{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Bootes master catalogue\n", "\n", "This notebook presents the merge of the various pristine catalogues to produce HELP mater catalogue on ELAIS-N1." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This notebook was run with herschelhelp_internal version: \n", "708e28f (Tue May 8 18:05:21 2018 +0100)\n", "This notebook was executed on: \n", "2018-05-17 15:16:41.603581\n" ] } ], "source": [ "from herschelhelp_internal import git_version\n", "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))\n", "import datetime\n", "print(\"This notebook was executed on: \\n{}\".format(datetime.datetime.now()))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/seaborn/apionly.py:6: UserWarning: As seaborn no longer sets a default style on import, the seaborn.apionly module is deprecated. It will be removed in a future version.\n", " warnings.warn(msg, UserWarning)\n" ] } ], "source": [ "%matplotlib inline\n", "#%config InlineBackend.figure_format = 'svg'\n", "\n", "import matplotlib.pyplot as plt\n", "plt.rc('figure', figsize=(10, 6))\n", "\n", "import os\n", "import time\n", "\n", "from astropy import units as u\n", "from astropy.coordinates import SkyCoord\n", "from astropy.table import Column, Table\n", "import numpy as np\n", "from pymoc import MOC\n", "\n", "from herschelhelp_internal.masterlist import merge_catalogues, nb_merge_dist_plot, specz_merge\n", "from herschelhelp_internal.utils import coords_to_hpidx, ebv, gen_help_id, inMoc" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", "SUFFIX = os.environ.get('SUFFIX', time.strftime(\"_%Y%m%d\"))\n", "\n", "try:\n", " os.makedirs(OUT_DIR)\n", "except FileExistsError:\n", " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## I - Reading the prepared pristine catalogues" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#decals = Table.read(\"{}/DECaLS.fits\".format(TMP_DIR))\n", "datafusion = Table.read(\"{}/Datafusion.fits\".format(TMP_DIR))\n", "ibis = Table.read(\"{}/IBIS.fits\".format(TMP_DIR))\n", "legacy = Table.read(\"{}/LegacySurvey.fits\".format(TMP_DIR))\n", "ndwfs = Table.read(\"{}/NDWFS.fits\".format(TMP_DIR))\n", "ps1 = Table.read(\"{}/PS1.fits\".format(TMP_DIR))\n", "#sdwfs = Table.read(\"{}/SDWFS.fits\".format(TMP_DIR)) #We use DataFusion instead\n", "uhs = Table.read(\"{}/UHS.fits\".format(TMP_DIR))\n", "zbootes = Table.read(\"{}/zBootes.fits\".format(TMP_DIR))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## II - Merging tables\n", "\n", "We first merge the optical catalogues and then add the infrared ones.\n", "\n", "At every step, we look at the distribution of the distances to the nearest source in the merged catalogue to determine the best crossmatching radius." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### PanSTARRS" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue = ps1\n", "master_catalogue['ps1_ra'].name = 'ra'\n", "master_catalogue['ps1_dec'].name = 'dec'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add DECaLS\n", "\n", "DECaLS contains the LegacySurvey data so is not included again" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# nb_merge_dist_plot(\n", "# SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", "# SkyCoord(decals['decals_ra'], decals['decals_dec'])\n", "# )" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# # Given the graph above, we use 0.8 arc-second radius\n", "# master_catalogue = merge_catalogues(master_catalogue, decals, \"decals_ra\", \"decals_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add Legacy Survey" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHWtJREFUeJzt3XuQXOV55/Hv06cvM9KMLkiDAAkQBnExYCDIQIxdYGzHLHbhpNZZGwK7qUpKe7EdnNibimtdlbK3tspbKbtiO0nFrONN1jYh3oWyEzDrJY5Zr2NuEjcBAoMwF4FAI4Gk0Vz6cs6zf5zTPT3SjKZH6p4+Z87vUzU1Pad7ut+WZn7z9NPv+x5zd0REJDsK/R6AiIgsjIJbRCRjFNwiIhmj4BYRyRgFt4hIxii4RUQyRsEtIpIxCm4RkYxRcIuIZEyxF3e6du1a37hxYy/uWkRkSdq2bdtedx/p5LY9Ce6NGzeydevWXty1iMiSZGYvdXpbtUpERDJGwS0ikjEKbhGRjFFwi4hkjIJbRCRjFNwiIhmj4BYRyRgFt4hIxii4RUQypicrJ7vltgdfnvX4jZeftsgjERFJD1XcIiIZo+AWEckYBbeISMYouEVEMkbBLSKSMZkJ7l/uHeelfeP9HoaISN9lJrh/9NTr3LvjjX4PQ0Sk71I9j7tdrRHhbv0ehohI32UmuOthhFlmXiCIiPRMxoJbFbeISGaCuxZGFBTcIiLZeXOyETr1yPs9DBGRvstExR2504icIIz6PRQRkb7LRMXdCH3GZxGRPMtEcNeSSjt0J3KFt4jkWyaCu97WIlHVLSJ5l7ngrqvPLSI5l5Hgnq6yG5pZIiI5l43gbqjiFhFpykZwR+pxi4g0ZSO4G9NhrYpbRPIuG8HdPqtEPW4RybnMBbcqbhHJu46D28wCM3vUzO7q5YBmM3Met4JbRPJtIRX3LcCOXg3kaNqnA2qjKRHJu46C28w2AB8Cvtnb4cxOFbeIyLROK+4/Bf4Q6Etqzuxxq+IWkXybN7jN7MPAHnffNs/ttpjZVjPbOjo62rUBAtRCp3kKBVXcIpJ3nVTcVwLXm9mLwO3ANWb2ncNv5O63uvtmd988MjLS1UE2wojBchBfVo9bRHJu3uB298+5+wZ33wh8HPgnd7+p5yNrUwsjBksBhqYDiohkYh53I3RKQYFiYFryLiK5t6BTl7n7fcB9PRnJUdTDiFJgFAuFGfuWiIjkUSYq7loYUQoKlFRxi4hkI7inWyUF9bhFJPcyEdy1VqvENKtERHIvE8Fdb7VKVHGLiGQkuJ1SUbNKREQgM8EdUSqYKm4RETIQ3O5OvRHFFbd63CIi6Q/u0B0Hyq0et4JbRPIt9cHdPN9kMWhW3GqViEi+pT+4k552KTBV3CIiZCi4y629SlRxi0i+ZSC4p1slpaCg6YAiknsZCO5mxW0UAyN0J9TMEhHJscwEdzEoUCrEw602wn4OSUSkrzIT3M0eN8BUXX1uEcmvDAR33BYpqeIWEQEyEdzT0wFVcYuIZCC4a63gjvfjBlXcIpJvqQ/uRnurRBW3iEj6g3tGq6TZ466r4haR/Ep9cNfCCAOCgk1X3A1V3CKSX6kP7kZyEgUzm+5xq+IWkRxLfXDXkpMoAK3PqrhFJM9SH9zNkygAqrhFRMhCcEdOKQls9bhFRLIQ3I2oFdiaVSIikoXgDqMjKu6qKm4RybFMBXdQMAxV3CKSbxkI7ukedzwl0NTjFpFcy0BwT/e4Ie5zq+IWkTzLSHBPD7MUmPYqEZFcy0Bw+4zgLgYF7Q4oIrmWgeCOKM9olajiFpF8S3VwR+40Im+tmIR4e9cpVdwikmOpDu7mXtzlGa0So6qKW0RyLNXB3b4Xd5MqbhHJu3mD28wGzOwhM3vczJ4ysy8sxsCgPbjbKu6CKm4RybdiB7epAte4+yEzKwE/M7N73P2BHo+tdb7Jw3vc47VGrx9aRCS15g1ud3fgUPJlKfnwXg6qKYzihykWZs4qUcUtInnWUY/bzAIzewzYA9zr7g/2dlixKMnnoDCzx6153CKSZx0Ft7uH7n4xsAG4zMwuOPw2ZrbFzLaa2dbR0dGuDC7yuOIuWFvFrVklIpJzC5pV4u77gfuAa2e57lZ33+zum0dGRroyuGarpNA2Ss0qEZG862RWyYiZrUouDwLvB57p9cAAwqTiDmxmj7seeivURUTyppNZJScDf2NmAXHQf8/d7+rtsGJREs6H97gBqo2QZeVOhi8isrR0MqvkCeCSRRjLEebqcQNU6xHLyv0YlYhIf6V65WQyjZtCe8WdNLzV5xaRvEp3cM/S4y4V48sTNQW3iORTqoN7ulUyfWygGAAwNqXVkyKST+kO7lnenKyUmsFd78uYRET6LdXBPT2Pezq4B0rxkA+p4haRnEp1cDenarf3uNUqEZG8S3VwN9+cnFlxx8F9UK0SEcmpVAd3q8dt7T3upFVSVcUtIvmU7uD2I/cqKZixvByoVSIiuZXq4G69OdlWcQMMDRQ1q0REcivdwe1HTgcEGB4oqeIWkdxKdXBHkWMcWXEPDxTV4xaR3Ep3cPuRoQ1xxX1QFbeI5FSqgzuMfMYbk03DFfW4RSS/0h3c7kf0tyFulajHLSJ5lergjiKfo1VS1JJ3EcmtdAe3+4zFN03DAyUm6yH1UCcNFpH8SXVwh9HM5e5NQ5X4xD2qukUkj1Id3NFRetygjaZEJJ9SHdxh5MyS2wwPlAAYq2pmiYjkT6qDO/K535wEVdwikk/pDu5IrRIRkcOlOrjDOSvupFWiRTgikkOpDu4oOnKDKZiuuLVfiYjkUaqDe66KuzkdUK0SEcmjVAd3NMdeJQOlgHJQ0OnLRCSXUh3c4RwrJ0HL3kUkv1Id3HPNKgFtNCUi+ZXu4J5jP27Q6ctEJL9SHdzxftxzVNwVnb5MRPIp3cHtTjB7buv0ZSKSW6kO7rk2mQKdMFhE8ivdwT3HiRQgrrg1HVBE8ijVwX3UHnfSKokiX+RRiYj0V6qDO3KOOo/bHSbq4SKPSkSkv1Id3PGS99mv00ZTIpJX8wa3mZ1qZj8xsx1m9pSZ3bIYA4OjL8DRfiUiklfFDm7TAD7j7o+Y2TCwzczudfenezy2eXvcoIpbRPJn3orb3Xe7+yPJ5TFgB7C+1wOLIseZe+XkdKtEFbeI5MuCetxmthG4BHhwluu2mNlWM9s6Ojp63ANrJLNF5mqVrNBZcEQkpzoObjMbAu4APu3uBw+/3t1vdffN7r55ZGTkuAfWiCJg7lklQwpuEcmpjoLbzErEof1dd7+zt0OKNSvu+WaVHNKZ3kUkZzqZVWLAXwE73P0rvR9SrBEmwT1Hci8vBxQMDk6q4haRfOmk4r4SuBm4xsweSz6u6/G4aIRJq2SO4DYzTlheZt94rddDERFJlXmnA7r7z4A5Gha903pzco4eN8DaoQqjY9XFGpKISCqkduVkq1VylOAeGa6w95CCW0TyJbXBXU9mlczV4wYYUcUtIjmU2uBuVtxz9bghrrhHD1Vx1w6BIpIf6Q3uZsV9lO762qEKtUbEmM6EIyI50sleJX3Rqrhn6XHf9uDLADy3ZwyA//6zFxkZrnDj5act3gBFRPok/RX3UUruoUqyX4kW4YhIjqQ3uDuYVdJc9n5Iy95FJEfSG9zzbDIFMJzsya2zvYtInqQ2uOvNlZNHeXNyMFn2ro2mRCRPUhvcYXT0vUogbqMMVYqquEUkV1Ib3PUOetwQ97nV4xaRPEltcLf24z7aRG5guFLSrBIRyZXUBnfYwSZTEJ80WBW3iORJaoO7Ps9+3E1DA3GPO9KydxHJidQGd3M/7nlym+GBIpHDZC1chFGJiPRfaoO73sE8bohbJaC53CKSH6kN7rBVcc/fKgHN5RaR/EhtcHeychLiWSWgkwaLSH6kNrg7nsdd0X4lIpIvqQ3usLU74NFvN1AqUCyY9uQWkdxIbXDXj7Ifdzsz0+pJEcmV1AZ3I4ooWBzM89F+JSKSJykObp+3v900XClqVomI5EZ6gzv0eVdNNg0NlDg4pVklIpIPKQ7uaN7+dtOa5WUmaiEHJhXeIrL0pTe4o84r7pHhCgAvjB7q5ZBERFIhvcEd+lHPftOuGdzP71Fwi8jSl9rgrkdRxxX36mVlAjN2jo73eFQiIv2X2uCOK+7OgjsoGGuGyuxUq0REciC1wR0uYDogxO0SBbeI5EFqg7seRvNuMNVuZLjCy/smWmeHFxFZqlIb3PGsks5vPzJUoRE5L+1Tn1tElrZ0B/cCWyUAz+9RcIvI0pbe4F7AAhyIK25AfW4RWfJSHNydL8ABqJQCTloxoOAWkSVv3uA2s2+Z2R4ze3IxBtTUiBb25iTAWScOsVOLcERkieuk4v5r4Noej+MIcY97Yd9z5shydo6O4+69GZSISArMG9zu/lPgzUUYywz1BSzAaTrzxCEOVRvsGav2aFQiIv2X2h53uIAl701njgwB2rNERJa2rgW3mW0xs61mtnV0dPS4768RLmw6IMA5Jw0DsGP3weN+fBGRtOpacLv7re6+2d03j4yMHPf91Y/hzcm1QxVOWTnAE7sOHPfji4ikVWpbJQvZZKrdhRtWsv1VBbeILF2dTAf8W+B+4Bwz22Vmv9P7YS18yXvTOzas4pd7x3U2HBFZsorz3cDdb1iMgRyuEUYL7nEDXLh+JQBPvXqAd521ttvDEhHpu3S3ShY6kZvp4H5C7RIRWaLSG9wL3GSqafXyMqeeMMh2vUEpIktUioN74bNKmt6xfhVPvLq/yyMSEUmHVAa3u1M/hnncTRduWMkrb07y1nityyMTEem/ed+c7Ico2WokWOCfldsefBmA0WTJ+9d+/Byb1g1z4+WndXN4IiJ9lcqKu3n6sWOtuE9ZOQjAq/snuzYmEZG0SGVwN5KS+1h73IPlgDXLy7zy5kQ3hyUikgqpDO4wjIP7WCtuiHcK3Dk6rpMHi8iSk8rgrkdJq+QYK26A805aQS2MeEFnxBGRJSaVwd1IKu5j2auk6cyR5ZSLBXbsHuvWsEREUiGVwd1sbyx0Vkm7YlBg04lD7Hj9IFGkM+KIyNKRyuAOo+PvcQO8/eQVjE01tPxdRJaUVAZ3ows9boBz1g1TMPjHp9/oxrBERFIhlcFd70KPG2BZpcjpa5Zzr4JbRJaQVAZ3t1olAOedvIJn3xjj+T16k1JEloZUBnc33pxsumjDSkqB8Z0HXj7+OxMRSYFUBndz5eTx9rgBhgdKXHfhydyxbRcTtcZx35+ISL+lM7i71ONuuvmK0xmrNvj+o6915f5ERPopncEdHd8mU4e79PTVnHfyCv7H/S/irjndIpJt6Qzu8Pg2mTqcmXHzFafzzOtjbHvpra7cp4hIv6QzuLvY42769UtOYeVgia/++DlV3SKSaak8kUKjtR93d+6veYKFd5+1lru37+aPf/AU5568QidYEJFMSmXFXY+6++Zk0xVvW8PIUIW7t+9u9dFFRLImlcHdaM3j7m5wBwXjugtPZt94jQd27uvqfYuILJZ0BncXV04e7pyThjl73RD/uGMPz76u1ZQikj3pDO6w+29OtvuNSzZQKRbY8u2tHJio9+QxRER6JZ3BHfWmVdK0crDEjZefxmv7J/nU7Y+29kYREcmCdAZ3l1dOzub0Ncv54kcu4Ke/GOU//s/HFd4ikhnpnA4YdXc64FxuuOw09o5V+fK9vwDgT37zop5V+SIi3ZLK4K73uMfddNuDL7NmqMIH3r6OOx99lV+8McZHLz2V375yY08fV0TkeKQyuJtti8Wqft97zomUCsY9T77O3kM7ed95J3LqCcsW5bFFRBYqpT3uuFWymE2Ld28a4d+8ayP7J2t8+Os/4/aHXtZJhkUklVIZ3PXIKQWG9fDNydmcvW6YT1x9FuesG+aP7tzOv/zLn3P/zn3a20REUiW1rZJioT9/U9YMVfjIxadw2ppl3PPk69zw3x7gpBUDXP62E/jC9eezalm5L+MSEWlKXXC7O0/s2s+Kwf4Nzcz4ldNWc+H6lTz+yn5+vnMfP3jsNX64fTdXnX0iv3b+Oq4590TWDlX6NkYRmebuRB6f9tAdHE+OgwPVeshErfnRYLIeQvOFtIFhuDvjtZCxqTpPvXaQrS++yVi1wXvOWstlZ6zhuT1jPPDCPk5ZOchnP3gOp6wa7NvztV60ATZv3uxbt249pu/9wWOvcsvtj/GfP3I+QZ+q7sO5O68dmKLWCLnrid3sPjCFGZx30gp+5fRVXLRhFaeesIz1qwY5ZdWgphRKbrk7BycbVMOQYqFAI4zYe6jGm+M1zKCUnEi22gip1iOqjYhqI6TWmL5crUfUw4hyscBguUi1EfLGgSneOFjl9YNT7Dk4xUQ9JAydehQRRt6aidYtxYKxYfUyKsUCL+w9RD10DDhp5QCjY1XM4KqzT+QbN1/azfMGbHP3zR3dtpPgNrNrga8CAfBNd//S0W5/rMF9YLLO+778f1m/aoA7/8OV/N3Dryz4PnrN3dl9YIpnXh/jxX3jvPLmBNXG9E6DlWKBTeuGOGfdCs49aZhN64YYGa6walmZVYMllpWDRe/dy9Ln7tTCiIlqyEQ9ZKLaIHIwi9/kj3/kDLN4D6DmsWoj4tW3Jnl1/ySHqg0maiGTSUU6UQuZSj67x2EWFIxSUMAMJmohByfrTNZDwsipNiJePzAVV7NdNlAqsGKgxIqBEsMDRSqlAoEZBTMKhfhzUEieW/L8mszisZeLBUpBgUry2cziyryt8q4EAeVigdXLS612bT2M2H1gipGhCoPlgLcmatyzfTdPvnaQD56/jq9+/BIGSsFxP8euBreZBcAvgA8Au4CHgRvc/em5vudYg/vz39/ObQ++zN9/8t1csH5lax/tNIvceXO8xv6JOvsnauwZi6uCNw5MMVY98uTEpcA4YXmZU1cv49QTlrF6WZmhSsDySpHllSJDyefllYDl5SLLygEDpYBl5YDBcsBAMej5/HaZFkVOI3LCyGkk1d30104YxscbkTM2Veet8TrVRkQpMErFAvWkkmyvKGszjoWEERSDJBQLRlAoUA8jxmsNJqohh2oNJqoNxpOX+dV6hBP/7E3WQsaTwG10aRZUKYjDuVwsUA4KraCOorgdEUZO5E6lWGCgHFAOCklwGisGiqwcLFEqFogix8xaP9MwPdW3FBjFQoFiYBQLRjEoJJ/j40HBaEQR9YYTJKGbNv/8/F7u3r6byzaewDduvpTVy4/v/a+FBHcnjeTLgOfd/YXkzm8HPgLMGdzH4sBEnbuf2M1vv+sMLli/spt33VMFM9YOVWbtd49XG+wZq8Y9taS/NlkPGZtqsG+8xvN7DjFZj3+RF/IrN1iKQ3ywFDBQKlAuBpSD+Ie/9UsXFFphYM3KpK3aavb12iuyuFqJr2w/PvN28R+NI4/H17Ufj5KXsJF7XK0FRmDxLypmhEngxeHXFobN40lQQFxRtv6Nkh5ms+Zofl89jGgkQRp5vPLW2p938rkeRhycbHBwqp7cPh5jI4yDOfTpsfRyQpHBdCgmPdooip+nAZVS/P9YLgZUinGQNj83/y9WD5bjgG27rpyErpm1ZkR5698tvtDs/QYFY/VgiZXLygyWAoqB9WRXzmNRLBQopnguwJVnreWDF5zEZ773GO/98n3c8r5N3HTF6a12UC91EtzrgfaexS7g8m4PZOWyEvf+wVVdecmRFssrRc6ozP9PHLm3KrNWn68RUW9E1MK431drRNTD+OXwjONhHDJT9YiwGraCrxk+7rTerImcOX6R244nxzz5Yvr65HPbmz4z72fm95O8TI//cNAKpWZAAa1AjV/qxpeDtq+bL3mnc6TtJbBNz/OP74PW9wZJSHtzPIcFvVn8x2/tUIVi6w8b03/cCjP/0M3+NW0v1ePjzVdGxaAQ/9GJ4mqx2V4oFqary+bxuX4e2v9ISnpdf9EpbDpxiP9y9w6+8A9P8+0HXuLuT72HwXJvc6yT4J7tp+eIOsTMtgBbki8PmdmzxzOwxFpgbxfuJyvy9Hzz9FwhX883N8/1tw77+iVg2WeP+e5O7/SGnQT3LuDUtq83AK8dfiN3vxW4tdMH7oSZbe2057MU5On55um5Qr6eb56ea7900ox5GNhkZmeYWRn4OPD3vR2WiIjMZd6K290bZvZJ4EfE0wG/5e5P9XxkIiIyq46WJ7r7D4Ef9ngss+lq6yUD8vR88/RcIV/PN0/PtS96snJSRER6J32z2kVE5KhSG9xmdq2ZPWtmz5vZH/V7PL1kZt8ysz1m9mS/x9JrZnaqmf3EzHaY2VNmdku/x9QrZjZgZg+Z2ePJc/1Cv8fUa2YWmNmjZnZXv8eylKUyuJNl9n8O/Avg7cANZvb2/o6qp/4auLbfg1gkDeAz7n4ecAXwiSX8f1sFrnH3i4CLgWvN7Io+j6nXbgF29HsQS10qg5u2ZfbuXgOay+yXJHf/KfBmv8exGNx9t7s/klweI/4lX9/fUfWGxw4lX5aSjyX7ppKZbQA+BHyz32NZ6tIa3LMts1+Sv9x5ZmYbgUuAB/s7kt5JWgePAXuAe919yT5X4E+BPwSi+W4oxyetwd3RMnvJLjMbAu4APu3uB/s9nl5x99DdLyZecXyZmV3Q7zH1gpl9GNjj7tv6PZY8SGtwd7TMXrLJzErEof1dd7+z3+NZDO6+H7iPpftexpXA9Wb2InFr8xoz+05/h7R0pTW4tcx+ibJ4y7u/Ana4+1f6PZ5eMrMRM1uVXB4E3g88099R9Ya7f87dN7j7RuLf139y95v6PKwlK5XB7e4NoLnMfgfwvaW8zN7M/ha4HzjHzHaZ2e/0e0w9dCVwM3FF9ljycV2/B9UjJwM/MbMniIuRe91d0+TkuGnlpIhIxqSy4hYRkbkpuEVEMkbBLSKSMQpuEZGMUXCLiGSMgltEJGMU3HLczCxM5mM/lWxh+gdmVkiu22xmXzvK9240sxsXb7RHPPZkspdIKpjZx5KtjDXfW+ak4JZumHT3i939fOADwHXAHwO4+1Z3/72jfO9GoC/BndiZ7CXSsWTb4Z5w978DfrdX9y9Lg4Jbusrd9wBbgE9a7Opm9WhmV7WtlnzUzIaBLwHvSY79flIF/z8zeyT5eFfyvVeb2X1m9r/M7Bkz+26yfB4ze6eZ/Typ9h8ys+FkV74/MbOHzewJM/u3nYzfzL5vZtuSVw9b2o4fMrMvmtmDwK/O8ZjnJ5cfSx5zU/K9N7Ud/0Yz+JOThTyS3MePu/jfIEudu+tDH8f1ARya5dhbwDrgauCu5Ng/AFcml4eIT1bduj45vgwYSC5vArYml68GDhBvOFYg3iLg3UAZeAF4Z3K7Fcn9bgE+nxyrAFuBMw4b40bgycOOnZB8HgSeBNYkXzvwr5LLcz3m14HfarvNIHBe8rxLyfG/AP41MEK8dfEZ7Y/b9lzvmu3fWh/6cPfOzvIucgxm25r3n4GvmNl3gTvdfVdSNLcrAX9mZhcDIXB223UPufsugKQvvZE4zHe7+8MAnmwRa2a/BrzDzD6afO9K4j8Ev5xn3L9nZr+RXD41+Z59yVjuSI6fM8dj3g/8p+SEAne6+3Nm9j7gUuDh5LkOEu/NfQXwU3f/ZXIfuTiRhnSHglu6zszeRhx0e4grTgDc/UtmdjdxD/wBM3v/LN/++8AbwEXElfVU23XVtssh8c+vMfte7QZ8yt1/tIBxX028g9+vuvuEmd0HDCRXT7l72HbfRzymu9+WtFI+BPzIzH43ue3fuPvnDnus6+cYt8i81OOWrjKzEeAvgT9zdz/sujPdfbu7/1fi1sW5wBgw3HazlcTVbES8i+B8bwQ+A5xiZu9MHmPYzIrEO0v++2Tvb8zsbDNbPs99rQTeSkL7XOKquOPHTP5gveDuXyPehvgdwI+Bj5rZicltTzCz04lbPVeZ2RnN4/OMTaRFFbd0w2DSuigRnwz428Bse21/2szeS1wtPw3cQ3yaq4aZPU580uS/AO4ws98EfgKMH+2B3b1mZh8Dvp7seT1JXDV/k7iV8kjyJuYo8OvzPI//Dfy7ZBvWZ4EHFviYHwNuMrM68DrwRXd/08w+D/yfZIpkHfiEuz+QvPl5Z3J8D/GMHJF5aVtXyS2Lz3l5l7un6nRiScvms+7+4X6PRdJJrRLJsxBYmbYFOMSvOt7q91gkvVRxi4hkjCpuEZGMUXCLiGSMgltEJGMU3CIiGaPgFhHJmP8P4G7J8RIpMsgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(legacy['legacy_ra'], legacy['legacy_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, legacy, \"legacy_ra\", \"legacy_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add IBIS" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmUXGd55/HvU3tvam2tzdZiB9vCJokdC1seh8EJIQGHgzMTEpZAEhLQhIFhyTYhyYEMk5xDThLOhJhgPMAQEhtIYoc44AQTMOMwAWNZyMZCthEGS7JkLd1Sq7fan/nj3mqVpW51dXctXW//PufU6Vpu133Lkn/16Lnvfa+5OyIiEpZEpwcgIiLNp3AXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQClOrUjteuXevbtm3r1O5FRLrSww8/fNLdh+barmPhvm3bNnbv3t2p3YuIdCUze7qR7eZsy5jZZjO738z2m9k+M3vHDNvcZGajZrY3vr1nIYMWEZHmaKRyLwO/4e57zGwAeNjMvuju3z5nu39z91c0f4giIjJfc1bu7n7U3ffE98eA/cBFrR6YiIgs3Lxmy5jZNuAa4MEZXr7BzB4xs382s6uaMDYREVmghg+omlk/cBfwTnc/c87Le4Ct7j5uZjcDnwUum+E9dgG7ALZs2bLgQYuIyIU1VLmbWZoo2O9w97vPfd3dz7j7eHz/XiBtZmtn2O52d9/h7juGhuacySMiIgvUyGwZAz4G7Hf3D8yyzYZ4O8zsuvh9h5s5UBERaVwjbZkbgTcA3zKzvfFzvwtsAXD324BXAW8xszIwBbzGdf0+EZGOmTPc3f2rgM2xza3Arc0aVKuMTpboyyZJJbXqgoiErWNnqLbTnQ8eZHi8wIe+coAbn7eWl2xfD8DrrtdBXREJ07IoYcvVKp9+6BD5UpXjZwqdHo6ISMsti3C/b98xnjk9RW8myehUqdPDERFpueDbMnsPnearB06y89LVFEpVnjo50ekhiYi0XPCV+xPPRudbveiyIQZ704zlS1Q1kUdEAhd8uI/lywD0pJMM9qSp+tnnRERCtWzCPZNKsLInDcDoZLGTQxIRabngw328UCaTSpAwY7AnA8BpHVQVkcCFH+75MrlU9DEHa5W7wl1EAhd+uBfKZNNJAHLpBJlUQuEuIsELPtzP5EvTlbuZMdiTVriLSPCCD/f6yh1gpcJdRJaB8MM9XyabOvsxB3vSjE4q3EUkbOGHe6FMLnW2ch/sSTNeKFOuVjs4KhGR1go/3PNlcunnVu4OnJnSiUwiEq6gw71adcaLz+25D/ZqOqSIhC/ocJ8olnHnvJ47wOiUzlIVkXAFHe7jhaj1Ut9zXxmfpaqDqiISsrDDPV5XJlvXc8+kEvSkk1qCQESCFnS4j8WVe7aucgd0IpOIBC/ocK9V7vWzZUDhLiLhCzvca5V7WpW7iCwvQYf7WD4K8FzquR+zP5diqlihXNGJTCISpsDDfeaee18miaN13UUkXEGH+9m2zHM/Zl82ui74yITmuotImMIO93yZ3kyShNlznle4i0jowg73Qpn+OMjr9WaiNo3CXURCFXS4jxXKDOTOD3dV7iISurDDPV+mP5c+73lV7iISuqDDfTxfYmCGtkwqkSCXTijcRSRYYYf7LD13gN5MSuEuIsEKO9zzZfpn6LlDNNf91KTCXUTCFHS4j12gcu/LphgeV7iLSJiCDXd3Z7xQZsWslXtKlbuIBGvOcDezzWZ2v5ntN7N9ZvaOGbYxM/ugmR0ws0fN7EdaM9zGTRQruDNrW6Y3m2R4ooi7t3lkIiKt10jlXgZ+w92fD+wE3mpmV56zzcuBy+LbLuDDTR3lAtSW++3Pnj8VEqLKvViuMlGstHNYIiJtMWe4u/tRd98T3x8D9gMXnbPZLcAnPfJ1YKWZbWz6aOdhvBAtCjbrAdVsNNf9lGbMiEiA5tVzN7NtwDXAg+e8dBFwqO7xYc7/AsDMdpnZbjPbfeLEifmNdJ5qK0LONM8dosodYFjhLiIBajjczawfuAt4p7ufOfflGX7lvGa2u9/u7jvcfcfQ0ND8RjpPtRUhZ6/co+dVuYtIiBoKdzNLEwX7He5+9wybHAY21z2+GDiy+OEt3Nme+2wnMUVtGVXuIhKiRmbLGPAxYL+7f2CWze4BfjGeNbMTGHX3o00c57xNt2VUuYvIMjRz8j3XjcAbgG+Z2d74ud8FtgC4+23AvcDNwAFgEnhj84c6P2OFWs995tky2VSCdNJUuYtIkOYMd3f/KjP31Ou3ceCtzRpUM9TaMrVZMecyM1b3ZVS5i0iQgj1DdbxQoiedJJWc/SOu6s2ocheRIAUc7rMvGlazpj+jJQhEJEjBhvtYvjzrHPeaVb0ZLfsrIkEKO9znqtz7MgyPF9o0IhGR9gk23KeKFXoyMx9MrVnVl+FMvkypUm3TqERE2iPYcC+UK+TSFw73NX0ZAPXdRSQ4AYd7lcwFZspAVLkDnJootWNIIiJtE3S4Z+eo3FfH4T48ob67iIQl3HAvVcimLvzxVqtyF5FAhRvu5WrD4T6iyl1EAhN4uM8xW6a3Fu6q3EUkLMGGe7FcJZu+8MdLJxOsyKVUuYtIcIIM92rVKVbmbssArOnPMjKpyl1EwhJkuBfjk5IyDYT7qt60KncRCU6Q4V4oReE+V88dYHVfluFxncQkImEJM9zLFYCG2jKr+9I6Q1VEghNouNcq90bCPcvIRJHoeiMiImEIO9znOEMVosq9VHHG48vyiYiEINBwn09bJgugdd1FJCiBhnvjs2VW90UX0Fa4i0hIwgz30vx67qBwF5GwhBnu022ZBnru00sQKNxFJByBhvs8Kvd+hbuIhCfIcC/G4Z6bY20ZgL5MkkwyoXAXkaAEGe5nK/e52zJmxuq+jMJdRIKS6vQAWqHRqZB3PngQADP41jOj049fd/2W1g5QRKTFwqzcS41PhQToy6SY0ElMIhKQMMN9Hm0ZgN5skolipZVDEhFpq0DDPQrq+VTuk0VV7iISjqB67rWe+TcPniZpxmceOtTQ7/Vlk+RLVcrVKqlEkN93IrLMBJlk5UqVVNIa3r43E33HTao1IyKBCDPcq04q0Xi492WjcNdBVREJRZjhXnFSycY/Wl8mOvCqyl1EQjFnAprZx83suJk9NsvrN5nZqJntjW/vaf4w56dUrapyF5FlrZEDqp8AbgU+eYFt/s3dX9GUETVBVLnPp+ceVe4KdxEJxZyVu7s/AIy0YSxNM99ZL7UDqprrLiKhaFbP/QYze8TM/tnMrmrSey5YuTq/yj2ZMHrSSVXuIhKMZsxz3wNsdfdxM7sZ+Cxw2UwbmtkuYBfAli2tW7+lXHEy8zigCtFcdx1QFZFQLLpyd/cz7j4e378XSJvZ2lm2vd3dd7j7jqGhocXuelblapXkPA6oQnSWqi6SLSKhWHS4m9kGM7P4/nXxew4v9n0XY74HVAH6c1o8TETCMWdbxsw+BdwErDWzw8B7gTSAu98GvAp4i5mVgSngNe7uLRtxA8pVJz3Ptkx/NsVTJyZaNCIRkfaaM9zd/bVzvH4r0VTJJaNcmd88d4gq96lShXK12qJRiYi0T5hnqM5ztgxElTvAREEHVUWk+4UZ7hWf9+qOA3G4j+fVdxeR7hdmuFfntyokQH8uDcB4odSKIYmItFVw4V6pOlVn/j33uHIfU+UuIgEILtxrB0Tn25aphbvmuotICMIL90o0C3O+bZlMKkE2lWBM4S4iAQgv3KtRuKcXcLm8/mxKB1RFJAjhhXslbsvMs3KHaK672jIiEoLwwr1aa8uocheR5Su8cK/13Oc5WwZgQJW7iAQivHCfni2zgLZMNlqCoFDWWaoi0t2CC/dSZeFtmYFsdCLT8HixqWMSEWm34MJ9UZV7LprrfnK80NQxiYi0W3jhvsB57nD2RKYTYwp3Eelu4YX7Yua5q3IXkUCEF+7xPPekKncRWcbCC/fqwqdCppMJcukEJ3VAVUS6XHjhHlfu873MXk1/NsUJtWVEpMuFF+6LqNwB+rNptWVEpOsFG+7JhYZ7LqUDqiLS9cIL9/ji2GYLC/eBbEqVu4h0veDCvbSAi2PX68+lGMuXyZe0BIGIdK/gwn0hF8euN6DpkCISgADDff4Xx663oidaX+bYmXyzhiQi0nbhhXt1cZX7YBzuR0YV7iLSvcIL90qV9CIq91q4Hz091awhiYi0XXjhXvUFz3EHyKWT9GdTHFXlLiJdLMxwX+DZqTUbB3McHVXlLiLdK7xwj+e5L8bGlT2q3EWkq4UX7otsywBsGsxx5LTCXUS6V3DhXqosvi2zYTDHyfGCrqUqIl0ruHAvVxffltk02APA8TM6kUlEulNw4V5pQuW+cWUOgCOaDikiXWrOFDSzj5vZcTN7bJbXzcw+aGYHzOxRM/uR5g+zcaXq4s5QBdgYV+46qCoi3aqREvcTwMsu8PrLgcvi2y7gw4sf1sJFa8ssNtzjyl3TIUWkS80Z7u7+ADBygU1uAT7pka8DK81sY7MGOB/uvujlBwD6silW5FIc1YwZEelSzei5XwQcqnt8OH6u7SrxhToWs/xAzSbNdReRLtaMcJ8pSX3GDc12mdluM9t94sSJJuz6uRZ7ib16OktVRLpZM8L9MLC57vHFwJGZNnT32919h7vvGBoaasKun2s63Bc5WwZ0lqqIdLdmhPs9wC/Gs2Z2AqPufrQJ7ztv5UoVaE7lvmkwx8hEUVdkEpGulJprAzP7FHATsNbMDgPvBdIA7n4bcC9wM3AAmATe2KrBzqVUqVXuiw/3DXXTIS9Z27fo9xMRaac5w93dXzvH6w68tWkjWoRSXLlnmtCW2RRPhzw6OqVwF5GuE9QZqrVwTzep5w5oOqSIdKXAwr02FbIJ4V5XuYuIdJs52zLdZLpyTy0u3O988CAA/dkUX3niBKv7sgC87votixugiEibBFW5F6fbMos/oAqwpi/D8ESxKe8lItJOQYV7qdy8A6oAa/ozDI9r2V8R6T5hhXsTD6gCrO7LciZfphh/aYiIdIvAwr15B1QhqtwBRibVmhGR7hJUuNd67s04iQminjvAiFozItJlggr3UiW6xF7CmhXu0SwZHVQVkW4TXLg3qyUD0JNJ0ptJMjyucBeR7hJWuJedzCLnuJ8rmg6ptoyIdJegwr1YqTZtjnvNmv6s2jIi0nWCCvdmt2UAVvdlGJ0sTS8nLCLSDRTuc1jTl8GBU5Olpr6viEgrBRbu3rSzU2vW9NdmzKjvLiLdI7Bwb0HPPZ7rrhkzItJNwgv3Js+W6c0kyaUTOqgqIl0lsHD3pvfczYw1fVlG1JYRkS4SVLgXy80/oArRjJmTasuISBcJKtxLlSqZJvfcAYYGspyaKJIvVZr+3iIirRBMuFerTrna/LYMwPoVORw4cHy86e8tItIKwYR7vhxV1a0J92g65OPPjjX9vUVEWiGYcJ8qxuHe5NkyEK0OmUoYTx5TuItIdwgn3ON+eCt67smEsW4gq8pdRLpGMOFeO9jZirYMRH33J54905L3FhFptmDCfarY3Ounnmv9ihzHzhQ4rUvuiUgXCCfcW1y5bxjMATqoKiLdIcBwb37PHaLKHeAJhbuIdIFwwr3Y2sp9RS7FYE9albuIdIVgwj0/PVumNR/JzLhiw4AOqopIVwgm3KfbMi2Y515zxfoBnjw2jru3bB8iIs0QTLjnW9xzB7hiwwDjhTLPnJ5q2T5ERJohmHBv9WwZgO0bBgDYf1R9dxFZ2oIJ93yxggGpROsq9ys3rSCZMPYeOtWyfYiINEND4W5mLzOzJ8zsgJn9zgyv/7KZnTCzvfHtTc0f6oVNlSqkkwnMWhfuvZkUV25cwZ6nT7dsHyIizTBnuJtZEvgQ8HLgSuC1ZnblDJt+xt2vjm8fbfI45xSFe+uCvebaravYe+g05Uq15fsSEVmoRir364AD7v6UuxeBTwO3tHZY8zdVbP71U2dyzZaVTJUqmu8uIktaI2l4EXCo7vHh+Llz/ayZPWpmf29mm2d6IzPbZWa7zWz3iRMnFjDc2eXjtkyrXbt1FQB7DqrvLiJLV6qBbWbqdZw70fufgE+5e8HMfg34K+DHz/sl99uB2wF27NjR1MniU6VKy05gqrnzwYO4OytyKe56+DCpRLS/112/paX7FRGZr0bS8DBQX4lfDByp38Ddh929ED/838C1zRle46aK7em5mxmbV/dycGSy5fsSEVmoRsL9IeAyM7vEzDLAa4B76jcws411D18J7G/eEBsz1aa2DMDW1b2cmiwxli+1ZX8iIvM1Zxq6exl4G/AFotD+W3ffZ2bvM7NXxpu93cz2mdkjwNuBX27VgGfTrp47wJbVvQCq3kVkyWqk54673wvce85z76m7/27g3c0d2vxMlSqs6s20ZV+bVvaQTBgHhye5atNgW/YpIjIfwZyh2q6eO0AqmeDilT08dXKiLfsTEZmvcMK9jW0ZiBYRe+b0FGem1HcXkaUnmHBvZ88dYPuGFYCuzCQiS1MQ4V6uVClVvG1tGYD1K7Ks7E3zuC7eISJLUBDhni9H67y0s3I3M7ZvWMGBE+PTa8mLiCwVQYR7q6+fOpvnbxigVHH+/bsn27pfEZG5BBHurb5+6mwuWdtHJpXgX/cfb+t+RUTmEkS4t+P6qTNJJRNctq6fL+8/ruuqisiSEka4F1t//dTZXLlxBc+eyfON7420fd8iIrMJI9zbcP3U2Vy1aZAVuRR/8+DBtu9bRGQ2QYV7u3vuAJlUgp+99mL+5bGjnBgrzP0LIiJtEES45zs0W6bmF67fSqni/O3uQ3NvLCLSBkGE+9m2TPt77gDPW9fPDZeu4c4HD1Kp6sCqiHReWOHe5tky9V6/cyvPnJ7i/z6paZEi0nlhhHuxcz13iC6/NzJRZLAnzXv/cR93fP3pjoxDRKQmiHDPd3C2TE0yYbxk+zoOnZpi3xGtNyMinRVEuE+VKqQSRjLRmZ57zTVbVjE0kOW+bx+jXKl2dCwisrwFEe7D40VWtukqTBeSTBg/deV6To4X+LuHD3d6OCKyjAUR7k8PT7J1TW+nhwHA8zeuYMvqXv7svicZHte8dxHpjCDC/eDI5PRFqzvNzLjl6k2cmSrx3+96VGvOiEhHdH24F8tVjo5OsXmJhDvAxsEefufl2/nX/cf55Nc0c0ZE2q/rw/3I6SmqzpKp3GveeOM2fuyKIf7o3v08cuh0p4cjIstM14f70yOTwNILdzPjT37uh1k3kOWX/883+M4xXWtVRNqn68P9YBzuS+WAas2dDx7kvn3HePWOzZSrzn/+8L9z65cPdHpYIrJMdH24HxqZJJtKMNSf7fRQZrSmP8sbb7yEcsW5/YHvsu/IaKeHJCLLQNeH+8HhSTav7iXR4ROYLmTDihxvftGlmBk/f9vXuP8JrT8j0q3cnclimZPjBQ6NTPLksTEOjUwyXigvqdlxqU4PYLGeXkLTIC9kw2COt7z4B7jnkSP86ice4s0vupR3vfRyculkp4cmErxCucKzo3lOjhcplCoUylUwSCWM8XyZo6N5jo8VmCiUmSiWmSxUop/FSnwrM1GIfk7Ga1nNZE1fhtdet4VNK3sAeN31W9r1Ec/T1eHu7hwameT6S1Z3eigNWdGT5u9+7Qb+8PP7+cgDT/Gv+4/xez/9fG66fN2S/peHSCe4O+WqUyxXKVWqFMpVzkyVOJMvMTpV4sxUmdGp2v34Z77EeOFsEE/EIX16sjTn/pIJI5tKkEklyCQTZ++nkqzsSbNuIEc2lSCdrG1jZOLHpUqViUKFrz01zEce+C4/+yMX80MXr2zDf6XZdXW4n5qM/iC7oXKv+ce9R/jBiwbJ3biNf/jmM/zKJ3azbiDLb/7kFdxyzSayKVXyEg53Z7xQZni8yPBEgZPjRcbzZcrVKKxHJoqMTBQ5cnqKQyNTHB/LU6pEgV6cx/pM6aTRk07Sk0mSTSWng3n9ihTpZA/9uRQre9L0Z9OkU0Y6kcDj8aWTCQZ70vRmkpgtrsi6ZstK7njwIJ9+6FBHFzKELg/3g0t0GmQjLls3wK+/9HK+dXiUrx44yW/f9Sh/ct8T/NINW3nVtZvZMJjr9BBFqFadsUJ5ujKur5LH8mXG8iXGCuXp++PT96PbmanSnCGdS0fhuro3w+XrB+JFABMkE0YqaSTNpu/n0skoxONbLpMkl06QSiyNw4cDuTRv+tFL+PMvfYcvP36c97kv+gtjobo63J8engBgyxKbBtmoVCLBNVtWcfXmlWxb28ftDzzFn973JH/2xSe5bttqXv6CDfzHy4e4ZG1fx/6CSPeLDgBWpqvkkckiI+NFTk1Gt7NhXOJM3f3azwtdXMyIriOcS0chm01FP/uzKdb2Z+lJJ+jLpujPpqZ/5tJJEha1QXozqY6v5tpsqWSCF18+xN3ffIYHvnOSF18+1JlxdGSvTXIortw3r+rOcK8xM54enuSnrtrAtVtX8cjh0zx6aJQ/+KdvA7BpMMcPXjzIVZsGuWrTCl5w0SDrBrIK/MDVWhqjz6may8/pL9eeL1ccM3CiawpPFiuMTpWmw7xYnrl6ThjTgRwFdJJcKsHa/iwXr+o5WyVnzlbK01VzOkkmlSChv4fnuXrLSr70+HE+dP8BhftCHByZZGggS08mnD712v4sL9m+npdsX8/IRJEnj43xvZMT7P7+Kb6w79j0dqv7Mly+vp/L1g2waWUPGwazrF+RY8OKHBsGc/RmuvqPtmvVquRaj3mqWCFfrlAoVad/Vtzr2h3l8w4I1rc/5qqac3HwJhNGbRZeJmmkkwl6MkkuWtnD5ev76c2k6Msm6cuk6M2m6Msk6cumyKYSKhJaIJVI8KPPW8vnv3WUh74/wgu3tX/SR0MJYGYvA/4cSAIfdff3n/N6FvgkcC0wDLza3b/f3KGebymtBtkKq/sy7Lx0DTsvXQNAoVTh6GieI6NTPDua58jpPHsPnSZfOr8qW9WbZtPKHjat7OGilT0MDWRZkUvRn0sxkE0zkEvN8M/l5fM/urtTrFSnD95NFs/2iccLUUviTNyWmCpWqFR9+lauOtW6mRwjE0WGx6ODhcMThRn/PGaTNKurhqNAHuxJs2FFbrparlXJ04/jn6qal7YXblvN154a5o8+v59PvXln24vQOcPdzJLAh4CXAoeBh8zsHnf/dt1mvwqccvfnmdlrgD8GXt2KAdccH8vznWPjHfsnTydk00m2re1j29q+5zxfKFeif67nz1aAp6dKjE6WePTwaR548kQ0r3cOyYSRThqpRIJU0kglovu156OftQNdifj1+KBXIkE6ce42tdcT0+9Ve64WSk5Ubs527kctu8pVJ1+sMFWqMFWqRhVxKXpc33KobV+pOqW68I6CvEpp+v78TjZJmmEGiYSRMEiYYRZ9lloVvG4gy6Vr+6a/LHuzUQCn48+djv87JOL3yqaSpJO2bL5Ql5tMKsEf/swLeOude3jbnXu47Q3XtnUGTSOV+3XAAXd/CsDMPg3cAtSH+y3AH8T3/x641czMW3S61v1PHOe3/u4Rxgtlfuaai1qxi66STSUZGkgyNDD7EgylSpV86Wx7IF+qUihHJ3MUy9G0tEI5qlCrVafiUI3bB1WPKtaqM129liplqlWmWwwV93j7s8+d+3vVum2q7pybacbZJ2qhP/2aGZlkgnQckrX5xZn4i+RcZtE1dXNpm74EYzJxNlxrXzLJ+JZJJsjGBwVzqahSzsb3FcCyUDf/4Eb+5y0v4Pc/+xjv/MxefuXGbWzfsIK+bOvbpo3s4SLgUN3jw8D1s23j7mUzGwXWACebMch6//DNw7zrM4+wfcMAd755J5evH2j2LoKUTkZhOKAZliJt9fqdWzk9WeRP73uSzz96FDP4rzf9AL/1U9tbut9Gwn2mkuXciryRbTCzXcCu+OG4mT3RwP5n9DRwxbvOe3otLfhCWaKWy2ddLp8Tls9nXS6fk1+Y5fnffj/89sLfdmsjGzUS7oeBzXWPLwaOzLLNYTNLAYPAyLlv5O63A7c3MrCFMLPd7r6jVe+/lCyXz7pcPicsn8+6XD5npzXS3X8IuMzMLjGzDPAa4J5ztrkH+KX4/quAL7eq3y4iInObs3KPe+hvA75ANBXy4+6+z8zeB+x293uAjwF/bWYHiCr217Ry0CIicmENHbJ193uBe8957j119/PAzzV3aAvSspbPErRcPuty+ZywfD7rcvmcHWXqnoiIhGdpLKUmIiJNFUy4m9nLzOwJMztgZr/T6fG0ipl93MyOm9ljnR5LK5nZZjO738z2m9k+M3tHp8fUCmaWM7NvmNkj8ef8H50eU6uZWdLMvmlmn+v0WEIWRLjXLZHwcuBK4LVmdmVnR9UynwBe1ulBtEEZ+A13fz6wE3hroH+mBeDH3f2HgauBl5nZzg6PqdXeAezv9CBCF0S4U7dEgrsXgdoSCcFx9weY4RyC0Lj7UXffE98fIwqD4Naa8Mh4/DAd34I9EGZmFwM/DXy002MJXSjhPtMSCcEFwXJlZtuAa4AHOzuS1ojbFHuB48AX3T3Izxn7X0QnZza+dKYsSCjh3tDyB9J9zKwfuAt4p7uf6fR4WsHdK+5+NdHZ39eZ2Qs6PaZWMLNXAMfd/eFOj2U5CCXcG1kiQbqMmaWJgv0Od7+70+NpNXc/DXyFcI+p3Ai80sy+T9Q6/XEz+5vODilcoYR7I0skSBexaI3djwH73f0DnR5Pq5jZkJmtjO/3AD8BPN7ZUbWGu7/b3S92921E/49+2d1f3+FhBSuIcHf3MlBbImE/8Lfuvq+zo2oNM/sU8DXgCjM7bGa/2ukxtciNwBuIqru98e3mTg+qBTYC95vZo0RFyhfdXVMEZdF0hqqISICCqNxFROS5FO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuEvbmFklnq++L17i9tfNLBG/tsPMPniB391mZq9r32jP2/dUvP7LkmBmr46Xt9aceJmRwl3aacrdr3b3q4CXAjcD7wVw993u/vYL/O42oCPhHvtuvP5Lw+KlqFvC3T8DvKlV7y/dT+EuHeHux4FdwNssclOtCjWzF9cXMwrOAAADT0lEQVSdlfpNMxsA3g+8KH7uXXE1/W9mtie+/Yf4d28ys6+Y2d+b2eNmdke8lAFm9kIz+/f4Xw3fMLOBeEXGPzGzh8zsUTP7L42M38w+a2YPx/8K2VX3/LiZvc/MHgRumGWfV8X398b7vCz+3dfXPf+R2pdDfCGaPfF7fKmJfwwSMnfXTbe23IDxGZ47BawHbgI+Fz/3T8CN8f1+ogu5T78eP98L5OL7lwG74/s3AaNEi8cliJZq+FEgAzwFvDDebkX8vruA34+fywK7gUvOGeM24LFznlsd/+wBHgPWxI8d+Pn4/mz7/AvgF+q26QGeH3/udPz8XwK/CAwRLWd9Sf1+6z7r52b6b62bbql5fheINNtMyzX/P+ADZnYHcLe7H46L73pp4FYzuxqoAJfXvfYNdz8MEPfJtxEF/lF3fwjA4+WDzewngR8ys1fFvztI9GXxvTnG/XYz+0/x/c3x7wzHY7krfv6KWfb5NeD34gtX3O3u3zGzlwDXAg/Fn7WHaH33ncAD7v69+D2Cv1CLNIfCXTrGzC4lCsPjRJUrAO7+fjP7PFFP/utm9hMz/Pq7gGPADxNV6Pm61wp19ytEf8+Nmdf4N+C/ufsX5jHum4hWb7zB3SfN7CtALn457+6Vuvc+b5/ufmfctvlp4Atm9qZ4279y93efs69XzjJukQtSz106wsyGgNuAW93dz3ntB9z9W+7+x0Rtku3AGDBQt9kgUVVcJVo9cq6Dl48Dm8zshfE+BswsRbSS6FviteMxs8vNrG+O9xoETsXBvp2oum54n/GX2lPu/kGipal/CPgS8CozWxdvu9rMthK1lV5sZpfUnp9jbCKAKndpr564TZImugD2XwMzrdX+TjP7MaKq+9vAPxNdlq1sZo8QXST8L4G7zOzngPuBiQvt2N2LZvZq4C/iddOniKrvjxK1bfbEB15PAD8zx+f4F+DX4mV6nwC+Ps99vhp4vZmVgGeB97n7iJn9PnBfPD20BLzV3b8eH7C9O37+ONFMI5EL0pK/InOw6Bqun3P3JXX5u7g99Jvu/opOj0WWHrVlROZWAQaX2klMRP96OdXpscjSpMpdRCRAqtxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAL0/wGVTpFSDqTO5QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(ibis['ibis_ra'], ibis['ibis_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, ibis, \"ibis_ra\", \"ibis_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add NDWFS" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl0nGd59/HvNdql0b5YlmVb8r6R1VlNwCEsSYAE2hRIgJaw5C2F0lLaHmgppWl7CvR9aaFsTYGyhBBSSMHZA2Qzcbwom2N5tyzLsmTtkrWPNHO/f8zIDIpsjeyRntHM73OOTmZ5NHONY/90637u57rNOYeIiCQXn9cFiIhI/CncRUSSkMJdRCQJKdxFRJKQwl1EJAkp3EVEkpDCXUQkCSncRUSSkMJdRCQJpU93gJl9F3gb0O6c2zDF8wZ8BbgRGAI+4Jx7YbrXLSsrczU1NTMuWEQklT3//POdzrny6Y6bNtyB7wFfA35whudvAFZGvq4Avhn571nV1NRQV1cXw9uLiMgEMzsWy3HTTss4554Bus9yyM3AD1zYdqDIzBbGVqaIiMyGeMy5LwKOR91vjjwmIiIeiUe42xSPTdlq0szuMLM6M6vr6OiIw1uLiMhU4hHuzcDiqPvVQMtUBzrn7nLObXTObSwvn/Z8gIiInKN4hPsW4A8t7EqgzznXGofXFRGRcxTLUsgfA5uBMjNrBv4eyABwzn0LeJjwMsjDhJdC3j5bxYqISGymDXfn3K3TPO+Aj8WtIhEROW+6QlVEJAkp3EVEklAsV6imnHt2NL3qsduuWOJBJSIi50YjdxGRJKRwFxFJQgp3EZEkpHAXEUlCCncRkSSkcBcRSUIKdxGRJKRwFxFJQgp3EZEkpHAXEUlCCncRkSSkcBcRSUIKdxGRJKSukDGaqlMkqFukiCQmjdxFRJKQwl1EJAkp3EVEkpDCXUQkCSncRUSSkMJdRCQJKdxFRJKQwl1EJAkp3EVEkpDCXUQkCSncRUSSkMJdRCQJKdxFRJKQwl1EJAkp3EVEkpDCXUQkCSncRUSSUEzhbmbXm9kBMztsZp+e4vklZvakmb1oZrvN7Mb4lyoiIrGaNtzNLA34OnADsA641czWTTrss8B9zrmLgfcA34h3oSIiErtYRu6XA4edcw3OuQBwL3DzpGMcUBC5XQi0xK9EERGZqVjCfRFwPOp+c+SxaJ8H3mdmzcDDwJ9O9UJmdoeZ1ZlZXUdHxzmUKyIisYgl3G2Kx9yk+7cC33POVQM3Aj80s1e9tnPuLufcRufcxvLy8plXKyIiMYkl3JuBxVH3q3n1tMuHgPsAnHPPAdlAWTwKFBGRmYsl3HcBK82s1swyCZ8w3TLpmCbgOgAzW0s43DXvIiLikWnD3Tk3DnwceAzYR3hVTL2Z3WlmN0UO+xTwETN7Gfgx8AHn3OSpGxERmSPpsRzknHuY8InS6Mc+F3V7L7ApvqWJiMi5iincU92LTT00dAyyYVEhKyr8pPmmOscsIpI4FO4xeOpABx0Dozzf1ENhTgZ/snk5+dkZXpclInJG6i0zjYHRcToGRrlubQW3XFJN3/AYB9v6vS5LROSsFO7TONY1CMCKcj8XLSkiJyONxq4hj6sSETk7hfs0GjsHSfcZi4pz8JmxtDSXxs5Br8sSETkrhfs0GruGWFySS7ov/EdVU5pH12CA/pExjysTETkzhftZjI4FaekdpqY07/RjNWXh25qaEZFEpnA/i6buIRxQU5Z7+rGqomwy0ozGLk3NiEjiUrifxdGuQXwGS0p+G+7pPh+Li3M5pnl3EUlgCvezaOwcYmFhDlnpab/zeE1ZHq19I4yMBT2qTETk7BTuZzAeDNHcM0RtWd6rnqspzcMRnrYREUlECvcz6B4MMB5yVBVlv+q5xSU5+AzNu4tIwlK4n0HvcHipY1FO5quey0pPo8yfRdup0bkuS0QkJgr3M+gbioR77tQ9ZMr8WXQOKNxFJDEp3M+gZziAzzhjg7AyfybdgwGCIbWtF5HEo3A/g76hMQqyM87Y3rfMn0Uw5GjpHZ7jykREpqdwP4Pe4TEKzzAlA1DqzwLgqNa7i0gCUrifQe9QgOLcV59MnVDmDz+ncBeRRKRwn0LIOfqGxyjMOfPI3Z+VTma6T+EuIglJ4T6F/pFxQu7MK2UAzIwyf6bCXUQSksJ9Cr1DAWDqNe7RSvOydCGTiCQkhfsUTl/AdJaRO4RXzBzvHiIwHpqLskREYqZwn8LpC5jOMucO4ZOqIQfHe9RjRkQSi8J9Cj1DAXIy0sjKSDvrcWUTyyE7NDUjIolF4T6FvuGxaadkAEojyyE17y4iiUbhPoXeobMvg5yQm5lOcW4GDVoxIyIJRuE+hd7hAEVnuYApWk1ZHo0KdxFJMAr3SU6NjDEyFpr2ZOqE2rI8rXUXkYSjcJ+ktXcEmH4Z5ISaUm25JyKJR+E+yYne8LLGWKdlFpfkAKg7pIgkFIX7JCcmRu4xTstUF+cC0NyjcBeRxKFwn+Rk3zA+A392ekzHVxeHR+4KdxFJJAr3SboGAuRlpeOzqTfpmKwiP5uMNKNZV6mKSAJRuE/SOTCKPyu2UTtAms+oKsrRyF1EEkpM4W5m15vZATM7bGafPsMx7zKzvWZWb2b3xLfMudM5EJhRuEN4akYjdxFJJNOGu5mlAV8HbgDWAbea2bpJx6wEPgNscs6tB/58FmqdE50Do+TNNNyLcjmukbuIJJBYRu6XA4edcw3OuQBwL3DzpGM+AnzdOdcD4Jxrj2+Zc6drhiP3e3Y00TUYoKN/lO9va+SeHU2zWJ2ISGxiCfdFwPGo+82Rx6KtAlaZ2bNmtt3Mrp/qhczsDjOrM7O6jo6Oc6t4Fg2OjjM8FpzxtExx5IKn3kirYBERr8US7lMtG3GT7qcDK4HNwK3At82s6FXf5NxdzrmNzrmN5eXlM6111nUOjALMeFpmYiPtnsgOTiIiXosl3JuBxVH3q4GWKY75hXNuzDl3FDhAOOznlc6BcDjPeOSep3AXkcQSS7jvAlaaWa2ZZQLvAbZMOubnwLUAZlZGeJqmIZ6FzoWJkftMwz0/O500M03LiEjCmDbcnXPjwMeBx4B9wH3OuXozu9PMbooc9hjQZWZ7gSeBv3LOdc1W0bOla2LkHuPVqRN8ZhTmZmjkLiIJI6YUc849DDw86bHPRd12wF9Evuat03PumWffXm8qxbkZ9Awq3EUkMegK1ShdA6MUZKeTnjbzP5bi3ExNy4hIwlC4R+kcCJze9HqminIz6R8dZywYinNVIiIzp3CP0jkwes7hrrXuIpJIFO5ROgdGKfXHtknHZFrrLiKJROEepWvw3KdltNZdRBKJwj1iLBiid2jsnEfuWusuIolE4R7RHVnGeK4jd611F5FEonCP6OgPr3EvO8eRO2itu4gkDoV7RNd5jtxBa91FJHEo3CM6IyP30vMI94m17iNjwXiVJSJyThTuEV2D8ZmWATjRq12ZRMRbCveIzoEAmem+GXeEjDax1l2bZYuI1xTuEZ0Do5T7szCbam+S2Eysdddm2SLiNYV7ROdA4JzXuE+YWOuukbuIeE3hHtF1Hn1lJkysdVe4i4jXFO4RXQMBSvPOb+QO4ZOqmpYREa8p3AHnHN2DAUrOc1oGwidVNXIXEa8p3IGB0XECwVBcRu5FuZl09I9qrbuIeErhzm/7ypTknd+cO2itu4gkBoU7v209UJKXcd6vpbXuIpIIFO5A90AcR+5a6y4iCUDhDnRH2vTGY849PzudjDStdRcRbynciZ5zP/9w95lRVZSjcBcRTyncCYd7VrqP3My0uLxedXGOpmVExFMKd8IXMJXkZZ5XX5lo1UW5GrmLiKcU7kD34GhcpmQmVBfnaK27iHhK4Q50D43FN9xLcgCtdRcR7yjcCY/c47FSZkJ1cS6gte4i4p1z35kiCdyzowmAtlOjtPePnr5/vqqLwyN3nVQVEa+k/Mh9LBgiMB4i7zx2YJqsIj9ba91FxFMpH+5DgfBJz7zM+IV7mk9r3UXEWykf7oOj4wDkZcVnjfsErXUXES8p3CfCPY4jd9BadxHxVkzhbmbXm9kBMztsZp8+y3G3mJkzs43xK3F2DQbC4Z47CyN3rXUXEa9MG+5mlgZ8HbgBWAfcambrpjguH/gEsCPeRc6mwdFw+PrjPXLXWncR8VAsI/fLgcPOuQbnXAC4F7h5iuP+EfgSMBLH+mbdYGAcn0F2nPrKTNBadxHxUizhvgg4HnW/OfLYaWZ2MbDYOfdgHGubE4OjQXIy0/HFqa/MBK11FxEvxRLuU6WeO/2kmQ/4N+BT076Q2R1mVmdmdR0dHbFXOYsGR8fJi/OoHbTWXUS8FUu4NwOLo+5XAy1R9/OBDcBTZtYIXAlsmeqkqnPuLufcRufcxvLy8nOvOo4GA+NxvYBpgta6i4iXYgn3XcBKM6s1s0zgPcCWiSedc33OuTLnXI1zrgbYDtzknKublYrjbGg0OCsjd9BadxHxzrTh7pwbBz4OPAbsA+5zztWb2Z1mdtNsFzjbZmvkDlrrLiLeiSnVnHMPAw9PeuxzZzh28/mXNTdCzjEcCM5euEetdc/OmJ3fDkREppLSV6gOBYI4iNv2epNNrHXX6F1E5lpKh/tv+8rMzsh9aWkeAI2dg7Py+iIiZ5La4R6Ynb4yE5aVhcO9oXNgVl5fRORMUjvcI60H4t0RckJRbiYleZk0dGjkLiJzK6XDfWBkDAD/LE3LQHj03qBpGRGZYym9zd7A6DhG/Ofco7frc8DellNxfX0Rkemk9sh9dJzcrPj3lYlW5s9iYHScU5HfEkRE5kKKh3uQ/FmckgEo92cCcFTz7iIyh1I73EfGZnW+HcIjd9CKGRGZW6kd7qPj+LNnN9xL8jIxNHIXkbmV8uE+W03DJqSn+SjOy+SIVsyIyBxK2XAfHB1nLOjwZ2fM+nuV+7O01l1E5lTKhnvXQACY3TXuE8r8mTR2DhIKuekPFhGJg5QN946BUWCOwj0/i+GxICdPzavtZUVkHkvZi5g6J8J9lk+owm9XzBztHKSqKGfW309Ezk/0hYgTbrtiiQeVnDuF+xyM3MsnlkN2DLBpRdmsv5+IxG6qIE8GKTst09kfnnOfraZh0fKz08nLTOOITqqKyBxJ2ZF71+AoORlppPtm/+ebmbGqMp99reoxIzLXOvpH2XOij3t2NtEfaQOS4fOxrqqAJSW52Cy2H/FSyoZ758DonEzJTFi7sICHdrfinEvav0wiiWBkLMjOo91sPdTB1kOd7D/Zf/q5nMh2l2PBEFsPd1JZkM31GypZtSDfq3JnTeqGe39gTk6mTli7sIB7djTR2jeik6oiceScY//J/tNhvuNoN4HxEGk+o6Y0l7esr2RJSS4LC7NP72U8Oh7k5eN9/OZwJz/cfozbr65hWbnf408SX6kb7gOjs7a93lTWVoZHBvtaTyncRc5Te/8Izx7uZOvBTn65t43+yJaZFflZXLa0mJUL8qkpzSMzfepp16z0NC6vLWHDogLueqaBH24/xkeuWZZU/zZTNtw7BkZZX5A9Z++3ZmEBEA7369YumLP3FUkGI2NB6hp72Hqog2cOdZ4+f1WSl0lteR4rK/JZUeGnMGdmV5znZqZz+6ZavvX0Eb6/rZFPvmnV6dH9fJeS4T46HqR/ZHxO59z9WeksKcllX2v/9AeLpDjnHAfbBk6H+Y6GLkbHQ6SZsbQ0l7esW8CKBfksLMw+7/0YCnMyuO3yJXzz6SNsb+hi8+qKOH0Kb6VkuE+0HpjtXu6TrV2oFTMiZ9I5MMqzhzt55mAnWw910N4fvhZlRYWf265YQijkqC3zn3Gq5XwsLsll1QI/vzncydXLy2blPeZaSob7XF6dGm1NZQGP721jKDBObmZK/tGLnDY6HuT5xh6eORQO8/rIdpRFuRksLs7ltSvKWFHhpyg3c07quXZ1Bf/5TAM7j3bx2pXlc/KesyklE2Yur06NtnZhAc7BgZP9XLykeE7fW8RrzjkOtw+cDvPtDV2MjIXwGSwtzePN6xawosJPVVHOrG59eSZLS/NYVp7H1kOdXLGslIy0+T16T81wP3116tx+/HWRk6r7Fe6SIoYC4zx3pIsnD7Tz4O5WeofCFxGV+bO4eHExKyv81JblkZUgJzGvXV3Bd35zlJeaermstsTrcs5Laob7oDcj9+riHPxZ6Zp3l6R2tHOQJ/e389TB8Og8MB4iNzONpaV5vH5VOasW5FM8R1MtM7WsLI8yfyavnOhTuM9Hnf0B8jLT5vykic9nrFYbAkky48EQO4928/jeNp460E5j1xAQHp1ftrSY1ZUF1JTmkj4PpjnMjPVVhWw91DHvz43N38rPQ+fAKGX5WZ6899qF+fz8xRZCIYfPpzYEMj+NjgfZdriLR/ec5IHdLQwFgqT7jOXlft5+YRWrF+RTkpeYo/PprK8q4OmDHexr7efSpfN3+jQlw/3kqREW5M/dBUzRLqwu4u7tTRxqH2B1ZfL1s5DkNRwI8vTBDh7d08qv97XTPxq+VmRlhZ/1VYWsWpCfFEsIFxXlUJSTQX1Ln8J9vmntG+YSj05obqwJz+M9f6xH4S4Jr39kjCf2t/PonpP8al8bY0FHbmYaaxcWsL6qgBXl/nkx3TIT4amZAnYc7WZ0LJgwJ3tnKuXCPRRynOwbYWGhNz0kakpzKc3LpO5Y97zb2UVSw8DoOI/Xn+TB3a385lAngWCI8vwsLllSzPqqQmrL8khL8inFdVWFPHukiwNt/VxQXeR1Oeck5cK9c3CUsaCjqsibaRkz45KlxbxwrMeT9xeZyshYkKcOdPDAyy38al8bo+MhinIyuKymmA2LCllckuvJ2nOvLC3NxZ+Vzp6WU8kd7mZ2PfAVIA34tnPuC5Oe/wvgw8A40AF80Dl3LM61xkVLb3iT6oWFOXRELm+eaxuXFvPLvW109I9S7tGJXZHxYIh/fngfLx/vo76lj9HxEHmZaVy8pIgLq4tSLtCj+cxYU5nPnpY+Qs7Nyz+HacPdzNKArwNvApqBXWa2xTm3N+qwF4GNzrkhM/so8CXg3bNR8Plq7R0GoKoo27NwnzhJ80JTD29ZX+lJDZKanHO80NTLlpdO8NArrXQOBMhK97G+qoALqotYXu5P+imXWC0v91N3rIeW3mGqi3O9LmfGYhm5Xw4cds41AJjZvcDNwOlwd849GXX8duB98Swynlr6wiP3qsIcXj7e50kNGxYVkpnm4/ljCneZG/tPnuJfHt7P7uZeeobGSI9cc/HmdZWsrsyf95faz4ba8jwAGjoGkzbcFwHHo+43A1ec5fgPAY+cT1GzqbV3mOwMH0W5M+v7fL4m77BeWZjNo3tO8jc3rp3TOiR1NHUNseXlE2x5uYWDbQP4LNxh8bq1C1i3sCBp+pbPloLsDMr9WTR0DvC6VfOvkVgs4T7V72huygPN3gdsBF5/hufvAO4AWLLEm5UirX0jVBXmeL6P6dKSXLY1dDEyFtQ/Momb9lMjPLi7lS0vt/DS8V4ALqsp5h9vXs/wWGjOW27Md8vK83jxeC/B0JSRl9Bi+T/dDCyOul8NtEw+yMzeCPwt8Hrn3JST2c65u4C7ADZu3OjJn1ZL3zALPVopE21paS5bD3ey50Tf6bXvIueib2iMR+tb+cVLLWxv6CLkYGFhNtevr+SC6sLTLXP9WZp6mall5X52HO3mRORc3XwSS7jvAlaaWS1wAngPcFv0AWZ2MfCfwPXOufa4VxlHLb3DXJMAvZqXlOZhwLYjXQp3mbFgyPHMoQ6+/PhB9raeIhhylOZlsnl1BRcsKqRiDreQTGa1ZRPz7gMeVzJz04a7c27czD4OPEZ4KeR3nXP1ZnYnUOec2wL8K+AH/icy3dHknLtpFus+J2PBEO39owmxCa4/K51FxTk8sb+dT1y30utyZJ440jHAT59v5v4Xmmk7NUpuZnij54sXF7GoyPvpxmTjz0pnQUEWDZ2DXpcyYzFNwDnnHgYenvTY56JuvzHOdc2KtlMjOAdVhYkxqlldmc8T+9vDjcz8Wu8uUxscHWfLyy1886kjNHUP4TNYtSCf69YsYE1lftJd/p9olpX5qTvWTWA8NK9656TU2ZXWyDLIhQkwcgdYs6CAX+9r56kDHdxyabXX5UiC2X/yFHdvP8bPX2xhYHSc8vwsrl9fyUVLiijIntvVXqlsWXkezzV0sbu5d15NoaZUuLdMXMCUICP3hUXZlOdn8eT+doW7AOFWuo+8cpK7tx+j7lgPmek+3vaahbz3yiXsb+3XtIsHlpaG5913NnYr3BNVoo3cfWZcu7qcR145yVgwpAtJUtixrkHu2dnE/9Q10z0YoDQvkxs2VHLpkmJys9I5cHJAwe4Rf1Y65f4s6hrnVz+o1Ar33mHys9MTaq3vG9ZUcF9dM3WNPVy1vNTrcmQOjQdDfH7LXnYc7eJQe/giozWVBdx8URXLy/3zsp9Jsqopy6WusXtebbKTOCk3B070jrAoQUbtE167spyMNOPJA+0K9xTRdmqEe3ce595dTbT2jVCQnc51ayrYWFNCYY7m0hPR0tI8djX2cLC9nzWVBV6XE5OUCvfWvmEWJsh8+wR/VjpXLivl0T0n+fT1a+bNqEBmxjnHtiNd3L39GI/vbSMYclyzsow3rKlgTWWBmnUluJrIvPuuo90K90TU2jfChYsTrzfz712yiE/+5GV2NnZz5TKN3pNJ71CAnz7fzD07mmjoHCQnI42rl5VyeW0JpVr+Om8U52awoCCLXY09vP+qGq/LiUnKhPvIWJDuwUDCrJSJdv36hXwuq5776o4r3JOAc46Xjvdy9/YmHtzdwuh4iEuXFvMHS8MbX+jE+fxjZmysKaGusdvrUmKWMuF+NHKF2ZLIr1eJJCczjbddWMX/vtjMP9y0nnytYZ6XhgNBfvHSCX64/Rj1LafITPdx0eIirqgt8WxbR4mfy2tKeGh3K809Q/OiBXDKhPvBtn4AVi3we1zJ1N61sZof72ziod2tvOdy7a06n7T0DvOD545x764meofGWFOZz00XVnHx4qJ5u7myvNrGmvAmO3WNPQr3RHKobYA0n51uBJRoLlpcxMoKP/fVHVe4zwPOOXY19nDnA/XsbT2Fc7CuqoBbLq2mtjRPa9KT0JrKAvKz0tlxtJt3XLzI63KmlTLhfrCtn5rSXLLSE3MkZWa8a+Ni/vnhfextOcW6qvlxRj7VjIwFeeDlFr63rZH6llNkZ/jYtKKMK5eVUhxprSvJKc1nXFZbwo6GLq9LiUnKhPuh9gHWVOZ7XcarRO/Q5DMjK93HV399iG+9/1IPq5LJTvaN8Jn7d7PzaDeDgSAV+Vm846JFXLS4aF41k5Lzc/XyUp7Y387JvhEqE3BxRrSUCPeRsSDHugZ5+4VVXpdyVjmZaWxaUcaj9Sc1ek8AzjnqjvXwvW2NPLbnJMGQY01lPlctL2N5uaZeUtHEarbnGjp558WJ3Q8qJcL9SMcAIZe4J1OjbVpexq7Gbo3ePTQyFl718v1tx9jbeoqC7HRu31RDYU4mJXmaekll6xYWUJiTwbbDXQr3RHCoLbyLyqoFiTctM1lOZhof3FTLV359SKP3OXa8e4i7dxzjB9uOMTwWZEGBpl7kd/l8xpXLSnhuHsy7p0S4H2zrJ91npy8hTnQffG0t//3sUe58sJ57PnylWhLMovFgiF/ta+eenU1sPdSBAWsXFnDVslJqyzT1Iq929fIyHqtv43j3EItLEndJZIqE+wC1ZXnzZvRVmJPB39y4lk/f/wo/2tnE+69c6nVJSedE7zA/2dnEf29rpH9knILsdK5dXcHGpcWnN5QWmcrVkQZ/zx3pUrh77VB7PxuqCr0uY0befdliHnqllX95eB+bV5Un9F+i+SIYcjy5PzxKf+pAOw5YWeHn5gtLWV2Zr+ZdEpMVFX7K/FlsO9LJuy5b7HU5Z5T04T4cCNLUPcQ758FFB9HMjC/8/gW8+ctP89c/3c0PP3S59so8Ryf7Rrh3VxP//WwjfcNj5Gel87pV5Vy2tIRinSCVGTIzrlpeyrYjXTjnEnbqLunD/UjHAM7Nj5Opky0qyuHzN63nr366m89tqeef37EhYf8iJZqxYIinD3Twk7rjPLG/nWDIsaLCz1tfs5C1C9ViV87PNSvKeODlFupbTrFhUWLOCiR9uCd6T5mpRF/YBPD6VeXcs6OJ6uIc/mTzCo+qSnzOOepbTvGzF5rZ8lILXZHt6j5yzTJuvXwxzx5O/BUOMj+8cd0C0v7XeGRPq8LdKy829ZKTkXZ6k9v56E3rFlCUm8GXHj1AdnoaH3xtrdclJZS2UyP8/MUT3P/CCQ609ZPmM9ZW5nPjaxayakF4Ll3BLvFUkpfJFbUlPLLnJH/55tUJ+Rt1Uoe7c44nD7SzaUXpvO6h7TPjS7dcwMhYkDsf3EtT9xB/97Z1KT210N4/wmP1bXzv2aM0dAzigMXFOdx8URWvWVRIbmZS/9WWBHDDhkr+7hf1HGofSMhp36T+F3CkY5DmnmH++PXLvS7lvGWlp/GN917KFx7Zx39tPcqh9n6+8HsXpNQqmmNdg/xqXzuP7mml7lgPzkGZP5PNq8u5eHExZfna2UjmzlvWV/K5LfU88spJhftce+pAOwCbV5d7XEl8pPmMv33rOlZU+Lnzgb285d+f4S/fvJr3Xbl03qzhn4mhwDjbG7p4+kAHTx/soLFrCIDKgmzesKaCDVWFVORnJeSvxJL8KgqyuXRJMY/Wn+TP3rjS63JeJanD/emDHayo8M+LxvrTmXyS9U+uXcEvXjrBnQ/u5Tu/OcpHNy/nlkuryZ7Hm0P0DY/xwrEedjZ2s+toN7ub+wgEQ+RkpHHV8lJes6iQVQvytfeoJIzrN1TyTw/t41jXYMKd10vacB8KjLOjoZs/vCo5r+4szs3kj66qoaooh68+cYjP/nwPX3p0PzddVMU7L17ERYuLE3pOfigwzr7WU+w5cYo9J/p45UQfB9r6cQ58Fl4GesWyElZW5LO0NHdenzOR5HXDaxbyTw/t46fPN/OpN6/2upzfkbThvu1wF4FgiGvXVHhdyqwxM1r7RrjlkmouWVLM88eDGM8TAAAKUElEQVR6uHfnce7e3kRxbgbXrCznstoSLllSxKoF+XMekIHxEO39IzT3DNPQMUhDxwBHOwdp6ByksWsQ58LH5WWmsag4hzesqaCmNI/FxblJOc0kyWdRUQ5vWb+A729r5I7XLUuo/Y+TNtyfOthObmba6X0Pk5mZsbzcz/JyPzddWEVZfhZPHWhn66FOtrzcAkC6z6guzqGmLI+a0jxqy/KoyM+iMDeDopxMinIzKMjJIDPNR7rPfqdZmXOO0fEQgWCI0bEQQ4Fx+obHfuersz/AyVMjtJ0a4WRf+L9dg4HfqTPdZ5T5syjzZ3Lt6goWFeVQVZRDQXa65s1l3vrYtSt4rL6Nu7c38dHNibN4IynDfTgQ5PH6NjatKEvYbfVmS3ZGGgMj42xcWsKlS4rpGRqjqXuI9lMjdA4GOHCy//RvNdNJ9xk+s5iOhfAIvCAng4LsDJaV+7loSToF2RkU5WRQlp9FYU4GPoW4JJkLqou4ZmUZ3/lNA7dvqkmY815JGe7f3tpAe/8oH7lmmdeleMrMKMl79QYTzjkGRscZGB1nOBBkKBBkeCzIcCBIyDmCzhEKhY8LOUhPMzJ8RlpkVJ+Z5iMnM43sjDRyMtPIyUgjLzNNvW8kZX382hW8+67t/GTXcf7o6hqvywGSMNzbT43wzaePcMOGSi6vLfG6nIRkZuRnZyTU/KDIfHZ5bQmX1RTz7786yBvWVCTE9SdJN9T6f48fZCwY4tM3rPG6FBFJEWbGF3//AoIhx4e/X8fA6LjXJcUW7mZ2vZkdMLPDZvbpKZ7PMrOfRJ7fYWY18S40Fo+80sp9zx/nA1fXJNyaUxFJbsvK/Xzttks41N7PJ3/yEmMxnquaLdOGu5mlAV8HbgDWAbea2bpJh30I6HHOrQD+DfhivAs9m/FgiH95ZB8f/dELXFhdxJ9el3hXi4lI8nvdqnL+7m3r+OXeNm78ylaeO+Jdw7pY5twvBw475xoAzOxe4GZgb9QxNwOfj9z+KfA1MzPnJlYyx08w5OgeDNA5MEpr3zBbD3Xyq31tHO8e5rYrlvD3b1+XcitkRCRx3L6plsXFuXz+gXpu/a/tbFxazNUryrhkSRELCrIp82dRkpc56xcZxhLui4DjUfebgSvOdIxzbtzM+oBSoDMeRUb75lOH+b+PHzx9PzPdx6blpXzmhrXc+JqF8X47EZEZe+O6Bbx2ZRnf+c1RHq8/ydeeOEQoaqj7+bev4wObZrd1dyzhPtWPl8kj8liOwczuAO6I3B0wswMxvP+0DgHfO7dvLWMWfgAlAH2u+SMZPxMk4ed6bxxf6/Yvwu3n/u0x9VSJJdybgehdYKuBljMc02xm6UAh0D35hZxzdwF3xVLYXDCzOufcRq/riDd9rvkjGT8TJO/nmk9iWS2zC1hpZrVmlgm8B9gy6ZgtwB9Fbt8CPDEb8+0iIhKbaUfukTn0jwOPAWnAd51z9WZ2J1DnnNsCfAf4oZkdJjxif89sFi0iImcX0xWqzrmHgYcnPfa5qNsjwB/Et7Q5kTBTRHGmzzV/JONnguT9XPOGafZERCT5JF37ARERSeFwn66lwnxkZt81s3Yz2+N1LfFiZovN7Ekz22dm9Wb2Z17XFA9mlm1mO83s5cjn+geva4oXM0szsxfN7EGva0llKRnuMbZUmI++B1zvdRFxNg58yjm3FrgS+FiS/L8aBd7gnLsQuAi43syu9LimePkzYJ/XRaS6lAx3oloqOOcCwERLhXnNOfcMU1xfMJ8551qdcy9EbvcTDo1F3lZ1/lzYQORuRuRr3p8AM7Nq4K3At72uJdWlarhP1VJh3gdGsot0G70Y2OFtJfERmb54CWgHfumcS4bP9e/AXwPetkSUlA33mNolSOIwMz/wM+DPnXOnvK4nHpxzQefcRYSv+r7czDZ4XdP5MLO3Ae3Ouee9rkVSN9xjaakgCcLMMggH+4+cc/d7XU+8Oed6gaeY/+dLNgE3mVkj4anON5jZ3d6WlLpSNdxjaakgCcDMjPAV0Pucc1/2up54MbNyMyuK3M4B3gjs97aq8+Oc+4xzrto5V0P439QTzrn3eVxWykrJcHfOjQMTLRX2Afc55+q9rer8mdmPgeeA1WbWbGYf8rqmONgEvJ/wKPClyNeNXhcVBwuBJ81sN+HBxi+dc1o6KHGjK1RFRJJQSo7cRUSSncJdRCQJKdxFRJKQwl1EJAkp3EVEkpDCXUQkCSncZc6YWTCyTr0+0ur2L8zMF3luo5l99SzfW2Nmt81dta967+FIH5iEYGbvjrSr1tp4mZLCXebSsHPuIufceuBNwI3A3wM45+qcc584y/fWAJ6Ee8SRSB+YmEVaS88K59xPgA/P1uvL/KdwF08459qBO4CPW9jmiVGomb0+6mrUF80sH/gCcE3ksU9GRtNbzeyFyNfVke/dbGZPmdlPzWy/mf0o0sIAM7vMzLZFfmvYaWb5kc6M/2pmu8xst5n9n1jqN7Ofm9nzkd9C7oh6fMDM7jSzHcBVZ3jP9ZHbL0Xec2Xke98X9fh/TvxwiGws80LkNX4dx/8Nksycc/rS15x8AQNTPNYDLAA2Aw9GHnsA2BS57Se8kfvp5yOP5wLZkdsrgbrI7c1AH+FmcD7C7RheC2QCDcBlkeMKIq97B/DZyGNZQB1QO6nGGmDPpMdKIv/NAfYApZH7DnhX5PaZ3vM/gPdGHZMDrI187ozI498A/hAoJ9yeujb6faM+64NT/VnrS1/pM/xZIBJvU7Vffhb4spn9CLjfOdccGXxHywC+ZmYXAUFgVdRzO51zzQCRefIawoHf6pzbBeAibYPN7M3ABWZ2S+R7Cwn/sDg6Td2fMLN3Rm4vjnxPV6SWn0UeX32G93wO+NvIxhb3O+cOmdl1wKXArshnzSHc5/1K4Bnn3NHIayTVZiwyexTu4hkzW0Y4DNsJj1wBcM59wcweIjwnv93M3jjFt38SaAMuJDxCH4l6bjTqdpDw33Nj6p79Bvypc+6xGdS9mXAXx6ucc0Nm9hSQHXl6xDkXjHrtV72nc+6eyLTNW4HHzOzDkWO/75z7zKT3uukMdYuclebcxRNmVg58C/iac85Nem65c+4V59wXCU+TrAH6gfyowwoJj4pDhLtGTnfycj9QZWaXRd4j38zSCXcG/WikZzxmtsrM8qZ5rUKgJxLsawiPrmN+z8gPtQbn3FcJt5q+APg1cIuZVUSOLTGzpYSnlV5vZrUTj09TmwigkbvMrZzINEkG4Y2vfwhM1aP9z83sWsKj7r3AI4S3bRs3s5cJbwT+DeBnZvYHwJPA4Nne2DkXMLN3A/8R6Z8+THj0/W3C0zYvRE68dgDvmOZzPAr8caRd7wFg+wzf893A+8xsDDgJ3Omc6zazzwKPR5aHjgEfc85tj5ywvT/yeDvhlUYiZ6WWvyLTsPDerQ865xJqG7zI9NBfOufe5nUtkng0LSMyvSBQmGgXMRH+7aXH61okMWnkLiKShDRyFxFJQgp3EZEkpHAXEUlCCncRkSSkcBcRSUL/H+I/jb4gE3YTAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(ndwfs['ndwfs_ra'], ndwfs['ndwfs_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, ndwfs, \"ndwfs_ra\", \"ndwfs_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add UHS" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl83XWd7/HXJznZt2Y56d6mTVvaUjYJbRVGKoIWhgGcUREFxxGnjlfc9YoPx+U6zmN0vA913O0gw3VFRlw6DMj1KgpSWhqglNJCadKmTbekSdrszfa5f5xzYgxZTpuTc5Jf3s/H4zx6lm/O73OgfZ9vvr/v7/s1d0dERIIlLdUFiIhI4incRUQCSOEuIhJACncRkQBSuIuIBJDCXUQkgBTuIiIBpHAXEQkghbuISACFUnXgsrIyr6ioSNXhRUSmpaeeeuqku4fHa5eycK+oqKC6ujpVhxcRmZbMrC6edhqWEREJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAFK4i4gEkMJdRCSAFO4iIgE0brib2d1m1mBmu8dos8HMdprZ82b2h8SWKCIiZyueK1TvAb4BfH+kF81sFvAtYKO7HzKz8sSVl3o/3n5oxOffum5RkisREYnfuD13d38UaB6jyVuBn7v7oWj7hgTVJiIi5ygRY+4rgGIz+72ZPWVmb0/Ae4qIyAQkYuGwEHAp8FogB3jCzLa5+77hDc1sE7AJYNEiDWuIiEyWRPTc64Ffu3uHu58EHgUuGqmhu2929yp3rwqHx12xUkREzlEiwv1XwF+YWcjMcoF1wN4EvK+IiJyjcYdlzOwnwAagzMzqgc8AGQDu/h1332tmvwZ2AQPAXe4+6rRJERGZfOOGu7vfEkebLwFfSkhFIiIyYbpCVUQkgBTuIiIBpHAXEQkghbuISAAp3EVEAkjhLiISQAp3EZEAUriLiASQwl1EJIAU7iIiAaRwFxEJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAFK4i4gEUDw7Md0NXA80uPuaMdpdBmwDbnb3nyWuxKnpx9sPjfraW9dp828RSa14eu73ABvHamBm6cAXgYcTUJOIiEzQuOHu7o8CzeM0ex9wP9CQiKJERGRiJjzmbmbzgTcA35l4OSIikgiJOKH6VeDj7t4/XkMz22Rm1WZW3djYmIBDi4jISMY9oRqHKuBeMwMoA64zsz53/+Xwhu6+GdgMUFVV5Qk4toiIjGDC4e7uS2L3zewe4IGRgl1ERJInnqmQPwE2AGVmVg98BsgAcHeNs4uITEHjhru73xLvm7n7OyZUjYiIJISuUBURCSCFu4hIACncRUQCSOEuIhJACncRkQBSuIuIBJDCXUQkgBTuIiIBpHAXEQkghbuISAAp3EVEAkjhLiISQAp3EZEAUriLiASQwl1EJIAU7iIiAaRwFxEJoHHD3czuNrMGM9s9yutvM7Nd0dtWM7so8WWKiMjZiKfnfg+wcYzXDwBXuvuFwD8BmxNQl4iITEA8e6g+amYVY7y+dcjDbcCCiZclIiITkegx99uBhxL8niIicpbG7bnHy8xeQyTcrxijzSZgE8CiRYsSdWgRERkmIT13M7sQuAu40d2bRmvn7pvdvcrdq8LhcCIOLSIiI5hwuJvZIuDnwG3uvm/iJYmIyESNOyxjZj8BNgBlZlYPfAbIAHD37wCfBkqBb5kZQJ+7V01WwSIiMr54ZsvcMs7r7wLelbCKRERkwnSFqohIACncRUQCSOEuIhJACncRkQBSuIuIBJDCXUQkgBTuIiIBpHAXEQkghbuISAAp3EVEAkjhLiISQAp3EZEAUriLiASQwl1EJIAU7iIiAaRwFxEJoHHD3czuNrMGM9s9yutmZl8zs/1mtsvMXpH4MkVE5GzE03O/B9g4xuvXAsujt03AtydeloiITMS44e7ujwLNYzS5Efi+R2wDZpnZ3EQVKCIiZy8RY+7zgcNDHtdHnxMRkRRJRLjbCM/5iA3NNplZtZlVNzY2JuDQIiIykkSEez2wcMjjBcDRkRq6+2Z3r3L3qnA4nIBDi4jISBIR7luAt0dnzawHTrv7sQS8r4iInKPQeA3M7CfABqDMzOqBzwAZAO7+HeBB4DpgP9AJ/N1kFSsiIvEZN9zd/ZZxXnfgvQmrSEREJkxXqIqIBJDCXUQkgBTuIiIBpHAXEQkghfs52n6gie0HmlJdhojIiMadLSMvd+x0F1t2HsWB/gHnVZVlqS5JROTPKNzPkrvzX88eIycznUUluTyw6xg5Gelcsqg41aWJiAzSsMxZeu7IaQ42dfC61XO4Ze0iKsN53P90Pae7elNdmojIIIX7WejtH+Ch3ceZV5RNVUUxGelpXH/hPAYc9h1vS3V5IiKDFO5nobaxg9NdvVyzejZpFlkMs7wgi6KcDPY1KNxFZOpQuJ+FuuYO0gyWlOUPPmdmLC/Pp6axnf6BEVc6FhFJOoX7Wahr6mTerBwyQ3/+n2357AK6eweob+lMUWUiIn9O4R6nvoEBDjd3srgk92WvLQvnY8C+E+3JL0xEZAQK9zgdPdVN34CzuDTvZa/lZKazsCSXlzTuLiJThMI9TnVNHQAsLn15zx1g+ex8jrR00XGmL5lliYiMSOEep7qmTkrzMinIzhjx9RXlBTiwv0FDMyKSegr3OLg7B5s6RhySiZlfnENWKI2D0R6+iEgqxRXuZrbRzF40s/1mducIry8ys0fM7Bkz22Vm1yW+1NQ52d5DZ0//qEMyAGlmzCnK5vjp7iRWJiIysnHD3czSgW8C1wKrgVvMbPWwZv8I3OfulwBvAb6V6EJTabzx9pi5Rdkcb+1mQPPdRSTF4um5rwX2u3utu/cA9wI3DmvjQGH0fhFwNHElpt7hli5yMtIJ52eN2W5uYQ5n+gaob+lKUmUiIiOLJ9znA4eHPK6PPjfUZ4FbzaweeBB4X0KqmyIa2rqZXZiFRZccGM2comwA9hxrTUZZIiKjiifcR0q04eMOtwD3uPsC4DrgB2b2svc2s01mVm1m1Y2NjWdfbQq4Ow2tZwgXZI/bdnZhNgbsVbiLSIrFE+71wMIhjxfw8mGX24H7ANz9CSAbeNkOFu6+2d2r3L0qHA6fW8VJ1tHTT1dvP+UFYw/JAGSG0ijLz1LPXURSLp5w3wEsN7MlZpZJ5ITplmFtDgGvBTCzVUTCfXp0zcfR0BaZ/RKOI9whMjSjnruIpNq44e7ufcAdwMPAXiKzYp43s8+Z2Q3RZh8B/t7MngV+ArzD3QMxZaSx7QxAXD13iMyYqW/porVbm3eISOrEtc2euz9I5ETp0Oc+PeT+HuDyxJY2NTS0niEzlEZRzshXpg43N3pS9YVjbaxdUjKZpYmIjEpXqI6jse0M4fzxZ8rEzCnKAXRSVURSS+E+joa27riHZAAKs0OU5GUq3EUkpRTuY2jr7qW1u++swt3MWDW3QOEuIimlcB9DbIXHeOa4D7VyTiEvnmjTMgQikjIK9zHEwv1seu4AleF8unsHOHpayxCISGoo3Mewv7Gd9DSjOC/zrH5uWXlkA+2aRi3/KyKpoXAfQ01DO6V5maSnxTdTJqYyHFn3XRt3iEiqKNzH8FJDO+WFZzfeDlCSl8ms3AxqGhXuIpIaCvdR9PQNcLi5k3D+2Q3JQGTGzLJwPjXquYtIiijcR1Hf0smAQ+k4a7iPpjKcr567iKSMwn0UdU2dAJSe5cnUmMryPE6293CqsyeRZYmIxEXhPorY1nol5xjumjEjIqmkcB9FXXMnuZnp5GfFtbbay1SGo+GucXcRSQGF+yjqmjpZVJIb94Jhwy0oziUzlKZxdxFJCYX7KOqaOqgozTvnn09PM5aW5SncRSQlFO4j6B9wDjd3sbg0d0LvUxnO14VMIpISCvcRHG/tpqd/gEUTDvc8DjV3cqavP0GViYjEJ65wN7ONZvaime03sztHafNmM9tjZs+b2Y8TW2ZyxWbKTGRYBqCyPJ8B/9O0ShGRZBk33M0sHfgmcC2wGrjFzFYPa7Mc+ARwubufD3xwEmpNmkPRMF5UMvFhGdAaMyKSfPH03NcC+9291t17gHuBG4e1+Xvgm+7eAuDuDYktM7kONnWSkW7Mm5UzofdZGl1ATNMhRSTZ4gn3+cDhIY/ro88NtQJYYWaPm9k2M9s40huZ2SYzqzaz6sbGxnOrOAkONXewsDj3rFeDHC43M8T8WTmaMSMiSRdPuI+UcMO3GAoBy4ENwC3AXWY262U/5L7Z3avcvSocDp9trUlz8GTnhE+mxlSW57Nf4S4iSRZPuNcDC4c8XgAcHaHNr9y9190PAC8SCftpx9051NzJ4gmOt8dUhvOoaejQlnsiklTxhPsOYLmZLTGzTOAtwJZhbX4JvAbAzMqIDNPUJrLQZGnu6KH9TB+LJzhTJqYynE9Xbz/HW7sT8n4iIvEYN9zdvQ+4A3gY2Avc5+7Pm9nnzOyGaLOHgSYz2wM8AnzM3Zsmq+jJdDA6U2aiFzDFxBYQ04wZEUmmuFbFcvcHgQeHPffpIfcd+HD0Nq0dao7McU9kzx2gprGdV6+YuucZRCRYdIXqMHVNnZjBwpKJTYOMKcvPpDA7pJ67iCSVwn2YuqZO5hZmkxVKT8j7mRnLyrUrk4gkl8J9mLqmjoQNycREttzTph0ikjwK92HqmjoTdjI1prI8n8a2M5zu6k3o+4qIjEbhPkT7mT6aOnoSdgFTzLIhJ1VFRJJB4T5EolaDHK6yXFvuiUhyKdyHqEvQapDDLSzOITM9TcsQiEjSKNyHqEvwBUwxofQ0KspyqWnQSVURSQ6F+xCHmjsozcukIDsj4e9dGc6nVj13EUkShfsQiVwNcrjKcD51zZ309A1MyvuLiAylcB/iUHNnwk+mxiwrz6d/wAdP2oqITCaFe9SZvn6Onu5K+MnUmEpNhxSRJFK4Rx1u7sI98SdTY2Jb7mmNGRFJBoV7VKJXgxwuLyvE3KJsLUMgIkmhcI86eHJypkEOpQXERCRZFO5Rh5o7yc8KUZqXOWnHqAznU9PQTmT5exGRyRNXuJvZRjN70cz2m9mdY7R7o5m5mVUlrsTkqGvqYFFJLmYj7QeeGJXhPDp6tOWeiEy+cXdiMrN04JvANUQ2wt5hZlvcfc+wdgXA+4Htk1HoZDtwsoPz5xUl5L1+vP3QiM//aY2ZDuYWJWYzEBGRkcTTc18L7Hf3WnfvAe4Fbhyh3T8B/wpMu25pT98Ah1u6Bme0TJbY6pD7G9om9TgiIvGE+3zg8JDH9dHnBpnZJcBCd38ggbUlzaHmDvoHfNLDPVyQRUFWSDNmRGTSxRPuIw1CD54RNLM04CvAR8Z9I7NNZlZtZtWNjY3xVznJ9kcX9Fpalj+pxzEzKjVjRkSSIJ5wrwcWDnm8ADg65HEBsAb4vZkdBNYDW0Y6qerum929yt2rwuHwuVedYLUnI2E72T13iMyY0YVMIjLZ4gn3HcByM1tiZpnAW4AtsRfd/bS7l7l7hbtXANuAG9y9elIqngS1jR2RIZNJWA1yuMryPBq05Z6ITLJxw93d+4A7gIeBvcB97v68mX3OzG6Y7AKTobaxncok9NoBVs0pBOCFY61JOZ6IzEzjToUEcPcHgQeHPffpUdpumHhZyVV7soPrLpiblGOdPz8S7ruPtrJuaWlSjikiM8+Mv0K1uaOHU529LC1LTs+9vCCb8oIsnj9yOinHE5GZacaHe2zmSmxJ3mRYM7+I3UcV7iIyeWZ8uMe2vkvGTJmYNfMK2d/QTldPf9KOKSIzi8K9sYPM9DQWFE/eapDDnT+/iAGHvcd1UlVEJseMD/eaxg4Wl+aSnjZ5C4YNt2Z+ZA0bjbuLyGSZ8eFee7I9qePtAPOKsinOzWD3EfXcRWRyzOhw7+0f4FBTZ1LH2yGyDIFOqorIZJrR4X6ouZO+AWdpknvuAOfPK2LfiTbO9Omkqogk3owO973Rq0RXzilI+rHPn1dIb7/z0gmtMyMiiRfXFapBtedoK6E0Y/ns5PfcYydVnztyevC+iEy+0TbTeeu6RUmuZHLN7HA/1sqy8nyyQulJP/biklyKcjJ45lALt6wN1l8qkVQbLcBnkhk9LLPnaCur5xWm5NhpacbaJSVsq21OyfFFJNhmbM+9se0MDW1nWD03NeEOsG5JCb/Zc4Jjp7u0p6rIGLp6+nnxRBsvnWijprGDo6e6aGjrpq6pE4jsKFSUk0FZfhYLSnJZOaeAjPQZ3XedueEeO5maqp47wProqpDba5u56ZL547QWmRn6+gfYe6yNZ+tP8Vz9aZ6tP8W+E20MRPd/SzejKDeDgqwQRTkZGDDg0NTRw0sN7fTtP0lWKI0184q4alU5xbmZKf08qTJjw31PLNxT2HNfNbeQguwQ22qbFO4yY3X19PPM4Rbu/uMBDjZ1cqi5k56+AQByM9OZPyuHV68IM39WDrMLsinOyxz1ivIBdw6c7GDn4VPsqj/FriOnuOq8ci5fXkYobWb15GdsuO891sr8WTnMSuG3enqasbaihO0HNO4uM8epzh6qD7aw42AzTx5sZveR0/T2OwbMLszmFYtmsbg0j0XFuczKzcAs/qVB0syoDOdTGc7ntSvLeWDXMR7ec4IXT7Rx2/oKcjKTP3kiVWZsuO852sqqFPbaY9YvLeW3LzRworWb2YXZqS5HJOGOnuqKBPmBZnYcbGZf9NqOdDPmF+fwyqVlVJTlsrgkL6HhOys3k1vXL2bn4VPc/3Q9mx+r4R2vWkJRzuRvpzkVxBXuZrYR+DcgHbjL3b8w7PUPA+8C+oBG4J3uXpfgWhOmu7efmsZ2rk3S7ktjWbe0BIBttU3ceLGGZmR6c3dqGtt58kDLYKAfOdUFQH5WiFcsLmZxaR4VpXksKM5JyknPixfOoiA7xA+31fHdR2v4hysrKUzCfsmpNm64m1k68E3gGqAe2GFmW9x9z5BmzwBV7t5pZu8B/hW4eTIKToQXj0dOzqRyvD1m9dxCCrJCbD/QrHCXacfdeamhncf3n+SJmiZ2HGympTOy+XteVoiK0lwuXjiLirI85hRmJ3X11aEqw/ncfsUS7nrsAD/cVse7rlhKZijYY/Dx9NzXAvvdvRbAzO4FbgQGw93dHxnSfhtwayKLTLTYydTzUzhTJiaUnkZVRTFP1DSluhSRuBxu7uTx/SfZWtPE715ooP1MHwDFuRksKcvnNaW5VJTmUZqfeVbj5ZNtQXEub65ayI+21/Gzpw7zlrWLSJtC9SVaPOE+Hzg85HE9sG6M9rcDD430gpltAjYBLFqUuqsyd9WfoiA7xILiqTG3/KqV5XzqV8+z70QbK2Ynf50bkbE0tp1ha81Jtu5vYmvtSQ43R4ZZwgVZVIbzBk9gFudN/SmHq+cVsnHNHB7afZzH9jVy5XnlqS5p0sQT7iN9tfmIDc1uBaqAK0d63d03A5sBqqqqRnyPZNhe28zaipIp06t4/Zo5fGbL8zyw6xgfvkbhLql1uquX7bVNbK1pYmvNycEToNkZaSwty+f6C2dRGc6nvCBryvwbOhtXLCvjcHMnv9l7gmXlBcyfIp28RIsn3OuBhUMeLwCODm9kZlcDnwSudPcziSkv8U60dlN7smNKredSXpDNuiWl/Peuo3zo6uXT8h+MTF/dvf1UH2zh3x+rpaaxnSMtXTiQkW4sLs3j9efPoTKcx7xZOYEYxjAzbrpkPoeaO/lp9WHueM2yQI6/xxPuO4DlZrYEOAK8BXjr0AZmdgnwXWCjuzckvMoE2lYbGduOXR06VVx34Vw+9cvd7DvRznkpWIJYZo7e/gF21Z9i6/4mHq85ydN1p+jpHyDNYGFxLq9ZWc7ScGSeeSigl/DnZoZ446ULufvxAzy0+1ggJzOMG+7u3mdmdwAPE5kKebe7P29mnwOq3X0L8CUgH/jPaK/zkLvfMIl1n7Nttc0UZIdSuuzASDaeP4fP/Go3/73rKOfNOS/V5UiADAw4Lxxvi4yb1zSxvbaJjp5+zCKztf72VYt51bIyDjZ2kJUxcy7yWVaez+WVpTxe08QFAVx2O6557u7+IPDgsOc+PeT+1Qmua9Jsr21i3ZKSlE3JGk24IIv1S0t54LljfOiaFRqakXPm7tQ1dfJ49CToE7VNNHf0AFCWn8ma+UUsDedTWZZHblYkAo6d6p5RwR5zzeo57D3exi+eOcJHXndeoK5gnVFXqMbG26fqovx/eeFcPvmL3ew51sr584LXk5DJc6K1e3B64tb9Jzl6uhuAwuwQleF8rlpZTmU4f8ZcnRmvzFAab7hkPt/74wG++v/28YnrVqW6pISZUeE+VcfbY65bM5fPP7CXux47wFduvjjV5cgU1tLRw7baJu7ZepDaxg4a2yNzGHIz01lalsdlS0qoLMufcnPNp6LKcD6XVRTz74/Vct0Fc7lo4axUl5QQMy7cC7JDU2JNmZEU52XytnWL+I+tB/nQ1StYVJqb6pJkimg/08eOA82DvfO9x1txj/Q8l5TmUVVRTGU4nzlF2YGY0ZJs166Zy6HmTj5+/y623HFFIGbPzKhwf6Jmao63D/X3r17K95+o49t/qOFf/vqCVJcjKdLd28/TdS1srWliy7NHqW/pZMAhlGYsKs3l6lWzqSzLY35x7pT++zxdZGek8883XcC7vl/Nd/5Qw/tfuzzVJU3YjAn3PUdbOdjUyTuvWJKyGsba1zF2HmB2YTZvvmwB9+2o5wOvXc6cIq0UORP09A3w3JHI9MStNU08daiFnr4B0tNscD3zynA+i0pyZ/wOQ5Pl6tWz+auL5vH1373EtWvmsHyaXy0+Y8L9F8/UE0ozrr9wXqpLGde7X13JT548zDceeYnP36TeexC1dvfydF0L1QdbePJgM88ePsWZ6AYVc4uyWVtRwtJwHktK82bkLJZU+exfreaPLzXysZ/t4v73vGpa/1Y0I8K9f8D51c6jbDivnJJpsP7FwpJcblu/mHu2HuS1q2bzmgCvfzETdPf289KJdvYea2X30dPsONjCC9Ex8/Q0Y828Qm5dv5iunn6WlOWRlzUj/llOSaX5WXz2hvP5wL07uWfrQW5P4W/6EzUj/hY9vv8kDW1n+OtXTJ+r0O68diXbapv46H3P8tAH/oJybeQx5bk7x1u72Xuslb3H2th7rJUXjrdR29g+uP9nZnoai0pyuWplORWleSwszg3EybsgueGieWzZeZT//fCLXLNq9rSd2DAjwv0XzxyhMDvEVSunTw84OyOdb7z1Eq7/+h/54E938h9/dxlZIf16PlV09/az70Tby4L8dFfvYJvi3AzmFOVw5Ypy5hZlM6com5K8TM1mmeLMjM+/YQ3XfPlR7vz5Ln54+zrSpuHwTODDveNMH7/efZybLplP9jQbu1xWXsA/3biGj/1sF7fd9STfue3SaTGsFCTuztHT3bwQDe89x1p54VgrB052/FlvfHZhFitmF0RCvDAS5NPt75v8ydyiHD51/So+fv9zfP13+/nA1dNv9kzgw/3+p+vp6u2fVkMyQ72paiFZGel89D+f5Q3fepwvv/liLl1cnOqyAqnjTB/7G9oHe+GxIG/t7htsE+uNbzivnDmF2cwtyqZYvfFAenPVQrYfaOarv93HRQuL2DDNzn0FOtxPd/Xyld/sY/3SEqqmcSDecNE8FhTn8O4fPMXffHsrly8r5fYrlrB+aSm5mYH+Xzgp2rp72d/QzksN7exvaGffiTZ2Hj7Fqc4/DanEeuMr5xQypygS4rML1RufScyMf77pAvYcbeWDP93JlvdeMa3G3wOdDF/77Uuc6urlU9evnvaXYL9iUTG//+gGfrz9EN99tJZ33lNNRrpxwfwilpTlM29WNkU5GWSG0shIj92M9DQj3Yy0wT8hzSLPZ6ankZsZIiczndzMdHIy0snJTCcrlDZt/3v19Q/Q1NFDY9sZGtvOcKK1m8MtnRxu7hr882T7n7YbyAylDc4fr1qcTXlBlnrjMignM51v33opN33zcW793nbue/crp821J+aemg2RqqqqvLq6etLev7axndd95VHeVLWAf/nrC8/5fca68CgZRlrkrLu3n+0Hmnmipomn6po50tLF8dbuwTHgiUozokEfIjca/NkZ6YP3czJD5GT86YshJyP2/NAviRBZocgXTCjtT182GelphNKNNDMG3HGPTFUd8Ngtst54d28/XT0DdPX209XbT3dP5M+Onj5au/po7e7ldFcvrbFbdx+nu3pp6exh+F/p9DRj3qxsFhbn0tM3QEleJuUF2ZQXZukEpwwaa0HBnYdPcetd25ldmMVP3/1KyvKzkljZnzOzp9y9arx2gey5d/f2c+f9z5Gdkc6Hrwne2ujZGelcuSLMkZYuFpVEfk3sH3B6+wfoG3D6o7e+gQHcGQzRwftEThT29kd+pqd/gN6+P/+zp2+AntjrfQN0nOmjpaNnsH3PYHunP8kdhHQzsjPTyclIIycj8sVTkB0iXJBFflaIguwQBVkh8rMzKMgOUZidMa0vRpHUu3jhLO5+x2W8/e7tvPm7T7D5tktZVj61r2ANXLh39/az6QdPsaOuma/efDHhgtR9wyZCvL85pKcZ6WmpGQ+OfbEMBn70fuyLZmDA6Yv2zmNfPE7kNwTDMIuMb5pFhowMBoeXMmM9/lDsfuTxdB02kulr7ZISvv/OdfyPHz3Fjd94nC+96SKuu2BuqssaVVzhbmYbgX8jshPTXe7+hWGvZwHfBy4FmoCb3f1gYksd36nOHj5837M8uq+RL/7NBYHcOmsqin2x6GSjBN3aJSX81/uu4D0/fJr/8aOnuXpVOR/fuHJKrkMz7qVxZpYOfBO4FlgN3GJmq4c1ux1ocfdlwFeALya60LF09fRz12O1vPpfH+H3Lzbw+ZvWcPNlU3NDDhGZ3uYW5fDTd6/n4xtXsr22mdd/9VHe/YNqHnruGN29/akub1A8Pfe1wH53rwUws3uBG4E9Q9rcCHw2ev9nwDfMzHwSzta2dffyUkM79S1dHGrqYPuBZrYfaKanb4BXrwjzyetWaYNpEZlUWaF03rOhkpsvW8h3/1DD/U8f4eHnT5AVSmPN/CIuWjCLirJc5hXlUJqfSUF2iNzMEOlpkWHH3KwQ+ZO8hlA87z4uJ+PIAAAHD0lEQVQfODzkcT2wbrQ20Q21TwOlwMlEFDnU715o4AP37hx8XBnO47b1i3nd6tmsm6I7LIlIMJXkZfKJ61bxsdefx9aaJv6wr5FnD5/ix0/W0d07MOrP/cOVldx57cpJrS2ecB/pzNXwHnk8bTCzTcCm6MN2M3sxjuOPqQ74HfDp8RqeuzIm4UsqBfQ5pp6gfJZAfI63JfFYn/gifOLcf3xxPI3iCfd6YOGQxwuAo6O0qTezEFAENA9/I3ffDGyOp7Cpwsyq45lTOtXpc0w9QfksQfkcQRPPWqM7gOVmtsTMMoG3AFuGtdkC/G30/huB303GeLuIiMRn3J57dAz9DuBhIlMh73b3583sc0C1u28Bvgf8wMz2E+mxv2UyixYRkbHFdbrW3R8EHhz23KeH3O8G3pTY0qaMaTWMNAZ9jqknKJ8lKJ8jUFK2toyIiEwe7e8lIhJACvdRmNlGM3vRzPab2Z2prudcmdndZtZgZrtTXctEmNlCM3vEzPaa2fNm9oFU13QuzCzbzJ40s2ejn+N/pbqmiTCzdDN7xsweSHUt8ucU7iOIc8mF6eIeYGOqi0iAPuAj7r4KWA+8d5r+PzkDXOXuFwEXAxvNbH2Ka5qIDwB7U12EvJzCfWSDSy64ew8QW3Jh2nH3RxnhmoPpxt2PufvT0fttRAJl2q0M5xHt0YcZ0du0PPFlZguAvwTuSnUt8nIK95GNtOTCtAuSoDKzCuASYHtqKzk30aGMnUAD8Bt3n5afA/gq8D+B0a+zl5RRuI8sruUUJPnMLB+4H/igu7emup5z4e797n4xkau915rZmlTXdLbM7Hqgwd2fSnUtMjKF+8jiWXJBkszMMogE+4/c/eeprmei3P0U8Hum5zmRy4EbzOwgkWHLq8zsh6ktSYZSuI8sniUXJIkssvXS94C97v7lVNdzrswsbGazovdzgKuBF1Jb1dlz90+4+wJ3ryDy7+N37n5risuSIRTuI3D3PiC25MJe4D53fz61VZ0bM/sJ8ARwnpnVm9ntqa7pHF0O3Eakh7gzersu1UWdg7nAI2a2i0gn4jfurmmEknC6QlVEJIDUcxcRCSCFu4hIACncRUQCSOEuIhJACncRkQBSuIuIBJDCXZLGzPqj89Ofjy55+2EzS4u+VmVmXxvjZyvM7K3Jq/Zlx+6KrgczJZjZzdHlqDVHXkakcJdk6nL3i939fOAa4DrgMwDuXu3u7x/jZyuAlIR7VE10PZi4RZeOnhTu/lPgXZP1/jL9KdwlJdy9AdgE3GERG2K9UDO7cshVqM+YWQHwBeAvos99KNqbfszMno7eXhX92Q1m9nsz+5mZvWBmP4ouXYCZXWZmW6O/NTxpZgXRFRq/ZGY7zGyXmb07nvrN7Jdm9lT0t5BNQ55vN7PPmdl24JWjHPP86P2d0WMuj/7srUOe/27syyG6cczT0ff4bQL/N0iQubtuuiXlBrSP8FwLMBvYADwQfe6/gMuj9/OJbOQ++Hr0+VwgO3p/OVAdvb8BOE1ksbc0IksvXAFkArXAZdF2hdH33QT8Y/S5LKAaWDKsxgpg97DnSqJ/5gC7gdLoYwfeHL0/2jG/DrxtSJscYFX0c2dEn/8W8HYgTGT56SVDjzvksz4w0n9r3XQLneV3gUiijbS88uPAl83sR8DP3b0+2vkeKgP4hpldDPQDK4a89qS71wNEx8kriAT+MXffAeDR5YLN7HXAhWb2xujPFhH5sjgwTt3vN7M3RO8vjP5MU7SW+6PPnzfKMZ8APhnd7OLn7v6Smb0WuBTYEf2sOUTWe18PPOruB6LvMe03XpHkULhLypjZUiJh2ECk5wqAu3/BzP6byJj8NjO7eoQf/xBwAriISA+9e8hrZ4bc7yfy99wYeU1+A97n7g+fRd0biKzm+Ep37zSz3wPZ0Ze73b1/yHu/7Jju/uPosM1fAg+b2buibf+Pu39i2LFuGKVukTFpzF1SwszCwHeAb7i7D3ut0t2fc/cvEhkmWQm0AQVDmhUR6RUPEFktcryTly8A88zssugxCswsRGTlz/dE14rHzFaYWd4471UEtESDfSWR3nXcx4x+qdW6+9eILCV9IfBb4I1mVh5tW2Jmi4kMK11pZktiz49TmwignrskV050mCSDyIbXPwBGWpv9g2b2GiK97j3AQ0S2cuszs2eJbPr9LeB+M3sT8AjQMdaB3b3HzG4Gvh5dR72LSO/7LiLDNk9HT7w2AjeN8zl+DfxDdNneF4FtZ3nMm4FbzawXOA58zt2bzewfgf8bnR7aC7zX3bdFT9j+PPp8A5GZRiJj0pK/IuOwyJ6tD7j7lNoOLzo89FF3vz7VtcjUo2EZkfH1A0VT7SImIr+9tKS6Fpma1HMXEQkg9dxFRAJI4S4iEkAKdxGRAFK4i4gEkMJdRCSA/j8+NkZI09v9EQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(uhs['uhs_ra'], uhs['uhs_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, uhs, \"uhs_ra\", \"uhs_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add zBootes" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8XFd99/HPb7Tvu2Rbki05lpdsdoiykYTs1AmQhD4pWQjQEkjpA4S1FNq8oE/goUCfV2mB0BAgr9AWklJCQwAHQ0OcBeIkTmLHuy3bsS1LsmRt1r6MzvPHXDkTRbbG1mju6Or7fr3m5Zk7V/f+JrG/c3TuOeeacw4REQmWkN8FiIhI/CncRUQCSOEuIhJACncRkQBSuIuIBJDCXUQkgBTuIiIBpHAXEQkghbuISACl+nXi0tJSV1NT49fpRURmpZdeeumIc65sqv18C/eamho2bNjg1+lFRGYlM9sfy37qlhERCSCFu4hIACncRUQCaMpwN7MHzKzVzLZMsd95ZhY2s5viV56IiJyKWFruDwKrT7SDmaUAXwfWxqEmERGZpinD3Tn3NNAxxW4fBx4BWuNRlIiITM+0+9zNrBJ4N3Df9MsREZF4iMcF1X8G/sY5F55qRzO708w2mNmGtra2OJxaREQmE49JTPXAw2YGUApcZ2ajzrlHJ+7onLsfuB+gvr5eN28VEZkh0w5351zt+HMzexD41WTBPpv95PkDk26/7YKFCa5ERCQ2U4a7mT0EXA6Umlkj8CUgDcA5p352EZEkNGW4O+dujfVgzrk/n1Y1IiISF5qhKiISQAp3EZEAUriLiASQwl1EJIAU7iIiAaRwFxEJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAFK4i4gEkMJdRCSAFO4iIgGkcBcRCSCFu4hIACncRUQCSOEuIhJACncRkQBSuIuIBJDCXUQkgBTuIiIBNGW4m9kDZtZqZluO8/57zexV7/FHM1sZ/zJFRORkxNJyfxBYfYL39wGXOefOBr4M3B+HukREZBpSp9rBOfe0mdWc4P0/Rr1cD1RNvywREZmOePe53wE8frw3zexOM9tgZhva2trifGoRERkXt3A3syuIhPvfHG8f59z9zrl651x9WVlZvE4tIiITTNktEwszOxv4AXCtc649HscUEZFTN+2Wu5ktBH4OvM85t2v6JYmIyHRN2XI3s4eAy4FSM2sEvgSkATjn7gO+CJQA3zUzgFHnXP1MFSwiIlOLZbTMrVO8/yHgQ3GrSEREpk0zVEVEAkjhLiISQAp3EZEAUriLiASQwl1EJIAU7iIiAaRwFxEJIIW7iEgAKdxFRAJI4S4iEkBxWRUySH7y/AG/SxARmTa13EVEAkjhLiISQAp3EZEAUriLiASQwl1EJIAU7iIiAaRwFxEJIIW7iEgAKdxFRAJI4S4iEkBThruZPWBmrWa25Tjvm5l9y8wazOxVM3tL/MsUEZGTEUvL/UFg9Qnevxao8x53Av86/bJERGQ6pgx359zTQMcJdrkB+DcXsR4oNLP58SpQREROXjz63CuBg1GvG71tb2Jmd5rZBjPb0NbWFodTi4jIZOIR7jbJNjfZjs65+51z9c65+rKysjicWkREJhOPcG8EqqNeVwFNcTiuiIiconiE+2PA+71RMxcC3c655jgcV0RETtGUd2Iys4eAy4FSM2sEvgSkATjn7gPWANcBDUA/8BczVayIiMRmynB3zt06xfsO+GjcKhIRkWnTDFURkQBSuIuIBJDCXUQkgBTuIiIBpHAXEQkghbuISAAp3EVEAkjhLiISQAp3EZEAUriLiASQwl1EJIAU7iIiAaRwFxEJIIW7iEgAKdxFRAJI4S4iEkAKdxGRAFK4n6TwmPO7BBGRKSncT8K+I3185dfb2HKo2+9SREROSOEeo6GRMD976SBDo2Os2dLMSHjM75JERI5L4R6jx7e00NU/wtUryunqH+G5Pe1+lyQiclwxhbuZrTaznWbWYGafn+T9hWb2pJm9Ymavmtl18S/VP7tbe3jhtQ4uqSvlyuUVLKvIY92uVjr6hv0uTURkUlOGu5mlAPcC1wKnA7ea2ekTdrsb+Klz7hzgFuC78S7UTxte6yQvM5WrV1QAsPrMeQyNjHHvkw0+VyYiMrlYWu7nAw3Oub3OuWHgYeCGCfs4IN97XgA0xa9E/x3s7KemJIe0lMh/ror8TJbPy+N/th/2uTIRkcnFEu6VwMGo143etmh/D9xuZo3AGuDjkx3IzO40sw1mtqGtre0Uyk28nsERuvpHqC7KesP2RSU57G/v50jvkE+ViYgcXyzhbpNsmzjY+1bgQedcFXAd8O9m9qZjO+fud87VO+fqy8rKTr5aHzR2DgBQVZT9hu0LiyOvXznQlfCaRESmEku4NwLVUa+reHO3yx3ATwGcc88BmUBpPAr028HOfkIGCwrf2HKvLMoiNWS8fKDTp8pERI4vNYZ9XgTqzKwWOETkgultE/Y5AFwFPGhmK4iE++zod5lCY+cA8/IzSU994/dgWkqIeQWZ/GZLC9VRrfrbLliY6BJFRN5kypa7c24U+BiwFthOZFTMVjO7x8yu93b7DPBhM9sEPAT8uXNu1s/TH3OOxs7+N3XJjKsuzqaxs19LEohI0oml5Y5zbg2RC6XR274Y9XwbcHF8S/Pfkd4hBkfGqC7OmvT9hcXZPLennZbuQSqLJt9HRMQPmqF6Ase7mDpukXdR9UBHX8JqEhGJhcL9BA529JORGqIsL2PS9wuy0sjPTOVAR3+CKxMROTGF+wk0dg5QWZRFyCYbDQpmRnVxtsJdRJKOwv04wmOOlu5BqgpP3Je+sDibzv4ReodGE1SZiMjUFO7H0T0wQtg5SnMn75IZN78gEv6Hjw4moiwRkZgo3I+jvS+yrEBxbvoJ9yv3+uNbe7QMgYgkD4X7cbT3RpbzLck5ccs9LzOVjNQQbT1quYtI8lC4H0dH3zBpKUZe5omnApgZ5XkZtB5Vy11EkofC/Tja+4Ypyk4/7kiZaOV5mbSpW0ZEkojC/Tjae4comeJi6rjy/Ax6hkbpH9aIGRFJDgr3SYw5R2f/MCU5J76YOm58kpNa7yKSLBTuk+gZHGUk7CiOMdzL8zIBjZgRkeShcJ/E+DDIkimGQY4rzE4jLcVo1Vh3EUkSCvdJdMQ4DHJcyIyy3AzadMs9EUkSCvdJtPcNE7LIwmCxKs/P1HBIEUkaCvdJjA+DTAlNPQxyXFleBl0DI/RpjRkRSQIK90l09A7F3N8+bnwZgj1tvTNRkojISVG4T+Cco71vmOIY+9vHjQ+HbGhVuIuI/xTuE/QNhxkaHYt5jPu4kpwMUszYrXAXkSSgcJ+gwxvxcrLhnhIyinLS2demW+6JiP9iCnczW21mO82swcw+f5x93mNm28xsq5n9JL5lJk57X2QYZKwTmKKV5aaz74jCXUT8d+IlDwEzSwHuBa4BGoEXzewx59y2qH3qgC8AFzvnOs2sfKYKnmldAyMAFJ1CuJfmZvD8ax2MjTlCJzHSRkQk3mJpuZ8PNDjn9jrnhoGHgRsm7PNh4F7nXCeAc641vmUmTlf/CDnpKaSlnHyPVWluBsOjYzR1D8xAZSIisYslwSqBg1GvG71t0ZYCS83sD2a23sxWx6vAROseGKYw++Rb7QAleZGf26t+dxHxWSzhPln/gpvwOhWoAy4HbgV+YGaFbzqQ2Z1mtsHMNrS1tZ1srQnR2T9CYXbsM1OjlXlLBKvfXUT8Fku4NwLVUa+rgKZJ9vmFc27EObcP2Ekk7N/AOXe/c67eOVdfVlZ2qjXPGOcc3f0jFJ7EsgPRcjNSyc1IVbiLiO9iCfcXgTozqzWzdOAW4LEJ+zwKXAFgZqVEumn2xrPQROgeGGE4PEbBKXbLmBm1pTnsVbiLiM+mDHfn3CjwMWAtsB34qXNuq5ndY2bXe7utBdrNbBvwJPDXzrn2mSp6pjR2Ri6EnmrLHYiEu5YgEBGfTTkUEsA5twZYM2HbF6OeO+DT3mPWaurywv0U+9wBFpfl8MtXmxgcCZOZlhKv0kRETopmqEZ5PdxPrVsGIi135+BAR3+8yhIROWkK9yiHugZIDRk56afe4l5cmgtoOKSI+EvhHqWpa5DC7DTMTn12aU1pNgB7j6jfXUT8o3CPcqhrgMKsU++SAcjLTKM8L0MLiImIrxTuUQ51DUzrYuq42tIcjXUXEV8p3D1Do2HaeoYoiEO4Ly5TuIuIvxTunpbuQYBpd8tApOXe3jdMd//ItI8lInIqFO6eQ53TH+M+7tiIGV1UFRGfKNw9h7qmPzt1XG1ZDqAFxETEPwp3T1NXpFumIA7hXl2UTUrIFO4i4huFu+dQVz/leRmknsJNOiZKTw1RXZSliUwi4huFu6epa5AFhVlxO97islytDikivlG4e5q6BqiMY7jXlubw2pE+xsYm3tdERGTmKdyJ3KTjUNcAlUXxDfeBkTCHewbjdkwRkVgp3IH2vmGGRsdYUJAZt2MuLo2MmFG/u4j4QeHO60v9xrvPHVC/u4j4QuHO6xOY4tktU5GfQVZaihYQExFfKNx5fQJTPC+ojt9PdZ9mqYqIDxTuRIZBZqenxGUCU7TaMt0sW0T8oXAnMoGpsjBrWjfpmMxppTkc7OhneHQsrscVEZmKwp34T2AaV1uWw5jupyoiPogp3M1stZntNLMGM/v8Cfa7ycycmdXHr8SZ19Q1MDPh7q0OuadN/e4iklhThruZpQD3AtcCpwO3mtnpk+yXB9wFPB/vImfSwHCY9r5hquI4UmbckvJIuO8+3BP3Y4uInEgsLffzgQbn3F7n3DDwMHDDJPt9GfgGMKumZDZ1j49xj98EpnG5GalUFWWx87Ba7iKSWLGEeyVwMOp1o7ftGDM7B6h2zv0qjrUlxLEJTAXxb7kDLJ+Xx64WtdxFJLFiCffJhpAcWw3LzELAN4HPTHkgszvNbIOZbWhra4u9yhk0ExOYoi2tyGNPW69GzIhIQqXGsE8jUB31ugpoinqdB5wJrPOGEs4DHjOz651zG6IP5Jy7H7gfoL6+PimWS2zqGiBkUJEfn26Znzx/4A2vj/QOMzrm2Hekj2Xz8uJyDhGRqcTScn8RqDOzWjNLB24BHht/0znX7Zwrdc7VOOdqgPXAm4I9WR3qGqQiP5O0ONykYzIV+RkA7NRFVRFJoCkTzTk3CnwMWAtsB37qnNtqZveY2fUzXeBMG5/ANFPKcjNICZn63UUkoWLplsE5twZYM2HbF4+z7+XTLytxmroGWVVdOGPHT00JUVuao5a7iCTUnJ6hOjbmaO6emQlM0ZZV5LFL4S4iCTSnw72td4iRsJuxkTLjllbkcaCjn/7h0Rk9j4jIuDkd7ge9NV+qZrrlPi8X52C3JjOJSILM6XDf3x4J94Ul2TN6nmXz8gGNmBGRxJnb4d7Rjxkzsq5MtIXF2WSkhjRiRkQSZk6H+8GOfhYUZJGRmjKj50kJGUsr8tjecnRGzyMiMm5Oh/v+9j4WFs9sl8y4s6oKeLWxm7GxpJiYKyIBN6fD/UBHP4tmuL993MqqAnoGR9nXrtvuicjMm7Ph3js0ypHe4Rm/mDpupTdR6tXGroScT0TmtphmqAbRAW+kzKLinIScr648j+z0FDYd7Obd51Ql5JwiEpuJC/4B3HbBQh8qiZ+5G+4dke6RRHXLpISMMysL2KSWu4ivJgvyIJqz4Z6oMe7RVlYV8KPn9jM8OkZ66pztEROJq5HwGAc6+jncPUhrzxADI2HSUkK8tL+TysIsirLT8JYjn1Pmbrh39FOUnUZ+ZlrCzrmyupDhZ/ax63APZ1YWJOy8IkExOBJma1M3Gw92s/FgF1ubujnQ3s/oCUah5WWkcnZVAZcvKycnY+5E3tz5pBMcaO9nYUli+tvHrayKXFTdeLBL4S4yhfCYY09bLxsPdLGxsYtNB7vY0dJD2Avygqw0KguzuGRJKaV5GRRmpZGXmUZ6aojwmGNgOMzBzn72Hunjj3va2bC/k8uXlnHp0jJCc6AlP2fDfX9HH+dUFyX0nFVFWRTnpLPpYBe3X7gooecWSWbOOVqODr4hyDc3dtM3HAYgMy1EVWE2ly4ppaoom6rirKl/686J3D7zwsUltB4dZO22w6zddpi23mHefU4lKaFgB/ycDPeR8BhNXYPcuCpx/e0AZsZKbzKTyFx2dHCEVw92s6mxi40HI2He2jMEQIoZ8wszOauqgKqibKqLsinJTZ9Wa7s8P5PbL1jIEzta+f2OVoZGw9xcX03qDN2BLRnMyXA/1DlAeMwlbHZqtJXVhazbtZveoVFy51D/n8xdw6NjbG8++oYg39P2+mS+0tx0qouyuaC2mKqibOYXZM5I6JoZV6+oICsthV9vbmbNlhauX7kg7udJFnMyXfZ7S/0uSnCfO8B5NcU4By/u6+CK5eUJP7/ITDt8dJANr3Xy0v5OXj7QybamowyHxwAozc1gVXUhi8tyqSrKoqowm6z0mV3baaKLl5TS1T/MH/a0s6wi99iqrUEzJ8P9QHtix7hHO3dRERmpIZ7ZfUThLrNeeMyxs6WHl/Z38MjLh9jf3kdn/wgAaSlGZWE2Fywu9rpXsijISo5hiW8/Yx572vr42cuHuOvKLPISOGouUeZkuL/W3k9mWojyvIyEnzszLYXza4t5tqEt4ecWiYe2niGe3tXGU7vaeGZ327Ewz8tMZVFxNhedVsqi4mzmF2aSGkrOPu20lBA3n1fNvU828OjGJt4XwAEOczLcdx3uYUl5rm8tiEuWlPIPj++g9egg5fmZvtQgEquR8BivHOjiqV2trNvZxtamyNLVuRmp1JXncvWKXBaV5My6yUIV+ZlctbyctdsOs/dIL4tLc/0uKa5iCnczWw38C5AC/MA597UJ738a+BAwCrQBH3TO7Y9zrXGzo6WHt9WV+Xb+S+pK4XF4tuEIf/oWrTMjyaepa4CndrXx1M42ntzZytDoGCGDhcU5vP30CpZW5DGvIHPWjxd/65JSntvbztotLXzkstNm1ZfTVKYMdzNLAe4FrgEagRfN7DHn3Lao3V4B6p1z/Wb2V8A3gJtnouDp6ugbpq1niBXz83yrYcW8fEpy0nl2t8JdksPQaJgX93Xy1K5WntrVxi7vfr8LCjI5u6qAuvI8lpTnkpmW2IufMy0tJcTVKyr4+SuH2Np0NFCTC2NpuZ8PNDjn9gKY2cPADcCxcHfOPRm1/3rg9ngWGU87vLshLZvnX7iHQsZbl5TybMMRnHOBai3I7LG/vY+ndrWxbmcbz+1pZ2AkTErIqC3J4boz51FXkUd5Xkbg/36+ZVERzzYcYe3WFlbMzw/M5KZYwr0SOBj1uhG44AT73wE8Pp2iZtJO7z6miQz3yVahu3RJKb/c1MTu1l6WVvj3RSNzx8BwmPV721m3M9I6f81bPK+mJJv31Fdx2bIyDrQPzLlF7UJmvP30efzH8/t5tbGLcxYmdub6TIkl3Cf7Gpt0lR4zux2oBy47zvt3AncCLFzoz1rJO5p7KM5Jpyw38SNlol1cVwrA07vaFO4yI5xzNLT28s3f7WJXay+vHeljdMyRlmIsLs3lXWfPZ2lFHiXev4WW7qE5F+zjls+P/JbyzO4jrKouDMRvK7GEeyNQHfW6CmiauJOZXQ38HXCZc25osgM55+4H7geor6/35WaiOw73sKwiz/f/eZWFWZw+P59fvtrMhy5d7GstEhw9gyP8oaGdp3a18fSuNg51DQBQnpfBhYtLWFqRx6KSbNICPO3+VITMuLSujEdebgzMb9OxhPuLQJ2Z1QKHgFuA26J3MLNzgO8Bq51zrXGvMk7Gxhy7D/fwnvrqqXdOgHefU8n/XbOdfUf6qC1N/GxZmf2cc2xv7uFJr6tlw2sdjDnISA2xpDyX82uKqavIpTA73e9Sk97K6gJ+t62FZ3YH47fpKcPdOTdqZh8D1hIZCvmAc26rmd0DbHDOPQb8I5AL/JfXIj7gnLt+Bus+JQc7++kfDrPcx4up0d61cgFffXw7j75yiE9ds9TvcmSWGBwJ89yedv71qT3sbOmheyAyiWhBQSaX1pWxtCKPhcXZgbkwmCipoRBvPa2U32xt4VDngN/lTFtM49ydc2uANRO2fTHq+dVxrmtG7PAupi6fnxxrScwryOSixSX8YuMhPnl1ne9dRZK8Dh8d5Pc7Wnli+2GebTjC4MgY6SmR1vnVK8pZWpEXyCn0iXZ+bTFP7mzlmYY2/pplfpczLXNqhurOlh7MYGlF8sxEu3FVJZ975FU2NXazqrrQ73IkiTR1DfD4lhYe39zMhv2dABRmp7Gquojl8/JYXJoT6CVr/ZCZlsJ5NcX8cc8RmrsHmF+Q5XdJp2xOhfuOlqMsLM4mOz15Pvbqs+Zx9y+28OgrhxTuwsGOfr66ZjtbDnVz0OsamJefydUryjl9QQEVc2Dcud8uWlzCHxqO8KM/7ufz1y73u5xTljwplwA7WiIjZZJJfmYa16yo4BcbD/G51cuS6otHEmN/ex9rNrfw+JbmYzdyWVCYydtPr+DMBQWU+rDA3VxWlJPOGQvyeeiFA9x11ZJZ+29ydlZ9Crr7R9h3pI8bVlb6XcqbfPCSWn69uZkfrz/Ah9+mYZFzwb4jfazZ3Myazc3HFuJaWVXAF65dzkjYUZyj0S1+unhJKd97ei+PvNTI+y6q8bucUzJnwv35fe04BxcuLva7lDc5d1ERFy8p4XtP7+V9Fy0K3PodErGnrZc1rzbz683Nxy7uLyzO5roz53FGZQFFGq6YNBYWZ7OyupAH/vAa771gEaFZOPJozoT7c3vbyUgNsWphcvZrf/zKOm65fz0Pv3CAP7+41u9yJE4aWntZs7mZnzx/gJajgwAsKs7mHWfN54wF+Rp/nqTMjDsuqeWuh17hyZ2tXLWiwu+STtrcCfc97dTXFJGRmpyt4gsXl3B+bTH3PbWXWy9YmLR1ytR2H+6J3KNzczO7DvdiFmkJvvPs+ZyxoICCLA1ZnA2uPXMe8wsy+eGz+xTuyaqjb5gdLT189u3JPVHoE1fV8d4fPM996/byiavr/C5HTsKuwz38+tVIoO9u7cWI3KP3XV6g5yvQZ520lBDvv6iGr/9mB9uajnL6guSYHxOrORHu6/e2A3DRaSU+V/K6yVaKvO2ChdywagHf/v1urlxezllVwVlbOmjGp/3/ZmsLazY309AaaaGfX1PMu1Yu4IwF+eRrUtGsd9v5C/nWE7t54A/7+H9/ttLvck7KnAj35/a0k52ewtlVydnfHu2e689k/d52Pv3Tjfzy45fo4moSGQ2P8eJrnfx2Wwu/3XqYQ10DGFBTmsP1XqBrlmiwFGSncdO5Vfzniwf53OpllOfNnttizo1w39tOfU3xrFgJryA7jW/ctJIPPPACX/7VNr5y45matOKj/uFRnt51hN9tO8yazc0MjIRJDRlLynP503MqWT4/n9yMOfHPaM764CW1/Pj5/fzwmX184boVfpcTs8D/rWztGaShtZebzp09t7O7bGkZf/m2xXzv6b3kZabxN6uXKeATqPXoIOt2tvHbbYd5ZncbQ6NjFGSlsXxeHivm51NXkasL3nNIbWkON66q5EfPvcYdl9TOmpvaBz7cn951BIhMKZ5NPn/tcnqHRrnvqT2kpRifvmapAn6GhMccGw928uSOyM2gxycVFWal8ZZFRZw+P5+akhytsjiHffLqpTy2qYnvPNnAPTec6Xc5MQl8uD/0wgEWl+Zw9iy7OGlmfPmGMxkNO779+wZ2tPTw9f91tmYuxklL9yB/3HOEdTvbeHp3G139I6SEjHMXFvG51csYGA4zLz9TX6gCwMKSbN5zXjUPvXCAD1+6mOribL9LmlKgw31781Fe2t/J3e9YMSv+kU42guYf/vQs6ipy+cZvdrL6n5/m7neezjvOmq9W5ElqPTrIc3vbWb+3nfV7O9h3pA+AnIxUllXksrQij7ryPLLSI90thbN3MUCZIR+/cgk/e6mRb/7PLv7pPav8LmdKgQ73nzx/gPTU0Kzqb58oFDI+dOliLjqthM/8dBN3PfQK335iNx+57DSuPWverF3UaCaNjTn2tfex8UAXLx/o5Lm97exti4R5RmqI2tIcrjtzHrVlucwvyCQ0C774xX/zC7K445Ja/nXdHt59TiWX1pX5XdIJBTYZ+oZG+e9XDvHOs+cHYor3GQsK+PVdl7JmczPfemI3n/mvTdz96BauOb2CK5aXcfFppbPmQk88hccc+9v72NHSw7amo2xq7GLTwS6ODo4CkTCvKcnh2jPnUVuaw4LCLIW5nLJPXFXH2q0tfP6Rzaz91NuSeqRU8lY2Tb/Y2ETv0CjvvWCR36VMy2RdNR94aw115bk8urGJx7c089imyP3Kq4sjN91eMT//2J+VhVmzctGjiQZHwrzW3se+tj72eX/uOtzDzsM9DI6MARAyqMjPZNm8fKqLsqgqzqY8L0NhLnGTmZbCP950Njfd9xxfe3w7X7nxLL9LOq5AhvvRwRG+u66BFfPzeUuSLhQ2HSEz9rT1cVZlAWcsyKe5e5A9rb0c6hrgpf2d/HbrYZy3b0ZqiOribBZ6j6qiLOYVZFKel0l5Xgbl+Rm+du0MjYbp6BumvXeYzv5hOvqGaesZoqlrkObuAZq6B2nuGqC1Z+gNP1eam8HSilxuO38R3QPDzCvIojwvY1bMZZDZ7dxFxXzw4lp++Ow+6hcVc+M5ybeMOAQw3J1z3P3fW2juHuRfblk1Ky6kTkfIjMrCLCqjrgAOjYY5fHSI5u4B2nsjgbm9+SjPNhxheHTsTcfISU8hLzONvMxU8jJTyfWe52emkpuRSnpqiNRQiLQUIy0lRGpKiPQUIzUlxJhzjI05wmOOsIv0d4+OOcacY3AkTN9QmL6hUfqGR70/w/QPj9I9MEJH7zB9w+FJP1dWWgo5GakUZqVRXZzN2VUFlORmUJqbQUlOumbuiq/++k+WsbWpm8/+1ybys1K5cnnyLSwWuHB/5OVDPLapic9cs5RzFyXf2u2JkJGacqylHs05x8BwmKODo/QMjtDj/dk7NMrgyBiDo2GODozS2jPE4EiYwZExhkbDhMccY+44Jzvf9WjCAAAIu0lEQVQBA9JTQ2Skhkj3HhmpKaSnhCjOTqe6KJucjFRy0lPJTo+EeU5GCrkZqWSlpQT+i1lmr8y0FL7//npu+/7z/NV/vMz331/P25Ym1wXWmMLdzFYD/wKkAD9wzn1twvsZwL8B5wLtwM3OudfiW+rU1mxu5ou/2MIFtcX87yuWJPr0Sc/MyM5IJTsjlXkFJ3fxdcxFWuPhMcfYGIS95waYRX6DCJlFPYeUkCmgJbDyMtN48C/O49bvr+f9D7zAhy+t5bN/sixpZi9PGe5mlgLcC1wDNAIvmtljzrltUbvdAXQ655aY2S3A14GbZ6LgyXT0DfPVNdv52UuNrKwq4Fu3nqNx4HE2Ht6p6tIWOaYkN4NHP3oxX12zne8/s48ntrfygbfW8O63VPq+KmgsLffzgQbn3F4AM3sYuAGIDvcbgL/3nv8M+I6ZmXPuFH6ZP7GB4TD7jvRxsLOf/e19rNvZxvP7OnDO8fErl3DXVXW6qCYiCZOdnspXbjyLq1ZU8M3f7eJLj23la4/v4NxFRZyzsJC6ijwq8jIoyc0gMy3SPZmXkXZswtxMiSXcK4GDUa8bgQuOt49zbtTMuoES4Eg8ioz2220tfOLhjcdeLy7L4SOXLeb6lZUsm5cX79OJiMTkimXlXLGsnFcbu3jkpUY27O/ku+v2EJ7kgtVfvm3xjK8wGUu4T9a/MbHaWPbBzO4E7vRe9prZzhjOf0L7gSeBz033QK8rZQa+lHykz5O8gvRZIGCf570zeOy//Tr87an/eEyTd2IJ90agOup1FdB0nH0azSwVKAA6Jh7IOXc/cH8shfnFzDY45+r9riNe9HmSV5A+CwTv88x2sXROvwjUmVmtmaUDtwCPTdjnMeAD3vObgN/PRH+7iIjEZsqWu9eH/jFgLZGhkA8457aa2T3ABufcY8APgX83swYiLfZbZrJoERE5sZjGuTvn1gBrJmz7YtTzQeDP4luab5K62+gU6PMkryB9Fgje55nVTL0nIiLBowHhIiIBpHCPYmarzWynmTWY2ef9rmc6zOwBM2s1sy1+1zJdZlZtZk+a2XYz22pmn/C7pukws0wze8HMNnmf5//4XVM8mFmKmb1iZr/yuxZRuB8TtczCtcDpwK1mdrq/VU3Lg8Bqv4uIk1HgM865FcCFwEdn+f+bIeBK59xKYBWw2swu9LmmePgEsN3vIiRC4f66Y8ssOOeGgfFlFmYl59zTTDLXYDZyzjU75172nvcQCZDkXEQ7Bi6i13uZ5j1m9cUvM6sC3gH8wO9aJELh/rrJllmYtQESVGZWA5wDPO9vJdPjdWFsBFqB3znnZvXnAf6ZyETxN98wQHyhcH9dTEsoiH/MLBd4BPikc+6o3/VMh3Mu7JxbRWTG9/lmdqbfNZ0qM3sn0Oqce8nvWuR1CvfXxbLMgvjEzNKIBPuPnXM/97ueeHHOdQHrmN3XRy4Grjez14h0Z15pZv/hb0micH9dLMssiA8scsePHwLbnXP/5Hc902VmZWZW6D3PAq4Gdvhb1alzzn3BOVflnKsh8u/m9865230ua85TuHucc6PA+DIL24GfOue2+lvVqTOzh4DngGVm1mhmd/hd0zRcDLyPSItwo/e4zu+ipmE+8KSZvUqkUfE755yGD0pcaYaqiEgAqeUuIhJACncRkQBSuIuIBJDCXUQkgBTuIiIBpHAXEQkghbskjJmFvTHqW73lbj9tZiHvvXoz+9YJfrbGzG5LXLVvOveAtxZMUjCzm72lqTU+XialcJdEGnDOrXLOnQFcA1wHfAnAObfBOXfXCX62BvAl3D17vLVgYuYtIz0jnHP/CXxopo4vs5/CXXzhnGsF7gQ+ZhGXj7dCzeyyqJmor5hZHvA14FJv26e81vQzZvay93ir97OXm9k6M/uZme0wsx97yxdgZueZ2R+93xpeMLM8b3XGfzSzF83sVTP7y1jqN7NHzewl77eQO6O295rZPWb2PHDRcc55hvd8o3fOOu9nb4/a/r3xLwfvJjIve8d4Io7/GyTInHN66JGQB9A7ybZOoAK4HPiVt+2XwMXe81wiN3I/9r63PRvI9J7XARu855cD3UQWfgsRWYLhEiAd2Auc5+2X7x33TuBub1sGsAGonVBjDbBlwrZi788sYAtQ4r12wHu858c757eB90btkwWs8D53mrf9u8D7gTIiS1HXRp836rP+arL/1nrokXqS3wUi8TbZUst/AP7JzH4M/Nw51+g1vqOlAd8xs1VAGFga9d4LzrlGAK+fvIZI4Dc7514EcN6SwWb2duBsM7vJ+9kCIl8W+6ao+y4ze7f3vNr7mXavlke87cuOc87ngL/zbnDxc+fcbjO7CjgXeNH7rFlE1nq/EHjaObfPO0YgbsAiM0/hLr4xs8VEwrCVSMsVAOfc18zs10T65Neb2dWT/PingMPASiIt9MGo94ainoeJ/D03Jl+f34CPO+fWnkTdlxNZyfEi51y/ma0DMr23B51z4ahjv+mczrmfeN027wDWmtmHvH1/5Jz7woRzXX+cukVOSH3u4gszKwPuA77jnHMT3jvNObfZOfd1It0ky4EeIC9qtwIireIxIitGTnXxcgewwMzO886RZ2apRFYB/StvvXjMbKmZ5UxxrAKg0wv25URa1zGf0/tS2+uc+xaRZaXPBp4AbjKzcm/fYjNbRKRb6TIzqx3fPkVtIoBa7pJYWV43SRqRm17/OzDZ+uyfNLMriLS6twGPE7l926iZbSJy8+/vAo+Y2Z8BTwJ9Jzqxc27YzG4Gvu2toT5ApPX9AyLdNi97F17bgBun+By/AT7iLdm7E1h/kue8GbjdzEaAFuAe51yHmd0N/NYbHjoCfNQ5t967YPtzb3srkZFGIiekJX9FpmCR+7b+yjmXVLfC87qHPuuce6fftUjyUbeMyNTCQEGyTWIi8ttLp9+1SHJSy11EJIDUchcRCSCFu4hIACncRUQCSOEuIhJACncRkQD6/xzjgp8iHHN8AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(zbootes['zbootes_ra'], zbootes['zbootes_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 0.8 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, zbootes, \"zbootes_ra\", \"zbootes_dec\", radius=0.8*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add SDWFS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(sdwfs['sdwfs_ra'], sdwfs['sdwfs_dec'])\n", ")" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "#Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, sdwfs, \"sdwfs_ra\", \"sdwfs_dec\", radius=1.*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add Datafusion" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl02+Wd7/H3V5JtyYss77tjJ3EICZCFkLAvbSihC21n6BToxgxMpj1wu0xv72nvzG1vmTm3nWG60ELboRTaaaF0o0OgtCktBAiQFRKyE8fZ7MSx40VeZS1+7h+SgmucWHEk/bR8X+f4YEk/6/c1kI+efH/P8/zEGINSSqnMYrO6AKWUUvGn4a6UUhlIw10ppTKQhrtSSmUgDXellMpAGu5KKZWBNNyVUioDabgrpVQG0nBXSqkM5LDqxOXl5aapqcmq0yulVFraunXrSWNMxXTHWRbuTU1NbNmyxarTK6VUWhKRw7Ecp20ZpZTKQBruSimVgTTclVIqA2m4K6VUBtJwV0qpDKThrpRSGSimcBeRVSKyT0RaReSLU7x+u4h0i8i2yNed8S9VKaVUrKad5y4iduAB4HqgHdgsImuMMbsnHfoLY8zdCahRKaXUWYpl5L4caDXGtBlj/MDjwPsTW5ZSSqlzEcsK1Trg6ITH7cCKKY77axG5GngT+Jwx5ujkA0RkNbAaoLGx8eyrTaDHNh6J+djbVqRW7UopNVksI3eZ4jkz6fFTQJMx5iLgT8BPpnojY8yDxphlxphlFRXTbo2glFJqhmIJ93agYcLjeuDYxAOMMT3GmLHIwx8CF8enPKWUUjMRS7hvBlpEpFlEcoFbgDUTDxCRmgkPbwL2xK9EpZRSZ2vanrsxJigidwNrATvwsDFml4jcA2wxxqwBPi0iNwFBoBe4PYE1K6WUmkZMW/4aY54Bnpn03JcnfP8l4EvxLU0ppdRM6QpVpZTKQBruSimVgTTclVIqA2m4K6VUBtJwV0qpDKThrpRSGUjDPQYnh8bo9PqsLkMppWKm4T6N7sExvr/uAD98qY2xQMjqcpRSKiYa7mcwMhbkJ68ewmAYDYTYeLDX6pKUUiomGu6nMW4Mj246wsBogE9c1kRLZSEv7e/GHxy3ujSllJqWhvtpdA2OcfDkMDcsrGZWWQHvmF/JsD/ExoM9VpemlFLT0nA/jU7vKABzKgsBmFVWwNyKQl7cf5JRv/belVKpTcP9NDq9Puw2oaIw79RzV7aUMzwW5OXWkxZWppRS09NwP43jXh+VRXnYbW/diKq5vAC7TbQ1o5RKeRrup9Hp9VFT7PyL53LsNhpK8nXWjFIq5Wm4T2FoLMjgWJDqYtfbXptdUcDODi8DvoAFlSmlVGw03KcQXY1a7Xa+7bXm8gLGDWw5pKN3pVTq0nCfwvHITJnq4reHe0NJPrl2GxvbNNyVUqlLw30KnV4fRU4HhXlvvwthrsPG4gYPG9r0oqpSKnVpuE+hc+DtF1MnWjG7lB0dXga1766USlEa7pMEx8fpGhibst8edenssnDf/XBfEitTSqnYabhPcnLQT8iYKWfKRC1tLCHHLtqaUUqlLA33SaIXU8/UlnHl2llQ4+aNo95klaWUUmdFw32S7qExBCifsO3AVBbWFbPzmBdjTHIKU0qps6DhPsngaJAip+Mvth2Y7LGNRxgdCzHoC3L/c608tvFIEitUSqnpabhPMjgWoMiZM+1xtSXhnnxH/2iiS1JKqbOm4T7JoC88cp9OVVEedhGOabgrpVKQhvskAzGGu8Nuo6o4j2P9euNspVTq0XCfIDRuGBkLxtSWAajzuOjoH9WLqkqplKPhPsHQWBADMY3cAWo9LkYDIfpHdKWqUiq1aLhPEN1OwH0WI3fQi6pKqdSj4T7BoC8IxD5yr3I7sYmGu1Iq9cQU7iKySkT2iUiriHzxDMfdLCJGRJbFr8Tkid6AI9aee47dRpXbqTNmlFIpZ9pwFxE78ABwI7AAuFVEFkxxXBHwaWBjvItMlkFfEIEpt/o9nVq9qKqUSkGxjNyXA63GmDZjjB94HHj/FMf9C/DvQNrODRz0BcjPO/Pq1Mlqi52M+EOcGBhLYGVKKXV2Ygn3OuDohMftkedOEZElQIMx5uk41pZ0g74g7hj77VE1kd0jdx/XTcSUUqkjlnCfahh7qgchIjbgW8Dnp30jkdUiskVEtnR3d8deZZLEujp1ouit+PYcH0xESUopNSOxhHs70DDhcT1wbMLjIuACYJ2IHAIuBdZMdVHVGPOgMWaZMWZZRUXFzKtOkEFfgKK82C6mRjlz7JTk57D72ECCqlJKqbMXS7hvBlpEpFlEcoFbgDXRF40xXmNMuTGmyRjTBGwAbjLGbElIxQkybkx45O46u5E7hFsze45ruCulUse04W6MCQJ3A2uBPcAvjTG7ROQeEbkp0QUmy/Cp1alnN3KH8I09DvYMM+IPxr8wpZSagZiGqcaYZ4BnJj335dMce+25l5V8pxYwncU0yKiaYhfGwN7OQZY2lsS7NKWUOmu6QjXira0HZhLu0Yuq2ppRSqUGDfeIgejI3XX2bRlPfg5FTodeVFVKpQwN94joyH0mbRkR4fwat47clVIpQ8M9YtAXxJVjx2Gf2b+SBTVu9nYOMj6u2xAopayn4R4xkwVMEy2ocTPiD3G4dySOVSml1MxouEcM+gK4Z9Bvjzq/xg3oRVWlVGrQcI8Y9AVn1G+PaqkqxG4TvaiqlEoJGu4Rw/4gBecQ7s4cO3MqCnTkrpRKCRrugC8QIhAyuHLt5/Q+59e42a3hrpRKARrugHc0PA0yPw7hftzro3/EH4+ylFJqxjTcgf6RcLi7cs4t3BdELqrq6F0pZTUNd6AvMtLOz515zx3emjGjF1WVUlbTcOetkfu5tmUqivKoKMrTG3copSyn4Q6neuTnGu6gF1WVUqlBwx3oj1xQPdfZMgDn1xTR2jWIPzh+zu+llFIzpeFOuOdutwm5M9xXZqIFNW4CIcOB7qE4VKaUUjNzblcQM4R3JEB+rh2Rqe4FHpvHNh4B4MSAD4AfrT/I0sYSblvRGJcalVLqbOjInfDI/VynQUaVF+bhsAmdXl9c3k8ppWZCw53wbJlznQYZZbcJVW4nx7yjcXk/pZSaCQ13ouEen5E7QK3HyfF+H8bo3u5KKWtouAP9o/44h7uL0UDo1Px5pZRKtqwPd2MMfSOBuEyDjKotdgHQ0a+tGaWUNbI+3H2BcfzB8bj13AGqi53YBI5puCulLJL14X5qX5k4zZYByLHbqCzSi6pKKetkfbif2hEyjm0ZCPfdO/pG9aKqUsoSGu5x3FdmolqPk2F/iBMDY3F9X6WUioWG+6kbdcR3sW6dJ3xRdWeHN67vq5RSscj6cI/23OPdlqkudiLADg13pZQFsj7c47WX+2R5DjvlhXnsOqbhrpRKPg33ET/OHBs5cdgRcrK6Ehc7O3Rvd6VU8mm4jwQoyc9NyHvXFjvpHPDRPagXVZVSyZX14d43EqDYlZOQ964tCV9U3dHRn5D3V0qp04kp3EVklYjsE5FWEfniFK9/UkR2iMg2EVkvIgviX2pieEf9CRu513lc2AS2HdFwV0ol17Tz/0TEDjwAXA+0A5tFZI0xZveEwx4zxvwgcvxNwDeBVQmoN+76RgK0VBYm5L3zHHbmVRWxrV0vqiqVrqI34pkoHW7CE8vIfTnQaoxpM8b4gceB9088wBgz8aphAZA2yzL7RwJ4EjRyB1jc4GH70X5dqaqUSqpYwr0OODrhcXvkub8gIneJyAHg34FPx6e8xDLG0D/ix5OfmJ47hMPdOxrgUM9Iws6hlFKTxbIsc6obi75tGGqMeQB4QERuA/4Z+MTb3khkNbAaoLHR+r/WDPtDBMcNJQkM90UNHgC2He2jubwgYedRSp2bqdov6SyWkXs70DDhcT1w7AzHPw58YKoXjDEPGmOWGWOWVVRUxF5lgvQNh1enelyJa8vMqyoiP9fO9qPad1dKJU8s4b4ZaBGRZhHJBW4B1kw8QERaJjx8D7A/fiUmjjeyr0wi2zJ2m3BhXTGvH9UZM0qp5Jm2LWOMCYrI3cBawA48bIzZJSL3AFuMMWuAu0VkJRAA+piiJZOKovvKePJzOTnkT9h5Fjd4eOTlQ4wFQ+Q54rvNgVJqZrYd7eeHL7axp3OA/pEAAty6vJHayKZ/6S6mrRCNMc8Az0x67ssTvv9MnOtKimSM3CEc7v7QOHuOD7I40oNXSlljR7uXz/7idQ50D+PKsTOnooDyyjz2dQ7y0Po2Pn5pE00ZcH0svvvcpplouCdqhWrU4sZwoG8/2q/hrpRFugfHuHftXn61tZ38XAc3XlDN8qZS8iJ3Yesf8fPwy4d45JWD3HHlbBpL8y2u+Nxk9fYD0XB3OxMb7tVuJ1XuPLYe7kvoeZRSbzfqD3H/c/u59t7neeK1Du68spnPXz+Pq1oqTgU7hNuzq6+eTY7dxsutJy2sOD6yfuSea7fhzEnsZ5yIsKyplC2HehN6HqXUW8bHDb99vYN7nt6NdzTAgho3qxZWU16Ud9qfKcxzcFF9MVsO9TEWCP1F+KebrA73gdEAblcOIlNN5Y+P6NxZG3DM6+OB51u567q5CTufUgpeaT3Jv/5uD7uPD1Bf4uJvljXEvM5kUb2HDW297D4+wJLGkgRXmjhZHe7e0QDFruT8K4heoDl0cjgp51MqG7V2DfK1Z/by571d1Hlc3HfLYgZ9QWxnMYBrLM2nJD+H7e39Gu7pKhzuie23R1W5neQ5bLoNgVIJ4B0J8MlHt7KxrYdch41VC6u5bE4Zw2Ohswp2CLdRL6r38NL+bobGghTmpWdMpmfVceIdDVBRePr+WzzZRJhVls+hHh25KxUvoXHDzzcd4Rt/3Ef/SIBLmktZeX7VOQfyogYPL7zZzY4OL5fNLotTtcmV9eE+tyIx2/1OpamsgDdPnKB32E9pQeK2PFAqG7xy4CT3PLWbvZ2DrGguZXlzKTXF8VmAVO12Uu128kZ7v4Z7OvIm8C5MU2kqC/fdtxzq5V0Lq5N2XqUyydHeET75s63sOjaAJz+HW5c3ckGtO+4TI+ZUFLDpUC/jxpx1aycVZG24j48bBseCSQ33uhIXdpuwWcNdqbM24g/yvecP8OBLbRhjWHl+FVe1lCfk5vYA1cUuAiFD75D/jNMnU1XWhvugL4gx4E5iuOfYbdSXuNh0SBczKRWr6Hz1e9fuo3PAxwcW13JetTvhA7PqYicAxwd8aRnuWbtCNVlbD0zWXFbAzg4vQ2PBpJ5XqXS0oa2Hmx5Yz+d/tZ1Kdx6/+dRlfPuWJUn5c1tZlIdNoNM7mvBzJULWjtytCvc5lYWse7ObDQd6WLmgKqnnVipdtHUP8bXf7+XZ3ScoduXwoYvrWdTgYV/nEPs6h5JSQ47dRnlhHp1eX1LOF28a7kkO98bSfPIcNta3ntRwV2qSvmE/9/15Pz/bcJg8h413LajiirmJ66tPp7rYydHe9FybkrXhPuCLhHuCt/udLMduY3lzKeszYGMipeIlEBrnv149zH1/epOhsSC3LG/kcyvn8ezuE5bWFZ4O6cUXCOFMs31mtOee5JE7wFUt5bR2DXE8TXt5SsXTqwd6eM93XuJfnt5NldvJ3e9o4YLaYsuDHd66qHpiIP1aMxruFoT7FXPLAXi5tSfp51YqVRz3jvI/fv46t/5wAyP+EB9dMYvbL2+i2u20urRTorUcT8O+e9a2ZbyjAXLsgsuCv2qdX+2mrCCX9fu7ufni+qSfXykr/WzDYV490MOzu08wbgzvmF/JNfMqLOurn0mxKwdnji0tL6pmZbg/tvEIWw/1keuw8/NNR5N+fptNuGJuOetbezDGJHTLYaVSyYHuIR58sY0jvSPMqyrkpkV1Kb0Vh4hQ7XbRqW2Z9DEaCOFK8E06zuTKueWcHBpj34lBy2pQKlmCoXF+8MIBbrzvJboHx/jQxfV84rKmlA72qJpiJ50DPsaNsbqUs5KVI3eIhrt1V7+vbAn33dft62Z+tduyOpRKtN3HBvjSE2+wvd3LDQurWNpYQlGCb20ZT9XFTvzBcfpHAmnxYRSVvSN3fwhXrnXhXutxsaDGzZ9SYEaAUokw4g/ysR9t5L3ffYnWriFuuaSBq1sq0irYIbxSFcI32E4nWT1yLyu09lP4+gVVfOe5/ZwcGqM8SfvKK5UMz+/r4v/8907a+0ZZNquEVRdUk5+bnnHjyQ/nRP+o3+JKzk52j9wtXpRw/YIqjIHn9nZZWodS8dLRP8pdj73G3z6ymTyHjb+/ajZ/tbQ+bYMdoMjpwC5C/0jA6lLOSvr+Gz8H48bgC1jXloneNNsYQ7Erh0dePkQwZLhtRaMl9Sh1rkb8QX6w7gD/+WIbAJ9bOY9PXjub32ztsLiyc2cToTg/h76R9Bq5Z2W4+4PjGLB85C4izK8u4rUjfQRC45bWotRMjI8b/ntbB/93zS4GfEEuqi/mhoXVlOTnZkSwR3lcOTpyTwej/hBgfbgDLKhxs/FgL61dydnpTql42Xq4j3ue3s32o/3UeVzcuryRWZG7jWUaT34urV3pNW05O8M9EAl3C2fLRDWXF5DnsLHn+IDVpSgVk+8938ofdnXyRruXIqeDmy+uZ3GDJy1vRRcrT34Og74gwfFxHLb0uFSZ3eGeAiN3h93GedVF7D4+QCA0npJLsJWCSF/9hTa+v64VY+C68yq4el4FeQ7r/xwlWkl+DobwfZfL0mRmW3aGuz91Ru4Ai+o9vNHu5cU3u3nn+brHu0ot4+OGJ7d38G+/D9/m7sK6YlZdEO6rZ4u3pkNquKe0VBq5A7RUFeLKsfPktmMa7iqlvHakj3ue2s22o/1cVF/M/bct4c0T2Xd9KPpB1p9GM2ayM9xT6IIqgMNm48L68P7Vw2NBCvKy8j+LSiHH+kf51M+2sj3aV19az+JGT1YGO4Db5UCAvjSaMZOVKeILhLAJ5DpSp7+9uN7DpoO9/HF3Jx9cotsAK2tE++oPvniAYMhkVV/9TBw2G0VOR1pNh4wp3EVkFXAfYAceMsZ8fdLr/wjcCQSBbuDvjDGH41xr3IxGbpmVSlvtNpblU+dx8eS2YxruKuke3XCYXccG+N2O43hHA1nZV5+OJz83rdoy0w5dRcQOPADcCCwAbhWRBZMOex1YZoy5CPg18O/xLjSerN4Rcio2EW5aXMtL+0+m3QZFKr0d7hnmJ68e4rFNR3Dl2Pn7q2Zz6/JGDfZJPPk59I+mz8g9lr7EcqDVGNNmjPEDjwPvn3iAMeZ5Y0z0FuEbgJQeelq9I+Tp3HxxPaFxwy+3JP8GIir7+AIh7vvTfq7/1osc6hnh3RfWcNd1c2kuz8yFSOeqJD8X70ggbfZ1j6UtUwdMTJt2YMUZjr8D+P1UL4jIamA1QGOjdfuojPhDFOSlXrjPqSjk8jllPLbxCJ+8Zg52W+q0jVRm2Xq4ly/8+g3auod570U1LKwttuR+wunEk59DyBgGfUGrS4lJLCP3qRJmyo8uEfkosAy4d6rXjTEPGmOWGWOWVVRUxF5lnI34gym7S93HLp1FR/8o6/bpTpEq/n788iE+8sMN3Pz9V+kZ8nP75U1cPqdcgz0GHld6TYeMJeHagYYJj+uBY5MPEpGVwD8B1xhjUrppPOIPkZ+CbRmAlQuqqCzK46cbDuucdxVXG9p6+M5z++kd9rO8uZRVC6txpti1p1TmyQ9/AKbLdMhYRu6bgRYRaRaRXOAWYM3EA0RkCfCfwE3GmJQecgZC44wFx1M23HPsNm5d3sgLb3ZzpGdk+h9QahrDY0G+/ORObnlwA8YY7riymQ8srtNgP0vptpBp2pG7MSYoIncDawlPhXzYGLNLRO4Bthhj1hBuwxQCv4pMLzxijLkpgXXPWHSeaiq2ZaL7vDtz7Ajwv3+7g5/deabLG0qd2fr9J/niE2/Q0T/K7Zc30VRWkFLrO9JJrsNGfq49bea6x5RwxphngGcmPfflCd+vjHNdCRP91E3F2TJRxa4cLqwrZtPBXvqG/ZSk0U15VWroG/Zzx08289qRfsoKcvn7K2fTpLNgzlmxK4cBX3qEe9Z9hPedGrmnbrgDXHteJf7QOI+8csjqUlQaMcbw5LYOVn7zBbYd7eeaeRV8+p0tGuxx4nbmMJAmc92zMNzDI/dUbMtMVOV2sqDGzY9fPshgmowUlLUO9wxz+yOb+czj26gvzeeu6+Zyw8Jq3UY6jtyuHLwZNBUyo/SfCvfUHrkDXHdeJQO+ID/dkLI7OagU0Dvs56tP7WLlN19g86FevvK+BTzxqcupKXZZXVrGcTsdDI8F0+K2mKk9fE2A/jRpywDUlbi4el4FD710kI9dOosip85FVm8Z9Yd4+OWDfOfP+/EHx1nWVMI751eR57Dzi826yjkR3JH1AF2DY9R5UvvDM+tG7n0jAew2ITdN/qr6+evn0Tvs5wcvHLC6FJUioltUXPcf67h37T5mlxfw6Xe28MEl9afCRyWG2xkeD58Y8FlcyfSycOTuJz/FdoQ8k0UNHj6wuJaHXjrIR1bMojbFRwsqcYwxrHuzm68/s5d9JwZZ1ODhvlsWc6B72OrSskb0w/OEN/XDPT2Gr3HUN+JP6WmQU/nCqvkA3Lt2n8WVKKvsaPfykYc28rePbKZ7aIxblzfyNxfXa7AnWbQ12qkj99TTNxJI+Zkyk9V5XNxxZTPfW3eAT1zexOIGj9UlqSQ52jvCvWv3sWb7MUoLcnnfRTVc0lyKw5Z147KUUJBrx24TTgyk9A4rQBaGu3ckkBYXU6Oiq1bLC/NwOx188qdbueu6uXzsslkWV6YS6eH1B3l+XxevHOjBJnDteRVc3VKhWwZYTERwOx1p0XPPuo//vhF/WoV7lDPHzk2L6ugc8PHi/m6ry1EJMj5u+M3Wdr717Jus33+SxfUe/vH683jXAt3kK1UUOXPSItyzauRujKF/JMD86vT8Q7Kg1s2FdcU8t7eL1q5B5lYWWV2SiqM32vv5yppdvH6kn4YSFx+7bBb1JflWl6UmcbtytOeeakb8Ifyh8bTruU/03otqaO0a4vO/eoNf/cNluglUBnjwxTb+uKuTrYf7KMhzcPPSehY3erClyYyubON2OjjYPWR1GdPKqmToS6PVqadT5MzhA0vq2H60n3vX7rW6HHUOAqFxHl5/kG8+u4/XjvRx5dxy/vH6eSydVaLBnsLczhyG/SGGxlJ7G4L0HcLOQDqtTj2TC+uKcVw6ix++dJBLZ5fpTT3S0Pr9J/nqU7vY3zVES2Uh77mohsoip9VlqRi4XeHY7PT6mFtZaHE1p5dVI/douLvSuC0T9U/vOZ+FtW4+/6vtHO7Ruc7pYmeHl48/vImP/mgjY8FxfvjxZdx+eZMGexpxR+a6p/pF1awK90xoy0Q5c+x87yNLAfjbH29Om7vDZKu27iHe9931vPe769l8sJcbL6jmjiub6R4cS5vV0irs1CrVFA/39B/CnoV02hFyOtH57x+6uIGHXz7IB7/3Cn/47FXkOdL/d8skx72jfOfP+/nllnbsIlx3XiVXtZTrtMY05k6TVapZFe59p9oymfMHq7m8gL9eWs8vtxzls49v4zu3LtH9u1NA37Cf779wgB+/cghjDB+7dBY1xU7d2TMD5DpsFDkddKX4KtWsCvf+kQCFeY6MW7q9uMHD8FiQ3+04zmcf38a3b1msAW+R4bEgD68/yP3Pt+IPjrO4wcPK86v0VokZpsrtpDPFNw/LsnD348nPzJHTFXPLWdLo4V9/tweD4VsfXqwtmiQaC4b4+cYj3P98KyeH/Jxf4+b6BVVUu/VCaSaqdju1LZNK+kb8lORn7gjqzqtmA/Cvv9tDz9AmHvzYMooz9MMsVQRC4zzxWjvffa6V9r5RVjSX8uDH57P3+KDVpakEqnTn0XYgtRcyZVm4BzJ25B5151WzqSjK4wu/eoO//sEr/OgTy5hVpjdHjrdAaJzfvtbB136/h76RAHUeF7df3kRLZaEGexaodjvpGhxjfNxgs6XmbKesCvf+ET8NpZm7V0d0Bg3Axy+fxaMbjnDDt1/kgduW6kKnOPEFQjy5rYMHnj/Akd4R6jwu3ndRLedVF+mUxixSU+wkOG44OTRGZYq23rIr3EcDlGT4yD1qdnkhd103l8c2HuaOn2zhU9fO4XMr5+leNDPUNejjZxuO8OiGw/QM+1lY6+ahjy/jxIBPQz0LVUduPn7c69Nwt1po3OAdDeDJ4J77ZKUFufzDNXPYc3yA7687wItvdvOtDy9mXpXuJhkLYww7Orz85JXDPLX9GP7QOPOri3j/4jrmVBTQpQuQslZNcTjQj3t9LGqwuJjTyJpw944GMIasGblH5dhtXFTvwWETfvt6B+++7yXetaCK+29bmrK9Qqt5RwOs2dbBzzcdZffxAfJz7dy6vIGygjzKi/KsLk+lgLfCfdTiSk4va8K9ezC84KCiKI+B0dTezS0RFtQW01hWwG9fa+eZnZ3c9tAG7r15UUZfgzgbxhg2H+rj8c1HeGr7MQIhQ02xk5sW1bKo3pNRC9/UuSstyCXXYUvpue5ZE+5dg+H/CJVFTgZGU3sKU6IU5jn46KWz2Hq4j7W7Oln5zRe4+7q5rL5mdtbOie/0+nhyWwe/3HKUA93DFOY5WNJYwiWzSqkrcVldnkpRIkJNsZNjGu7Wi97QtsqdR2tXdoY7hP+nXNZUyhdWnce/PL2bbzz7Jk+83sFXb1rI1fMqrC4vKQZ8Af6ws5P/fr2DVw/0YIDG0nz+emk9F9YV60VnFZNqt5NObctYb+LIXcHze7u5cm4FVUVO1mw/xscf3sTCWjff+8jSjJwX7x0N8NzeE/xhZyfP7+vGHxynqSyfd8yvZFGDh/JC7aWrs1PrcbHpYK/VZZxW9oT7wBhFeQ7tnU7SUlXEZ97ZwkutJ1m3r4t3fuMFPrSsnruum5v29+/sGvDxx90nWLurk1cP9BAcN7idDpY2lrCkwUN9iUtnu6gZqy52cmLAl7ILmbIn3Ad9VLp1dDYVh93GdedVcvGsEo73j/LYpiP8cks7qy6o5u+uaGJpY0lahGAwNM6uYwO8fOAkf9p9gtccM4niAAAOcElEQVSP9mNMeOfMO65qxoZQV+LSW9ipuKhN8YVMMYW7iKwC7gPswEPGmK9Pev1q4NvARcAtxphfx7vQc9U1MKYtmWm4nTm4q3P43Mp5vNrWw5/3nOB3bxxndnkBH1xSx40X1jCnoiBlgt4XCLG3c5Ath3rZ0NbDxrZeBiP3tawtdvLO+VUsrHVTWZSXMjWrzJHqC5mmDXcRsQMPANcD7cBmEVljjNk94bAjwO3A/0xEkfHQNTjGkkaP1WWkBU9+LjdeUMM75leyo91LR/8o33j2Tb7x7Js0luZz7XkVXNJUyrKmEqrdzqQE56g/xO7jA+zs8LKzw8uODi/7u4YIjRsAygpymV/jZk5FAc3lBbpvukq4iXPdFzWkXrbEMnJfDrQaY9oARORx4P3AqXA3xhyKvDaegBrPmTGGEwM+KnUBylnJc9hZ1lTKMuCaeRXsOzHI3uODPL7pKP/16mEAPPk5tFQW0lJVxLzKQuZWFlFf4qLG45zR9MrQuOFY/yhtJ4dp7RpiV4eXnce87D8xhIkcU5Brp67ExVVzy6n1uKgvcWXVymOVGiauUk1FsYR7HXB0wuN2YEViykmMAV+QseA4VSn4V6d04cnPZUVzGSuaywiNGzq9Pg73DnNiYIyuAR87Orz4An/52V5RlEetx0VlUR5FTgdFeQ4KnQ4K83Kw28AfHGc0EKJ3OEDP0BiHe0Y42DOMP/jW+xQ5HdR5XFw3v5I6j4tajwu306FtFmW5VF/IFEu4T/WnyEzx3PRvJLIaWA3Q2Ng4k7eYke7INMgKHbnHhd0WvjA5cZGPMYbBsSDdg2N4RwL0j/rpHwngHQ2ww+vDYReGxoIM+oKnWikQ/p8rP89BQa6d0oJcVjSVUl6UR3lhHhVFeRTmZc01f5VmUn0hUyx/ctqBiVvj1APHZnIyY8yDwIMAy5Ytm9EHxExEFzDpBdXEEZHwBdlpet3GGAIhg8Fgtwl2ER2Fq7SVyguZYlmKtxloEZFmEckFbgHWJLas+IouYKrSqZCWExFyHTbyHHYcNpsGu0prtR4Xx/pTc+Q+bbgbY4LA3cBaYA/wS2PMLhG5R0RuAhCRS0SkHfgQ8J8isiuRRZ+t6F3KU3G6klIqfU1cyJRqYmpoGmOeAZ6Z9NyXJ3y/mXC7JiWdGBgjP9eu/VulVFyl8kKmrNghqWvQpzNllFJxN3EhU6rJknAf05kySqm4S+WbdmRHuOsCJqVUAtR6wiP3jhS8qJod4T6o+8oopeKvJD8Ht9PBoZPDVpfyNhkf7kNjQUb8IZ0GqZSKOxGhuaKQgxruyXdiIHKTDg13pVQCzC4v0HC3QpeuTlVKJVBTWQEd/aP4AiGrS/kLmR/uujpVKZVAzRXh21Ie6kmt0Xvmh3tk5F6hI3elVALMLg+H+8FuDfekOtgzTLErfEVbKaXirSkS7m0p1nfP+HBv7RpibmWhblCllEqIwjwHlUV5KXdRNePD/UDXEC2VhVaXoZTKYM0pOGMmo8O9d9hPz7CfuRruSqkEml2h4Z5UrV1DAMzRcFdKJVBzeQG9w376R/xWl3JKVoT73AoNd6VU4jSXhzMmlUbvGR/urhw7dR7X9AcrpdQMNUenQ2q4J0dr9xBzKguw2XSmjFIqcRpL87GJhnvStJ4Y1JaMUirhch02GkrzU2que8aG+/BYkGNen86UUUolRXN5AQci1/lSQcaG+4HuyMVUDXelVBIsaShh34lBvCMBq0sBMjjcT82U0XBXSiXB8uZSjIHNh3qtLgXI4HDf3zWEwybMKiuwuhSlVBZY0ugh125j48Eeq0sBMjjcW7uGaCovIMeesb+iUiqFOHPsLG7wsOmgjtwTal+nzpRRSiXXitml7Dw2wNBY0OpSMjPcW7sGOdI7wuVzy6wuRSmVRVY0lxEaN2xJgb57Rob72l0nAHjXgmqLK1FKZZOlszw4bMLGFGjNZGS4/2FnJ4sbPFQX692XlFLJk5/r4ML6Yja2WX9RNePCvaN/lB0dXlZdoKN2pVTyrWgu4412LyN+a/vuGRfua3d2AnDDQg13pVTyXTG3jOC44Q+RLLJKxoX7H3Z1cl5V0ald2pRSKpmumFPO/OoivvtcK8HQuGV1ZFS4nxwaY8uhXm7QloxSyiI2m/DZlfM4eHKYJ7cds64Oy84cZ8YYvvLkLkSE911UY3U5SqksdsPCKhbUuPnuc/stG73HFO4iskpE9olIq4h8cYrX80TkF5HXN4pIU7wLnc4jLx/idzuO84UbzqOlqijZp1dKqVNEhM+ubOFQzwiPbjxiSQ3ThruI2IEHgBuBBcCtIrJg0mF3AH3GmLnAt4B/i3ehZ/LS/m7+3zN7uH5BFf9w9exknloppaZ0/YIqLptdxlfW7OLrv9+b9BG8I4ZjlgOtxpg2ABF5HHg/sHvCMe8H/m/k+18D94uIGGNMHGsFIDRuODk0xnGvj7buIR7beIQth/toKsvnPz60CBG965JSynoiwiN/ewlffWo3P3jhABvaerjxgmqWN5dyQV1xwve9iiXc64CjEx63AytOd4wxJigiXqAMOBmPIif6/rpW/uOPb5563FDq4v+8dwF/s6yeImdOvE+nlFIz5syx87W/upBls0p4YF0rX/v9XgD+6d3n8/cJ7jLEEu5TDYUnj8hjOQYRWQ2sjjwcEpF9MZz/jA4D64E7Y/+RchLwoZMi9HdLT/q7pZmPnOPPr/63t4JwBmbFclAs4d4ONEx4XA9Mnt8TPaZdRBxAMfC2zRWMMQ8CD8ZSWKKIyBZjzDIra0gU/d3Sk/5uKhFiafpsBlpEpFlEcoFbgDWTjlkDfCLy/c3Ac4notyullIrNtCP3SA/9bmAtYAceNsbsEpF7gC3GmDXAj4Cfikgr4RH7LYksWiml1JnF0pbBGPMM8Myk57484Xsf8KH4lpYwlraFEkx/t/Skv5uKO9HuiVJKZZ6M2X5AKaXUW7Iq3KfbRiFdicjDItIlIjutriXeRKRBRJ4XkT0isktEPmN1TfEgIk4R2SQi2yO/11etrineRMQuIq+LyNNW15KNsibcY9xGIV39GFhldREJEgQ+b4w5H7gUuCtD/ruNAe8wxiwCFgOrRORSi2uKt88Ae6wuIltlTbgzYRsFY4wfiG6jkPaMMS8yxbqCTGCMOW6MeS3y/SDhsKiztqpzZ8KGIg9zIl8ZcwFMROqB9wAPWV1LtsqmcJ9qG4W0D4lsEtltdAmw0dpK4iPSttgGdAHPGmMy4veK+DbwvwDr7laR5bIp3GPaIkGlJhEpBH4DfNYYM2B1PfFgjAkZYxYTXvW9XEQusLqmeBCR9wJdxpitVteSzbIp3GPZRkGlIBHJIRzsjxpjnrC6nngzxvQD68ic6yZXADeJyCHC7c93iMjPrC0p+2RTuMeyjYJKMRLew/lHwB5jzDetrideRKRCRDyR713ASmCvtVXFhzHmS8aYemNME+E/Z88ZYz5qcVlZJ2vC3RgTBKLbKOwBfmmM2WVtVfEhIj8HXgXOE5F2EbnD6pri6ArgY4RHf9siX++2uqg4qAGeF5E3CA88njXG6JRBFTe6QlUppTJQ1ozclVIqm2i4K6VUBtJwV0qpDKThrpRSGUjDXSmlMpCGu1JKZSANd5U0IhKKzFPfFdnq9h9FxBZ5bZmIfOcMP9skIrclr9q3nXs0sg9MShCRD0e2rta58WpKGu4qmUaNMYuNMQuB64F3A18BMMZsMcZ8+gw/2wRYEu4RByL7wMQsss10QhhjfgHcmaj3V+lPw11ZwhjTBawG7pawa6OjUBG5ZsJq1NdFpAj4OnBV5LnPRUbTL4nIa5GvyyM/e62IrBORX4vIXhF5NLKFASJyiYi8EvlbwyYRKYrszHiviGwWkTdE5B9iqV9E/ltEtkb+FrJ6wvNDInKPiGwELjvNORdGvt8WOWdL5Gc/OuH5/4x+OERuMvNa5D3+HMf/DCqTGWP0S7+S8gUMTfFcH1AFXAs8HXnuKeCKyPeFhG/kfur1yPP5gDPyfQuwJfL9tYCX8MZwNsLbMlwJ5AJtwCWR49yR910N/HPkuTxgC9A8qcYmYOek50oj/3QBO4GyyGMD/E3k+9Od87vARyYc4wLOj/zeOZHnvwd8HKggvFV188TzTvhdn57q37V+6ZfjLD8LlIq3qbZifhn4pog8CjxhjGmPDL4nygHuF5HFQAiYN+G1TcaYdoBIn7yJcOAfN8ZsBjCRbYNF5F3ARSJyc+Rniwl/WBycpu5Pi8gHI983RH6mJ1LLbyLPn3eac74K/FPkhhZPGGP2i8g7gYuBzZHf1UV4n/dLgReNMQcj75GRN2VR8afhriwjIrMJh2EX4ZErAMaYr4vI7wj35DeIyMopfvxzwAlgEeERum/Ca2MTvg8R/v9cmHr/fgH+hzFm7VnUfS3hXRwvM8aMiMg6wBl52WeMCU1477ed0xjzWKRt8x5grYjcGTn2J8aYL006102nqVupM9Keu7KEiFQAPwDuN8aYSa/NMcbsMMb8G+E2yXxgECiacFgx4VHxOOFdI6e7eLkXqBWRSyLnKBIRB+FdQj8V2TMeEZknIgXTvFcx0BcJ9vmER9cxnzPyodZmjPkO4W2nLwL+DNwsIpWRY0tFZBbhttI1ItIcfX6a2pQCdOSukssVaZPkEL7x9U+BqfZo/6yIXEd41L0b+D3h27UFRWQ74RuCfw/4jYh8CHgeGD7TiY0xfhH5MPDdyP7po4RH3w8Rbtu8Frnw2g18YJrf4w/AJyPb9e4DNpzlOT8MfFREAkAncI8xpldE/hn4Y2R6aAC4yxizIXLB9onI812EZxopdUa65a9S05DwvVufNsak1G3wIu2h/2mMea/VtajUo20ZpaYXAopTbRET4b+99Fldi0pNOnJXSqkMpCN3pZTKQBruSimVgTTclVIqA2m4K6VUBtJwV0qpDPT/AdZrSyoKCsPcAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(datafusion['datafusion_ra'], datafusion['datafusion_dec'])\n", ")" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Given the graph above, we use 1 arc-second radius\n", "master_catalogue = merge_catalogues(master_catalogue, datafusion, \"datafusion_ra\", \"datafusion_dec\", radius=1.*u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cleaning\n", "\n", "When we merge the catalogues, astropy masks the non-existent values (e.g. when a row comes only from a catalogue and has no counterparts in the other, the columns from the latest are masked for that row). We indicate to use NaN for masked values for floats columns, False for flag columns and -1 for ID columns." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for col in master_catalogue.colnames:\n", " if \"m_\" in col or \"merr_\" in col or \"f_\" in col or \"ferr_\" in col or \"stellarity\" in col:\n", " master_catalogue[col].fill_value = np.nan\n", " elif \"flag\" in col:\n", " master_catalogue[col].fill_value = 0\n", " elif \"id\" in col:\n", " master_catalogue[col].fill_value = -1\n", " \n", "master_catalogue = master_catalogue.filled()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "Table length=10\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
idxps1_idradecm_ap_gpc1_gmerr_ap_gpc1_gm_gpc1_gmerr_gpc1_gm_ap_gpc1_rmerr_ap_gpc1_rm_gpc1_rmerr_gpc1_rm_ap_gpc1_imerr_ap_gpc1_im_gpc1_imerr_gpc1_im_ap_gpc1_zmerr_ap_gpc1_zm_gpc1_zmerr_gpc1_zm_ap_gpc1_ymerr_ap_gpc1_ym_gpc1_ymerr_gpc1_yf_ap_gpc1_gferr_ap_gpc1_gf_gpc1_gferr_gpc1_gflag_gpc1_gf_ap_gpc1_rferr_ap_gpc1_rf_gpc1_rferr_gpc1_rflag_gpc1_rf_ap_gpc1_iferr_ap_gpc1_if_gpc1_iferr_gpc1_iflag_gpc1_if_ap_gpc1_zferr_ap_gpc1_zf_gpc1_zferr_gpc1_zflag_gpc1_zf_ap_gpc1_yferr_ap_gpc1_yf_gpc1_yferr_gpc1_yflag_gpc1_yps1_flag_cleanedps1_flag_gaiaflag_mergedlegacy_idf_90prime_gferr_90prime_gf_ap_90prime_gferr_ap_90prime_gf_90prime_rferr_90prime_rf_ap_90prime_rferr_ap_90prime_rf_mosaic_zferr_mosaic_zf_ap_mosaic_zferr_ap_mosaic_zlegacy_stellaritym_90prime_gmerr_90prime_gflag_90prime_gm_ap_90prime_gmerr_ap_90prime_gm_90prime_rmerr_90prime_rflag_90prime_rm_ap_90prime_rmerr_ap_90prime_rm_mosaic_zmerr_mosaic_zflag_mosaic_zm_ap_mosaic_zmerr_ap_mosaic_zlegacy_flag_cleanedlegacy_flag_gaiaibis_idibis_stellaritym_newfirm_jmerr_newfirm_jm_ap_newfirm_jmerr_ap_newfirm_jm_newfirm_hmerr_newfirm_hm_ap_newfirm_hmerr_ap_newfirm_hm_newfirm_kmerr_newfirm_km_ap_newfirm_kmerr_ap_newfirm_kf_newfirm_jferr_newfirm_jflag_newfirm_jf_ap_newfirm_jferr_ap_newfirm_jf_newfirm_hferr_newfirm_hflag_newfirm_hf_ap_newfirm_hferr_ap_newfirm_hf_newfirm_kferr_newfirm_kflag_newfirm_kf_ap_newfirm_kferr_ap_newfirm_kibis_flag_cleanedibis_flag_gaiandwfs_idndwfs_stellaritym_ap_mosaic_rmerr_ap_mosaic_rm_mosaic_rmerr_mosaic_rm_ap_mosaic_imerr_ap_mosaic_im_mosaic_imerr_mosaic_im_ap_mosaic_bmerr_ap_mosaic_bm_mosaic_bmerr_mosaic_bm_ap_tifkam_ksmerr_ap_tifkam_ksm_tifkam_ksmerr_tifkam_ksf_ap_mosaic_rferr_ap_mosaic_rf_mosaic_rferr_mosaic_rflag_mosaic_rf_ap_mosaic_iferr_ap_mosaic_if_mosaic_iferr_mosaic_iflag_mosaic_if_ap_mosaic_bferr_ap_mosaic_bf_mosaic_bferr_mosaic_bflag_mosaic_bf_ap_tifkam_ksferr_ap_tifkam_ksf_tifkam_ksferr_tifkam_ksflag_tifkam_ksndwfs_flag_cleanedndwfs_flag_gaiauhs_iduhs_stellaritym_ukidss_jmerr_ukidss_jm_ap_ukidss_jmerr_ap_ukidss_jf_ukidss_jferr_ukidss_jflag_ukidss_jf_ap_ukidss_jferr_ap_ukidss_juhs_flag_cleaneduhs_flag_gaiazbootes_idzbootes_stellaritym_ap_90prime_zmerr_ap_90prime_zm_90prime_zmerr_90prime_zf_ap_90prime_zferr_ap_90prime_zf_90prime_zferr_90prime_zflag_90prime_zwfc_flag_cleanedzbootes_flag_gaiadatafusion_intiddatafusion_stellarityf_ap_irac_i1ferr_ap_irac_i1f_irac_i1ferr_irac_i1f_ap_irac_i2ferr_ap_irac_i2f_irac_i2ferr_irac_i2f_ap_irac_i3ferr_ap_irac_i3f_irac_i3ferr_irac_i3f_ap_irac_i4ferr_ap_irac_i4f_irac_i4ferr_irac_i4m_ap_irac_i1merr_ap_irac_i1m_irac_i1merr_irac_i1flag_irac_i1m_ap_irac_i2merr_ap_irac_i2m_irac_i2merr_irac_i2flag_irac_i2m_ap_irac_i3merr_ap_irac_i3m_irac_i3merr_irac_i3flag_irac_i3m_ap_irac_i4merr_ap_irac_i4m_irac_i4merr_irac_i4flag_irac_i4datafusion_flag_cleaneddatafusion_flag_gaia
degdeguJyuJyuJyuJyuJyuJymagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmagmaguJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJyuJy
0150292199054805142219.90563756597135.24563879406820612.699099540710450.001086000003851950214.1461000442504880.00121999997645616539.380689620971680.010.2892999649047850.014.1191997528076170.0749899968504905714.6079998016357420.1039569973945617713.1300001144409180.1756920069456100514.1459999084472660.1348990052938461312.6848001480102540.001086000003851950213.3674001693725590.0020369999110698730224.57367288693430.2319172754223227971.8658589389188.957678778321467False642279.63458010960.0278150.60828858890.0False8171.844592572415564.4157370585425209.548425071181498.80349359134976False20323.5679671771433288.72559356562177972.601125940405990.5683874045147False30625.27102660660230.63271198575434416332.02109687914230.64126016627149FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
1147042185485050439218.5483836559709832.53321638406820412.9029998779296880.001086000003851950213.9418001174926760.00121999997645616539.2441997528076170.09.5725498199462890.012.6482000350952150.1684390008449554412.4435997009277340.1254599988460540811.8364000320434570.001086000003851950211.8577995300292970.001086000003851950211.0452995300292970.1274019926786422710.9285001754760740.1215630024671554625049.55694406994425.055643183428549622.32348502282210.812234476234133False728316.41594133440.0538245.08410769250.0False31675.2452359874844914.03587325083938243.719098897264419.173767061893False66902.1365195839566.9183915941694665596.4275650974365.61236539426228False138637.3307112718816267.922276938989154383.1613311603717285.304238305205FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
2148432178563450118217.85634342597133.6912837240682114.0888996124267580.001545000006444752213.5656995773315430.001086000003851950212.8454999923706050.012.845299720764160.0nannannannannannannannan12.6489000320434570.03589599952101707512.467200279235840.035705998539924628403.11205802499211.95760823569181713605.67739193660213.608983135404564False26411.921818312170.026416.7941306349860.0FalsenannannannanFalsenannannannanFalse31654.8301214539861046.55418314130937421.387688770911230.6562204719578FalseFalse2False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
3148572188406089286218.84060036597133.8155430540682114.7532997131347660.001811999944038689115.1548004150390620.02822699956595897714.9624004364013670.014.6027002334594730.018834000453352928nannannannan14.0612001419067380.01012399978935718513.7966003417968750.01472999993711716.38090991973876950.0027449999470263726.7510299682617190.0183450002223253254557.0113969993337.6052584045366213148.327000681313681.85029152778925False3758.71870708631650.05235.03882137877390.81093833205321FalsenannannannanFalse8620.251628551880.3799535183648910999.168704601929149.2238663656055False10177380.9778101525730.8452297393927237490.600299285122287.3162833743FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
4148612172599144113217.2602494259709833.84467616406820413.4750995635986330.002737999893724918413.0249996185302730.0313469991087913513.5482997894287110.012.4949998855590820.01923600025475025213.952599525451660.001882000011391937714.6647996902465820.0014909999445080757nannan11.3987998962402340.04656799882650375412.1520004272460940.00113300001248717312.5430002212524410.00119300000369548814789.72757983609937.29660332256552422387.219251355447646.3560290659094False13825.4757321222750.036475.3985372128646.2350361709156False9527.08828700358416.5141221100451544944.01891816992256.789431816248952Falsenannan100110.594752034364293.814683993039False50026.4665562721952.204197469469334897.9496322466438.34564405035187FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
5149412164869384895216.4868485759709834.511863414068220.804700851440430.01418800000101327920.5119991302490230.02251200005412101724.2980995178222660.024.29850006103515617.10079956054687523.194999694824220.360556006431579623.938299179077151.367089986801147522.751199722290040.497236996889114422.2215003967285161.472129940986633320.2506008148193360.353092014789581320.145799636840820.2742969989776611317.3029303427205220.2261083075651331222.6568926998846650.4697752248205101False0.69304301839951680.00.69278739232915710.91169133199724False1.9142564630750160.63569462138910990.96534005846519931.2154948154094212False2.88084645143200071.31934758344714244.6924520267399276.362410219843535False28.824360055136429.37396332763512231.745351873271098.02004640921774FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
6149912170289453574217.0291416459709834.92749904406820615.2406997680664060.01533399987965822215.6101999282836910.0896899998188018813.5142002105712890.014.4144001007080080.543178021907806414.5719995498657230.1126940026879310615.3060998916625980.13882400095462813.7159004211425780.003614000044763088213.318799972534180.00352700008079409613.6533002853393550.05395400151610374513.0790004730224610.090949997305870062908.84173558993141.081966897675052069.760186496447170.9778028385672False14266.5813049174490.06226.4421830131823114.998407228992False5385.179452610932558.95476732556982738.7982603370833350.1872099699104False11847.85775838634439.4369813602131817079.69106572911255.483156502259696False12551.044976402462623.705000089188721300.991093912251784.3423421946777FalseFalse2True-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
7147492203624686868220.36253347597132.913813764068213.7798995971679690.04746099933981895413.8238000869750980.2923290133476257310.9688997268676760.012.9820995330810550.014.7509002685546880.2355509996414184613.9528999328613280.0764899998903274514.8118000030517580.2401580065488815315.4703998565673830.1041140034794807413.7555999755859380.1448329985141754213.4193000793457030.0569039992988109611169.665338436072488.261768310111110727.0416091073662888.20201075256False148744.223638317660.023289.501177553780.0False4567.093392413492990.83314098231519524.452644938801670.99667356961False4317.973759480901955.10858518190932354.1821224825694225.748505592188False11422.4695704579881523.713136834095615569.690093895244816.0155572808673FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
8150742169177050441216.9176783459709835.61660766406820522.073499679565430.0981860011816024822.1411991119384770.2245849967002868721.4650993347167970.020.887199401855471.619699954986572321.9223003387451170.1570529937744140622.114799499511720.459984004497528123.2520999908447271.570029973983764622.1016006469726561.107220053672790520.6737995147705080.1857330054044723520.219699859619140.210011005401611335.3777440467739480.486323640141050565.0526632603435351.0451455488717938False9.4180342636842960.016.03689328460481523.923817974721906False6.18130060598384650.89413225913897495.17702426078431352.1933028855631824False1.81618466199979862.6262957292323875.2403433270310795.3440358665314704False19.5200171138725343.339219442271374629.6565109934600565.736378379155134FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
9149642198013901347219.8014216159709834.700636084068222.0541000366210940.0989399999380111722.2646999359130860.506425023078918522.5830993652343750.021.7103004455566411.14949989318847724.907199859619146.32085990905761721.836799621582030.959092020988464422.4955005645751950.737864971160888721.0751991271972660.493443995714187620.820699691772460.33857899904251120.946599960327151.35913002490997315.4746957070324790.49889318468024294.50941313628562852.1033466891937764False3.363258542137060.07.514149332668777.1633172172383False0.395475930129662152.30235294798032846.6877518684305045.907668388742072False3.64585820615162472.47772069159105313.4871550153726246.12962488718398False17.0498327556849575.31686728596107115.18308473806928319.00626160187722FalseFalse0False-1nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannanFalse0nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0-1nannannannannannannanFalsenannanFalse0nannannannannannannannannanFalseFalse0-1nannannannannannannannannannannannannannannannannannannannannanFalsenannannannanFalsenannannannanFalsenannannannanFalseFalse0
\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "master_catalogue[:10].show_in_notebook()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## III - Merging flags and stellarity\n", "\n", "Each pristine catalogue contains a flag indicating if the source was associated to a another nearby source that was removed during the cleaning process. We merge these flags in a single one." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true }, "outputs": [], "source": [ "flag_cleaned_columns = [column for column in master_catalogue.colnames\n", " if 'flag_cleaned' in column]\n", "\n", "flag_column = np.zeros(len(master_catalogue), dtype=bool)\n", "for column in flag_cleaned_columns:\n", " flag_column |= master_catalogue[column]\n", " \n", "master_catalogue.add_column(Column(data=flag_column, name=\"flag_cleaned\"))\n", "master_catalogue.remove_columns(flag_cleaned_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each pristine catalogue contains a flag indicating the probability of a source being a Gaia object (0: not a Gaia object, 1: possibly, 2: probably, 3: definitely). We merge these flags taking the highest value." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "flag_gaia_columns = [column for column in master_catalogue.colnames\n", " if 'flag_gaia' in column]\n", "\n", "master_catalogue.add_column(Column(\n", " data=np.max([master_catalogue[column] for column in flag_gaia_columns], axis=0),\n", " name=\"flag_gaia\"\n", "))\n", "master_catalogue.remove_columns(flag_gaia_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each prisitine catalogue may contain one or several stellarity columns indicating the probability (0 to 1) of each source being a star. We merge these columns taking the highest value. We keep trace of the origin of the stellarity." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "legacy_stellarity, ibis_stellarity, ndwfs_stellarity, uhs_stellarity, zbootes_stellarity, datafusion_stellarity\n" ] } ], "source": [ "stellarity_columns = [column for column in master_catalogue.colnames\n", " if 'stellarity' in column]\n", "\n", "print(\", \".join(stellarity_columns))" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# We create an masked array with all the stellarities and get the maximum value, as well as its\n", "# origin. Some sources may not have an associated stellarity.\n", "stellarity_array = np.array([master_catalogue[column] for column in stellarity_columns])\n", "stellarity_array = np.ma.masked_array(stellarity_array, np.isnan(stellarity_array))\n", "\n", "max_stellarity = np.max(stellarity_array, axis=0)\n", "max_stellarity.fill_value = np.nan\n", "\n", "no_stellarity_mask = max_stellarity.mask\n", "\n", "master_catalogue.add_column(Column(data=max_stellarity.filled(), name=\"stellarity\"))\n", "\n", "stellarity_origin = np.full(len(master_catalogue), \"NO_INFORMATION\", dtype=\"S20\")\n", "stellarity_origin[~no_stellarity_mask] = np.array(stellarity_columns)[np.argmax(stellarity_array, axis=0)[~no_stellarity_mask]]\n", "\n", "master_catalogue.add_column(Column(data=stellarity_origin, name=\"stellarity_origin\"))\n", "\n", "master_catalogue.remove_columns(stellarity_columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IV - Adding E(B-V) column" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " ebv(master_catalogue['ra'], master_catalogue['dec'])\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## V - Adding HELP unique identifiers and field columns" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(gen_help_id(master_catalogue['ra'], master_catalogue['dec']),\n", " name=\"help_id\"))\n", "master_catalogue.add_column(Column(np.full(len(master_catalogue), \"Bootes\", dtype='" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nb_merge_dist_plot(\n", " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", " SkyCoord(specz['ra'] * u.deg, specz['dec'] * u.deg)\n", ")" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue = specz_merge(master_catalogue, specz, radius=1. * u.arcsec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VII - Choosing between multiple values for the same filter\n", "\n", "We take DataFusion Spitzer instead of SDWFS which is shallower." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VIII.a Wavelength domain coverage\n", "\n", "We add a binary `flag_optnir_obs` indicating that a source was observed in a given wavelength domain:\n", "\n", "- 1 for observation in optical;\n", "- 2 for observation in near-infrared;\n", "- 4 for observation in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source observed both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: The observation flag is based on the creation of multi-order coverage maps from the catalogues, this may not be accurate, especially on the edges of the coverage.*\n", "\n", "*Note 2: Being on the observation coverage does not mean having fluxes in that wavelength domain. For sources observed in one domain but having no flux in it, one must take into consideration de different depths in the catalogue we are using.*" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#decals_moc = MOC(filename=\"../../dmu0/dmu0_DECaLS/data/DECaLS_Bootes_MOC.fits\")\n", "datafusion_moc = MOC(filename=\"../../dmu0/dmu0_DataFusion-Spitzer/data/Datafusion-Bootes_MOC.fits\")\n", "ibis_moc = MOC(filename=\"../../dmu0/dmu0_IBIS/data/IBIS_MLselected_20160801_MOC.fits\")\n", "legacy_moc = MOC(filename=\"../../dmu0/dmu0_LegacySurvey/data/LegacySurvey-dr4_Bootes_MOC.fits\")\n", "ndwfs_moc = MOC(filename=\"../../dmu0/dmu0_NDWFS/data/NDWFS_MLselected_20160801_MOC.fits\")\n", "ps1_moc = MOC(filename=\"../../dmu0/dmu0_PanSTARRS1-3SS/data/PanSTARRS1-3SS_Bootes_v2_MOC.fits\")\n", "#sdwfs_moc = MOC(filename=\"../../dmu0/dmu0_SDWFS/data/SDWFS_MLselected_20160801_MOC.fits\")\n", "uhs_moc = MOC(filename=\"../../dmu0/dmu0_UHS/data/UHS-DR1_Bootes_MOC.fits\")\n", "zbootes_moc = MOC(filename=\"../../dmu0/dmu0_zBootes/data/zBootes_MLselected_20160801_MOC.fits\")" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": true }, "outputs": [], "source": [ "was_observed_optical = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " #decals_moc + \n", " ps1_moc + zbootes_moc + legacy_moc + ndwfs_moc) \n", "\n", "was_observed_nir = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " ibis_moc + uhs_moc \n", ")\n", "\n", "was_observed_mir = inMoc(\n", " master_catalogue['ra'], master_catalogue['dec'],\n", " datafusion_moc # + sdwfs_moc\n", ")" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(\n", " Column(\n", " 1 * was_observed_optical + 2 * was_observed_nir + 4 * was_observed_mir,\n", " name=\"flag_optnir_obs\")\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VIII.b Wavelength domain detection\n", "\n", "We add a binary `flag_optnir_det` indicating that a source was detected in a given wavelength domain:\n", "\n", "- 1 for detection in optical;\n", "- 2 for detection in near-infrared;\n", "- 4 for detection in mid-infrared (IRAC).\n", "\n", "It's an integer binary flag, so a source detected both in optical and near-infrared by not in mid-infrared would have this flag at 1 + 2 = 3.\n", "\n", "*Note 1: We use the total flux columns to know if the source has flux, in some catalogues, we may have aperture flux and no total flux.*\n", "\n", "To get rid of artefacts (chip edges, star flares, etc.) we consider that a source is detected in one wavelength domain when it has a flux value in **at least two bands**. That means that good sources will be excluded from this flag when they are on the coverage of only one band." ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#[column[5:] for column in master_catalogue.colnames if 'flag' in column]" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# SpARCS is a catalogue of sources detected in r (with fluxes measured at \n", "# this prior position in the other bands). Thus, we are only using the r\n", "# CFHT band.\n", "# Check to use catalogue flags from HSC and PanSTARRS.\n", "nb_optical_flux = (\n", " \n", " \n", " 1 * ~np.isnan(master_catalogue['f_90prime_z']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_mosaic_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_mosaic_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_mosaic_b']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_90prime_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_90prime_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_mosaic_z']) +\n", " \n", " #1 * ~np.isnan(master_catalogue['f_decam_g']) +\n", " #1 * ~np.isnan(master_catalogue['f_decam_r']) +\n", " #1 * ~np.isnan(master_catalogue['f_decam_z']) +\n", "\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_g']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_r']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_i']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_z']) +\n", " 1 * ~np.isnan(master_catalogue['f_gpc1_y'])\n", ")\n", "\n", "nb_nir_flux = (\n", " 1 * ~np.isnan(master_catalogue['f_newfirm_j']) +\n", " 1 * ~np.isnan(master_catalogue['f_newfirm_h']) +\n", " 1 * ~np.isnan(master_catalogue['f_newfirm_k']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_tifkam_ks']) +\n", " \n", " 1 * ~np.isnan(master_catalogue['f_ukidss_j']) \n", "\n", ")\n", "\n", "nb_mir_flux = (\n", " 1 * ~np.isnan(master_catalogue['f_irac_i1']) +\n", " 1 * ~np.isnan(master_catalogue['f_irac_i2']) +\n", " 1 * ~np.isnan(master_catalogue['f_irac_i3']) +\n", " 1 * ~np.isnan(master_catalogue['f_irac_i4'])\n", ")" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": true }, "outputs": [], "source": [ "has_optical_flux = nb_optical_flux >= 2\n", "has_nir_flux = nb_nir_flux >= 2\n", "has_mir_flux = nb_mir_flux >= 2\n", "\n", "master_catalogue.add_column(\n", " Column(\n", " 1 * has_optical_flux + 2 * has_nir_flux + 4 * has_mir_flux,\n", " name=\"flag_optnir_det\")\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IX - Cross-identification table\n", "\n", "We are producing a table associating to each HELP identifier, the identifiers of the sources in the pristine catalogues. This can be used to easily get additional information from them.\n", "\n", "For convenience, we also cross-match the master list with the SDSS catalogue and add the objID associated with each source, if any. **TODO: should we correct the astrometry with respect to Gaia positions?**" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "242 master list rows had multiple associations.\n" ] } ], "source": [ "#\n", "# Addind SDSS ids\n", "#\n", "sdss = Table.read(\"../../dmu0/dmu0_SDSS-DR13/data/SDSS-DR13_Bootes.fits\")['objID', 'ra', 'dec']\n", "sdss_coords = SkyCoord(sdss['ra'] * u.deg, sdss['dec'] * u.deg)\n", "idx_ml, d2d, _ = sdss_coords.match_to_catalog_sky(SkyCoord(master_catalogue['ra'], master_catalogue['dec']))\n", "idx_sdss = np.arange(len(sdss))\n", "\n", "# Limit the cross-match to 1 arcsec\n", "mask = d2d <= 1. * u.arcsec\n", "idx_ml = idx_ml[mask]\n", "idx_sdss = idx_sdss[mask]\n", "d2d = d2d[mask]\n", "nb_orig_matches = len(idx_ml)\n", "\n", "# In case of multiple associations of one master list object to an SDSS object, we keep only the\n", "# association to the nearest one.\n", "sort_idx = np.argsort(d2d)\n", "idx_ml = idx_ml[sort_idx]\n", "idx_sdss = idx_sdss[sort_idx]\n", "_, unique_idx = np.unique(idx_ml, return_index=True)\n", "idx_ml = idx_ml[unique_idx]\n", "idx_sdss = idx_sdss[unique_idx]\n", "print(\"{} master list rows had multiple associations.\".format(nb_orig_matches - len(idx_ml)))\n", "\n", "# Adding the ObjID to the master list\n", "master_catalogue.add_column(Column(data=np.full(len(master_catalogue), -1, dtype='>i8'), name=\"sdss_id\"))\n", "master_catalogue['sdss_id'][idx_ml] = sdss['objID'][idx_sdss]" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['ps1_id', 'legacy_id', 'ibis_id', 'ndwfs_id', 'uhs_id', 'zbootes_id', 'datafusion_intid', 'help_id', 'specz_id', 'sdss_id']\n" ] } ], "source": [ "\n", "id_names = []\n", "for col in master_catalogue.colnames:\n", " if '_id' in col:\n", " id_names += [col]\n", " if '_intid' in col:\n", " id_names += [col]\n", " \n", "print(id_names)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue[id_names].write(\n", " \"{}/master_list_cross_ident_bootes_help{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)\n", "id_names.remove('help_id')\n", "master_catalogue.remove_columns(id_names)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## X - Adding HEALPix index\n", "\n", "We are adding a column with a HEALPix index at order 13 associated with each source." ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue.add_column(Column(\n", " data=coords_to_hpidx(master_catalogue['ra'], master_catalogue['dec'], order=13),\n", " name=\"hp_idx\"\n", "))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## XI - Saving the catalogue" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": true }, "outputs": [], "source": [ "columns = [\"help_id\", \"field\", \"ra\", \"dec\", \"hp_idx\"]\n", "\n", "bands = [column[5:] for column in master_catalogue.colnames if 'f_ap' in column]\n", "for band in bands:\n", " columns += [\"f_ap_{}\".format(band), \"ferr_ap_{}\".format(band),\n", " \"m_ap_{}\".format(band), \"merr_ap_{}\".format(band),\n", " \"f_{}\".format(band), \"ferr_{}\".format(band),\n", " \"m_{}\".format(band), \"merr_{}\".format(band),\n", " #\"flag_{}\".format(band)\n", " ] \n", " \n", "columns += [\"stellarity\", \"flag_cleaned\", \"flag_merged\", \"flag_gaia\", \"flag_optnir_obs\", \n", " \"flag_optnir_det\", \"ebv\", 'zspec_association_flag', 'zspec_qual', 'zspec', \"stellarity_origin\"] \n", "#\"zspec\", \"zspec_qual\", \"zspec_association_flag\", \"stellarity_origin\"," ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Missing columns: {'flag_newfirm_k', 'flag_mosaic_i', 'flag_mosaic_b', 'flag_irac_i4', 'flag_90prime_g', 'flag_newfirm_j', 'flag_gpc1_g', 'flag_irac_i1', 'flag_newfirm_h', 'flag_gpc1_r', 'flag_mosaic_z', 'flag_90prime_r', 'flag_irac_i3', 'flag_mosaic_r', 'flag_gpc1_z', 'flag_90prime_z', 'flag_irac_i2', 'flag_tifkam_ks', 'flag_gpc1_i', 'flag_gpc1_y', 'flag_ukidss_j'}\n" ] } ], "source": [ "# We check for columns in the master catalogue that we will not save to disk.\n", "print(\"Missing columns: {}\".format(set(master_catalogue.colnames) - set(columns)))" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true }, "outputs": [], "source": [ "master_catalogue[columns].write(\"{}/master_catalogue_bootes_help{}.fits\".format(OUT_DIR, SUFFIX), overwrite=True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python (herschelhelp_internal)", "language": "python", "name": "helpint" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }