{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CDFS SWIRE master catalogue\n",
"## Preparation of COMBO data\n",
"\n",
"Classifying Objects by Medium-Band Observations - a spectrophotometric 17-filter survey (COMBO-17). COMBO catalogue: the catalogue comes from `dmu0_COMBO-17`.\n",
"\n",
"In the catalogue, we keep:\n",
"\n",
"- The identifier (it's unique in the catalogue);\n",
"- The position;\n",
"- The stellarity;\n",
"- The total magnitude (aperture magnitudes are not provided.\n",
"\n",
"We don't know when the maps have been observed. We will use the year of the reference paper."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This notebook was run with herschelhelp_internal version: \n",
"708e28f (Tue May 8 18:05:21 2018 +0100)\n"
]
}
],
"source": [
"from herschelhelp_internal import git_version\n",
"print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/seaborn/apionly.py:6: UserWarning: As seaborn no longer sets a default style on import, the seaborn.apionly module is deprecated. It will be removed in a future version.\n",
" warnings.warn(msg, UserWarning)\n"
]
}
],
"source": [
"%matplotlib inline\n",
"#%config InlineBackend.figure_format = 'svg'\n",
"\n",
"import matplotlib.pyplot as plt\n",
"plt.rc('figure', figsize=(10, 6))\n",
"\n",
"from collections import OrderedDict\n",
"import os\n",
"\n",
"from astropy import units as u\n",
"from astropy import constants as const\n",
"from astropy.coordinates import SkyCoord\n",
"from astropy.table import Column, Table\n",
"import numpy as np\n",
"\n",
"from herschelhelp_internal.flagging import gaia_flag_column\n",
"from herschelhelp_internal.masterlist import nb_astcor_diag_plot, remove_duplicates\n",
"from herschelhelp_internal.utils import astrometric_correction, mag_to_flux, flux_to_mag\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"OUT_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n",
"try:\n",
" os.makedirs(OUT_DIR)\n",
"except FileExistsError:\n",
" pass\n",
"\n",
"RA_COL = \"combo_ra\"\n",
"DEC_COL = \"combo_dec\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## I - Column selection"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"imported_columns = OrderedDict({\n",
" 'Seq':'combo_id', \n",
" 'ra':'combo_ra', \n",
" 'dec':'combo_dec', \n",
" #'dl':'combo_dl',\n",
" 'stellarity':'combo_stellarity',\n",
" 'Rmag':'m_combo_r', #The catalogue is R selected\n",
" 'e_Rmag':'merr_combo_r', \n",
" #'Ap_Rmag':'m_ap_combo_r',\n",
" #'UjMag':'m_combo_uj', #These bands are derived absolute magnitudes\n",
" #'e_UjMag':'merr_combo_uj', \n",
" #'BjMag':'m_combo_bj', \n",
" #'e_BjMag':'merr_combo_bj',\n",
" #'VjMag':'m_combo_vj', \n",
" #'e_VjMag':'merr_combo_vj',\n",
" #'usMag':'m_combo_us', \n",
" #'e_usMag':'merr_combo_us',\n",
" #'gsMag':'m_combo_gs', \n",
" #'e_gsMag':'merr_combo_gs',\n",
" #'rsMag':'m_combo_rs', \n",
" #'e_rsMag':'merr_combo_rs',\n",
" #'UbMag':'m_combo_ub', \n",
" #'e_UbMag':'merr_combo_ub',\n",
" #'BbMag':'m_combo_bb', \n",
" #'e_BbMag':'merr_combo_bb',\n",
" #'VbMag':'m_combo_vb', \n",
" #'e_VbMag':'merr_combo_vb',\n",
" #'S280Mag':'m_combo_s280', \n",
" #'e_S280Mag':'merr_combo_s280',\n",
" ##'S145Mag':'m_combo_s145', \n",
" #'e_S145Mag':'merr_combo_s145',\n",
" 'W420F_E':'f_ap_combo_420', #The following values are given as fluxes\n",
" 'e_W420F_E':'ferr_ap_combo_420',\n",
" 'W462F_E':'f_ap_combo_462',\n",
" 'e_W462F_E':'ferr_ap_combo_462',\n",
" 'W485F_D':'f_ap_combo_485',\n",
" 'e_W485F_D':'ferr_ap_combo_485',\n",
" 'W518F_E':'f_ap_combo_518',\n",
" 'e_W518F_E':'ferr_ap_combo_518',\n",
" 'W571F_S':'f_ap_combo_571', #Combined flux from two runs\n",
" 'e_W571F_S':'ferr_ap_combo_571',\n",
" 'W604F_E':'f_ap_combo_604',\n",
" 'e_W604F_E':'ferr_ap_combo_604',\n",
" 'W646F_D':'f_ap_combo_646',\n",
" 'e_W646F_D':'ferr_ap_combo_646',\n",
" 'W696F_E':'f_ap_combo_696',\n",
" 'e_W696F_E':'ferr_ap_combo_696',\n",
" 'W753F_E':'f_ap_combo_753',\n",
" 'e_W753F_E':'ferr_ap_combo_753',\n",
" 'W815F_S':'f_ap_combo_815',\n",
" 'e_W815F_S':'ferr_ap_combo_815',\n",
" 'W856F_D':'f_ap_combo_856',\n",
" 'e_W856F_D':'ferr_ap_combo_856',\n",
" 'W914F_D':'f_ap_combo_914', #Two runs but no combined - taking first\n",
" 'e_W914F_D':'ferr_ap_combo_914',\n",
" 'UF_S':'f_ap_combo_u',\n",
" 'e_UF_S':'ferr_ap_combo_u',\n",
" 'BF_S':'f_ap_combo_b',\n",
" 'e_BF_S':'ferr_ap_combo_b',\n",
" 'VF_D':'f_ap_combo_v',\n",
" 'e_VF_D':'ferr_ap_combo_v',\n",
" 'RF_S':'f_ap_combo_r',\n",
" 'e_RF_S':'ferr_ap_combo_r',\n",
" 'IF_D':'f_ap_combo_i',\n",
" 'e_IF_D':'ferr_ap_combo_i'\n",
" })\n",
"\n",
"catalogue = Table.read(\"../../dmu0/dmu0_COMBO-17/data/table3.fits\")[list(imported_columns)]\n",
"for column in imported_columns:\n",
" catalogue[column].name = imported_columns[column]\n",
"\n",
"epoch = 2000 #table says 1999 to 2001\n",
"\n",
"# Clean table metadata\n",
"catalogue.meta = None"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"Table masked=True length=10\n",
"
\n",
"idx | combo_id | combo_ra | combo_dec | combo_stellarity | m_combo_r | merr_combo_r | f_ap_combo_420 | ferr_ap_combo_420 | f_ap_combo_462 | ferr_ap_combo_462 | f_ap_combo_485 | ferr_ap_combo_485 | f_ap_combo_518 | ferr_ap_combo_518 | f_ap_combo_571 | ferr_ap_combo_571 | f_ap_combo_604 | ferr_ap_combo_604 | f_ap_combo_646 | ferr_ap_combo_646 | f_ap_combo_696 | ferr_ap_combo_696 | f_ap_combo_753 | ferr_ap_combo_753 | f_ap_combo_815 | ferr_ap_combo_815 | f_ap_combo_856 | ferr_ap_combo_856 | f_ap_combo_914 | ferr_ap_combo_914 | f_ap_combo_u | ferr_ap_combo_u | f_ap_combo_b | ferr_ap_combo_b | f_ap_combo_v | ferr_ap_combo_v | f_ap_combo_r | ferr_ap_combo_r | f_ap_combo_i | ferr_ap_combo_i |
\n",
" | | | | | mag | mag | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm | phot/m^2/s/nm |
\n",
"0 | 1 | 53.04655260189809 | -28.06482398026151 | nan | 25.897972 | 0.2597 | 0.0026435487 | 0.0028525754 | 0.0019441945 | 0.0050782417 | 0.0063407477 | 0.0033082329 | 0.0128999 | 0.005585376 | 0.0042216503 | 0.003588988 | 0.00545072 | 0.0037927986 | -0.0024629491 | 0.011115327 | 0.003668798 | 0.002974898 | -0.0061611393 | 0.005189215 | 0.0052579027 | 0.002983739 | 0.013899683 | 0.007166146 | -0.012559556 | 0.008609215 | 0.012575597 | 0.0021783262 | 0.008529394 | 0.00096643175 | 0.004752162 | 0.0016553438 | 0.0045423782 | 0.0005652418 | 0.007182074 | 0.005170131 |
\n",
"1 | 2 | 52.93962624603485 | -28.06462837648348 | nan | 25.922817 | 0.1994 | 0.0049725887 | 0.003325123 | 0.0053968243 | 0.0028385678 | 0.014829304 | 0.0061306627 | 0.008219417 | 0.003868623 | 0.010431729 | 0.0043392056 | 0.011488724 | 0.0051987316 | 0.0077497284 | 0.008125072 | 0.0062717716 | 0.003935489 | 0.011430001 | 0.0065933266 | 0.008414535 | 0.004550586 | 0.02225148 | 0.009143417 | 0.0027921158 | 0.0074647036 | 0.00972669 | 0.002269718 | 0.004166309 | 0.0011602317 | 0.004172194 | 0.0021428019 | 0.0063953553 | 0.0005845545 | 0.012429478 | 0.005645175 |
\n",
"2 | 3 | 53.25214500630742 | -28.065104350499013 | nan | 26.080927 | 0.2214 | 0.0029374603 | 0.0042451513 | -0.0049716546 | 0.006426346 | 0.0055975555 | 0.005283612 | 0.0051286165 | 0.004365759 | 0.001201169 | 0.0039880085 | 0.011634848 | 0.0039788615 | -0.010300942 | 0.016168907 | 0.0007932981 | 0.004202096 | 0.0021792164 | 0.0076979212 | -0.006099478 | 0.0044403956 | -0.011898397 | 0.013582071 | 0.020791234 | 0.014198382 | -0.0017863943 | 0.0034811874 | -1.936261e-05 | 0.0019783415 | 0.0032243216 | 0.0017577063 | -0.00033004445 | 0.00080327026 | -0.014375456 | 0.010974576 |
\n",
"3 | 4 | 53.36795775820615 | -28.06517792576462 | nan | 24.873579 | 0.1563 | 0.0063921358 | 0.002596262 | 0.0056318273 | 0.0035823456 | 0.0056378106 | 0.00441638 | 0.006852279 | 0.0048438213 | 0.0026985586 | 0.003692915 | 0.011641119 | 0.00398695 | 0.03109488 | 0.013036846 | 0.010266774 | 0.0029923418 | 0.011409544 | 0.0050701248 | 0.011517621 | 0.0034736816 | 0.0239881 | 0.008725531 | 0.004260078 | 0.0067384094 | 0.005680313 | 0.0018968612 | 0.004119445 | 0.0011928168 | 0.006712271 | 0.0017643167 | 0.011591517 | 0.00048261677 | 0.0070293015 | 0.0041397894 |
\n",
"4 | 5 | 53.32106264525905 | -28.065133475726462 | nan | 25.78421 | 0.2698 | 0.0025284858 | 0.002650288 | 0.0042570033 | 0.0038399366 | 0.0024411376 | 0.004930288 | 0.007873707 | 0.0035207903 | 0.0046116514 | 0.0032087315 | 0.0039657764 | 0.005125247 | -0.016217358 | 0.0068417387 | 0.0037558703 | 0.0033345758 | 0.015191702 | 0.0052428073 | 0.007918886 | 0.0030483482 | 0.01941582 | 0.00747347 | 0.00060958724 | 0.006226504 | -0.00013093327 | 0.0021074873 | 0.0035217772 | 0.0010693104 | 0.0020800177 | 0.001398662 | 0.0031395198 | 0.00058712007 | -8.129975e-05 | 0.0038922913 |
\n",
"5 | 6 | 53.292097287458255 | -28.065128066082178 | nan | 24.99502 | 0.0972 | 0.019948605 | 0.003718039 | 0.013015569 | 0.0038130966 | 0.018220054 | 0.004330236 | 0.017587243 | 0.0034221162 | 0.015128878 | 0.0030992394 | 0.017777491 | 0.0043656165 | 0.019180415 | 0.005748827 | 0.026529638 | 0.0037788677 | 0.026632128 | 0.0057045626 | 0.023708314 | 0.0029196017 | 0.02792422 | 0.006248071 | 0.043072745 | 0.006960825 | 0.021285491 | 0.0027309612 | 0.015690384 | 0.0012465261 | 0.017250473 | 0.0014040535 | 0.017349314 | 0.0004557142 | 0.027648635 | 0.0054054153 |
\n",
"6 | 7 | 53.229967825919154 | -28.06503005890903 | nan | 25.871485 | 0.2882 | 0.0012045066 | 0.003897627 | 0.0044132513 | 0.0027976336 | 0.00458269 | 0.0055461624 | 0.009875731 | 0.003962219 | 0.0067814947 | 0.0033160665 | 0.0047813305 | 0.00521684 | 0.015544663 | 0.015444962 | 0.0058335075 | 0.0029255631 | 0.016355244 | 0.006035496 | 0.006013045 | 0.004282945 | 0.0074658045 | 0.0077043315 | 0.019086597 | 0.0073265885 | -0.0008489177 | 0.002612258 | 0.0038235737 | 0.0012918167 | 0.005655405 | 0.0025813465 | 0.0034750535 | 0.0006231454 | 0.0018789952 | 0.006647257 |
\n",
"7 | 8 | 53.18293888014623 | -28.065017040029545 | nan | 25.731575 | 0.1831 | 0.0062276805 | 0.003369402 | 0.013846429 | 0.002759924 | 0.018154914 | 0.003410117 | 0.014752125 | 0.0056991284 | 0.019639296 | 0.0032625962 | 0.017426182 | 0.0037926377 | 0.025695736 | 0.006597949 | 0.014325571 | 0.0028548185 | 0.0105836 | 0.0061909035 | 0.017594436 | 0.0030056147 | 0.014742221 | 0.0065584667 | 0.02460166 | 0.0066824746 | 0.010716451 | 0.0022642382 | 0.012857638 | 0.0012107698 | 0.016353952 | 0.001460291 | 0.01581362 | 0.00044819526 | 0.01675428 | 0.004316511 |
\n",
"8 | 9 | 52.9391529645356 | -28.064589036789748 | nan | 25.013447 | 0.1807 | 0.0061064805 | 0.0030835005 | 0.005264745 | 0.003310161 | 0.002637309 | 0.00469066 | 0.00075746863 | 0.0046829325 | 0.010216046 | 0.0029233084 | 0.009667672 | 0.0047523654 | 0.0030402003 | 0.009100705 | 0.010591451 | 0.0036941513 | 0.0154705215 | 0.0057324325 | 0.016172117 | 0.0033903017 | 0.013065108 | 0.007177291 | 0.01173765 | 0.007377461 | 0.008057591 | 0.002709484 | 0.0040454385 | 0.0011060153 | 0.0039187097 | 0.0018148138 | 0.007600185 | 0.00052536634 | 0.01089189 | 0.005154694 |
\n",
"9 | 10 | 52.84114562805728 | -28.06438482597608 | nan | 25.764791 | 0.1569 | 0.01162346 | 0.002631594 | 0.006005885 | 0.002787117 | 0.015149049 | 0.0048077777 | 0.011143516 | 0.0035439113 | 0.009884888 | 0.0026318 | 0.013119528 | 0.0032631063 | 0.020892728 | 0.007653941 | 0.014827856 | 0.0037116604 | 0.013676858 | 0.00508827 | 0.018994834 | 0.0031775958 | 0.013353675 | 0.006483032 | 0.009263921 | 0.010318295 | 0.007337054 | 0.0018009157 | 0.013336995 | 0.0009769341 | 0.012051843 | 0.0014065375 | 0.010746312 | 0.00044304837 | 0.014853776 | 0.0042564427 |
\n",
"
\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"catalogue[:10].show_in_notebook()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unit conversion\n",
"\n",
"### Using mid wavelength\n",
"The flux is presented in $\\textrm{photons} .\\textrm{s}^{-1} . \\textrm{m}^{-2} .\\textrm{nm}^{-1}$. We wish to convert these to micro Jansky; $10^{-32} \\textrm{ W} . \\textrm{m}^{-2} . \\textrm{Hz}^{-1} $.\n",
"\n",
"To convert $\\textrm{photons} . \\textrm{s}^{-1} $ to $\\textrm{W}$ we must multiply by the average photon energy $h c / \\lambda$. We presume that the COMBO mid point wavelength was used.\n",
"\n",
"To convert $\\textrm{nm}^{-1}$ to $\\textrm{Hz}^{-1}$ we must differenciate:\n",
"\n",
"$c = \\nu \\lambda $\n",
"\n",
"$\\nu = c / \\lambda$\n",
"\n",
"$\\frac{d \\nu}{d \\lambda} = - c /\\lambda^{2}$\n",
"\n",
"$d \\lambda = - (\\lambda^{2} / c )\\times d \\nu$\n",
"\n",
"\n",
"\n",
"The net result of this is to multiply by $\\lambda^2 / c$.\n",
"\n",
"Combining these two unit conversions leads to overall multiplying by $ h \\lambda$:\n",
"\n",
"$(\\lambda^2 / c ) \\times (h c / \\lambda) = h \\lambda$\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"flux_lambda: 0.0064185 1 / (m2 nm s)\n",
"flux_nu: 1.78623608317308e-33 J / m2\n",
"flux_nu in Jy: 1.78623608317308e-07 Jy\n"
]
}
],
"source": [
"#Example conversion from photon s^-1 m^-2 nm^-1 to Jy\n",
"flux_lambda = 0.0064185 * (u.m **-2) * (u.s ** -1) *( u.nm ** -1)\n",
"\n",
"wavelength = 420 * u.nm\n",
"flux_nu = flux_lambda * const.h * wavelength\n",
"print('flux_lambda:', flux_lambda)\n",
"#print('f_lambda:', flux_lambda.decompose())\n",
"print('flux_nu:', flux_nu)\n",
"print('flux_nu in Jy:',flux_nu.to(u.Jy))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using Vega flux\n",
"The paper provides fluxes of Vega in each band allowing conversion to Vega mag. It then provides the difference between Vega mag and AB mag per band to convert to AB. We can therefore calculate the AB magnitude and convert that back to flux to get the flux in Jy."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"#Set wavelengths for unit conversion.\n",
"#All from http://cds.aanda.org/component/article?access=bibcode&bibcode=2004A%252526A...421..913W\n",
"#Wavelengths in the table column headings are marginally different to those in the paper.\n",
"# Band name \\lambda Vega AB Fphot (Vega 10^8 photons s^-1 m^-2 nm^-1)\n",
"wavelengths = {\n",
" 'f_ap_combo_420': [418, -0.19, 1.571], \n",
" 'ferr_ap_combo_420':[418, -0.19, 1.571],\n",
" 'f_ap_combo_462': [462, -0.18, 1.412],\n",
" 'ferr_ap_combo_462':[462, -0.18, 1.412],\n",
" 'f_ap_combo_485': [486, -0.06, 1.207], \n",
" 'ferr_ap_combo_485':[486, -0.06, 1.207],\n",
" 'f_ap_combo_518': [519, -0.06, 1.125],\n",
" 'ferr_ap_combo_518':[519, -0.06, 1.125],\n",
" 'f_ap_combo_571': [572, 0.04, 0.932], \n",
" 'ferr_ap_combo_571':[572, 0.04, 0.932],\n",
" 'f_ap_combo_604': [605, 0.10, 0.832],\n",
" 'ferr_ap_combo_604':[605, 0.10, 0.832],\n",
" 'f_ap_combo_646': [645, 0.22, 0.703], \n",
" 'ferr_ap_combo_646':[645, 0.22, 0.703], \n",
" 'f_ap_combo_696': [696, 0.27, 0.621],\n",
" 'ferr_ap_combo_696':[696, 0.27, 0.621],\n",
" 'f_ap_combo_753': [753, 0.36, 0.525],\n",
" 'ferr_ap_combo_753':[753, 0.36, 0.525],\n",
" 'f_ap_combo_815': [816, 0.45, 0.442], \n",
" 'ferr_ap_combo_815':[816, 0.45, 0.442], \n",
" 'f_ap_combo_856': [857, 0.56, 0.386], \n",
" 'ferr_ap_combo_856':[857, 0.56, 0.386],\n",
" 'f_ap_combo_914': [914, 0.50, 0.380],\n",
" 'ferr_ap_combo_914':[914, 0.50, 0.380],\n",
" 'f_ap_combo_u': [365, 0.77, 0.737],\n",
" 'ferr_ap_combo_u': [365, 0.77, 0.737],\n",
" 'f_ap_combo_b': [458, -0.13, 1.371],\n",
" 'ferr_ap_combo_b': [458, -0.13, 1.371],\n",
" 'f_ap_combo_v': [538, -0.02, 1.055],\n",
" 'ferr_ap_combo_v': [538, -0.02, 1.055],\n",
" 'f_ap_combo_r': [648, 0.19, 0.725],\n",
" 'ferr_ap_combo_r': [648, 0.19, 0.725],\n",
" 'f_ap_combo_i': [857, 0.49, 0.412],\n",
" 'ferr_ap_combo_i': [857, 0.49, 0.412]\n",
"}\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"25.971856598750897\n",
"25.781856598750895\n",
"(1.7670846750466056e-07, None)\n"
]
}
],
"source": [
"#Example conversion from photon s^-1 m^-2 nm^-1 to Jy\n",
"flux_lambda = 0.0064185 #* (u.m **-2) * (u.s ** -1) *( u.nm ** -1)\n",
"\n",
"mag_vega = -2.5 *np.log10(flux_lambda/(wavelengths['f_ap_combo_420'][2]*1.e8))\n",
"print(mag_vega)\n",
"mag_AB = mag_vega + wavelengths['f_ap_combo_420'][1]\n",
"print(mag_AB)\n",
"flux_converted = mag_to_flux(mag_AB)\n",
"print(flux_converted)\n",
"#This is different to the value calculated using mid point wavelength as we expect \n",
"#because it should take account of the filter response better."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/ipykernel/__main__.py:20: RuntimeWarning: invalid value encountered in log10\n"
]
}
],
"source": [
"#Replace 0.0 with NaN values\n",
"for col in catalogue.colnames:\n",
" catalogue[col].unit = None\n",
" if col.startswith('m'): # | col.endswith('ra') | col.endswith('dec'):\n",
" catalogue[col][np.where(catalogue[col] == 0.0)] = np.nan\n",
"\n",
"# Add magnitude, fix flux units and add band-flag columns\n",
"nancol = np.zeros(len(catalogue))\n",
"nancol.fill(np.nan)\n",
"for col in catalogue.colnames:\n",
" if col.startswith('f_'):\n",
" \n",
" errcol = \"ferr{}\".format(col[1:])\n",
" \n",
" #Replace mask with nan\n",
" catalogue[col].fill_value = np.nan\n",
" catalogue[errcol].fill_value = np.nan\n",
" \n",
" #Calculate magnitudes using Vega fluxes from wavelengths (values from paper)\n",
" magnitude = -2.5*np.log10(catalogue[col].filled()/(wavelengths[col][2]*1.e8)) + wavelengths[col][1]\n",
" magnitude_error = 2.5/np.log(10)*(catalogue[errcol].filled()/catalogue[col].filled() )\n",
"\n",
" catalogue.add_column(Column(nancol, \n",
" name=\"m{}\".format(col[1:])))\n",
" catalogue.add_column(Column(nancol, \n",
" name=\"m{}\".format(errcol[1:])))\n",
" # Add the AB magnitudes\n",
" catalogue[\"m{}\".format(col[1:])] = magnitude\n",
" catalogue[\"m{}\".format(errcol[1:])] = magnitude_error\n",
" \n",
" flux_new, flux_new_error = mag_to_flux(magnitude, magnitude_error)\n",
" catalogue[col] = flux_new * 1.e6 # uJy\n",
" catalogue[errcol] = flux_new_error * 1.e6 # uJy \n",
" \n",
" \n",
" #We add NAN filled total columns because no total fluxes are present\n",
" if not col == 'f_ap_combo_r':\n",
" catalogue.add_column(Column(nancol, \n",
" name=\"m{}\".format(col[4:])))\n",
" catalogue.add_column(Column(nancol, \n",
" name=\"merr{}\".format(col[4:])))\n",
" catalogue.add_column(Column(nancol, \n",
" name=\"f{}\".format(col[4:])))\n",
" catalogue.add_column(Column(nancol, \n",
" name=\"ferr{}\".format(col[4:])))\n",
" \n",
" # \n",
" \n",
" # Band-flag column\n",
" catalogue.add_column(Column(np.zeros(len(catalogue), dtype=bool), name=\"flag{}\".format(col[4:])))\n",
" \n",
"#Add total fluxes for R band\n",
"f_combo_r, ferr_combo_r = mag_to_flux(catalogue['m_combo_r'],catalogue['merr_combo_r'])\n",
"catalogue['f_combo_r'] = f_combo_r *1.e6 #uJy\n",
"catalogue['ferr_combo_r'] = ferr_combo_r *1.e6 #uJy"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"Table masked=True length=10\n",
"\n",
"idx | combo_id | combo_ra | combo_dec | combo_stellarity | m_combo_r | merr_combo_r | f_ap_combo_420 | ferr_ap_combo_420 | f_ap_combo_462 | ferr_ap_combo_462 | f_ap_combo_485 | ferr_ap_combo_485 | f_ap_combo_518 | ferr_ap_combo_518 | f_ap_combo_571 | ferr_ap_combo_571 | f_ap_combo_604 | ferr_ap_combo_604 | f_ap_combo_646 | ferr_ap_combo_646 | f_ap_combo_696 | ferr_ap_combo_696 | f_ap_combo_753 | ferr_ap_combo_753 | f_ap_combo_815 | ferr_ap_combo_815 | f_ap_combo_856 | ferr_ap_combo_856 | f_ap_combo_914 | ferr_ap_combo_914 | f_ap_combo_u | ferr_ap_combo_u | f_ap_combo_b | ferr_ap_combo_b | f_ap_combo_v | ferr_ap_combo_v | f_ap_combo_r | ferr_ap_combo_r | f_ap_combo_i | ferr_ap_combo_i | m_ap_combo_420 | merr_ap_combo_420 | m_combo_420 | merr_combo_420 | f_combo_420 | ferr_combo_420 | flag_combo_420 | m_ap_combo_462 | merr_ap_combo_462 | m_combo_462 | merr_combo_462 | f_combo_462 | ferr_combo_462 | flag_combo_462 | m_ap_combo_485 | merr_ap_combo_485 | m_combo_485 | merr_combo_485 | f_combo_485 | ferr_combo_485 | flag_combo_485 | m_ap_combo_518 | merr_ap_combo_518 | m_combo_518 | merr_combo_518 | f_combo_518 | ferr_combo_518 | flag_combo_518 | m_ap_combo_571 | merr_ap_combo_571 | m_combo_571 | merr_combo_571 | f_combo_571 | ferr_combo_571 | flag_combo_571 | m_ap_combo_604 | merr_ap_combo_604 | m_combo_604 | merr_combo_604 | f_combo_604 | ferr_combo_604 | flag_combo_604 | m_ap_combo_646 | merr_ap_combo_646 | m_combo_646 | merr_combo_646 | f_combo_646 | ferr_combo_646 | flag_combo_646 | m_ap_combo_696 | merr_ap_combo_696 | m_combo_696 | merr_combo_696 | f_combo_696 | ferr_combo_696 | flag_combo_696 | m_ap_combo_753 | merr_ap_combo_753 | m_combo_753 | merr_combo_753 | f_combo_753 | ferr_combo_753 | flag_combo_753 | m_ap_combo_815 | merr_ap_combo_815 | m_combo_815 | merr_combo_815 | f_combo_815 | ferr_combo_815 | flag_combo_815 | m_ap_combo_856 | merr_ap_combo_856 | m_combo_856 | merr_combo_856 | f_combo_856 | ferr_combo_856 | flag_combo_856 | m_ap_combo_914 | merr_ap_combo_914 | m_combo_914 | merr_combo_914 | f_combo_914 | ferr_combo_914 | flag_combo_914 | m_ap_combo_u | merr_ap_combo_u | m_combo_u | merr_combo_u | f_combo_u | ferr_combo_u | flag_combo_u | m_ap_combo_b | merr_ap_combo_b | m_combo_b | merr_combo_b | f_combo_b | ferr_combo_b | flag_combo_b | m_ap_combo_v | merr_ap_combo_v | m_combo_v | merr_combo_v | f_combo_v | ferr_combo_v | flag_combo_v | m_ap_combo_r | merr_ap_combo_r | flag_combo_r | m_ap_combo_i | merr_ap_combo_i | m_combo_i | merr_combo_i | f_combo_i | ferr_combo_i | flag_combo_i | f_combo_r | ferr_combo_r |
\n",
"0 | 1 | 53.04655260189809 | -28.06482398026151 | nan | 25.897972 | 0.2597 | 0.072779976 | 0.07853472 | 0.059007134 | 0.1541268 | 0.20157324 | 0.10516918 | 0.43998066 | 0.19050205 | 0.15851328 | 0.13475825 | 0.2169354 | 0.1509511 | nan | nan | 0.1672752 | 0.13563752 | nan | nan | 0.28535762 | 0.1619339 | 0.7805809 | 0.4024377 | nan | nan | 0.3048325 | 0.05280263 | 0.25461265 | 0.028849147 | 0.16658625 | 0.058027796 | 0.19096106 | 0.023762701 | 0.4030444 | 0.29013795 | 26.74497 | 1.1715859 | nan | nan | nan | nan | False | 26.972738 | 2.8359458 | nan | nan | nan | nan | False | 25.638918 | 0.5664739 | nan | nan | nan | nan | False | 24.791416 | 0.47010016 | nan | nan | nan | nan | False | 25.899836 | 0.9230262 | nan | nan | nan | nan | False | 25.559174 | 0.7554926 | nan | nan | nan | nan | False | nan | -4.899944 | nan | nan | nan | nan | False | 25.841421 | 0.8803849 | nan | nan | nan | nan | False | nan | -0.9144604 | nan | nan | nan | nan | False | 25.261526 | 0.6161303 | nan | nan | nan | nan | False | 24.168955 | 0.5597641 | nan | nan | nan | nan | False | nan | -0.7442409 | nan | nan | nan | nan | False | 25.189846 | 0.18806961 | nan | nan | nan | nan | False | 25.3853 | 0.123020455 | nan | nan | nan | nan | False | 25.845901 | 0.3781998 | nan | nan | nan | nan | False | 25.697638 | 0.1351062 | False | 24.886618 | 0.78158456 | nan | nan | nan | nan | False | 0.15878552 | 0.037980314 |
\n",
"1 | 2 | 52.93962624603485 | -28.06462837648348 | nan | 25.922817 | 0.1994 | 0.13690078 | 0.091544256 | 0.16379642 | 0.08615202 | 0.4714257 | 0.19489464 | 0.28034195 | 0.1319482 | 0.39168805 | 0.16292743 | 0.45724362 | 0.20690608 | 0.32683674 | 0.34266642 | 0.2859551 | 0.17943466 | 0.5673959 | 0.32729888 | 0.45667568 | 0.24697047 | 1.2496034 | 0.513478 | 0.16832536 | 0.45001674 | 0.23577489 | 0.05501795 | 0.12436917 | 0.034634266 | 0.14625527 | 0.07511541 | 0.26886007 | 0.024574613 | 0.69751954 | 0.31679687 | 26.058985 | 0.7260215 | nan | nan | nan | nan | False | 25.864239 | 0.5710647 | nan | nan | nan | nan | False | 24.716467 | 0.44886005 | nan | nan | nan | nan | False | 25.280779 | 0.5110221 | nan | nan | nan | nan | False | 24.917648 | 0.45162526 | nan | nan | nan | nan | False | 24.74963 | 0.49130356 | nan | nan | nan | nan | False | 25.114172 | 1.1383218 | nan | nan | nan | nan | False | 25.259254 | 0.68129116 | nan | nan | nan | nan | False | 24.515284 | 0.6263003 | nan | nan | nan | nan | False | 24.75098 | 0.5871668 | nan | nan | nan | nan | False | 23.65807 | 0.44614282 | nan | nan | nan | nan | False | 25.834625 | 2.9027088 | nan | nan | nan | nan | False | 25.468756 | 0.25335598 | nan | nan | nan | nan | False | 26.163218 | 0.3023553 | nan | nan | nan | nan | False | 25.98722 | 0.5576245 | nan | nan | nan | nan | False | 25.326183 | 0.09923952 | False | 24.29111 | 0.4931157 | nan | nan | nan | nan | False | 0.15519336 | 0.028501911 |
\n",
"2 | 3 | 53.25214500630742 | -28.065104350499013 | nan | 26.080927 | 0.2214 | 0.080871664 | 0.1168739 | nan | nan | 0.17794707 | 0.16796675 | 0.17492321 | 0.1489042 | 0.04510116 | 0.14974062 | 0.46305972 | 0.15835622 | nan | nan | 0.036169697 | 0.19159067 | 0.108178414 | 0.38213223 | nan | nan | nan | nan | 1.2534193 | 0.85596293 | nan | nan | nan | nan | 0.11302785 | 0.061615985 | nan | nan | nan | nan | 26.630508 | 1.5690814 | nan | nan | nan | nan | False | nan | -1.4034194 | nan | nan | nan | nan | False | 25.774273 | 1.0248417 | nan | nan | nan | nan | False | 25.792881 | 0.924238 | nan | nan | nan | nan | False | 27.26453 | 3.6047592 | nan | nan | nan | nan | False | 24.735907 | 0.37129784 | nan | nan | nan | nan | False | nan | -1.7042294 | nan | nan | nan | nan | False | 27.504137 | 5.7511387 | nan | nan | nan | nan | False | 26.314648 | 3.835283 | nan | nan | nan | nan | False | nan | -0.79041165 | nan | nan | nan | nan | False | nan | -1.2393725 | nan | nan | nan | nan | False | 23.654758 | 0.74145174 | nan | nan | nan | nan | False | nan | -2.115799 | nan | nan | nan | nan | False | nan | -110.93323 | nan | nan | nan | nan | False | 26.267036 | 0.59187806 | nan | nan | nan | nan | False | nan | -2.6424913 | False | nan | -0.8288777 | nan | nan | nan | nan | False | 0.13416192 | 0.027357887 |
\n",
"3 | 4 | 53.36795775820615 | -28.06517792576462 | nan | 24.873579 | 0.1563 | 0.17598253 | 0.07147795 | 0.17092861 | 0.108725876 | 0.1792267 | 0.14039728 | 0.23371248 | 0.16520949 | 0.10132471 | 0.1386605 | 0.46330893 | 0.15867801 | 1.3113964 | 0.54981625 | 0.4681041 | 0.13643308 | 0.56638014 | 0.25168562 | 0.62508553 | 0.188524 | 1.3471265 | 0.49000937 | 0.25682282 | 0.40623134 | 0.1376907 | 0.04597988 | 0.12297048 | 0.03560704 | 0.23529775 | 0.061847884 | 0.48730662 | 0.020289179 | 0.39447048 | 0.23231676 | 25.786325 | 0.44098803 | nan | nan | nan | nan | False | 25.817963 | 0.69062525 | nan | nan | nan | nan | False | 25.766493 | 0.85051167 | nan | nan | nan | nan | False | 25.478294 | 0.7674982 | nan | nan | nan | nan | False | 26.385712 | 1.4858048 | nan | nan | nan | nan | False | 24.735323 | 0.37185222 | nan | nan | nan | nan | False | 23.605665 | 0.45520595 | nan | nan | nan | nan | False | 24.724144 | 0.31644738 | nan | nan | nan | nan | False | 24.51723 | 0.48247483 | nan | nan | nan | nan | False | 24.41015 | 0.32745492 | nan | nan | nan | nan | False | 23.576479 | 0.39493018 | nan | nan | nan | nan | False | 25.375916 | 1.7173711 | nan | nan | nan | nan | False | 26.052738 | 0.36256644 | nan | nan | nan | nan | False | 26.175497 | 0.3143832 | nan | nan | nan | nan | False | 25.470955 | 0.28538516 | nan | nan | nan | nan | False | 24.680494 | 0.045204997 | False | 24.909964 | 0.6394261 | nan | nan | nan | nan | False | 0.40791345 | 0.058722246 |
\n",
"4 | 5 | 53.32106264525905 | -28.065133475726462 | nan | 25.78421 | 0.2698 | 0.069612026 | 0.072965376 | 0.12920208 | 0.1165439 | 0.07760415 | 0.15673465 | 0.2685509 | 0.12008465 | 0.17315719 | 0.12048068 | 0.15783527 | 0.20398143 | nan | nan | 0.17124534 | 0.1520368 | 0.7541307 | 0.260258 | 0.429775 | 0.16544043 | 1.0903566 | 0.41969627 | 0.036749616 | 0.37537137 | nan | nan | 0.105129294 | 0.031920206 | 0.072914585 | 0.04902981 | 0.13198495 | 0.024682442 | nan | nan | 26.79329 | 1.1380383 | nan | nan | nan | nan | False | 26.121826 | 0.9793645 | nan | nan | nan | nan | False | 26.675287 | 2.192827 | nan | nan | nan | nan | False | 25.327433 | 0.48549545 | nan | nan | nan | nan | False | 25.803898 | 0.75544214 | nan | nan | nan | nan | False | 25.90449 | 1.4031719 | nan | nan | nan | nan | False | nan | -0.45804766 | nan | nan | nan | nan | False | 25.815952 | 0.96394956 | nan | nan | nan | nan | False | 24.206383 | 0.37469834 | nan | nan | nan | nan | False | 24.816896 | 0.41795045 | nan | nan | nan | nan | False | 23.806078 | 0.41791782 | nan | nan | nan | nan | False | 27.486868 | 11.09003 | nan | nan | nan | nan | False | nan | -17.475887 | nan | nan | nan | nan | False | 26.34569 | 0.32965997 | nan | nan | nan | nan | False | 26.742964 | 0.73007935 | nan | nan | nan | nan | False | 26.098688 | 0.20304298 | False | nan | -51.980495 | nan | nan | nan | nan | False | 0.17632584 | 0.043816086 |
\n",
"5 | 6 | 53.292097287458255 | -28.065128066082178 | nan | 24.99502 | 0.0972 | 0.54920703 | 0.10236169 | 0.3950287 | 0.11572929 | 0.5792175 | 0.13765866 | 0.5998528 | 0.11671902 | 0.56805545 | 0.11636949 | 0.707533 | 0.17374879 | 0.8089147 | 0.242451 | 1.2095928 | 0.17229377 | 1.3220452 | 0.28318012 | 1.286702 | 0.15845318 | 1.5681733 | 0.35088024 | 2.5966816 | 0.41963995 | 0.5159599 | 0.066198446 | 0.46837607 | 0.03721024 | 0.6047119 | 0.04921881 | 0.7293637 | 0.019158186 | 1.551586 | 0.30334106 | 24.55066 | 0.20236048 | nan | nan | nan | nan | False | 24.908428 | 0.3180819 | nan | nan | nan | nan | False | 24.492895 | 0.2580395 | nan | nan | nan | nan | False | 24.454887 | 0.21126194 | nan | nan | nan | nan | False | 24.514023 | 0.22241943 | nan | nan | nan | nan | False | 24.275633 | 0.2666241 | nan | nan | nan | nan | False | 24.130243 | 0.32542098 | nan | nan | nan | nan | False | 23.693401 | 0.15465169 | nan | nan | nan | nan | False | 23.596884 | 0.2325631 | nan | nan | nan | nan | False | 23.626305 | 0.13370489 | nan | nan | nan | nan | False | 23.411514 | 0.24293451 | nan | nan | nan | nan | False | 22.863953 | 0.17546175 | nan | nan | nan | nan | False | 24.61846 | 0.13930161 | nan | nan | nan | nan | False | 24.723513 | 0.086256556 | nan | nan | nan | nan | False | 24.446129 | 0.08837043 | nan | nan | nan | nan | False | 24.24264 | 0.028519018 | False | 23.42306 | 0.21226563 | nan | nan | nan | nan | False | 0.36474696 | 0.032653794 |
\n",
"6 | 7 | 53.229967825919154 | -28.06503005890903 | nan | 25.871485 | 0.2882 | 0.03316139 | 0.10730596 | 0.1339441 | 0.084909394 | 0.14568439 | 0.17631331 | 0.33683422 | 0.1351405 | 0.2546297 | 0.12451075 | 0.19029401 | 0.20762701 | 0.6555813 | 0.6513765 | 0.2659733 | 0.1333883 | 0.811891 | 0.29960817 | 0.32634047 | 0.23244429 | 0.41926628 | 0.43266153 | 1.1506535 | 0.44169024 | nan | nan | 0.11413825 | 0.03856227 | 0.19824885 | 0.09048848 | 0.14609061 | 0.026196918 | 0.10544547 | 0.3730308 | 27.598417 | 3.5133011 | nan | nan | nan | nan | False | 26.082691 | 0.6882663 | nan | nan | nan | nan | False | 25.991467 | 1.3140031 | nan | nan | nan | nan | False | 25.081459 | 0.43560573 | nan | nan | nan | nan | False | 25.385227 | 0.53091145 | nan | nan | nan | nan | False | 25.701437 | 1.1846309 | nan | nan | nan | nan | False | 24.358433 | 1.0787724 | nan | nan | nan | nan | False | 25.337904 | 0.5445077 | nan | nan | nan | nan | False | 24.126255 | 0.4006639 | nan | nan | nan | nan | False | 25.115822 | 0.77334327 | nan | nan | nan | nan | False | 24.843775 | 1.1204246 | nan | nan | nan | nan | False | 23.747639 | 0.41677108 | nan | nan | nan | nan | False | nan | -3.3409872 | nan | nan | nan | nan | False | 26.256422 | 0.3668223 | nan | nan | nan | nan | False | 25.656973 | 0.49557215 | nan | nan | nan | nan | False | 25.988443 | 0.19469383 | False | 26.34243 | 3.8409717 | nan | nan | nan | nan | False | 0.16270682 | 0.043189224 |
\n",
"7 | 8 | 53.18293888014623 | -28.065017040029545 | nan | 25.731575 | 0.1831 | 0.1714553 | 0.09276355 | 0.4202447 | 0.08376481 | 0.57714736 | 0.10840811 | 0.50315535 | 0.19438195 | 0.7374118 | 0.122503206 | 0.69355154 | 0.1509447 | 1.0836909 | 0.27826163 | 0.6531608 | 0.13016273 | 0.5253797 | 0.3073222 | 0.9548878 | 0.16312116 | 0.82789713 | 0.3683119 | 1.4831351 | 0.40285945 | 0.25976625 | 0.05488502 | 0.38381606 | 0.036142938 | 0.57328475 | 0.05119023 | 0.6648029 | 0.018842079 | 0.9402178 | 0.24223422 | 25.814623 | 0.5874228 | nan | nan | nan | nan | False | 24.841244 | 0.21641314 | nan | nan | nan | nan | False | 24.496782 | 0.20393857 | nan | nan | nan | nan | False | 24.645744 | 0.41944802 | nan | nan | nan | nan | False | 24.230724 | 0.18036892 | nan | nan | nan | nan | False | 24.297302 | 0.23629984 | nan | nan | nan | nan | False | 23.812737 | 0.2787868 | nan | nan | nan | nan | False | 24.36245 | 0.21636692 | nan | nan | nan | nan | False | 24.598816 | 0.6351041 | nan | nan | nan | nan | False | 23.950119 | 0.18547367 | nan | nan | nan | nan | False | 24.105059 | 0.48301843 | nan | nan | nan | nan | False | 23.472048 | 0.29491523 | nan | nan | nan | nan | False | 25.363543 | 0.22940105 | nan | nan | nan | nan | False | 24.939692 | 0.1022409 | nan | nan | nan | nan | False | 24.504074 | 0.09694848 | nan | nan | nan | nan | False | 24.343267 | 0.030772319 | False | 23.966928 | 0.27972504 | nan | nan | nan | nan | False | 0.18508437 | 0.031212874 |
\n",
"8 | 9 | 52.9391529645356 | -28.064589036789748 | nan | 25.013447 | 0.1807 | 0.1681183 | 0.08489224 | 0.1597873 | 0.10046481 | 0.0838404 | 0.14911668 | 0.025835175 | 0.15972196 | 0.38358983 | 0.10976373 | 0.38476792 | 0.18914147 | 0.1282175 | 0.3838134 | 0.48290718 | 0.16843133 | 0.7679721 | 0.28456366 | 0.8776979 | 0.18399945 | 0.7337122 | 0.4030633 | 0.7076161 | 0.44475767 | 0.19531569 | 0.06567779 | 0.12076117 | 0.033015877 | 0.13736981 | 0.063618034 | 0.3195105 | 0.02208631 | 0.6112322 | 0.28927165 | 25.835962 | 0.54824835 | nan | nan | nan | nan | False | 25.891144 | 0.6826468 | nan | nan | nan | nan | False | 26.591366 | 1.9310666 | nan | nan | nan | nan | False | 27.86947 | 6.712395 | nan | nan | nan | nan | False | 24.940332 | 0.310682 | nan | nan | nan | nan | False | 24.937002 | 0.53371847 | nan | nan | nan | nan | False | 26.13013 | 3.2501032 | nan | nan | nan | nan | False | 24.69034 | 0.37868974 | nan | nan | nan | nan | False | 24.186636 | 0.40230766 | nan | nan | nan | nan | False | 24.041637 | 0.22761233 | nan | nan | nan | nan | False | 24.236185 | 0.596447 | nan | nan | nan | nan | False | 24.275505 | 0.68241733 | nan | nan | nan | nan | False | 25.673157 | 0.36509484 | nan | nan | nan | nan | False | 26.19518 | 0.29683822 | nan | nan | nan | nan | False | 26.055271 | 0.50282085 | nan | nan | nan | nan | False | 25.138786 | 0.075052015 | False | 24.434484 | 0.5138353 | nan | nan | nan | nan | False | 0.35860905 | 0.059683606 |
\n",
"9 | 10 | 52.84114562805728 | -28.06438482597608 | nan | 25.764791 | 0.1569 | 0.32000726 | 0.07245082 | 0.18228133 | 0.084590256 | 0.4815898 | 0.1528397 | 0.38007498 | 0.12087315 | 0.37115455 | 0.09881796 | 0.52214956 | 0.12986971 | 0.88112855 | 0.3227968 | 0.6760621 | 0.16922964 | 0.6789319 | 0.25258642 | 1.0308908 | 0.172455 | 0.74991804 | 0.36407527 | 0.55848515 | 0.6220493 | 0.17785022 | 0.0436542 | 0.3981259 | 0.029162697 | 0.42247507 | 0.0493059 | 0.45177382 | 0.018625705 | 0.833565 | 0.23886326 | 25.1371 | 0.24581465 | nan | nan | nan | nan | False | 25.748144 | 0.5038514 | nan | nan | nan | nan | False | 24.693306 | 0.3445746 | nan | nan | nan | nan | False | 24.950327 | 0.34529072 | nan | nan | nan | nan | False | 24.976112 | 0.2890716 | nan | nan | nan | nan | False | 24.605513 | 0.27004573 | nan | nan | nan | nan | False | 24.037401 | 0.39775372 | nan | nan | nan | nan | False | 24.325033 | 0.27177793 | nan | nan | nan | nan | False | 24.320435 | 0.4039319 | nan | nan | nan | nan | False | 23.866968 | 0.18162994 | nan | nan | nan | nan | False | 24.212465 | 0.5271105 | nan | nan | nan | nan | False | 24.53247 | 1.2093095 | nan | nan | nan | nan | False | 25.774864 | 0.26649925 | nan | nan | nan | nan | False | 24.899948 | 0.07953011 | nan | nan | nan | nan | False | 24.835497 | 0.12671328 | nan | nan | nan | nan | False | 24.762697 | 0.04476267 | False | 24.09765 | 0.3111245 | nan | nan | nan | nan | False | 0.17950773 | 0.025940707 |
\n",
"
\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"catalogue[:10].show_in_notebook()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## II - Removal of duplicated sources"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We remove duplicated objects from the input catalogues."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The initial catalogue had 63501 sources.\n",
"The cleaned catalogue has 63501 sources (0 removed).\n",
"The cleaned catalogue has 0 sources flagged as having been cleaned\n"
]
}
],
"source": [
"SORT_COLS = ['merr_combo_u', \n",
" 'merr_combo_b', \n",
" 'merr_combo_v',\n",
" 'merr_combo_r',\n",
" 'merr_combo_i']\n",
"FLAG_NAME = 'combo_flag_cleaned'\n",
"\n",
"nb_orig_sources = len(catalogue)\n",
"\n",
"catalogue = remove_duplicates(catalogue, RA_COL, DEC_COL, sort_col=SORT_COLS,flag_name=FLAG_NAME)\n",
"\n",
"nb_sources = len(catalogue)\n",
"\n",
"print(\"The initial catalogue had {} sources.\".format(nb_orig_sources))\n",
"print(\"The cleaned catalogue has {} sources ({} removed).\".format(nb_sources, nb_orig_sources - nb_sources))\n",
"print(\"The cleaned catalogue has {} sources flagged as having been cleaned\".format(np.sum(catalogue[FLAG_NAME])))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## III - Astrometry correction\n",
"\n",
"We match the astrometry to the Gaia one. We limit the Gaia catalogue to sources with a g band flux between the 30th and the 70th percentile. Some quick tests show that this give the lower dispersion in the results."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"gaia = Table.read(\"../../dmu0/dmu0_GAIA/data/GAIA_CDFS-SWIRE.fits\")\n",
"gaia_coords = SkyCoord(gaia['ra'], gaia['dec'])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n",
" warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAGqCAYAAACI3wquAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXmcHEXd/999zL33lfsOCSSEI0hIiEZAE0E8AMEHbxHxAeQSfRQeUZ9HFFAf4BEjovzkAfF5AEEUhSCHgASIBEGOJJCD3Mkm2Xvnnumu+v3RO7MzuzOzPUs2bCb1fr14semp6m9Vd3V/uqqrPq1JKSUKhUKhUFQQ+rtdAIVCoVAo9jdK3BQKhUJRcShxUygUCkXFocRNoVAoFBWHEjeFQqFQVBxK3BQKhUJRcZjvdgFGK21t4Xe7CAqFQuGK5ubqd7sIow7Vc1MoFApFxaF6bopDkgdfby0r/VlHjRuhkigUipFA9dwUCoVCUXEocVMoFApFxaHETaFQKBQVhxI3hUKhUFQcStwUCoVCUXEocVMoFApFxaHETaFQKBQVhxI3hUKhUFQcStwUCoVCUXEohxJFRVCu44hCoahslLgpFC5Qdl0KxcGFGpZUKBQKRcWhxE2hUCgUFYcSN4VCoVBUHErcFAqFQlFxqAklCsUIoCagKBTvLqrnplAoFIqKQ4mbQqFQKCoONSypGJWoRdkKheKdoHpuCoVCoag4VM9NoRgFqAkoCsX+RfXcFAqFQlFxKHFTKBQKRcWhxE2hUCgUFYcSN4VCoVBUHErcFAqFQlFxqNmSigOCWremUCgOJKrnplAoFIqKQ4mbQqFQKCoONSypGBZqmFGhUIxmVM9NoVAoFBWHEjeFQqFQVBxK3BQKhUJRcShxUygUCkXFocRNoVAoFBWHmi2pUByEqE/kKBSlUT03hUKhUFQcStwUCoVCUXGoYUmF4hBADWMqDjVUz02hUCgUFYcSN4VCoVBUHGpYskJR3o8KheJQRvXcFAqFQlFxKHFTKBQKRcWhhiUVCsUg1OxKxcGOEreDBPUOTaFQKNyjxG0/ocRHoVAoRg9K3BQKxQFHDXsqRhpNSinf7UKMRtrawmWlVz03hWL0cKiJYXNz9btdhFGHErci/PKvG97tIigUigNEuWI40j3Pcvf/rx+YVVb6QwElbgqFQqGoONQ6N4VCoVBUHErcFAqFQlFxKHFTKBQKRcWhxE2hUCgUFYcSN4VCoVBUHErcFAqFQlFxKHFTKBQKRcWhxE2hUCgUFYcSN4VCoVBUHMo4uQyklGiaNqJ5DuUYB4LRWPetXSne7kqXVabpdWbBGI8/8hDLTv94sYJBGeWaUucZdcdKxXhn11QhW8GD2YezlKem6rkpFBXEujdef7eLoFCMCpS4KRQKhaLiUOKmOGixhcQW7n2/pZRYwvn/aEMffSO4CsVBjXrn5pLMDTHzfzdj37l5yk1/qMZwk15KSW/CpjshAKjz69T4jZL50rakPWqRtCVeQ6M5ZOIxho6T+/f+PlZSSsJJG4AptSYdcZveZGnhNXVoCRqZHbh7h5Yr5i7yGBo0hYxsGcs9fyNxrFSM8mIolLi5YuBNWkpZspENvFFn0ufuQ8UYXoyULWiLWE4PrG9bd0IQSQmaq0y8Rv5ghJSSnoRNT0IgkYBGyhbs7k1T69epLSKKI18PSXs0TdrRNnRNozFgUOuV7I3ZpOzBMWp9Gg0BAy2zTyn7havYDW/g75k8RdJXe3Xq+8RztJxzFaO8GAoHJW4lKNabKNXICm0r1ZBVDHcxhJR0xy3CSZkVqex+gLSQtPZaVPs06gImuqaRtARtUQs7K4SZPBoS6MmIYsjEZ+oHpB5SSrqK1EPXNDwGTKg26U0KOuMCCXgNGBMyMXUnTU6QTAEGC1Zub21gngKi6DU0moIGpqHlxaj0dlVJMRT5KHErwlBPRwMb2cDtxfIMTH8oxxgqTyZ9whK0R23sbNZCeRzB6k1KIsk0PhMSFoMEJBcJWEKyJ2xR49OpC/T3WPZnPTJ5HLEtXQ9N09CAGp9OlVcnYQmCHr2/t1Y4SF+FpFOroXpzA0SxPmBQ7TdKxsitR6HtpdIPJ4+KUV4MJXKDUeJWBLeNJbeRuclTbnoVA7riuYIwNAKIW9m9DBUFCQS9+ojVI5OnMy5c10PXNHQNQh735cqKVhnpvYZGtd/I7xGWzKKN6DmvxBi5+UcyhiIfNVtSMeoZ1rU7Gi/4YZTpQDyPj8ZDVUmMdK9Knb/CKHFTKBQKRcWhxE2hUCgUFYcSN4VCoVBUHGpCiUKhUBzCPPh6a/bvg9lEeSBK3BSKgwQpJffe9f94+MH76O3pZtYRc7n4yquZMevwonls2+aB/72TF59/lu1b3gbgsMPn8MULL2P2nCMPUMn3H6eccgq7du0q+Nuzzz7LmDFjhtxHLBbj1FNPZe/evfz5z39m1qxZ+6VsqVSKm266iYceeoh4PM6CBQv4zne+w6RJk1yVf+XKlbS0tOyXsiiUuCkUB4xhTfqkf8bkfb/5Nf/3P7/ky5dcyaQp03jwnt9w1aUX8Mv/+wMNjU0F86eSSX53969ZdvoZnPuF89HQ+NMD9/D1f/08N99+N3PnHnlAZmTuL5YvX04qlcrb9p3vfAdd110Lw2233YZtF7CAeYf84Ac/4LHHHuPqq6+mvr6e5cuXc/755/PnP/8Zn8+338o/ELXErTBK3Irgdn1K7hoTt+tTMnkOxRhCOobHhg6GC7dgKSVVXp3uHPusQmnSqRReny9/XvRA144i2ELSGbNprnLWlg215qvQsZJSkkqlsjexgVi2xKNrJCyBrrk7VhIQEnQkVirFfb/5Nf/y+fP5+DmfBmDOvKP5/Jmn8qf7/48vXnhZf91zFnF7fT7u/P2jVNfUZvd9zPELOf+cj/DQ/fcwa/a1WEJiuqg3OE4xQkp0KL2wPKceuX+/03Y1Z86cvLRtbW28/fbbXH7FFdgCdF2WrMe2bdu4++67+eY3v8l//Md/uHb6GKoee/bs4YEHHuC6667jjDPOAGD27Nl88IMf5KGHHuKcc85B07Si5b/iiive0bFSDEZNKClCMZeBXHIvvlIuA7npi+U5mGNcffXVfOITn+CJJ57g1FNPZd68eXzqU59i06ZN2Ty2kPQkLL77Xz/nlA8u5aij5rFs2TIefPDBvH0/88wznHfeeSxatIj58+fzL//yL7zx8t8ZV+PBozvuHXfffivnfOh9rHn1FS4971w+uuQ4nn3qcax0il/d8l989oxlfGTJcXzqox/gP795OemcJ+W3N7zFty75Mh97//F8YumJXP/db/Hq5lYe2RjhwXW9rN20ndmzZ7NixQq++93vctxxx7FkyRJuueUWhBDZei9fvpyFCxfy8ssv84lPfIJ58+bx6KOPDjpWQkosIfnnnjh/2hDh77vihJOi5NcMhJSkbMmuXottPRadcZs1r/+TWDTCkg98KJvOHwhywnvfz0urnssRdS3PgcQwjDxhA/B4PEyZPoOerk6kprE7bNEVsxBDnHMhJf918y0sWriIx1eu5owzz2TevHl8/OMf5x//+EfBPDCybXfFihUIITj+/R9iZ296yHr88Ic/5Oyzz2batGnZOLkxhBD86le/YunSpRx55JF86EMfyrbRUvV47rnnAFi6dGn2tzFjxjB//nxWrlxZtB6PPvooQgg+/OEPv6NjpRiM6rmVoJjvWymfuMzvA5+8ijXESomxe/dubrjhBi6//HJ8Pl92SOYvjz2Gx+tjQ0eSm2/4AS8++TCnffoCJs88go2vvsi3v/1tamvr+MAHTgFg586dnHTSSZx33nkYhsGzzz7LBRdcwG9/+1vmz5+fddFPJhL817Xf5pzPnseESVNobGrm3rt+zdOPr+BLF1/B2PET6Oxo56UXViJsG6Sku7uLf7v4S0yeOo1/+48b6A5Hueu2/2bNmxfzuR/eSQ8eHtsZAeAnP/kJy5Yt45ZbbmHVqlX8/Oc/Z+bMmZx22mnZuicSCa666iq+/OUvM2XKlEHDSmlb0hm3eGpzlN6E86XtiA2rdqQZV2Uyu9Gb11PUDQMJdMRselP956YnKXn9rbfRDYNxEyfnxZg8ZRp/e/Ivg3uomlbQQ5K+HubGt9bxgdM+mk0eTknOPP0UFhy/gB//+Ia83k9GbNujFklLkkwkuO67V3PuF85n3JgWfv9/d3HBBRfw+OOP09zcXLRdZR4OCrWhzDbDMNB1PS9/oTyi799/engFRxx5NA0t47L1iKXTNAYN/B49rx7PPPMMr732Gj/5yU946623Csa49tpr+eMf/8jFF1/MnDlzeOGFF/j2t79NfX09J598cl4Zcq+PzZs3M3bsWILBYF6aGTNmsHr16qJ2WY888gjHHHMMEyZMeMfXoCIfJW5DUOwpqlTDGnhBukl/sMfo6uri1ltvZf78+UgpmTt3LsuWLeO39/2ew086g507trPykQf43Nf+g4VLnZvq4ceeQEdHGzfespwlJ52MocNnPvOZ/huYEJxwwgls2rSJBx54gOOOO44av0mNXyeZTPCVy/+NE993cqZgrH9zDSct+zBLT/94tlzv/+Cp2b9//393AfCfN93GtriHRNTmY1eM5X+/ez4bVj/NEScuy6ZtnHk0n77o60yo8XDiiSeycuVKnnjiiewTNvSL2wc/+MHsttyh1+e2x3i7K832dS/zux98tehxzvDL362AmrEFLboi4V58/gAdCWgOSmdoE6iqqSGZSJBOp/F4PPmZcgQtd7j2nrtuJxLu5dSPnZWXXDcMUlKjPWrRGDSz2TuiFtF0f/5kMsEXL7yUUz50OgBzjjmez358KXfedRff+PrX+0IPbidLly4tOpkiwyWXXMKll146oBr5bVcCSUuwdtMO1r7xGhd97Vt56W0J+6I2AY+gKWiia85kj+uuu47LLruM2tr8nmwmxrZt27jnnnu47rrrOPPMMwFYvHgxbW1tLF++PCtuhcrV29tLdXX1oLrX1NTQ09OTlydTj127dvHaa6/x7W9/u+h1Vaz3qoRtaJS4uaTS/O72d4zGxkbmz5+fzaPVtDD1sCN4/qVXmf6+M1j/6mo0TefoE0/GtrPGjxx+9AJ++8xjPLc1zMkzatizZw8333wzL7zwAm1tbdmLOrNvcHo6mqZx0pIlpHLewc04bDYPP/g76hsaec/CxUybOSuvzOvXrWHm0SfwSqeOJZwe4LiZc6lpHseu9a/lidukIxfw+NtRlkwJMqvRy8yZM9m9e/egY7NkyZJB21Ztj7K5K02yT6XGTjucz/7gf4oeuzEhg5BHJ+lvxCz1CkXTiKYl8R6LqXUmaNqgjlmxfABIyYsvrOTeO2/ngsu+waQp0/KS3fnACgBiaUm8J03IqxFLO2I9kMXv/0D2b18gyDHHL+LVV1/LHoNC/OIXvxg0mWJguyo1qULTNCJJm2hKELckf338UTRdzxuqzSWeluzsSTOpzsNdd92Fz+fj3HPPLbr/VatWoes6y5Ytw7KsbLkWLVrEI488gm3b6LqeNxlF1/VsTzN3SHFguQv9e8WKFei6zmmnnVa0TLl5yrluFUrcFPuJxsbGvH/H05JATT09Xe0ARHq6EcLm62cvKZSdjvZ2xLQqLrroIqLRKJdddhlTpkwhEAhwyy230NHRkZe+traWgN9Lqu+DpQCfPu9f0XSdh39/H7/++c00Nbdw9mfP48x/+SwAne1tNM2ejCXydkWotoFEpDdvmy/oPIWHk05ij8dDMpkcVAav1zuoLm+259/APf4gLVMOK1hvgBq/ToPfwDA9RdMEq2tIxmLOEKthZLdHI2F8/gBmibwZ1q9bw3XXfIMPn3EOZ537uZJpJRBJioKqGQgG8fn9edvq6hvYtnljyX3OnDlzUA9k4A07d0iyELaEuOXs429P/oWj5x9PfZGZopl6dHZ28otf/IIbbriBaDQKOMsBAKLRKLFYjGAwSFdXF7Ztc9xxxxXcV1tbGy+88AJXX311dtuZZ57JDTfcQE1NDb29vYPy9Pb2UlNTU3B/K1as4IQTTqCpqXj5FcNHiZtivzBQfAAiPV2MmzwdgFB1Lbph8o0b70DTBt/Aqusa2LZtG+vWreP222/P6xElEglXZfD6fHzhK5fwha9cwq7t23j4D7/jtpt/xMTJUzl+0XtpaGom1ts1KF+0p5Mx04qvFXun7HjzFVfDktfe+TCNY8YX/G3sxKkIYdPWuoMxE6f273vbFiZNmVowTy47t2/lO9/4Kse85wQu/vrVQ6YvRTwWI5lI5Alcd1fnkDfp4Q5LFmLHti28veEtrvz294dMu3fvXmKxGJdddtmg384991wWLVrEnXfeSW1tLaZpcs899wCDe1wNDQ2cfPLJPPDAA9lt9fX1AEyfPp09e/ZkhTLD5s2bmT59+qC4mzdv5s033+SHP/zhkOVXDA8lbor9QkdHB6+88kp2+HDfnla2b3qLhUs/BsDsY45HCpt4NMIR8xcW3EemZ5TbG9q1axf//Oc/y15oO2HyFL5y2Tf48+/vZfuWtzl+0Xs5fO48/vjAfaTiUbyBEACtb6+jt62VCbOPLrvObhlqWLLaq1HjNahtaC6aZvqco/EHq3hl5ZOc9qkvA5BIxPn7c3/jwx//RMn4He1t/PvlFzJ+wiSuvvbHGDk9v+Hy/N/+mn3nFo/FeOWlVZx51jkl87zTYclcnnn8UTweD4tP+sCQaSdPnsxvfvObvG1vvvkm119/Pddddx1z584FYOHChdi2TTgc5sQTTyw4BOj1erOClsvixYsBeOKJJ/j4x513vnv37uXll1/me9/73qD0jzzyCB6Ph2XLlg36TbF/UOKm2C/U19fzzW9+k8svvxy/389PbvpvquvqWdQ3eWTMxKm898Nnc8cNV7P07C8w+bAjSKdTtG57m327tvPZK77L9OnTGTt2LD/60Y+4/PLLiUaj3HLLLa5veP/5rcs5bPYcZsw+Ap/Px8qnnsC2beYd+x4AzvrU5/njA/fxwA1XsOCjnyOViLHy3ltpmjSDWQtOHmLvw8cbCDF2+hFFf6/rG5Ys9eLM4/Wx7JNf5NF7/h/Bqmp6Dp/BH+69GylEdt0bwK7tWzlt8THc+cAKxowbTzKR4JqvXUQk3MtXv341WzZt6N+nx8vM2f3l+vwZH+Ko+e/hG98t3Zvw+fzcedvPSMRjNDS18Pv/vRMrneaTny491Dl79uxB24b7HulvT/6F9yx6L1XVhYf8Tlt8DJ/50r/y2fMvIhQKccIJJxRMN2/evOyD0/Tp0zn33HO58sorOf/885k3bx7JZJKNGzeydevWkr2ssWPHcvbZZ3PdddchpaShoYHly5czfvx4Pvaxjw1Kv2LFCpYsWVJ0yFLxzlHiptgvjB8/ngsvvJAbb7yRXbt2MfPwuXzu367D4+1f1HzuV69izITJPP+XP/Dw3b/AHwwxdvJ0TvyQs+jV6/Xys5/9jO9///tcdtlljB07lgsvvJDVq1ezYcOGYqGzzJl3DH978i/c/793IqVg8tQZfOf6m5h1hPNkXlffwCev+TnP/PYWHl7+HQzTw7RjTuTkz11e8n3XaOFDnzwPKQSP3fc//CHcw2FHzOX6W36V985JSomw7ey7ra7ODjZvXA/Ad79xSd7+xowdz2/++Fj234lkgrr6/HenhfD5/fzb937IrTdez46tm5k4ZRo/uOlWmpqL9zz3J29veIsd27bw2S9fVDSNsG1kibWExfje977H1KlTuf/++7nllluoqqpi5syZnH322UPmveaaawgEAtxwww0kEgmOP/54brzxxkEL+9988002b97MV7869FC1YvhoUi1xd81wnjLLzXMwxrjqqqvYsGFD3oLsTR1JtvVYBdMX4wPTQ2Wl74pb9CTE0AlzeGJztKz0x471c9x4f1nH6/aXB7/XK4WbnttApteZBcv03zdcyxVXfadwJlncsWXP7p2cd/bp3HH/w4ybMKlo+rtvv5U/PXAP9z+2ctA+anw69QFjRNtiT8KmK16eddbkOo/rL40Pt1yj9bodyC//OvRDYjFGo6lyc3N10d+UQ0mZHIhngYM9hpCSV1rjbOxIuI5jao5YWS6ftqWUbOtKsTucch0jkhJlxQDwGRrhpF1WjHKQUtIZs9gdTruOYQnJ210p4ukyYg2x73Wvv8qiJaf0C9sw8BojP03d1KHKW95tqztuky60eFBR0ahhSZfk3njcPEENTA/734dvNMbY1Zvm5y92sCvs2CCt25fkpGlV1PqLT2Ko9Wk0BAx6Eja9CUGtX6fWX7wH0J2weXpLlO64jQR29Ngc2eIjVOSmJ6Rkzd4EL7cmsAX0JgR1fp2aEjGCHo0jm30EPRpdcUEkJWgKeYrewIWUrN2X4B+7E2i4M0lO97l+pGxnUfbO3jRzWwJF6yGlpDdp0xl3RG1bj8X0OpMpdd7SPZNcYSvSezvl1I9wyqkfKZweSvYqTR2agiZe0/26y+G23aBHJ+BxeoltsSFEq2+/vUlBOCmo8enUDdGzrIRrUOGghiWHoJA7x1COHaXshUqlP5hjpG3J79f1sGJDGEv039w1QNfgqLF+jhkbyDNL9hrOAmZT1wbdnE0dmkMmPrP/Rm8Lp0f4xt7kIBcPXYMpNSbTG/Jv9B0xi6e2RImkRN76Nl0DQ4OmATE0YHq9hym1ngEGxxINjWqfRn0gf0gwGyMpsFxcTVJKehJ2dkg1N4uuwaQak6n1vrxjlbIFeyNW3rHNpPcZGvNafNT6jfxhydxLO9etZOC2/MIN/q2EwGUFgwPfdiUQTth9ptou6oFzzpurTPymPiD5wX8NuuFQGpZUPbcSFGtExXzfSjXUYh55lRDjzbYEP3+xk3DKZuBImcRZePvG3gQbO1KcPC3E2CoPDQGdGp9e1FneEpI9YYsqr0Z90GRf1OapzRESlixoTyUkbOu1aI3YHDnGR5VH56VdMd5qTxVNLyTsCVtU992g6/0G81p8eA2twBcLNCTQm5REU2maQyamobF6Z5y32geLbTESlqA9aiEGiFRuuXb2WuyJ2MzpE6yuuEVvUhZNH7ck/2hNMK7KyHouFhWkXJHL7cWVEj1Ny7fw0jS8hkZzyMDQBj+YHKi2qwHVPoOQz6A9apGwZOl64LTFvWGLoEejMWSi98UtFmM49ShU7gMRQ5GPErciuBkuGHhBZraVSp/Zt9uGeaBiZPKUG+Pe17t5dFOY1BDv+C3hvI9auTXK5Ysa8RqDb4oDojhP5inJq3uibOtJDykgQkLClqzeFac1nEYIhswjcVxIZjZ4OGas39VneGwJ27vTvLgrTloUFttCdPdNgBkquS3BtiVv7E0wocaZDDFUHiGhNWLTnXDeD2pQeoKK255cgfQ1Xp26oDHkJ2/eSbtym0fXNXSgKWiwu9dCDFUPnHMeTUuMuE19wCirXG7KlPl9uNftcGIogRuMmlBSBLeNRdP6/eTKyTPaYgy3XC+3xocUtlwa+m6K5cxe2xezXAsIQMqS2C6ELYMEptR5XQlbhqglyhI2cCzJynkHYPSJmts8QkLQozvnz+3xzaQrI33Qq2f9Pd1lGX7bdZtHyL7jVEa7CvQdq9FUj+HEUC+WCqPETTH6GaUXr3pWVihGL0rcFAqFQlFxKHFTKBQKRcWhxE2hUCgUFYcSN4VCoVBUHErcFAqFQlFxqHVuRShn7chwTV4qIYanjOnz4EzZLtfE1klfRtm0Ia0UB2GL8o6VJstbBjAchrN7Z611OeueZFnT54cT44C0Xco/XuWuETsQ9RgOB2qJ24Ovt5aV/t12NFE9txK4acwDfd+GyjMwzWiJIaQkbUvCCRvhIoaQEktI3jslSMij4cYz19ShN2GzL2q5iiGlREjJhBoDj+5+6r3P0Kj197mfuMzz7LYoXXEby4VipW1J0pbsCaexhXShpBJbSJK2IGULd+dDSLrjFmv2xLHE0McqE2NzV4o9EYuUPbSpsoazlq7aq/Udp6FWvDt17Yg5fphihNqukJJw0nYdQwiJhnRuZtLd+dCAZN8xGi3XYG6e4cRQ5KN6bkUoZgeUoZiTQKmnwWI+ce92DAl0xSzCKSdNb0rQHDLx6I4DxEDStqQzbvH0lhjhlGDBxCA7etJs7kqBhIG3VR3QdTh+QoA5zX4StmMx1RIy8BqFe3JCSlKWZG/MxhIaE2s8WdPgoS5nTdOoC5iEvJL2mEXKGnrxdHdC8OCbYY5o9rFgQgBDH1wuISSWlDy+KcILO+JIINCVYm6Ln5BXL7gI3BaSWFqwZl+CeNopRY1XpyFoFOnBOgvQN3cm2dGTRgJvtiU5eXoVDUETs0SMtfsStEYsfvZiJ8dPCPDhw6rw6FqBc+j4ZOYaVNf4+02cCx6rHOstS0JrnzVaQ9As6FQynLabecBqj1p9Nm6CKo9GQ6h4DIljpN2bFNnyDbIWy0EDTF2jucrEa+h5ZRpY1uHW4926zhX5KONkF7j1iRuYPpPGTUN8N2IIKUmkBR0xu+AQ28Abiy2c3sFzO+K83ZkalD5hCd5qS9KT6N+fqcPYKpP3Takq6HZf5dVozrFyci5oaIvbRFKDC2UJSVufj6CbhiulJJISdMYcGxU3eYIejfdPCTG2yvGPBMe4eEdPmvvX9tKTHNwrGlNlMrvJh6H118OWsKE9yZ7I4O/aGRq0hEz8Zr97hS2cHsuafQmSBRyYpzd4WTw5hNlnXZaJsbEjSWvYifHG725i3ievBKDaq3PWnGqm1/uyXzPQoM8Xsr9uuccqlha0R+3+45R7eyjQtnQNGoMGAY+eFety22JGpDpjVsFzrmvQGDAIePtjZB5+2mNWniH2gCA55XYEvdTXIMq9BgvVI8NQ1+1IxijFOzFOLpcDMSxZyjhZiVsZlPu0NJyGeKBiCAntMSvbmyhG5sYS9Oq83ZnihR1xkiWG7qSUtMVs1rcl0DWNJVNDTKnzDhmjOagT8uhEU4K2uGCoT65FU4J9Ucv1exZbON9Ni6al60/STK71sGRKEAk8uK6XtW3JkulNHQ5v8tEcMumI2bzZlhhkJD2QoEejKWgiJbzVlmBftPQHXr2GxuIpQabV+/piJEnnHKxcccsfBZdGAAAgAElEQVQwu9HLp+bV4jd1mkJGv0VXEXKPVbEe0EACpkZTyBzwJYXSZNpuvMQDVi7+TAycLzFEh2i7fUFA07J5C/V8i5UL3NXlnVznIxmjEIeSuKlhyTIp16txOC+TRzpGV9wiXMRlfiBCwt6oxco346RcvI/SNI2WkMnM+hrqAoarm4kTQ6BrQ4tahpBXp8bS6Em6y2DoGs1VHqJdKdeCuL0nza2rO+lO2sV7BzlYAtbsS2LqSVfpAWJpyRt74nQnbFd1T9mSpzdH2dGYxpbuzvn6jhSvtCY4e24NHmPo1+y5x8rtbIW45XzGJ2NE7AZN09jenXJ9zhOWZGdPGk1KZBlemBNrTEwX9c4tV1mTi4ZxDR6IGIc6akLJIUq53XU3wpaLoWuuhC2XMj6QDRyY9w22xLVQZSg3vaT8ug8nRrmzVA8E5dYbym+7hd4bKyofJW4KhUKhqDiUuCkUCoWi4lDiplAoFIqKQ4mbQqFQKCoOJW4KhUKhqDiUuJVJOcsCc610RkuM9pjFvW/08siGMOGk7SqPJiXvmxxgQrW7lSM1Pp33Tw1y7DgfftPdGp6dPUme3xZlZ0/SVV3awkluf24b96zeQVds8ILyQlR7dU6cHGRCjbt6hMNhVv71L/zzb48Ri/QOmV5KyZ7WVl566SVad+92VY+0LYm4PA8ZZjf5WDwlxKQaj6v0pg6bO1Pc/o9O2odYRweZ85FiW3ea7rjlum1FU4LWsOV6Zq2Ukom1Hmp87m5DzsJ3g7HVHjwu71whj2MtNpxrqtz0oy3GoY5axO2CYoeoXFcBN+lHKoYlJM9sjrBye4yM7aCuwfxxfo4a6y8+TTzH5SFj8/TGvmTBBbS6BkeP8XPMOD+Z2ddSwpauFNt7Ci+4jqRs1u5NkLActw1Dg4BHY06Lnyrv4DVTtpD85c19/GVdu+PriDPFfdH0BhZMayhogeXRNcZUGXh0Leu0krAEa/YmiRZYZS2E4I3XX+efr76KFI7dl6brTJl1JJNnz0XXB5crFouxccN64okEti0wDB2/z89hs2YRCoUKHFZJb8KmK94vbBJKLjCv9RucMr2KGr+zflAISdwSrN2XJJJy6jFwEXetT6c+4Fh9aYChw3snBzl5elXBpRrRlGPjFU07C/0duyoYEzLxFXtQyXMxAQ2N6r64bpw6hJDYUtIWtYsKY7VXpz5oZEIgcXxKexKF7dhMHZpCJt4cN5dMvGJUwnU+FAdyEXcuI7Wg+6B3KNm0aRPXXnstr776KtXV1ZxzzjlccsklGIa7BaNCCM4++2zWrl3Lbbfdxsknn+w69lB+cOX4xBXafiBibOtO8bs1PURTYpBjhqlD0KNzyrQQzaGcHk0R26WMu8n2njSbu9PZdUotIYNTpoUImPogWyfHNFiyZl+ScJ91lWPym2RXr1VwrZOuwcQak2n1vqxgbW6PcceqHYQT1iCXFI+hEfKafOSosYyvCzjFBur9BjV+vU9sc8rVZ121q9fxxMyUoa2tjWeefpp4PE7ayu/lmKaJx+vniOPfS21jM+C0rR3bt7O7tTUrhHn10HXGjR3DpMlTsu01aQnaImlsOXidVyFxMzQ4dnyAuWMCmI5PWc6vjhdlazjNps4Ur93niJvX0BgTMjH1we3Ho0PQq/PJI2uZ2uceI6Rkc2eKHUXOhwZUezUaB3pi5llcDS53c8jEn9PNKumjCESSNl05/qEew7Fny1iO5SIyTjt9dmwZan06tQFjkB/lu3kN7s8YpfIMxaEkbqPeoaSnp4cvfvGLzJw5k1tvvZXt27fzox/9CCEEX/va11zt4/7772fv3r1lxR2q8RQyVi6VJ9dLLuM0MNIxEpbkkfVh1uwrbgNlCehNCv68PsysRi8LJwYx9ewOC8YwNJhS62F8tcmb7UmOaPYzo8FbdNG2oWsENDhunJ89kTR/3xFnzb4Etii+iFdIx1x5T8Rmer3JX99qY/W2HtJFnuzTtqQ7nubel3Yyd1w1H543hgk13qzXY4GKYGgwscbDmCqTV3eFefxvq9i4aRO2XXiY0LIsLCvCq889wdiJU2maOovNm7dgWxZCFD7AQgj27NnLvrZ2Zs48DOmrIpwsbv6cu13D8aw8aXoVfrOwMTNoGDqMr/HQUmWywaPTHDAI+fSivfG0gJ6E4M5Xupjb4mfJ1CAbO9KkbTnI9Dq3XOGUJJJ2DK9Dub24InFsCXsjFkGPY7CcKX6xtqsBVT6DkNegPWrhNzWq/YNFKoOuaegatFSZxFKCSErQGDQw9MFCmBu30DVYqlyZPJl/D/c6318xctMo15LijHpxu/fee0kmkyxfvpyqqioWL15MJBJh+fLlXHDBBVRVVZXM39PTw80338zXv/51rrnmmrJiD9VoCjVkt/t0++T1TmLc/WoXO3vTrr47ZkvoiNvOfcpFDF3X8Okay2ZU4zO1Ijfe/DIZmvOg//rehCuHDSEdZ5RfPreDjkgSy4WdhSUkXbEU46s9rhxSMvV4+qmn2LRlV1FhyyuXbbN3907a48LVsbKFwBaCvZE0Aey+D64MTa3f4EOzatzVQ9PwGhrVXp1qv7sRjbSATR1J6gLFvlCQj6TfcF/i0hMRSNrSteekrmnQJ1i4jKFrGiGvTshb2jMzQ7nXYCbNSF7nA2O4yZMbQwncYEb9hJJnn32W9773vXkidvrpp5NIJFi9evWQ+X/6058yf/58Fi1aVFbccn3ihsNIx4imRVkf1PTomqvvZ+Vi6gwpbLkkbecbYuWQtGxXwpbBZ+rZ93FuicTiWC6ELYMANK28GB7TdC1s4Jgklz/xoKzkaLpWtgWW6VKoMjjvvMqLAZVxDQ43Rjl5Rv+LpXeHUS9umzdvZvr06Xnbxo8fTyAQYPPmzSXzvvXWWzz44IN861vfGskiKhQKhWKUMerFrbe3l+rqwS8Na2pq6O0tPT37Bz/4AZ/+9KeZMmXKSBVPoVAoFKOQUf/ODQp30YcaZ37kkUfYsmULt91220gWTaFQKBSjkFHfc6upqSEcDg/aHolECvboANLpND/+8Y+54IILEELQ29tLJBIBIB6PZ/9WKBQKRWUy6ntu06dPH/RurbW1lVgsNuhdXIZ4PM6ePXu4/vrruf766/N++9rXvsbkyZN54oknRqzMCoVCoXh3GfXitmTJEn79618TiUSyMyZXrFiB3+9nwYIFBfMEg0F+85vf5G1rb2/nyiuv5Morr2ThwoUjXu6DFTXxauRQx1ahOHCM+mHJc889F6/Xy6WXXsoLL7zAfffdx/Lly/niF7+Ytzxg6dKl/Pu//zvgOEmccMIJef8dffTRAMyaNSv7dylG0t/xnXjRuc0jpKQxYGCUMXs5YYk8qyIXhSItJKKMueRBUytrWj9AyOcpqx69CausegghaK6vQS9DfjQJQmplTOyHVCIOwv1yg4Ql+t4ruy+XrlPWsUrbfYsTXLdFx22mnKUWti1AG13XRyXFUEvcCjPqe261tbXceeedfP/73+fCCy+kpqaGL3zhC1x66aV56WzbLuoSMVyGWkw50HnAzSLPgS4EIxHDFpJISjC9wUtaSLZ2p7MLbwuRWbddHzDY1ZtmbJWJx6D0wt6+crVFbWp8kroCdke5OP6BsLUnzdhqD23RNGm79G1bSknalkxqrkXTDXZ3RgBZdF1WRgb2hlP88LFNnL9oEmNrfHjN4s9wyWSSXbt2sf75R0kkdDwt09B1o/ix0jQkGp6miZh14xCRDoSVKnkz0pBIK82+N1ZSM24addOOxDB0ZJFny8wRNHSN1TujHNkSIOQt5lDioGvOg8OsRi8LJvh5abfjAFPqnAMETI2dvSnGVHnwDnHOZd/DzD/3JBlTZXBYQwkHGCcDADawuzdNU9DEaw4dA0b2+qjEGKOdB19vHXbe4Vp3HRTeku8mB5PnXMZrb317kj2R/h5CPC1Yty9BJDV4UbehQa1f5/BmP/4cEajp8xEcJFi5zSVnu6lDY9Ax1x1480rbkraoxTNbo1nDZSkl4aTIGgcPbIRCSjpiNuFU/wNLMm2xbW830UQae0CzzUQcuJ/F0+o4Z/44vIaOniMOwrZJplLccccdPPHEE/3H2uMjOGkuWqAatHynD003MALV+CbOQfcGsvUQiTBWpBN9gPBqgJQCK9yBiPdPijJ8AVoOX4C3phHNyH++1DXwGRqNIQ+enC7Y2CqTWU2+QWKi9eU5rN7DxFoPP/3RD7jiqu8QSQme3Rplb9Qa5AajAV5Toylo5sWo8uo0FTnnAuiM2/Qm+3fmMzTmNnup8xuDhTdzfga0hZBHozFoomkH/vrYnzGK/fZuxxiKd8tb8p1QStwOeuPkd5tCh2ioRlWOT9z+iGELSXvMYn17qqCPpJSSvZE069tTzn1Hc26KRzT78w2TczA0aA7qBDx9PoVFbli5BD26I4p9yS0hWbktxpbudMH0lpB0xiziadln7+Q43e+L2gV7aFJKuiIJtu3rduovKeqHmKHaZ/DZBRM4YkwVXlMnmUzyxuuv87Ply+nu7i5c95pm/BMOxzA8oDu9LN+EwzFrWwrfhISNCLdjpeJ9/lQC0glSPW1FhyKDTRNomn08hmmiaTpo0BA0qPIWdtP36HB4s4+GgNnnnwj1fp05zb7sg8l/33AtV1z1nWyerd0pnt0awxL9wuvEKGxVpWvQHDAIeJ1zLqTjUdoWtYq63TQHDeY0+zD72lSWIu1E16AhYBDsi+G2B1LuNVLuNVhJMYqhxE1RkOE0rHJ938qNIaSkJyHY0p2iKz70sGzalmzsSKJrMLPR58q3MGhqjK0q/vmSgeia82mVcFLy4q64q+97xVK28/2whE3cGjq9ZQs27Gonlhz6+2QZ5oyt4pSmKL///QO88sorQ2fQDaqOeB+ehvH4xs1CM4b+fppIxUnu24Id7Uam4kOm1wwPk499P9UNjTQEPa6szOoDBidNDTGtzjPowWSguIHjz/nU5ghdCUF9oEAvqwB+U6Peb9CTtIkV+LzRQAwNjhnro97vvp34TY0xVeaIXh+ZPIdijEIcSuI26t+5jTYOxPh2uTFeaU24TusxNOa0+KCMqRAxF2KTi5CwYV+SLT3uhSfg0WmNuE9vGjq1IT+xpPs1i+v2RPjrzd92nT7T4/JPnIPb46V7A1hd7t8vSDuN7N1D86SxrkyYAbriNseN87v29PQaGoc3+9jYWbj3XIiEJcs6H7aE9phNvUvT5kyMchnosj8SVEqMQ51RP1tSoVAoFIpyUeKmUCgUiopDiZtCoVAoKg4lbgqFQqGoOJS4KRQKhaLiUOJWAVR5yzuNhlaeRRM4M+7KpdwsDQH3M+0AUuFO7GiX6/RSSnR/1dAJcxDJGFaks6w8DQ0NZaW3hSSZTJaVJ5wUZdo6De98lJPFa2hlx1AoRgq1FMAlAz3f3EzXz81Tbnq3MTTg+Al+wknB2n3JIdeI1fk06gPOae+M2/QkS6cPeTTmtvio8uqk+pxGBjpeDKxDd8JG03Um1XoGuVoUwqNDS8jDtHovnTGbp7dE6CmRR9gWm566n3WP3IGUkrqFZ1M1/3Q0vbg4imSU5I61BGccj0xGie1Yg0zGStZDxnvpWfU7el/8PbULP0H1/I+UjFHlN1k0o5ma90ymp7ubp59+uugi8QxGsJa2cIyOf/6TSRMnMn7CBHS9+MNKwNSY2+LnpdYEVR6NeWP8JR9upJT0JGwEGpNqPXTHbbqHOB81Pp2TpgZpCpr0JG2e2hylK1E6z5xmHydMDKBr0BO3S54/cBxtmoJmtozlXB/DyXOoxVCoRdyuGCg2w/GJy/33SMQQUiIlbOtOsbXbGmRD5TM0xoQMDL3f209IiSUke6M2qQEmGroG0+o8TKr1oGs5fndAb5EbZMIS7I3aeZ6GGT/CfVF70GJuDaj3G9T4dWcIoS+GLWHN3jivtCYGuZR0bV/PP+78PvGuNqyUs77P8PjQqxpoPO0yvC3T8o+TEKTbtpBs244mBX3mLAhhY3fuJLF3i+MmkpsnnUT07kMKC9nnV6p7fBihehpOvRTf2BmDjtWc8XXMHlfTt/bMsWexbJs3163j5VdewbbzD7BmevHUtaAZHvqsizF0HY/Xy6xZswZ9q1ADptZ7mFzrxdAzW5zYk6pNZjR4MXQtbxF30pJZ+63c82EJ2Be1SBY4H8eM9XPMOD+6RtY9xJawbl+Cf+xODHIpqffrnDI9RI3XwDT625UtJO1Re1AMcMQz14v0QFwfh1KMUhxKi7iVuJXAjefbwN9HwouunBi2kKRsydp9SXqSAg1oCuqO3VKRGBLoTQo6487Nv96vM6fFh0fXCi4UFlIiBLT13SCFlLTHbCIpWcSo17F+CicFnXEbieNO0RIyixrv2sKx4Xp6S5S9EQsrEWPtQ7exddWj2OnCQ3ia6aV67knULP40utePFe0iuWMt2BaigAWWhkSkU8R3rEXEupFSQLQLK9aT76E5IEbVnCXUvvcz6N4ATVU+Fs5oxu/RC/a4hG2TSCZ45pm/0draCmh4ahrQ/NWgFe5x6bpOS0szU6ZMxTRNanw6R7b48Rbw7QTn3YJpaMxr8fGbn17HZd+6pq/HXPp8RFOC9phzPlpCBqdMCxHw6AVdayzbaVdPb42yO2xhaPCe8X7mtPiLnkMhJdGcc+41NJpDBoam5fl8Zks1DB/FUnn2l1fjwRLDDaNR3IZrjAxK3IbFcH3iyh2WGKkYtpC0htMkLZnteZUi0/Or8etZ78KhENKJsaGj9FcHMkjp3FRTtixosFwIS0gef+Z5br/uKuxUHCtV+t2U4fEiPUEalnwO20oN6pUVrohNcvd64hv/jqY5gjRUDM0b4qPX/IqpkyZglBhGzNbDsljz1gbe2LwbXTeG9MM0dA3DMDn3gycwsSHo6nzoGjx5x4/5ytevcX0+pIRp9R6m1ntdWbFZtmRf1KIuYODVtWxvrRiZdpW0BH5P4QesQuXKZX97NVZiDLcidyiJm3rnVgS3jSV3eKGcPOWmLzdG5mbo1qJJ1zT8fY7tbkQnk2dHj1X0EzQD0TRnwkHAucO5ymPqGivu/CnJSOl3VxnsdAoz1ICdjEKJ92N56Aap1vVIYbv6cpqdTjF+2uFMHtvsStjA+cZga3cMXAgbOA8nYxuCjK9zb7MlpHNYyzkfNT6dafVe1zFMQ2NctXs/SF3TQHPs1UbT9VFpMRSDUbMlFfkciOuk3FcFbnpfg0KUV5HyPjvadyMq48Ojw6XcG1fZb2G0oiOwioMEdf4Ko8RNoVAoFBWHEjeFQqFQVBxK3BQKhUJRcShxUygUCkXFocRNoVAoFBVH0aUAP/7xj4e1wy984QuMGTNm2AVSKAYynNlg5c4yHNZ06iKLsN9NhjVxTrk5HdQoN67CFBW3O+64o+ydaZrG6aefXhHiNpxF3G7Xp2TsiQwdV4tahZBYEhJpQcCj43HhTmsLidfQSNnCVQykJGU5dlymhqu1bkJKxlYZbO4abPdVLIbAWYdlaO6OVSpts/jUj7P1FzeDtLN2WMXQNA073IEd6cKoqgfDM3S5hI3ZPAUr3O5q3ZCm67Tv3k44GqXW63O91m3WlAl09W7oW8w+RAwk+zp7aG9ro6mpAa/X5ypG0nL2nbEzK4mURJI2vQmbap/hql0JIRE4+y93QfZIeaxmXHaEkOi6u7Y7nBi5f49UPYYbQzGYkou477nnHo466ihXO7Jt23Xag4Gsl2KJRlbIJ24oyxwJdEYtImmJqUNzyMRjFL8gU7ZgV4/FA+t66EkIFk0KsHRmFYZWwhpLwsaOJLvDdp8psYG3RIxM10igsTtsUe3VqA+aRW9e2XrELEBjUo3J3qhFyi7ecxDSsW/a1+d1WOPTaQgYRW/CQgjStuC+59bxTGc9DR++nMjf7yfd1YqwUgVjaIC0kqS6d5B89BYChy2g+uhT0c1+/8b89BJhW8Q3vURy59r+7SUETvf48DZNpv5DX+XJtyNMb4ZjJjc47h5D3IxmTBrHmMY6XnjtTTq6w1h2EaEWFla0i643nua/nvw1C5d8gI9/6vN4vF70IRamp2zJzt40LUETr1n8nAspSfedj7e70sxq9HLipCCGRlFrLAl0xW3CKYGhQVPIwGfqRWMM5/rIMDBPsWswU4/2qEVaOEbfjaHSbbfcGAeiHvsjhiKfouJWXV2N1+vFMNy5PGiaRnV1tev0BwO5Apf5NxR/EivVkIWUxFOCjriddZCwBLSGLao8Gg0DLkhLOBftH9/sZc2+fsupF3bEWbsvySfm1DCpzpv3KRpbSDrjNm+1p7ImxWkBu8I21V6NpqCRf9FnLpAB9QinJLF0mqaggc+Tf/MSUpJICzpidtZE12NoTKg2CSdt2uP5foaZm2Jb1Caa7r+Z9yYF0ZSgOWTiH3ATTqUt1u/q5I6/vkp31Km7Wd1I7Qf/lcTWVwn/4yF0YWPbFuDkFcImHe5AJKPZ/cQ3vkhyxzrqFn4CT/PU/F6csLB69hJe+0ze1wFybxq6riP6eoqG6UHqJnUnnUfoiPdlj+Hmtgi7u+MsmNZIc41/yF5cVTDA0oXHsq11Hy++vgEhBFZfDA2JsNJE168itWdjNs+qvz3Jmlf/wbnnXcjMI47E6yvdi7ME7I5YhDw6TUEjz34tcz4cL9D+87GhI8X2njTvmxJkYrUnz1ZLSEnSErRH+8+5LWFvxCboETQGTbSc3n6xG2+p68PNNTVoHzgPWJFUf7xoWhLvSdMYMAh489vucGIciHrsrxiKfJS3pEuG6yEpcTSkLWqRKPE5Gl2DxoCB36MjJKzZm+DhDeGSeeY0+zhzTg1eQ0MIybq2FB3x4q4ZugbNQZ2gR++fSTREPYJ9llxan5NFe9Qq+VkdW0jaYjbRtDM8FksJ2nMEvViM5qCJEIJE2uLXT77Ga1v2Fk0vklGiL/+Z+Pa1SDsNVoJUT1tJJxPv+MOpPeEsdI8PaVtE1/2NdPv2knXXdR0hJZrhITT9OGpPPg8jUFM0/bjaAAumN+E13VlNJVNp/rF2I9t278Oy0tidOwm/+RwynSia5/B5x/CZCy4hWFVd0Kj5T7+8gY/961X9dehrV6G+z+LE04K2WOnzMbHG5P1TQ/j6BK4jZhFLF8+g4Xz7LeTTs/3jcofUyhrmg0EPWIXwmxpNfebcwynTSOU5EDGKMRq9Jcsl14tSGSfvJ8rxfAPnibcjZhNLCdcv+jd1JtnYkWJnr+Uqvd/QOHNOzZA3rFxagjrVPvc9bA1HgGLpYi7zg9nUkWR3pPAnTwoiJU++tJZXNu8hmXZna9X1zJ1E1z6DtNx96FMzvQQPX0K6fRvYaVd5gkcsoWruyfgnHuEqvalrnHnc5LLaybOPP8yavz9DuqvVVXqv18f1t/3Glbhl8BkamkbJh6VcDA0+MquKhCVdt6v6gE6Nzyir7uVeU5Gk0+N0Ww8NmFTnce2XOtxylZv+QMUYyKEkbq7ehK9evZo//OEPBX/74x//yEsvvVRm8Q4domUIGzg9PLfCBpC0JXsi7s2LgZIfGy2EpPx6AO6FrS/GqvW7XAsbgO6vci1sANJKOcN9LoUNnOFQ/4TDXae3yjkRfQR0G6t7j+v0qVSy7IkESVu6FgRwhh0jKVFWuyr2CnF/Ykv3Ag0HxipVMTpxJW4//elP2bVrV8Hfdu3axS233LJfC6VQKBQKxTvBlbht3LiRefPmFfxt3rx5bNhw8Hd1FQqFQlE5uBK3ZLL40I+Ukng8vt8KpFAoFArFO8WVuE2ZMoWVK1cW/G3lypVMnjx5vxZKoVAoFIp3gitxO+uss7jnnnu4/fbbCYfDAITDYX71q19xzz33cNZZZ41oIRUKhUKhKAdX4vb5z3+epUuXcuONN7JgwQKOPfZYFixYwE033cSyZcs477zzRrqco4ZyZ6nVBwzMMiwIZzX6OG6837XdX1PQ4LBGL37T/RRhr1Hep+nbohaPbAj3OZIMjS0kz2zs5NUd3a7jdPZGh040AG/LdELzPujaXE8PVOMdNwvNG3QZQcPbMoNy5tyJVJwXX3yRnp4eV+mllPR6GggettB1PVpaWmgKmnjKalde5jT7XLcrv1nut8nJMxRwg2VLuuIWKZfTLKWUtEfTdCds1+3K0Ibx4fcDsDpKrcAaecpa57Zq1SqeffZZuru7aWho4H3vex8LFy4cyfKNGt7JQk0JdMdtepMlFhkbGs0hA13TsKWkI2pz35oe2mKFp8YbGpwyLcTiKSEM3VlgvaUrxfae4j6PXgPGhAxMXXO1iNsSkqc3R3h2e6zPDxJOmhri/VNDBa2/AN5uj3Hdk1vZG04hJdQGPHzkqHE0Vxd21bBtwfNrN/P8mi3YQiBln41W0VL1FRsAibTSWL37aH/0Z8UXZWsaganH4ptyNJphIIXAat9Gau/moq7MnsZJNH/4Msy6MWiGty9acaQUWG3bSOzbioZE13WOmjePo485pqhrT08sxYub24gk0ljpNHa0m84X7sMqst5N13XOOussPvnJT+LxeEDT6EnYdCX629XAdW51fp1TpoWc9WdAJC14anO06GJ/DZhcazKj3us4m+Qcw2J4dGgKmXgMzdUibiklPQmbnoSzvEQDqn0adQGz6Hq0aEqwdl+SaNppI4butGV/iSfHaq9OfZ8rT3819u8C60K3z9EQoxiH0jo3tYh7CIr5xA3cVihPnv2WkNhS0ha1s9ZY4FzY9QGdKl++NZZjrgwvbI/y1JZo3tq0KXUePnlkLaEBJsq2kCQtyZq2JOEcIXUcJHRq+hwkBtlvOYXNq8PW7hT3rekhmhLkuGbh0aHap3PukXVMqu23s0qkBXe8uItH1nWQtvsXe2uAoWvMn1zH4pmNeIz+m9GOfV388bnXiSVTpHIqqPWpW6GGWVj4HJGLvfEkXc/f67iW9GHUtFA17xQMXwiZ4+KvIRHpJIltryNi/faez5EAACAASURBVL0szfBQv/hcQkctRTM9DHzuLxTfjvWQ2LEWrBRC9IuGxzTx+f2cdNJJeWbithCs3dnNxn1hhMhdGC+RlkViy8v0/PMvefWYOXMm3/jGN2hszDdRllJiS9jX54CTETdDg/nj/Bw5xo8+wBrLlrC+PcnqXfG8dlXt1ZnX4sNvDvAtLWLTBo541vjz226p6yNpCdqiFrYYfBwdv0qTQE6XVEjJ5s4UO3oHr+XUgKo+W7lcUfQazjbT0FzZbxUr83Cu8+H4QbrJs7/st5S4FeH5559n9erVdHV1cdFFFzFu3Dhef/11Jk6cSENDwzsr8ShkqEbk1nMyN73EcVnoiousPVCuL99A0rYklhbcv7aH1rDFR2dXM6fFX3QISPYZJ++JpNnYkcaX7REObZyMphFPCx5eH+aNfYk8URuIR4djx/o5bVY1b+yO8JOnthFLFXck8RgaPlPn9HnjGFPt4Yl/vMWarXuKmwf3oQO5KXSNoguLNWFhJyK0P3YryV1vUXX4iZjN09GMEv7gwkb07iO+8y18Ew6n6dRLMP0hZJGvCeTGl7ZFas9GUl17Slp/GYbBjOnTWHDCQnqSghffbidti6ILvjVhYacSdP/99+jdO/jSeefx/pNOwuv1ljQQjqUEv/7vH/KVK6/h5GkhfKbmGDoXwBaOkfXftkbZHbY4rMHL+Gozz4dyEDntxGc6lmmlXPhzrwchJZ0xi2hKIrP9tQJ1BwJ9lm/hlGDN3iRpW1Ls6DqiCi1BgyqvTp1fp3qA2JYqV6F/u00/nDwjGcMNStwGEI/Hufjii1m1alX2QD7wwAPMnTuXK664grFjx3LVVYMtfw5myrG6KdcjL/dzJ25tgdJ2piFT9IaViy0kHTGLSEq4jtEVs/jZ6k7SQrpyMTF12NHWS3tP1LUbiS5t0p27ADmksEFpMSuGHe8lvuklxw/TxRsXHfBNO5bApCPRTK+rGCKdJLbxRTRpZ82VS2EaOp6W6fiap5T0Q8ylypR897SZBL0mpmfoT/dI6fTcbrrhWldtBJwed2s4jZSFvwZQIAi1foPagOG6XVm2YHe4PBedrrhNd9K9Q4pHh4WTApia5qoew3HVH64X5oGI4Xb/h5K4lfzkTYYbb7yRtWvX8rOf/YwTTzyR4447Lvvb4sWLufvuu99BUUcn5TwNZb4e4DaPXmZ6cHo+5eQxdI2ULcvy1GuP20jp3p7LEtAVSZRls2WlU85neVwIAjjC5uYdXH4mG930IGx3E2AE4G+e4lrYwJk4ouG+HpYt8FfVuxY2gObaIF6vF9Pj/sscQa/uWticPH3t0W0WTSPgKf6Zm0LYsuirzaLE0uVZf2U+veNKoCn/mh1OngMVQwjpdi7SQUWuiA0HV+L22GOPcfnll7N06VJsO/9F9Pjx42ltdWf4qjgIGI0XSdnqpjgkUW1EkYOrycTd3d3MmDGj6O+pVOGPRyoUCoVC8W7gStzGjRvHunXrCv62du1a5VCiUCgUilGFK3E77bTT+OUvf8mqVauy2zRNY/369dx111189KMfHbECKhQKhUJRLq7euV188cW88sorfOlLX6KxsRGAiy66iPb2do477rhDyqFEoVAoFKMfV+Lm8/m48847+fOf/8yzzz5Le3s79fX1LFmyhDPOOKOoA4NCoVAoFO8GrsQNnIWoZ5xxBmecccZIlmfUUO46t+LLUvdfjHLRyoyha876uLJi6FpZkxk1yvO1hPKnkaPpiBKLqgshbAu9jLPoTMF2/9VwAGkLdNwfKyFkUZuzojFkeeecMsqTm36kY2haeVNkhZToZXhtZhjpa/BAxKjEZQD7A1fNIRKJ0NnZmbftoYce4kc/+lHee7hKw01DS9uSvVGLNXsTWLZEDCEOUsp830mXMfZFLV7f4z6GJSTRtONCIVzEsIWkMWAwo2GAp2ARdJyFs19cMIEZTYGSHn8ZTF2jsa6auTOnYBhDr5XSNQ3D0Dly+iQaa6swjaFjaJqGWdNEYOp8NN1EH+KOp+s6mm7y/9l783C5ijr//11n6b375u5LFrJDFiJrCIQQNgEFZNE4KsPiTzMsknEXQQYYUBg1bkwIIo+PqAioyOgwQL46yMhuQIlsIZDc7CS5+9L7Wer3x+nu28s53XVubt907v28nidwu0/VeVfVqa7P2epdRmwADIJmwYYGMxmF1rsX3DQqt5XEoCoKjm/3oL3OW2CZ5oRHtjxG42kDmXBSPgO3jvPuQQ1dMT036b8cphUJrUGAi0xGs6bEa5nJ9yJ9l3MOVQLqfVLOD1REY3a9ijovg0hsz/bXtM5Lfl9OZXL7GyxOX4saRCFCDiVr1qxBOBzGnXfeCQD4+c9/jrvuuis3cKxbtw5nnnlm1Qq5detW3HHHHdi0aRPC4TBWrVqF66+/vuzt0Ndffx0PP/wwXn31VXR1daGtrQ0XXnghVq9eDa/X3sS3mHJuAYbJYZgcz++KY1u/5QEY9kg4Y1YADX7FdgAr5xPnqME5XtiVwNa+dE7j9JkBNAbsNQyTYyBpYHN3Oje5Opzx37OzJDIzdl3v9KSxL2pNek5oJjZ3JzGcMm0nHauS5W/50YV1mOKTYXKOp97uwX0vvZ+xlSpML2csnY49ogEzm0JgjCEaT+Klf2xGz8CQrVOJIktorq/DyR84CkG/D5xzbN29D6++tRWcmyVXmBIDTDAowQZI/jAYYzCSUcQ3PwdtqAvcZkI3kxWokWYEjloB2V/odFBs+wUAjJswdQ1Drz2F+LZXAXAw1YvAtIVg/ggglfZHj6qgo7UZl37oTNTXRcA5x5vvD+HpzV0wMv6hxW2lyAwfPaYNp85pyDsByHfrLMTk1klMV0zHY/da3pJzGzxYPsMPmbGSq7/snYb+uI7hNM/fkJEo1WCwjASagyP9rlzftdummxw9MR0pnduGuGINzjkOxAy8052C6eA1KjErEM6oU4Wsrpy2Vfq+eFutalTicHIoEZnEXc6hRL7ttttuq7SD73znO/jkJz+JefPmAQC++tWv4rzzzsMjjzyCHTt24LnnnsNHP/pR8VK7YHBwEB//+MfR2NiIW265BUceeSTWrVuHVCqFk08+2THfAw88gHfffRef+tSncPnll6OjowM//vGPsXnzZnz4wx8W0maMFXSe3I/U4NgxkMZTW2MFrv1pg2NLbxrDaRNTI9Yd36wbid3+ymqYHDsH0njqvVKNd3vTGE4Z6AgrYBkN0+TQTODt7hQ6+7WCoJQ2gOGUCY9sXT1lNQyToydu4O/7khjMM1pWZYa2kGVg259xj+cAFAZ4FYZVi+pw7txw7mqNMYb5LUGce1Qjdvcn0R1L5wZtWWLomBLAaUe1oTnsy2l7VAWzp7UhEgxgX08/GKxBWs5c5Zz8gaNw7FGz4cnYTjHG0FgXxtwZ7RiOxRFLJEeuSBmD7AlAmdIOyePPaUiKB562uZADddD69kJi1qAgyTIgqwguWAH/nBMhqaUnO8U3xbiuIX1gK3qf+RnS3TtGNpgGtIH9MJIxKOGGzAkfgyLL8HhUXHTO6Th35cnw+3y5erRGfFgybQoG4hoGE1rOicMjMyxoC+Hzp8/Cka2hor7CikrFckGqO2agL2HA5MCWvz2PI084FX0JA+90pxHxSoh4R6yyTM6R1EwciOpIFt9VZcz6VxTkGCzj7caAUhAonfquU3+XGEPIK8MjMyR0s6B97TQYYwh5JEyNqEjqJhJ5QVFi1tXgsR0+NAWUknKwot9dJVsrN/WoZY1K/G17r+s8h4oFrc6BK0sw6HyhIvTMra+vDy0tLQCAvXv3Yvfu3Vi3bh0URcEll1yCL3/5y4LFdc8jjzyCVCqFdevWIRQKYfny5YhGo1i3bh1Wr16NUChkm2/16tUFZs4nnXQSvF4vbrnlFuzduxdTp04VLkN+wEnqJp7ZHsf+qLO107a+NPYMalg+3Y/ZDZ6CfYhopHSOZ7bHcldSthr9GvYMDeGU6X7MafBgX8Yo2elulMGB/TETAYWjKWBdbb3ZlUJf0v7ZFGMMrSEVDX4F7/WmcCCq49h2Hz48P+x4C7IhoOL2D8/BK7uGcOf/7oBuAktnN6Gtzu+ocURHC9qb6/HqW1uxbc9+zJrahuMXzoVHte+afq8HK084Gu939eLZ196GbnAo4SZIXvs12hhj8LbMgtowFcn3/orEvnfhbZkN39yTbINalmyrcEMD11IYePlRpPa955jeGO5BbMuL8HfMhzylHYuPnIMPn3kq/D57jYBHxkXHdGBnbxxPvrEfHBxXnjQNR3dU+kFbAY5zjljaRE8mqNmRMjj+vD2OjnAaZ84KwiMz9MR1JLQKN2vyAlwgY2Jc7tmfqDlwloBHwjRVRV9cRzTNEVAYGoPOGqrMsLjVh/6Egbe6UjA4x8JmL5qD5YevbDAQLZfbetSqBmEhFNyCwWBuBe5XXnkFkUgERx55JADrRZNUKlW1Aj777LM49dRTC4LY+eefj7Vr12Ljxo2Ot0PtVilYsGABAKC3t9dVcMuycU8cb3enhR5zpwyOv+yMY1aDx5UP36t743izS1zjmR1x7BrUhAyCASCuc2zan8Bgyv7WUDGqzLCoxYdrT/DDI7jq6okzIrjh7Dn4R1dKqO4eVcUpxyzASUfPF37ztqOlEYsWLsLb7w8K/dglxYPAghXwzz+5/CoBRUQ3v4Dom0+Xdf3PYRpI7NmM/7jlZng9Yj6VRzQG8LVz5qDBJ0MWeKZowbBjQKyPAMD7wzqe3xnH3AZVfGBkDDPqKj+zLMwi/rKQxBiagioa/KawRr1fxikz/OCcQxbMczD+jm7T15rGZEfoV7548WI89NBDmDFjBh566CGccsopuW179uxBc3Nz1QrY2dlZsiBqR0cH/H4/Ojs7XT3re+211yBJEmbPnj2qsgg81j9oRqNhcndvTI1GQ+QliHxkibkK6gBcTymxu5VTMY+LwGbBxQJbHqriTkOWSp+LVWI0bzi6ZTwGUrcaEmNkITkBOFhTZBGETn8+//nP4/XXX8cFF1yAnTt34tprr81te/rpp7FkyZKqFXBoaAjhcOmtmkgkgqGhIeH9dHd348c//jEuuugix1uZBEEQxMRA+Mrt6aefxrZt2zBr1ixEIpHctlWrVmHmzJnVKh8A57eFRM/60uk0vvCFLyAQCODGG28c6+IRBEEQNYbw/ZNQKIQPfOADJd+fddZZY1qgYiKRSO55Xz7RaNT2iq4YzjluuOEGbN26FQ899BDq6uqqUUyCIAiihhC6LfnQQw9h7dq1ttu+//3v45FHHhnTQuUze/ZsdHZ2Fny3b98+xONxoWdnd955J55++mncc889ZZftIQiCICYOQsHt4YcfRltbm+22trY2PPzww2NaqHxOO+00PP/884hGo7nvnnzySfh8PixdurRs3vvuuw8PPvggvvvd7+KEE06oWhkJgiCI2kIouO3Zs8fxqmf27NnYvXv3mBYqn0984hPweDxYs2YNXnzxRfz617/GunXrcNVVVxW8GPLBD34QN910U+7z448/ju9///u4+OKL0draik2bNuX+FVuJiZDWTbQGFZzY4YNfEXj1nAHHtPly/o6iGs0BBUs7fAgIaDAAx7b5cNrMAKZHxO4wB1WGD84J4SNHhlDnFXudus4rYcegjoGELlSXaNpEVONoDytQBSRMzrH5/QH8/u+7sOX9QSG7MFUCVsxtwBXLZqAhWPm1e4kB5xzViO9efBTOXdAkZOsU9qn4yEcuxCe//E00tFWeOsKYhNPPu9DVG4CqZLnOuGF6RME/L6nDsW1eoQkgEa+EE6f60RFRhd565ZxjIKHjuZ1xbOtLCR2PbD43ZNO7yUca9K6oKEIjoiRJGBwctN02MDBQ1Qavq6vDAw88gNtvvx3XXHMNIpEIrrzySqxZs6YgnWEYMM2RV7ZfeOEFAMBjjz2Gxx57rCDtXXfdhUsvvVRI3+Qc/ZnJpopkDfQnT/Nj+4CGHQOa7WvJLUEZZ84Kwq9IBRMwnQY9k3P0J3REU5ZGxCth2TQ/dgxo2F5G44xZQQRUCYrEMKfBg6kRBW92pRFNl766nrUpmhZRLacOAJcujOD1/Um8tj9pOxHYKzO0BBUokjXdoC/JMZTW0RpU4LUJvobJ0dmfxq4hHSa33EzaIyqGkyb6S+wwLPqiKbzc2Y1k2oBucrz1/gA6e4Zx0pxmNNi4DzAAU3wywj4JEgMiPgVXnjwDf9/Zj+e39dkaP8+o9+Ezp0xHvV+FR5FwweIWLJ9dj5++tAc7+xK2bbVo6hTMb4tYr+jzBnzyS9/EP577f3jpqd/B0LWSPFNnzMQV134R9Y2NwsGt3iehzidbZ5gMKGexBQAhj4TFLR74FAmyxHBMux/zm7x4ZnsMXbHS9pWYdfKzpM2X819sDysYThoYSJq2/SqlW16pummVZtegjv3DBha1ejHFZz9Vo/j3LzLZuNh1o9ILYqQhrkFYCHlLXn755QgEArjvvvtKtq1evRrxeBy/+tWvqlLAQ0lCM9Ed020HfsO0/Pze6ErlrKs8MsPJ0yxXEsXGzy9Lfsd0q6FKwLJpAcxt8ECRSzVMDuwd0rCtf8TWqd4nYVGLF4rNfCrdsFxX/rw9hgOZAZIBaArICHqkzBVOkS0QLL/KxsCIrVNfwsCbXSloBi/xZOScw+BAd8ZXELDMd9/Y3YftPTHbgCRLDLOaQjh6ej3UzORmn8LQFFRyXpWFbWUikTbw+Ov7sbvfClheRcJHj2nFspn1UOXCOXGcc2gGx1939OPRTQeQyhhiNoW9WDanGT5FhlTUVqauIRGLYsOD67Fnq7Uyvcfrw0f+6Z+x9NQzoKhik6S9MkNryL4edgFOYsCcehVTMycmxXl0g2NrXxov74njdxlvydbMyY9fkUr6iWlax6gnpiOZOR4m5+iLGxhK20/ulxjQGpQxv8lb0LfHykfxYPZFGuLUirfkWM1zK+ctKRTcnnnmGVx77bVYsWIF/umf/gltbW3Yv38/HnnkEbzwwgu45557qmqcfCg4MKwh6WDwmo9hcuyP6kgZHMtnBGwDSD7Z5jb5yOAionEgqiNhcJwqoJE1dd7Sm0ZrUK5onwRYtl/b+9L4+/4k6n2y7SCaD4M1cbzeJ2HXgIbuMjZQWTjniGsmXt87jL929sA0rdULnMjW8+Q5zVjUEYJfrbySgGaY2NYVxZ7+OD51Qgd8ilR2NQHdMJHUTTy48X34fR501Acqul/o6RR2bN6EPW+/io9d/hn4fX7IGQ/MckgMaPRnTxoqDUpWuzT4FSxq9lSc6G1k2vJfvnwzvvFvt9qeYBVjco5E2sSuQQ0HYoajOXEWBkCWgIVNXjQFrau4SoOrnS+im6uUnLbLPLWiUUy1NESD3GQKbkK3Jc844wz827/9G9auXYvnn38egNWwgUAAt9xyy4QLbACQ0MVutcoSw6wpKtrCasmZvh3ZTnhgWENaYFmSrMYR9SraQ2Ia2YFwcYsXHBByClEkhqagjOaAIuQAwWHZD77RlXJ0eS+GMYahRBovbe0uG9Sy6JkBuy2iIqBKQj9gVZawuCOCc49qFHL9UGQJIVnC0jlNGEgYQlYviseLo445EWeettyVPVVLUIFfEXVVYQiqDEtavUL1yB7zmVNUzG3wCPWTrNvHvqghfMx1E7mLSre+iKLpgdF7L05mDaIQ4Xlul112GS666CL87W9/Q39/P+rr63H88ceT2wesgcW9ZZa7HMoo77G7scAyubV+lmDMtfKYYoEtS1rnUCQmFNyyBFTZ1e0XRWau7MgAWKsYuMgkS+7KBMDhNmQ5DYbRjFsigS2LyeH6mKuSO9sztz6K+flIozLcpf3eZKFicEun07jjjjtwySWX4LjjjsPKlSvHo1wEQRDEYch4+EaKUPGeisfjweOPPw5dd15+hSAIgiBqCaEHBosXL8Y777xT7bIQBEEQxJggFNy+/vWv4+c//zk2bNgATSud40MQBEEQtYTQCyWf/exnkUwm8cUvfhGMMUQikYKHpIwxvPjii1UrJEEQBEG4QSi4nXrqqTQjnhgzxmOhTYIgJjdCwc1pRYAJjYv3a3WTgzHxNeY451Bld6/DGyZca2T/L3pi4pVdBhLOocgMaRf1CPsUGCaHxFBx0jdg1bk7mkJD0CO8WnWuXQWPIeccfoVhOCV+zNO6AZPLkMDBWOW7+wxA2uDwKeJtnNJNgFnTLURe7x8xCODCU0DUzDFnEC9XTDNR5xObd5hfrmr23cmsQdcd9rhzbJ1scI6yE40y2zWD4/0ha1K2WWHEznbelqCCep+UmQ9bPg8DEPKWWh5V0sif5FkuT3Z70CPhpGl+RHK2W86YnCOp85ydligNQQ/+v+VHoKPOV9HEV2YMIZ8HO4dMbO1NWTZdAnOAdBPYM6QhafCK8wl1g6MrpuOt7hS640bl+YecQ9cN/PXN93DP75/D7u4BaLq9b+ZIPSy/0HkNKhr9rLLZMbfKvXdYx2/fGsL+mA6twkQ0k3OkDI7hlIm+mA5T8Jj7FAknT/djiq/yMZeYZfJcn/GYFO1XgPiE49H2XdIgihGexA0A27ZtQ2dnJ5LJZMm2Cy+8cMwKVRNkO0w2wBV3oGzHy3yvm8C+YR0hlaEhqGTsqcp78NX5FQS9HD0Zz8XirsyQ56dY5Odntz+774p/XJU86gIqwwlTfdg3rOHdXq3EkinrX9kTNxDTSg2aRZgS8OCTS6fj7X1D+N/N3TBME3rerrLWXzOa69AQ9oMxhr3DOrrjBhY2e1HnkwXsxID3h3UEVQnNQbnkeJjccj95YVcc2/rSue/jmomWoAyfUnplohsGuvsG8MKmd5BIWXl+/v9ewcIj2nD+soXwKHKBYwnL1OWoRhXt4RHfyaCHoztmIGFzzE1unTB0xfTcxOon3o1i1hQVK44otV6zjivQG9cR06xjE9U44oMaGv0y/DZWX8XH3KcwHNvuQ3fMwOaeFAyz8Jhn6zGvQUVHRC3pcyL9Kv/vcn03/3u3fXcyaxClCAW3WCyG6667Dhs3bgRg3+ATLrhlyQ9ydt8XYTewlDvDUiSGtrCKWNpEb3zEQFliQHNQgd9mzRi7H0ulszins0G79IwxdEQ8aAqqeKc7hd6Mb6TJuVVOAR/JSjDGsKijDrObQnh6cxfe7YpCN63baQ0hH6Y115V4QqYNjk37k2gMyFjY7IMiVf5xxzQTiUETTX4Zgczx0E2OXQNpvLArjlTRFZHBLTsqv2KiJWPSbHIOTTfw4j82Y8+B3hKNt3fuR+e+Hpx34gIcNaMVqmJ5czb7ZRzV7IWn6ApVkRjawwrimokDMQM807YmB7rjOuJaaeNuH9Cwd3iowJg76w1pdzysfRnwpU00BRVIGOmyTse8JaSgISDj3Z5UzmvS8sOUcFSzr6Qe+fsS6Vf526rVd+00RPIcSo1KedxoECMIBbd169Zh7969eOCBB3DllVfiRz/6EYLBIH7zm99gy5Yt+N73vlftch56rAdeI3+XITuw+NMmWkKKUEcMeiT4VRV9cR0SA6b4lYrPTfJ/LKKdXdSUFbBWOVjS5kNvXMeLuxPoTxglweBg8XtkXPCBduzqjeHJt3vQ3hBC2F+61E0+vXEDL+6K4Zh2H+q8stDx6MoM9IbJ8fr+JPZFy5sSJHSOXYMaVD2OaDSK197phG44335MpnX8/oU3MP3d3fjixSdjdr0HDX77JWKyBFQJR9QxbB/QMJQy0Zco7/GYNjj+sjOOd3pSOGt2EMMpM+fq71gunWPvoIaWoAKfWtk2S5EYFrb4MDVpoLM/jRl1HjQGytcDcNev8tNUq+9Odg1CMLg988wzuPrqq3OrWU+bNg2LFi3Cqaeeiq985Sv49a9/jcWLF1e1oDWDi85VaeApRmIMjQGxYHiwuNGo98vYXyEYHCzTGwKYP7VROL3Bgb6EiTqf+J31pM7x585o5YQZOIBt+3qxa9cu4Ty7uwdwXJtP2N9RYgwSgN5E+ed2+RyIGTgQ1YVfGuEAEroJn1o5SGWp88nWYrsu+slovRfdQBqEKEIvlOzbtw+zZs2CLMtQVRWJxMgCjxdeeCGefvrpqhWQIAiCINwidNpbV1eHWCwGAGhpacG2bdtyV3GxWMz2BROCIAhi4lErxsiVEApuCxcuxLZt27By5UqsXLkS69atQzgchqIo+MEPfoAlS5ZUu5wEQRAEIYxQcLvssstyzx2uvfZavPzyy/jSl74EAOjo6MA3vvGN6pWQIAiCIFwiFNxWrFiR+7u5uRn/8z//g82bN4Mxhrlz58Lj8VStgARBEAThllE5lEiShEWLFmHhwoWTKrApkuU2IQoHkNRNV29FaQZ3Zcs1Hpicw+um4rDaSnHRuxiAeY2eyu4deYQ8EnyKu3K1ZCbYiyLLMrze8lMT8mEADkR1Vyutc7hrKwDwuqy3i8W5CZdwzpFy+Tsnqo/jldvWrVsxY8YMV8FrNHkOBxiAOp+ESMZ2aCBhYCgl4M7BOQ5EDaiSgeaQAo/sPIKZnGMgoVv+hhm9Op9c8VXsg/G7AypPCRhKGXjzQAodYQWaadVHqxB86zNlB4CBpIGBZPm2avDLOHNWACGPjANRHf/5117sGnReWklmwBmzgjjtiCAkBuwc1NDZr5WdI+aRGVqCMo6oC2M4ZeDP22PoE3j9vr29HW2trXh/3/vYtWt32QFsSjiI045biCfeiyLilXDm7CCaAs43RzjnGEgY4GCYFlExlDTRlyxfpnqfhDNmBVHvl2GYltNJusLcw4h3pO9Wyxcxv10mk4ZmcHTHdKQNDplZv3NfhTOV8agHAci33XbbbXYbli9fjjPOOAOtra1COzIMAytWrMDZZ5+NlpaWsSzjIWEgM8j4FMtBxKda7haMMXhlhpBXQkrnsB1X8gdAZjlJRFMcJjfhtbF1SmgmDgzrSOZNJUvpHNG0Ca/CoNicTu4gggAAIABJREFUdpez4HHq/PkBzc7qJx/d5Hi3J413e9PQTCuNLAFhrwQJzHYOn09h6AirCOS1lU9hCHtk27ZSJOCkqX6cekQAAVWCLDGEvRJWzgwi4pUtK6iiPEfUqVh9fAPmNXqhygwSY4h4JUwNKxhMmSWTzBmARr+MpoAMRbLSexWG+U1eBFSGfVHd0W2FWY0DJkkIh8JobW1FNBpFKpUqSCdLEo5fMAcnLTkSAa8XYAwpg+O93jTimon2kFpiF5bUTbwfNRDXR46BV2GIeGWkDF5gRwZYAf3EqT6cNjOIYKZ9JQaEvBJkNjKn8uXnn8WyU1cCsAJ6W1ixjodU+ZgD1e9Xh0pDZOK0G43siUlP3IDBOQAGDiCWNqEZJnxKqe3ZeNWjHH/bXuqw45YFreGD3sdYEQw631VxPK3knGPLli3QdbHJu6Y5sS7LLdshe28+SWJgHGgLK4imDPQnzJGrBlsXE6vjD6U4YmkNTRlbLcPk6I3rSGilHoMcVoDZP6wj6GFoCIw4lrj1kHT6MRRb+2S398R1vN1leQwWjrHWgFrnkxD2SuiK6UjolsN/vr1VsYYqA+1hBbG0iZ645cIxLaLg9JlBqHJh8GaMwaMwnD0niFNmBLB+Yx9eP5CET2G48Mgwjm4pNVyWJQa/xHB8uw8Hojq29KWhm4BfYWgJKjmvynwNhQFHNvkwq96Lv+yIYc+QlqnhiK9igb+iJMHr9WLRwoXo6+vF1m2dMAwD7U31WH7sQnhVGZJUOEna4MCWnjQ6+zWsnBnEjDoVJufoiRmI2hzzbLnaQgriaRM9GVutjrDVVl4ZJW3FAIS8MoIeGT2ZSMkANPglBL2lnpoinoVu+1W5PLWikf08FhpJ3UR3VM878crbF4CYxhEf0tAUUBBQCwNSNetBFFL2hZJbbrlFeEcTraGnRVQwVtqxsuQPLH5Vwr6hzHOWCm1gcKArqkOVAK3IoNZGBRxANM2R0DS0hy0D5Up+d4C4R15+et0w8WZXCv1Js6x3JGMMMgNaQwrSuglVlkoCSDESYwh5JIQ8Eo5s9KA9rEIp8xxPlSXUycCXTmnE5u4UvDKDR2ZlDZNlybpSaQzI2D6gQc5cqZVL75cYzp4Twuv7E/j7vsrzNSVZRlNTE+rrGxBmaTTVh6HIzs4fBgcMnePpzijm1Hswvc4DjvLHXWIMQY+EoEfCvEYPplZoK4kxgFlepCEPw7Q6q++Wq7udZ+FY9quJqGGaJnrjBuI2JybFcA70xHQEPVLOvqya9ZhIY+9Y4Rjcfvazn41qh7NmzRp1YWoJN/ZJSTPT2QU7GAcya6CJd0iPzEpuLZUj+2Nxk34wZVYMbPlIjFnPF1xo1PsktEdU21utdngVCU0BueQ2XbkymZzDI0vC65MpEsPOAevKTSgPkxDwymgJ+4UtsHQTCHtliK6jwLK3W120lcSs4C+67l3+AFnNfjVRNDSTCwW2LByWZ+x41IMoxTG4nXzyyeNZjsmHu9g2+jwucb370ZTH5W9xNBL5txerqeEq/Ti0FTH5ELhhNCmhxUoJgiCICQcFN4IgCGLC4WolboIgCGJycbgYJRdDV24EQRDEhIOCG0EQBDHhoOB2qBiP1/NGgfuX80ZRqBqsB6/BMgEYl7YiiInIQQe3xx9/HI8//vhYlKWmKJ5QWS6dJ2MSLDoOMQByZhK40JCXMWbVDC5syGtk5uQYplgezjnCHoagyoRNdq16uBl/OYZSBmJpE4bgZDrD5FBla+6a0HwezuGVAY8sXi6TcxzV5LEmogukz86nnuKToQr+glQJGE4argyMY2kTKc0UPuYm5zA5hNsqv4+LzpXKTz/ZNBRmGVa7+Z3H0kZV62GYHAnRSaCTjIN+oeSrX/0qGGO48MILx6I8NYOIxU22AyqyhI6IiqGMSTAvMyGNAWgMygiqEnTTcjFIG2UmhmY0TDDsG9YRylhxFdsqZTFNDhPAOz0pHIga8CkMC5s9iHhlx8m92Xp4FAknTvXj/SEN7/VpMLlz6GUAmvwMYa8MPeO6kjLKhWpri8EZXn0/ifaQjPlNXkgOThrZgXpLTwr7owZkBrQEZfiUMs4bmXpIkoSpYYbhlIGehHPbcm5t64kb8Coylk0PYEt3CgNJw94zFIBXZpjT4MG1SxvQ6Jfx2r4E/mdLFLpp7zMqMWuS+IfnBXHC1ADSBsfb3SkMlJkszwB4ZWsFg+64gaBmojGgODrmZOvRF9cxnDKxd1BDY0DO+aE61R0Qs3vK35a/XfT3MVE0JElCa4ghrlm2ec7nZxwMDFMyZutuxhLRepgZ44htfWnsHtJx1uygU2EmLQcd3O64446xKEdN4uS96OSPV+dXEPRy9MR0pPTCQZUB8KsMjQElF2RU2fKnjGsmemJG4SCc/REWdeysFVdDwLL9yh+8DJOjO65jS0865+iR1Dn+vi+FlqCMo5q8kNmI+4pTPabWedAcUrG5K4m+okGYAQioDM2BkWCpMsv/MKZxdMcN8IKgyPNyjrAvaqAnHsdRTV40BgoDr2Fy9GTqoWXqYXArTzCjXWD3ZdNWjDFEfAqCHqtMxc4SJudIaCa640aufj5Fwgfa/eiO6djcnQTnyAUsRbIC2+oTGrB0qj+nfVxHAEc2+fDf7wxhS08qV17Aulqb2+DBxQvrEPJYl3heheHYnEYKulnYQowBzQEZQXXEjSamcSSGNDTY+Hdm69EXHwnIBge6Ygb8qommTFAs50ua32ZuvUnttlcyRj6cNRhjCHoY/KqK3phe0q8YMq46QaXEB3Ss6mGYHINJA293p0uMwokRHIPb+++/j+bmZqiqWnYHq1atGvNC1RLFZ3fF3xejSNYqAlbA0sG5dfbeHFTgs7mHZf1YZPgUCX1xHTEtz3nQQcPgQHfMgF8x0RS0DqFmcrzVlXJcXqYrZqAvEcf8Rg9ag0pu10718MgMH2j3ozeu460uaxCWMldPAYd6hDwMfpWhN2cMbB/Ysmgm8EZXCg1+CQubvVAkBt3keKs7hf6EfT1iGkdiUEdjwPKpzJXEoR6yxCwjYs1EV8yAblpXhFnTZzuagwrq/UFs7U3hQFSHLDGcPM2PK46tt6170CPhk0umYFtfGr99cxBJ3YRHYVi1qA7zGu1dyy0NGe/1pLA/Zp0QBFWGpoD9FbbJrStMX9o65hIb8S90qkdC49gzqKHeLyHsHfG/dOu9WMkKaiz8HQ83DYkxNIfUnImymXEJaQwoCHqc71UfTD2yJ1ube1LojlVermmy4xjczjrrLPz617/GkiVLcMUVV+DWW2/FnDlzxrNsNYVbL7qAKmFanYp42hTyl5Ml68fCh9OI62IPfxI6x+6BNIY1jp68KxAndBN4uzsNzoGOSPmTliyNAQWnTJfwTk8aAbW8ETFgPUtsCSngUQ1RTayt+hImXtydQGNARq9APUwA3XETnCO3blwlAqqEGXUML+9JCPkDKhLDUc0+nDlLwVFNHsxxCFL5zGnw4MvLm/BOdxJHNvvgqbDAqyIxLGjxoW5Iw1DKqLgOGGBdie8d1OBXGBJ65XpwWO3LOXK3yESoVX/HWtPwKdbvPJY2bVfFGAuNbJ63upKZJXaEskx6HIObqqrQNMtMduPGjYjFYuNWqIlC1t3djWO3ddYu3ns5rKsyN1Ra3NKuTKEyZ6N2KC7rYWauRt3g9kcuMZa5MhanNaRgdoP44ruqzLC41efqmAdUCWlD/KUADiBuLbInnIcGxOrBRvE7Hw0U2NzhGNymT5+OX/ziF+jv7wcAvPrqq+ju7nbc0VlnnTX2pSMIgiCIUeAY3K655hrceOON+OMf/wjGGL7zne847oQxhs2bN1elgARBEAThFsfgduGFF2L58uXYvn07LrvsMtxyyy2YO3fueJaNIAiCIEaFY3B75ZVXsHDhQhx//PG45JJLsGLFCkyfPn08y0YQBEGME4erQbITjm8JXHHFFdi2bRsAeqGEIAiCOLxwDG5erxepVAoAsHfvXqTT6XErVC1T7SXd/aqEsFf8rStVZjiy0YOA6u5NrcGELlwXt29Xcs6RdJh75YQqAU1+SdjOCrBcPNwej6MaPQgKthUD4FMYBpNGVY+7RwYiXrEpDYA1obwhIEOtMNUgH69S3Tf5gOr/Nia7xvxGDyJesgMWxfG25OzZs/GjH/0IZ599NgDgySefxKZNm2zTMsZw+eWXV6eENUJ+ZxSZn1KcHqg8iZRzDr8qwadICHusuWtOgYUBmOKTEPbJYADawwp2DaaxvV93fAHfKzO0BmVwzjGQNDGcNtEcVOB1mF9lco7+hI5oKjOxPDcn27keSd3EgZgB68328pO4s1vqfRLqfBIYgLBXwmDSRH/SrFgPOevnyXnl1+Izx2BaREFHWMHuIQ3b+jXHOXURj4SjW7zwKgwDSRPRCm1lSRzEMVetuvfEjLKuE1O8EiJ+65iHvJZf5UCZtvLI1sRwRRKfWzXaeuT/TRpjr9EeVtAaUrA/quG9Xo2mBVTAMbh9+ctfxpe+9CW8+uqrYIzhgQcecNzJRA5uTp5vIv51dnlE0jNmWVq1hRXbwcunMMulAiO2SjIDZtR50B5WS5xKJGDE0SM7gRSAbnLsH9YRzPhV5k9ATWgmumP5/nmZieWc2wYTk3P05JxJ8vIgz3GlKMj5FYaWoGyZL2frjkzQ9ko4EDMKrgAZgKZMPVh++2bLlG280gbObWPZtoqoaA8peKMrhf68tpIZML/Bg/awUmDxlW2rgMrQGFRKJuuO9phn8zAAkszQGmaIpUz0JQrt2LwKQ3NAgSSNHHPrZEBG0CujJ6aXtFX+yY9b78XR1oM0qqshM6A9pKI5qGJzdwo9cXIqccIxuC1fvhwvv/wyurq6sHLlSqxbtw4LFiwYz7Ll2Lp1K+644w5s2rQJ4XAYq1atwvXXXw9ZLn8rZ3h4GHfeeSf+93//F6Zp4vTTT8fNN9+M+vp6IV0RL7r8jlzJt88uTTkNBiDskxHKDF4pg6PRL8Pv4IQgSwyyxHBMmw9dMR3v9qbhlW28GEdUwGH5VcY1DU1BBV6Z5QZK2xPD/ICS+RxLm+gq8ZQc0chkyPyzVh1oDkgIOBj7MsagMKA9JCOeNtGdMOFTGFqc6lEc5GzKWIwkMXglhmPbfOiJG9jck0KdT8aiZi8UNuK/WdxWlv2XlrNZGstjDmQm/nslBDwSeuPWcbDzlMyvhwSgJaQgkTbBmHXS0BQs9JQsLlc1++5E1cj/XLzP8dSQJAYPgMUtXgwkDWzupkdGdpQ1TmaMobW1Fddffz2OPvpotLa2jle5cgwODuKqq67C3LlzsX79euzatQvf/va3YZomvvjFL5bN+4UvfAHbt2/HN7/5TUiShLVr1+Jzn/scHnrooYq6IrcLxsK/rlJ6iVlXTM0hJRcmRKy8WoMKZAZE06aQJZDJLWd/YRgDOEd3TMdwurINVDbIKRLHtLDqEGwLyTq8BDLuKBXrURzU8r9zQJYYmoMymgKB3OdKmBzoj+vwq6rj6gyFxRrdMc/6hua+q5An4JEQ8UpoDpVeWdqVCahu352IGm7yVFtDlhga/DKWTfeXTTdZEVoV4Prrr692ORx55JFHkEqlsG7dOoRCISxfvhzRaBTr1q3D6tWrEQqFbPO99tpreP755/Hggw/ixBNPBAC0trZi1apVePHFF3HKKaeU1XVjpZPtyG584tykB6zBy00eSWJIG1wosBUg8vwqCxPzN8xHlSShgDAiwcDclClTLjf1sNrInYYsMSuL4AJt43HMs+ncHPPx6LukUV0Nibv5BU4eHIPbjTfeiOuuuw7Tp0/HjTfeWHYnjDHceeedY144AHj22Wdx6qmnFgSx888/H2vXrsXGjRtx5plnOuZramrKBTYAWLJkCaZNm4Znn322YnAjiErQkEIQtYtjcPvrX/+KK6+8Mvd3Odycmbils7MTy5YtK/iuo6MDfr8fnZ2djsGts7MTs2fPLvl+zpw56OzsrEpZCYIgiNrAMbj9+c9/tv17vBkaGkI4HC75PhKJYGhoaFT59uzZU1H397//vePUBzvc3n5wm340eYaSlZePsVEBRNbbyTCYcudUrkoMobyFOKtRptHlcZdelqx13NzcAhyPY/5///d/uO2226qqMR71IA13Gv/+7//uSmMycNArcY8HTq/Iij6kLc4nwsUXX4yLL75YrICC5TmY9KPJs2dwZEVuFyKunj3tGtQKVp+uhF9haAvKNm8jjl2ZRpXHZXqvbK1bJ/ICyojE+Ax0FNwml4bp/gx2UlB2JW43dHR0HHRh7IhEIhgeHi75PhqN2l6Z5efr6+sr+X54eBiRSGRMy0gQBEHUFo7B7cwzz3R19lCtJW9mz55d8oxs3759iMfjts/U8vP97W9/K/m+s7Mz57pCEAQxmZloZsn5OAa3O++8MxfcNE3DvffeC6/Xi/PPPx/Nzc3o6urCE088AU3TcO2111atgKeddhp++tOfIhqN5t6YfPLJJ+Hz+bB06dKy+davX49XX30VJ5xwAgDgjTfewO7du3HaaadV1HVza0D0Vud4a1jPg0yIP0tyf/vPzd1FwJojNqr3j1zdNhyFSHY6gGBbcfBR1WMi9CvSqC2NKr7Pd1jjGNwuvfTS3N/f/e53MXv2bNx///2QpBFvveuvvx6rV6/Gzp07q1bAT3ziE/jlL3+JNWvWYPXq1di9ezfWrVuHq666qmB6wAc/+EGceOKJuSkJxx57LE499VTccMMNuOGGGyBJEr773e/i+OOPF54GINIp8zujyOTL4s5bLQ0OQGEcaQ6IDPYM1ssefpVhKMXBKw30mXK0BmR0xQ2kjMqvxkvMeuYW9kqIpcU1Cj6PdT3AwcAQ9jKkdCAtUA+W+a9pcrDMz6EWjjlpVF8j3z2k1jSIQoQspv/7v/8b//zP/1wQ2ABAkiRcdtll+MMf/lCVwgFAXV0dHnjgARiGgWuuuQb/+Z//iSuvvBL/+q//WpDOMAyYZuGbDT/4wQ+wdOlS3HTTTfja176GxYsXY926dUK6do4B+WS/Z4wV/MtusyO/wxanHysNk3PE0yb2DGqI6yh07XDIw5jlhtEeUVEfUDG1ToVPkZxDQnY/jEFVJHSEFTT7mWNnYrCc7Bc2e3Fchw9NQXcaBf/K1QNAU1AWrgcD4FMkTK1T0RBQ0RZW0RSUy8ZPBqDBL6E9rECRpVEd82L3iuL05foJaRxajfz/15IGUYrQ25KDg4O55W+KSSaTZV/JHwvmzp2LX/ziF2XT2E1XiEQiuOuuu3DXXXeNSrc4+OSfUeVvd8qT/VzuLMxOozi/iIZpcphAiYFuJgEyGQqufhhgawSsSAxtYRXxtImeeJ55cn7AKSpP2Kcg4OHojhuI55knSwxoCcqY3+gtWKIlp6GZ6IlV1iioi0M9GgKFby86amTK1RRUEMhbY4cxhqBHhk+R0BfXC+rBAPhVhsZA6RuSbo95fpqDOea1piGShzTGRqOcDmEhdOW2cOFC3HvvvRgYGCj4vr+/H/fee+8hM1QeL/LPvPI/V8oDiN0mKdbIv1oT1RhOGdg7qJVfRy1z9cNguYu3hhU0h1THuVoBj4RpdSpCHla4DwdkiaEtpKA9JEOVrNflj233YVGLz3HtsYDqTsO2HiGrHk6v5Wc1whmNkIdhWp1aENiK69EcUtEatvw5sxotZTSsYo3vMa81jWwe0qi+BgW2yghdud1www349Kc/jTPPPBPLly9HU1MTenp68MILL4Bzjp/97GfVLmfN4KZTZQcVtx3RbfqdA5qr9BEvwxS/IqQjMetqJZrWKgedDH5VwtEtclU1ACDilTDFL4trBFXU+82S2+tO+BQrKHLOhfOM5pgXn5GTBmmMhcZkRyi4HXvssfjtb3+Le+65B6+88goGBgYwZcoUnH766bj22msxb968apeTGEPG48yvVjWqnZ4giNpA2KFk3rx5+OEPf1jNshAEQRDEmCB2r4UgCIIgDiMouBEEQRATDgpuBEEQxISDghtBEMQkZCL7SgIU3Fzj5vXdbFrRPCndxN4hDXsH00gb4uvIzJiios4rdig9MkPYKwuXyeQcfXHd+uCi7kNJE3sH00gJrrnDOceMKSqmCNbD0jBca+T/300e0bT9cR27BjT0xTXhvG408tNXqx7jocE5x0DCaqveuAaT2mrMNSY7h8V6boea4g4lMmGz2FWg3ByVbAAZ8VsE9g3pCHkZ6v2K4yTrrIbEGOr8MkJeCT0xAymb1UMZgHq/hJBXztlRVapHUjPRHdMLFyPNcwZxKJRVJwCmCewf1hHyMNQHytcj+1p/xC8jWKYeB6ORrWul45Gf3i6/HUndRHd0pK2GUhyxtIbmoAKfw2TxaverWtVI6Zl+ZQIcwHBeW/kF2krEDeRg63E4axAWQsHtRz/6Ebq6uvCtb32rZNs3vvENtLW1Yc2aNWNeuFrAqfM5dTK79Ha2O1lKLK4yoYcDiKY44mkNTUU/erv9SIxBkhlawwyxlIm+hJGzjvKrDE0BBYyhZPC3q4dhcvTGdSTy7KcygtlMhZ9HdlbyPQcwnOaIaaWDV8V6pE30J4pWE6+gUWyp5XQ8nLZV+r64rUzO0RsrtOrKYnDgQFS3te0aq341VvXIT5+fZ6zbqvAkLn8b0BXV4VMYmoKV26rcQD9W9TgcNYgRhO4BPfnkkzjmmGNstx133HF48sknx7RQtUB+h7PrQNnvs+mcgldx+uy+dZNj/7CG7iLPw4IywBogu6I6DgxrMEyzYqeWGEPQO2Jp1RKU0ZwZLOyuavLrYZomhpO6ZbpsM1jnZco20sj/s1d0jlenI/UwzfJtlauHR8LUiAq/woQ1unNtVVmjeKBwc8xN00QsY1AdK9NWHEBc49gzqCGa1HN1F+1X+eUTqUf+v9FqOOU5GI2smXc0nW2r0jwcQEK32mooqddkPWpVgyhF6Mpt//79mDFjhu226dOnY9++fWNaqFpB5KxI9NZC8T67hjWknW67FcFhDdySQ0cvRmIMYEBjQHFVrpRuoi9hVlzyJZMhUziHqzgbssHaik/i9TBzJ/miGlxYYzRnwowxpHWOnpgu1laZcsmy5Kpcbm5BFaeppob7tjLRFdMrps3CgdyVWy3Vo9Y1iEKErtx8Ph+6u7ttt+3fvx+qqo5poWoBN5f7o7k1IPoAPYvEXL3PkcNN2bjwoqYlIsJJpWywcoHVVi6PR7XbahRNJQkGttGUZ7T5xkPD3dGzED2RG015RpuvVjUottkjFNyOOeaY3Jpq+RiGgV/84heOtywJgiAI4lAgdFvymmuuweWXX46PfOQj+NjHPobW1lbs378fv/vd77Bz50788pe/rHY5CYIgCEIY4VUB7rnnHtx+++349re/nft++vTpWL9+PY499tiqFZAgCIIg3CI8z23lypV4+umnsX37dvT396OhoQEzZ86sYtEIgiAIYnS4nsQ9a9YszJo1qxplIQiCIIgxQdjr6L333sMXvvAFLF++HIsWLcJbb70FALj77rvx0ksvVa2ABEEQBOEWoeD2xhtvYNWqVXjttddwyimnwDRHvPxSqRQefvjhqhXwUOFm7kjxxEuR9B6ZuXo9WjetuVtuNNyUCQDkXIFczN5y+eqybpiu6+G2rUyTAzXYVmnd3YTb0fQrN+nHS0N2/XY7h2ZMzrYajYbb2QOXLmmf8KbJgGBw+973vofFixfjj3/8I+66666Chl+8eDHefPPNqhXwUFJp9r+d80ClTpnd3hxUUO+X8sy2nGEApvjlkn1U0hB1MchuV2WGqXUqfIpUMZgwAD5FwtSIggZ/5fRZhxHdBPYOakhqZsW5ftkyNxW0VeVyRbxSiX9mJQ23baVI7tvK75FcaRSXS7QexW4Xh1pDlhim1VlOMyJt5ZUl+FWp5upRyxpEKULP3P7xj39g7dq18Hq9JXPdmpqa0NvbW5XCHUqKB7viDmTXscq5Eth9F/EpCHosp4ukXmrhxAAEVIaGIl9CNxpu66EwoDWkIK5Z/pJ2E64lBjQFFAQyg7UqS2XrUexiYnDgQMxAQDXRaON5Wa6temM6Eg5t5VcYGoPj21ZtYdXGH7SwrRoDCgIqK9GvVr/Kfq4lDZkBrWEVcc1Ej4PlHAPQGJQRzAS2atXDLs94ajjlOVgNohCh4MYYgyzLttsGBgbg8/nGtFC1hNNZVLlO5XSmZpdHlpjtj15mKOso70bDbT0YYwh6GPyqWmAKzAAEPVawLfapzNYjkVlJwOSoaM0V1zgSgxoaMisB5KdyaquWjEZ+W0kMJebSxfWpVlsBQMAjYZqqFpgCMzAEVCvYOnl6utEYj3qMh0ZAtXxP++N6xmdypK3sTuJqtR4HqyEaoNxqECMIBbdFixbhiSeewOmnn16y7U9/+hOWLFky1uWqObKdLPu3SHoge0+8cvrsj34goYOBYYpfrpjPrUY2j2g9JMbQHFKR1E0MJQ3U+WR4lfJ3sv2Zeuwf0pA2gUrGSxxAb8LAcNpEe1gRqodflTC1TsVAwrqLMMUvOy51k2U82qopqCLsNTGYNBDxyfBVaCu3GvlpqlWP8dCQGENjUEUo21Ze2fEkbrQa+WkO57YarQYhGNw++9nP4pprroFhGLjwwgvBGMObb76JP/zhD3jiiSfw05/+tNrlrBmq2bkkZq3fNh4d2I2GT5HgDYp7/UmMwacypFPi5Ukb7n64ErPO9KtN/kAkgleR0OyirUajMRpqUYPaqroakx2h0WHlypW444478J3vfAdPPfUUOOe49dZbEQqFcMcdd2DZsmXVLidBEARBCCN86vuxj30M559/Pl577TX09vaivr4exx13HAKBQDXLRxAEQRCucXVfx+/345RTTqlWWQiCIAhiTKgY3NLpNJ588km8+uqruTXdWlpasHTpUpx33nkTci03giAI4vCmbHDbvHkzrrvuOuzfv7/k4efAd78BAAAgAElEQVSjjz6KH/7wh7j33nsxf/78qhaSIAiCINzg+P5tNBrFNddcg1gshq997WvYsGEDXn/9dfzjH//AU089ha985SsYHh7OpSGIfCQGCLwJP+7Qq9TEWMM5R0LAcYcYXxyHn0cffRSDg4P41a9+hU9/+tOYOXMmPB4PvF4vZs2ahc985jN48MEH0d/fj9/97nfjWeZDQvbKtZKNjlOeyaZR51PQEVFR76tsT+WVGaZGFNdlyv/nNo+b9Nm/RfO4TU8ah69GWjfx/pCGrpiBvYMaEppZMc941IMoE9yeffZZXHLJJZg3b55j5vnz5+Oiiy7CX/7yl6oUrlbIn3Dp5GRQnD474dLJlWAyaEiMIeyTMx6MNs4TABr9MlrDChSp+vXI5hkPDSdnCdKYGBom5+iNa9g3rEPLWOUYHOiK6uga1mDY+YuNUz0IC8fg9t577+Gkk06quINly5bh3XffHdNC1Qp2gztQvpMVD6L56fO3TxYNiTEoEkNLSEFTQEbWXSmgWma6Qa8EKS9PNesxnhr5bUcataeRn8etRkIzsWdQw3Aq63Ga5/sIIK5z7BnUMJTUc/nsTrDGuh5EIY4vlAwNDaG5ubniDpqbmzE4ODimhaoF7DpiMXadslL6/H2L5pkIGhJjCHokBFQJmmmtQFDOMqtW61HrGk6D6OFWj/HQcJOHcw7TNNEdN5DUbMzBi+AA+hMm0gbQGJCrXo9yaScrjsEtlUoJveavKAo0TRvTQtUCop0lv5O5yeM2/UTRYAzwMHftW4v1qFWN/P9XS2OitJXb9JrJhQJbFg4g6JHGpR5EKWWnAuzcuRMej6fsDnbs2DGW5SEIgiBcwDlAF26llA1uX/va1yrugC6JCYIgiFrDMbjddddd41kOgiAIghgzHIPbJZdcMp7lIAiCIIgxowY9JAiCIAji4KDgRhAEQUw4KLgRBEEcxtD7fPZQcHNAdPZ/fjrR+SZ2rgWV0psmh2ZwYXPW0WiMRz0mq4bJR47f4VyPyayhMMCnsIpeqVkYgFjaGJd6EKW4Wqx0MpHvGOA01aHYCaKSO4TdtkoaJudIpE30JgyYHAiqDI0BBcxhIvRoNJzyjGU9JquGFcyAvriBmGZCYpafpt8jOTq0jLYe2e2j6btuNbLfTSYNSZLQGpYQ10z0xHQ42Eda+wZQ75cQ9srjdjyIQg6LK7ff/OY3OOecc3D00Ufj0ksvxUsvvVQxzyOPPIJPf/rTOOWUU3D88cfjE5/4BJ5//nlXusUDRZb8jprfsfI/26XPphHRMDmHbnJ0RXV0x43cDymmcewZ0hBLly6x4VbDqR75+yg+MyQNcQ2Tc8TTJvYOaYhl3OJNDnTHDXRFdeimdUU+VvWw64ujrUdxHtIYSR9QJUyrUxH2ZK/i8gINAL9i+aZGfEou33jUgyik5oPbE088gVtvvRUXXXQR7r//fsydOxdXX311RbPmH//4x5g2bRpuv/123H333TjiiCPw2c9+Fk8//bTrMohemeWnL+7IlTpivobJOYaT1hIaSb309NDkQE/eAFnuBzKW9SANMQ2Tc+gGx4Gojp68E5N8kjrH3kENwymjJuuRn4c0SpEYQ2NQRVt2RQtYaxi2hBS0hlXIkn2+8agHYVHztyXvvvtuXHzxxfjc5z4HAFi6dCk2b96Mn/zkJ1i7dq1jvsceewwNDQ25z8uXL8fOnTvxwAMP4KyzznJdjuyg4qZTuc3DGMNAXENM4xBYFio3QM6YorrSGI96jEbDDaP5cY9Ww23du4Y1JGxOSorhAPqTJsCASOb2laiG2zIB7utBGpXzeBUJUyMqEpoJn+p8q/lgNLJ53P6mJjs1feW2e/du7NixAx/60Idy30mShHPPPRfPPfdc2bz5gS3LggUL0NfXN+blHEsMDqHAloUeJ7uj+LZeNRAJbPmUe3ZD1D6MMfgFAxsxftR0cOvs7AQAzJ49u+D7OXPmYGBgwHWg2rRpE+bMmTNm5SMIgiBqk5oObtl14iKRSMH3dXV1BdtFePTRR/H222/jU5/61NgVkCAIgqhJxv2Z2/DwMLq6uiqmy7/CKr7PLPIgNp8333wT3/zmN3HFFVdg2bJlLkpLEARBHI6Me3DbsGEDbr755orptmzZkrtCGxoaQjgczm0bGhoCUHpFZ8fu3btx9dVXY9myZfj6178+ylITBEEQhxPjHtxWrVqFVatWCaXNPmvr7OzE1KlTc993dnZiypQpti+N5NPb24vPfOYz6OjowA9+8APIsjz6ghMEQRCHDTX9zG369OmYOXMmNmzYkPvONE1s2LABK1asKJs3Foth9erVAID77rsPfr9/TMpU7bft/KqEiFf8sHjk0b2hNR5vDbrVGE36atdjNPtvCsiujot3lMfQDbV4vEmDqCY1HdwAYM2aNXjsscewfv16vPzyy7jpppuwc+dO/Mu//EsuzcaNG7Fw4UJs3LixIN+7776LNWvWYNeuXdi0aVPu32iwcwiolD6bTnQQ5pzDr0qY4pcxNaKUHfQYgEa/hLaw4lrD7u9y6UdTj8msEfRYx6XBL5X1IfTKDFMjCnyq5Fqj+O9Keez+Jo2Jq0EcBpO4L7jgAsTjcdx///1Yv3495s2bh/vuuw/z58/PpeGcwzCMgoP+wgsvAAC+8pWvlOxzy5Ytwvp2L69Uchcol0ckPQMgyQytYYZYykRfwiiYz+ZXGZoy/pLSKDUqfT8W9ZjMGgxAyCsj6JHRE9eR0EaOoMSAer+MoI2/ZK3VQ1TDLg9pVFfDKQ9hUfPBDQA+/vGP4+Mf/7jj9pNOOqkkYLkJYHY4dcT8z8UduVyHs0tTTgOwAlfQKyHgkdAb15HSOZoCMrwOE0ZHo5Fv51SteoyFhkie8dQorrvT8QMDmoMKkpqJ3rgBrzJifO10DN1oFJc7y1jWYzzaijRGp+EUSInDJLgdKip1GruBRSSPmzOv7ADZFFRyt7jGWmM86jERNdwcQ78qYVqdBA77oHawGvn1EBnwDlZDND1pjI+GaIC7dEm7ULqJQM0/cztUuDkbyqYVzeM2PTAyIFZTYzzqMdk13Fg01XI9SKN2NIou2okMFNwIgiCICQcFN4IgCGLCQcGNIAiCmHBQcCMIgiAmHBTcCIIgiAkHBTeCIAhiwkHBzYHiSbFjlZY0SIM0SGMsNWgOtz0U3Mog0tHy0+RPwCyX3s5F43DVsMtPGmOnUTwZmDRIw0mDKIQcShyoZJtT7nsnx4DiPBNF42C+J43K31dyosjPk/1XTY3xqEetaeRvq+Q+cig1iBEouFWg+Mdi1xGL0wOlZ2FO6SeqhtP+SMNeo1Ie0qhdjeLf1KHUIEag4CZApTNhpzzlzrxIgzTsBi/SII2D1SAs6JmbS9x0rPxbDKRROW32n9s8bsszmjykQRqHm4Ydj72+76DyH05QcCMIgiAmHBTcCIIgiAkHBTeCIAhiwkHBjSAIgphwUHAjCIIgJhwU3AiCIIgJBwU3l9hN7K2U1k2eyazhNHG6Uh635RlNnsmkYXKOvriGnQMaemIaTMG8tVaPya4x2aHgJkDxhEuRQbV4wqVIetJwr1E8wXWsNbJ5JotGUjOxd1DDUMpKE01z7BnUEE+bh1U9JrMGYUEOJWXI70TFkyidHAbsXAQquV0Uf08aY+cnSBpiGobJ0RvXkdA4iodOkwPdMR3eFENTUIEijeSrpFG8rRr1IA3CDgpuDlTqPOXOosrlyR9Yqq0hmp40Jo6G00DppME5R1zn6I0ZJUEtHw4gqVtXdfU+CSGvDMbENUT7+2jbarJrUJArhYJbGUQ6jEhHtNun2zykQRoiGk6fnfKkDY6emFExbSYHOABFZmUDW7GG09WoU3pgdG012TWIQuiZmwNuzoRGe9ZEGqRxqDUAwK2KxEbn6ekW0hDDTWy7dEm76/0frlBwIwiCICYcFNwIgiCICQcFN4IgCGLCQcGNIAiCmHBQcCMIgiAmHBTcCIIgiAkHBTcH3MwdyaYVzeM2PWmQRrU0ZNdvnnOkjOp6etZqW9WqBs3ftoeCWxnsXAbstrO8eT+VOmXxpM5qazi5JZAGaXDOIUsM0+pUBFRWcb4bA+BTJAQ9kiuNbLmqWY/JrkGUQg4lDthZ4mTJ73T535dzJbD7bjw0sp8PlYZI3SezhkieamvIDGgJqUhoJnpiOgybMVViQFNAQcAzcj5ca/WY7BpEIRTcKuB0FlWuYzmdqTnlIY3JreF0kjHeGn5VwtQ6FQMJHcMpy0CZAQh6GBoCCiSbfLVYj8msQYxAwU2QbCfL/i2SHsjeExfriKRBGodaQ2IMDQEVIS/HYEJHxCfDq1R+elFr9ZjsGgQ9c3PNeHSuyaoxmvTVrkctttN4aHhka3kbkcA2Wo3RQBqEKBTcCIIgiAkHBTeCIAhiwkHBjSAIgphwUHAjCIIgJhwU3AiCIIgJBwU3YlJBb6kRxOSAgpsg2XkplWx0nPKQRuU8o01fbY3s36J53KYnDdIYaw2CJnELUTzhMts5na4C7CZoVpq0SRqkQRpjr1Gcp1Y1nPKMRoOwOCyu3H7zm9/gnHPOwdFHH41LL70UL730kqv8b7/9NhYsWICTTjrJVb78zp3fkbKfi68CynXU4o5JGmIadnlqSSO/LUij9jSK89SqRv4+R6tBFFLzwe2JJ57Arbfeiosuugj3338/5s6di6uvvhrvvvuuUH7OOW6//XY0NDS40hU5O3I6+3LKU/xjIY3KGnZ5aknDbsAiDdIYbw2ilJoPbnfffTcuvvhifO5zn8OyZcvwH//xHzjiiCPwk5/8RCj/H/7wB/T29uKjH/2oK91yHcspnUj6/HSkQRqkQRpjoUGUUtPBbffu3dixYwc+9KEP5b6TJAnnnnsunnvuuYr5o9Eo1q5dixtuuAGqqlazqARBEIcEunCzp6aDW2dnJwBg9uzZBd/PmTMHAwMD6OvrK5v/nnvuwZw5c3D22WdXrYwEQRBE7VHTwW1wcBAAEIlECr6vq6sr2G5HZ2cnHnroIdx0003VKyBBEMRhxGOv7zvURRg3xn0qwPDwMLq6uiqmmzNnTu7v4vvKIg9ov/Wtb+GSSy7BkUceOcqSEgRBEIcr4x7cNmzYgJtvvrliui1btuSu0IaGhhAOh3PbhoaGAJRe0WX5y1/+gr///e+45ZZbcmlTqVQur8/ng8fjOah6EARBELXLuAe3VatWYdWqVUJps8/aOjs7MXXq1Nz3nZ2dmDJliuPr/du3b0c8Hsc555xTsu3EE0/E5z//eVx33XWjKD1BEARxOFDTDiXTp0/HzJkzsWHDBqxYsQIAYJpmwWc7zjvvPCxYsKDgu//6r//Cn/70J6xfvx7Tpk2rarkJgiDGC5oNYE9NBzcAWLNmDb761a9i6tSpOO644/D73/8eO3fuxPe+971cmo0bN+Kqq67CAw88gKVLl6KtrQ1tbW0F+9m4cSMURRF2KRF5rpefLvu3yLyTbB7SmDwaJufQdBOKLIExQDpM60EatalBlFLzwe2CCy5APB7H/fffj/Xr12PevHm47777MH/+/FwazjkMwxjTA83YiAOHUyez67TlOrJTetKYuBom5+Ac6InrSGgcEjNQ75cR9EiOAe5g6pH9dzi2VTkNt3kmi4bTdgJgnEJ/RYo7WaUzMaf0o8lTCxrZNKThToMDiKUM9CVMFP/IvP9/e/ceFWP+xwH8XS6plHssIZWZSLG6YBFiS7thy3EirEph0bLF1uTeRliWQkYXOa65jHK/baxLbI7bLpvsdiJyW6JmSqmZnt8f7Ty/RvenmSnj8zpnzjHfeb7P8/nMY/o+3+9z+TbRQgf9ptDW/n8vrq7bqKzO8uXLsXz5cqXlUZc6tI3GsY3qbEv+G+7Wn9W5XmPVoYNBlZ81+p5bY1D+SLh8WXXLA3U7umrs26jtD4q2UVZHWsrgVYEMxbLKjx3fyxhki0vQWkcbrXSbNNo8aBsf3zZIGWrcakn+n7Iu/7HqWudT30ZdcPmBc91GXXN/ISlBkbR2AyK570uhpQ0Y6jRR2ffLNQ/axse7DdLIn1BCiLKpYxS+tg2bXCmdGCBE6ahxI4QQonGocSOEEKJx6GpJQgghGod6boQQQjQONW6EEEI0DjVuhBBCNA41boQQQjQONW6EEEI0DjVuhBBCNA41bvVw4MABODk5wcrKCu7u7rh27Vqt6hUWFuLnn3/G8OHDYWVlhZEjRyImJkbF0dYe17zk0tLS0KtXr1pPL6QuXPJKSEiAt7c3vvjiC9jY2GDixIm4cuWKGqJVlJGRgWnTpqFv374YMmQIIiIiIJPJaqwnkUggEAhgZ2cHGxsbBAYG4u3bt2qIuHa45PXnn39CIBDgyy+/RN++feHs7IzNmzfj/fv3aoq6Zlz3l1xpaSnc3d3B5/Nx4cIFFUaquahx4+jEiRNYtmwZxo0bh5iYGJibm2PmzJn4+++/q60nk8kwY8YMJCcnY/78+YiNjcWsWbPUFHXNuOYlxzAMQkNDq5wlvaFwzUsoFMLY2BihoaGIjIxE9+7d4evri+TkZDVFDuTl5cHLywtaWlqIiorCnDlzEB8fj8jIyBrrzp8/H6mpqQgLC8Pq1atx7949zJkzRw1R14xrXqdOncLjx4/h5+eH6OhoTJ48GfHx8ViwYIGaIq9effaX3MGDB/Hy5UsVRvkJYAgnTk5OTHBwMPteJpMxrq6uTGBgYLX19u7dy9ja2jKvX79WdYiccM1LLjExkRk1ahSzfv16xt7eXlVh1hnXvHJyciqUeXh4MFOmTFF6jFURCoWMra0tI5FI2LLo6GjG2tpaoexDt27dYng8HnP9+nW27I8//mB4PB6TkpKi0phrg2tele2ThIQEhsfjMdnZ2SqJtS645iWXm5vLDBgwgDlw4ADD4/GY8+fPqzJcjUU9Nw6ePHmCR48ewcXFhS3T1taGs7MzLl++XG1dkUgEFxcXtGvXTtVh1ll98gKA/Px8rFu3DkFBQWjWrJkqQ62T+uRVWQ+0V69eePPmjdLjrMqlS5cwZMgQtGzZki37+uuvUVRUhOvXr1dbr3379rCzs2PLrK2tYWxsjEuXLqk05trgmldV+wQAcnJylB9oHXHNSy4iIgL9+/fHoEGDVBmmxqPGjYPMzEwAgKmpqUK5mZkZcnNzq/zDV1xcjPv376Njx44IDAyEtbU1bGxsIBAIkJ+fr/K4a8I1L7ktW7bAzMwMo0aNUlmMXNQ3rw/duXMHZmZmSouvJpmZmRVi79y5M3R1ddncalsPKMu7unrqwjWvyty+fRva2tqV5qtu9ckrPT0dhw8fRlBQkCpD/CRQ48ZBXl4eAMDQ0FChvFWrVgqffyg3NxdSqRSxsbEoLCzE1q1bERwcjOTkZCxatEi1QdcC17yAsh/03r17ERISoroAOapPXh86dOgQ0tLS4OnpqbwAayAWi2FgUHHGYUNDQ4jFYqXXUxdlxffq1SsIhUKMGzdOobfUUOqTV1hYGDw9PdG9e3dVhffJoMlK/yORSPDvv//WuFz5I/YPJw5kajllfKtWrRAREcEO3TVr1gxBQUF4/PgxunXrxin+qqgjLwBYuXIl3NzcwOfzOUZaN+rKq7x79+4hLCwM3377LQYOHFiHaOuvshiZWkxeWVW9xoJrXnLFxcWYP38+9PT0IBAIlB0eZ1zyOnHiBB4+fAihUKjK0D4Z1Lj95/Tp01i8eHGNyz148IA94v/wCE1+VPZhD0FOXt6/f3+Fc1LyP5QZGRlKb9zUkdfFixdx69YtLF26lF1Wflm2WCxGixYt0Lx583rl8SF15FXekydPMHPmTAwcOBDBwcEco+bG0NAQEomkQnl+fn6lPYTy9SobcpVIJLXKWdW45iXHMAyCgoKQkZGBvXv3svu5oXHJq6SkBGvXroWfnx9KS0shFovZUxWFhYXIz89vFL3Sjwk1bv+ZMGECJkyYUKtl5ePpmZmZ6NKlC1uemZmJ1q1bV3kZvK6ursLycvIjaW1t5Y8SqyOvhw8f4t27d3BycqrwmZ2dHebNm4fZs2dziL5q6shLLicnB9OnT0fnzp2xYcMGNGnShHvgHJiamlY4V/P8+XO8e/eu2nNMpqamuHnzZoXyzMzMRnFelGtecqtWrUJycjK2b9+u1nOgNeGSV2FhIV68eIHw8HCEh4crfPbDDz+gW7duOHfunMpi1kTUuHHQtWtXmJiY4PTp0xg6dCiAspsuy7+vyvDhw5GcnIzi4mK2N3Pt2jVoa2uDx+OpPPbqcM1r9OjR7NVqcomJiTh37hyioqJgbGys0rhrUp/9VVBQAD8/PwDAtm3boKurq/J4P+Tg4IC4uDiFo/eTJ0+iRYsWsLe3r7ZeVFQUbty4AVtbWwDA3bt38eTJEzg4OKgl9upwzQso2xe7d+/Gxo0b2dwaCy556enpYefOnQplr1+/RkBAAAICAtQ+DK4RGuoehI/dsWPHGAsLC2bLli3MtWvXmKCgIMbKyop58OABu0xqairTq1cvJjU1lS3Lzs5mbGxsmJkzZzK//fYbk5CQwNja2jKLFi1qiDQq4JrXhyIjIxvVfW5c8/L29mYsLS2Zo0ePMrdv31Z4qUtubi4zePBgxsvLi0lJSWESEhKYfv36Mb/88ovCcqNGjWIEAoFCmY+PD+Po6MicOXOGOXfuHOPk5MRMmjRJbbFXh2teR48eZXg8HhMcHFxhn1R2D5y61Wd/lffkyRO6z60eqOfGkaurK969e4eYmBhERUWhZ8+e2LZtm0Lvi2EYyGQyhRP4Xbp0QXx8PMLDw+Hv74+WLVvim2++aTRPV+CaV2PHNa+UlBQAqHT/PHjwQPWBo+wCpB07diA0NBSzZs2CoaEhpk2bBn9/f4XlZDIZSktLFco2bNiA8PBwhISEoLS0FCNGjGgUV+YC3POS75PDhw/j8OHDCsuGh4fD3d1d9cFXoz77iyiPFvMx/YUihBBCaoHucyOEEKJxqHEjhBCicahxI4QQonGocSOEEKJxqHEjhBCicahxI4QQonGocSOEEKJxqHEjanP48GHw+Xz21bt3bzg4OEAgEFT7hP+ioiLY2tqCz+cjNTW13nFs2rSpwuwFfD4fmzZtUig7duwYvvrqK1hZWYHP5yM7OxsAsGPHDowcORKWlpZ1ngXh4MGDCt9BQUFB/ZJp5MRisUK+u3fvbuiQyCeCnlBC1G7NmjUwMTFBYWEhrl69iri4ONy5cwdHjx6tdAbvM2fOsE9ZF4lEGDBggNJj2r9/Pzp16sS+z8nJgUAgwIgRI7BixQo0a9YMRkZGSEtLQ3h4OCZNmgRXV1c0bcrtJ7R161a0bdu2QZ5VqU76+vrYv38/Xrx4gXnz5jV0OOQTQo0bUTs+n88+aHnQoEHIycmBSCTCjRs3MGjQoArLi0Qi6Ovrw9LSEmfPnsXSpUuVPv1Hv379FN4/evQIJSUlGDNmDOzs7NjyjIwMAGWzElhaWnLeXu/evRUa0/oq/yDuxqRJkybo168fsrKyGjoU8omhYUnS4OSNRGVzj2VnZ+P69esYPXo0PD09UVhYiBMnTtR63efPn8fYsWPRp08fODo6Ijo6utJnYpYflgwODmZn2vb39wefz8fUqVMxdepULFy4EADg7u4OPp+v1Lndjh07Bi8vLwwePBh9+/aFq6srhEIhiouLFZabNGkS3N3dcfnyZbi7u8PKygqxsbHs54mJiZgwYQL69euH/v37Y/z48Th16hT7eUpKCiZPngx7e3tYW1vD0dERgYGBCtvIzc1FWFgYhg8fzn53kZGRkEqlCssVFRUhIiICzs7O6NOnDwYOHAgfHx+kp6cr7XshhAvquZEG9/TpUwCAiYlJhc9EIhEYhoG7uzusra3RunVriEQieHh41LjeK1euYM6cObCxscGGDRsglUoRExNTaSNa3uzZs2FlZYXQ0FAsWLAAdnZ2bE/x+PHj2Lp1Kzu0WtNccHWRlZWFkSNHwtvbGzo6OkhPT4dQKERWVlaFOb6ePXuGZcuW4bvvvkPXrl3ZSTDXrl2LuLg4uLq6YsaMGWjRogXu37/Pni/MysrCzJkz4ezsjBkzZkBHRwfPnz/HlStX2HXn5+dj0qRJyM/Px6xZs2Bqaoo7d+4gKioKz58/Z2MpKSmBt7c37t27Bx8fH9ja2uL9+/e4efMmXr58CQsLC6V9N4TUFTVuRO1kMhmkUimKiorw+++/IyEhAa6urhWG+UpLS5GUlAQTExN2zq4xY8Zg165dyMjIgLm5ebXbiYiIgJGREbZv384O2Q0ZMgQjR46stl63bt3Ydffo0UNhyFI+U3r5oVVlmTt3LvtvhmFga2sLAwMDLFmyBCEhIQqzOL99+xZCoVAhtkePHiE+Ph4eHh4IDQ1ly8vPWXfv3j2UlJTgp59+gp6eHlvu5ubG/nvHjh14/PgxkpKS0LNnTwBlw8c6OjpYs2YNfH19YWZmhqSkJNy6dQvr16+Hq6srW78xTIRKCA1LErUbP348LC0tYWNjgzlz5qBXr15YvXp1heWuXr2KZ8+eKfzhHT9+PICyHl113r17h7t378LZ2VnhXJSBgQFGjBihpEyU69GjR/jxxx8xbNgwWFpawtLSEiEhIZDJZBXOWXXo0KHCecKUlBSUlpZi4sSJVW6jd+/eaNasGfz9/XHq1KlKr1K9dOkSLC0t0aNHD0ilUvYln+D0xo0bAIDLly/DwMBAoWEjpLGgnhtRu3Xr1sHExAT5+flITEzEkSNHsGrVKixbtkxhOZFIBC0tLTg6OkIsFgMomw+vZ8+eOHLkCAICAiq9uhIouwSdYRi0b9++wmcdOnRQflL1JJFI4OnpCQMDA3z//ffo3r07dHR0cPv2baxcuRJFRUUKyxsZGVVYx9u3bwGg2gtVevTogbi4OMTGxkIgEKCwsBA8Hg9+fn4YO3YsgLIZoJ8+fVrlBTPy7bx9+xYdO3bklBdj6DwAAAOmSURBVC8hqkaNG1E7c3NzhaslJRIJ9u3bBzc3N1hbWwMA8vLy8Ouvv4JhGIwZM6bS9Vy8eLHKITBDQ0NoaWnh9evXFT579eqVkjJRnqtXryInJwebN29G//792fK//vqr1uto06YNAODFixfVngscMGAABgwYAJlMhrt37yImJgYLFy5Ep06dYG9vjzZt2qB169ZYsWJFpfXlDVrbtm1x//79WsdHiDrRsCRpcCEhIWjatCkiIiLYsmPHjqG4uBiBgYHYuXOnwisuLg7NmzfHoUOHqlynnp4erK2tcfbsWYWrDfPz83HhwgWV5sOFlpYWACj0RBmGqTbHDw0ZMgTa2tpISEio1fLyy/SDgoIA/H9mcQcHB2RlZcHIyAhWVlYVXvJe49ChQyGRSHD8+PFax0iIulDPjTS4rl27wsPDA7t378bt27fx+eefQyQSoW3btvDy8qr0/i0nJyecPn0ar169qnKYcd68efD19YWPjw+8vLwglUoRHR0NPT095OXlKTWHDRs2QCgUYs+ePezFL3VhY2ODli1bYunSpZg7dy4YhsG+ffvY4dja6N69O3x8fBAbG4uCggK4uLhAV1cXDx48QGlpKXx9fbFnzx7cuHEDw4YNw2effYaCggLs2bMHzZs3Z2+Onz59Os6ePQtPT094eXnB3NwcxcXFePr0KS5evIgVK1agU6dOGDduHEQiEQQCAf755x/Y2dmhuLgYN2/ehL29PYYNG1bn74EQZaGeG2kUZs+eDX19fURGRiI9PR1paWlwc3Or8sZkDw8PSKVSJCUlVbnOwYMHY8uWLRCLxZg/fz7WrFmD0aNHsxelNCbt2rWDUChEkyZNEBAQgOXLl4PH40EgENRpPQsXLkRYWBgyMzMREBAAf39/nDx5EsbGxgAACwsLvH//Hhs3boSvry9CQkIAAHFxceDxeACAli1bYv/+/XB2dsauXbvg5+eHhQsX4tChQ7CwsIChoSGAsl7m9u3b4e3tjRMnTmDWrFkICQlBenq6Um9QJ4QLLaayO1oJISpx8OBBLF68GOfPn0fHjh05P77rYyKVSvH48WO4uLhgyZIlmDJlSkOHRD4Bmv/LIqQRcnR0BADcunUL+vr6DRyN6ojFYoXHlxGiLtRzI0SN3rx5wz6RBSh79Ji2tuaeHZDJZEhLS2Pfd+nSRalPdSGkKtS4EUII0Tiae8hICCHkk0WNGyGEEI1DjRshhBCNQ40bIYQQjUONGyGEEI3zPyhSmYNiIYtKAAAAAElFTkSuQmCC\n",
"text/plain": [
"