This product contains the 8-band (u*, g', r', i', z', Y, J, Ks) optical to near-infrared catalogue from Oi et al., 2014.
We don't know when the maps have been observed. We will use the year of the reference paper.
from herschelhelp_internal import git_version
print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version()))
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'
import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))
from collections import OrderedDict
import os
from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.table import Column, Table
import numpy as np
from herschelhelp_internal.flagging import gaia_flag_column
from herschelhelp_internal.masterlist import nb_astcor_diag_plot, remove_duplicates
from herschelhelp_internal.utils import astrometric_correction, mag_to_flux
OUT_DIR = os.environ.get('TMP_DIR', "./data_tmp")
try:
os.makedirs(OUT_DIR)
except FileExistsError:
pass
RA_COL = "akari_ra"
DEC_COL = "akari_dec"
imported_columns = OrderedDict({
'OBJID': "akari_id",
'RAJ2000': "akari_ra",
'DEJ2000': "akari_dec",
'stl': "akari_stellarity",
'umag': "m_megacam_u",
'e_umag': "merr_megacam_u",
'gmag': "m_megacam_g",
'e_gmag': "merr_megacam_g",
'rmag': "m_megacam_r",
'e_rmag': "merr_megacam_r",
'imag': "m_megacam_i",
'e_imag': "merr_megacam_i",
'zmag': "m_megacam_z",
'e_zmag': "merr_megacam_z",
'Ymag': "m_wircam_y",
'e_Ymag': "merr_wircam_y",
'Jmag': "m_wircam_j",
'e_Jmag': "merr_wircam_j",
'Kmag': "m_wircam_k",
'e_Kmag': "merr_wircam_k"
})
catalogue = Table.read("../../dmu0/dmu0_AKARI-NEP-OptNIR/data/AKARI-NEP_OptNIR.fits")[list(imported_columns)]
for column in imported_columns:
catalogue[column].name = imported_columns[column]
epoch = 2014 #This is the paper year. The observations are multi-epoch
# Clean table metadata
catalogue.meta = None
# Adding flux and band-flag columns
for col in catalogue.colnames:
if col.startswith('m_'):
errcol = "merr{}".format(col[1:])
# Bad values = -99
catalogue[col][catalogue[col] <= -90.] = np.nan
catalogue[errcol][catalogue[errcol] <= -90.] = np.nan
flux, error = mag_to_flux(np.array(catalogue[col]), np.array(catalogue[errcol]))
# Fluxes are added in µJy
catalogue.add_column(Column(flux * 1.e6, name="f{}".format(col[1:])))
catalogue.add_column(Column(error * 1.e6, name="f{}".format(errcol[1:])))
# We add nan filled aperture photometry for consistency
#catalogue.add_column(Column(np.full(len(catalogue), np.nan), name="m_ap{}".format(col[1:])))
#catalogue.add_column(Column(np.full(len(catalogue), np.nan), name="merr_ap{}".format(col[1:])))
#catalogue.add_column(Column(np.full(len(catalogue), np.nan), name="f_ap{}".format(col[1:])))
#catalogue.add_column(Column(np.full(len(catalogue), np.nan), name="ferr_ap{}".format(col[1:])))
# Band-flag column
if "ap" not in col:
catalogue.add_column(Column(np.zeros(len(catalogue), dtype=bool), name="flag{}".format(col[1:])))
# TODO: Set to True the flag columns for fluxes that should not be used for SED fitting.
catalogue[:10].show_in_notebook()
We remove duplicated objects from the input catalogues.
SORT_COLS = ['merr_megacam_u', 'merr_megacam_g', 'merr_megacam_r', 'merr_megacam_i', 'merr_megacam_z',
'merr_wircam_y', 'merr_wircam_j', 'merr_wircam_k']
FLAG_NAME = 'akari_flag_cleaned'
nb_orig_sources = len(catalogue)
catalogue = remove_duplicates(catalogue, RA_COL, DEC_COL, sort_col=SORT_COLS,flag_name=FLAG_NAME)
nb_sources = len(catalogue)
print("The initial catalogue had {} sources.".format(nb_orig_sources))
print("The cleaned catalogue has {} sources ({} removed).".format(nb_sources, nb_orig_sources - nb_sources))
print("The cleaned catalogue has {} sources flagged as having been cleaned".format(np.sum(catalogue[FLAG_NAME])))
We match the astrometry to the Gaia one. We limit the Gaia catalogue to sources with a g band flux between the 30th and the 70th percentile. Some quick tests show that this give the lower dispersion in the results.
gaia = Table.read("../../dmu0/dmu0_GAIA/data/GAIA_AKARI-NEP.fits")
gaia_coords = SkyCoord(gaia['ra'], gaia['dec'])
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL],
gaia_coords.ra, gaia_coords.dec)
delta_ra, delta_dec = astrometric_correction(
SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]),
gaia_coords
)
print("RA correction: {}".format(delta_ra))
print("Dec correction: {}".format(delta_dec))
catalogue[RA_COL] += delta_ra.to(u.deg)
catalogue[DEC_COL] += delta_dec.to(u.deg)
nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL],
gaia_coords.ra, gaia_coords.dec)
catalogue.add_column(
gaia_flag_column(SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), epoch, gaia)
)
GAIA_FLAG_NAME = "akari_flag_gaia"
catalogue['flag_gaia'].name = GAIA_FLAG_NAME
print("{} sources flagged.".format(np.sum(catalogue[GAIA_FLAG_NAME] > 0)))
catalogue.write("{}/AKARI.fits".format(OUT_DIR), overwrite=True)