CDFS SWIRE master catalogue¶

Preparation of Spitzer data fusion/SWIRE data¶

The data is available at 'dmu0_DataFusion-Spitzer'.

The Spitzer catalogues were produced by the datafusion team are available in the HELP virtual observatory server. They are described there: https://herschel-vos.phys.sussex.ac.uk/browse/df_spitzer/q.

Lucia told that the magnitudes are aperture corrected.

In the catalouge, we keep:

We keep:

  • The internal identifier (this one is only in HeDaM data);
  • The position;
  • The fluxes in aperture 2 (1.9 arcsec) for IRAC bands.
  • The Kron flux;
  • The stellarity in each band

A query of the position in the Spitzer heritage archive show that the ELAIS-N1 images were observed in 2004. Let's take this as epoch.

We do not use the MIPS fluxes as they will be extracted on MIPS maps using XID+.

In [1]:
from herschelhelp_internal import git_version
print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version()))
This notebook was run with herschelhelp_internal version: 
04829ed (Thu Nov 2 16:57:19 2017 +0000)
In [2]:
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))

from collections import OrderedDict
import os

from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.table import Column, Table
import numpy as np

from herschelhelp_internal.flagging import  gaia_flag_column
from herschelhelp_internal.masterlist import nb_astcor_diag_plot, remove_duplicates
from herschelhelp_internal.utils import astrometric_correction, flux_to_mag
In [3]:
OUT_DIR =  os.environ.get('TMP_DIR', "./data_tmp")
try:
    os.makedirs(OUT_DIR)
except FileExistsError:
    pass

RA_COL = "swire_ra"
DEC_COL = "swire_dec"

I - Column selection¶

In [4]:
imported_columns = OrderedDict({
    'internal_id':'swire_intid', 
    'ra_spitzer':'swire_ra', 
    'dec_spitzer':'swire_dec',      
    'flux_ap2_36':'f_ap_swire_irac1', 
    'uncf_ap2_36':'ferr_ap_swire_irac1', 
    'flux_kr_36':'f_swire_irac1', 
    'uncf_kr_36':'ferr_swire_irac1', 
    'stell_36':'swire_stellarity_irac1',
    'flux_ap2_45':'f_ap_swire_irac2', 
    'uncf_ap2_45':'ferr_ap_swire_irac2', 
    'flux_kr_45':'f_swire_irac2', 
    'uncf_kr_45':'ferr_swire_irac2', 
    'stell_45':'swire_stellarity_irac2',
    'flux_ap2_58':'f_ap_irac3', 
    'uncf_ap2_58':'ferr_ap_irac3', 
    'flux_kr_58':'f_irac3', 
    'uncf_kr_58':'ferr_irac3', 
    'stell_58':'swire_stellarity_irac3',
    'flux_ap2_80':'f_ap_irac4', 
    'uncf_ap2_80':'ferr_ap_irac4', 
    'flux_kr_80':'f_irac4', 
    'uncf_kr_80':'ferr_irac4', 
    'stell_80':'swire_stellarity_irac4'
    })


catalogue = Table.read("../../dmu0/dmu0_DataFusion-Spitzer/data/DF-SWIRE_CDFS-SWIRE.fits")[list(imported_columns)]
for column in imported_columns:
    catalogue[column].name = imported_columns[column]

epoch = 2004

# Clean table metadata
catalogue.meta = None
In [5]:
# Adding magnitude and band-flag columns
for col in catalogue.colnames:
    if col.startswith('f_'):
        errcol = "ferr{}".format(col[1:])
        
        magnitude, error = flux_to_mag(
            np.array(catalogue[col])/1.e6, np.array(catalogue[errcol])/1.e6)
        # Note that some fluxes are 0.
        
        catalogue.add_column(Column(magnitude, name="m{}".format(col[1:])))
        catalogue.add_column(Column(error, name="m{}".format(errcol[1:])))
        
        # Band-flag column
        catalogue.add_column(Column(
                np.zeros(len(catalogue), dtype=bool), name="flag{}".format(col[1:])))
        
# TODO: Set to True the flag columns for fluxes that should not be used for SED fitting.
In [6]:
catalogue[:10].show_in_notebook()
Out[6]:
<Table masked=True length=10>
idxswire_intidswire_raswire_decf_ap_swire_irac1ferr_ap_swire_irac1f_swire_irac1ferr_swire_irac1swire_stellarity_irac1f_ap_swire_irac2ferr_ap_swire_irac2f_swire_irac2ferr_swire_irac2swire_stellarity_irac2f_ap_irac3ferr_ap_irac3f_irac3ferr_irac3swire_stellarity_irac3f_ap_irac4ferr_ap_irac4f_irac4ferr_irac4swire_stellarity_irac4m_ap_swire_irac1merr_ap_swire_irac1flag_ap_swire_irac1m_swire_irac1merr_swire_irac1flag_swire_irac1m_ap_swire_irac2merr_ap_swire_irac2flag_ap_swire_irac2m_swire_irac2merr_swire_irac2flag_swire_irac2m_ap_irac3merr_ap_irac3flag_ap_irac3m_irac3merr_irac3flag_irac3m_ap_irac4merr_ap_irac4flag_ap_irac4m_irac4merr_irac4flag_irac4
degdeguJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJy
036332951.337442-29.67298nannannannannan100.951.9772.321.350.97nannannannannannannannannannannannanFalsenannanFalse18.88973419180.0211877198947False19.25185395630.0202674761674FalsenannanFalsenannanFalsenannanFalsenannanFalse
136330951.340422-29.67369nannannannannan117.842.284.71.510.97nannannannannannannannannannannannanFalsenannanFalse18.72176816540.0202700241893False19.08029147420.0193560999904FalsenannanFalsenannanFalsenannanFalsenannanFalse
236322751.345122-29.67642nannannannannan38.922.2436.422.350.96nannannannannannannannannannannannanFalsenannanFalse19.9245679210.0624884146623False19.99665014640.0700571137062FalsenannanFalsenannanFalsenannanFalsenannanFalse
336318551.346602-29.67786nannannannannan20.094.3720.445.230.54nannannannannannannannannannannannanFalsenannanFalse20.64255015810.236170593071False20.62379777130.277808236345FalsenannanFalsenannanFalsenannanFalsenannanFalse
436327151.349012-29.67487nannannannannan98.12.0569.571.440.97nannannannannannannannannannannannanFalsenannanFalse18.92082748160.0226886770617False19.29394499160.0224731944064FalsenannanFalsenannanFalsenannanFalsenannanFalse
536327051.354772-29.675nannannannannan31.111.4922.260.940.94nannannannannannannannannannannannanFalsenannanFalse20.16774997220.0520008661231False20.53118710.0458486986735FalsenannanFalsenannanFalsenannanFalsenannanFalse
636322151.359252-29.67689nannannannannan7.271.585.861.250.5nannannannannannannannannannannannanFalsenannanFalse21.74616397290.235964677238False21.980255960.231599019786FalsenannanFalsenannanFalsenannanFalsenannanFalse
736315851.366312-29.67903nannannannannan511.335.84369.324.260.98nannannannannannannannannannannannanFalsenannanFalse17.12824681560.0124004056789False17.48149293280.0125236549125FalsenannanFalsenannanFalsenannanFalsenannanFalse
836315651.369932-29.67912nannannannannan553.956.06386.94.21.0nannannannannannannannannannannannanFalsenannanFalse17.04132358320.0118775366023False17.43100317570.0117862291548FalsenannanFalsenannanFalsenannanFalsenannanFalse
936399151.330622-29.65017nannannannannan10.431.796.661.210.09nannannannannannannannannannannannanFalsenannanFalse21.35428922890.186334401392False21.84131442710.197258379543FalsenannanFalsenannanFalsenannanFalsenannanFalse

II - Removal of duplicated sources¶

We remove duplicated objects from the input catalogues.

In [7]:
SORT_COLS = ['ferr_ap_swire_irac1', 'ferr_ap_swire_irac2', 
              'ferr_ap_irac3', 'ferr_ap_irac4']
FLAG_NAME = 'swire_flag_cleaned'

nb_orig_sources = len(catalogue)

catalogue = remove_duplicates(catalogue, RA_COL, DEC_COL, sort_col=SORT_COLS,flag_name=FLAG_NAME)

nb_sources = len(catalogue)

print("The initial catalogue had {} sources.".format(nb_orig_sources))
print("The cleaned catalogue has {} sources ({} removed).".format(nb_sources, nb_orig_sources - nb_sources))
print("The cleaned catalogue has {} sources flagged as having been cleaned".format(np.sum(catalogue[FLAG_NAME])))
/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/astropy/table/column.py:1096: MaskedArrayFutureWarning: setting an item on a masked array which has a shared mask will not copy the mask and also change the original mask array in the future.
Check the NumPy 1.11 release notes for more information.
  ma.MaskedArray.__setitem__(self, index, value)
The initial catalogue had 464084 sources.
The cleaned catalogue has 464051 sources (33 removed).
The cleaned catalogue has 33 sources flagged as having been cleaned

III - Astrometry correction¶

We match the astrometry to the Gaia one. We limit the Gaia catalogue to sources with a g band flux between the 30th and the 70th percentile. Some quick tests show that this give the lower dispersion in the results.

In [8]:
gaia = Table.read("../../dmu0/dmu0_GAIA/data/GAIA_CDFS-SWIRE.fits")
gaia_coords = SkyCoord(gaia['ra'], gaia['dec'])
In [9]:
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], 
                    gaia_coords.ra, gaia_coords.dec)
In [10]:
delta_ra, delta_dec =  astrometric_correction(
    SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]),
    gaia_coords
)

print("RA correction: {}".format(delta_ra))
print("Dec correction: {}".format(delta_dec))
RA correction: 0.1236081218308982 arcsec
Dec correction: -0.059570162281374905 arcsec
In [11]:
catalogue[RA_COL] +=  delta_ra.to(u.deg)
catalogue[DEC_COL] += delta_dec.to(u.deg)
In [12]:
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], 
                    gaia_coords.ra, gaia_coords.dec)

IV - Flagging Gaia objects¶

In [13]:
catalogue.add_column(
    gaia_flag_column(SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), epoch, gaia)
)
In [14]:
GAIA_FLAG_NAME = "swire_flag_gaia"

catalogue['flag_gaia'].name = GAIA_FLAG_NAME
print("{} sources flagged.".format(np.sum(catalogue[GAIA_FLAG_NAME] > 0)))
21407 sources flagged.

V - Flagging objects near bright stars¶

VI - Saving to disk¶

In [15]:
catalogue.write("{}/SWIRE.fits".format(OUT_DIR), overwrite=True)