499399185180664-0.0124703003093600270.01731259934604168nannan0.040855798870325090.021752899512648582nannan-0.0064005199819803240.013447700068354607nannan0.0094907199963927270.1475369930267334nannan-0.034908700734376910.0355607010424137126.941799163818360.94508600234985350.0136617003008723260.03253659978508949nannan0.008082809858024120.02702159993350506nannannannannannan0.0107546998187899590.05200650170445442nannan0.037243198603391650.044126201421022415nannan-0.027933100238442420.05926689878106117nannan0.0110777001827955250.03365220129489899nannannannan26.0104999542236330.48765799403190613-0.0244522001594305040.037741899490356445nannannannan26.3598003387451170.64717900753021240.087774299085140230.03883260115981102nannan0.00138230994343757630.064678601920604725.9932003021240231.1401100158691406-0.035288099199533460.0687372013926506nannan-0.049423899501562120.0650350004434585623.7922000885009770.4724769890308380.061178401112556460.35899001359939575nannannannan27.5501003265380867.7991700172424320.069221802055835720.1952970027923584nannannannannannannannannannannannannannannannannannanFalsenan-828.24377441406250.481991827487945560.05892827361822128False26.015319824218750.45821863412857056nannanFalse26.869316101074222.22865986824035640.15264411270618440.09916362166404724False25.7370758056640620.5587199926376343nannanFalsenannan0.033413313329219820.015632551163434982False28.3756866455078120.62153488397598270.0014483687700703740.02868013270199299Falsenan-1.5073344707489014nannanFalse27.3718643188476560.5780797600746155nannanFalsenan-2.2811667919158936nannanFalse28.95675659179687516.878196716308594nannanFalsenan-1.10601472854614260.060712814331054690.05284785479307175False28.5612411499023442.5857808589935303nannanFalse29.131095886230473.629718780517578nannanFalsenannannannanFalse28.8210067749023445.2502946853637695nannanFalse27.4723815917968751.286393642425537nannanFalsenan-2.303654670715332nannanFalse28.788879394531253.2982850074768066nannanFalsenannan0.143152803182601930.06429702788591385Falsenan-1.6758304834365845nannanFalsenannan0.103771932423114780.0618557445704937False26.5415878295898440.4803451597690582nannanFalse31.04848480224609450.801845550537110.145452007651329040.15273626148700714Falsenan-2.1148903369903564nannanFalsenan-1.4286782741546631.10438346862792970.48059165477752686False26.9335098266601566.371013641357422nannanFalsenannan0.034670483320951460.24904853105545044False26.7993927001953123.06321120262146FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
3HELP_J095824.46+014508.83COSMOS2015_J095824.46+014508.83149.6019007093481.752450148966771.027.626199722290044.17363977432251-0.0002073579962598160.0952583998441696225.2341003417968750.169237002730369570.180306002497673030.0981604978442192125.9004001617431640.51400202512741090.2125679999589920.1391460001468658428.437099456787113.981489896774292-0.01265219971537590.04302110150456428526.3362007141113280.139533996582031250.080348297953605650.0240091998130083126.2574005126953120.094910196959972380.082754999399185180.01246479991823434826.4137001037597660.17815800011157990.079299703240394590.02201450057327747327.0146999359130860.55979502201080320.0517462007701396940.0291440002620220226.1040000915527340.150810003280639650.102058000862598420.02020199969410896327.8973007202148442.30044007301330570.057190600782632830.1498609930276870725.5529003143310550.117623001337051390.187386006116867070.0368454009294509926.7392005920410160.36309400200843810.036930501461029050.0315768010914325726.9512004852294920.42545598745346070.054470099508762360.0273189004510641126.3057003021240230.322894006967544560.08837430179119110.03488390147686004626.036199569702150.257685005664825440.117931999266147610.0517279990017414126.244499206542970.36762198805809020.086797498166561130.0447417981922626525.8362998962402340.306928992271423340.10839699953794480.0650826990604400626.6317996978759770.347876012325286870.048564899712800980.0331768989562988326.06640052795410.22457399964332580.104328997433185580.0377836003899574326.4678993225097660.35052201151847840.099261201918125150.03753510117530823nannan0.0554000996053218840.0439070984721183827.7637004852294921.0969099998474120.0174307990819215770.03761989995837211626.08460044860840.304396986961364750.158902004361152650.065850399434566527.0361003875732421.379870057106018-0.0022858800366520880.0668881013989448527.3286991119384770.8559470176696777-0.00245652999728918080.0647568032145500226.969400405883793.401870012283325-0.121726997196674350.2945109903812408424.6884994506835940.60143500566482540.207607001066207890.4273020029067993nannan-0.031763099133968350.1894250065088272nannannannannannannannannannannannannannannannan0.0323236249387264250.12425410002470016Falsenan-498.77746582031250.29265749454498290.04561741277575493False25.7599792480468750.59108626842498780.15843079984188080.0750032588839531False25.5812606811523440.71071767807006840.0153165217489004140.05616702511906624Falsenan-3.69181394577026370.106052130460739140.013629348948597908False26.637565612792970.324433207511901860.114035412669181820.009968465194106102False26.605522155761720.163536742329597470.098746038973331450.016203196719288826False26.6518249511718750.30141270160675050.056770127266645430.029270125553011894False27.115303039550780.61149793863296510.131340786814689640.01824338547885418False26.3778839111328120.214917421340942380.025181388482451440.05335390940308571False27.0066909790039062.8450391292572020.218192353844642640.023637821897864342False25.7181549072265620.213486507534980770.073167771100997920.024468906223773956False27.4815368652343750.92834031581878660.060189336538314820.023585759103298187False27.0596084594726560.54453945159912110.109073616564273830.03243809938430786False26.534187316894530.428571581840515140.13980419933795930.033180661499500275False26.2209243774414060.476231724023818970.115398481488227840.03907304257154465False26.5537338256835940.55966806411743160.16806608438491820.04751094430685043False26.3124618530273440.65188747644424440.080775558948516850.02588094398379326False27.184196472167970.74171590805053710.13596889376640320.028123846277594566False26.3539886474609380.393208235502243040.093937784433364870.03032713010907173False26.4080505371093750.41056543588638306nannanFalse27.0412216186523440.86049526929855350.0284786727279424670.028771759942173958False28.2967071533203122.34328222274780270.133708700537681580.037486568093299866False25.8971786499023440.449938714504241940.0556621141731739040.07074138522148132Falsenan-31.7701835632324220.042512830346822740.03351525962352753Falsenan-28.6211833953857420.059188820421695710.1854526698589325Falsenan-2.62687182426452640.483726531267166140.2679564952850342False25.6068954467773442.234689712524414nannanFalsenan-6.474984645843506FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
4HELP_J095836.75+014228.42COSMOS2015_J095836.75+014228.42149.6530973935671.707891841783471.0nannan-0.00024657999165356160.1032200008630752626.0520000457763670.31101500988006590.080666400492191310.1029630005359649725.232599258422850.24635000526905060.258816987276077270.1493889987468719527.068399429321290.98993200063705440.039819899946451190.11974799633026123nannannannan28.2203998565673830.397868007421493530.019885299727320670.01007289998233318327.354099273681640.321458995342254640.039210598915815350.01954719983041286527.7285995483398440.68450701236724850.034021601080894470.02213389985263347626.8106994628906250.248740002512931820.069639302790164950.0201882999390363726.1644992828369140.386931985616683960.12373399734497070.1536000072956085225.9248008728027340.1442289948463440.140121996402740480.0390227995812892927.0694007873535160.405708998441696170.048084400594234470.0315652005374431628.7667999267578121.92421996593475340.0076959501020610330.02808579988777637526.656799316406250.388253986835479740.065365597605705260.03659019991755485526.6417999267578120.405050009489059450.129982993006706240.05677539855241775526.0825996398925780.295464009046554570.11857800185680390.0502335987985134127.0438003540039060.78370499610900880.075368702411651610.06467989832162857nannan-0.00613234983757138250.03316750004887581nannan0.0137437004595994950.0432870984077453626.924600601196290.6061459779739380.0325868017971515660.05147830024361610427.1798992156982420.56678301095962520.043145701289176940.0456913001835346226.411199569702150.27815300226211550.089159600436687470.03999470174312591625.8218002319335940.194416001439094540.143153995275497440.0636655986309051526.0065002441406250.459255993366241460.15666200220584870.0694921016693115226.8216991424560550.442831993103027340.06510320305824280.0643173009157180825.3099994659423830.56201499700546260.33180600404739380.272588998079299928.4985008239746116.348699569702150.0366594009101390840.423794001340866125.9675006866455080.63278698921203610.125418007373809810.17618800699710846nannannannannannannannannannannannannannannannannannanFalsenan-454.49630737304690.137784302234649660.03946905583143234False26.6332702636718751.38583910465240480.2930622994899750.06649487465620041False25.3675231933593750.62668621540069580.0540306568145751950.04926304891705513False27.3997497558593753.2650692462921143nannanFalsenannan0.018699936568737030.006852590944617987False28.1536712646484380.54997968673706050.04152981936931610.012295927852392197False27.416496276855470.54125934839248660.029414415359497070.01854444481432438False27.570617675781250.70636230707168580.068504653871059420.015694279223680496False26.7928695678710940.314752817153930660.124222464859485630.044270094484090805False26.1687774658203121.34780323505401610.154910087585449220.020578227937221527False26.0337295532226560.30236840248107910.053980853408575060.020171120762825012False27.1949920654296880.71273589134216310.0113052418455481530.020035963505506516False29.1843490600585943.96231412887573240.078936927020549770.028227463364601135False26.861625671386720.60777086019515990.080034963786602020.02985823154449463False26.115287780761720.47423973679542540.133955270051956180.036453571170568466False26.2149887084960940.459954053163528440.0552687719464302060.03989404812455177False26.707023620605470.9317567348480225nannanFalsenan-5.8723249435424805nannanFalse28.554740905761723.41962981224060060.061682179570198060.03443599492311478False27.6173934936523441.71516835689544680.0487573668360710140.025452636182308197False27.3126602172851561.14979469776153560.098973773419857030.025355931371450424False26.5245819091796880.487033307552337650.170325562357902530.030499134212732315False26.010490417480470.48286491632461550.14368110895156860.06077572703361511False25.912590026855470.481610655784606930.067814141511917110.027658900246024132False26.8659973144531251.0726294517517090.27289769053459170.14126138389110565False25.0977935791015620.89196622371673580.0144743714481592180.21795086562633514False27.48954010009765612.5514450073242190.148935899138450620.08680257946252823False26.1540985107421881.5252490043640137FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
5HELP_J095739.74+020106.13COSMOS2015_J095739.74+020106.13149.4155819995462.01836706220767061.026.762899398803710.7536249756813049-0.00011338000331306830.04120229929685592725.632499694824220.113378003239631650.17138600349426270.0564917996525764528.5618000030517584.187200069427490.0126599995419383050.1257430016994476325.299499511718750.139348000288009640.24788700044155120.0894107967615127627.4813995361328120.32021701335906980.0309725999832153320.02080079913139343326.9248008728027340.14636500179767610.049031700938940050.0109968995675444626.7891006469726560.221683993935585020.052832201123237610.0204211995005607626.5202007293701170.2569899857044220.075331702828407290.0228457003831863426.7376995086669920.200891003012657170.068857498466968540.01630499958992004425.491399765014650.251448988914489750.201304003596305850.165234997868537926.1494998931884770.18573799729347230.089832201600074770.0362550988793373131.03650093078613318.676900863647460.0221161004155874250.033686801791191126.681999206542970.329160004854202270.065473899245262150.02928929962217807826.3227996826171880.304084986448287960.086694300174713130.03493760153651237525.9986991882324220.254842013120651250.136864006519317630.0572271011769771626.0603008270263670.334156990051269530.124164000153541560.0522492006421089226.68359947204590.59201598167419430.097731396555900570.06200340017676353526.8917999267578120.43047299981117250.067216597497463230.03499919921159744nannan-0.0067922398447990420.04121949896216392526.550699234008790.42015200853347780.077911101281642910.044979799538850784nannan0.0030647700186818840.0530688017606735226.4974002838134770.371378004550933840.097169198095798490.0443970002233982126.5650005340576170.468791007995605470.0366749018430709840.0691251009702682527.024000167846681.50836002826690670.0367432981729507450.079844400286674527.5359992980957030.96148800849914550.041330698877573010.06483989953994751nannan-0.313125014305114750.3614830076694488525.4489994049072270.96949797868728640.18642899394035340.37154000997543335nannan0.037697400897741320.20017500221729279nannannannannannannannannannannannannannannannan0.071588002145290370.049690257757902145Falsenan-394.556579589843750.202768340706825260.021174084395170212False25.81506347656250.35787749290466310.0136546213179826740.0526597835123539False28.6439132690429710.7838649749755860.275549650192260740.03536521643400192False25.414367675781250.39161610603332520.036935161799192430.010893316008150578False27.672554016113280.72916638851165770.0616708025336265560.00831366516649723False27.1738052368164060.2435104399919510.069881044328212740.014268208295106888False27.0927581787109380.419668942689895630.089519895613193510.021189047023653984False26.7075576782226560.329269081354141240.073268979787826540.013556771911680698False26.805122375488280.25709515810012820.23090857267379760.05347682535648346False25.640373229980470.89119744300842290.125950440764427190.021546470001339912False26.516418457031250.43818888068199160.00139765220228582620.02404250018298626False28.0382308959960941.65377163887023930.07712591439485550.023382076993584633False26.8598327636718750.485696613788604740.107369258999824520.030071191489696503False26.5550231933593750.43754917383193970.144717171788215640.0339677520096302False26.0592803955078120.453980088233947750.136734932661056520.042082905769348145False26.1650085449218750.45688638091087340.077012270689010620.04199223965406418False26.424919128417970.6888199448585510.063574045896530150.025205856189131737False26.831306457519530.5653350353240967nannanFalsenan-6.5889163017272950.08704025298357010.03368234261870384False26.6710052490234380.6268194317817688nannanFalse30.1840133666992218.8003387451171880.091419652104377750.03127025440335274False26.4311752319335940.49607723951339720.085901260375976560.03708980232477188False27.489082336425782.0464029312133790.056285899132490160.0781952440738678False27.487052917480472.35934042930603030.035123672336339950.031104231253266335False27.359321594238281.7033108472824097nannanFalsenan-1.25341367721557620.240104436874389650.21439900994300842False25.7237167358398442.1637966632843018nannanFalse27.459220886230475.765310764312744FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
6HELP_J100054.82+014728.67COSMOS2015_J100054.82+014728.67150.2283919445121.79129408282547021.029.2465991973876956.053830146789551-0.000237561005633324380.0405572988092899327.1159992218017580.336439996957778930.050231501460075380.04507419839501381nannan-0.0048027201555669310.0361643992364406626.9808998107910160.451631993055343630.0548005998134613040.0638862028717994729.4596996307373051.33456003665924070.0062260199338197710.01684710010886192327.9899005889892580.324928998947143550.0230085998773574830.01075590029358863827.9109992980957030.54449200630187990.025089399889111520.0213009994477033626.85729980468750.241903007030487060.065406300127506260.01889799907803535528.4127998352050780.72209501266479490.0156159000471234320.01467860024422407227.157600402832030.8167690038681030.0513276010751724240.1392720043659210226.3866004943847660.180571004748344420.102343000471591950.034286998212337494nannan-0.0124096004292368890.0351153016090393127.685499191284180.63876301050186160.0292589999735355380.0272396001964807527.417100906372070.64819800853729250.039563901722431180.03278509899973869nannan-0.037285000085830690.0510088987648487127.3796005249023440.83325499296188350.041234698146581650.04651889950037002627.7444000244140621.26174998283386230.0302250999957323070.0599373988807201429.228000640869142.89006996154785160.0054146200418472290.0329351983964443226.9734992980957030.380688011646270750.061633899807929990.036066800355911255nannan-0.0075924601405858990.0388716012239456226.769199371337890.365110993385314940.068810999393463130.0464650988578796427.3020992279052730.59178501367568970.0455163009464740750.04058580100536346425.7651004791259770.164149001240730290.174545004963874820.0610189996659755725.9951000213623050.45431900024414060.144473001360893250.0750107988715171826.326999664306640.25951498746871950.106601998209953310.06433620303869247nannan-0.113889001309871670.35783401131629944nannan-0.186820998787879940.3752770125865936325.8616008758544920.368202000856399540.163532003760337830.12123099714517593nannannannannannannannannannannannannannannannan0.0072670900262892250.04051971808075905Falsenan-185.36091613769530.051713053137063980.016024461016058922False27.1475601196289060.9742628931999207nannanFalsenan-8.175574302673340.058565266430377960.024361303076148033False27.053039550781251.26574456691741940.005972004961222410.007340640760958195False29.4144744873046882.9379131793975830.0231227464973926540.006919959560036659False27.9952774047851560.50755238533020020.0248656794428825380.012470030225813389False27.9012756347656250.92179429531097410.06562661379575730.014621670357882977False26.860954284667970.313704371452331540.0156631823629140850.01041717641055584False28.416084289550781.02056801319122310.049769066274166110.03743987902998924False27.1241226196289062.94602990150451660.101241752505302430.016837721690535545False26.3748550415039060.3637438118457794nannanFalsenan-3.07229495048522950.0306055545806884770.018005935475230217False27.7343521118164061.01080071926116940.039188593626022340.023396076634526253False27.4067535400390620.8997082114219666nannanFalsenan-1.4853749275207520.040565751492977140.03113243728876114False27.3618469238281251.22487246990203860.0289894342422485350.033689048141241074False27.6990814208984382.15305161476135250.007392634171992540.019678104668855667False29.5660781860351566.604144573211670.058965817093849180.02067498490214348False26.9254531860351560.635348916053772nannanFalsenan-5.5587124824523930.071173809468746190.02393430285155773False26.805854797363280.7331508398056030.043567251414060590.023746510967612267False27.254585266113280.96812498569488530.17945669591426850.02713148668408394False25.795234680175780.379561334848403930.145197674632072450.06075698882341385False26.0005340576171880.56371730566024780.106954753398895260.02556455135345459False26.3305892944335940.6552610993385315nannanFalsenan-3.4113330841064453nannanFalsenan-2.18097448348999020.164194911718368530.05568285658955574False25.8659973144531250.8048875331878662FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
7HELP_J100148.56+015305.15COSMOS2015_J100148.56+015305.15150.4523315115011.884759897274831.023.8195991516113280.09215229749679565-0.0002521039859857410.032368499785661723.3584003448486330.026990400627255440.41519701480865480.04673109948635101nannannannan25.238700866699220.23682799935340880.065836697816848750.0685736984014511126.08460044860840.178726002573966980.0036736899055540560.0177814997732639327.503099441528320.62487202882766720.00124364998191595080.01127250026911497126.2672004699707030.3021009862422943-0.0181316994130611420.01939750090241432225.8335990905761720.3169400095939636-0.0135044995695352550.02236559987068176325.72789955139160.17303599417209625-0.0136021999642252920.01409410033375024824.746900558471680.271941989660263060.053591899573802950.1489239931106567426.9836006164550780.8955249786376953-0.0219509005546569820.03457880020141601626.1476001739501950.4824160039424896-0.0140969995409250260.0334184989333152826.1597995758056640.47944799065589905-0.00156860996503382920.029427299275994327.0347003936767581.34309005737304690.0252924002707004550.0343060009181499525.5088005065917970.35839399695396423-0.0303502995520830150.0537494011223316226.482700347900391.1038299798965454nannannannannannan26.91589927673340.96992397308349610.0095060104504227640.03287509828805923526.408800125122070.69447201490402220.085619300603866580.0393217988312244425.034999847412110.24133299291133880.03350659832358360.04432880133390426624.7001991271972660.16254200041294098-0.0242353007197380070.0489732995629310625.9818000793457030.50678700208663940.0119542004540562630.04141040146350860626.4953994750976560.9835749864578247nannan24.3694000244140620.2797969877719879-0.0150197995826601980.0730174034833908125.3043994903564450.285836994647979740.046468198299407960.06416960060596466nannannannan24.4470996856689450.73172599077224730.185175001621246340.307033985853195224.717800140380860.36961999535560610.036297600716352460.12352599948644638nannannannannannannannannannannannannannannannan1.07686257362365720.09139914065599442Falsenan-139.401428222656251.64679491519927980.04093780368566513False24.85437011718750.12220136821269989nannanFalsenannan0.29142010211944580.06356649100780487False26.853828430175781.13087296485900880.133708700537681580.02201015315949917False29.987251281738285.2552113533020020.0362043008208274840.02083660289645195False31.1632537841796889.8411617279052730.113010726869106290.03144470229744911Falsenan-1.16153311729431150.168484568595886230.04918275400996208Falsenan-1.79815173149108890.185711935162544250.029597291722893715Falsenan-1.12499988079071040.458394736051559450.11481313407421112False27.0772552490234383.01710057258605960.0584197379648685460.04818512499332428Falsenan-1.71033787727355960.12617106735706330.05606052652001381Falsenan-2.57385802268981930.124761283397674560.05509307608008385Falsenan-20.3685321807861330.055733907967805860.06894461065530777False27.892524719238281.47266626358032230.227237313985824580.07500945776700974Falsenan-1.92280364036560060.09266588836908340.09421015530824661FalsenannannannanFalsenannan0.0621784850955009460.05554609373211861False28.9550018310546883.7548544406890870.099192760884761810.06344689428806305False26.5685729980468750.498638749122619630.351560473442077640.07814342528581619False27.5871734619140621.43641495704650880.478542178869247440.0716409757733345Falsenan-2.1939930915832520.146987274289131160.06860896944999695False28.7061996459960943.76108574867248540.09158833324909210.08297042548656464Falsenannan0.64899247884750370.167247012257576Falsenan-5.27820873260498050.27430900931358340.07221612334251404False27.232109069824221.4993319511413574nannanFalsenannan0.60417103767395020.40717774629592896False25.7310485839843751.8002316951751710.470846891403198240.1602916270494461False27.500305175781253.6949174404144287FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
8HELP_J095825.28+024722.91COSMOS2015_J095825.28+024722.91149.6053239919032.78969543945151.024.8917999267578120.4804820120334625-0.00125734996981918810.14371000230312347nannannannan25.0116004943847660.28790700435638430.29436498880386350.18665100634098053nannan0.0108300000429153440.13997900485992432nannan-0.0177820008248090740.0252989009022712728.565299987792970.61930900812149050.0139325000345706940.01000660005956888231.79260063171386720.2787990570068360.00307240011170506480.0181124992668628727.5018005371093750.59676498174667360.0331011004745960240.02097509987652301827.6758995056152340.42621800303459170.0306991003453731540.014130700379610062nannan0.00648852996528148650.1466380059719085725.8094997406005860.140628993511199950.150001004338264470.0368462987244129229.931600570678717.3344697952270510.0078800404444336890.035682499408721924nannan-0.0120665999129414560.030326999723911285nannan-0.018389599397778510.03392979875206947nannan0.0292734000831842420.0532453991472721127.2714004516601561.053089976310730.0466811992228031160.0525940991938114226.650600433349610.53700697422027590.032867599278688430.05656509846448898nannan-0.0241027008742094040.03714479878544807427.8416996002197271.10362994670867920.0051591098308563230.0379700995981693326.8213996887207030.55145102739334110.0497836992144584660.044806499034166336nannan0.0122240995988249780.0479318983852863329.6933002471923836.50205993652343750.0095456298440694810.0397778004407882726.110500335693360.287932008504867550.120894998311996460.0628973990678787228.1147003173828123.69744992256164550.026454599574208260.069537200033664727.317199707031250.80938601493835450.0293275993317365650.06490059942007065nannannannan24.5543994903564450.42044600844383240.4526889920234680.356633007526397725.0270004272460940.44296899437904360.22500999271869660.25366899371147156nannannannannannannannannannannannannannannannan0.401125311851501460.17751410603523254Falsenan-124.09523010253906nannanFalsenannan0.35921946167945860.09525499492883682False25.2277832031250.6884438395500183nannanFalse28.81343078613281214.033266067504883nannanFalsenan-1.54470419883728030.0136106749996542930.007763592526316643False28.539924621582030.77979743480682370.00069656135747209190.013009999878704548False30.1813125610351566.4006624221801760.03624761477112770.019923171028494835False27.600395202636720.68799602985382080.030877366662025450.012121258303523064False27.682189941406250.4997609555721283nannanFalse29.3696365356445324.537170410156250.172266110777854920.02231261134147644False25.959770202636720.26670059561729430.0038668685592710970.026121841743588448False29.158683776855474.916444301605225nannanFalsenan-2.7287821769714355nannanFalsenan-2.003241539001465nannanFalse27.733818054199221.97484588623046880.044816680252552030.04346911981701851False27.2271499633789061.22326159477233890.079388894140720370.03926588594913483False27.608085632324221.8685505390167236nannanFalsenan-1.67323362827301030.02650451287627220.02694132551550865False29.6185684204101567.9908185005187990.06783283501863480.0344526506960392False27.157287597656250.9771880507469177nannanFalse28.6819610595703124.2572779655456540.0048159295693039890.028840765357017517False28.950492858886724.5243945121765140.130556926131248470.03462307155132294False26.193977355957030.56487017869949340.020611984655261040.07019364088773727False27.843752.8539102077484130.0429655164480209350.032029591500759125False27.731803894042972.4026830196380615nannanFalsenannan0.54731863737106320.21194645762443542False24.760505676269530.85535395145416260.35416007041931150.14449359476566315False25.5195007324218751.2240238189697266FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
9HELP_J100154.84+020628.04COSMOS2015_J100154.84+020628.04150.4784586916862.10778545260481031.025.0359992980957030.23545700311660767-0.000308199989376589660.03476019948720932nannan0.085089996457099910.0486276000738143926.2490997314453120.7630349993705750.066525697708129880.10621599853038788nannan0.0193163994699716570.07231739908456802nannan-0.0049238097853958610.016114600002765656nannan-0.00734747992828488350.00969650037586689nannannannannannan-0.0065111601725220680.02108230069279670728.9533996582031252.4843399524688720.0045104399323463440.013834999874234225.5673999786376950.46671599149703980.032854698598384860.1550550013780594nannan0.031782001256942750.0360142998397350326.419000625610350.45194301009178160.010831500403583050.031428299844264984nannannannannannan0.0124145997688174250.0344319008290767725.2262992858886720.218173995614051820.100950002670288090.05498350039124489nannan0.0052764299325644970.045866601169109344nannan-0.0181246008723974230.05750240013003349nannannannannannan0.0134757999330759050.03852749988436699nannan-0.0404996983706951140.0419806987047195430.24379920959472719.240999221801758-0.0188413001596927640.045609500259160995nannan-0.029883200302720070.04068180173635483nannan-0.0178236998617649080.066022597253322627.5821990966796884.1489601135253910.034166898578405380.07164239883422852nannan0.016389999538660050.0641952008008956923.7045993804931640.25114199519157410.094476401805877690.262015014886856123.7250995635986330.2842470109462738-0.085783496499061580.291734993457794225.22730064392090.43815198540687560.102124996483325960.11827000230550766nannannannannannannannannannannannannannannannan0.35123673081398010.07617057114839554Falsenan-122.45426177978516nannanFalse26.575309753417970.62048125267028810.11491056531667710.08075698465108871False26.842521667480471.7335036993026733nannanFalse28.185188293457034.064816474914551nannanFalsenan-3.553387403488159nannanFalsenan-1.4328505992889404nannanFalsenannannannanFalsenan-3.5154743194580080.0095200575888156890.021783430129289627False29.764457702636723.33030915260314940.21529789268970490.09254823625087738False27.6085052490234385.1240410804748535nannanFalse27.6445465087890621.2303198575973510.098265193402767180.04090336710214615False28.8132781982421883.150333881378174nannanFalsenannannannanFalse28.665168762207033.01128983497619630.29476779699325560.05923231691122055False26.3897323608398440.5913577675819397nannanFalse29.5941543579101569.43801498413086nannanFalsenan-3.4446239471435547nannanFalsenannannannanFalse28.576118469238283.1041347980499268nannanFalsenan-1.12543952465057370.00290055130608379840.05140245705842972Falsenan-2.628262519836426nannanFalsenan-1.4780781269073486nannanFalsenan-4.0217866897583010.0336604677140712740.12862788140773773False27.565986633300782.276611089706421nannanFalse28.3635559082031254.2525353431701661.1971822977066040.2769206464290619False26.4616928100585943.01111364364624021.17478966712951660.30756130814552307Falsenan-3.69240307807922360.29449605941772460.11884474009275436False26.3771743774414061.2573809623718262FalseFalseFalseFalseFalse0False-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannanFalsenannanFalsenannanFalseFalse0nannannannannannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannannannanFalse0-1nannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0nannannannannannannannannannannannannannannannannannannanFalsenannanFalsenannanFalsenannanFalsenannannannannannannannanFalse0-1nannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannannannanFalsenannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0False-1nannannannannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "master_catalogue[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## III - Merging flags and stellarity\n", "\n", "Each pristine catalogue contains a flag indicating if the source was associated to a another nearby source that was removed during the cleaning process. We merge these flags in a single one." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "flag_cleaned_columns = [column for column in master_catalogue.colnames\n", " if 'flag_cleaned' in column]\n", "\n", "flag_column = np.zeros(len(master_catalogue), dtype=bool)\n", "for column in flag_cleaned_columns:\n", " flag_column |= master_catalogue[column]\n", " \n", "master_catalogue.add_column(Column(data=flag_column, name=\"flag_cleaned\"))\n", "master_catalogue.remove_columns(flag_cleaned_columns)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Wirds was created with a merge so contains a flag to be merged with the merg flag produced here" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# master_catalogue['flag_merged'] |= master_catalogue['wirds_flag_merged']\n", "# master_catalogue.remove_columns('wirds_flag_merged')" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Each pristine catalogue contains a flag indicating the probability of a source being a Gaia object (0: not a Gaia object, 1: possibly, 2: probably, 3: definitely). We merge these flags taking the highest value." ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "flag_gaia_columns = [column for column in master_catalogue.colnames\n", " if 'flag_gaia' in column]\n", "\n", "master_catalogue.add_column(Column(\n", " data=np.max([master_catalogue[column] for column in flag_gaia_columns], axis=0),\n", " name=\"flag_gaia\"\n", "))\n", "master_catalogue.remove_columns(flag_gaia_columns)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Each prisitine catalogue may contain one or several stellarity columns indicating the probability (0 to 1) of each source being a star. We merge these columns taking the highest value." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cosmos_stellarity, candels_stellarity, cfhtls_stellarity, decals_stellarity, hsc-udeep_stellarity, hsc-deep_stellarity, kids_stellarity, las_stellarity\n" ] } ], "source": [ "stellarity_columns = [column for column in master_catalogue.colnames\n", " if 'stellarity' in column]\n", "\n", "print(\", \".join(stellarity_columns))" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "\n", "# We create an masked array with all the stellarities and get the maximum value, as well as its\n", "# origin. Some sources may not have an associated stellarity.\n", "stellarity_array = np.array([master_catalogue[column] for column in stellarity_columns])\n", "stellarity_array = np.ma.masked_array(stellarity_array, np.isnan(stellarity_array))\n", "\n", "max_stellarity = np.max(stellarity_array, axis=0)\n", "max_stellarity.fill_value = np.nan\n", "\n", "no_stellarity_mask = max_stellarity.mask\n", "\n", "master_catalogue.add_column(Column(data=max_stellarity.filled(), name=\"stellarity\"))\n", "\n", "stellarity_origin = np.full(len(master_catalogue), \"NO_INFORMATION\", dtype=\"S20\")\n", "stellarity_origin[~no_stellarity_mask] = np.array(stellarity_columns)[np.argmax(stellarity_array, axis=0)[~no_stellarity_mask]]\n", "\n", "master_catalogue.add_column(Column(data=stellarity_origin, name=\"stellarity_origin\"))\n", "\n", "master_catalogue.remove_columns(stellarity_columns)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## IV - Adding E(B-V) column" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " ebv(master_catalogue['ra'], master_catalogue['dec'])\n", ")" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## V a - Adding HELP unique identifiers and field columns\n", "\n", "First we make a help_id column using the old values where we have them" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "#master_catalogue.add_column(Column(gen_help_id(master_catalogue['ra'], master_catalogue['dec']),\n", "# name=\"help_id\"))\n", "#Use HELP ids from original cat to make sure they are identical\n", "\n", "master_catalogue['help_id'] = master_catalogue['help_id'].astype('S27')\n", "master_catalogue.add_column(Column(gen_help_id(master_catalogue['ra'], master_catalogue['dec']),\n", " name=\"help_id_temp\"))\n", "mask = (master_catalogue['help_id'] == '-1') | (master_catalogue['help_id'] == '')\n", "master_catalogue['help_id'][mask] = master_catalogue['help_id_temp'][mask]\n", "master_catalogue.remove_column('help_id_temp')\n", "\n", "master_catalogue.add_column(Column(np.full(len(master_catalogue), \"COSMOS\", dtype='" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(specz['ra'] * u.deg, specz['dec'] * u.deg)\n", ")" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue = specz_merge(master_catalogue, specz, radius=1. * u.arcsec)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VI - Choosing between multiple values for the same filter\n", "\n", "### VI.a HSC-DEEP and HSC-UDEEP and COSMOS\n", "\n", "On COSMOS2015 we have early HSC y band photometry. To ensure values are the same as for the original run, we take fluxes in this order: COSMOS, HSC-DEEP, HSC-UDEEP." ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "suprime_origin = Table()\n", "suprime_origin.add_column(master_catalogue['help_id'])" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "suprime_stats = Table()\n", "suprime_stats.add_column(Column(data=['g','r','i','z','y', 'n921'], name=\"Band\"))\n", "for col in [\"HSC-UDEEP\", \"HSC-DEEP\", \"COSMOS2015\"]:\n", " suprime_stats.add_column(Column(data=np.full(6, 0), name=\"{}\".format(col)))\n", " suprime_stats.add_column(Column(data=np.full(6, 0), name=\"use {}\".format(col)))\n", " suprime_stats.add_column(Column(data=np.full(6, 0), name=\"{} ap\".format(col)))\n", " suprime_stats.add_column(Column(data=np.full(6, 0), name=\"use {} ap\".format(col)))\n", " " ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "suprime_bands = ['g','r','i','z','y', 'n921'] \n", "for band in suprime_bands:\n", "\n", " # Suprime total flux \n", " has_hsc_udeep = ~np.isnan(master_catalogue['f_hsc-udeep_' + band])\n", " has_hsc_deep = ~np.isnan(master_catalogue['f_hsc-deep_' + band])\n", " if band == 'y':\n", " has_cosmos = ~np.isnan(master_catalogue['f_cosmos-suprime_y'])\n", " elif band != 'y':\n", " has_cosmos = np.full(len(master_catalogue), False, dtype=bool)\n", " \n", " use_cosmos = has_cosmos\n", " use_hsc_udeep = has_hsc_udeep & ~has_cosmos\n", " use_hsc_deep = has_hsc_deep & ~has_hsc_udeep & ~has_cosmos\n", " \n", " \n", " f_suprime = np.full(len(master_catalogue), np.nan)\n", " if band == 'y':\n", " f_suprime[use_cosmos] = master_catalogue['f_cosmos-suprime_y'][use_cosmos]\n", " f_suprime[use_hsc_udeep] = master_catalogue['f_hsc-udeep_' + band][use_hsc_udeep]\n", " f_suprime[use_hsc_deep] = master_catalogue['f_hsc-deep_' + band][use_hsc_deep]\n", " \n", "\n", " ferr_suprime = np.full(len(master_catalogue), np.nan)\n", " if band == 'y':\n", " ferr_suprime[use_cosmos] = master_catalogue['ferr_cosmos-suprime_y'][use_cosmos]\n", " ferr_suprime[use_hsc_udeep] = master_catalogue['ferr_hsc-udeep_' + band][use_hsc_udeep]\n", " ferr_suprime[use_hsc_deep] = master_catalogue['ferr_hsc-deep_' + band][use_hsc_deep]\n", "\n", " \n", " m_suprime = np.full(len(master_catalogue), np.nan)\n", " if band == 'y':\n", " m_suprime[use_cosmos] = master_catalogue['m_cosmos-suprime_y'][use_cosmos]\n", " m_suprime[use_hsc_udeep] = master_catalogue['m_hsc-udeep_' + band][use_hsc_udeep]\n", " m_suprime[use_hsc_deep] = master_catalogue['m_hsc-deep_' + band][use_hsc_deep]\n", "\n", "\n", " merr_suprime = np.full(len(master_catalogue), np.nan)\n", " if band == 'y':\n", " merr_suprime[use_cosmos] = master_catalogue['merr_cosmos-suprime_y'][use_cosmos]\n", " merr_suprime[use_hsc_udeep] = master_catalogue['merr_hsc-udeep_' + band][use_hsc_udeep]\n", " merr_suprime[use_hsc_deep] = master_catalogue['merr_hsc-deep_' + band][use_hsc_deep]\n", "\n", "\n", " flag_suprime = np.full(len(master_catalogue), False, dtype=bool)\n", " if band == 'y':\n", " flag_suprime[use_cosmos] = master_catalogue['flag_cosmos-suprime_y'][use_cosmos]\n", " flag_suprime[use_hsc_udeep] = master_catalogue['flag_hsc-udeep_' + band][use_hsc_udeep]\n", " flag_suprime[use_hsc_deep] = master_catalogue['flag_hsc-deep_' + band][use_hsc_deep]\n", "\n", "\n", " master_catalogue.add_column(Column(data=f_suprime, name=\"f_suprime_\" + band))\n", " master_catalogue.add_column(Column(data=ferr_suprime, name=\"ferr_suprime_\" + band))\n", " master_catalogue.add_column(Column(data=m_suprime, name=\"m_suprime_\" + band))\n", " master_catalogue.add_column(Column(data=merr_suprime, name=\"merr_suprime_\" + band))\n", " master_catalogue.add_column(Column(data=flag_suprime, name=\"flag_suprime_\" + band))\n", "\n", " old_hsc_udeep_columns = ['f_hsc-udeep_' + band,\n", " 'ferr_hsc-udeep_' + band,\n", " 'm_hsc-udeep_' + band, \n", " 'merr_hsc-udeep_' + band,\n", " 'flag_hsc-udeep_' + band]\n", " old_hsc_deep_columns = ['f_hsc-deep_' + band,\n", " 'ferr_hsc-deep_' + band,\n", " 'm_hsc-deep_' + band, \n", " 'merr_hsc-deep_' + band,\n", " 'flag_hsc-deep_' + band]\n", " old_cosmos_columns = ['f_cosmos-suprime_' + band,\n", " 'ferr_cosmos-suprime_' + band,\n", " 'm_cosmos-suprime_' + band, \n", " 'merr_cosmos-suprime_' + band,\n", " 'flag_cosmos-suprime_' + band]\n", " \n", " old_columns = old_hsc_udeep_columns + old_hsc_deep_columns\n", " if band == 'y':\n", " old_columns += old_cosmos_columns\n", " master_catalogue.remove_columns(old_columns)\n", "\n", " origin = np.full(len(master_catalogue), ' ', dtype='Table length=6\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxBandHSC-UDEEPuse HSC-UDEEPHSC-UDEEP apuse HSC-UDEEP apHSC-DEEPuse HSC-DEEPHSC-DEEP apuse HSC-DEEP apCOSMOS2015use COSMOS2015COSMOS2015 apuse COSMOS2015 ap
0g11461311146131125741412574141643773956277183822210447050000
1r11567221156722126888312688831679055989440190324011026070000
2i11603561160356129188312918831714230987298195373710865350000
3z11328421132842126072912607291701530984971193353410813490000
4y1035328500551115787857416114679857989951669840893700661669661669693726693726
5n92110881531088153120724312072438791664949889962965463260000
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "suprime_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "suprime_origin.write(\"{}/cosmos_suprime_fluxes_origins{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VII.b Megacam\n", "\n", "### COSMOS vs CFHT-WIRDS vs CFHTLS\n", "\n", "We take COSMOS over CFHTLS over CFHT-WIRDS" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "megacam_origin = Table()\n", "megacam_origin.add_column(master_catalogue['help_id'])" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "megacam_stats = Table()\n", "megacam_stats.add_column(Column(data=['u','g','r','i','z'], name=\"Band\"))\n", "for col in [\"COSMOS2015\", \"CFHTLS\", \"CFHT-WIRDS\"]:\n", " megacam_stats.add_column(Column(data=np.full(5, 0), name=\"{}\".format(col)))\n", " megacam_stats.add_column(Column(data=np.full(5, 0), name=\"use {}\".format(col)))\n", " megacam_stats.add_column(Column(data=np.full(5, 0), name=\"{} ap\".format(col)))\n", " megacam_stats.add_column(Column(data=np.full(5, 0), name=\"use {} ap\".format(col)))" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "megacam_bands = ['u','g','r','i','z'] \n", "for band in megacam_bands:\n", "\n", " # megacam total flux \n", " has_cfhtls = ~np.isnan(master_catalogue['f_megacam_' + band])\n", " has_wirds = ~np.isnan(master_catalogue['f_wirds_' + band])\n", " if band == 'u':\n", " has_cosmos = ~np.isnan(master_catalogue['f_cosmos-megacam_' + band])\n", " elif band != 'u':\n", " has_cosmos = np.full(len(master_catalogue), False, dtype=bool)\n", " \n", " \n", " use_cosmos = has_cosmos\n", " use_cfhtls = has_cfhtls & ~has_cosmos\n", " use_wirds = has_wirds & ~has_cfhtls & ~has_cosmos\n", " \n", " master_catalogue['f_megacam_' + band][use_wirds] = master_catalogue['f_wirds_' + band][use_wirds]\n", " master_catalogue['ferr_megacam_' + band][use_wirds] = master_catalogue['ferr_wirds_' + band][use_wirds]\n", " master_catalogue['m_megacam_' + band][use_wirds] = master_catalogue['m_wirds_' + band][use_wirds]\n", " master_catalogue['merr_megacam_' + band][use_wirds] = master_catalogue['merr_wirds_' + band][use_wirds]\n", " master_catalogue['flag_megacam_' + band][use_wirds] = master_catalogue['flag_wirds_' + band][use_wirds]\n", "\n", "\n", " master_catalogue.remove_columns(['f_wirds_' + band,\n", " 'ferr_wirds_' + band,\n", " 'm_wirds_' + band, \n", " 'merr_wirds_' + band,\n", " 'flag_wirds_' + band])\n", " \n", " if band == 'u':\n", " master_catalogue['f_megacam_' + band][use_cosmos] = master_catalogue['f_cosmos-megacam_' + band][use_cosmos]\n", " master_catalogue['ferr_megacam_' + band][use_cosmos] = master_catalogue['ferr_cosmos-megacam_' + band][use_cosmos]\n", " master_catalogue['m_megacam_' + band][use_cosmos] = master_catalogue['m_cosmos-megacam_' + band][use_cosmos]\n", " master_catalogue['merr_megacam_' + band][use_cosmos] = master_catalogue['merr_cosmos-megacam_' + band][use_cosmos]\n", " master_catalogue['flag_megacam_' + band][use_cosmos] = master_catalogue['flag_cosmos-megacam_' + band][use_cosmos]\n", " \n", " master_catalogue.remove_columns(['f_cosmos-megacam_' + band,\n", " 'ferr_cosmos-megacam_' + band,\n", " 'm_cosmos-megacam_' + band, \n", " 'merr_cosmos-megacam_' + band,\n", " 'flag_cosmos-megacam_' + band])\n", " \n", " origin = np.full(len(master_catalogue), ' ', dtype='Table length=5\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxBandCOSMOS2015use COSMOS2015COSMOS2015 apuse COSMOS2015 apCFHTLSuse CFHTLSCFHTLS apuse CFHTLS apCFHT-WIRDSuse CFHT-WIRDSCFHT-WIRDS apuse CFHT-WIRDS ap
0u6408256408256881876881874554961832264593281820381563471715215733116078
1g00005165735165735185495185491641073136516397830985
2r00005263365263365291605291601652173152416501031136
3i00005206685206685239485239481656483173716531631298
4z00004747664747664805814805811642343099616435930824
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "megacam_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "megacam_origin.write(\"{}/cosmos_megacam_fluxes_origins{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## WIRcam\n", "\n", "### COSMOS vs WIRDS\n", "\n", "We take COSMOS over WIRDS to ensure values are the same as for the original run" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "wircam_origin = Table()\n", "wircam_origin.add_column(master_catalogue['help_id'])" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "wircam_stats = Table()\n", "wircam_stats.add_column(Column(data=['h','ks'], name=\"Band\"))\n", "for col in [\"CFHT-WIRDS\", \"COSMOS2015\"]:\n", " wircam_stats.add_column(Column(data=np.full(2, 0), name=\"{}\".format(col)))\n", " wircam_stats.add_column(Column(data=np.full(2, 0), name=\"use {}\".format(col)))\n", " wircam_stats.add_column(Column(data=np.full(2, 0), name=\"{} ap\".format(col)))\n", " wircam_stats.add_column(Column(data=np.full(2, 0), name=\"use {} ap\".format(col)))\n", " " ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "wircam_bands = ['h','ks'] \n", "for band in wircam_bands:\n", "\n", " # wircam total flux \n", " has_wirds = ~np.isnan(master_catalogue['f_wirds_' + band.rstrip('s')])\n", "\n", " has_cosmos = ~np.isnan(master_catalogue['f_cosmos-wircam_' + band])\n", "\n", " \n", " use_cosmos = has_cosmos\n", " use_wirds = has_wirds & ~has_cosmos\n", "\n", " \n", " \n", " f_wircam = np.full(len(master_catalogue), np.nan)\n", " f_wircam[use_cosmos] = master_catalogue['f_cosmos-wircam_' + band][use_cosmos]\n", " f_wircam[use_wirds] = master_catalogue['f_wirds_' + band.rstrip('s').rstrip('s')][use_wirds]\n", "\n", " \n", "\n", " ferr_wircam = np.full(len(master_catalogue), np.nan)\n", " ferr_wircam[use_cosmos] = master_catalogue['ferr_cosmos-wircam_' + band][use_cosmos]\n", " ferr_wircam[use_wirds] = master_catalogue['ferr_wirds_' + band.rstrip('s')][use_wirds]\n", "\n", "\n", " \n", " m_wircam = np.full(len(master_catalogue), np.nan)\n", " m_wircam[use_cosmos] = master_catalogue['m_cosmos-wircam_' + band][use_cosmos]\n", " m_wircam[use_wirds] = master_catalogue['m_wirds_' + band.rstrip('s')][use_wirds]\n", "\n", "\n", " merr_wircam = np.full(len(master_catalogue), np.nan)\n", " merr_wircam[use_cosmos] = master_catalogue['merr_cosmos-wircam_' + band][use_cosmos]\n", " merr_wircam[use_wirds] = master_catalogue['merr_wirds_' + band.rstrip('s')][use_wirds]\n", "\n", "\n", "\n", " flag_wircam = np.full(len(master_catalogue), False, dtype=bool)\n", " flag_wircam[use_cosmos] = master_catalogue['flag_cosmos-wircam_' + band][use_cosmos]\n", " flag_wircam[use_wirds] = master_catalogue['flag_wirds_' + band.rstrip('s')][use_wirds]\n", "\n", "\n", "\n", " master_catalogue.add_column(Column(data=f_wircam, name=\"f_wircam_\" + band))\n", " master_catalogue.add_column(Column(data=ferr_wircam, name=\"ferr_wircam_\" + band))\n", " master_catalogue.add_column(Column(data=m_wircam, name=\"m_wircam_\" + band))\n", " master_catalogue.add_column(Column(data=merr_wircam, name=\"merr_wircam_\" + band))\n", " master_catalogue.add_column(Column(data=flag_wircam, name=\"flag_wircam_\" + band))\n", "\n", " old_wirds_columns = ['f_wirds_' + band.rstrip('s'),\n", " 'ferr_wirds_' + band.rstrip('s'),\n", " 'm_wirds_' + band.rstrip('s'), \n", " 'merr_wirds_' + band.rstrip('s'),\n", " 'flag_wirds_' + band.rstrip('s')]\n", "\n", " old_cosmos_columns = ['f_cosmos-wircam_' + band,\n", " 'ferr_cosmos-wircam_' + band,\n", " 'm_cosmos-wircam_' + band, \n", " 'merr_cosmos-wircam_' + band,\n", " 'flag_cosmos-wircam_' + band]\n", " \n", " old_columns = old_wirds_columns + old_cosmos_columns\n", " master_catalogue.remove_columns(old_columns)\n", "\n", " origin = np.full(len(master_catalogue), ' ', dtype='Table length=2\n", "\n", "\n", "\n", "\n", "
idxBandCFHT-WIRDSuse CFHT-WIRDSCFHT-WIRDS apuse CFHT-WIRDS apCOSMOS2015use COSMOS2015COSMOS2015 apuse COSMOS2015 ap
0h1641753262016522833198589027589027684053684053
1ks1691033550417007736333594551594551681987681987
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wircam_stats.show_in_notebook()" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "wircam_origin.write(\"{}/cosmos_wircam_fluxes_origins{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Final renaming\n", "\n", "We rename some columns in line with HELP filter naming standards" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "renaming = OrderedDict({\n", " '_wirds_j':'_wircam_j',\n", " #'_wirds_h': '_wircam_h', #These two now merged with COSMOS\n", " #'_wirds_k': '_wircam_ks',\n", " '_kids_': '_omegacam_',\n", " '_cosmos-suprime_': '_suprime_',\n", " '_cosmos-vista_':'_vista_',\n", " '_cosmos-irac_':'_irac_',\n", " '_candels_f140w':'_wfc3_f140w',\n", " '_candels_f160w':'_wfc3_f160w',\n", " '_candels_f125w':'_wfc3_f125w',\n", " '_candels_f606w': '_acs_f606w',\n", " '_candels_f814w':'_acs_f814w',\n", "})\n", "\n", "\n", "for col in master_catalogue.colnames:\n", " for rename_col in list(renaming):\n", " if rename_col in col:\n", " master_catalogue.rename_column(col, col.replace(rename_col, renaming[rename_col])) " ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VII.a Wavelength domain coverage\n", "\n", "We add a binary `flag_optnir_obs` indicating that a source was observed in a given wavelength domain:\n", "\n", "- 1 for observation in optical;\n", "- 2 for observation in near-infrared;\n", "- 4 for observation in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source observed both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: The observation flag is based on the creation of multi-order coverage maps from the catalogues, this may not be accurate, especially on the edges of the coverage.*\n", "\n", "*Note 2: Being on the observation coverage does not mean having fluxes in that wavelength domain. For sources observed in one domain but having no flux in it, one must take into consideration de different depths in the catalogue we are using.*" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "candels_moc = MOC(filename=\"../../dmu0/dmu0_CANDELS-3D-HST/data/CANDELS-3D-HST_COSMOS_MOC.fits\")\n", "cfhtls_moc = MOC(filename=\"../../dmu0/dmu0_CFHTLS/data/CFHTLS-DEEP_COSMOS_MOC.fits\")\n", "decals_moc = MOC(filename=\"../../dmu0/dmu0_DECaLS/data/DECaLS_COSMOS_MOC.fits\")\n", "hsc_udeep_moc = MOC(filename=\"../../dmu0/dmu0_HSC/data/HSC-PDR1_deep_COSMOS_MOC.fits\")\n", "hsc_deep_moc = MOC(filename=\"../../dmu0/dmu0_HSC/data/HSC-PDR1_uDeep_COSMOS_MOC.fits\")\n", "kids_moc = MOC(filename=\"../../dmu0/dmu0_KIDS/data/KIDS-DR3_COSMOS_MOC.fits\")\n", "ps1_moc = MOC(filename=\"../../dmu0/dmu0_PanSTARRS1-3SS/data/PanSTARRS1-3SS_COSMOS_MOC.fits\")\n", "las_moc = MOC(filename=\"../../dmu0/dmu0_UKIDSS-LAS/data/UKIDSS-LAS_COSMOS_MOC.fits\")\n", "wirds_moc = MOC(filename=\"../../dmu0/dmu0_CFHT-WIRDS/data/COSMOS_Ks-priors_MOC.fits\")\n", "\n" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "was_observed_optical = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " candels_moc + \n", " cfhtls_moc + \n", " decals_moc + \n", " hsc_udeep_moc + \n", " hsc_deep_moc + \n", " kids_moc +\n", " ps1_moc) \n", "\n", "was_observed_nir = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " las_moc + wirds_moc\n", ")\n", "\n", "was_observed_mir = np.zeros(len(master_catalogue), dtype=bool)\n", "\n", "#was_observed_mir = inMoc(\n", "# master_catalogue['ra'], master_catalogue['dec'], \n", "#)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " Column(\n", " 1 * was_observed_optical + 2 * was_observed_nir + 4 * was_observed_mir,\n", " name=\"flag_optnir_obs\")\n", ")" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VII.b Wavelength domain detection\n", "\n", "We add a binary `flag_optnir_det` indicating that a source was detected in a given wavelength domain:\n", "\n", "- 1 for detection in optical;\n", "- 2 for detection in near-infrared;\n", "- 4 for detection in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source detected both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: We use the total flux columns to know if the source has flux, in some catalogues, we may have aperture flux and no total flux.*\n", "\n", "To get rid of artefacts (chip edges, star flares, etc.) we consider that a source is detected in one wavelength domain when it has a flux value in **at least two bands**. That means that good sources will be excluded from this flag when they are on the coverage of only one band." ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "nb_optical_flux = (\n", " 1 * ~np.isnan(master_catalogue['f_megacam_u']) +\n", " 1 * ~np.isnan(master_catalogue['f_megacam_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_megacam_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_megacam_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_megacam_z']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_suprime_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_z']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_y']) +\n", " 1 * ~np.isnan(master_catalogue['f_suprime_n921']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_gpc1_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_z']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_y']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_decam_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_decam_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_decam_z']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_omegacam_u']) +\n", " 1 * ~np.isnan(master_catalogue['f_omegacam_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_omegacam_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_omegacam_i']) \n", ")\n", "\n", "nb_nir_flux = (\n", " \n", " 1 * ~np.isnan(master_catalogue['f_vista_j']) +\n", " 1 * ~np.isnan(master_catalogue['f_vista_h']) +\n", " 1 * ~np.isnan(master_catalogue['f_vista_ks']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_wircam_j']) +\n", " 1 * ~np.isnan(master_catalogue['f_wircam_h']) +\n", " 1 * ~np.isnan(master_catalogue['f_wircam_ks']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_ukidss_y']) +\n", " 1 * ~np.isnan(master_catalogue['f_ukidss_j']) +\n", " 1 * ~np.isnan(master_catalogue['f_ukidss_h']) +\n", " 1 * ~np.isnan(master_catalogue['f_ukidss_k'])\n", ")\n", "\n", "nb_mir_flux = np.zeros(len(master_catalogue), dtype=bool)" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "has_optical_flux = nb_optical_flux >= 2\n", "has_nir_flux = nb_nir_flux >= 2\n", "has_mir_flux = nb_mir_flux >= 2\n", "\n", "master_catalogue.add_column(\n", " Column(\n", " 1 * has_optical_flux + 2 * has_nir_flux + 4 * has_mir_flux,\n", " name=\"flag_optnir_det\")\n", ")" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## VIII - Cross-identification table\n", "\n", "We are producing a table associating to each HELP identifier, the identifiers of the sources in the pristine catalogue. This can be used to easily get additional information from them." ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "64 master list rows had multiple associations.\n" ] } ], "source": [ "\n", "#\n", "# Addind SDSS ids\n", "#\n", "sdss = Table.read(\"../../dmu0/dmu0_SDSS-DR13/data/SDSS-DR13_COSMOS.fits\")['objID', 'ra', 'dec']\n", "sdss_coords = SkyCoord(sdss['ra'] * u.deg, sdss['dec'] * u.deg)\n", "idx_ml, d2d, _ = sdss_coords.match_to_catalog_sky(SkyCoord(master_catalogue['ra'], master_catalogue['dec']))\n", "idx_sdss = np.arange(len(sdss))\n", "\n", "# Limit the cross-match to 1 arcsec\n", "mask = d2d <= 1. * u.arcsec\n", "idx_ml = idx_ml[mask]\n", "idx_sdss = idx_sdss[mask]\n", "d2d = d2d[mask]\n", "nb_orig_matches = len(idx_ml)\n", "\n", "# In case of multiple associations of one master list object to an SDSS object, we keep only the\n", "# association to the nearest one.\n", "sort_idx = np.argsort(d2d)\n", "idx_ml = idx_ml[sort_idx]\n", "idx_sdss = idx_sdss[sort_idx]\n", "_, unique_idx = np.unique(idx_ml, return_index=True)\n", "idx_ml = idx_ml[unique_idx]\n", "idx_sdss = idx_sdss[unique_idx]\n", "print(\"{} master list rows had multiple associations.\".format(nb_orig_matches - len(idx_ml)))\n", "\n", "# Adding the ObjID to the master list\n", "master_catalogue.add_column(Column(data=np.full(len(master_catalogue), -1, dtype='>i8'), name=\"sdss_id\"))\n", "master_catalogue['sdss_id'][idx_ml] = sdss['objID'][idx_sdss]" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['old_help_id', 'cosmos_id', 'candels_id', 'cfhtls_id', 'decals_id', 'hsc-udeep_id', 'hsc-deep_id', 'kids_id', 'las_id', 'wirds_id', 'ps1_id', 'help_id', 'specz_id', 'sdss_id']\n" ] } ], "source": [ "id_names = []\n", "for col in master_catalogue.colnames:\n", " if '_id' in col:\n", " id_names += [col]\n", " if '_intid' in col:\n", " id_names += [col]\n", " \n", "print(id_names)" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue[id_names].write(\n", " \"{}/master_list_cross_ident_cosmos{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)\n", "id_names.remove('help_id')\n", "id_names.remove('old_help_id')\n", "master_catalogue.remove_columns(id_names)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## IX - Adding HEALPix index\n", "\n", "We are adding a column with a HEALPix index at order 13 associated with each source." ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(\n", " data=coords_to_hpidx(master_catalogue['ra'], master_catalogue['dec'], order=13),\n", " name=\"hp_idx\"\n", "))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## IX - Saving the catalogue" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "columns = [\"help_id\", \"old_help_id\", \"field\", \"ra\", \"dec\", \"hp_idx\"]\n", "\n", "bands = [column[5:] for column in master_catalogue.colnames if 'f_ap' in column]\n", "for band in bands:\n", " columns += [\"f_ap_{}\".format(band), \"ferr_ap_{}\".format(band),\n", " \"m_ap_{}\".format(band), \"merr_ap_{}\".format(band),\n", " \"f_{}\".format(band), \"ferr_{}\".format(band),\n", " \"m_{}\".format(band), \"merr_{}\".format(band),\n", " \"flag_{}\".format(band)] \n", " \n", "# columns += ['f_wfc3_f125w', 'ferr_wfc3_f125w', 'm_wfc3_f125w', 'merr_wfc3_f125w', 'flag_wfc3_f125w',\n", "# 'f_acs_f606w', 'ferr_acs_f606w', 'm_acs_f606w', 'merr_acs_f606w', 'flag_acs_f606w',\n", "# 'f_acs_f814w', 'ferr_acs_f814w', 'm_acs_f814w', 'merr_acs_f814w', 'flag_acs_f814w'\n", "# ]\n", "\n", "for tot_band in ['wfc3_f125w', 'acs_f606w', 'acs_f814w', 'irac_i1', 'irac_i2', 'irac_i3', 'irac_i4']:\n", " columns += ['f_' + tot_band,'ferr_' + tot_band,'m_' + tot_band,'merr_' + tot_band,'flag_' + tot_band,]\n", " \n", "columns += [\"stellarity\", \"stellarity_origin\", \"flag_cleaned\", \n", " \"flag_merged\", \"flag_gaia\", \"flag_optnir_obs\", \"flag_optnir_det\", \"ebv\",'zspec_association_flag', 'zspec_qual', 'zspec']" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Missing columns: set()\n" ] } ], "source": [ "# We check for columns in the master catalogue that we will not save to disk.\n", "print(\"Missing columns: {}\".format(set(master_catalogue.colnames) - set(columns)))" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "master_catalogue[columns].write(\"{}/master_catalogue_cosmos{}.fits\".format(OUT_DIR, SUFFIX), overwrite = True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }