{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Bootes master catalogue\n", "\n", "This notebook presents the merge of the various pristine catalogues to produce HELP mater catalogue on ELAIS-N1." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "017bb1e (Mon Jun 18 14:58:59 2018 +0100)\n", "This notebook was executed on: \n", "2019-01-31 17:42:48.232232\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n", "import datetime\n", "print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/pyenv/versions/3.7.2/lib/python3.7/site-packages/matplotlib/__init__.py:855: MatplotlibDeprecationWarning: \n", "examples.directory is deprecated; in the future, examples will be found relative to the 'datapath' directory.\n", " \"found relative to the 'datapath' directory.\".format(key))\n", "/opt/pyenv/versions/3.7.2/lib/python3.7/site-packages/matplotlib/__init__.py:846: MatplotlibDeprecationWarning: \n", "The text.latex.unicode rcparam was deprecated in Matplotlib 2.2 and will be removed in 3.1.\n", " \"2.2\", name=key, obj_type=\"rcparam\", addendum=addendum)\n", "/opt/pyenv/versions/3.7.2/lib/python3.7/site-packages/seaborn/apionly.py:9: UserWarning: As seaborn no longer sets a default style on import, the seaborn.apionly module is deprecated. It will be removed in a future version.\n", " warnings.warn(msg, UserWarning)\n" ] } ], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "import os\n", "import time\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table\n", "import numpy as np\n", "from pymoc import MOC\n", "\n", "from herschelhelp_internal.masterlist import merge_catalogues, nb_merge_dist_plot, specz_merge\n", "from herschelhelp_internal.utils import coords_to_hpidx, ebv, gen_help_id, inMoc" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "SUFFIX = os.environ.get('SUFFIX', time.strftime(\"_%Y%m%d\"))\n", "\n", "try:\n", " os.makedirs(OUT_DIR)\n", "except FileExistsError:\n", " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## I - Reading the prepared pristine catalogues" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#decals = Table.read(\"{}/DECaLS.fits\".format(TMP_DIR))\n", "datafusion = Table.read(\"{}/Datafusion.fits\".format(TMP_DIR))\n", "ibis = Table.read(\"{}/IBIS.fits\".format(TMP_DIR))\n", "legacy = Table.read(\"{}/LegacySurvey.fits\".format(TMP_DIR))\n", "ndwfs = Table.read(\"{}/NDWFS.fits\".format(TMP_DIR))\n", "ps1 = Table.read(\"{}/PS1.fits\".format(TMP_DIR))\n", "#sdwfs = Table.read(\"{}/SDWFS.fits\".format(TMP_DIR)) #We use DataFusion instead\n", "uhs = Table.read(\"{}/UHS.fits\".format(TMP_DIR))\n", "zbootes = Table.read(\"{}/zBootes.fits\".format(TMP_DIR))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## II - Merging tables\n", "\n", "We first merge the optical catalogues and then add the infrared ones.\n", "\n", "At every step, we look at the distribution of the distances separating the sources from one catalogue to the other (within a maximum radius) to determine the best cross-matching radius." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### PanSTARRS" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue = ps1\n", "master_catalogue['ps1_ra'].name = 'ra'\n", "master_catalogue['ps1_dec'].name = 'dec'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add DECaLS\n", "\n", "DECaLS contains the LegacySurvey data so is not included again" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# nb_merge_dist_plot(\n", "# SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", "# SkyCoord(decals['decals_ra'], decals['decals_dec'])\n", "# )" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# # Given the graph above, we use 0.8 arc-second radius\n", "# master_catalogue = merge_catalogues(master_catalogue, decals, \"decals_ra\", \"decals_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add Legacy Survey" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGrhJREFUeJzt3XtwXOd53/HvsxfcAYIEQZAiCEIXkjblSpRDXSzZsizbkeK4SZM6tiVbbmbcsnGd2s6449aTzHQ802ndduq6ceokGtlxmlhyHFuTiyJfFFuKJdm6kBQpiaQoShQJgoIIkgAIEvfdffrHOQuCEEgsgV3svsvfZ2YHey57zrME8dt33/Oec8zdERGRcCTKXYCIiFwcBbeISGAU3CIigVFwi4gERsEtIhIYBbeISGAU3CIigVFwi4gERsEtIhKYVCk2unLlSu/u7i7FpkVEqtKOHTtOuHt7IeuWJLi7u7vZvn17KTYtIlKVzOxwoeuqq0REJDAKbhGRwCi4RUQCo+AWEQmMgltEJDAKbhGRwCi4RUQCo+AWEQmMgltEJDAlOXOyUtz/dM+b5t19Y1cZKhERKR61uEVEAqPgFhEJjIJbRCQwCm4RkcAouEVEAqPgFhEJjIJbRCQwCm4RkcAouEVEAqPgFhEJjIJbRCQwCm4RkcAouEVEAqPgFhEJjIJbRCQwCm4RkcAouEVEAqPgFhEJjIJbRCQwCm4RkcAouEVEAqPgFhEJjIJbRCQwBQe3mSXN7Dkze6iUBYmIyIVdTIv7s8C+UhUiIiKFKSi4zawT+FXgvtKWIyIi8ym0xf1V4AtAroS1iIhIAeYNbjP7INDv7jvmWW+bmW03s+3Hjx8vWoEiInKuQlrctwC/ZmaHgO8At5vZX85eyd3vdfet7r61vb29yGWKiEjevMHt7l9090537wY+CvzU3T9e8spERGROGsctIhKY1MWs7O6PAY+VpBIRESmIWtwiIoFRcIuIBEbBLSISGAW3iEhgFNwiIoFRcIuIBEbBLSISGAW3iEhgFNwiIoFRcIuIBEbBLSISGAW3iEhgFNwiIoFRcIuIBEbBLSISGAW3iEhgFNwiIoFRcIuIBEbBLSISGAW3iEhgFNwiIoFRcIuIBEbBLSISGAW3iEhgFNwiIoFRcIuIBEbBLSISGAW3iEhgFNwiIoFRcIuIBEbBLSISGAW3iEhgFNwiIoFRcIuIBEbBLSISGAW3iEhg5g1uM6szs2fMbLeZ7TGzLy1FYSIiMrdUAetMALe7+xkzSwNPmNkP3P2pEtcmIiJzmDe43d2BM/FkOn54KYsSEZHzK6iP28ySZrYL6AcecfenS1uWiIicT0HB7e5Zd98CdAI3mNnbZq9jZtvMbLuZbT9+/Hix6xQRkdhFjSpx9yHgUeDOOZbd6+5b3X1re3t7seoTEZFZChlV0m5mrfHzeuD9wEulLkxEROZWyKiSNcCfm1mSKOi/6+4PlbYsERE5n0JGlTwPXLcEtYiISAF05qSISGAU3CIigVFwi4gERsEtIhIYBbeISGAU3CIigVFwi4gERsEtIhIYBbeISGAU3CIigVFwi4gERsEtIhIYBbeISGAU3CIigVFwi4gERsEtIhIYBbeISGAU3CIigVFwi4gERsEtIhIYBbeISGAU3CIigVFwi4gERsEtIhIYBbeISGAU3CIigVFwi4gERsEtIhIYBbeISGAU3CIigVFwi4gERsEtIhIYBbeISGAU3CIigVFwi4gERsEtIhKYeYPbzNaZ2aNmttfM9pjZZ5eisFLoGRjlvz28j4lMttyliIgsWKqAdTLA5919p5k1AzvM7BF331vi2orG3fnFwZM8/EIfOYebrmzjPZtWlbssEZEFmbfF7e597r4zfn4a2AesLXVhxTKZyfGdZ4/w0PN9bFjVTE0qweMvnyh3WSIiC1ZIi3uamXUD1wFPz7FsG7ANoKurqwilFcczhwZ44egp7tjcwbs2tvOjPW/w+IHj5S5LRGTBCj44aWZNwPeBz7n78Ozl7n6vu291963t7e3FrHFRegdHaa1P8+5Nq0iY8a4NKznQf4a+U2PlLk1EZEEKCm4zSxOF9rfd/cHSllRcfafGWbOsbnr61o3Rh8rjB9RdIiJhKmRUiQHfAPa5+1dKX1LxTGVznDg9wZrW+ul5mzqaaW+uVXCLSLAKaXHfAtwD3G5mu+LHB0pcV1EcGx7HgdUtZ1vcFneXPHHgOLmcl684EZEFmvfgpLs/AdgS1FJ0fUPjAFw2o8UNcOuGdh7ceZQXXz/FNZ2t5ShNRGTBqvrMyb7hMWpTCVob0ufMv+WqlYD6uUUkTNUd3EPRgcmEnfuFob25ls1rWvjZyxoWKCLhqdrgzuWcvuFxVi+rn3P5rRvb2dkzyJmJzBJXJiKyOFUb3D0Do0xmclw2YyjgTDdf2cZU1tl9ZGiJKxMRWZyLOnMyJPv6onOE1sxqcd//dA8Aw+NTADzwTA+HT45y942Vc7aniMiFVG2Le2/fMAmDVS21cy5vrk1Rn05ybHhiiSsTEVmc6g3u14dZ2VRLOjn3WzQzOlpq6R8eX+LKREQWp2qDe1/f8JvGb8+2qqWOY6fHcdeJOCISjqoM7sGRSV6fdY2SuXQ01zI+leP0uEaWiEg4qjK48wcmV88T3KviU+GPnVZ3iYiEoyqDe+95RpTM1pEPbh2gFJGAVGVwHzwxwvKGNE21Fx7t2FSboqEmqQOUIhKUqgzuIwOjrFvRUNC6HS11HFNwi0hAqjK4ewfHWLe80OCupf/0hEaWiEgwqi64cznn6OAYnSsu3L+dt6q5jolMjr5TanWLSBiqLriPnR5nMpu7iBZ3dIDy5WOnS1mWiEjRVF1wHxmIbgJccB93c3RKvIJbREJRhcE9CsC65YV1lTTUpmiqTfHysTOlLEtEpGiqL7gHRzGDtQUGN0QXojqgFreIBKL6gntgjI7mOmpTyYJf09Fcx4H+M7p5sIgEofqCe3CUdQWOKMnraKljdDLL0aGxElUlIlI8VRfcvQOjBY8oyeto0QFKEQlHVQX3ZCZH3/A4nQWOKMlb1ZwfEqgDlCJS+aoquF8fGsO98BElefU1SVa31OkApYgEoaqC+8hgPBTwIlvcABs6mtiv4BaRAFRXcMcn33ReZIsbYFNHM6/0nyGrkSUiUuGqK7gHR0klbN7rcM9lY0czE5nc9Ak8IiKVqrqCe2CUy1rrSSbsol+7cXUzgLpLRKTiVVdwD45d9BjuvA2rmgB0gFJEKl5VBfdCxnDnNdam6Fxez34NCRSRClc1wT0ykeHkyOSCRpTkbexoVotbRCpe1QR37+DCR5Tkbexo5tXjZ5jK5opVlohI0VVNcE9fznVRLe4mprLO4ZMjxSpLRKToqie48yffLLCPG6IWN8D+N9TPLSKVq3qCe2CM+nSSlU01C97GVauaSJguNiUilW3e4Dazb5pZv5m9uBQFLVTPwAhdKxowu/gx3Hl16STr2xoV3CJS0QppcX8LuLPEdSza4ZOjrG9beDdJ3oZVTQpuEalo8wa3u/8MGFiCWhYsl3MODxQnuDetbubQyVEmMtkiVCYiUnxV0cf9xvA4k5kc69saF72tDR3NZHPOweMaWSIilalowW1m28xsu5ltP378eLE2W5DDJ6MRJd1FCO5N0yNL1F0iIpWpaMHt7ve6+1Z339re3l6szRYkP+66GF0lV7Y3Up9OsuvI0KK3JSJSClXRVXJ4YJR00lizrG7R20olE1zTuYznFNwiUqEKGQ74APALYJOZ9ZrZJ0tf1sU5fHKEdcsbSCWL8zm0pauVva+fYnxKByhFpPKk5lvB3e9aikIW49CJUbqK0E2Sd9265UxlD7K3b5i3dy0v2nZFRIoh+K4Sd6dnYLQoBybzrutqBeC5HnWXiEjlCT64T45McmYiU5QDk3kdLXWsba3nuZ7Bom1TRKRYgg/uYo4omWnLulaNLBGRilQFwR2N4S7GyTczXdfVSu/gGP2nx4u6XRGRxZr34GSlO3RyFLPF3UAB4P6ne86ZPn56AoBdPUP88tWrF7VtEZFiqoIW9wiXLaunNpUs6nYva60nlTB1l4hIxamC4B6le2Vx+7cB0skEmy9r0cgSEak4VRDcI3StKG7/dt5161p5vneIbM5Lsn0RkYUIOrhPjU0xODpFd5FHlORt6WplZDLLgX5dcEpEKkfQwd1TohEledeti86a3H5I47lFpHIEHdyHSjSGO299WwPrVtTzk33HSrJ9EZGFCDq4ewbyLe7SBLeZccfm1Tz5yklOj0+VZB8iIhcr6OB+7cQI7c21NNSUbjj6nW9bzWQ2x6P7l/bmECIi5xN0cO99fXj6jjWl8vau5axsquVHe94o6X5ERAoVbHCPT2XZf+w013QuK+l+Egnj/Zs7eOylfl2fW0QqQrDBvbdvmGzOuaazteT7uvNtqxmZzPLkKydKvi8RkfkEG9zPx6eiX7uutC1ugHdc0UZzXUrdJSJSEcIN7t5TtDfXsrpl8feZnE9NKsF737KKR/YeI5PNlXx/IiIXEm5wHz3FNWuXYWZLsr87rl7N4OgUz+pkHBEpsyCD+8xEhlePn1mS/u28d29qpz6d5K+3H1myfYqIzCXI4H6h9xTucM0S9G/nNdSk+NiNXfzt7tc5dGJkyfYrIjJbkDdSeOFofGCyxC3u2TdXWNlcSyphfP2xV/gfH7q2pPsWETmfIFvcu3tP0bm8nhWNNUu635a6NHfd0MWDO49yJD7dXkRkqQUZ3M/3DpX8xJvz+Z13X0nCjK8/9mpZ9i8iElxwD4xMcmRgbEkPTM60elkdH76+k+/tOMLRobGy1CAil7bggvuFo6cAytbiBvjUbVcB8OUfvIS77o4jIksruODOnzH5z9aWL7jXttbzmds38Pe7X+f+Z3rmf4GISBEFF9w7ewa5or2R5rp0Wev49Huu4taN7Xzp7/byQu+pstYiIpeWoIK7f3icxw+c4H1v7Sh3KSQSxlc/soW2phr+3f07ODWqGy2IyNIIahz3X+/oJZNz7rqhq2w1zB7b/evXXsa9jx/k3/y/7dz7iV+itWFphyiKyKUnmBZ3Lud859kebr6yjctXlubmwAvR1dbIb21dx64jQ/zmH/+cwyd1VqWIlFYwwf3EKyc4MjBW1tb2+Vzb2cpffPIGBkYm+Y2v/5ynD54sd0kiUsWCCe77n+6hrbGGO65eXe5S5nTjFW08+Kmbaa5L8ZF7n+Lz391N//B4ucsSkSoURB93//A4/7jvGJ985+XUpCrzsybf9/3b7+jmsZeP8ze7jvLDF/vYduuV3HXDOlYtwXXDReTSEERw5w9KfrQCu0lmq00nuePq1Wxdv5zdvaf43//4Ml/76QHe99YOfmtrJzdfuZL6mmS5yxQJgruTyTmTmRxT2RyTmRyT2RxTWWcqmyOTdbI5J+uOAWaQTBhNtSma69I016VIJyuzsbcYFR/cu48M8Sf/9Cq3XFVZByXn09ZUy33/aiuvnRjhgWd6+N6OXn645w1qUwluuqKNd21YyXVdrVx92TLq0gpyCUMu50xkcoxPZRnPZBmfyjGR/zmVZTxz7s/8uhOZHGOTWcam4sdk9pzpifhnfnsTmRwT8fPcIk9ObqlLsaKxlramGta21rO+rYGOljoS8U1Y7r6x8huEsxUU3GZ2J/B/gCRwn7t/uaRVxXYdGeKebzxNa0M6yMuo5rtPutsa+dx7N3DwxAhm8E/7j/Nf/mEfAKmEcdWqJjZ0NHNVexNXrmqkc3kDncvraWusWbI7/Eg48q3QiUyOqbgFOpnJMZE52yKNprNMTOWmA3Z8Kjsdovnn0/Mz5y6fyC/LnLveRGbht+4zIJ1KkE4mqEla9DOeTsfTDTUpUgkjlUyQThjJpEXTiQTJhJFMxNNJI2HRdMKM/J+JO+T87IfL6GSWwZFJBkYm2dc3zI7D0R2salIJrljZyFWrmrjpihVcvrIxqL81m+9aG2aWBF4G3g/0As8Cd7n73vO9ZuvWrb59+/ZFFbbj8CC//WfPsLyhhge23cTa1vqL3sbsMdeVZHhsit7BMXqHRukbGmd0KkPv4Bgzfx116QSrmuvoaKllVXMdKxprWN5Yw4qGNMsa0iyrT9NSl6axNkVTbYrG2hQNNUlqU4mg/hNWIvfoK/hU1pnKRQGZ/3o+NeOr+mT23GWT08tzTGV8ejqT9XOXZd/89X9m+E4H6OxWbSbLZCa36FaoAak4LNPJBKlE9PzsvCgs84GaisM2lTw3aPOvSyfPhm0qGYXsOesljaRZWf9fujuDo1P0DIxw6OQor/SfYWBkEoguY/HOq1Zyy4aVXN+9nNUtdUteq5ntcPethaxbSIv7BuAVdz8Yb/w7wK8D5w3uhXB39vYN8+M9x/jx3mPs6xuma0XDgkO70rXUp9lcn2bzZS3T8yYzOU6OTDA0OsXg6CRDo1MMj09x4swkr50YYWQi+jpZiPp0krp0gtpUktp0gpoZrZua/B9S/MeVb8UkEtEfV8KiM0MTFk8nAOL5cesm/zUzP53vXwQwM6b/yxvkp5w4bRyc6Hfu08+j5fkWU/5nzqP1cu5kczOe55fnooDNeb6vM/o6Pz0d93/mclErNTvjkZ+eyubI5JxM/DMfrKWSiPtho0cUfvnfQXo69PLBObMVaqQT+d9dYnpeMm6RTm8nebaF+uaAjcI0mShviJaDmbGisYYVjTVsWbccgJNnJmhtrOHJAyf4wYt9/FV8a8KVTbVc07mMDauaWLu8nrWt9bQ319Jcl6alLkVDTaqs/46FBPdaYOaNFnuBG4tdyPhUjn/5xz9nIpNj6/rl/P4H3spvvn0tbU21xd5VxapJJVizrJ41y87/QZXNedwXGPUR5r/mTsb9gtFX53wYnW0J5sNqMpPhVM7PhlscklH4xWHK2fA8J1w5Ow1ng9aJFzIjnIELfZmbDvko2c8J/kQ++M1IxPPzHwYzn8/8EHnTT6L1EoloOv+hkzAjmTr7FTs/Pznjgyu/LJmAZCJBcjpoE2fnxevmgzP/ujkfZtOhmv9AlMrQ1lTL3Td2cc9N68nmnBePnmLXkSGe7z3FC0eHeOKVE0xeoHvILOrutPj/UntzLY9/4faS1120g5Nmtg3YFk+eMbP9C93WIeB7Mza2CCuBE4vfTEXRewpHNb6vqntPHyvitvYD9h8X/PL1ha5YSHAfBdbNmO6M553D3e8F7i10x0vBzLYX2mcUCr2ncFTj+6rG9xSiQgY4PgtsMLPLzawG+Cjwd6UtS0REzmfeFre7Z8zsd4EfEQ0H/Ka77yl5ZSIiMqeC+rjd/WHg4RLXUgoV1XVTJHpP4ajG91WN7yk4847jFhGRylJ9J/GLiFS5qgxuM7vTzPab2Stm9p/KXU8xmNk3zazfzF4sdy3FYmbrzOxRM9trZnvM7LPlrmmxzKzOzJ4xs93xe/pSuWsqFjNLmtlzZvZQuWu51FVdcMen6P9f4FeAzcBdZra5vFUVxbeAO8tdRJFlgM+7+2bgJuDTVfC7mgBud/drgS3AnWZ2U5lrKpbPAvvKXYRUYXAz4xR9d58E8qfoB83dfwYMlLuOYnL3PnffGT8/TRQKa8tb1eJ45Ew8mY4fwR9IMrNO4FeB+8pdi1RncM91in7QYXApMLNu4Drg6fJWsnhxl8IuoB94xN2Df0/AV4EvAAu/PKAUTTUGtwTGzJqA7wOfc/fhctezWO6edfctRGcZ32Bmbyt3TYthZh8E+t19R7lrkUg1BndBp+hLZTCzNFFof9vdHyx3PcXk7kPAo4R/bOIW4NfM7BBR1+PtZvaX5S3p0laNwa1T9ANh0fUwvwHsc/evlLueYjCzdjNrjZ/XE13H/qXyVrU47v5Fd+90926iv6efuvvHy1zWJa3qgtvdM0D+FP19wHer4RR9M3sA+AWwycx6zeyT5a6pCG4B7iFqwe2KHx8od1GLtAZ41MyeJ2pEPOLuGj4nRaUzJ0VEAlN1LW4RkWqn4BYRCYyCW0QkMApuEZHAKLhFRAKj4BYRCYyCWxbNzLLxGOw98eVMP29miXjZVjP7wwu8ttvM7l66at+077H4uiIVwcw+El+OWGO/5bwU3FIMY+6+xd2vJjpT8FeA/wzg7tvd/TMXeG03UJbgjr0aX1ekYPGlg0vC3f8K+Nel2r5UBwW3FJW79wPbgN+1yG351qOZvXvGGZLPmVkz8GXgXfG834tbwY+b2c74cXP82tvM7DEz+56ZvWRm345PmcfMrjezn8et/WfMrDm+Qt//NLNnzex5M/u3hdRvZn9jZjvibw/bZsw/Y2b/y8x2A+84zz6vjp/vive5IX7tx2fM/9N88Mc3/NgZb+MnRfw1SLVzdz30WNQDODPHvCGgA7gNeCie9/fALfHzJqKbVU8vj+c3AHXx8w3A9vj5bcApoouGJYhO/38nUAMcBK6P12uJt7sN+IN4Xi2wHbh8Vo3dwIuz5q2If9YDLwJt8bQDH46fn2+fXwM+NmOdeuCt8ftOx/O/DnwCaCe6/PDlM/c7470+NNe/tR56uHthd3kXKZInga+Y2beBB929N240z5QG/sjMtgBZYOOMZc+4ey9A3C/dTRTmfe7+LIDHl4U1s18GrjGzD8WvXUb0QfDaPDV+xsx+I36+Ln7NybiW78fzN51nn78Afj++6cCD7n7AzN4L/BLwbPxe64mu030T8DN3fy3eRlXdJENKS8EtRWdmVxAFXT9RixMAd/+ymf0D8AHgSTO7Y46X/x5wDLiWqGU9PmPZxIznWS78/9eAf+/uP7qIum8D3ge8w91HzewxoC5ePO7u2Qu93t3vN7Onie4U83DcPWPAn7v7F2ft658XWpfIbOrjlqIys3bgT4A/cneftexKd3/B3f870ZXz3gKcBppnrLaMqDWbI7py4HwHAvcDa8zs+ngfzWaWIro65Kfi631jZhvNrHGebS0DBuPQfgtRq7jgfcYfWAfd/Q+BvwWuAX4CfMjMVsXrrjCz9cBTwK1mdnl+/jy1iUxTi1uKoT7uukgT3QD4L4C5rq/9OTN7D9Htr/YAP4ifZ+ODft8i6gP+vpl9AvghMHKhHbv7pJl9BPhafP3rMaJW831EXSk744OYx4F/Mc/7+CHwO2a2jyicn7rIfX4YuMfMpoA3gP/q7gNm9gfAj+MhklPAp939qfjg54Px/H6iETki89JlXeWSZdF9Lh9y94q6tVjcZfMf3P2D5a5FKpO6SuRSlgWWVdoJOETfOgbLXYtULrW4RUQCoxa3iEhgFNwiIoFRcIuIBEbBLSISGAW3iEhg/j8+doCWr7xmJwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(legacy['legacy_ra'], legacy['legacy_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, legacy, \"legacy_ra\", \"legacy_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add IBIS" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYXHWd5/H3t259T3c63QkhdyDIRZBLBF1gZLwiOrLu6CjM6I6jm1lXV53V2dEZHx3d55nHeXbXnXHQUVZ8vCw6zoijyDAqoyDeQEK4SIKQQCAJhKTTSd+7q+vy3T/qVKdoOl3V3VV1qk99Xg/nqapTp8/5VhI+9evf+Z3fMXdHRESiJRZ2ASIiUn0KdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBibAO3NfX55s3bw7r8CIiy9J999131N37y20XWrhv3ryZHTt2hHV4EZFlycyeqmS7st0yZrbBzO4ws91mtsvM3j/HNlea2bCZPRAsH1tM0SIiUh2VtNyzwAfdfaeZdQH3mdnt7r571nY/dffXV79EERFZqLItd3c/5O47g+ejwCPAuloXJiIii7eg0TJmthm4ELhnjrdfamYPmtm/mtm5VahNREQWqeITqmbWCdwMfMDdR2a9vRPY5O5jZnY18B1g6xz72A5sB9i4ceOiixYRkflV1HI3sySFYL/J3b89+313H3H3seD5bUDSzPrm2O4Gd9/m7tv6+8uO5BERkUWqZLSMATcCj7j7p0+yzSnBdpjZJcF+B6tZqIiIVK6SbpnLgLcBvzazB4J1fw5sBHD3zwNvAt5tZllgEnir6/59IiKhKRvu7v4zwMpscz1wfbWKEhGRpQntCtVG9vV79s+5/rpLdRJYRJYHTRwmIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQWXD3cw2mNkdZrbbzHaZ2fvn2MbM7DNmttfMHjKzi2pTroiIVCJRwTZZ4IPuvtPMuoD7zOx2d99dss1rga3Bcinw98GjiIiEoGzL3d0PufvO4Pko8AiwbtZm1wBf9YK7gR4zW1v1akVEpCIL6nM3s83AhcA9s95aBxwoeX2Q538BYGbbzWyHme0YGBhYWKUiIlKxisPdzDqBm4EPuPvIYg7m7je4+zZ339bf37+YXYiISAUqCnczS1II9pvc/dtzbPI0sKHk9fpgnYiIhKCS0TIG3Ag84u6fPslmtwBvD0bNvAQYdvdDVaxTREQWoJLRMpcBbwN+bWYPBOv+HNgI4O6fB24Drgb2AhPAO6pfqoiIVKpsuLv7zwArs40D76lWUSIisjS6QlVEJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBCncRkQhSuIuIRJDCvYyhiWkOj0yFXYaIyIIo3Mv4p/sOcuPP9pHLe9iliIhUrJJ7qDat4ckMTx4dx4F9R8fDLkdEpGJquc/j108P40AiZjx0cCjsckREKqaW+zweOjjEqd2trF7Ryq5nRpjO5kkl9H0oIo1PSXUSx8anOXh8kvPX93D+um4mMzl+tncg7LJERCqicD+JYjfMeeu7OWNNJ63JGLc+eCjkqkREKqNwP4mHDg6zsbedle0pErEYLzy1mx/uPsxUJhd2aSIiZSnc53B4ZIpnR6Z40frumXXnre9mLJ3lzkePhFiZiEhldEJ1Dg8dHMKAF647Ee6n9XXSkYrz2Tse59h4Zmb9dZduDKFCEZH5qeU+hycGxtnQ205Xa3JmXTxmnL12BXuOjOKuC5pEpLEp3OcwNJmhrzP1vPWndLcylckzPq1+dxFpbAr3WTK5PCOTGbrbnh/ufZ0tABwdTde7LBGRBWn6Pvev37P/Oa+PT0zjQE978nnbruooBP7RsTSb+zrqUZ6IyKKo5T7L0EThZGlP2/PDvac9RdyMwfHpepclIrIgCvdZhicLwd09R8s9HjN6O1IcHVO3jIg0NoX7LCda7s/vcwfo61S4i0jjKxvuZvYlMztiZg+f5P0rzWzYzB4Ilo9Vv8z6GZrM0J6Kn3SCsFWdLQyOTZPXcEgRaWCVtNy/DFxVZpufuvsFwfLJpZcVnqGJ6TlPphb1dbaQzTvDk5mTbiMiEray4e7udwHH6lBLQxiayJy0SwaYGf8+OKaTqiLSuKrV5/5SM3vQzP7VzM6t0j7rzt0ZmszMeTK1aGasu/rdRaSBVWOc+05gk7uPmdnVwHeArXNtaGbbge0AGzc23pwsU5k809n8nMMgi7paE6TiMYW7iDS0Jbfc3X3E3ceC57cBSTPrO8m2N7j7Nnff1t/fv9RDV91QMAyyp/3k3TJmxiqNmBGRBrfkcDezU8zMgueXBPscXOp+wzA8zwVMpfqCETMiIo2qbLeMmX0DuBLoM7ODwMeBJIC7fx54E/BuM8sCk8BbfZlOmzgUjICZb7QMFE6q7npmmGw+X4+yREQWrGy4u/u1Zd6/Hri+ahWFaGgiQzxmdLTM/8eyqrOFvMPxcQ2HFJHGpCtUSwxNTtPdliRW6GU6KY2YEZFGp3AvURjjPn+XDJwY665wF5FGpXAvMTyZKdvfDtCeStCeiuukqog0LIV7IJf3k96kYy6rNDukiDQwhXtgZCpz0pt0zKWvs0XhLiINS+EemO8mHXNZ1ZliZCrLVEb3UxWRxqNwDwxXcHVqqZXBdk8PTdasJhGRxVK4B4ot9+4KW+7FL4GDxxXuItJ4FO6BoYn5b9Ix28qgb/5phbuINCCFe2Bocv6bdMy2oi1JzODg8YkaViUisjgK98DwZIbu1srDPWZGd1tSfe4i0pAU7oGxdI7OBYQ7FE6qqs9dRBqRwh3IuzORztJZZsKw2XraU+qWEZGGpHAHJqZzONDZEl/Qz61sT3JkNE06q7HuItJYFO7A2FQWYFHdMu5waGiqFmWJiCyawh0YSxfCvWOBLffi6Br1u4tIo1G4cyLcF9rnfuIqVfW7i0hjUbgD44sM9xNj3dVyF5HGonCn0HKPGbQlF9YtE48Za7vbFO4i0nAU7hTCvbMlgZW5vd5c1q1s0xQEItJwFO4UumXK3RT7ZNb3tGmsu4g0HIU7J1rui7F+ZRvPjkyRyeWrXJWIyOIp3FlquLeTd3h2WGPdRaRxNH24uztjU4sP93Ur2wA4oK4ZEWkgTR/u09k82bwvvs89CHedVBWRRtL04T5zAVPr4sJ9bXcbprHuItJgFO6LvICpKJWIsaarVeEuIg1F4T4zr8ziwh0KXTOagkBEGonCfYktdyiEu1ruItJIFO6LnBGy1LqVbRwaniKrse4i0iCaPtzH01naknESscX/UWxY2U4u7zw7orHuItIYmj7cx6YWP/VA0cbedgD2H1O/u4g0BoV7Orek/naADUG4H1C4i0iDKBvuZvYlMztiZg+f5H0zs8+Y2V4ze8jMLqp+mbUzns4u+N6ps63tbiURM7XcRaRhVNJy/zJw1TzvvxbYGizbgb9feln1M5bOLvoCpqJEPMa6lW3sP6YRMyLSGMqGu7vfBRybZ5NrgK96wd1Aj5mtrVaBtTSdzTOZyS25zx0K/e5quYtIo6hGn/s64EDJ64PBuoZ3bHwaWNoY96INve3sHxxf8n5ERKqhridUzWy7me0wsx0DAwP1PPScjo6lgeqE+8bedo5PZBiZyix5XyIiS1WNcH8a2FDyen2w7nnc/QZ33+bu2/r7+6tw6KWpdriDRsyISGOoRrjfArw9GDXzEmDY3Q9VYb81NzhWvW4ZhbuINJKyqWZm3wCuBPrM7CDwcSAJ4O6fB24Drgb2AhPAO2pVbLUVW+7VOKG6QRcyiUgDKZtq7n5tmfcdeE/VKqqjwfFpEjGjJbH0X2C625J0tyUV7iLSEJr6CtWjo2k6WxKYWVX2VxgOqbHuIhK+5g738eklX8BUamNvu/rcRaQhVC/ZlqHBsTQdqaX9EXz9nv0zz0ensuwfnCCXd+Kx6vw2ICKyGM3dch9LV2WkTFFvR4qca+pfEQlf04Z7Pu8cHZumq4rdMr0dKQD2D6prRkTC1bThfnximlzeq9rnXgx39buLSNiaNtwHgjHuXa3Jqu2zuy1JzDTWXUTC17zhPlq9qQeK4jHTWHcRaQhNH+7V7HMHWNXRonAXkdAp3KvYcgdY2ZFSn7uIhK6pw70tGSdVhakHSvV2pBgcn2Ysna3qfkVEFqJ5w30sTX9XS9WmHigqjph58qhu3CEi4WnecB8thHu1rQ72uffIWNX3LSJSqaYN9yOjafo7qx/uqzpTJGLGniOjVd+3iEilmjbca9VyT8RibO7rYM9htdxFJDxNGe7pbI7hyUxNwh3gjP5OdcuISKiaMtyPBrfXq1W4b13TyZOD46SzuZrsX0SknKYM9+IY99W1armv7iTv8ORRjXcXkXA0dbjXrOW+ugtAJ1VFJDQK9xo4rb+DmKGTqiISmqYO91UdtQn31mScjb3tOqkqIqFpznAfm2Jle7LqUw+UOmN1l7plRCQ0zRnuNRrjXmrrmk72HR0nk8vX9DgiInNRuNfI1tWdZHLOU7rlnoiEoDnDfaw2Uw+UOmN1J6A5ZkQkHE0X7u5el5b76f3FcFe/u4jUX9OF+1g6y1QmX/Nw72hJsK6njT1quYtICJou3Gs9xr3U1jWdGusuIqFounA/Ugz3ztaaH2vr6k4eHxgjl/eaH0tEpFTThXtdW+6ru0hn87qnqojUncK9hs5euwKAh58ZrvmxRERKNV+4j6VJxIyetmTNj3XW2i5aEjHu3z9U82OJiJRqvnAPhkHGYtW9MfZckvEY56/v5v79x2t+LBGRUk0b7vVy4caVPPzMiG7cISJ1VVG4m9lVZvaome01sw/P8f4fmtmAmT0QLO+qfqnVMVCjG2OfzIUbepjO5nnkkC5mEpH6KRvuZhYHPgu8FjgHuNbMzplj02+6+wXB8sUq11k1A2P1b7kD6poRkbqqpOV+CbDX3Z9w92ngH4BraltWbUxn8wyOpVm9ovZj3ItO6W5lbXerTqqKSF1VEu7rgAMlrw8G62b7XTN7yMy+ZWYb5tqRmW03sx1mtmNgYGAR5S7N00OT5B029rbX9bgXbuzh/gNquYtI/SSqtJ/vAd9w97SZ/THwFeDlszdy9xuAGwC2bdtW98s29wcXE9U63L9+z/7nvHaHA8cm634yV0SaVyUt96eB0pb4+mDdDHcfdPd08PKLwMXVKa+66hXusxWP98ABdc2ISH1UEu73AlvNbIuZpYC3AreUbmBma0tevgF4pHolVs+BYxOkEjFW17n1fGpPGzHTSVURqZ+y3TLunjWz9wI/AOLAl9x9l5l9Etjh7rcA7zOzNwBZ4BjwhzWsedH2D06wYWVbXS5gKpWMx1jb3aaTqiJSNxX1ubv7bcBts9Z9rOT5R4CPVLe06tt/bKLuXTJFG3rbefDgELm8E6/zl4uINJ+muULV3TkQYrhv7G1jYjrHo8/qYiYRqb2mCffjExlG01k2ruoI5fibg+P+dE/9h4CKSPNpmnAPa6RMUU97inPWruDfHjkcyvFFpLko3OvoVees4b6njjM4li6/sYjIEjRNuBfvhrShty20Gl51zhryDj/+zZHQahCR5tA04b5/cIK+zhbaU9W6KHfhzj11BWu7W7l9t7pmRKS2mifcj02wMcRWO4CZ8cqz1/DTPUeZymh+dxGpnSYL9/D624tedc4aJjM5fr73aNiliEiENUW4T2fzHBqebIhwv/S0XjpbEho1IyI11RTh/kww1e+GBgj3lkScl72gn3975Aj5fN0nxhSRJtEU4d4IwyBLversNQyMprlfs0SKSI00V7ivaoxw/+2zVtOWjPMPv9pffmMRkUVoinA/cGyCVDzGmq763V5vPt1tSd508Xq++8AzDIzqgiYRqb6mCPf9xyZY31v/qX7n847LNjOdy/O1u58KuxQRiaDwruipo0YZBjn79ntnndLFTXc/xX+58nRak/GQqhKRKIp8y93d2T/YGOE+22Vn9DE4Ps13H3i6/MYiIgsQ+XA/NDzFaDrLlr5wpvqdz2l9HZy9dgU3/mwf7hoWKSLVE/lw/9W+YwC8eHNvyJU8n5nxzsu38NjhMe58TPO8i0j1RD7c79l3jK7WBGevXRF2KXP6nRetZWNvO5/83m7NNyMiVRP5cP/VvkFevLm3Ye9b2pKI81dvPI99R8f52x/tCbscEYmISIf70bE0jw+Mc8mWxuuSKXX51j7efPF6brjrCXY9Mxx2OSISAZEO92J/e6OHO8BfvO5sVran+LObHyKby4ddjogsc5EP97ZknBee2h12KWX1tKf4xBvO5eGnR/j07Y+FXY6ILHORvojpnn3HuGhTD6lE436HlV7Y5O5s27SSz935OKs6W3jn5VtCrExElrPGTb0lGp7I8JtnR7h0y6qwS6mYmXHNBeu46txT+B+37uafdhwIuyQRWaYiG+47njqG+/Loby8Vjxl/e+0FXH5GH39280P88/0Hwy5JRJahyHbL3LPvGKl4jAs29IRdyoK1JOJ84W0X844v38uffPNB7nvqOB993Tmaf0akhLuTzuYZmcwwMpVldCrD6FSW0aksY+lM8JhlcjrHxHSOyUyOXN4xA8PobImzekUrp6xo5fTVnZy3rntmyPTseaAArrt0Y70/4pJEOtxftKF72QZiR0uCm951Kf/rh4/yhZ88wc6nhvjMtRdyxurOsEsTqQp3Z3w6x8hkIYiHJzNBUGdmAvvE6yyj6eBx6kSYZ3Llp+1Ixo1kPEYyHqN4uUveIZ3NMZU5MTKtLRnn9P7ClCDnre8mEVveHRuRDPfhiQwPPz3Mu192etilLEppq2FTbwdvf8km/um+g7zmb+7irS/ewPtfsZXVKxpjbnqR6WyeoclphiYyDE1kOD4xzfBEZmbd8GSGoSC4h0sfp7LkytxqMpWI0ZqI0ZqM05aM05qMs6ItyZoVrbQm47QmYrQE69uShe1agvWtyTipRIyYnfwCxulsnpGpDM8MTbLnyBh7Do/y8DMj/HD3Ya7Y2se2Tb0NPSBjPpEM9+vv2EPenavPWxt2KVVx1toVfOCVW3lmaJKb7tnPzTsPct0lm7j2kg1sXdMVdnkSAe7OxHSOockMQ0E4F0N5eDIzE9LDpYE9Udh2fPrk02bErNAibkvFZx6L4dw2E8pxWlNxWpOxwjbB+tZkvOZXlqcSMfo6W+jrbOH89T24O3uOjHHno0e49aFD/OTRAa4+fy3nr2v84dSzRS7cnzw6zpd/8SRvvng955zamPPJLEZXa5JPXHM6f3T5Fv7P7Y/x1V8+yZd+vo+LNvbwxovW8/KzVrOupy3sMiVkxa6OoYlZIRyE8vHxaY5PnAjpYpgPTWTIztOKjpsVAjoI6fZUnNVdLWxe1U5bKkF7qrCuLRWnPXjdlozTkohh87ScG42ZceaaLs5c08W+o+Pc9utDfPPeA+x86jhXbO1vmFt1VsLCmmp227ZtvmPHjqrv94+/toOf7jnKnR+6sqKui7lOnCwHY+ks9+8/zmOHR3l8YByAM9d0cvkZ/Vy0qYcLN67k1O7WZfU/lkAu74U+5clsSd9zsY85O9M/PXPyMDhxWGlXRzJuJ8I3Fac9GZ8J52LLuvR5IcgTJOPWlP+W8u7c/cQgt+8+DMAHXnkm77piC8l4eF01Znafu28ru12Uwv2Xjw9y7f+9mw+9+kze+/KtFf3Mcg33IndnYCzNY8+O8ujhUZ4anJhpgfV1pmZaIWes7mTTqnY29XZwak8riRD/cUZVsdV8YtRGIWzHgmAencowlj4R0iNTJwK8eEJxLJ0te5zSfujCcqJPutilUWxJtxZb0kFYhxlKy9nwZIYHDhznB7sOc9YpXXzqd88PbSReVcPdzK4C/haIA19090/Ner8F+CpwMTAIvMXdn5xvn9UO96lMjv/wuV8wPJnhRx98WcWjZJZ7uM+WyzvPDk+x//gEzxyf5PDoFEdG00xnT4wKiBms7mrllO7CMLC+rhSrOlpY1Zmiuy05s3S1JuhoSdDZkqA9lWjYmTUXyt3J5JypbI6pTI50Js9kJlcyZC7L5HSeieksE8G6ieks4+nC41i6sIynszND74rBXeb8IAa0BH3LraVLIkZb6kQfdLHVPLNtIh6cLJz/BKHUznWXbuT7Dz/Lx295mMMjaV533lre94qtvOCU+p73qjTcy/a5m1kc+CzwKuAgcK+Z3eLuu0s2eydw3N3PMLO3An8NvGVxpS/cHb85wl9+bxdPDU7w2esuWrbDH6shHjPWrWxj3coT/e95d0YmMxybmOb4+DTHxqcZmcwyPJVh5/7jM2OBy33Np+LFAIrRkij0p6aKS/zEYzIeIxE3EjEjEY+RiBnxYIlZcaEw3tiM2VHlFAI47+BeqD+Xd3Lu5HJONu9k83myOSeTy5PNFx4Li5PN5ZmeecyTyRYe09k808Hzhf7CavCcz9oa9Ce3JGKs7mphQ297oQWdeG5runQ0R2uy8LPN2L0RFVe98BQuO2MVn//J43zlF0/xL78+xFXnnsIbL1rHFVv7aE81zmnMSiq5BNjr7k8AmNk/ANcApeF+DfCXwfNvAdebmXkN+nzcnYHRNHsHxnj8yBh3PDrAj39zhNP6O/jaOy/hiq391T7kshczo6c9RU97Cvrm3iaXdyamszMt2MmgRZvO5klnc0FIOtO5PNmSQC30EWfJ5pxcPk/OnWyuEMx5d/JBKOcd8nnHcdxPBHiReyHsiwwj+A+zwmcwM+IGseBLIm7BF0aM4HmMeIzgi6QQvB0tCeJmxGJ24gsn+NJJFh+DcdCpeIxk4rmPJ76wmrPPWZ6vqzXJn77mLP7TFadx48/28ZVfPMn3dz1LSyLGZWf0ce6pK9jS18GmVR2s6kjR2Vr47TcVjxGr42+/lYT7OqB0kpODwKUn28bds2Y2DKwCjlajyFL/fP/T/Ld/fHDmdXdbkg+/9iz+6LIty3Y8aiOIx4yu1iRdrcmwSxFZFnraU3zw1S/gfa/Yyr37jvHD3Ye5a88AP3ls4KQntWMGiViM7b91Gh96zQtqWl9df4cws+3A9uDlmJk9Wo39vjtYFqmPGnwJhSyKnwmi+bmi+Jkggp/r96u4rz/9K/jTxf/4pko2qiTcnwY2lLxeH6yba5uDZpYAuimcWH0Od78BuKGSwurFzHZUcnJiOYniZ4Jofq4ofiaI7udaTirpx7gX2GpmW8wsBbwVuGXWNrcA/zF4/ibgx7XobxcRkcqUbbkHfejvBX5AYSjkl9x9l5l9Etjh7rcANwJfM7O9wDEKXwAiIhKSivrc3f024LZZ6z5W8nwKeHN1S6ubhuomqpIofiaI5ueK4meC6H6uZSO0K1RFRKR2NHZQRCSCmjbczewqM3vUzPaa2YfDrqcazOxLZnbEzB4Ou5ZqMbMNZnaHme02s11m9v6wa6oGM2s1s1+Z2YPB5/pE2DVVi5nFzex+M7s17FqaWVOGe8mUCq8FzgGuNbNzwq2qKr4MXBV2EVWWBT7o7ucALwHeE5G/qzTwcnd/EXABcJWZvSTkmqrl/cAjYRfR7Joy3CmZUsHdp4HilArLmrvfRWG0UmS4+yF33xk8H6UQGuvCrWrpvGAseJkMlmV/AszM1gOvA74Ydi3NrlnDfa4pFZZ9YESdmW0GLgTuCbeS6gi6Lx4AjgC3u3sUPtffAP8dyJfbUGqrWcNdlhkz6wRuBj7g7iNh11MN7p5z9wsoXPV9iZm9MOyalsLMXg8ccff7wq5FmjfcK5lSQRqEmSUpBPtN7v7tsOupNncfAu5g+Z8vuQx4g5k9SaGr8+Vm9v/CLal5NWu4VzKlgjQAK8yzeyPwiLt/Oux6qsXM+s2sJ3jeRuF+Cb8Jt6qlcfePuPt6d99M4f+pH7v7H4RcVtNqynB39yxQnFLhEeAf3X1XuFUtnZl9A/gl8AIzO2hm7wy7piq4DHgbhVbgA8FyddhFVcFa4A4ze4hCY+N2d9fQQakaXaEqIhJBTdlyFxGJOoW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJd6sbMcsE49V3BVLcfNLNY8N42M/vMPD+72cyuq1+1zzv2ZDAPTEMws7cE01VrbLzMSeEu9TTp7he4+7kUrsh8LfBxAHff4e7vm+dnNwOhhHvg8WAemIoFU0vXhLt/E3hXrfYvy5/CXULh7keA7cB7reDKYivUzF5WcjXq/WbWBXwKuCJY9ydBa/qnZrYzWP5d8LNXmtmdZvYtM/uNmd0UTGGAmb3YzH4R/NbwKzPrCmZm/J9mdq+ZPWRmf1xJ/Wb2HTO7L/gtZHvJ+jEz+99m9iDw0pMc89zg+QPBMbcGP/sHJeu/UPxyCG4sszPYx4+q+NcgUebuWrTUZQHG5lg3BKwBrgRuDdZ9D7gseN5J4UbuM+8H69uB1uD5VmBH8PxKYJjCZHAxCtMxXA6kgCeAFwfbrQj2ux34aLCuBdgBbJlV42bg4VnreoPHNuBhYFXw2oHfC56f7Jh/B/x+yTZtwNnB504G6z8HvB3opzA99ZbS45Z81lvn+rPWoiWxwO8CkXr4OfBpM7sJ+La7Hwwa36WSwPVmdgGQA84see9X7n4QIOgn30wh8A+5+70AHkwbbGavBs43szcFP9tN4ctiX5ka32dmbwyebwh+ZjCo5eZg/QtOcsxfAn8R3Nji2+6+x8xeAVwM3Bt81jYK87y/BLjL3fcF+4jUzVikdhTuEhozO41CGB6h0HIFwN0/ZWb/AlwN/NzMXjPHj/8JcBh4EYUW+lTJe+mS5znm/3duwH919x8soO4rgVcCL3X3CTO7E2gN3p5y99x8P+/uXzezeyjcsei2oCvIgK+4+0dmHet8G0iaAAABWElEQVR3Kq1LpJT63CUUZtYPfB643t191nunu/uv3f2vKcyYeBYwCnSVbNZNoVWcpzBrZLmTl48Ca83sxcExuswsQWFm0HcHc8ZjZmeaWUeZfXUDx4NgP4tC67riYwZfak+4+2eA7wLnAz8C3mRmq4Nte81sE3A38FtmtqW4vkxtIoBa7lJfbUE3SZLCja+/Bsw1R/sHzOy3KdyqbRfwr8HzXHCi8ssU+qRvNrO3A98Hxuc7sLtPm9lbgL8L5k+fpND6/iKFbpudwYnXAeDfl/kc3wf+s5k9QiHA717gMX8PeJuZZYBngb9y92Nm9lHgh8Hw0AzwHne/Ozhh++1g/REKI41E5qUpf0XKsMK9W29194a6DV7QPfQhd3992LVI41G3jEh5OaC70S5iovDby/Gwa5HGpJa7iEgEqeUuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIR9P8BvjaPl/UwUgQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(ibis['ibis_ra'], ibis['ibis_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, ibis, \"ibis_ra\", \"ibis_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add NDWFS" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl0W+d55/HvQ4IEN3DfJC5aLMmyvMqWLS9Z3NhJnNXONIudcTNtM3Xaadqk0+mc9DQnk6Zn2rTpdNo07rSeNnXHiZ04jZsormw3dbwksrVasq1dtBYuIsV9JwECeOcPAApMUyIkYSPw+5zDY+DiEveBZP708r3vfa455xARkdxSkOkCREQk+RTuIiI5SOEuIpKDFO4iIjlI4S4ikoMU7iIiOUjhLiKSgxTuIiI5SOEuIpKDPIvtYGbfBD4I9DvnrlrgdQP+Cng/MA38snPulcXet76+3q1cufKCCxYRyWd79uwZdM41LLbfouEOPAx8A/h/53j9fcDa6Ndm4P9E/3teK1euZPfu3QkcXkREYszsVCL7LTot45x7ERg+zy53A//PRWwHqs1sWWJliohIKiRjzr0F6Ip73h3dJiIiGZLWE6pm9oCZ7Taz3QMDA+k8tIhIXklGuPcAbXHPW6Pb3sI595BzbpNzblNDw6LnA0RE5CIlI9y3AJ+yiJuBMedcbxLeV0RELlIiSyEfA24H6s2sG/gfQBGAc+5vga1ElkF2EFkK+SupKlZERBKzaLg75+5b5HUH/GbSKhIRkUumK1RFRHKQwl1EJAclcoVqXnl0R+dbtn1yc3sGKhERuXgauYuI5CCFu4hIDlK4i4jkIIW7iEgOUriLiOQghbuISA5SuIuI5CCFu4hIDlK4i4jkIIW7iEgOUriLiOQghbuISA5SuIuI5CB1hUzAQp0iQd0iRSR7aeQuIpKDFO4iIjlI4S4ikoMU7iIiOUjhLiKSgxTuIiI5SOEuIpKDFO4iIjlI4S4ikoMU7iIiOUjhLiKSgxTuIiI5SOEuIpKDFO4iIjlI4S4ikoMU7iIiOUjhLiKSgxIKdzO7y8yOmFmHmX1hgdfbzew5M9trZq+Z2fuTX6qIiCRq0XA3s0LgQeB9wAbgPjPbMG+3LwKPO+c2AvcCf5PsQkVEJHGJjNxvAjqcc8edcwHgO8Dd8/ZxQGX0cRVwOnkliojIhUok3FuArrjn3dFt8b4M3G9m3cBW4LcWeiMze8DMdpvZ7oGBgYsoV0REEpGsE6r3AQ8751qB9wOPmNlb3ts595BzbpNzblNDQ0OSDi0iIvMlEu49QFvc89botnifBh4HcM69DJQA9ckoMNN+1jHIMwf6CIbCmS5FRCRhiYT7LmCtma0ys2IiJ0y3zNunE7gDwMyuIBLuOTHv8tOjA7xwdICHfnqckelApssREUnIouHunAsCnwWeAQ4RWRVzwMy+YmYfju72u8CvmdmrwGPALzvnXKqKTpdJf5AJf5D1zT4GJvx84ycdvDEwmemyREQW5UlkJ+fcViInSuO3fSnu8UHgtuSWlnm9YzMA3HpZPe+/ehkPv3SSJ187zefuWJfhykREzk9XqJ5H39gsAMuqSqiv8HJNSxUDE37Nv4tI1lO4n0ff2CyVJR7KvZFfcJqqSgg76J/wZ7gyEZHzU7ifR+/YLM1VJWefN1dGHp8Zn81USSIiCVG4n0MwHGZgws+yqtKz2+orvBQW2NnpGhGRbKVwP4eBCT8h5940ci8sMBp9Xvo0cheRLKdwP4fe2MnUypI3bW+uLNG0jIhkPYX7OfSNzeIpMOoqvG/a3lxVwvhskGl/MEOViYgsTuF+Dr1jMzRVllBYYG/aHjupqqkZEclmCvcFOOfoHZtlWVXJW15rqlK4i0j2U7gvYGI2yHQg9KaTqTE+r4ey4kKtmBGRrKZwX0BsVL5QuJsZzZUlGrmLSFZTuC/g5ytlShd8vbmqhP5xP+Hwku+NJiI5SuG+gN6xGapLiygtLlzw9ebKEgKhMF0j02muTEQkMQr3BfTNazswX+y1Q70T6SpJROSCKNwXMD47R01Z8Tlfb/SVYMCRPoW7iGQnhfs8c6Ews3NhfCXnbnVf7CmgtryYw33jaaxMRCRxCvd5JmcjV55WeM9/H5PmqhKOnNHIXUSyk8J9nsloW4GK84zcAWrLi+kemdGKGRHJSgr3eSYSHLnXlBUTCIYZnNKNO0Qk+yjc55nwzwHgKyk6737VZZHXu0dmUl6TiMiFUrjPE5uWKfcuvMY9pjq6mqZH4S4iWUjhPs/kbJDSokI8Bef/o6kp1chdRLKXwn2eSX/wvMsgY7xFhVSXFdEzqqtURST7KNznmZgNLrpSJqa1plTTMiKSlRTu80z6g4uulIlpqS7VtIyIZCWF+zyTs0F8CYZ7a00ZPaMzOKe17iKSXRTucab8QQKh8KLLIGNaqkuZDoQYmZ5LcWUiIhdG4R5nYCJyQVLC0zI1kX7vmncXkWyjcI8zOBkN9ws4oQrQrb7uIpJlFO5xYiP3RJZCArRWlwHQM6qRu4hkF4V7nIHJC5uWqSz14PN6tGJGRLKOwj3O4IQfA8oTDHczo6VGyyFFJPso3OMMTPop83ooMEv4e1prSjXnLiJZR+EeZ2DCn/Aa95iW6lLNuYtI1kko3M3sLjM7YmYdZvaFc+zzcTM7aGYHzOzR5JaZHgOTgYRPpsa01JQyMRtkbEZr3UUkeyyaZGZWCDwIvBvoBnaZ2Rbn3MG4fdYCvw/c5pwbMbPGVBWcSoMTfhp93gv6ntaa6IqZkRmqShO7+ElEJNUSGbnfBHQ454475wLAd4C75+3za8CDzrkRAOdcf3LLTD3nHAOT/oTXuAM8uqOT/T1jADy2s5NHd3SmqjwRkQuSSLi3AF1xz7uj2+KtA9aZ2TYz225mdy30Rmb2gJntNrPdAwMDF1dxiozPBgkEwxc85x67acfIdCAVZYmIXJRknVD1AGuB24H7gP9rZtXzd3LOPeSc2+Sc29TQ0JCkQyfH2dYDFzjnXl5cSFGhMar+MiKSRRIJ9x6gLe55a3RbvG5gi3Nuzjl3AjhKJOyXjLOtB7wXNm9uZlSXFWvkLiJZJZFw3wWsNbNVZlYM3AtsmbfPD4iM2jGzeiLTNMeTWGfKXWjrgXg1ZUUauYtIVlk03J1zQeCzwDPAIeBx59wBM/uKmX04utszwJCZHQSeA37POTeUqqJT4UI7QsarLtXIXUSyS0JJ5pzbCmydt+1LcY8d8F+jX0vS4KQfT4FRWlx4wd9bXVbEdCBEIBhOQWUiIhdOV6hGDUz4qa/wXlDrgZjqssg8vS5kEpFsoXCPGpj0U+8rvqjvrSqNfN/ojKZmRCQ7KNyjBif9NFRc2NWpMWdH7jqpKiJZQuEeFZuWuRiVJUUYMKppGRHJEgp3Iq0HhqcC1F1kuBcWGJWlWg4pItlD4Q5M+oPMhRy15Rff+KuqtEhz7iKSNRTuwMhUZMRdU3ZxJ1QhMu+uOXcRyRYKd37e9OuSwr20iLGZOcJhl6yyREQumsIdGI6Fe/nFh3tVWTHBsGNoSlMzIpJ5CndgNBrutZcQ7tXRG3Wc1i33RCQLKNyB4bNz7hd/QjW21l3hLiLZQOEOjEwFKLDIevWLVR29SlU3yxaRbKBwJ3JCtbqsmIKCC+8rE1NSVECxp4DTo7NJrExE5OIo3ImE+6VMyUD0ph2lRZqWEZGsoHAnss79Uk6mxlSXFXF6TOEuIpmncOfn0zKXqqq0WCN3EckKCndgeCpAbRLCvbqsiMHJALNzoSRUJSJy8fI+3J1zjE7PUX0JfWViYmvde8d0UlVEMivvw30qECIQCidl5F6lte4ikiXyPtxHpi699UCM1rqLSLZQuCehaVhMZakHM43cRSTz8j7ch6difWUufc7dU1BAo8+rcBeRjMv7cI/dPSkZI3eA5dWlukpVRDIu78M9NnJPbrhr5C4imZX34T4yHW0aVnrp0zIALdWl9IzO4Jxu2iEimaNwnw5QVVpE4SU0DYvXUl2KPxhmYNKflPcTEbkYCvepuaQsg4xpry0DoGt4OmnvKSJyoRTu08lpPRDTdjbcNe8uIpnjyXQBmfTojk6OD0xRU1bEozs6k/KerTWlAHRq5C4iGZT3I/fpQJAyb/L+jSspKqSp0qtwF5GMyutwd84xHQhRVlyY1Pdtry3TnLuIZFReh3sgFCYYdpQXJ3d2qq1G4S4imZXX4T4diPRdT/bIva22jN7xWfxB9XUXkcxIKNzN7C4zO2JmHWb2hfPs94tm5sxsU/JKTJ1pfyzckztyb68twznUhkBEMmbRcDezQuBB4H3ABuA+M9uwwH4+4HPAjmQXmSpTgSAA5d4kz7nXRZZD6qSqiGRKIiP3m4AO59xx51wA+A5w9wL7/RHwp8CSGa7+fFom+XPuoHAXkcxJJNxbgK64593RbWeZ2fVAm3PuX5NYW8pNR0fuyZ5zb/R5KfYU6KSqiGTMJZ9QNbMC4C+A301g3wfMbLeZ7R4YGLjUQ1+yKX8IA0qTHO4FBUZbTanCXUQyJpFw7wHa4p63RrfF+ICrgOfN7CRwM7BloZOqzrmHnHObnHObGhoaLr7qJJkOBCkpKqTAktM0LF5bbZmmZUQkYxIJ913AWjNbZWbFwL3AltiLzrkx51y9c26lc24lsB34sHNud0oqTqLpQCjpJ1Nj2hXuIpJBi4a7cy4IfBZ4BjgEPO6cO2BmXzGzD6e6wFSaDgSTfjI1pr22jInZIGPROz2JiKRTQsnmnNsKbJ237Uvn2Pf2Sy8rPaYDIaqSdJOO+VrjVsxcXVaVkmOIiJxLXl+hOuUPJr31QEysr7umZkQkE/I23FPVNCymrTbS+rdrROEuIumXt+E+HQgRDLuktvuN5yspoqasSCN3EcmIvA33ockAABUpCndQ618RyZy8DffBqcgNrCtStBQSImvdFe4ikgl5e5u9wYlYuCd3tUz87fomZoN0Dk/zre2nuP/mFUk9jojI+eTtyH1oKjItk6qLmABqy4sJOxjVWncRSbP8DffJyMi9PIVz7o0+LwD9E0umUaaI5Ii8DffByQBeTwFFhan7I2j0lQDQP+5P2TFERBaSx+HuT+lKGYh0m/R5PfRPKNxFJL3yNtyHJgMpD3eAhkovA5qWEZE0y99wn/KndL49ptFXQv+EH+dcyo8lIhKTv+GeppF7o8+LPximb1yjdxFJn7wM91DYMTwdoKIkPeEOcOzMZMqPJSISk5cXMQ1PBXAutcsgYxorIytmOvonece6zN99SkQSE39BYswnN7dnoJKLk5fhPnS29UDqP355cSFlxYUc69fIXSRbLRTkS11eTsvEmoal8urUGDOj0eelo38i5ccSEYnJy5H74GT6Ru4ADb4SjvVP4JzDUnAzbhE5t3DYcahvnJc6hnh6fx9DU36GpwKUez2sbfSxtqmClXXlFBbk1s9mnoZ76tv9xmv0edl1cpihqQD1Fd60HFMkn/WPz/LisUFeODrASx2DZ3tJ+Uo81JUXs6bRx+h0gG0dg7x4bIC2mlI+/bbVFHtyZzIjL8N9aNKPp8AoKUr9tAxAY+XPV8wo3EWSzx8MsfvkCC8eG+DFo4Mc6h0HIgO4tY0V/ML6Ri5rqHjLPZP9cyFe6xnjB3t7+P4r3dx7Y1vO/Hadp+EeoLa8mII0/SXGesx09E9wy2V1aTmmSC5zznFyaJoXjvTz2M4ujg9OMhdyFJrRXlfGezc0sbbJR3NVyXl/zr1Fhdy4spaZQIinD/TRWOnljvVNafwkqZOf4T7lpy6NI+jKEg8VXg8dWjEjctGm/EFefmOIF44O8MLRgbO3sKwrL+aGFTWsbfSxur4c70X8Rv72tfX0T8zy7KF+Gn0lXN1Slezy0y4vw31gMkB9RXHajmdmrGms0HJIkQsQDjsO9o5Hp1oG2HNqhLmQo7iwgNUN5Xz42uWsa/JRW37pP8tmxj3XtTAw4edHr55mw7LKJX+CNS/DfWjSz+r68rQec21jBc8fHUjrMUWWEuccncPTbOsYYtsbg7zUMchI9EY365t9/Optq5gLOVbWleFJQatuT2EBt1/eyCPbT3H0zARXLKtM+jHSKU/DPUBdEv61vxBrmyr43p5uRqcDVJel99gi2ap/YpaX3xjiZ8cGeemNIXpGZwBorixhVX05dzZUcFljBZUlyb0d5rmsa/Lh83rYfWpE4b7UTAeCzMyF0jrnDnB5c+R/lIOnx7l1TX1ajy2SLWYCIbafiIT5z44NcuRM5OK+0qJCVjeUc8OKGi5rqKC+ojgjq1YKC4yN7dX8rGOQidk5fGn6RyUV8i7cByci613rK4qZC6WvDe+1rZETNHu7RhXukjeccxw9M8kLR/t58eggLx8fIhR2eAqMFXVlvPfKZtY0VLCs+vyrWtLphhW1vHhskL2do0u6H1T+hXu0r0x9hZfesfS14a0uK2Z1fTn7ukbTdkyRTJjyB/npsUFeONrP80cGzv6crWuq4JbVdaxpjFwRmq0XDDX4vKyoLWPPqRHevrZ+ya57z7twj/WVqasoTmu4A1zXVs1POwbVhkByTs/oDD8+0Mezh/vZcXyYQCiM11PAmsYKbl5dx7om31suIMpmN6yo4Ym9PXQOT7OiLr2LL5IlD8M9MnJP95w7wHXt1Tyxt4ee0Rlaa8rSfnyRZHHOcax/kqde7+O7uzo5HR0o1Vd4uWlVLeubfaxYwv1arm6t4snXetlzakThvlTEmoale7UMwMa2GgD2dY0q3GXJcc5x4PQ4T+/vY+v+Xo4PTGEGbTVl3HVlMxuWVVLvy432Gl5PIVe1VLL/9Bj3bGzJmvMBFyIPwz2Az+tJW1+ZeOuX+fB6CtjXOcoHr1me9uOLXCjnHK92j/HU/l6eer2PzuFpDFgVvYhow/LKtC1TTLc1jT5e6Ryld3SWlprSTJdzwfIu3IemAtSl8erUeEWFBVzVUsVenVSVLBYOO/Z2jbD19T6e3t9Hz+gMngLj1jX13LCihiuWVaato2omrW6ITMccH5xUuC8FQ5Pp7Ssz38a2ah7Zfoq5UJiiFFxlJ3IxQmHH7pPDbH29l6cP9HFm3E9hgbG2sYKPXt/KFcsqKS1O/2+7mVRZUkR9hZfjA1O8fe3SWxKZULib2V3AXwGFwN8757467/X/CvxnIAgMAL/qnDuV5FqTYnDSz6o0tx6Id117NX//sxMc7p3g6tal35xIli7nHK90jvC1Z45yoGeMCX+QokJjXZOPd65rZH2zLyPTl9lkdX05r3aPEgq7JXdyeNFwN7NC4EHg3UA3sMvMtjjnDsbtthfY5JybNrPfAP4M+EQqCr5UQ5MBNq2szdjxr2urBmBf14jCXTLi6JkJfrC3hy2vnqZ7JDLlcnmzj6tbqri82YfXk9+BHm91Qzk7Tw7TO7b0VrglMnK/Cehwzh0HMLPvAHcDZ8PdOfdc3P7bgfuTWWSyhMKO4ekA9RlYKRPTUl1KfYWXvZ2j/NItGStD8kzf2Cx/+KMD7OsapXdslgKDNY0VfOyGVjYsq7yoNrn5IPZb/vGBqZwM9xagK+55N7D5PPt/GnjqUopKlaEpP85lZo17/N3VG3xeXjymDpGSWuOzczy9v48f7uvhpTeGcA5aa0r50DXLuLq1Oi9Oil4qX0kRDT4vxwcnl1wrgqT+7ZrZ/cAm4J3neP0B4AGA9vb2ZB46Id0jkY5zLdWZPfPdVlPKod5xdYiUpJudC/HsoX62vNrDc0cGCATDrKgr47fetRaPWc6sQ0+n1fXl7O2KzLsvJYmEew/QFve8NbrtTczsTuAPgHc65/wLvZFz7iHgIYBNmzal/U+qK3rnlrbazP561V4XOf7OE8O858rmjNYiS18gGOZnHQNs2XeaHx88w1QghM/r4YYVNVzbWk1bTanaXVyC1Q0V7DgxfLYd8VKRSLjvAtaa2SoioX4v8Mn4HcxsI/B3wF3Ouf6kV5kksZF7a4bXrLbXluH1FPDckX6Fu1yUyEqX0bM3dp4OhCgtKuTK5ZVc01rN6obyJXlVZTaKzbufGFhad1JbNNydc0Ez+yzwDJGlkN90zh0ws68Au51zW4CvARXA96IjhE7n3IdTWPdF6Rqepq68mPIMzzV6CgpY2+Tj2UP9aiImF6RvbJbvv9LNP+/p5sTgFF5PAZc3+7iutZo1TRV4CnTtRLJVeD00+rwcH5zKdCkXJKGUc85tBbbO2/aluMd3JrmulOgamaY1w1MyMeubfezvGePA6XGuyoGb8UrqBENhnjsywJ8/c4SjZyZwREaTv3h9K1cur8z7tejpsLqhnD2nRgiGwim5xV8q5NXp8q7hGa7JkrXl65p8mMGzh/oV7rKgntEZvruri8d3ddE3PouvxMM71jWwaUVNRq+yzkcrasvZfnyYw30TS+bnNW/CPRR2nB6d4QPXLMt0KUDkV72NbdX85PAZPnfn2kyXI1kiNkp/dMepszdUf8faBv7w7ivpj7YEkPSLLYJ4pXNE4Z5tesdmCIYdbVl0IcIdVzTxtWeO0D8xS6OvJNPlSAadHp3hO/NG6beva2DTylpqyooZmgwo2DOourQIX4mHV06N8KlbVma6nITkTbh3DUdWyrTVZk93t3etb+Rrzxzh+cMDfPzGtsW/QXJKOOz4wx8dZOeJIQ73RW4UvaaxgjuuaGd9c6XCPIuYGe21ZezpHMl0KQnLn3Afia5xz6KR+/pmH8urSnj28BmFex4ZmvTz+O5uHt15iq7hGcq9kbn0G1fWUpvB1hhyfu21ZTy1v4+BCT8NS+BisLwJ9+7hacxgeYavTo1nZrzrikaeeKUHfzCkhk05LLYu/VvbT/Gvr/USCIXZvKqW2y6rZ8PySi1hXALaa38+7/7eJXB9St6Ee9fIDMsqS7Lujut3rG/iW9s72dYxyLvWN2W6HEmyKX+QH+47zSPbT3Godxyvp4DrV9SweVUtTZU6z7KULK8upajQFO7Zpms4e9a4x7ttTT31FV6+vb1T4Z5DDveN8+3tnfzL3h4m/UGuWFbJ3dct57q2av2GtkQVFRZw5fIqXjm1NObd8yfcR6Z525rs6+pW7Cngvpva+MZzHXQNT2e8741cPH8wxFOv9/Gt7afYfWoET4FxdUsVm1fV0lZbpiuRc8D17TV8e8cpAsFw1s0CzJfd1SXJ7FyIM+P+rFopE++Tm9spMONbO7Ly5lWyiJ7RGf7s6cPc8ic/4fPf3cfgpJ/3XdXMF+5az8c2tdFeV65gzxHXr6jGHwxzqHc806UsKi9G7rFubtm0UibesqpS3n1FE4/v6uJ37lyny8mXAOccO04M80dPHuTg6cgPemzq5bKGCjXtylE3rKgBIidVr43eVS1b5UW4Z0ur3/P51C0rePpAH0++1stHb2jNdDlyDv5giB+92ss3f3aCg73jlBYV8va1DWxeHbnYSHLbsqpSllWVsOfUCL9y26pMl3Ne+RHuI9l3ARO8+e5MzjkafF4eefmkwj0LDUz4+cL3X2P7iWGm/EEafV4+srGF69qqKVoijaQkOa5vr2Fv52imy1hUXoR79/A0xYUFNGXxJf5mxs2ravnRa73s7RxhY3tNpksS4PXuMR5+6SQ/evU0gVCYy5t83LqmjjUNFZpHz1M3rKjhX1/vpXtkOqvvq5oX4d41Mk1LTSkFWX4598b2Gra9McQfbz3E45+5ReGRIYFgmKcP9PFPL51kz6kRyooL+cSNbdRXeJfElYmSWreuqQPgpY4hPn6jwj2juoZnMn73pUSUFBXy3997OV944nV+uO8092xsyXRJeaV7ZJrHdnby8EunmPIHqS0v5gNXL+OGFTU6yS1nXd7ko76imG1vDGZ125C8CPfukWmubs2OVr+L+fimNh7b2cn/3HqIO65oxFdSlOmSclowFOYnh/t5bGcnzx8dwIj88G5eXceaRq16kbcyM269rJ5tHUNZfSe1nA/3SX+Qkem5rF0GOV9BgfGVu6/inr/ZxtefPcYffGBDpkvKSbEWuw9vO8H4bDDaYreRG1fWUK1VL7KIt62pZ8urpzl6ZpLLm32ZLmdBOR/uHf2Rm9qurFsa4Q5wbVs1997Yxj9uO8nHNrWxrik7/+dZakJhx/NH+nl0RyfPHenHAWsbK/jQtbVqsSsXJDbvvq1jUOGeKTuODwE/v/hgqfi9967nmQNn+Mwje/iX/3KrRpOX4PToDI/v7uIft51kbGYOn9fDO9ZGboShFrtyMVprylhZV8a2jkF+9W3Zud4998P9xDCr68tpXGId+GrLi3nol27gk/93B595ZA+PfHpz1veyyCaBYGQu/Tu7Onnh6ADORUbpH7h6GVcs0yhdLt2ta+rZsu80c6FwVl7rkNPhHgo7dp0Y5oPXLs90KQmLv7AJ4J6NLTy+u4vff+J1/vxj12TtyZtscah3nO/t7uYH+3oYngrQVOnls7+who9vauOnxwYzXZ7kkLetqefRHZ281j3KDStqM13OW+R0uB88Pc6EP8jNq7PvDz5R17VVMzTp5/uvdFNZ6uGLH9igUec8p0dn2PLqaX6wt4fDfRMUmrF+mY8PXr2MtU0+CgtMwS5Jd8vqOsxgW8eQwj3ddpyIzLdvXlWX4UouzbvWN9JWW8Y/bjvJ8YEpvn7fRqpK83uJZN/YLE/t7+XhbSc5FesdVFPKh65ZxrWt1ZR5c/p/bckCNeXFXLm8km0dg/z2HWszXc5b5PRPwPbjQ6ysK6O5amnNt89nZnz5w1eyrsnHl364n488uI3/c/8NWXuWPhWcc7wxMMm/HTzDjw+eOdvbo7myhDuvaOTa1mrqKnT1qKTXbZfV881tJ5j0B6nIsgFFdlWTRKGwY+eJYd531dK4eCkRn9zczprGCn7jW3t4/9d/yv2b2/n8neuoydEVH+Ozc2x/Y4gXjg6w9fVeRqbnAGipLuXOKxq5qqWKxizuFyS57z1XNvN3Lx7nR6+e5r6b2jNdzpvkbLgf6h1nfDbIzZdl31zYxYg/0frr77yMfz90hke2n+Jf9vbwwDtW8/Eb25Z80A1PBXjl1Ag7Tw6z/fgQ+3vGCDsoLy6kva6cd6xrYH1zZd5PSUn2uL69mvXNPh55+RT33tiWVQsecjbcd5zva2JWAAAKzUlEQVQYBpb+fPtCyr0e7r6uha/cfRV/8tQh/vzfjvKX/36Md29o4hevb+XWNXWUFWf3X+2kP8ih3nFe7x5jf88Y+7pGOT44BUBhgdFWU8btlzeyur6c9royPAXZt9RMxMy4/+YVfPEH+9nbNcr1WdTNNbsT4BLsOD5Ee20Zy6uzv2HYxdpzaoT3bGjm+rYadp4c5oWjAzy1v49iTwGbV9XytjX1XNNazVUtlRnpURMIhukbm6VzeJqTQ1OcHJyiY2CSY2cmz94dC8BX4qG1upT3XtlMe20ZrTWlWbluWGQh92xs4atPHeZbL59SuKdaOOzYeXKYd1/RlOlS0qLe5+X9Vy/jPRuaODk0TYHBc0f6+ZOnDgNgBitqy1hZX87KunLaasto9EXa19aVF+MrKaKixENZUeE52yKHwo7ZuRAzcyEmZ4OMz84xMRtkZDrA8FTka2DCT3/0q29shv4JP879/D08BUZ9hZemSi9XLq+kubKE5TWlVKo5mixhFV4PH9nYwnd3d/HFD27ImqueczLc93aNMjo9x+bVuTclcz6ewgLWNFYAsLqhgil/kJ7RGbpHZugbn+Vo3wQvvTFEIBg+93sUGJ5Cw1NQQNi5yFcYAqFzf09MWXEhvhIPvpIiWqvLuGp5FVWlRdSWF1NX4cVX4lGXRclJ99+8gke2n+J7u7v4zDsvy3Q5QA6Geyjs+MqTB6krL+bdG/Jj5H4u5V4P65p8b2o85pxjJhBiwh9kYjbIlD+IPxjGHwzhD4YJhR3hcCTUzQwzMIyiQqOosICiQqOkqJCSokK8RQWUF3soKy6krNiji6skb13e7OOmlbV8e0cnv/b21VlxY6CcC/fHdnbyatco//sT12pVxQLMjDKvhzKvh6bKTFcjkjs+desKPvvoXr7+k2N8/s51mS6HnDprNTDh58+ePswtq+u45zrdxUhE0ucDVy/jF69v5S///Rg/3NeT6XISC3czu8vMjphZh5l9YYHXvWb23ejrO8xsZbILTcQfbz3EzFyIP7rnqqxabyoiuc/M+JP/cDWbV9Xye997jd0nhzNaz6LhbmaFwIPA+4ANwH1mNv/2QJ8GRpxza4D/Dfxpsgs9n/7xWb685QD/sreHX3/nZWdPKoqIpFOxp4C/vf8GWmpKeeCRPfzznm78wVBGaklkzv0moMM5dxzAzL4D3A0cjNvnbuDL0cf/DHzDzMy5+IVwyTM2M8fp0Rl6RmZ46Y0hvr3jFMGw494b2/jNX1iTikOKiCSkpryYb/7yjXzmkd38t++9ylefOsS9N7ZzbVs1LdWltFSXUlnqSfnsQiLh3gJ0xT3vBjafax/nXNDMxoA6IOl9Vh98roOvPXPk7PPCAuMjG1v4rXetYUVdebIPJyJywVbVl/PM59/BS28M8Y/bTvLg8x1vuubjyx/awC/flto7OKV1tYyZPQA8EH06aWZHzrd/ov5X9Osi1JOCf4CyQC5+rlz8TKDPtaT8xyS9z6/8KfzKxX/7ikR2SiTce4C2uOet0W0L7dNtZh6gChia/0bOuYeAhxIpLB3MbLdzblOm60i2XPxcufiZQJ9LUieR1TK7gLVmtsrMioF7gS3z9tkC/Kfo448CP0nVfLuIiCxu0ZF7dA79s8AzQCHwTefcATP7CrDbObcF+AfgETPrAIaJ/AMgIiIZktCcu3NuK7B13rYvxT2eBT6W3NLSImumiJIsFz9XLn4m0OeSFDHNnoiI5J6caj8gIiIReRnui7VTWIrM7Jtm1m9m+zNdSzKZWZuZPWdmB83sgJl9LtM1JYOZlZjZTjN7Nfq5/jDTNSWTmRWa2V4zezLTteSrvAv3BNspLEUPA3dluogUCAK/65zbANwM/GaO/H35gXc5564FrgPuMrObM1xTMn0OOJTpIvJZ3oU7ce0UnHMBINZOYUlzzr1IZKVSTnHO9TrnXok+niASGEu+5aeLmIw+LYp+5cQJMDNrBT4A/H2ma8ln+RjuC7VTWPJhkQ+i3UY3AjsyW0lyRKcu9gH9wI+dcznxuYC/BP47sPjtuyRl8jHcZQkyswrg+8DnnXPjma4nGZxzIefcdUSu+r7JzK7KdE2Xysw+CPQ75/ZkupZ8l4/hnkg7BckiZlZEJNi/7Zx7ItP1JJtzbhR4jtw4Z3Ib8GEzO0lkyvNdZvatzJaUn/Ix3BNppyBZwiJ9Uf8BOOSc+4tM15MsZtZgZtXRx6XAu4HDma3q0jnnft851+qcW0nkZ+snzrn7M1xWXsq7cHfOBYFYO4VDwOPOuQOZrerSmdljwMvA5WbWbWafznRNSXIb8EtERoD7ol/vz3RRSbAMeM7MXiMy4Pixc07LBiVpdIWqiEgOyruRu4hIPlC4i4jkIIW7iEgOUriLiOQghbuISA5SuIuI5CCFu6SNmYWi69QPRFvd/q6ZFURf22RmXz/P9640s0+mr9q3HHsm2gcmK5jZJ6Itq7U2XhakcJd0mnHOXeecu5LIFZnvA/4HgHNut3Put8/zvSuBjIR71BvRPjAJi7aXTgnn3HeB/5yq95elT+EuGeGc6wceAD5rEbfHRqFm9s64q1H3mpkP+Crw9ui234mOpn9qZq9Ev26Nfu/tZva8mf2zmR02s29HWxhgZjea2UvR3xp2mpkv2pnxa2a2y8xeM7PPJFK/mf3AzPZEfwt5IG77pJn9LzN7FbjlHMe8Mvp4X/SYa6Pfe3/c9r+L/eMQvbnMK9H3eDaJfw2Sy5xz+tJXWr6AyQW2jQJNwO3Ak9FtPwJuiz6uIHIj97OvR7eXASXRx2uB3dHHtwNjRBrCFRBpyfA2oBg4DtwY3a8y+r4PAF+MbvMCu4FV82pcCeyft602+t9SYD9QF33ugI9HH5/rmH8N/Me4fUqBK6Kfuyi6/W+ATwENRFpUr4o/btxnfXKhP2t96ctzgf8WiKTDNuAvzOzbwBPOue7o4DteEfANM7sOCAHr4l7b6ZzrBojOk68kEvi9zrldAC7aNtjM3gNcY2YfjX5vFZF/LE4sUuNvm9lHoo/bot8zFK3l+9Htl5/jmC8DfxC9qcUTzrljZnYHcAOwK/pZS4n0eb8ZeNE5dyL6Hjl3QxZJDYW7ZIyZrSYShv1ERq4AOOe+amb/Crwf2GZm713g238HOANcS2SEPhv3mj/ucYjz/39uwG855565gLpvB+4EbnHOTZvZ80BJ9OVZ51zofN/vnHvUzHYQuVvR1uhUkAH/5Jz7/XnH+lCidYnE05y7ZISZNQB/C3zDOefmvXaZc+5159yfEumYuB6YAHxxu1URGRWHiXSNXOzk5RFgmZndGD2Gz8w8RLqD/ka0Zzxmts7Myhd5rypgJBrs64mMrhM+ZvQftePOua8DPwSuAZ4FPmpmjdF9a81sBbAdeIeZrYptX6Q2EUAjd0mv0ug0SRGRG18/AizUo/3zZvYLRG7TdgB4Kvo4FD1R+TCROenvm9mngKeBqfMd2DkXMLNPAH8d7Z8+Q2T0/fdEpm1eiZ54HQDuWeRzPA38upkdIhLg2y/wmB8HfsnM5oA+4I+dc8Nm9kXg36LLQ+eA33TObY+esH0iur2fyEojkfNSy1+RRVjk3q1POuey6jZ40emh/+ac+2Cma5Hso2kZkcWFgKpsu4iJyG8vI5muRbKTRu4iIjlII3cRkRykcBcRyUEKdxGRHKRwFxHJQQp3EZEc9P8BRJi8v944cvgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(ndwfs['ndwfs_ra'], ndwfs['ndwfs_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, ndwfs, \"ndwfs_ra\", \"ndwfs_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add UHS" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcXGWd7/HPr3pfk16zJ90JCSRGAtpsRiAKzgQX0OsGyDgzV4x3XHG84+jcuTij87ovHe913HBhkMFxWGTQ0cgguIAyAiEJECIhIeks3elsvSe9b/W7f9Sptmk6qUp3Ld3V3/frVa9UnTpV51chfOup5zzneczdERGRzBJKdwEiIpJ4CncRkQykcBcRyUAKdxGRDKRwFxHJQAp3EZEMpHAXEclACncRkQykcBcRyUDZ6TpwZWWl19TUpOvwIiIz0jPPPNPq7lWx9ktbuNfU1LB9+/Z0HV5EZEYys4Z49lO3jIhIBlK4i4hkIIW7iEgGUriLiGQghbuISAZSuIuIZCCFu4hIBlK4i4hkoJjhbmZ3mlmzmb1whn02mNkOM9tlZr9NbIkiInK24rlC9S7gm8C/TvSkmc0FvgVsdPdGM6tOXHnpdc/TjRNuv/GSpSmuRETk7MRsubv740D7GXa5EfixuzcG+zcnqDYREZmkRPS5rwLKzOw3ZvaMmb0/Ae8pIiJTkIiJw7KB1wJXAQXAU2a2xd33jt/RzDYBmwCWLlXXhohIsiSi5d4EPOLuPe7eCjwOrJtoR3e/3d3r3L2uqirmjJUiIjJJiQj3nwKvN7NsMysELgF2J+B9RURkkmJ2y5jZvcAGoNLMmoDPATkA7v4dd99tZg8DO4EwcIe7n3bYpIiIJF/McHf3G+LY58vAlxNSkYiITJmuUBURyUAKdxGRDKRwFxHJQAp3EZEMpHAXEclACncRkQykcBcRyUAKdxGRDKRwFxHJQAp3EZEMpHAXEclACncRkQykcBcRyUAKdxGRDKRwFxHJQAp3EZEMFM9KTHcCbwWa3X3tGfa7CHgKuN7dH0hcidPPPU83nva5Gy/Rwt8ikn7xtNzvAjaeaQczywK+BPwiATWJiMgUxQx3d38caI+x28eAHwHNiShKRESmZsp97ma2CHgH8O2plyMiIomQiBOqXwX+2t3DsXY0s01mtt3Mtre0tCTg0CIiMpGYJ1TjUAfcZ2YAlcCbzWzY3X8yfkd3vx24HaCurs4TcGwREZnAlMPd3Wuj983sLuDBiYJdRERSJ56hkPcCG4BKM2sCPgfkALj7d5JanYiITErMcHf3G+J9M3f/sylVIyIiCaErVEVEMpDCXUQkAyncRUQykMJdRCQDKdxFRDKQwl1EJAMp3EVEMpDCXUQkAyncRUQykMJdRCQDKdxFRDKQwl1EJAMp3EVEMpDCXUQkAyncRUQykMJdRCQDKdxFRDJQzHA3szvNrNnMXjjN8+8zs51m9nsze9LM1iW+TBERORvxtNzvAjae4fmDwJXu/mrgC8DtCahLRESmIJ41VB83s5ozPP/kmIdbgMVTL0tERKYi0X3uHwB+nuD3FBGRsxSz5R4vM3sDkXB//Rn22QRsAli6dGmiDi0iIuMkpOVuZucDdwDXuXvb6fZz99vdvc7d66qqqhJxaBERmcCUw93MlgI/Bv7E3fdOvSQREZmqmN0yZnYvsAGoNLMm4HNADoC7fwe4FagAvmVmAMPuXpesgkVEJLZ4RsvcEOP5m4GbE1aRiIhMma5QFRHJQAp3EZEMpHAXEclACncRkQykcBcRyUAKdxGRDKRwFxHJQAp3EZEMpHAXEclACncRkQykcBcRyUAKdxGRDKRwFxHJQAp3EZEMpHAXEclACncRkQwUM9zN7E4zazazF07zvJnZ182s3sx2mtlrEl+miIicjXha7ncBG8/w/DXAyuC2Cfj21MsSEZGpiBnu7v440H6GXa4D/tUjtgBzzWxBogoUEZGzl4g+90XA4TGPm4JtIiKSJik9oWpmm8xsu5ltb2lpSeWhRURmlUSE+xFgyZjHi4Ntr+Dut7t7nbvXVVVVJeDQIiIykUSE+2bg/cGomUuBk+5+LAHvKyIik5QdawczuxfYAFSaWRPwOSAHwN2/AzwEvBmoB3qBP09WsSIiEp+Y4e7uN8R43oGPJKyiGeBoZx9bDrTRPxzmhouWYGbpLklE5GVihrv8wfGT/fxkxxEa23sxwIFjq6pYOLcg3aWJiLyMph84C7/afYLmrn7e8uoF3HL1KgBeOtGV5qpERF5J4R4nd6ehrYfV80tZf04lVSV5LJpbwEvHFe4iMv0o3OPU1jNIz+AIyyqKRredO7+Ew+299A4Mp7EyEZFXUrjHqaGtF4BlFYWj286dV4ID+5q701SViMjEFO5xamjrIT8nRFVJ3ui2RWUFFOZmqd9dRKYdhXucGtp7WVZeRGjMsMeQGefOK2HviS7C7mmsTkTk5RTucegdHKala+BlXTJRq+aX0Ds4QlNHXxoqExGZmMI9Do1Bf/vSCcJ9ZXUxBho1IyLTisI9Dg3tvYQMFs99ZbgX5maztLyQvep3F5FpROEeh4a2HhbOLSA3e+K/rlXzSzjS2UfvoIZEisj0oHCPYTgcpqmjj2Xlr2y1Ry2ckw9AS9dAqsoSETkjhXsMRzv7GQ77yy5eGq+qJBLuzacU7iIyPSjcY2ho6wEmPpkaNbcwh5wso7mrP1VliYickcI9hqaOPsoKcyjNzzntPiEzqkryaFa3jIhMEwr3GFq7B6gOul3OpLokX33uIjJtKNzPwN1p6xmkvDg35r7VJXl09g3RrUnERGQaiCvczWyjmb1kZvVm9pkJnl9qZo+Z2XNmttPM3pz4UlOve2CYweEwFUXxhTvAfk0iJiLTQMxwN7Ms4DbgGmANcIOZrRm3298C97v7hcD1wLcSXWg6tPcMAlBRlBdjzz+MmKlXuIvINBBPy/1ioN7dD7j7IHAfcN24fRwoDe7PAY4mrsT0aRsN99gt9/KiXLLMNP2viEwL8ayhugg4POZxE3DJuH3+DviFmX0MKAKuTkh1adbWPYgBc4tOP1ImKitkVBTnquUuItNCok6o3gDc5e6LgTcDPzCzV7y3mW0ys+1mtr2lpSVBh06etp4B5hbmkB2K76+pujSf+mbNMSMi6RdPah0Blox5vDjYNtYHgPsB3P0pIB+oHP9G7n67u9e5e11VVdXkKk6h9p5BKopj97dHVZfk0djeS//QSBKrEhGJLZ5w3wasNLNaM8slcsJ087h9GoGrAMxsNZFwn/5N8xjaugfj6m+Pqi7JI+xwsLUniVWJiMQWM9zdfRj4KPAIsJvIqJhdZvZ5M7s22O1TwAfN7HngXuDP3Gf20kSdvYP0DY2cZbhHRszopKqIpFs8J1Rx94eAh8Ztu3XM/ReB9YktLb0OBQt0nE23TGVxLiHTcEgRST9doXoa0QnDys+i5Z6dFWJZRZFOqopI2incT+NQay/G2YU7wDnVxew7oZa7iKSXwv00Gtp6KC3IISfr7P6KVlYXc6ith6GRcJIqExGJTeF+Gofaes661Q6woqqYoRGnsb03CVWJiMRH4X4aje29ZzVSJqqmMrJiU2Obwl1E0kfhPoGu/iFau8/uAqaommDFpkNtGusuIumjcJ9AQ3QY5CRa7uVFuRTnZY++h4hIOijcJzAa7nEs0jGembGsonB0KKWISDoo3CdwaBJj3MeqqShSy11E0krhPoGGth6qSvLIy86a1OuXVhRyuKOXkfCMnoFBRGYwhfsEGtp6WVZeOOnX11QUMjTiHO3sS2BVIiLxU7hPoKmjj8VlBZN+/bKKyHBIdc2ISLoo3McZHglz/FQ/i8sm33JfpuGQIpJmCvdxjp/qZyTsU2q5zyvJJy87pKtURSRtFO7jNHVE+smn0nIPhYyl5YUc0qIdIpImCvdxouG+aAotd4j0u6vPXUTSReE+zpEg3BfOzZ/S+9RUFNLQ3sMMX5BKRGaouMLdzDaa2UtmVm9mnznNPu8xsxfNbJeZ3ZPYMlOnqaOXeaWTH+MetayikP6hMM1dAwmqTEQkfjGX2TOzLOA24E1AE7DNzDYHS+tF91kJfBZY7+4dZladrIKTramjj0Vzp9YlA38YDnmotYd5pVP7FSAicrbiablfDNS7+wF3HwTuA64bt88HgdvcvQPA3ZsTW2bqNHX2TulkalRNdKy7RsyISBrEE+6LgMNjHjcF28ZaBawysyfMbIuZbZzojcxsk5ltN7PtLS0tk6s4iUbCzrHO/ikNg4xaODef7JBpAjERSYtEnVDNBlYCG4AbgH82s7njd3L32929zt3rqqqqEnToxDlxqp/hsE95pAxEFsteXFbAIY2YEZE0iCfcjwBLxjxeHGwbqwnY7O5D7n4Q2Esk7GeURIxxH2tZRZFWZBKRtIgn3LcBK82s1sxygeuBzeP2+QmRVjtmVkmkm+ZAAutMiSOdkSBORLcMREbMHGrTcEgRSb2Y4e7uw8BHgUeA3cD97r7LzD5vZtcGuz0CtJnZi8BjwF+5e1uyik6WpvbgAqYEjJaBSMu9q3+Yjt6hhLyfiEi8Yg6FBHD3h4CHxm27dcx9B/4yuM1YTR19VBbnkZ8ztTHuUdH1VA+29kx64Q8RkcnQFapjHOmc2lS/49VU/mGsu4hIKincx2jq6E1ouC8pKyQrZJr6V0RSTuEeCIedo539CRkGGZWbHWJJWQEH1HIXkRRTuAdaugcYHAknbBhkVG1lEQdbFO4ikloK90BTR2KHQUbVVhZzsFXDIUUktRTugdELmBI0DDKqtqqIvqERTpzS7JAikjoK90CiFukYb3kwYuZAa3dC31dE5EwU7oGmjj4qinIpzI1r6H/caoNwP6iTqiKSQgr3QFNHb8Jb7QDzS/PJzwnppKqIpJTCPdDUkdgLmKJCIaOmokgtdxFJKYU7kXncmzp6WVpelJT3X16lcBeR1FK4A0c7+xgacZZVJHaMe1RtZRGN7b0MjYST8v4iIuMp3IHGYCm8ZeXJCvdihsM+OiJHRCTZFO5AQ7CgxtIkttwBDmo4pIikiMIdaGjvISfLWDAn8SdUYcxYd42YEZEUUbgDjW29ozM4JkNZUS5zC3N0UlVEUiaucDezjWb2kpnVm9lnzrDfO83MzawucSUmX0Nbb9K6ZKJqKzViRkRSJ+blmGaWBdwGvInIQtjbzGyzu784br8S4BPA08koNFncncb2Xi6qKUvI+93zdOOE22sri3hq/4xbeVBEZqh4Wu4XA/XufsDdB4H7gOsm2O8LwJeA/gTWl3TtPYN0DwyztCI5Y9yjllcWcexkP72Dw0k9jogIxBfui4DDYx43BdtGmdlrgCXu/p8JrC0lGpI8DDKqtrIYgEOtvUk9jogIJOCEqpmFgK8An4pj301mtt3Mtre0tEz10AnRGAyDTNYFTFErqiO/DPY1dyX1OCIiEF+4HwGWjHm8ONgWVQKsBX5jZoeAS4HNE51Udffb3b3O3euqqqomX3UCRce4L0lyy315ZTG5WSFePHYqqccREYH4wn0bsNLMas0sF7ge2Bx90t1Punulu9e4ew2wBbjW3bcnpeIEa2jvCWZuzErqcXKzQ5xTXczuY2q5i0jyxQx3dx8GPgo8AuwG7nf3XWb2eTO7NtkFJltjCoZBRq1eUMqLR9VyF5Hki2tlCnd/CHho3LZbT7PvhqmXlToN7b1sWJWaLqI1C0v50bNNtHQNUFWSl5JjisjsNKuvUO0dHKalayDpJ1OjVi8oAWC3+t1FJMlmdbhHZ4NM9hj3qDULSgF0UlVEkm5Wh3t0pExNilrucwtzWTgnXy13EUm6WR3uo2Pck7QC00RWLyhVuItI0s3qcG9o72FOQQ5zCnNSdszVC0rZ39JD/9BIyo4pIrPP7A73tt6UnUyNWrOwlJGws++EFu4QkeSZ1eHe2N7L0iRfmTre6uCkqrpmRCSZZm249w4O09jey8rqkpQed1l5IYW5WRoxIyJJNWvDfe+JbtzhvAWpDfdQyDhvfonCXUSSKq4rVDNRtFtk9fzSlB979YJSNj9/FHfHLDlL+4nI6Z1uUR2AGy9ZmsJKkmfWhvueY6cozstmcVlyFsU+k9ULSrn76UaOdPaxuCy1ff4is8mZQjzTzdpumd3Huzh3fgmhJC2KfSZrFkZ+LezSJGIiU+bunOwdontgmHDY013OtDErW+7uzp5jp3jbuoVpOf6aBaXkZofYerCdP37V/LTUIDLTtPcM8vsjJ9l7vIu9J7rY19zNiVP9NJ8aYMQjoW5EptdeOLeA1QtKWT2/hIri2TlJ36wM96Mn+znVP8x5C1Lf3w6Qn5NF3bIyntSC2SIT6h8a4YUjJ3musZPnDnews+kkTR19o88X52VTXZrHgjkFrJpXQlFeNu5O/1CYvqFhDrb28NDvj/HQ74+xsrqYt1+4iLLC3DR+otSbleG+JziZuibFI2XGWn9OJV9+5CXaugdmbctCJKqte4Bthzr4ty0NNLT1cLSzf7Q1XlaYw+KyQtYunMOisgLml+ZTlBc7utp7BtnZ1MlvXmrha7/ex8ZXzefi2nJCs2QQw+wM9+OR1ZBWzUtfuF+2ogKApw608dbz09M9JJIO7s7h9j62Hmpn28F2tjW0c6ClB4DskLGorID151SwtLyIJeUFlORPbnqQ8qJcNpxbzbrFc/mP546w+fmj1Dd3c8PFS8lKw7m2VJuV4b772Kkp/aNJhPMXzaE4L5sn9yvcJbOFw87e5i62HWxn66EOth1s5/ipfgDyc0LUVBSx8VXzWVZRyKK5BWRnJXacR1lRLn++vobf1bfy8xeO88Azh3l33ZKMb8HHFe5mthH4GpAF3OHuXxz3/F8CNwPDQAvw3929IcG1JszuY6c4Lw3j28fKzgpxSW05T9a3prUOkUQbHA7z+yOdbD3YwfZD7Wxv6OBk3xAA80rzuKgm0jVSU1FEdWleSkLWzLh8ZRUjYecXL54gPyeLa9ctzOjrTGKGu5llAbcBbwKagG1mttndXxyz23NAnbv3mtlfAP8IvDcZBU9V/9AIB1t7eMs0aC2/7pxKfr2nmSOdfSyam/rx9iKJ0Ds4zLMNnTx9sI2tB9vZcbiTgeEwAJXFeaysLqamooiayiLKCnPSGqhXrqqif2iEx/e1UpSXzdWr56WtlmSLp+V+MVDv7gcAzOw+4DpgNNzd/bEx+28BbkpkkYm070Q3YYfV89PX3x61/pxIv/uT9a28u25JmqsRiU/PwDDbGzrYcqCNLQfaeP5wJ2GPDENcOLeAumVlLAvCvDiOE5+pZGb88avm0z0wwmN7mlleWcTyquJ0l5UU8fzNLwIOj3ncBFxyhv0/APx8oifMbBOwCWDp0vRc4rv7eGSkTLqGQY61qrqEiqJcntrfpnCXaWtgeIRnGzp5an8rT+yPhPlw2MkOGeuWzOXylVXUVhaxtLyQ/JysdJcbk5lx7bqFNLT18MAzTXz8qpUzou6zldCvVTO7CagDrpzoeXe/HbgdoK6uLi2Xku0+doqCnCyWpXiq34mEQsZlKyp4Yn+r5pmRaWMk7Ow6epIn6tt4cn8r2w610z8UxoDFZQWsP6eS5VVFLCsvIjd7Zl7knpsd4j11S/ju4/v52fNHM7JxFU+4HwHGfvLFwbaXMbOrgf8FXOnuA4kpL/H2HEvftAMTed2KSh7ceYwDrT2syNCfhzK9uTsHWnv42q/2sb+lmwMtPfQFK4VVl+TxmqVlrKgqprayKKNauEvKC9lwbjWP7mnmvAWlvHrRnHSXlFDxhPs2YKWZ1RIJ9euBG8fuYGYXAt8FNrp7c8KrTJBw2Nl9/BQbp9El/9F+98f2NCvcJWWOn+znifpWntjfylP72zh2MjI0cU5BDmsWlLKiupgVVUVpHS6cCm84t5q9J7r46Y4jrKgqojB3ep0jmIqYn8Tdh83so8AjRIZC3unuu8zs88B2d98MfBkoBv496FpodPdrk1j3pLx47BSdvUNcVFOe7lJGLasoYt2Sufxw22E+8Ppadc1IUrT3DLLlQKSb5cn6Ng60Ri4aKivM4bIVFXxkRSUdPYOUF+XOqn+DWSHjHRcu4rbH6vnFrhO8/cJF6S4pYeL6mnL3h4CHxm27dcz9qxNcV1L8dm8LAJevqkxzJS/3vkuW8ukHdrLtUAcX106fLx6ZuboHhtl6sC3oN28bXb+gKDeLxWWFvHntfFZUFzOvNH90nPlsnQZjwZwCLltewZP726irKUt3OQmTOb9B4vD43hbWLCiluiQ/3aW8zNvOX8gXHnyRu59uULjLpERHtDy5v5Un6lvZEQxPzA4ZSysKedOaeayoLGJRWeGsuPT+bF21eh47m07y0x1H+dQfnZsRf0ezJty7+od4pqGDD16xPN2lvEJBbhbvfM1i7nm6kVvfqonEJLaRsPPCkZN867F69rf20NDWw9CIj45ouWJlFcurillWUUhOgi/nz0T5OVlc8+oF3L/9MPdubeSmS5elu6QpmzXh/tT+NobDzhUrq9JdyoTed8lS7nryEA8808SHrlyR7nJkmnF39p7ojvSZ749cPNTVPwz84ZL+TBzRkkrrFs9h+6F2/vHhPWxcO5/KGd7ImjXh/tu9LRTlZvHaZdOzT23lvBIurinnnq2NfPDy5dNmqKakh7tzqK2Xp/a3ce/WRg609tAzEAnz8qJczptfwvKqYpZXZv6IllSJXtz0zcfq+eLP9/B/370u3SVNyawId3fnt3tbuGxFZdouuohnQd73XbqUT9y3g9/Vt3LFqun5C0OSw91paOtly4E2nj7YzlP720ZnTizNz2ZlMDRxeWUxZUWza9GJVKouzeeDVyzn27/Zz3vqlszoc2CzItwPtvbQ1NE37bs7Nq6dz7zSPL7w4Iv87GOv18/rDBYOO/uau9l6qJ2tB9vZerCNE6ci1/4V52VTW1nEJcvLWV5ZTGXx7BqemG4fe+M5bN5xlP/9kxd48OOvn7HnLGZFuEeHQF45Tfvbo/Kys/jSO8/nz/5lG//48Evc+rY16S5JEqSte4CdTSd5vqmTZxs7ea6xY7TPfH5pPhfXVhAyqK0soqo4T2GeRoW52dz6tjV86AfP8P0nD3Hz5dNvEEY8ZkW4P763JTKxUUX655OJZcO51bz/smXc+cRBrlpdzfpzpteYfDkzd+foyX72HDvFrqOn2HX0JC8cOcWRzsj6nwbMK81n9fxSlpYXTotpcOWV/mjNPN54XjVf+eVe3rRmHssqitJd0lnL+HA/1T/EUwfaeO8Mmhjos9es5nf1rXzq/ud55JYrmFOoE2bTjbvT2j3IvhNd7D3Rxd7mbvYe7+KlE12jLXKAiqJcFs4t4NWL5rC4vIBFcwrIU3fbtGdmfOHta9n41cf55A93cP+HLkv4ClHJlvHh/v0nDtE/FOZdr5054V6Qm8VX33sB/+1bT/L+f9nKbTdeyOKy6f+rI1O1dg+w9/gfQnzfiS72NXfT2Ts0uk9BThbVpXmsWVDKvNJ85pfms2BOvoJ8Bls0t4B/ePtaPnHfDr79m/187KqV6S7prGR0uJ/qH+Kf/+sAV6+u5tWLZ9aMb+cvnss3b3wNf/Xvz/OWr/+Or7xnHVdl8Kox00H/0Ah7T3Sx53gXe451sef4Kfae6KK1e3B0n2iIr6ouobo0j+qSfOaV5lGcl62ulQx03QWLeHRPM1/99T4uX1XFBUvmprukuGV0uN/1xCFO9Q9zy9Wr0l3KpGxcO5/z5pfw4buf5QPf385bz1/AOy5cxOUrq2bsPNrTQXSpxfrmbvYF3SnbDrXT3jNIdJGBnCxjXmk+yyqKuKS2gnml+VSX5lGiEJ91Pn/dWrYdbOeTP9zBTz68fsZ0k2ZsuJ/sG+KO/zrA1avnsXYGz9NcU1nEjz/8Or7yy738cNthHtx5jNL8bC6urWBxWQGL5hZQXpRLTnaInJBhZoTdGQk7YY9EVfAHWSEjK2Rkh4y8nCzyskPk52RRmJtFQU4WRXnZFOZGts/UAHN3TvYN0dI1QHPXAMdO9nO0s4+jnX00tvfS0NbL0ZN9o38nIYvMzDl/Tj7rlsxlfmk+8+fkU16Um5KFm2X6m1OQw1evv5Cb7niaP79rK/928yUzYmpgc0/LgkjU1dX59u3bk/b+X/vVPv7pV3t58GOvn3S4n+nCo1SIXtwUNTgc5on6Vn628yi7ghEY3QPDp3n15GWHjKK8bIpyg8AP7hfmRsK/MDeLguDPwtxsCnIijwtyssjPiXxh5OdkkZsdIi+4ZYdC5GSHyA4ZZhAyw4Cwg+OEwzA0Eg5uzsDwCP1DYfqGRugbHKZnYITewWG6B0boHhiiu3+Yrv5hTvUPcbJviI7eITp7B+nsHWI4/Mp/05XFuSwpL8Q9cpKzsjiP6tI8KovzZuw4ZkmO8f/fRT38wjE+fPezrD+nkjv+tI687PScTzGzZ9y9LtZ+0//rZxIa2nr43u8O8KY1M7vVPl5udog3nFfNG86r5p6nG3H3IPxGGAla6+5BcBqRG5EQBQi7E3YYcWd4JMxw2BkaDjM4EmZwzJ8DwW1wOMzg8Ai9A8N09g6OPjf2NeloGoQsck1Afk6Igpws8oJfH7WVxRTmZlGcl01JfjbFednMKcihtCBHAS5TtnHtAr74zvP59AM7ueW+HXz1+gvSFvDxyLhwr2/u5n13bCEUMv5647npLmdKYv1yMLOgNZ2e/4wefKFEg354xBkKR8J/KOwMjzjD4ciXSDgc2XdkTFdRdN3Y6JdQtNsoK2TkhIzsrBA5WUZudojcrFDwSyCLnCybsd1GMrO9p24Jp/qG+If/3M2h257ka9dfwKp5Jekua0JxpYKZbQS+RmQlpjvc/Yvjns8D/hV4LdAGvNfdDyW21Nj2HD/FTXc8DcB9my7lnOrp+ZeeKcyM7KxICBdquhOZJW6+fDm1lUV8+oGdvO0bv+Mz15zHTZcum3a/DmNWY2ZZwG3ANcAa4AYzG39d/AeADnc/B/gn4EuJLvRMjp/s52u/2sd7v7uFrJBx36bLOG9+aSpLEJFZ5KrV83j4litYf04lf/+zF1n/xUf5yi9eGr0SeTqIp+V+MVDv7gcAzOw+4DrgxTH7XAcKQge1AAAHVElEQVT8XXD/AeCbZmaehLO1/UMjHGrr4WBLDwdae9hxuJNH9zQzEnYuX1nJP7x97Yy8VFhEZpaqkjy+96d1PLqnmbufbuQbj9Xz9UfrWV5VxLrFc1m7aA6LywqoLM6jqjiPorys0cEGqVjpKZ5wXwQcHvO4CbjkdPsEC2qfBCqA1kQUOdbDLxznlh/uGH28cE4+N19ey40XL1Woi0hKmRlXrZ7HVavncbi9l83PH+W5xk6eqG/lP547ctrXfejK5Xz2mtVJrS2lZ+LMbBOwKXjYbWYvTfU9G4CngL+Z6htNrJIkfEGlQaZ8DtBnma4y5rO8LwXH+JsvTSmz4loDMJ5wPwKMnZhlcbBton2azCwbmEPkxOrLuPvtwO3xFDYdmNn2eMaTTneZ8jlAn2W6yqTPkiniOb27DVhpZrVmlgtcD2wet89m4E+D++8CHk1Gf7uIiMQnZss96EP/KPAIkaGQd7r7LjP7PLDd3TcD3wN+YGb1QDuRLwAREUmTuPrc3f0h4KFx224dc78feHdiS5sWZkwXUgyZ8jlAn2W6yqTPkhHSNreMiIgkz/S6pEpERBJC4T4BM9toZi+ZWb2ZfSbd9UyWmd1pZs1m9kK6a5kqM1tiZo+Z2YtmtsvMPpHumibLzPLNbKuZPR98lr9Pd01TYWZZZvacmT2Y7lrkDxTu48Q53cJMcRewMd1FJMgw8Cl3XwNcCnxkBv93GQDe6O7rgAuAjWZ2aZprmopPALvTXYS8nML9lUanW3D3QSA63cKM4+6PExm9NOO5+zF3fza430UkTBalt6rJ8Yju4GFOcJuRJ7/MbDHwFuCOdNciL6dwf6WJpluYkSGSqcysBrgQeDq9lUxe0JWxA2gGfunuM/WzfBX4NBBOdyHycgp3mVHMrBj4EXCLu59Kdz2T5e4j7n4BkSu+Lzaztemu6WyZ2VuBZnd/Jt21yCsp3F8pnukWJA3MLIdIsN/t7j9Odz2J4O6dwGPMzHMj64FrzewQke7LN5rZv6W3JIlSuL9SPNMtSIpZZOml7wG73f0r6a5nKsysyszmBvcLgDcBe9Jb1dlz98+6+2J3ryHy/8mj7n5TmsuSgMJ9HHcfBqLTLewG7nf3XemtanLM7F4ik2aea2ZNZvaBdNc0BeuBPyHSOtwR3N6c7qImaQHwmJntJNKY+KW7axihJJSuUBURyUBquYuIZCCFu4hIBlK4i4hkIIW7iEgGUriLiGQghbuISAZSuEvKmNlIMD59VzDd7afMLBQ8V2dmXz/Da2vM7MbUVfuKY/cFc8FMC2b23mBKao2Plwkp3CWV+tz9And/FZGrMq8BPgfg7tvd/eNneG0NkJZwD+wP5oKJWzB9dFK4+w+Bm5P1/jLzKdwlLdy9GdgEfNQiNkRboWZ25ZirUJ8zsxLgi8DlwbZPBq3p/zKzZ4Pb64LXbjCz35jZA2a2x8zuDqYuwMwuMrMng18NW82sJJid8ctmts3MdprZh+Kp38x+YmbPBL9CNo3Z3m1m/8/MngcuO80xXxXc3xEcc2Xw2pvGbP9u9MshWDzm2eA9fp3A/wySydxdN91ScgO6J9jWCcwDNgAPBtt+BqwP7hcTWch99PlgeyGQH9xfCWwP7m8AThKZ8C1EZPqF1wO5wAHgomC/0uB9NwF/G2zLA7YDteNqrAFeGLetPPizAHgBqAgeO/Ce4P7pjvkN4H1j9ikAVgefOyfY/i3g/UAVkSmoa8ced8xnfXCiv2vddMs+y+8CkVR4AviKmd0N/Njdm4LG91g5wDfN7AJgBFg15rmt7t4EEPST1xAJ/GPuvg3Ag+mCzeyPgPPN7F3Ba+cQ+bI4GKPGj5vZO4L7S4LXtAW1/CjYfu5pjvkU8L+ChS5+7O77zOwq4LXAtuCzFhCZ6/1S4HF3Pxi8R0YsviLJp3CXtDGz5UTCsJlIyxUAd/+imf0n8GbgCTP74wle/kngBLCOSAu9f8xzA2Puj3Dmf+cGfMzdHzmLujcAVwOXuXuvmf0GyA+e7nf3kTO93t3vMbOniaxg9FDQFWTA9939s+OO9bZ46xIZS33ukhZmVgV8B/imu/u451a4++/d/UtEZk08D+gCSsbsNodIqzhMZLbIWCcvXwIWmNlFwTFKzCybyOyffxHMFY+ZrTKzohjvNQfoCIL9PCKt67iPGXypHXD3rwM/Bc4Hfg28y8yqg33LzWwZsAW4wsxqo9tj1CYCqOUuqVUQdJPkEFnw+gfARHOz32JmbyCydNsu4OfB/ZHgROVdRPqkf2Rm7wceBnrOdGB3HzSz9wLfCOZQ7yPS+r6DSLfNs8GJ1xbg7TE+x8PA/zCz3UQCfMtZHvM9wJ+Y2RBwHPg/7t5uZn8L/CIYHjoEfMTdtwQnbH8cbG8mMtJI5Iw05a9IDBZZs/VBd59WS+EF3UP/093fmu5aZPpRt4xIbCPAnOl2ERORXy8d6a5Fpie13EVEMpBa7iIiGUjhLiKSgRTuIiIZSOEuIpKBFO4iIhno/wMDmmvo/bWkQgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(uhs['uhs_ra'], uhs['uhs_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, uhs, \"uhs_ra\", \"uhs_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add zBootes" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4nOV57/HvrdFoX6zdi2RLXkGsCcJsSTAkECAJNC0JkK1NkzonDTTNcpqlPaQnPSdXcnKaq9kTTpKSpUCz0MRlCdAAYTXYgAEveF8ky7I2a7PWke7zx4zMIGRrbI1mRqPf57oEM++8mvcebH569LzPYu6OiIikl4xkFyAiIvGncBcRSUMKdxGRNKRwFxFJQwp3EZE0pHAXEUlDCncRkTSkcBcRSUMKdxGRNJSZrAuXl5d7bW1tsi4vIjIrPffcc+3uXjHVeUkL99raWjZu3Jisy4uIzEpmtj+W89QtIyKShhTuIiJpSOEuIpKGpgx3M/uJmbWa2eYpzjvfzEJmdn38yhMRkVMRS8v9duCqE51gZgHga8CDcahJRESmacpwd/fHgM4pTrsF+A3QGo+iRERkeqbd525mi4B3A9+ffjkiIhIP8bih+i/A59x9bKoTzWytmW00s41tbW1xuLSIiEwmHpOYGoC7zAygHLjGzELu/tuJJ7r7bcBtAA0NDdq8VURkhkw73N29bvyxmd0O3DNZsM9WdzxzYNLj77tgcYIrERGJ3ZThbmZ3AmuAcjNrAr4EBAHc/QczWp2IiJySKcPd3W+K9c3c/S+mVY2IiMSFZqiKiKQhhbuISBpSuIuIpCGFu4hIGlK4i4ikIYW7iEgaUriLiKQhhbuISBpSuIuIpCGFu4hIGlK4i4ikIYW7iEgaUriLiKQhhbuISBpSuIuIpCGFu4hIGlK4i4ikIYW7iEgaUriLiKQhhbuISBpSuIuIpKEpw93MfmJmrWa2+Tivv9/MXjKzl83sKTM7J/5liojIyYil5X47cNUJXt8LXOruZwH/BNwWh7pERGQaMqc6wd0fM7PaE7z+VNTT9UD19MsSEZHpiHef+0eA+4/3opmtNbONZraxra0tzpcWEZFxcQt3M7uMcLh/7njnuPtt7t7g7g0VFRXxurSIiEwwZbdMLMzsbOBHwNXu3hGP9xQRkVM37Za7mS0G7gY+6O47pl+SiIhM15QtdzO7E1gDlJtZE/AlIAjg7j8AbgXKgO+ZGUDI3RtmqmAREZlaLKNlbpri9Y8CH41bRSIiMm2aoSoikoYU7iIiaUjhLiKShhTuIiJpSOEuIpKGFO4iImlI4S4ikoYU7iIiaUjhLiKShhTuIiJpKC6rQqaLO545kOwSRETiQi13EZE0pHAXEUlDCncRkTSkcBcRSUMKdxGRNKRwFxFJQwp3EZE0pHAXEUlDCncRkTSkcBcRSUNThruZ/cTMWs1s83FeNzP7lpntMrOXzOyN8S9TRERORiwt99uBq07w+tXAisjXWuD70y9LRESmY8pwd/fHgM4TnHId8DMPWw/MM7MF8SpQREROXjz63BcBjVHPmyLHXsfM1prZRjPb2NbWFodLi4jIZBJ6Q9Xdb3P3BndvqKioSOSlRUTmlHiE+0GgJup5deSYiIgkSTzCfR3wociomQuBbnc/FIf3FRGRUzTlTkxmdiewBig3sybgS0AQwN1/ANwHXAPsAvqBD89UsSIiEpspw93db5ridQc+EbeKRERk2jRDVUQkDSncRUTSkMJdRCQNKdxFRNKQwl1EJA0p3EVE0pDCXUQkDSncRUTSkMJdRCQNKdxFRNKQwl1EJA0p3EVE0pDCXUQkDSncT8LjO9v47Qvah0REUt+US/5K2KPbW3lw62EALl2lLQJFJLWp5R6Dx3e28eDWwyyvKABgx+HeJFckInJiCvcpPL//CPdvbuHMRcX8+cW1lOQF2d6icBeR1KZwn8LG/Z3ML8rhhoYaAhnGqvmF7G7rY3BkNNmliYgcl8L9BNydlp5BFpfmEcgwAFZVFTEy6jy7tzPJ1YmIHJ/C/QR6BkMMjowxvzjn2LGlFflkZhgPv9KaxMpERE5M4X4CLd0DAFQVvRruwUAGyyoKeHS7wl1EUldM4W5mV5nZdjPbZWafn+T1xWb2iJm9YGYvmdk18S818Vp6hgCYHxXuACvnF7Kvo5+97UeTUZaIyJSmDHczCwDfBa4G6oGbzKx+wmn/APzS3d8A3Ah8L96FJsPhnkGKc4PkZgVec3xVVSEAj6hrRkRSVCwt99XALnff4+7DwF3AdRPOcaAo8rgYaI5ficnT0j34ulY7QGl+Fssq8nlEXTMikqJiCfdFQGPU86bIsWj/CHzAzJqA+4BbJnsjM1trZhvNbGNbW9splJs4o2NOW+/Qa/rbo61ZVckzezsZGR1LcGUiIlOL1w3Vm4Db3b0auAb4uZm97r3d/TZ3b3D3hoqK1J7C39Y3xKg784uzJ329fkERw6ExGjv7E1yZiMjUYgn3g0BN1PPqyLFoHwF+CeDuTwM5QHk8CkyWw92DAMwvyp309WWV4aUIdrfppqqIpJ5YFg7bAKwwszrCoX4j8L4J5xwA3grcbmanEw731O53mUJLzyAZBuWFWZO+/vz+IwD8+rkm2nrDo2red8HihNUnInIiU7bc3T0E3Aw8AGwjPCpmi5l92cyujZz2GeCvzOxF4E7gL9zdZ6roRGjpHqSiMJvMjMn/E+UEAxTmZB4LdhGRVBLTkr/ufh/hG6XRx26NerwVuCS+pSXX4Z5BlpTlnfCcioJs2noHE1SRiEjsNEN1EgPDo3QNjEw6DDJaRWE2bX1DzPJfUkQkDSncJ3G4J9waryqeOtwHR8boGwoloiwRkZgp3CfR0jM+UmbqcAfU7y4iKUfhPomWnkFyghkU5wZPeF5FQSTc+xTuIpJaFO6TaOsdorIwBzM74XnFuUGyAhlquYtIylG4T6Krf5iSvBO32gHMLHxTVeEuIilG4T7BmDs9AyHm5U0+eWkihbuIpCKF+wR9QyFG3afsbx9XXpBN18AIwyEtICYiqUPhPkF3/wgA82IM9/ERM+26qSoiKUThPkHXQDjci2PocwcNhxSR1KRwn6B7PNxj7ZbJz8LQcEgRSS0K9wm6+4fJCmSQGwxMfTKQGcigND+LVrXcRSSFKNwn6BoYoTg3OOUY92gVhdm0K9xFJIUo3CfoHhhhXoz97eMqCrJp7xtidEwLiIlIalC4T9DdPxJzf/u48sJsQmNOc9fADFUlInJyFO5RQqNj9A6FTjrcS/PDE54OaD9VEUkRCvcoPYPhpXtPtlumLBLu+zsU7iKSGhTuUboGhgEozo1t6YFxRblBAhnG/k5tli0iqUHhHuVkZ6eOyzCjJC+LA2q5i0iKULhHGZ/AVHSS4Q7hrpl9CncRSRExhbuZXWVm281sl5l9/jjnvNfMtprZFjO7I75lJkbXwAh5WQGyMk/+Z15pfhYHOo5qP1URSQmZU51gZgHgu8AVQBOwwczWufvWqHNWAF8ALnH3I2ZWOVMFz6Tu/pGT7pIZV5qfxdHhUTqODlMe2aFJRCRZYmmirgZ2ufsedx8G7gKum3DOXwHfdfcjAO7eGt8yE6N74OTHuI8rK9CIGRFJHbGE+yKgMep5U+RYtJXASjN70szWm9lV8SowkboGhimOcZOOiV4d664RMyKSfFN2y5zE+6wA1gDVwGNmdpa7d0WfZGZrgbUAixcvjtOl46NvKMTgyNipd8vkZWGmlruIpIZYWu4HgZqo59WRY9GagHXuPuLue4EdhMP+Ndz9NndvcPeGioqKU615RhyKLB1wqt0ymYEMFhTlaDikiKSEWMJ9A7DCzOrMLAu4EVg34ZzfEm61Y2blhLtp9sSxzhnX3D0InPzs1GiLy/LYryUIRCQFTBnu7h4CbgYeALYBv3T3LWb2ZTO7NnLaA0CHmW0FHgH+u7t3zFTRM6F5mi13gCWl+eqWEZGUEFOfu7vfB9w34ditUY8d+HTka1Y61DWAAYU502u5t/cN0TcUoiA7XrczREROnmaoRhzsGjy2RsypWlKWB6B+dxFJOoV7xKHugWl1yUC4WwY0HFJEkk/hHtHSPTjtcF8cabmr311Ekk3hDrg7h+IQ7sW5QUryghoxIyJJp3AHegZCDIyMntJqkBMtLstXn7uIJJ3CHTjUM/1hkOOWlOZp0w4RSTqFO+H+doCinOkPX1xSlkdz1yAjo2PTfi8RkVOlcOfVcI9Hy31xaR6jY07TkYFpv5eIyKlSuAOHugcxm94EpnFLK8LDIfe29037vURETpXCHTjcM0h5Qfa0JjCNW1peAMCeNvW7i0jyKNwJt9wXFOfE5b1K8rOYlxdkb7vCXUSSR+FOuM99flF8wh2grjxfLXcRSSqFO9DSM8j8OLXcIRzuarmLSDLN+XDvHw7RPTAS13BfVlFAS88gR4dCcXtPEZGTMefDfXwYZLz63CHccgfUeheRpFG494TDvSrOfe6gcBeR5FG4H2u558btPRXuIpJscz7cD0XCPZ6jZXKCARbNy1W4i0jSzPlwP9wTXuo3NysQ1/cND4fULFURSY45H+7xnMAUra48nz3tRwlvLysiklhzPtxbuuM7xn3c0op8egdDdBwdjvt7i4hMJaZwN7OrzGy7me0ys8+f4Lw/MzM3s4b4lTizWnriOzt13PhNVc1UFZFkmDLczSwAfBe4GqgHbjKz+knOKwQ+CTwT7yJnynBojPa+oZlpuUcWENPqkCKSDLG03FcDu9x9j7sPA3cB101y3j8BXwMG41jfjGrtHcQ9vhOYxi0qySUrkMEejZgRkSSIJdwXAY1Rz5six44xszcCNe5+bxxrm3GHZ2AC07hAhrGkLE/dMiKSFNO+oWpmGcA3gM/EcO5aM9toZhvb2tqme+lpOzQDE5iiaQExEUmWWDYNPQjURD2vjhwbVwicCTxqZgDzgXVmdq27b4x+I3e/DbgNoKGhIeljBMdnp8arz/2OZw685vngyCj7O44yOuZx2QhERCRWsbTcNwArzKzOzLKAG4F14y+6e7e7l7t7rbvXAuuB1wV7KjrUPUhuMBCXjbEnU16Qzcio03Skf0beX0TkeKYMd3cPATcDDwDbgF+6+xYz+7KZXTvTBc6klp7wBKbIbxxxV1mYDcCOwxoxIyKJFVOT1d3vA+6bcOzW45y7ZvplJcZMTWAaV1Wcgxlsbe7hivqqGbuOiMhEc3qGary315soOzNAXVk+Ww91z9g1REQmM2fDfWR0jEPdA1SXzMxImXGnLyxi66GeGb2GiMhEczbcm7sGGHOoKc2b0evULyiisXOA7oGRGb2OiEi0ORvuBzrDI1hmPNwXFgHwilrvIpJAczbcGzsHAFg8w+F+RiTc1TUjIok0Z8P9QGc/wYDNyNID0SoLcygvyGZrs8JdRBJnzoZ745F+qkvyEjJztH5hEVsU7iKSQHM33Dv7Z3ykzLj6BUXsbO1lODSWkOuJiMzpcJ/pm6nj6hcWMTLq7GrVTFURSYyZWVQlxfUOjnCkf2TGb6aOq1/w6k3V8dEzIpJaJi78B/C+CxYnoZL4mJPhPj5SpqYkMeFeV55PTjAjfFP1vIRcUkROYLIgTzdzM9wjqzQmquUeyDBOm1+kZQhEZkhH3xB724+yr6OfAx1H6RkMERob45VDvczLy6KuPJ+aklwyA3OnJ3puhvuxCUyJuaEK4X73e15sxt1nbBVKkXTn7hzsGuDlpm5ePtjN1kM9bG3uobV36Ng5GQZZmRlkmJFhRt9QCIDMDOPs6nm846wF5GYFkvUREmbOhnthTibFucGEXbN+QRF3PHOAg10DVCeoO0hktus8OsyLjV1sauzixaYuXmrqpvPoMBAO8crCHBbNy6VhSQkVhTmUF2QxLy/rNUOc+4dC7Os4ys7WPjbs62RPWx/vaaihrjw/WR8rIeZkuB/o7KemJC+hLejxmaovNXUr3EUmMRQaZWtzD5sau3jhQDjQx5cJMaCyKJu6snzetLyc6pJcqopyCMbQzZKXnUn9wmLqFxbzxsUl/PvGRn70+B6urK/i0lWVM/ypkmdOhnvjkQGWVxQk9JpnLiomLyvA07s7uOasBQm9tkiqcXeajgzwQmMXLxw4wqbGLrYc7GF4NDwXpCgnk5rSPK46Yz7VpbksmpdLdub0u1JqSvO45fLl3P38QR7YepjKohxOX5CeI9jmXLi7O42d/Vy2qiKh1w0GMlhdV8pTu9sTel2RVNDVP8xLTd3HuljW7+ng6PAoAMGAsXBeLqvrSllcmkdNad6MdplmZwa4/rxqOvqG+PVzTdxy+XLm5WXN2PWSZc6Fe1vvEEOhsYSNlIl28bIyvrK9jcM9gzO+po1IsgyHxth6qIdNkRb5i03d7G0/CoAZLKsoYNX8IqpLcqkpzWN+UU7CN5APBjK4afVivvPILu589gBr37Is7Taxn3PhPt6HV52UcC8H4OndHfzJGxYl/PoiM6F7YITn9nfyzN5Ofr+5hYNHBgiNOQCFOZnUlORxZX0V1SV5VJfkkhNMjZEqZQXZvPsNi7hrQyMPbm3h6jPTq7t0zoX7+Bj3RE1gila/oIji3CBP7W5XuMus1T8c4pm9nTy1q50nd3WwraUH93D3yvyiHC6oK2VxWXhceXFuMKWH/p5dPY9drX08uaud1bWllBVkJ7ukuJl74R6ZnZqoRcOiZWQYFy0t46ndHQm/tsipcne2H+7lj9vb+OOONjbs62Rk1AlkGEtK87j8tErqyvKpKc2LafRKqnlbfRWbGrt4ZHsb159Xnexy4iamcDezq4BvAgHgR+7+1Qmvfxr4KBAC2oC/dPf9ca41Lg509lNVlJ20Xw0vXl7G77e0JHThMpGTNTgyytO7O3j4lVb+88VmuiLbRM4vyuHCpWWsqCxkSdnsDPOJinKCXFBXylO7O1izqoLyNGm9TxnuZhYAvgtcATQBG8xsnbtvjTrtBaDB3fvN7OPA/wFumImCp6uxsz8pN1PHXbysDICndrdzQ+nsXZRI0s+h7gEe3d7GH7a18uSudgZGRsnLCrCkLJ/LVlWycn5hQif+JdJbVlbw7L5OHn6llfc21CS7nLiIpeW+Gtjl7nsAzOwu4DrgWLi7+yNR568HPhDPIuOpsbOfC5eWJe36yyoKqCjM5qndHdxwvsJdkmdkdIwXDnTxxx2tPPxKG9siW0HOywtyTs08TptfSF15flq0zqdSmBPkwroyntjVzppVFVQWzv7RbLGE+yKgMep5E3DBCc7/CHD/dIqaKX1DIQ71DCZ02vFkq89dvCzc7651ZiTRGjv7eXxnO4/taOPJXe30DoUIZBgNS0r4/NWn0T88SlVh9pz8e/nmlRU8szfcer8xDRpecb2hamYfABqAS4/z+lpgLcDixYn/j7e1OXxX/4xFyZ2RdvGyMn63qZldrX2sqCpMai2S3noHR1i/p5MfP7GHnYf76Iisy1KcG+S0BYWsqCxkeWXBsXtQRTnp2e0Si4LsTC5YWsoTO9u56ozhWT+xKZZwPwhEd0JVR469hpm9Dfh74FJ3H5r4OoC73wbcBtDQ0OAnXe00bWkOL7l75sLiRF/6NS5ZHh7v/tC2wwp3iavRMeflg908vqONx3e28/yBI4TGnGDAWFpewEXLylheWUBFwdxsnU/lwqVlPLGznWf2dvL2M+Ynu5xpiSXcNwArzKyOcKjfCLwv+gQzewPwQ+Aqd2+Ne5VxsvlgDxWF2VQmeXZodUke59eW8Ovnmvj4pcv0P5lMS2vPIH/cER6m+MSudrr6wyNbFs3L5ZLl5ayoLGBxad6cWsv8VJXkZXHagiI27Ovk8tNm96JiU4a7u4fM7GbgAcJDIX/i7lvM7MvARndfB3wdKAB+FQmqA+5+7QzWfUq2NHdzZopsc3f9edV87jcv8/yBLs5bUpLscmQWGR1zNjUe4dsP72JHSy/N3YMAFGZnsqKqgBWVhSyrLKAge85NY4mLC5eWsu1QD5sPzu7NdWL603f3+4D7Jhy7Nerx2+JcV9wNjoyys7WPK+qrkl0KAO84eyH/uG4rv36uSeEuU+ofDvHYjjYe2trKo9tb6Tg6TIaFdxO7sr6KlVWFLCjO0W+BcbCsooDygmzW75ndkw3nzI/2V1p6GR1zzkhyf/u4guxMrj5rPve82Myt76yfEzvDyMk5cnSYh7Ye5sGtLTy6vY3QmJMbDLCyqoC31VexsrJQf29mQIYZFy4t5Z6XDvFyUzdnVadGZpysORPu479inZnkkTLRrj+vmrufP8iDW1u47lytNSPhVUv/171b2XwwvJLimIfHna+uK6V+QRFLyvLTbvXCVPTGxSU8uOUwP3t6H19/zznJLueUzJlw39Lczby8IIvmJX5NmeO5sK6M6pJcfrWxSeE+h7X2DvLA5hbuffkQz+7tZMyhvCCLN6+o4MyFxSycp+6WRMsJBji3Zh7rXmzmi9ecTkn+7BsWOWfCffPBHs5cWJxS/5NkZBh/9sZqvvXwTg52DaTUDx6ZWW29Q/x+Swv3vtR8LNCXVeRz82XLAaOqSEMVk+3CpWU8u6+TXz3XyNq3LEt2OSdtToT7cGiM7S29fPhNtcku5XWuPy8c7j95Yi//4531yS5HZtB4oN/30iGe2dvBmENFQTaXrqzkrOriOTszNFXNL85hdW0pv1h/gI++aSkZs6w7bE6E+87WXoZHx1LmZmq0mtI83nteDT99ah/vv2AxSxO8t6vMrPFA/9cn9rK3/ShOVKAvKlYLPcV98KIl3HLnC/xxRxuXzbJx73Mi3LccDC+IlCpj3Cf67NtXce/Lh/jf927jx39xfrLLkWlq7RmMdLkc4tl9nXikhb5mlQJ9tnn7GfOpKMzmp0/vU7inos3N3eRnBagtS9yCYSejojCbmy9fzlfvf4XHdrTxlpWJ3bxbpq+5a4Dfb27h/s2H2LjvSLiFXpjNZasqOXORulxmq6zM8F6r3354J/s7jrIkRTNkMnMj3A92c8bC4pTpM5tspcgPX1LLnc8e4J/u2cr9n3yzporPAnva+nhgy2F+v/kQLzaFh9qeNr+Qy0+v5MyFxdoEPU28b/VivvvILn6xfj9//47Zc18s7cN9ZDS8E/tNq1N7Cc/szABfvOZ0Pvbz5/j+o7u55a0rkl2STODuvNTUzUNbD/PAlhZ2tvYB4TVc3l5fxRkLiykvTI9dfORV84tzePsZVfxyYxOfumIleVmzIzZnR5XT8MTOdgZHxrgoiRt0xOrK+iredc5C/vmhHSwqyeVP35g++znOVkOh8HZz/7XtMOs2NdMzGCLDoLYsn3eevYD6BUWzfmlYmdpH3lTHfS+38Iv1+2fNsMi0D/ffbTpIcW6QNatS/2aImfF/33M2HX1D/N2vX6I0P2tW1J1u2vuGeOSVVv6wrZXHd7ZxdDi83VxdeT6nLyjitKpC8rQo15xy3pJS3ryinB/+cQ8fuHDJrGi9p36F09A/HOLBrYe57tyFZGXOjj7s7MwAP/zgedzww/V8/BfP89O/XM3qutJkl5XWxsaczc3dPLq9jYdfaeXFpi7coSgnkzMWFnP6gkKWVhTMie3m5Pg++dYVXP+Dp2dN6z2tw/2hrYfpHx6ddVP7C3OC3P6X5/PeHzzNTf9vPZ+4bDm3XL5c4RJHrb2DPLmrncd3tPPYzjba+4Yxg7MXFfOpt61kODSmVRblNRpqZ1frPbWrm6Z1m5pZEJllluomG0HzoYtq2dzczbf+sJNHt7fy1T89m/oUHauf6rr7R1i/t4Ond3ewfk8Hr7T0ApCXFWB5ZQGXrapkRVWh1kCXE5pNrfe0/ZvceXSYP+5o4yNvqkuZIZAnKycY4BvvPZe3nV7FF//jZa751uNcsryMD19cx+WnVc7azzXT3J297UfZ1NjFc/uPsHHfEbYfDod5MGAsKc3nyvoqVkTWQM9Q61xiFN16v2n1YgpTeM/ZtA33+14+RGjMufbchckuZdquOWsBFy8r485nG/nZ0/v46M82UlmYzaUrK1izqpJLlpfN2REbY2NO45F+tjSHd87Z3NzDi41ddA+Et5rLzsxgSVkeV9RXUVuWT01JruYQyLR89spVvPt7T/Kl323hGzecm+xyjittw33dpmZWVBZQv2B2d2NEd9cU5wb56zXLKckPcv/mFh7Y0sKvnmsCYElZHmctKubMRcUsryhgRVUB1SV5abP298DwKE1H+tnddpS97UfZ3dbHzsO97Djcx8DIKAAZBlVFOayoLKCmNI/qklyqitQyl/g6p2Yet1y+gm/+YSeXrqpI2Xt6aRnuG/d18uy+Tj575cq0uyEWyDB6BkJcsqycC+vKaOzsZ3/HUZq6BnhiZzv3vHTo2LlZgQyqS3JZXJbH4tI8FhTnsnBeDguKc6kszKaiMJv8JPcxh0bH6BoYofPoMO29Q7T1DdHWO0RL9yCHegZp7hqgsXOA9r6h13xfRWE2K6sKuHF1DV39IywszqWqKFutckmIWy5fzhO72vmH/9jMGxeXUFOal+ySXiftwr29b4hP3PE8tWV5fOji2mSXM6MCGUZteT615a+udzEwPEpb7yCtvUO09w3RcXSYHS29rN/TweDI2OveIzcYoCQvSHFeFvNygxTkZFKQnUl+doDcYICcyFdWIIPMgBEMZBDIMAJmjP/c9Mg/QmNOaGyMkVFnODTG4Mgog6FR+odGOToUoi/y1TM4QvfACN39I/QMhib9bMGAUZwbpCg3yJKyPM6tmUdpfpDygmzKC7LJCWp7OUmezEAG/3LDuVzzzcf55F0vcNfai1JuuHVahXtodIxb7niBrv4R/vWvV1OUwjc7ZkpuVoDFZfksnmSBo6GRUboGRugZGKF3KETfYDhs+4dHGRgO0dw9wFD7GEOhUYZCY4yMjhEa9XB4n6LMDCMrM4PszAyyMwNkZWaQGwxQlp/Nonl55GcHyMvKJD8rQEF2+AdLYU6QnGBG2v3WJemlpjSPr/zpWdxy5wu8/0fr+f4HzqO8IHWWn4gp3M3sKuCbQAD4kbt/dcLr2cDPgPOADuAGd98X31Kn9o2HdvD0ng6+fr2GDE4mOxigKhg4qQWt3J3RsVe/Qu64h4+PRVLfIv9BBaFuAAAH9klEQVTIMDvWqg9kGJkBU3+3pLV3nbOQMXc+95uXuPbbT3Dbhxo4c1Fq7BsxZbibWQD4LnAF0ARsMLN17r416rSPAEfcfbmZ3Qh8DbhhJgqezMtN3XzzDzv4r22t3Hh+De9pqEnUpdOeWTikM9ULIjKp685dxLKKAtb+bCN/9v2nuOH8Gm48f3HSG5ixtNxXA7vcfQ+Amd0FXAdEh/t1wD9GHv8a+I6ZmbtP5zf6SY2OOY2d/exq7WNXWx/r93Tw6PY2inODfPqKlXzs0qXxvqSIyAmduaiYdbe8ia/cu427NjTys6f3c3Z1MatrS1leWcDyygLKC7KP3dPKzpz5bsdYwn0R0Bj1vAm44HjnuHvIzLqBMqA9HkVG+92mg3z6ly8eez6/KIfPXrmSP7+4NqUnFIhIeisvyOYbN5zLre+q5+7nD/K7TQf5+fr9DIVeP5DhY29ZyheuOX1G60noDVUzWwusjTztM7Pt033P/cAzwC3TfaOwcmbgB1IS6fOkvnT7TGn1ed4/Q+/7xa/BF0/925fEclIs4X4QiO7Ero4cm+ycJjPLBIoJ31h9DXe/DbgtlsKSwcw2untDsuuIF32e1JdunyndPs9sFsvAzA3ACjOrM7Ms4EZg3YRz1gF/Hnl8PfDwTPS3i4hIbKZsuUf60G8GHiA8FPIn7r7FzL4MbHT3dcCPgZ+b2S6gk/APABERSZKY+tzd/T7gvgnHbo16PAi8J76lJUXKdhmdIn2e1JdunyndPs+sZeo9ERFJP6m1GIKIiMSFwj3CzK4ys+1mtsvMPp/seqbDzH5iZq1mtjnZtcSDmdWY2SNmttXMtpjZJ5Nd03SYWY6ZPWtmL0Y+z/9Mdk3xYGYBM3vBzO5Jdi2icAdes8TC1UA9cJOZ1Se3qmm5Hbgq2UXEUQj4jLvXAxcCn5jlfz5DwOXufg5wLnCVmV2Y5Jri4ZPAtmQXIWEK97BjSyy4+zAwvsTCrOTujxEetZQW3P2Quz8fedxLOEBSc4eEGHhYX+RpMPI1q29+mVk18A7gR8muRcIU7mGTLbEwa8MjnZlZLfAGwhOTZ61IF8YmoBV4yN1n9ecB/gX4O+D1c+0lKRTuMmuYWQHwG+Bv3b0n2fVMh7uPuvu5hGd8rzazM5Nd06kys3cCre7+XLJrkVcp3MNiWWJBksjMgoSD/d/c/e5k1xMv7t4FPMLsvkdyCXCtme0j3KV5uZn9IrklicI9LJYlFiRJLLw26o+Bbe7+jWTXM11mVmFm8yKPcwnvlfBKcqs6de7+BXevdvdawv/vPOzuH0hyWXOewp3wEgvA+BIL24BfuvuW5FZ16szsTuBpYJWZNZnZR5Jd0zRdAnyQcItwU+TrmmQXNQ0LgEfM7CXCDYuH3F3DByWuNENVRCQNqeUuIpKGFO4iImlI4S4ikoYU7iIiaUjhLiKShhTuIiJpSOEuCWNmo5Ex6lsiy91+xswyIq81mNm3TvC9tWb2vsRV+7prD0TWgkkJZnZDZHlqjY+XSSncJZEG3P1cdz+D8KzMq4EvAbj7Rnf/mxN8by2QlHCP2B1ZCyZmkaWkZ4S7/zvw0Zl6f5n9FO6SFO7eCqwFbrawNeOtUDO7NGom6gtmVgh8FXhz5NinIq3px83s+cjXxZHvXWNmj5rZr83sFTP7t8jyBZjZ+Wb2VOS3hmfNrDCyOuPXzWyDmb1kZh+LpX4z+62ZPRf5LWRt1PE+M/tnM3sRuOg41zwj8nhT5JorIt/7gajjPxz/4RDZSOb5yHv8IY5/DJLO3F1f+krIF9A3ybEuoApYA9wTOfafwCWRxwWEN3I/9nrkeB6QE3m8AtgYebwG6Ca8+FsG4WUY3gRkAXuA8yPnFUXedy3wD5Fj2cBGoG5CjbXA5gnHSiP/zgU2A2WR5w68N/L4eNf8NvD+qHNygdMjnzsYOf494ENABeHlqOuirxv1We+Z7L+1vvSVeZI/C0QS4UngG2b2b8Dd7t4UaXxHCwLfMbNzgVFgZdRrz7p7E0Ckn7yWcOAfcvcNAB5ZMtjMrgTONrPrI99bTPiHxd4pavwbM3t35HFN5Hs6IrX8JnJ81XGu+TTw95ENLu52951m9lbgPGBD5LPmEl7r/ULgMXffG3mPtNmERWaWwl2SxsyWEg7DVsItVwDc/atmdi9wDfCkmb19km//FHAYOIdwC30w6rWhqMejnPjvuQG3uPsDJ1H3GuBtwEXu3m9mjwI5kZcH3X30RN/v7neY2TOEdy66L9IVZMBP3f0LE671rljrEommPndJCjOrAH4AfMfdfcJry9z9ZXf/GuFVE08DeoHCqNOKCbeKxwivGDnVzcvtwAIzOz9yjUIzyyS8EujHI+vFY2YrzSx/ivcqBo5Egv00wq3rmK8Z+aG2x92/BfwOOBv4A3C9mVVGzi01syXAeuAtZlY3fnyK2kQAtdwlsXIj3SRBwpte/xyYbH32vzWzywhv2bYFuD/yeDRyo/J2wn3SvzGzDwG/B46e6MLuPmxmNwDfjqyhPkC49f0jwt02z0duvLYBfzLF5/g98N/MbBvhAF9/ktd8L/BBMxsBWoCvuHunmf0D8GBkeOgI8Al3Xx+5YXt35Hgr4ZFGIiekJX9FpmDhfVvvcfeU2gov0j30WXd/Z7JrkdSjbhmRqY0Cxak2iYnwby9Hkl2LpCa13EVE0pBa7iIiaUjhLiKShhTuIiJpSOEuIpKGFO4iImno/wOnCnTAdqULgQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(zbootes['zbootes_ra'], zbootes['zbootes_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, zbootes, \"zbootes_ra\", \"zbootes_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add SDWFS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(sdwfs['sdwfs_ra'], sdwfs['sdwfs_dec'])\n", ")" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "#Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, sdwfs, \"sdwfs_ra\", \"sdwfs_dec\", radius=1.*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add Datafusion" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8XNV5//HPM6ORZkbLaLUla7FkY2xsY2xjjFkCJAFiSEISyEKgzdKkJG3JnuaV/NrSX9P+2oS0aUJCFkJo0iQEaCCJoQbCjgkYbLzbsvGCrdWWbO2akWY7vz9mZCZCtkf2zNw7M8/79dKLWa50H9n4q6Nzz32OGGNQSimVWxxWF6CUUir1NNyVUioHabgrpVQO0nBXSqkcpOGulFI5SMNdKaVykIa7UkrlIA13pZTKQRruSimVgwqsOnF1dbVpbm626vRKKZWVXn311aPGmJpTHWdZuDc3N7Nx40arTq+UUllJRA4lc5xOyyilVA7ScFdKqRyk4a6UUjlIw10ppXKQhrtSSuUgDXellMpBSYW7iKwWkT0isk9EvjrF+x8TkV4R2RL/+GTqS1VKKZWsU65zFxEncCdwFdABbBCRNcaYXZMOvd8Yc2saalRKKTVNyYzcVwL7jDEHjDFB4D7gPektSyml1JlI5g7VeqA94XkHcOEUx90gIpcBrwFfMMa0Tz5ARG4BbgFoamqafrVpcu/LbUkfe9OF9qlbKaVOJFUXVB8Gmo0xS4AngJ9PdZAx5i5jzApjzIqamlO2RlBKKXWakgn3TqAx4XlD/LXjjDHHjDHj8ad3A+enpjyllFKnI5lw3wDME5EWESkEbgTWJB4gInUJT68DWlNXolJKqek65Zy7MSYsIrcCjwNO4B5jzE4R+Tqw0RizBvisiFwHhIE+4GNprFkppdQpJNXy1xizFlg76bXbEh5/DfhaaktTSil1uvQOVaWUykEa7koplYM03JVSKgdpuCulVA7ScD+FR3d08+yeHqvLUEqpabFsg+xscGRojHV7j1LgEFY0V1JSpH9cSqnsoCP3k3j+tV4KHEI4anjl9WNWl6OUUknTcD+BvtEgWzsGuLClkrNnlrD+QB/hSNTqspRSKika7iewbm8vIsKl82q4ZG41I+NhtnUMWl2WUkolRSeRpzA0FuLVQ/0sb6rA53FR5i5gRmkRf9x/FGMMImJ1iUopdVI6cp/CH/cdJRI1XDavGgAR4ZKzqukeHOOlAzr3rpSyPw33KWzvGOScujKqSoqOv7a0sRxvoZOfv3jQusKUUipJGu6TRKKGwUCIWp/7T153OR0smuXjxf3HiEaNRdUppVRyNNwnGQyEMEC5x/Wm95oqvQyPhdnfO5L5wpRSaho03Cfp9wcBKPcWvum9xkoPAJvbBjJak1JKTZeG+yQD/hAAFd43j9yrS4rweVxsbu/PdFlKKTUtGu6TDMRH7r4ppmUcIixtLNeRu1LK9jTcJxnwhyh1F1DgnPqPZllTOXuODDM8FspwZUoplTwN90n6A8EpL6ZOWNZUgTHo3apKKVvTcJ9kwB+a8mLqhKUN5QBsbtN5d6WUfWm4J4ia2Br3qS6mTvB5XZw1o0Tn3ZVStqbhnmBkLEwkak46cgdY1ljO5vYBjNGbmZRS9qThnmDg+Br3E4/cITbv3jca5NAxfybKUkqpadNwT9AfiK2AOeXIvSk+767r3ZVSNqUtfxMcv4HpJKtl7n25jagxFBY4uH9DO4FgbAOPmy5sykiNSimVDB25JxjwB/G4nBS5nCc9ziFCQ4WHtj6dllFK2ZOGe4LYMsiTz7dPqC/3cGRonIh2iFRK2ZCGe4J+f/CU8+0T6nweIlFD7/B4mqtSSqnp03CPM8YwEEh+5F4X7/fePRhIZ1lKKXVaNNzjAqEIwXD0pBdTE1WXFFHgELoHx9JcmVJKTZ+Ge9zESplkp2WcDmFmmZvDGu5KKRvScI9L9gamRLU+N12DAb1TVSllO0mFu4isFpE9IrJPRL56kuNuEBEjIitSV2Jm9E9z5A6xeXd/MMLwWDhdZSml1Gk5ZbiLiBO4E7gGWAh8WEQWTnFcKfA54OVUF5kJA/4gLqdQXHjyNe6J6nyxbfd03l0pZTfJjNxXAvuMMQeMMUHgPuA9Uxz3z8A3gaxMuoFAiHJPISKS9OfoihmllF0lE+71QHvC8474a8eJyHKg0RjzvymsLaOmcwPTBLfLSYXXpSN3pZTtnPEFVRFxAN8GvpTEsbeIyEYR2djb23ump06pAX9w2uEOsakZXTGjlLKbZMK9E2hMeN4Qf21CKbAYeFZEDgKrgDVTXVQ1xtxljFlhjFlRU1Nz+lWnWNQY/MEIJUXT76NW63NzdGScQDCShsqUUur0JBPuG4B5ItIiIoXAjcCaiTeNMYPGmGpjTLMxphlYD1xnjNmYlorTYCwUwQDewumHe53PjQH2HBlOeV1KKXW6ThnuxpgwcCvwONAKPGCM2SkiXxeR69JdYCZMjLo901gpM2FixcyurqGU1qSUUmciqaGqMWYtsHbSa7ed4NgrzryszPLHw917GuFe4XVRVOCgtVvDXSllH3qHKgnhfoo+7lMREep8bg13pZStaLgDgVDsDlPPacy5A9T6PLR2DxHV3u5KKZvQcOfMpmUgdlF1NBihvV93ZlJK2YOGO2+Eu/s0pmXgjTtVdWpGKWUXGu7EVsu4XQ6cjuRbDySaWebGIbCrW5dDKqXsQcMd8AfDp7XGfYLL6aClulhH7kop29BwJ7YLk+c0p2QmnFNXpuGulLINDXdic+6nezF1wjl1ZXT0BxgaC6WoKqWUOn0a7sTC/XTuTk10Tl0pAHsO67y7Usp6Gu7ELqimYuQOumJGKWUPeR/ukahhLBQ5owuqALVlbsq9Lg13pZQt5H24DwVCGDjjC6oiwjm1ZbocUillC3kf7gOB2AXQM52WgdjUzJ7DQ0S0DYFSymJ5H+79/iCQqnAvZSwU5eCx0TP+WkopdSbyPtwH/bGR++k2DUukF1WVUnaR9+GeypH7vJklFDhEw10pZbkzH65muYH4yP10erknuvflNgCqSgp5clcP9eVebrqw6YzrU0qp05H3I/eBQAgB3CkYuUNs273DQ2Mp+VpKKXW6NNz9QdwuJw45vY6Qk9X53AwGQoyOh1Py9ZRS6nRouPtDZ9x6INGs8tiG2V0DgZR9TaWUmi4N90AoJRdTJ8zyabgrpayn4e4PpjTcPYVOKosL6dRwV0pZSMPdHzrjvjKTzfK56RrUi6pKKevkfbj3+4Nn3FdmsvpyD32jweM3SCmlVKbldbiHI1GGx8IpvaAKb1xU3dk1mNKvq5RSycrrcB8aiy1XTOWcO7wR7js03JVSFsnrcE9l64FExUUFlHtcbO/UNgRKKWvkdbgfbz2Q4guqEBu97+zUkbtSyhp5He6DgdjIPdUXVCEW7geOjjKsG2YrpSyQ1+HeP5q6jTomqy93A7CrS6dmlFKZl9fh/sYuTOmZlgHYrlMzSikL5HW4D/qDOASKXKn/Yyh1u5hZVsROHbkrpSyQVKqJyGoR2SMi+0Tkq1O8/2kR2S4iW0TkBRFZmPpSU6/fH8LncaWsI+Rk59b72KEjd6WUBU45HyEiTuBO4CqgA9ggImuMMbsSDrvXGPOj+PHXAd8GVqeh3pQaCIQo9xam7esvmuXj6d09jI6HKS7K+31RlMpaE5vxJLL7ZjzJjNxXAvuMMQeMMUHgPuA9iQcYYxLnHooBk7oS02fAH8TncaXt6y9tLCdqYFuHjt6VUpmVTLjXA+0Jzzvir/0JEfkbEdkP3A58NjXlpdeAP0SFN73hDrC5vT9t51BKqamkbK7AGHMncKeI3AT8PfDRyceIyC3ALQBNTdb/SjMQCHLWjJK0ff2K4kLmVBez6dBA2s6hlEqdqaZfslUyI/dOoDHheUP8tRO5D3jvVG8YY+4yxqwwxqyoqalJvso0GRgNpXVaBmBZUwWb2/oxJitmqpRSOSKZcN8AzBORFhEpBG4E1iQeICLzEp6+E9ibuhLTIxyJMjwepjyN0zIAy2eXc2w0SHufbt6hlB0NBkJs7xhk48E+9veOMJIj+x+fclrGGBMWkVuBxwEncI8xZqeIfB3YaIxZA9wqIlcCIaCfKaZk7GY43hEy7SP3xgoANrX101TlTeu5lFLJGx0Pc/e61/nJugN/Euil7gK+cOXZuNPQliSTkppzN8asBdZOeu22hMefS3FdaTcU7/ni87gYC0XTdp75taUUFzrZ1NbPe5e96Tq0UirDIlHDva+08Y1HdzM6HmbRrDKWNZbjKnDgH4/wwMZ2nmw9wruWzLK61DOSt4uvB+OtB8rcLsZC42k7j9MhnNdYzqY2XTGjlNVePdTHP/xuJ7u6h2ipLmb1qtk0Vv7pb9QHj43y0v5jLG+qON5GJBvlbfuBoUDs17CyNE/LACxvqqC1e5hAMJL2cyml3uzw4BhfemArN/zwJfr9QX5w83I+eWnLm4Id4OqFtXgLnazZ2kU0ixdC5O3IfWJapsyT/j+CZU3lRKKGbR0DXDinKu3nU0rFjI6HufXezbywr5eogcvPruGt82cw4A8hJ2g74il0cs3iOn6zqYNNh/pZ0VyZ4apTI3/DPfDGnHu6TKyZHY1frLnnjwfZ3ztq+9uWlcp2wXCU+ze0ccfT++gdHufceh/vWFRLZXFy7UaWNZWz4WAfT+/u0XDPNolz7ulWXFRAVXEhbX3+tJ9LqXwWjRrWbO3i20+8Rlufn5UtldywvIGmKaZfTkZEWFTvY+32bobHQpRmICdSLW/DfWgshNMhadmoYypNlV729ozozUxKpckLe4/yld9spWtwjDqfm49d3My8GSUnnH45lfr4xdTOgQALajXcs8ZQIEyZu+C0/+Knq6nKy+b2Afr9uu2eUqm0r2eYf36klede66Xc6+KDKxpZ0uA741bes3xuhIlwL0tNsRmUv+E+FsrISpkJzVXFABzoHcnYOZXKZUNjIb775F5+/uJBvIVO/v6d51DodFDgTM0iwCKXk6qSIrr6s/Pu8rwN98FA+vvKJJpRWkRJUQEHjo5m7JxK5aJo1PC3v9nGYzsP4x8Ps6K5kqsWzkzLdpn15W4OHsvOa2V5G+5DgVBGLqZOEBHm1BSzvzc2756p6SClcsmOzkFu+/0ONrUN0FTp5WMXNx+fG0+H+nIPWzsGGRkPU5JlG+5kV7UpNDQWptbnzug559aUsK1jkP29o2ltNaxUrjk6Ms5//OE17t/QRoW3kBuWN7CsqTxtW2ROmFURv6jaH2B+bWlaz5Vq+RvuGR65QyzcAV7af1TDXakkjIcj/PeLh7jjqb0EQhE+enEzn7/ybP53W3dGzj/L98aKGQ33LJHpOXeACq+Lcq+LF/cf488vas7ouZXKJtGo4eFtXXzr8T109AeYP7OUa86tZUapO2PBDuB2OakuKaRrIPsuquZluI+FIoyHoxldLQOxefe51SW8dOAY0ajB4dB5d6Um++O+o/zr2lZ2dg2xsK6Mj188k3kzrRs1zyr3cCgLL6rmZeOwiV7uZe7M/2ybU1PMgD9E6+GhUx+sVB7ZfXiIj97zCjff/TID/hDf+dBSHvnMpZYGO8Quqg4GQlm3iUdejtzfaBqW+bvO5hyfdz/Golm+jJ9fKbvpHw3yrT/s4dcvt1HkcnDN4lpWzanCH4xw34Z2q8s73va3ayDA2Rb/oJmOvAz3431lLAh3n8fFnJpiXtx/jE++ZU7Gz6+UXUSihvs3tHP747sZHgtz0dwq3rZgRlrWq5+JxDYEGu42N5TBpmFTuXhuFb/d1EkoEsWVorvplMom33niNR7a3Elbn5/mqmI+clEztWWZXZqcLLfLSVVxIZ1Zdqdq3oX7vS+3sbVjAIB1r/Wy5/Bwxmu4eG41v1zfxtb2gaxtJ6rU6QhFotz1/AG+98w+Cp0OPnB+A0sby21/U9+scg/tWdbVNe/CHWKrZQDcGeoIOdklc6spcAhPZXGvaKWma/fhIb78P1vZ0TnE4nof715SlzWtdGeUFbG9c5BwJJqy3jXplh1VptjEdncei3Y393ldrGyp5MldRyw5v1KZFIpE+d5Te3n3917g8OAYP7x5OTetbMqaYAcoj1+fm7helw3yduRe4BBL57uvWjiTf3p4FwePjtJcXWxZHUql0zcf3c3vtnTSPTjGkgYf714yKyvbXvs8sR2cBgMhqkqKLK4mOfk5cg9FcVs0ap9w5TkzAXiyVUfvKvcMjYX4x9/v4EfP7Wd0PMxNK5u48YImirOs+dYEn47cs8NYKGJ5uDdWellQW8qTrUd0SaTKGdGo4cFNHdz++B6Ojoyzak4VVy2cafm/tzOl4Z4lxkIRPC7rfmmZ2Di71ufm+dd6uXvdAQ14lfVePdTP1x/eydaOQZY2lnP3R1awsys37sQuLHDgcTkZ0HC3t0AokrG9U0/mnNoynt3Ty2tHMr8cU6lU6RoI8M3HdvP7LV2UuQv4wPkNnNdYnjPBPqHc62Iwi64X5Ge4ByNUFhdaXQb1FR5Kiwpo7dZwV9knEIzw4+f386Pn9hM1cMX8Gi4/u4aiAusHTung87gY0HC3NzvMuQM4RFhQV8q2jkGC4SiFBXl5fVtlmV+tP8T2zkEe3XGYwUCIc+t9rF5cS4XX+gFTOvk8rqzqDpl34W6MYSwUtWyN+2Tn1Jax4WA/L+4/yhXzZ1hdjlInta1jgJ+sO8DBY35m+dx8cEUjLXmylNfncREIRbJmIJZ34R6KGCLG2Cbc584owe1y8LvNnRruyra6BwN867E9PLS5k+KiAt63tJ7zmyvSvs2dnSSumKkptf9a97wL98BE6wGbhLvL6WBJQzmP7TyclZvwqtw2PBbiR8/t56cvvE7UwF9fMZfqkiLb/PvJJJ9Xw93WjveVsXAp5GTLG8t55fU+Ht3ezQdWNFpdjlKEIlHufbmNbz62G38wwnkNPq5eWEuFDRYiWKX8+F2qQYsrSU7ehrtdpmUgdkNTc5WXhzZ1argrSxljeKq1h39d28qBo6PMqS7mmsV11Fd4rC7NchM7t2XLWvekwl1EVgPfBZzA3caYb0x6/4vAJ4Ew0Av8hTHmUIprTYnjTcNssM59gohw/fIGvv3Ea3T0+2mo8Fpdksoz977cxpGhMR7Z1sX+3lGqS4r4yKrZzK8ttX073kwpcDooKSrImrXup5ybEBEncCdwDbAQ+LCILJx02GZghTFmCfAb4PZUF5oqdptzn/C+ZfUA/G5zp8WVqHwzMh7m0e3dfO/pvXQNjPGuJXV87u3zWFBXpsE+ic/jypoWBMlMPK8E9hljDhhjgsB9wHsSDzDGPGOMmVgAuh5oSG2ZqTNm03BvrPSysqWShzZ1YoyxuhyVJx7bcZgr/+M51u07yvKmCr541dlcPLcap0NDfSq5Fu71QOIutR3x107kE8CjU70hIreIyEYR2djb25t8lSkUCEUBe825T7hheT0Hjo6yuX3A6lJUjusZGuPTv3iVT//yVcq9Lj592RyuX96QtV0bMyXXwj1pIvJnwArgW1O9b4y5yxizwhizoqamJpWnTtpYKEKh02HLkcm159ZRXOjkv188aHUpKkcZY/ji/Vu47FvP8GTrEd6xcCY3Xzibpqr8uBHpTPk8LsbD0eMzAHaWTLh3AolLOBrir/0JEbkS+DvgOmPMeGrKS71AKGKrZZCJSt0uPnRBE49s66Z7MLs241X21zUQ4KP/tYGHNndSW+bhs2+fx+XzZ9hyoGNXE2vds2HFTDIptwGYJyItIlII3AisSTxARJYBPyYW7D2pLzN17NJX5kQ+fkkzUWP4mY7eVYoYY7jvlTau/s/n2Xiwj3efN4tPvqWF6izZUchOjm+3lwUrZk45wWaMCYvIrcDjxJZC3mOM2SkiXwc2GmPWEJuGKQH+J351vc0Yc10a6z5tgVDElvPtEz3eARbO8vHzFw9SW+bm45e0WFiVynadAwG++uA21u09ykVzqrj9/UtYt/eo1WVlrWzatCOpqyfGmLXA2kmv3Zbw+MoU15U2Y8EIZR57b8z7lrOq2dE5yKuH+jXc1WmJRg1feGALj+04jDFw3XmzWNlSqcF+hkrdLoTsuEs17y6NB0IRZpS5rS7jpBorvcyu9PLHfUeJRI3Oiapp2XtkmK89tJ2Nh/qZU1PM9csabLF/QS5wOoRSd0FWjNzteWUxjcZssDl2Mi45q5p+f4hHd3RbXYrKEv5gmH9/fA/X3rGOfb0j3LC8gU9c0qLBnmLZshwyr8I9GjWW75+arIWzyqgpLeLbT7xGOBK1uhxlY8YYfr+lk7f9+3N8/5l9vPPcOp784uWcP7tC7zBNA5+3UMPdbkaCYQz2vIFpMocIqxfVcqB3lPs3tp/6E1ReevnAMa7/4Yt87r4tOB3Cpy6bw8qWKv6w84jVpeWs8vjI3e53kufVnPvE8iU7NQ07mQW1pVzQXMF3ntzLe5fW692D6rjdh4e4/bE9PL27h9oyN9cvq2f57PzaPMMqZR4XoYhhMBCi3MZbC+bVyL1vNHaFu7gwO0JSRPjqNefQOzzO3etet7ocZQOvHx3ls7/ezDXfXcfGg3189ZoFPPu3V7CiuVKDPUNK461/e4Zte68mkGcj94lw92bRCPj82RWsXlTLXc/v5+ZVTXrjSZ7qHgxwx1N7uX9DO06HcNm8Gi6bV4On0MlDm7STaCaVuWNLqXuGxjl7ZqnF1ZxY9qRcCrwxcs+OaZkJX1k9nydaj3D7Y7u5/f3nWV2OyqD+0SA/fG5/7I5lAxe2VHHF/BpK3fa+VyOXTYzcjwyNWVzJyeVVuPf74+GeRSP3iTtXL5lbzQMbOyguKuAf373I4qpUuo2HI3z+vi08s6eH8VCUZU3lvH3BzLze5s4udFrGhvpGgzgEigqy71LD28+Zwa7uIX67uZMvXz0/q35AqeQZY3h0x2H+7dFW2vsCnD2zhNWL66i1+Y13+aSowElhgYOeYXuP3LMv5c5A32iQ4sKCrFz763I6uGF5PYP+EN96fI/V5ag02HtkmJvvfpm//tUmigsL+PjFzXzs4hYNdhsqcxfoyN1O+kaDWT3inV1VzKq5VfzsxYNce24dK1sqrS5JpcA9L7zO07t7eHH/UQoLHMf7wOjqF/sqdbvo0Tl3++j3B/Fm2cXUyd6xsJbO/gCfv28zD3/mUqp09UzWMsawZmsX//nka4yMhTl/dgVXL6qlJIsHIPmiNAtG7nk1LXNsNJhVyyCnUljg4Ac3L+fYaJDP/HqztibIUq3dQ9z0k5f53H1bKHO7+PTlc7l+eYMGe5YoLSqgZ2jc1nep5lW4948Gs24Z5FQW1/v4l/cu5sX9x/jWH3T+PZv0Do/ztYe28c471tF6eIh/ee9i/uqKuTRWeq0uTU1DmcdFIBRhZDxsdSknlDfDhEjUMBAIZfWce6IPrGhkS/sAP37uAEvqy3nnkjqrS1InMTwW4qcvvM4Pn91PKBLlojlVvG3BTJ1Xz1JvrHUft+09B7mRdEmINfoh6+fc4Y217/NnltJU6eVz923m1UP93PbuhRZXpiYLBCP8cv0hfvDsPvr9IRbWlbF6US3VpXqtJJtNBHrP8BhnzSixuJqp5U24943GLn5kS1+ZZBQ4HXxk1Wx+8sIBfrn+EO9cUsf5syusLksR26v316+08YNn99M7PM5b5lXz5avns7NryOrSVAqUxmcAem18UTVv5tz7RmMdIXNlWmaCt6iAv7ikhVJ3AR//r1fY2TVodUl5LRiO8ov1h1j5/57knx7eRUlRAX/5ljlcs7hOgz2HTGzV2TNk33DPraQ7ieNNw3JgWmayUreLv7i0hV+tP8SH71rPTz6yggvnVFldVl4JR6L8dnMn331qLx39AWZXevnAikbm1tjzV3Z1ZooKHLhdDlv3l8mjkXv29ZWZjgpvIfd/6iJqSov485++wpqtXVaXlBeiUcMj27q4+jvP87e/2UaFt5CfffwCbrlsjgZ7DhMRZpS6bb3WPTeTbgoTTcNyceQ+obHSy4N/dTF/+d8b+eyvN9PR7+evLp+ble0W7C4aNTzZeoR/XLOT7sExZpQWcdPKJhbNKqNrYEz/zPPAjNIiW/eXyZtw74uvcXc5c/eXlYlVNO9aMouxUJTbH9vD5rYB/v395+Hz2nO5VraJRA1rt3dz5zP72H14mMriQj64ooElDeW6rDHPzCxz03rYvtdR8ibc+0eDedMu1eV0cOMFjTRVenl852He9f113HnTcpY0lFtdWtYaGgvxwIZ2/vulQ7T1+TlrRgnf+dBShsfCOB0a6vmoprSI517TaRnLHRsNUpkn4Q6xOcFLzqrmE29p4dZfbeL6H7zI56+cx6cvn0tBDv/2kmq7uob49SttPLSpg9FghNmVXm5a2cTCWWX4gxEN9jw2o6yIkfEw/mAYrw2XWNuvojTp9wepsPFmtumyu3uYv7i0hTVbu/j3P7zG/Rva+cD5jXz2ynlWl2ZbI+NhHtnaxa83tLO1fYDCAgfvOreOOp+H+gqP1eUpm5hRGmvF3DM0TnO1/aLUfhWlSd9okLPydPWCt7CAGy9o4py6AdZs6eKOp/dS5HLwiUtbdBQfZ4xhc/sA97/Szm83dxKMRJlRWsS7ltSxtLHcliMzZa2ZZbG7jI8MjdFcXWxxNW+WN//H9uXRnPuJnNdQTktVMWu2dvFvj+5mzdYuvnnDEhbX+6wuzTI9w2P8bnMnD2zsYF/PCN5CJ0safKxorqSxwqOrXtQJHR+523Q5ZF6E+1gogj8Yyas59xMp87i4+cImKosLuW3NTq77/gvcfOFsvnT12ZTnybTVyHiYx3cc5ndbOnlh71EM0FTp5fpl9Zxb76PIlbvLZVXqzIj3B9Jwt9DEGvfK4kJs3H45Y0SEfn+IT182lydaD/PL9Yd4cFMHX7v2HG68oDEnl4sOjYV4urWHtdu7ee61XsbDURoqPFx+dg1LG8uZoVvZqWkq97oodNp3L9W8CPeJu1MrvIXHHyvwFDq57rx6Lmiu5JFt3fzD73Zw1/P7+cxb5/G+5fVZH/JHR8Z5YtcRHt95mHV7jxKJGsrcBSyfXcGSeh9NlV6ddlGnTUSoKS1KjXIuAAAOm0lEQVSybX+ZvAr3ymIN96nU+Tx88tIWan1uvvvUXr7y4DbueHovf7ZqNu8/v4HqLNnKLxo1tB4e4pndPTy1u4ct7QMYA42VHi6aU8WiWWU0Vnr1ZiOVMjPK7HuXalLhLiKrge8CTuBuY8w3Jr1/GfAdYAlwozHmN6ku9Ey8Ee56l+aJiAhHhsb50IpGljaW8/xrvXzj0d3c/thu3rGolmvPreOK+TW22phgPByhtXuYzW39rD9wjJdf72PAH+v+2VDh4W3zZ7BwVhm1ZW4doau0mFFaxIHeUavLmNIpw11EnMCdwFVAB7BBRNYYY3YlHNYGfAz4cjqKPFP9x8M9O0agVhIRFtSWsaC2jJ6hMTYe6ueV1/t4dMdhXE5h1ZwqVs2p4vzZFZzXUI4nQ716/MEwuw8Ps7NriF1dg+zoHGJX1xCR+EWUCq+LudUltFQXM29mia1+CKncNaPUzfoDfVaXMaVkRu4rgX3GmAMAInIf8B7geLgbYw7G37Plbs19/hAi4PPoP/jpmFHm5tpz61i9uJa2Y35aDw+x5/Aw6/YeBaDAIbRUF3P2zFLmzYwFa2Oll6ZKL1XFhac1WjbG0DM8Tmv3ELsPD9PaPcTOriH294wwcS3c43JSV+7mkrOqaajw0FDhyZuVPspeZpYVMRgIMRaK4LbZKqtkwr0eaE943gFcmJ5y0qNvdJxyj0tvFT9NDhGaq4tpri7mmsV1+MfDtPX5aevzc3hojJcOHGPt9m4SFyK5XQ7qfB7qfG5mlBZRUVxIhbcQb6EThwhOhxCKRBkMhBgMhOgZGudQn58DvSOMh98YI/g8Lmb53Lx1wQxm+TzMKnfj87h0mkXZwsQqqyNDY8yusteNTBm9oCoitwC3ADQ1NWXsvP2jIV3jnkLeogIW1JWxoK7s+GuhSJS+0SD9o0H6/EEG/LHQbu/z09EfoH80yPAUO8UL4HY5KS4qoKq4kOVNFVSVFFLrc1NX5snYtI9Sp6Mh3o6ivS+QleHeCTQmPG+IvzZtxpi7gLsAVqxYkbEV53151jTMCi6ng5llbmaeZL14OBolHDFEjSFqwClCkcuhq1dU1mqs8ALQ3u+3uJI3SybcNwDzRKSFWKjfCNyU1qpSrG80yOwqr9Vl5L0Ch4OC7F46r9SfqPO5KXAI7X32C/dT/lMzxoSBW4HHgVbgAWPMThH5uohcByAiF4hIB/AB4McisjOdRU9Xn19H7kqp1CtwOphV7qG9P2B1KW+S1Jy7MWYtsHbSa7clPN5AbLrGdowx9Ou0jFIqTRorPdk5cs92w+NhwlGj4a6USovGCi8dNpxzz/lw7xt5o6+MUkqlWmOll6MjQfzBN68Gs1LOh3tHfC5sVrnuoKOUSr2J5ZAdNpt3z/lwP9QX6/ugq2WUUunQWBlfDmmzeffcD/djfgoLHNRqv26lVBocX+uu4Z5Zh46NMrvSi0NbDyil0qC6pBCPy2m75ZB5EO5+nZJRSqWNiNBQYb/lkDkd7saYeLjbq+eDUiq3NFZ6deSeSb3D4wRCER25K6XSqrHCQ0efH2OjTZpzOtwPHov9mqQjd6VUOjVWehkeDzMYCFldynE5He6HjsWWQTbryF0plUYNx1fM2GdqJsfD3Y/TIXoDk1IqrRor433dbdSGIKfD/eCxURoqPLicOf1tKqUsZscbmXI69dr6dKWMUir9ytwufB6Xjtwz5eDR2A1MSimVbrHWvzrnnnYD/iBDY2FdBqmUyojGCq+O3DNhYhlks07LKKUyoKnSS0d/gGjUHmvdczbcJ5ZB6shdKZUJDZVeguEovSPjVpcC5HS4+xF54yq2Ukql09ya2CzBrq4hiyuJydlwP3hslNoyN26X0+pSlFJ5YFljBYVOB+sPHLO6FCCHw71Nu0EqpTLIU+hkaWO5hnu6HTzm14upSqmMWjW3iu2dgwyPWd9jJifDfWQ8zNGRcZp05K6UyqBVcyqJGthwsM/qUnIz3A8enWgYpiN3pVTmLG+amHfXcE+LZ3b3ALC0sdziSpRS+cTtcrK0yR7z7jkX7sYY1mzt4oLmCu0GqZTKuIvmVLGjc5Ahi+fdcy7c9xwZZm/PCNedN8vqUpRSeWjVnKrYvPvr1k7N5Fy4r9nShdMhXHtundWlKKXy0LKmcgoLrF/vnlPhbozh4W1dXHJWNVUlRVaXo5TKQ26Xk+VN5ZZfVM2pcN/cPkB7X0CnZJRSllo1p4qdXYOW7qmaU+G+ZksXhQUOrl400+pSlFJ57C3zqokauOeF1y2rIWfCPRI1/O/2bt46v4Yyt8vqcpRSeez82ZVcv6ye7z29l1csurCaVLiLyGoR2SMi+0Tkq1O8XyQi98fff1lEmlNd6MkYY/jx8/vpHR7nuvPqM3lqpZSa0tffu5imSi+fv28zA/5gxs9/ynAXESdwJ3ANsBD4sIgsnHTYJ4B+Y8xZwH8C30x1oScyForwpf/Zyu2P7eEdi2bqlIxSyhZKigq448PL6Bke56sPbseYzG7iUZDEMSuBfcaYAwAich/wHmBXwjHvAf5v/PFvgO+LiJg0fTeD/hD7j46wv2eEX6w/xLaOQb541dnc+tazcDgkHadUSqlpW9JQzldWz+df1+7mbf/xHO9YVMvqxbWc1+BDJL1ZlUy41wPtCc87gAtPdIwxJiwig0AVcDQVRSb6wbP7uP2xPcefl7kL+MlHVnDVQh2xK6Xs55OXzqHcU8jD27q4e90BfvTcfv7PtQu45bK5aT1vMuGeMiJyC3BL/OmIiOw52fHJuvqfpnV4NWn4oWMT+r1lJ/3estDNZ/C5n/omfOr0P312MgclE+6dQGPC84b4a1Md0yEiBYAPeNPtWcaYu4C7kiksXURkozFmhZU1pIt+b9lJvzeVDsmsltkAzBORFhEpBG4E1kw6Zg3w0fjj9wNPp2u+XSml1KmdcuQen0O/FXgccAL3GGN2isjXgY3GmDXAT4FfiMg+oI/YDwCllFIWSWrO3RizFlg76bXbEh6PAR9IbWlpY+m0UJrp95ad9HtTKSc6e6KUUrknZ9oPKKWUekPehPupWihkMxG5R0R6RGSH1bWkkog0isgzIrJLRHaKyOesrimVRMQtIq+IyNb49ze9Rb02JyJOEdksIo9YXUs+yotwT7KFQjb7GbDa6iLSIAx8yRizEFgF/E2O/b2NA28zxpwHLAVWi8gqi2tKpc8BrVYXka/yItxJaKFgjAkCEy0UcoIx5nliq5RyijGm2xizKf54mFhQ5ExnOBMzEn/qin/kxEUwEWkA3gncbXUt+Spfwn2qFgo5ExL5IN5pdBnwsrWVpFZ86mIL0AM8YYzJle/vO8BXgKjVheSrfAl3lcVEpAR4EPi8MWbI6npSyRgTMcYsJXbn90oRWWx1TWdKRN4F9BhjXrW6lnyWL+GeTAsFZUMi4iIW7L8yxjxkdT3pYowZAJ4hN66dXAJcJyIHiU2Bvk1EfmltSfknX8I9mRYKymYk1hP1p0CrMebbVteTaiJSIyLl8cce4Cpgt7VVnTljzNeMMQ3GmGZi/9aeNsb8mcVl5Z28CHdjTBiYaKHQCjxgjNlpbVWpIyK/Bl4C5otIh4h8wuqaUuQS4M+Jjfy2xD+utbqoFKoDnhGRbcQGIE8YY3TZoEoJvUNVKaVyUF6M3JVSKt9ouCulVA7ScFdKqRyk4a6UUjlIw10ppXKQhrtSSuUgDXeVMSISia9V3xlvc/slEXHE31shInec5HObReSmzFX7pnMH4j1gbEFEPhRvX63r4tWUNNxVJgWMMUuNMYuI3Y15DfCPAMaYjcaYz57kc5sBS8I9bn+8B0zS4q2m08IYcz/wyXR9fZX9NNyVJYwxPcAtwK0Sc8XEKFRELk+4I3WziJQC3wDeEn/tC/HR9DoR2RT/uDj+uVeIyLMi8hsR2S0iv4q3MUBELhCRF+O/NbwiIqXxrozfEpENIrJNRD6VTP0i8jsReTX+W8gtCa+PiMh/iMhW4KITnHNR/PGW+DnnxT/3zxJe//HED4f4RjOb4l/jqRT+NahcZozRD/3IyAcwMsVrA8BM4ArgkfhrDwOXxB+XENvI/fj78de9gDv+eB6wMf74CmCQWHM4B7G2DJcChcAB4IL4cWXxr3sL8Pfx14qAjUDLpBqbgR2TXquM/9cD7ACq4s8N8MH44xOd83vAzQnHeIBz4t+3K/76D4CPADXE2lW3JJ434Xt9ZKo/a/3Qj4Jp/ixQKhP+CHxbRH4FPGSM6YgPvhO5gO+LyFIgApyd8N4rxpgOgPg8eTOxwO82xmwAMPHWwSJyNbBERN4f/1wfsR8Wr5+ixs+KyPvijxvjn3MsXsuD8dfnn+CcLwF/F9/Q4iFjzF4ReTtwPrAh/r16iPV4XwU8b4x5Pf41cm5TFpUeGu7KMiIyh1gY9hAbuQJgjPmGiPwvcC3wRxF5xxSf/gXgCHAesRH6WMJ74wmPI5z8/3MBPmOMeXwadV8BXAlcZIzxi8izgDv+9pgxJnKyzzfG3CsiLxPbqWhtfCpIgJ8bY7426VzvTrYupRLpnLuyhIjUAD8Cvm+MMZPem2uM2W6M+SaxbokLgGGgNOEwH7FRcZRY58hTXbzcA9SJyAXxc5SKSAGxTqF/Fe8bj4icLSLFp/haPqA/HuwLiI2ukz5n/IfaAWPMHcDvgSXAU8D7RWRG/NhKEZkNrAcuE5GWiddPUZtSgI7cVWZ54tMkLmKbX/8CmKpP++dF5K3EtmjbCTwafxyJX6j8GbE56QdF5CPAY8DoyU5sjAmKyIeA78V7pweIjb7vJjZtsyl+4bUXeO8pvo/HgE+LSCuxAF8/zXN+EPhzEQkBh4F/Ncb0icjfA3+ILw8NAX9jjFkfv2D7UPz1HmIrjZQ6KW35q9QpSGz/1keMMbbaAi8+PfRlY8y7rK5F2Y9Oyyh1ahHAZ7ebmIj99tJvdS3KnnTkrpRSOUhH7koplYM03JVSKgdpuCulVA7ScFdKqRyk4a6UUjno/wOo52AQ9HryBgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(datafusion['datafusion_ra'], datafusion['datafusion_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, datafusion, \"datafusion_ra\", \"datafusion_dec\", radius=1.*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cleaning\n", "\n", "When we merge the catalogues, astropy masks the non-existent values (e.g. when a row comes only from a catalogue and has no counterparts in the other, the columns from the latest are masked for that row). We indicate to use NaN for masked values for floats columns, False for flag columns and -1 for ID columns." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for col in master_catalogue.colnames:\n", " if \"m_\" in col or \"merr_\" in col or \"f_\" in col or \"ferr_\" in col or \"stellarity\" in col:\n", " master_catalogue[col].fill_value = np.nan\n", " elif \"flag\" in col:\n", " master_catalogue[col].fill_value = 0\n", " elif \"id\" in col:\n", " master_catalogue[col].fill_value = -1\n", " \n", "master_catalogue = master_catalogue.filled()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxps1_idradecm_ap_gpc1_gmerr_ap_gpc1_gm_gpc1_gmerr_gpc1_gm_ap_gpc1_rmerr_ap_gpc1_rm_gpc1_rmerr_gpc1_rm_ap_gpc1_imerr_ap_gpc1_im_gpc1_imerr_gpc1_im_ap_gpc1_zmerr_ap_gpc1_zm_gpc1_zmerr_gpc1_zm_ap_gpc1_ymerr_ap_gpc1_ym_gpc1_ymerr_gpc1_yf_ap_gpc1_gferr_ap_gpc1_gf_gpc1_gferr_gpc1_gflag_gpc1_gf_ap_gpc1_rferr_ap_gpc1_rf_gpc1_rferr_gpc1_rflag_gpc1_rf_ap_gpc1_iferr_ap_gpc1_if_gpc1_iferr_gpc1_iflag_gpc1_if_ap_gpc1_zferr_ap_gpc1_zf_gpc1_zferr_gpc1_zflag_gpc1_zf_ap_gpc1_yferr_ap_gpc1_yf_gpc1_yferr_gpc1_yflag_gpc1_yps1_flag_cleanedps1_flag_gaiaflag_mergedlegacy_idf_90prime_gferr_90prime_gf_ap_90prime_gferr_ap_90prime_gf_90prime_rferr_90prime_rf_ap_90prime_rferr_ap_90prime_rf_mosaic_zferr_mosaic_zf_ap_mosaic_zferr_ap_mosaic_zlegacy_stellaritym_90prime_gmerr_90prime_gflag_90prime_gm_ap_90prime_gmerr_ap_90prime_gm_90prime_rmerr_90prime_rflag_90prime_rm_ap_90prime_rmerr_ap_90prime_rm_mosaic_zmerr_mosaic_zflag_mosaic_zm_ap_mosaic_zmerr_ap_mosaic_zlegacy_flag_cleanedlegacy_flag_gaiaibis_idibis_stellaritym_newfirm_jmerr_newfirm_jm_ap_newfirm_jmerr_ap_newfirm_jm_newfirm_hmerr_newfirm_hm_ap_newfirm_hmerr_ap_newfirm_hm_newfirm_kmerr_newfirm_km_ap_newfirm_kmerr_ap_newfirm_kf_newfirm_jferr_newfirm_jflag_newfirm_jf_ap_newfirm_jferr_ap_newfirm_jf_newfirm_hferr_newfirm_hflag_newfirm_hf_ap_newfirm_hferr_ap_newfirm_hf_newfirm_kferr_newfirm_kflag_newfirm_kf_ap_newfirm_kferr_ap_newfirm_kibis_flag_cleanedibis_flag_gaiandwfs_idndwfs_stellaritym_ap_mosaic_rmerr_ap_mosaic_rm_mosaic_rmerr_mosaic_rm_ap_mosaic_imerr_ap_mosaic_im_mosaic_imerr_mosaic_im_ap_mosaic_bmerr_ap_mosaic_bm_mosaic_bmerr_mosaic_bm_ap_tifkam_ksmerr_ap_tifkam_ksm_tifkam_ksmerr_tifkam_ksf_ap_mosaic_rferr_ap_mosaic_rf_mosaic_rferr_mosaic_rflag_mosaic_rf_ap_mosaic_iferr_ap_mosaic_if_mosaic_iferr_mosaic_iflag_mosaic_if_ap_mosaic_bferr_ap_mosaic_bf_mosaic_bferr_mosaic_bflag_mosaic_bf_ap_tifkam_ksferr_ap_tifkam_ksf_tifkam_ksferr_tifkam_ksflag_tifkam_ksndwfs_flag_cleanedndwfs_flag_gaiauhs_iduhs_stellaritym_ukidss_jmerr_ukidss_jm_ap_ukidss_jmerr_ap_ukidss_jf_ukidss_jferr_ukidss_jflag_ukidss_jf_ap_ukidss_jferr_ap_ukidss_juhs_flag_cleaneduhs_flag_gaiazbootes_idzbootes_stellaritym_ap_90prime_zmerr_ap_90prime_zm_90prime_zmerr_90prime_zf_ap_90prime_zferr_ap_90prime_zf_90prime_zferr_90prime_zflag_90prime_zwfc_flag_cleanedzbootes_flag_gaiadatafusion_intiddatafusion_stellarityf_ap_irac_i1ferr_ap_irac_i1f_irac_i1ferr_irac_i1f_ap_irac_i2ferr_ap_irac_i2f_irac_i2ferr_irac_i2f_ap_irac_i3ferr_ap_irac_i3f_irac_i3ferr_irac_i3f_ap_irac_i4ferr_ap_irac_i4f_irac_i4ferr_irac_i4m_ap_irac_i1merr_ap_irac_i1m_irac_i1merr_irac_i1flag_irac_i1m_ap_irac_i2merr_ap_irac_i2m_irac_i2merr_irac_i2flag_irac_i2m_ap_irac_i3merr_ap_irac_i3m_irac_i3merr_irac_i3flag_irac_i3m_ap_irac_i4merr_ap_irac_i4m_irac_i4merr_irac_i4flag_irac_i4datafusion_flag_cleaneddatafusion_flag_gaia
degdeguJyuJyuJyuJyuJyuJymagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmaguJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJy
0150292199054805142219.90563756597135.24563879406820612.699099540710450.001086000003851950214.1461000442504880.00121999997645616539.380689620971680.010.2892999649047850.014.1191997528076170.0749899968504905714.6079998016357420.1039569973945617713.1300001144409180.1756920069456100514.1459999084472660.1348990052938461312.6848001480102540.001086000003851950213.3674001693725590.0020369999110698730224.57367288693430.2319172754223227971.8658589389188.957678778321467False642279.63458010960.0278150.60828858890.0False8171.844592572415564.4157370585425209.548425071181498.80349359134976False20323.5679671771433288.72559356562177972.601125940405990.5683874045147False30625.27102660660230.63271198575434416332.02109687914230.64126016627149FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse00.0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
1147042185485050439218.5483836559709832.53321638406820412.9029998779296880.001086000003851950213.9418001174926760.00121999997645616539.2441997528076170.09.5725498199462890.012.6482000350952150.1684390008449554412.4435997009277340.1254599988460540811.8364000320434570.001086000003851950211.8577995300292970.001086000003851950211.0452995300292970.1274019926786422710.9285001754760740.1215630024671554625049.55694406994425.055643183428549622.32348502282210.812234476234133False728316.41594133440.0538245.08410769250.0False31675.2452359874844914.03587325083938243.719098897264419.173767061893False66902.1365195839566.9183915941694665596.4275650974365.61236539426228False138637.3307112718816267.922276938989154383.1613311603717285.304238305205FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse00.0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
2148432178563450118217.85634342597133.6912837240682114.0888996124267580.001545000006444752213.5656995773315430.001086000003851950212.8454999923706050.012.845299720764160.0nannannannannannannannan12.6489000320434570.03589599952101707512.467200279235840.035705998539924628403.11205802499211.95760823569181713605.67739193660213.608983135404564False26411.921818312170.026416.7941306349860.0FalsenannannannanFalsenannannannanFalse31654.8301214539861046.55418314130937421.387688770911230.6562204719578FalseFalse2False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse00.0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
3148572188406089286218.84060036597133.8155430540682114.7532997131347660.001811999944038689115.1548004150390620.02822699956595897714.9624004364013670.014.6027002334594730.018834000453352928nannannannan14.0612001419067380.01012399978935718513.7966003417968750.01472999993711716.38090991973876950.0027449999470263726.7510299682617190.0183450002223253254557.0113969993337.6052584045366213148.327000681313681.85029152778925False3758.71870708631650.05235.03882137877390.81093833205321FalsenannannannanFalse8620.251628551880.3799535183648910999.168704601929149.2238663656055False10177380.9778101525730.8452297393927237490.600299285122287.3162833743FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse00.0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
4148612172599144113217.2602494259709833.84467616406820413.4750995635986330.002737999893724918413.0249996185302730.0313469991087913513.5482997894287110.012.4949998855590820.01923600025475025213.952599525451660.001882000011391937714.6647996902465820.0014909999445080757nannan11.3987998962402340.04656799882650375412.1520004272460940.00113300001248717312.5430002212524410.00119300000369548814789.72757983609937.29660332256552422387.219251355447646.3560290659094False13825.4757321222750.036475.3985372128646.2350361709156False9527.08828700358416.5141221100451544944.01891816992256.789431816248952Falsenannan100110.594752034364293.814683993039False50026.4665562721952.204197469469334897.9496322466438.34564405035187FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse00.0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
5149412164869384895216.4868485759709834.511863414068220.804700851440430.01418800000101327920.5119991302490230.02251200005412101724.2980995178222660.024.29850006103515617.10079956054687523.194999694824220.360556006431579623.938299179077151.367089986801147522.751199722290040.497236996889114422.2215003967285161.472129940986633320.2506008148193360.353092014789581320.145799636840820.2742969989776611317.3029303427205220.2261083075651331222.6568926998846650.4697752248205101False0.69304301839951680.00.69278739232915710.91169133199724False1.9142564630750160.63569462138910990.96534005846519931.2154948154094212False2.88084645143200071.31934758344714244.6924520267399276.362410219843535False28.824360055136429.37396332763512231.745351873271098.02004640921774FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse00.0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
6149912170289453574217.0291416459709834.92749904406820615.2406997680664060.01533399987965822215.6101999282836910.0896899998188018813.5142002105712890.014.4144001007080080.543178021907806414.5719995498657230.1126940026879310615.3060998916625980.13882400095462813.7159004211425780.003614000044763088213.318799972534180.00352700008079409613.6533002853393550.05395400151610374513.0790004730224610.090949997305870062908.84173558993141.081966897675052069.760186496447170.9778028385672False14266.5813049174490.06226.4421830131823114.998407228992False5385.179452610932558.95476732556982738.7982603370833350.1872099699104False11847.85775838634439.4369813602131817079.69106572911255.483156502259696False12551.044976402462623.705000089188721300.991093912251784.3423421946777FalseFalse2True-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse00.0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
7147492203624686868220.36253347597132.913813764068213.7798995971679690.04746099933981895413.8238000869750980.2923290133476257310.9688997268676760.012.9820995330810550.014.7509002685546880.2355509996414184613.9528999328613280.0764899998903274514.8118000030517580.2401580065488815315.4703998565673830.1041140034794807413.7555999755859380.1448329985141754213.4193000793457030.0569039992988109611169.665338436072488.261768310111110727.0416091073662888.20201075256False148744.223638317660.023289.501177553780.0False4567.093392413492990.83314098231519524.452644938801670.99667356961False4317.973759480901955.10858518190932354.1821224825694225.748505592188False11422.4695704579881523.713136834095615569.690093895244816.0155572808673FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse00.0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
8150742169177050441216.9176783459709835.61660766406820522.073499679565430.0981860011816024822.1411991119384770.2245849967002868721.4650993347167970.020.887199401855471.619699954986572321.9223003387451170.1570529937744140622.114799499511720.459984004497528123.2520999908447271.570029973983764622.1016006469726561.107220053672790520.6737995147705080.1857330054044723520.219699859619140.210011005401611335.3777440467739480.486323640141050565.0526632603435351.0451455488717938False9.4180342636842960.016.03689328460481523.923817974721906False6.18130060598384650.89413225913897495.17702426078431352.1933028855631824False1.81618466199979862.6262957292323875.2403433270310795.3440358665314704False19.5200171138725343.339219442271374629.6565109934600565.736378379155134FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse00.0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
9149642198013901347219.8014216159709834.700636084068222.0541000366210940.0989399999380111722.2646999359130860.506425023078918522.5830993652343750.021.7103004455566411.14949989318847724.907199859619146.32085990905761721.836799621582030.959092020988464422.4955005645751950.737864971160888721.0751991271972660.493443995714187620.820699691772460.33857899904251120.946599960327151.35913002490997315.4746957070324790.49889318468024294.50941313628562852.1033466891937764False3.363258542137060.07.514149332668777.1633172172383False0.395475930129662152.30235294798032846.6877518684305045.907668388742072False3.64585820615162472.47772069159105313.4871550153726246.12962488718398False17.0498327556849575.31686728596107115.18308473806928319.00626160187722FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse00.0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse00.0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "master_catalogue[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## III - Merging flags and stellarity\n", "\n", "Each pristine catalogue contains a flag indicating if the source was associated to a another nearby source that was removed during the cleaning process. We merge these flags in a single one." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true }, "outputs": [], "source": [ "flag_cleaned_columns = [column for column in master_catalogue.colnames\n", " if 'flag_cleaned' in column]\n", "\n", "flag_column = np.zeros(len(master_catalogue), dtype=bool)\n", "for column in flag_cleaned_columns:\n", " flag_column |= master_catalogue[column]\n", " \n", "master_catalogue.add_column(Column(data=flag_column, name=\"flag_cleaned\"))\n", "master_catalogue.remove_columns(flag_cleaned_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each pristine catalogue contains a flag indicating the probability of a source being a Gaia object (0: not a Gaia object, 1: possibly, 2: probably, 3: definitely). We merge these flags taking the highest value." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "flag_gaia_columns = [column for column in master_catalogue.colnames\n", " if 'flag_gaia' in column]\n", "\n", "master_catalogue.add_column(Column(\n", " data=np.max([master_catalogue[column] for column in flag_gaia_columns], axis=0),\n", " name=\"flag_gaia\"\n", "))\n", "master_catalogue.remove_columns(flag_gaia_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each prisitine catalogue may contain one or several stellarity columns indicating the probability (0 to 1) of each source being a star. We merge these columns taking the highest value. We keep trace of the origin of the stellarity." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "legacy_stellarity, ibis_stellarity, ndwfs_stellarity, uhs_stellarity, zbootes_stellarity, datafusion_stellarity\n" ] } ], "source": [ "stellarity_columns = [column for column in master_catalogue.colnames\n", " if 'stellarity' in column]\n", "\n", "print(\", \".join(stellarity_columns))" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# We create an masked array with all the stellarities and get the maximum value, as well as its\n", "# origin. Some sources may not have an associated stellarity.\n", "stellarity_array = np.array([master_catalogue[column] for column in stellarity_columns])\n", "stellarity_array = np.ma.masked_array(stellarity_array, np.isnan(stellarity_array))\n", "\n", "max_stellarity = np.max(stellarity_array, axis=0)\n", "max_stellarity.fill_value = np.nan\n", "\n", "no_stellarity_mask = max_stellarity.mask\n", "\n", "master_catalogue.add_column(Column(data=max_stellarity.filled(), name=\"stellarity\"))\n", "\n", "stellarity_origin = np.full(len(master_catalogue), \"NO_INFORMATION\", dtype=\"S20\")\n", "stellarity_origin[~no_stellarity_mask] = np.array(stellarity_columns)[np.argmax(stellarity_array, axis=0)[~no_stellarity_mask]]\n", "\n", "master_catalogue.add_column(Column(data=stellarity_origin, name=\"stellarity_origin\"))\n", "\n", "master_catalogue.remove_columns(stellarity_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IV - Adding E(B-V) column" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " ebv(master_catalogue['ra'], master_catalogue['dec'])\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## V - Adding HELP unique identifiers and field columns" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(gen_help_id(master_catalogue['ra'], master_catalogue['dec']),\n", " name=\"help_id\"))\n", "master_catalogue.add_column(Column(np.full(len(master_catalogue), \"Bootes\", dtype='" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(specz['ra'] * u.deg, specz['dec'] * u.deg)\n", ")" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue = specz_merge(master_catalogue, specz, radius=1. * u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VII - Choosing between multiple values for the same filter\n", "\n", "We take DataFusion Spitzer instead of SDWFS which is shallower." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VIII.a Wavelength domain coverage\n", "\n", "We add a binary `flag_optnir_obs` indicating that a source was observed in a given wavelength domain:\n", "\n", "- 1 for observation in optical;\n", "- 2 for observation in near-infrared;\n", "- 4 for observation in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source observed both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: The observation flag is based on the creation of multi-order coverage maps from the catalogues, this may not be accurate, especially on the edges of the coverage.*\n", "\n", "*Note 2: Being on the observation coverage does not mean having fluxes in that wavelength domain. For sources observed in one domain but having no flux in it, one must take into consideration de different depths in the catalogue we are using.*" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#decals_moc = MOC(filename=\"../../dmu0/dmu0_DECaLS/data/DECaLS_Bootes_MOC.fits\")\n", "datafusion_moc = MOC(filename=\"../../dmu0/dmu0_DataFusion-Spitzer/data/Datafusion-Bootes_MOC.fits\")\n", "ibis_moc = MOC(filename=\"../../dmu0/dmu0_IBIS/data/IBIS_MLselected_20160801_MOC.fits\")\n", "legacy_moc = MOC(filename=\"../../dmu0/dmu0_LegacySurvey/data/LegacySurvey-dr4_Bootes_MOC.fits\")\n", "ndwfs_moc = MOC(filename=\"../../dmu0/dmu0_NDWFS/data/NDWFS_MLselected_20160801_MOC.fits\")\n", "ps1_moc = MOC(filename=\"../../dmu0/dmu0_PanSTARRS1-3SS/data/PanSTARRS1-3SS_Bootes_v2_MOC.fits\")\n", "#sdwfs_moc = MOC(filename=\"../../dmu0/dmu0_SDWFS/data/SDWFS_MLselected_20160801_MOC.fits\")\n", "uhs_moc = MOC(filename=\"../../dmu0/dmu0_UHS/data/UHS-DR1_Bootes_MOC.fits\")\n", "zbootes_moc = MOC(filename=\"../../dmu0/dmu0_zBootes/data/zBootes_MLselected_20160801_MOC.fits\")" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": true }, "outputs": [], "source": [ "was_observed_optical = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " #decals_moc + \n", " ps1_moc + zbootes_moc + legacy_moc + ndwfs_moc) \n", "\n", "was_observed_nir = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " ibis_moc + uhs_moc \n", ")\n", "\n", "was_observed_mir = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " datafusion_moc # + sdwfs_moc\n", ")" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " Column(\n", " 1 * was_observed_optical + 2 * was_observed_nir + 4 * was_observed_mir,\n", " name=\"flag_optnir_obs\")\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VIII.b Wavelength domain detection\n", "\n", "We add a binary `flag_optnir_det` indicating that a source was detected in a given wavelength domain:\n", "\n", "- 1 for detection in optical;\n", "- 2 for detection in near-infrared;\n", "- 4 for detection in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source detected both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: We use the total flux columns to know if the source has flux, in some catalogues, we may have aperture flux and no total flux.*\n", "\n", "To get rid of artefacts (chip edges, star flares, etc.) we consider that a source is detected in one wavelength domain when it has a flux value in **at least two bands**. That means that good sources will be excluded from this flag when they are on the coverage of only one band." ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#[column[5:] for column in master_catalogue.colnames if 'flag' in column]" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# SpARCS is a catalogue of sources detected in r (with fluxes measured at \n", "# this prior position in the other bands). Thus, we are only using the r\n", "# CFHT band.\n", "# Check to use catalogue flags from HSC and PanSTARRS.\n", "nb_optical_flux = (\n", " \n", " \n", " 1 * ~np.isnan(master_catalogue['f_90prime_z']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_mosaic_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_mosaic_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_mosaic_b']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_90prime_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_90prime_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_mosaic_z']) +\n", " \n", " #1 * ~np.isnan(master_catalogue['f_decam_g']) +\n", " #1 * ~np.isnan(master_catalogue['f_decam_r']) +\n", " #1 * ~np.isnan(master_catalogue['f_decam_z']) +\n", "\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_z']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_y'])\n", ")\n", "\n", "nb_nir_flux = (\n", " 1 * ~np.isnan(master_catalogue['f_newfirm_j']) +\n", " 1 * ~np.isnan(master_catalogue['f_newfirm_h']) +\n", " 1 * ~np.isnan(master_catalogue['f_newfirm_k']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_tifkam_ks']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_ukidss_j']) \n", "\n", ")\n", "\n", "nb_mir_flux = (\n", " 1 * ~np.isnan(master_catalogue['f_irac_i1']) +\n", " 1 * ~np.isnan(master_catalogue['f_irac_i2']) +\n", " 1 * ~np.isnan(master_catalogue['f_irac_i3']) +\n", " 1 * ~np.isnan(master_catalogue['f_irac_i4'])\n", ")" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": true }, "outputs": [], "source": [ "has_optical_flux = nb_optical_flux >= 2\n", "has_nir_flux = nb_nir_flux >= 2\n", "has_mir_flux = nb_mir_flux >= 2\n", "\n", "master_catalogue.add_column(\n", " Column(\n", " 1 * has_optical_flux + 2 * has_nir_flux + 4 * has_mir_flux,\n", " name=\"flag_optnir_det\")\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IX - Cross-identification table\n", "\n", "We are producing a table associating to each HELP identifier, the identifiers of the sources in the pristine catalogues. This can be used to easily get additional information from them.\n", "\n", "For convenience, we also cross-match the master list with the SDSS catalogue and add the objID associated with each source, if any. **TODO: should we correct the astrometry with respect to Gaia positions?**" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "242 master list rows had multiple associations.\n" ] } ], "source": [ "#\n", "# Addind SDSS ids\n", "#\n", "sdss = Table.read(\"../../dmu0/dmu0_SDSS-DR13/data/SDSS-DR13_Bootes.fits\")['objID', 'ra', 'dec']\n", "sdss_coords = SkyCoord(sdss['ra'] * u.deg, sdss['dec'] * u.deg)\n", "idx_ml, d2d, _ = sdss_coords.match_to_catalog_sky(SkyCoord(master_catalogue['ra'], master_catalogue['dec']))\n", "idx_sdss = np.arange(len(sdss))\n", "\n", "# Limit the cross-match to 1 arcsec\n", "mask = d2d <= 1. * u.arcsec\n", "idx_ml = idx_ml[mask]\n", "idx_sdss = idx_sdss[mask]\n", "d2d = d2d[mask]\n", "nb_orig_matches = len(idx_ml)\n", "\n", "# In case of multiple associations of one master list object to an SDSS object, we keep only the\n", "# association to the nearest one.\n", "sort_idx = np.argsort(d2d)\n", "idx_ml = idx_ml[sort_idx]\n", "idx_sdss = idx_sdss[sort_idx]\n", "_, unique_idx = np.unique(idx_ml, return_index=True)\n", "idx_ml = idx_ml[unique_idx]\n", "idx_sdss = idx_sdss[unique_idx]\n", "print(\"{} master list rows had multiple associations.\".format(nb_orig_matches - len(idx_ml)))\n", "\n", "# Adding the ObjID to the master list\n", "master_catalogue.add_column(Column(data=np.full(len(master_catalogue), -1, dtype='>i8'), name=\"sdss_id\"))\n", "master_catalogue['sdss_id'][idx_ml] = sdss['objID'][idx_sdss]" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['ps1_id', 'legacy_id', 'ibis_id', 'ndwfs_id', 'uhs_id', 'zbootes_id', 'datafusion_intid', 'help_id', 'specz_id', 'sdss_id']\n" ] } ], "source": [ "\n", "id_names = []\n", "for col in master_catalogue.colnames:\n", " if '_id' in col:\n", " id_names += [col]\n", " if '_intid' in col:\n", " id_names += [col]\n", " \n", "print(id_names)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue[id_names].write(\n", " \"{}/master_list_cross_ident_bootes_help{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)\n", "id_names.remove('help_id')\n", "master_catalogue.remove_columns(id_names)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## X - Adding HEALPix index\n", "\n", "We are adding a column with a HEALPix index at order 13 associated with each source." ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(\n", " data=coords_to_hpidx(master_catalogue['ra'], master_catalogue['dec'], order=13),\n", " name=\"hp_idx\"\n", "))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## XI - Saving the catalogue" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": true }, "outputs": [], "source": [ "columns = [\"help_id\", \"field\", \"ra\", \"dec\", \"hp_idx\"]\n", "\n", "bands = [column[5:] for column in master_catalogue.colnames if 'f_ap' in column]\n", "for band in bands:\n", " columns += [\"f_ap_{}\".format(band), \"ferr_ap_{}\".format(band),\n", " \"m_ap_{}\".format(band), \"merr_ap_{}\".format(band),\n", " \"f_{}\".format(band), \"ferr_{}\".format(band),\n", " \"m_{}\".format(band), \"merr_{}\".format(band),\n", " #\"flag_{}\".format(band)\n", " ] \n", " \n", "columns += [\"stellarity\", \"flag_cleaned\", \"flag_merged\", \"flag_gaia\", \"flag_optnir_obs\", \n", " \"flag_optnir_det\", \"ebv\", 'zspec_association_flag', 'zspec_qual', 'zspec', \"stellarity_origin\"] \n", "#\"zspec\", \"zspec_qual\", \"zspec_association_flag\", \"stellarity_origin\"," ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Missing columns: {'flag_90prime_g', 'flag_gpc1_r', 'flag_newfirm_h', 'flag_newfirm_j', 'flag_90prime_z', 'flag_irac_i4', 'flag_irac_i1', 'flag_gpc1_y', 'flag_mosaic_i', 'flag_gpc1_i', 'flag_gpc1_z', 'flag_irac_i3', 'flag_mosaic_b', 'flag_tifkam_ks', 'flag_ukidss_j', 'flag_mosaic_z', 'flag_90prime_r', 'flag_gpc1_g', 'flag_mosaic_r', 'flag_newfirm_k', 'flag_irac_i2'}\n" ] } ], "source": [ "# We check for columns in the master catalogue that we will not save to disk.\n", "print(\"Missing columns: {}\".format(set(master_catalogue.colnames) - set(columns)))" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue[columns].write(\"{}/master_catalogue_bootes_help{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2" } }, "nbformat": 4, "nbformat_minor": 2 }